Delessert, Alexandre; Espa, Fabrice; Rossetti, Andrea; Lavigne, Gilles; Tafti, Mehdi; Heinzer, Raphael
2010-01-01
Background: During sleep, sudden drops in pulse wave amplitude (PWA) measured by pulse oximetry are commonly associated with simultaneous arousals and are thought to result from autonomic vasoconstriction. In the present study, we determine whether PWA drops were associated with changes in cortical activity as determined by EEG spectral analysis. Methods: A 20% decrease in PWA was chosen as a minimum for a drop. A total of 1085 PWA drops from 10 consecutive sleep recordings were analyzed. EEG spectral analysis was performed over 5 consecutive epochs of 5 seconds: 2 before, 1 during, and 2 after the PWA drop. EEG spectral analysis was performed over delta, theta, alpha, sigma, and beta frequency bands. Within each frequency band, power density was compared across the five 5-sec epochs. Presence or absence of visually scored EEG arousals were adjudicated by an investigator blinded to the PWA signal and considered associated with PWA drop if concomitant. Results: A significant increase in EEG power density in all EEG frequency bands was found during PWA drops (P < 0.001) compared to before and after drop. Even in the absence of visually scored arousals, PWA drops were associated with a significant increase in EEG power density (P < 0.001) in most frequency bands. Conclusions: Drops in PWA are associated with a significant increase in EEG power density, suggesting that these events can be used as a surrogate for changes in cortical activity during sleep. This approach may prove of value in scoring respiratory events on limited-channel (type III) portable monitors. Citation: Delessert A; Espa F; Rossetti A; Lavigne G; Tafti M; Heinzer R. Pulse wave amplitude drops during sleep are reliable surrogate markers of changes in cortical activity. SLEEP 2010;33(12):1687-1692. PMID:21120131
Ibrahim, N N I N; Rasool, A H G
2017-08-01
Pulse wave analysis (PWA) and laser Doppler fluximetry (LDF) are non-invasive methods of assessing macrovascular endothelial function and microvascular reactivity respectively. The aim of this study was to assess the correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF. 297 healthy and non-smoking subjects (159 females, mean age (±SD) 23.56 ± 4.54 years) underwent microvascular reactivity assessment using LDF followed by macrovascular endothelial function assessments using PWA. Pearson's correlation showed no correlation between macrovascular endothelial function and microvascular reactivity (r = -0.10, P = 0.12). There was no significant correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF in healthy subjects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
PyPWA: A partial-wave/amplitude analysis software framework
NASA Astrophysics Data System (ADS)
Salgado, Carlos
2016-05-01
The PyPWA project aims to develop a software framework for Partial Wave and Amplitude Analysis of data; providing the user with software tools to identify resonances from multi-particle final states in photoproduction. Most of the code is written in Python. The software is divided into two main branches: one general-shell where amplitude's parameters (or any parametric model) are to be estimated from the data. This branch also includes software to produce simulated data-sets using the fitted amplitudes. A second branch contains a specific realization of the isobar model (with room to include Deck-type and other isobar model extensions) to perform PWA with an interface into the computer resources at Jefferson Lab. We are currently implementing parallelism and vectorization using the Intel's Xeon Phi family of coprocessors.
Martin, Jeffrey S; Borges, Alexandra R; Christy, John B; Beck, Darren T
2015-10-01
Methods employed for pulse wave analysis (PWA) and peripheral blood pressure (PBP) calibration vary. The purpose of this study was to evaluate the agreement of SphygmoCor PWA parameters derived from radial artery tonometry when considering (1) timing (before vs. after tonometry) and side selection (ipsilateral vs. contralateral limb) for PBP calibration and (2) side selection for tonometry (left vs. right arm). In 34 subjects (aged 21.9 ± 2.3 years), bilateral radial artery tonometry was performed simultaneously on three instances. PBP assessment via oscillometric sphygmomanometry in the left arm only and both arms simultaneously occurred following the first and second instances of tonometry, respectively. Significant within arm differences in PWA parameters derived before and after PBP measurement were observed in the right arm only (for example, aortic systolic blood pressure, Δ=0.38 ± 0.64 mm Hg). Simultaneously captured bilateral PWA variables demonstrated significant between arm differences in 88% (14/16) and 56% (9/16) of outcome variables when calibrated to within arm and equivalent PBP, respectively. Moreover, the right arm consistently demonstrated lower values for clinical PWA variables (for example, augmentation index, bias=-2.79%). However, 26% (n=9) of participants presented with clinically significant differences (>10 mm Hg) in bilateral PBP and their exclusion from analysis abolished most between arm differences observed. SphygmoCor PWA in the right radial artery results in greater variability independent of the timing of PBP measurement and magnitude of calibration pressures in young subjects. Moreover, bilateral PBP measurement is imperative to identify subjects in whom a significant difference in bilateral PWA outcomes may exist.
A Rosetta Stone Relating Conventions In Photo-Meson Partial Wave Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.M. Sandorfi, B. Dey, A. Sarantsev, L. Tiator, R. Workman
2012-04-01
A new generation of complete experiments in pseudoscalar meson photo-production is being pursued at several laboratories. While new data are emerging, there is some confusion regarding definitions of asymmetries and the conventions used in partial wave analyses (PWA). We present expressions for constructing asymmetries as coordinate-system independent ratios of cross sections, along with the names used for these ratios by different PWA groups.
Abnormal P-Wave Axis and Ischemic Stroke: The ARIC Study (Atherosclerosis Risk In Communities).
Maheshwari, Ankit; Norby, Faye L; Soliman, Elsayed Z; Koene, Ryan J; Rooney, Mary R; O'Neal, Wesley T; Alonso, Alvaro; Chen, Lin Y
2017-08-01
Abnormal P-wave axis (aPWA) has been linked to incident atrial fibrillation and mortality; however, the relationship between aPWA and stroke has not been reported. We hypothesized that aPWA is associated with ischemic stroke independent of atrial fibrillation and other stroke risk factors and tested our hypothesis in the ARIC study (Atherosclerosis Risk In Communities), a community-based prospective cohort study. We included 15 102 participants (aged 54.2±5.7 years; 55.2% women; 26.5% blacks) who attended the baseline examination (1987-1989) and without prevalent stroke. We defined aPWA as any value outside 0 to 75° using 12-lead ECGs obtained during study visits. Each case of incident ischemic stroke was classified in accordance with criteria from the National Survey of Stroke by a computer algorithm and adjudicated by physician review. Multivariable Cox regression was used to estimate hazard ratios and 95% confidence intervals for the association of aPWA with stroke. During a mean follow-up of 20.2 years, there were 657 incident ischemic stroke cases. aPWA was independently associated with a 1.50-fold (95% confidence interval, 1.22-1.85) increased risk of ischemic stroke in the multivariable model that included atrial fibrillation. When subtyped, aPWA was associated with a 2.04-fold (95% confidence interval, 1.42-2.95) increased risk of cardioembolic stroke and a 1.32-fold (95% confidence interval, 1.03-1.71) increased risk of thrombotic stroke. aPWA is independently associated with ischemic stroke. This association seems to be stronger for cardioembolic strokes. Collectively, our findings suggest that alterations in atrial electric activation may predispose to cardiac thromboembolism independent of atrial fibrillation. © 2017 American Heart Association, Inc.
Partial wave analysis of the reaction γ p → p ω and the search for nucleon resonances
Williams, M.; Applegate, D.; Bellis, M.; ...
2009-12-30
We performed an event-based partial wave analysis (PWA) of the reaction γ p -> p ω on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high precision spin density matrix element measurements, available to the event-based PWA through the decay distribution of omega-> π + π - π 0. The data confirm the dominance of the t-channel π 0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F[15](1680) and D[13](1700)more » near threshold, as well as the G[17](2190) at higher energies. Suggestive evidence for the presence of a J(P)=5/2 + state around 2 GeV, a "missing" state, has also been found. Evidence for other states is inconclusive.« less
The Correlation of Arterial Stiffness with Biophysical Parameters and Blood Biochemistry.
Khiyami, Anamil M; Dore, Fiona J; Mammadova, Aytan; Amdur, Richard L; Sen, Sabyasachi
2017-05-01
Type 2 diabetes presents with numerous macrovascular and microvascular impairments, which in turn lead to various co-morbidities. Vascular co-morbidities can be seen when examining arterial stiffness (AS), which is a predictor for endothelial health and cardiovascular disease risk. Pulse wave analysis (PWA) and pulse wave velocity (PWV) are two tests that are commonly used to measure AS. Currently, disease states and progression are tracked via blood biochemistry. These gold standards in monitoring diabetes are expensive and need optimization. To investigate which biophysical and biochemical parameters correlated best with AS, which may reduce the number of biochemical tests and biophysical parameter measurements needed to track disease progression. Data from 42 subjects with type 2 diabetes mellitus for ≤10 years, aged 40-70 years, were analyzed at a single time point. We investigated various blood biochemistry, body composition, and AS parameters. A combination of fat mass and fat-free mass was most associated with PWA over any other parameters. Leptin and high-sensitivity C-reactive protein seem to be the next two parameters that correlate with augmentation index. No other parameters had strong correlations to either PWA or PWV values. Body composition methods seemed to be better predictors of type 2 diabetes mellitus patient's vascular disease progression. Our study indicates that body composition measurements may help replace expensive tests. This may have public health and health surveillance implications in countries facing financial challenges.
Akkan, Tolga; Altay, Mustafa; Ünsal, Yasemin; Dağdeviren, Murat; Beyan, Esin
2017-12-01
Recently, cardiovascular risk is thought to be increased in patients with nonfunctioning adrenal incidentaloma (NFAI). There are no sufficient studies in the literature to evaluate this situation in NFAI patients without cardiovascular risk. The objective of this study is to compare peripheral and central blood pressure and arterial stiffness between patients with NFAI and healthy volunteers (of a similar age, gender and body mass index as the NFAI group) who have no traditional cardiovascular risk factors and autonomous cortisol secretion, with pulse wave analysis (PWA). In this cross-sectional study, we evaluated 35 NFAI patients who have no traditional cardiovascular risk factors and 35 healthy volunteers. PWA was performed in the participants of similar gender, age and body mass index, with a Mobil-O-Graph PWA/ABPM (I.E.M. GmBH, Stolberg, Germany) device. Radiological and biochemical data were obtained retrospectively in the NFAI group. In our study, systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), central SBP, central DBP, peripheral vascular resistance, augmentation pressure (AP), heart rate-corrected augmentation index (Aix@75) and pulse wave velocity (PWV) values were significantly higher in the NFAI group compared to the control group. In addition, peripheral and central blood pressure and arterial stiffness parameters were correlated with age and duration of NFAI diagnosis of more than 1 year. NFAIs are known as cardiometabolically innocent, but in our study, both peripheral and central blood pressure values and arterial stiffness parameters were negatively affected in patients diagnosed with NFAI who have no traditional cardiovascular risk factors. These patients are at risk of cardiovascular diseases.
The primary creep behavior of single crystal, nickel base superalloys PWA 1480 and PWA 1484
NASA Astrophysics Data System (ADS)
Wilson, Brandon Charles
Primary creep occurring at intermediate temperatures (650°C to 850°C) and loads greater than 500 MPa has been shown to result in severe creep strain, often exceeding 5-10%, during the first few hours of creep testing. This investigation examines how the addition of rhenium and changes in aging heat treatment affect the primary creep behavior of PWA 1480 and PWA 1484. To aid in the understanding of rhenium's role in primary creep, 3wt% Re was added to PWA 1480 to create a second generation version of PWA 1480. The age heat treatments used for creep testing were either 704°C/24 hr. or 871°C/32hr. All three alloys exhibited the presence of secondary gamma' confirmed by scanning electron microscopy and local electrode atom probe techniques. These aging heat treatments resulted in the reduction of the primary creep strain produced in PWA 1484 from 24% to 16% at 704°C/862 MPa and produced a slight dependence of the tensile properties of PWA 1480 on aging heat treatment temperature. For all test temperatures, the high temperature age resulted in a significant decrease in primary creep behavior of PWA 1484 and a longer lifetime for all but the lowest test temperature. The primary creep behavior of PWA 1480 and PWA 1480+Re did not display any significant dependence on age heat treatment. The creep rupture life of PWA 1480 is greater than PWA 1484 at 704°C, but significantly shorter at 760°C and 815°C. PWA 1480+Re, however, displayed the longest lifetime of all three alloys at both 704°C and 815°C (PWA 1480+Re was not tested at 760°C). Qualitative TEM analysis revealed that PWA 1484 deformed by large dislocation "ribbons" spanning large regions of material. PWA 1480, however, deformed primarily due to matrix dislocations and the creation of interfacial dislocation networks between the gamma and gamma' phases. PWA 1480+ contained stacking faults as well, though they acted on multiple slip systems generating work hardening and forcing the onset of secondary creep. X-ray diffraction and JMatPro calculations were also used to gain insight into the cause of the differences in behaviors.
Partial wave analysis of the reaction p(3.5 GeV) + p → pK + Λ to search for the "ppK –" bound state
Agakishiev, G.; Arnold, O.; Belver, D.; ...
2015-01-26
Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p → pK +Λ. This reaction might contain information about the kaonic cluster “ppK -” (with quantum numbers J P=0 - and total isospin I =1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK -”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediatemore » states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CL s=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK + Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.« less
NASA Technical Reports Server (NTRS)
Grard, Rejean; Berthelin, Stephanie; Beghin, Christian; Hamelin, Michel; Berthelier, Jean-Jacques; Lopez-Moreno, Jose J.; Simoes, Fernando
2011-01-01
Morente et al. have recently revisited the VLF electric field measurements made with the Permittivity, Wave and Altimetry (PWA) instrument during the descent of the Huygens Probe through the atmosphere of Titan. They assert that they have identified several harmonics of the transverse resonance mode of the surface?]ionosphere cavity, which would prove the existence of an electrical activity in the atmosphere of the largest satellite of Saturn. We refute this finding on the basis that it results from an artifact due to an improper analysis of the data set. [2] The investigators of the Permittivity, Wave and Altimetry (PWA) experiment on the Huygens Probe have reported the extremely low frequency (ELF) and very low frequency (VLF) electric signals recorded during the descent through the atmosphere of Titan. The PWA data are archived in the Planetary Science Archive (PSA) of ESA, and an extensive description of the instrument is at the disposal of the scientific community. Morente and his coworkers have revisited this data set and reported the results of their investigations in two papers. In a first paper, they claim that they have detected in the ELF range (0.100 Hz) several harmonics of a global resonance allegedly generated by lightning activity in the spherical cavity guide formed by the surface of Titan and the inner boundary of the ionosphere, a phenomenon similar to the Schumann resonance observed at EartH In the second paper dedicated to the VLF electric signal recorded by PWA, in the range 0.10 kHz, they argue that they can also bring out the transverse resonance and its harmonics, a more local phenomenon that develops around the excitation source and whose frequency is controlled by the separation between Titan?fs surface and the inner ionospheric boundary. [3] The PWA investigators have analyzed the narrowband ELF signal at about 36 Hz effectively observed during the entire descent. They have not endorsed, however, the alternative approach of Morente et al. that discloses additional ELF narrow-band signals and numerous related harmonics. Hamelin et al. and Beghin et al. have questioned the work of Morente and his coworkers and demonstrated unambiguously that their findings are mere artifacts entirely due to a faulty procedure. Morente et al. refuted this critical analysis of their ELF paper in a rebuttal. The present comment draws a parallelism between the ELF and VLF papers and demonstrates that the VLF signal carries no evidence whatever of any transverse resonance. The analyses of the ELF and VLF signals by Morente and his coworkers are flawed, and their conclusions are shown here to be invalid. A more comprehensive and thorough assessment of the numerical approaches proposed by Morente et al. is given by Berthelin et al..
Measuring lexical diversity in narrative discourse of people with aphasia.
Fergadiotis, Gerasimos; Wright, Heather H; West, Thomas M
2013-05-01
A microlinguistic content analysis for assessing lexical semantics in people with aphasia (PWA) is lexical diversity (LD). Sophisticated techniques have been developed to measure LD. However, validity evidence for these methodologies when applied to the discourse of PWA is lacking. The purpose of this study was to evaluate four measures of LD to determine how effective they were at measuring LD in PWA. Four measures of LD were applied to short discourse samples produced by 101 PWA: (a) the Measure of Textual Lexical Diversity (MTLD; McCarthy, 2005), (b) the Moving-Average Type-Token Ratio (MATTR; Covington, 2007), (c) D (McKee, Malvern, & Richards, 2000), and (d) the Hypergeometric Distribution (HD-D; McCarthy & Jarvis, 2007). LD was estimated using each method, and the scores were subjected to a series of analyses (e.g., curve-fitting, analysis of variance, confirmatory factor analysis). Results from the confirmatory factor analysis suggested that MTLD and MATTR reflect LD and little of anything else. Further, two indices (HD-D and D) were found to be equivalent, suggesting that either one can be used when samples are >50 tokens. MTLD and MATTR yielded the strongest evidence for producing unbiased LD scores, suggesting that they may be the best measures for capturing LD in PWA.
Yule, Christie E.; Stoner, Lee; Hodges, Lynette D.; Cochrane, Darryl J.
2016-01-01
[Purpose] Previous studies have shown that stroke is associated with increased arterial stiffness that can be diminished by a program of physical activity. A novel exercise intervention, whole-body vibration (WBV), is reported to significantly improve arterial stiffness in healthy men and older sedentary adults. However, little is known about its efficacy in reducing arterial stiffness in chronic stroke. [Subjects and Methods] Six participants with chronic stroke were randomly assigned to 4 weeks of WBV training or control followed by cross-over after a 2-week washout period. WBV intervention consisted of 3 sessions of 5 min intermittent WBV per week for 4 weeks. Arterial stiffness (carotid arterial stiffness, pulse wave velocity [PWV], pulse and wave analysis [PWA]) were measured before/after each intervention. [Results] No significant improvements were reported with respect to carotid arterial stiffness, PWV, and PWA between WBV and control. However, carotid arterial stiffness showed a decrease over time following WBV compared to control, but this was not significant. [Conclusion] Three days/week for 4 weeks of WBV seems too short to elicit appropriate changes in arterial stiffness in chronic stroke. However, no adverse effects were reported, indicating that WBV is a safe and acceptable exercise modality for people with chronic stroke. PMID:27134400
Automated Proposition Density Analysis for Discourse in Aphasia.
Fromm, Davida; Greenhouse, Joel; Hou, Kaiyue; Russell, G Austin; Cai, Xizhen; Forbes, Margaret; Holland, Audrey; MacWhinney, Brian
2016-10-01
This study evaluates how proposition density can differentiate between persons with aphasia (PWA) and individuals in a control group, as well as among subtypes of aphasia, on the basis of procedural discourse and personal narratives collected from large samples of participants. Participants were 195 PWA and 168 individuals in a control group from the AphasiaBank database. PWA represented 6 aphasia types on the basis of the Western Aphasia Battery-Revised (Kertesz, 2006). Narrative samples were stroke stories for PWA and illness or injury stories for individuals in the control group. Procedural samples were from the peanut-butter-and-jelly-sandwich task. Language samples were transcribed using Codes for the Human Analysis of Transcripts (MacWhinney, 2000) and analyzed using Computerized Language Analysis (MacWhinney, 2000), which automatically computes proposition density (PD) using rules developed for automatic PD measurement by the Computerized Propositional Idea Density Rater program (Brown, Snodgrass, & Covington, 2007; Covington, 2007). Participants in the control group scored significantly higher than PWA on both tasks. PD scores were significantly different among the aphasia types for both tasks. Pairwise comparisons for both discourse tasks revealed that PD scores for the Broca's group were significantly lower than those for all groups except Transcortical Motor. No significant quadratic or linear association between PD and severity was found. Proposition density is differentially sensitive to aphasia type and most clearly differentiates individuals with Broca's aphasia from the other groups.
Cameron, Ashley; Hudson, Kyla; Finch, Emma; Fleming, Jennifer; Lethlean, Jennifer; McPhail, Steven
2018-06-05
Communication partner training (CPT) has been used to support communication partners to interact successfully with people with aphasia (PWA). Through successful CPT interaction PWA's accessibility to healthcare is notably improved. The present study sought to build on prior studies by investigating the experiences of individuals with aphasia and healthcare providers to ascertain what they deemed to be beneficial from CPT and what could be refined or improved, dependent on the setting and skill set of those participating. To gain an understanding of the experiences of PWA involved in the provision of CPT to health professional (HP) students. Also to investigate the experiences of HP students who participated in the CPT programme. Eight PWA and 77 HP students who had completed a CPT programme participated in a focus group/semi-structured interview (PWA) and feedback session (HP students) moderated by two speech-language pathologists (SLPs). These sessions were recorded (audio and video), transcribed verbatim, including non-verbal communication, and analyzed using qualitative content analysis. Overall, the study sought to understand experiences of the training. Both the PWA and HP students reported positive experiences of CPT. PWA discussed their perception that CPT improved HPs and HP students' understanding and interactions conversing with them and emphasized the need for training and education for all health related professions. HP students enjoyed the opportunity to experience interacting with PWA, without being 'assessed' and felt it consolidated their learning based on lecture content. Inclusive and accessible healthcare is paramount to ensure the engagement of patients and providers. Based on the experiences and feedback of the participants in this current study, CPT offers a salient and practical training method with potential to improve practice. Participants perceived CPT to be beneficial and validated the need for the training to support PWA accessing healthcare. © 2018 Royal College of Speech and Language Therapists.
2013-01-01
Background Aphasia is an acquired language disorder that can present a significant barrier to patient involvement in healthcare decisions. Speech-language pathologists (SLPs) are viewed as experts in the field of communication. However, many SLP students do not receive practical training in techniques to communicate with people with aphasia (PWA) until they encounter PWA during clinical education placements. Methods This study investigated the confidence and knowledge of SLP students in communicating with PWA prior to clinical placements using a customised questionnaire. Confidence in communicating with people with aphasia was assessed using a 100-point visual analogue scale. Linear, and logistic, regressions were used to examine the association between confidence and age, as well as confidence and course type (graduate-entry masters or undergraduate), respectively. Knowledge of strategies to assist communication with PWA was examined by asking respondents to list specific strategies that could assist communication with PWA. Results SLP students were not confident with the prospect of communicating with PWA; reporting a median 29-points (inter-quartile range 17–47) on the visual analogue confidence scale. Only, four (8.2%) of respondents rated their confidence greater than 55 (out of 100). Regression analyses indicated no relationship existed between confidence and students‘ age (p = 0.31, r-squared = 0.02), or confidence and course type (p = 0.22, pseudo r-squared = 0.03). Students displayed limited knowledge about communication strategies. Thematic analysis of strategies revealed four overarching themes; Physical, Verbal Communication, Visual Information and Environmental Changes. While most students identified potential use of resources (such as images and written information), fewer students identified strategies to alter their verbal communication (such as reduced speech rate). Conclusions SLP students who had received aphasia related theoretical coursework, but not commenced clinical placements with PWA, were not confident in their ability to communicate with PWA. Students may benefit from an educational intervention or curriculum modification to incorporate practical training in effective strategies to communicate with PWA, before they encounter PWA in clinical settings. Ensuring students have confidence and knowledge of potential communication strategies to assist communication with PWA may allow them to focus their learning experiences in more specific clinical domains, such as clinical reasoning, rather than building foundation interpersonal communication skills. PMID:23806028
Finch, Emma; Fleming, Jennifer; Brown, Kyla; Lethlean, Jennifer; Cameron, Ashley; McPhail, Steven M
2013-06-27
Aphasia is an acquired language disorder that can present a significant barrier to patient involvement in healthcare decisions. Speech-language pathologists (SLPs) are viewed as experts in the field of communication. However, many SLP students do not receive practical training in techniques to communicate with people with aphasia (PWA) until they encounter PWA during clinical education placements. This study investigated the confidence and knowledge of SLP students in communicating with PWA prior to clinical placements using a customised questionnaire. Confidence in communicating with people with aphasia was assessed using a 100-point visual analogue scale. Linear, and logistic, regressions were used to examine the association between confidence and age, as well as confidence and course type (graduate-entry masters or undergraduate), respectively. Knowledge of strategies to assist communication with PWA was examined by asking respondents to list specific strategies that could assist communication with PWA. SLP students were not confident with the prospect of communicating with PWA; reporting a median 29-points (inter-quartile range 17-47) on the visual analogue confidence scale. Only, four (8.2%) of respondents rated their confidence greater than 55 (out of 100). Regression analyses indicated no relationship existed between confidence and students' age (p = 0.31, r-squared = 0.02), or confidence and course type (p = 0.22, pseudo r-squared = 0.03). Students displayed limited knowledge about communication strategies. Thematic analysis of strategies revealed four overarching themes; Physical, Verbal Communication, Visual Information and Environmental Changes. While most students identified potential use of resources (such as images and written information), fewer students identified strategies to alter their verbal communication (such as reduced speech rate). SLP students who had received aphasia related theoretical coursework, but not commenced clinical placements with PWA, were not confident in their ability to communicate with PWA. Students may benefit from an educational intervention or curriculum modification to incorporate practical training in effective strategies to communicate with PWA, before they encounter PWA in clinical settings. Ensuring students have confidence and knowledge of potential communication strategies to assist communication with PWA may allow them to focus their learning experiences in more specific clinical domains, such as clinical reasoning, rather than building foundation interpersonal communication skills.
Effect of particle size on the photochromic response of PWA/SiO2 nanocomposite
NASA Astrophysics Data System (ADS)
Huang, Feng-Hsi; Chen, Ching-Chung; Lin, Dar-Jong; Don, Trong-Ming; Cheng, Liao-Ping
2010-10-01
A series of photochromic phosphotungstic acid (PWA)/SiO2 composites were synthesized using the sol-gel method. Depending on the feeding schedule of PWA during synthesis, the size of the formed PWA/SiO2 particles varied considerably from as small as 1.2 nm to ca. 10 nm. With decreasing silica particle size, the total contact area/interaction between SiO2 and PWA increases, as revealed by FT-IR and solid-state 29Si-NMR analyses. Particularly, when the size of PWA/SiO2 is 1 nm, crystallization of PWA is inhibited, and PWA presents as amorphous molecular entities distributing uniformly in the SiO2 host, which is in evidence in the XRD spectroscopy and HR-TEM imaging. In contrast, substantial crystallization of PWA takes place when PWA/SiO2 particles are as large as 10 nm, in which case less amount of surface free Si-OH is available for PWA to make bonds with. Photochromism occurs activated by ultraviolet light irradiation. The rate of coloration/bleaching is found to depend strongly on the particle size of PWA/SiO2; specifically, the rate increases twice when the particle size is reduced from 10 nm to 1.2 nm.
Measuring the Carotid to Femoral Pulse Wave Velocity (Cf-PWV) to Evaluate Arterial Stiffness.
Ji, Hongwei; Xiong, Jing; Yu, Shikai; Chi, Chen; Bai, Bin; Teliewubai, Jiadela; Lu, Yuyan; Zhang, Yi; Xu, Yawei
2018-05-03
For the elderly, arterial stiffening is a good marker for aging evaluation and it is recommended that the arterial stiffness be determined noninvasively by the measurement of carotid to femoral pulse wave velocity (cf-PWV) (Class I; Level of Evidence A). In literature, numerous community-based or disease-specific studies have reported that higher cf-PWV is associated with increased cardiovascular risk. Here, we discuss strategies to evaluate arterial stiffness with cf-PWV. Following the well-defined steps detailed here, e.g., proper position operator, distance measurement, and tonometer position, we will obtain a standard cf-PWV value to evaluate arterial stiffness. In this paper, a detailed stepwise method to record a good quality PWV and pulse wave analysis (PWA) using a non-invasive tonometry-based device will be discussed.
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhao, Li-Ming
2012-05-01
In this paper, the second-harmonic generation (SHG) in a one-dimensional nonlinear crystal that is embedded in air is investigated. Previously, the identical configuration was studied in Li Z. Y. et al., Phys. Rev. B, 60 (1999) 10644, without the use of the slowly varying amplitude approximation (SVAA), but by adopting the infinite plane-wave approximation (PWA), despite the fact that this approximation is not quite applicable to such a system. We calculate the SHG conversion efficiency without a PWA, and compare the results with those from the quoted reference. The investigation reveals that conversion efficiencies of SHG as calculated by the two methods appear to exhibit significant differences, and that the SHG may be modulated by the field of a fundamental wave (FW). The ratio between SHG conversion efficiencies as produced by the two methods shows a periodic variation, and this oscillatory behavior is fully consistent with the variation in transmittance of the FW. Quasi-phase matching (QPM) is also studied, and we find that the location of the peak for SHG conversion efficiency deviates from Δd=0, which differs from the conventional QPM results.
Measuring Lexical Diversity in Narrative Discourse of People with Aphasia
ERIC Educational Resources Information Center
Fergadiotis, Gerasimos; Wright, Heather H.; West, Thomas M.
2013-01-01
Purpose: A microlinguistic content analysis for assessing lexical semantics in people with aphasia (PWA) is lexical diversity (LD). Sophisticated techniques have been developed to measure LD. However, validity evidence for these methodologies when applied to the discourse of PWA is lacking. The purpose of this study was to evaluate four measures…
Automated Proposition Density Analysis for Discourse in Aphasia
ERIC Educational Resources Information Center
Fromm, Davida; Greenhouse, Joel; Hou, Kaiyue; Russell, G. Austin; Cai, Xizhen; Forbes, Margaret; Holland, Audrey; MacWhinney, Brian
2016-01-01
Purpose: This study evaluates how proposition density can differentiate between persons with aphasia (PWA) and individuals in a control group, as well as among subtypes of aphasia, on the basis of procedural discourse and personal narratives collected from large samples of participants. Method: Participants were 195 PWA and 168 individuals in a…
Hydrogen induced fracture characteristics of single crystal nickel-based superalloys
NASA Technical Reports Server (NTRS)
Chen, Po-Shou; Wilcox, Roy C.
1990-01-01
A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.
NASA Astrophysics Data System (ADS)
Lethuillier, A.; Le Gall, A.; Hamelin, M.; Caujolle-Bert, S.; Schreiber, F.; Carrasco, N.; Cernogora, G.; Szopa, C.; Brouet, Y.; Simões, F.; Correia, J. J.; Ruffié, G.
2018-04-01
In 2005, the complex permittivity of the surface of Saturn's moon Titan was measured by the PWA-MIP/HASI (Permittivity Wave Altimetry-Mutual Impedance Probe/Huygens Atmospheric Structure Instrument) experiment on board the Huygens probe. The analysis of these measurements was recently refined but could not be interpreted in terms of composition due to the lack of knowledge on the low-frequency/low-temperature electrical properties of Titan's organic material, a likely key ingredient of the surface composition. In order to fill that gap, we developed a dedicated measurement bench and investigated the complex permittivity of analogs of Titan's organic aerosols called "tholins." These laboratory measurements, together with those performed in the microwave domain, are then used to derive constraints on the composition of Titan's first meter below the surface based on both the PWA-MIP/HASI and the Cassini Radar observations. Assuming a ternary mixture of water ice, tholin-like dust and pores (filled or not with liquid methane), we find that at least 10% of water ice and 15% of porosity are required to explain observations. On the other hand, there should be at most 50-60% of organic dust. PWA-MIP/HASI measurements also suggest the presence of a thin conductive superficial layer at the Huygens landing site. Using accurate numerical simulations, we put constraints on the electrical conductivity of this layer as a function of its thickness (e.g., in the range 7-40 nS/m for a 7-mm thick layer). Potential candidates for the composition of this layer are discussed.
Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors
NASA Astrophysics Data System (ADS)
Kraczek, Brent; Kanp, Jaroslaw
Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.
Tell Me Your Story: Analysis of Script Topics Selected by Persons with Aphasia
ERIC Educational Resources Information Center
Holland, Audrey L.; Halper, Anita S.; Cherney, Leora R.
2010-01-01
Purpose: This study examined the content of 100 short scripts, co-constructed by persons with aphasia (PWA) and a clinician. The PWA subsequently learned the scripts by interacting with a computerized virtual therapist. The goal was to provide clinicians with ideas regarding content for treatment that is meaningful to PWAs. Method: Thirty-three…
Aphasia and literacy—the insider's perspective
Kjellén, Emma; Laakso, Katja
2016-01-01
Abstract Background Few studies have investigated how people with aphasia (PWA) experience literacy skills. Taking the insider's perspective is a way to increase understanding of the individual experiences of literacy among PWA, which may have clinical implications. Aims To describe how literacy, i.e., reading and writing, is experienced in everyday life by PWA and to gain insight into the part played by literacy skills in their lives. Methods & Procedures A qualitative descriptive research approach was taken. In‐depth interviews were conducted with 12 PWA (six women and six men) who had all lived with aphasia for at least 6 months post‐stroke. The interviews were analysed using qualitative content analysis. Outcomes & Results One overarching theme emerged from the data: literacy as an ongoing recovery process. Based on this overarching theme, two subthemes were identified: changes in conditions for literacy (experiences of reading and writing initially post‐onset compared with experiences at the time of the interview); and facing expectations about literacy (participants’ own and other people's expectations of them in terms of literacy). Conclusions & Implications The findings are important at a general level in that they indicate that PWA are able to articulate their individual experiences and thoughts about literacy, i.e., reading and writing. Specifically, PWA in this study experience literacy as playing an essential part in their lives and the findings imply that personal experiences are important in the design of reading and writing interventions in speech and language therapy. PMID:28039933
Taborelli, M; Virdone, S; Camoni, L; Regine, V; Zucchetto, A; Frova, L; Grande, E; Boros, S; Dal Maso, L; De Paoli, P; Serraino, D; Suligoi, B
2017-01-01
Despite the wide accessibility to free human immunodeficiency virus (HIV) testing and combined antiretroviral therapy (cART), late HIV diagnosis remains common with severe consequences at individual and population level. This study aimed to describe trends of late HIV testing and to identify their determinants in the late cART era in Italy. We conducted a population-based, nationwide analysis of the Italian National AIDS Registry data (AIDS - acquired immune deficiency syndrome) for the years 1999-2013. Late testers (LTs) were defined as people with AIDS (PWA) whose first HIV-positive test preceded AIDS diagnosis by 3 months or less. Odds ratios (ORs) with the corresponding 95% confidence intervals (CIs) were estimated to examine factors associated with being LTs. Joinpoint analysis was used to estimate annual percent changes (APCs) of LTs' proportion over time. Among 20,753 adult PWA, 50.8% were LTs. Italian PWA showed a lower proportion of LTs than non-Italian PWA (46.5% vs 68.2%). Among Italian PWA, the odds of being LTs was higher in men than in women (OR = 2.62, 95% CI: 2.38-2.90); in the age groups below 35 years and over 49 years at diagnosis (OR = 1.24, 95% CI: 1.12-1.37 and OR = 1.51, 95% CI: 1.38-1.67, respectively) vs PWA aged 35-49 years; and in those infected through sexual contact as compared with injecting drug use (OR = 13.34, 95% CI: 12.06-14.76 for heterosexual contact and OR = 8.13, 95% CI: 7.30-9.06 for male-to-male sexual contact). The proportion of LTs increased over time among Italians, especially in the latest period (APC 2006-2013 = 5.3, 95% CI: 3.8-6.9). The LTs' proportion resulted higher, though stable, among PWA aged ≥50 years. Conversely, an increasing trend was observed among PWA aged 18-34 years (APC = 5.3, 95% CI: 4.5-6.1). The LTs' proportion was persistently higher among PWA who acquired HIV infection through sexual contact, even if a marked increase among injecting drug users was observed after 2005 (APC = 11.4, 95% CI: 5.7-17.5). The increasing trend of LTs' proportion in the late cART era highlights the need of new strategies tailored to groups who may not consider themselves to be at a high risk of infection. Active promotion of early testing and continuous education of infection, especially among young people, need to be implemented. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
González-Rivera, Milagritos; Bauermeister, José A
2007-02-01
AIDS stigma refers to prejudice and discrimination directed at people or groups perceived to have HIV/AIDS (Herek, 1999). Although AIDS stigma has been found in adolescent and adult populations, few researchers have explored it among children. Misconceptions about people with AIDS (PWA) might lead to negative attitudes toward PWA and obstruct HIV prevention efforts. The authors assessed 110 Puerto Rican children's attitudes toward PWA using drawings (n=65) and stories (n=45). Although participants held stigmatizing attitudes toward PWA across both methods, the approaches captured different beliefs and attitudes. Drawings depicted PWA as physically deteriorated and performing socially condemned behaviors, whereas stories describing PWA highlighted children's fear of contagion and death. Stigma toward PWA was more pronounced than toward other illnesses (e.g., cancer). The study highlights the importance of assessing children's attitudes through creative data collection procedures.
González-Rivera, Milagritos; Bauermeister, Josè A.
2014-01-01
AIDS stigma refers to prejudice and discrimination directed at people or groups perceived to have HIV/AIDS (Herek, 1999). Although AIDS stigma has been found in adolescent and adult populations, few researchers have explored it among children. Misconceptions about people with AIDS (PWA) might lead to negative attitudes toward PWA and obstruct HIV prevention efforts. The authors assessed 110 Puerto Rican children’s attitudes toward PWA using drawings (n = 65) and stories (n = 45). Although participants held stigmatizing attitudes toward PWA across both methods, the approaches captured different beliefs and attitudes. Drawings depicted PWA as physically deteriorated and performing socially condemned behaviors, whereas stories describing PWA highlighted children’s fear of contagion and death. Stigma toward PWA was more pronounced than toward other illnesses (e.g., cancer). The study highlights the importance of assessing children’s attitudes through creative data collection procedures. PMID:17220395
Cancer survival in people with AIDS: A population-based study from São Paulo, Brazil.
Tanaka, Luana F; Latorre, Maria do Rosário D O; Gutierrez, Eliana B; Curado, Maria P; Dal Maso, Luigino; Herbinger, Karl-Heinz; Froeschl, Guenter; Heumann, Christian
2018-02-01
Cancer survival among people with AIDS (PWA) has been described in developed countries, but there is lack of data from developing countries. The aim of this study was to evaluate survival after cancer diagnosis in PWA and compare it with people without AIDS (non-PWA) in São Paulo, Brazil. A probabilistic record linkage was carried out between the databases of the Population-based Cancer Registry of São Paulo (PBCR-SP) and the AIDS registry of SP (SINAN) to identify PWA who developed cancer. For comparison, non-PWA were frequency matched from the PBCR-SP by cancer site/type, sex, age, and period. Hazard ratio (HR) stratified by matching variables was estimated using a Cox proportional hazards model. A total of 1,294 PWA (20 patients with two primary site tumors) were included in the site/type-specific analyses. AIDS-defining cancers (ADC) comprised 51.9% of cases assessed. The all-cancer 5-year overall survival in PWA was 49.4% versus 72.7% in non-PWA (HR = 2.64; 95%CI = 2.39-2.91). Survival was impaired in PWA for both ADC (HR = 2.93; 95%CI = 2.49-3.45) and non-ADC (HR = 2.51; 95%CI = 2.21-2.84), including bladder (HR = 8.11; 95% CI = 2.09-31.52), lung (HR = 2.93; 95%CI = 1.97-4.36) and anal cancer (HR = 2.53; 95%CI = 1.63-3.94). These disparities were seen mainly in the first year after cancer diagnosis. The overall survival was significantly lower in PWA in comparison with non-PWA in São Paulo, as seen in high-income countries. Efforts to enhance early diagnosis and ensure proper cancer treatment in PWA should be emphasized. © 2017 UICC.
2018-01-01
Background Aphasia is an acquired impairment in language and in the cognitive processes that underlie language. Aphasia affects the quality of life of the person with aphasia (PWA) and his or her families in various ways in diverse contexts and cultures. It is therefore important that speech language therapists understand how different contextual and cultural factors may mediate experiences. Purpose The aim of the study was to describe the caregiving experience of female caregivers of PWA residing in Tembisa, a township situated in the east of Johannesburg. Method Qualitative, semi-structured interviews were conducted with primary caregivers of PWA. Purposive sampling was used to recruit 14 primary caregivers of PWA who were daughters, daughters-in-law or wives of the PWA. The interviews were conducted in participants’ first language and analysed by the researcher, who is proficient in isiZulu. Data were analysed according to the principles of thematic analysis. Results Findings indicated that caregivers are unfamiliar with aphasia and the support available to them. Participants experienced frustration and found communication to be challenging owing to their lack of communication strategies. The participants’ experiences reflected their context-specific experiences, such as feminisation of caregiving, barriers to healthcare, the influence of low health literacy and contextual perspectives on stroke and aphasia. Conclusions Contextual factors of caregivers in Tembisa have an influence on the experiences between caregivers and PWA, the feelings of individuals and families and health-seeking behaviours of individuals and families. PMID:29535917
NASA Astrophysics Data System (ADS)
Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
FIB–SEM tomography of 4th generation PWA 1497 superalloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziętara, Maciej, E-mail: zietara@agh.edu.pl; Kruk, Adam, E-mail: kruczek@agh.edu.pl; Gruszczyński, Adam, E-mail: gruszcz@agh.edu.pl
2014-01-15
The effect of creep deformation on the microstructure of the PWA 1497 single crystal Ni-base superalloy developed for turbine blade applications was investigated. The aim of the present study was to characterize quantitatively a superalloy microstructure and subsequent development of rafted γ′ precipitates in the PWA 1497 during creep deformation at 982 °C and 248 MPa up to rupture. The PWA1497 microstructure was characterized by scanning electron microscopy and FIB–SEM electron tomography. The 3D reconstruction of the PWA1497 microstructure is presented and discussed. - Highlights: • The microstructure of PWA1497 superalloy was examined using FIB–SEM tomography. • In case ofmore » modern single crystal superalloys, measurements of A{sub A} are adequate for V{sub V}. • During creep the γ channel width increases from 65 to 193 nm for ruptured specimen. • Tomography is a useful technique for quantitative studies of material microstructure.« less
General Aviation Activity and Avionics Survey 1982.
1983-12-01
is F- C- i I.. <Z< 04K 4 K 4 K mm <.1 -.5 9.JO M 5 I. .J0 - AI. C 1.-’ 01- 1 0 0 -. t- 0 t- a 00 o 0 o0 mo0 w 0 is owe ao Ewa wm wo iso - 24 .0 4%~ 4...0540 41531 PCKARDV1650 49001 FRNKLN4AC50 27002 LYC 0540 41532 PWA 6T02 dT12 FRNKLN4AC0 27003 LYC 0540 41533 PWA JT12 52042 FRNKLN4AC10 27004 LYC 0540...41534 PWA OT15 52060 2RNKLN4ACI76 7009 LYC 0540 41535 PWA BT15 52 12 FRNLA 64 270073 FRNKLN4ACI7 27002 LYC 0540 41538 PWA IOT3C 4.T3C
Ellis, Charles; Peach, Richard K
2017-04-01
To examine aphasia outcomes and to determine whether the observed language profiles vary by race-ethnicity. Retrospective cross-sectional study using a convenience sample of persons of with aphasia (PWA) obtained from AphasiaBank, a database designed for the study of aphasia outcomes. Aphasia research laboratories. PWA (N=381; 339 white and 42 black individuals). Not applicable. Western Aphasia Battery-Revised (WAB-R) total scale score (Aphasia Quotient) and subtest scores were analyzed for racial-ethnic differences. The WAB-R is a comprehensive assessment of communication function designed to evaluate PWA in the areas of spontaneous speech, auditory comprehension, repetition, and naming in addition to reading, writing, apraxia, and constructional, visuospatial, and calculation skills. In univariate comparisons, black PWA exhibited lower word fluency (5.7 vs 7.6; P=.004), auditory word comprehension (49.0 vs 53.0; P=.021), and comprehension of sequential commands (44.2 vs 52.2; P=.012) when compared with white PWA. In multivariate comparisons, adjusted for age and years of education, black PWA exhibited lower word fluency (5.5 vs 7.6; P=.015), auditory word recognition (49.3 vs 53.3; P=.02), and comprehension of sequential commands (43.7 vs 53.2; P=.017) when compared with white PWA. This study identified racial-ethnic differences in word fluency and auditory comprehension ability among PWA. Both skills are critical to effective communication, and racial-ethnic differences in outcomes must be considered in treatment approaches designed to improve overall communication ability. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Gayda, John; Dreshfield, Robert L.; Gabb, Timothy P.
1991-01-01
Single crystal superalloys such as PWA 1480 are considered for turbopump blades in the main engines of the space shuttle. As fatigue resistance in a hydrogen environment is a key issue in this application, a study of the effect of porosity and gamma-gamma' eutectic content on the fatigue life of a hydrogen-charged PWA 1480 was performed. Porosity and eutectic were linked to fatigue initiation, and therefore reduction of either of both may be one means to improve fatigue life of PWA 1480 when hydrogen is present.
ERIC Educational Resources Information Center
Savage, Meghan C.; Donovan, Neila J.
2017-01-01
Background: Efficacy studies have demonstrated the benefit of group conversation therapy for a person with aphasia (PWA). However, a PWA typically participates in individual therapy prior to group therapy. Stimulation therapy (ST) is the most common type of individual aphasia therapy. Ultimately, the outcome of therapy is to enable the PWA to…
Villard, Sarah; Kiran, Swathi
2015-01-01
A number of studies have identified impairments in one or more types/aspects of attention processing in patients with aphasia (PWA) relative to healthy controls; person-to-person variability in performance on attention tasks within the PWA group has also been noted. Studies using non-linguistic stimuli have found evidence that attention is impaired in this population even in the absence of language processing demands. An underlying impairment in non-linguistic, or domain-general, attention processing could have implications for the ability of PWA to attend during therapy sessions, which in turn could impact long-term treatment outcomes. With this in mind, this study aimed to systematically examine the effect of task complexity on reaction time (RT) during a non-linguistic attention task, in both PWA and controls. Additional goals were to assess the effect of task complexity on between-session intra-individual variability (BS-IIV) in RT and to examine inter-individual differences in BS-IIV. Eighteen PWA and five age-matched neurologically healthy controls each completed a novel computerized non-linguistic attention task measuring five types of attention on each of four different non-consecutive days. A significant effect of task complexity on both RT and BS-IIV in RT was found for the PWA group, whereas the control group showed a significant effect of task complexity on RT but not on BS-IIV in RT. Finally, in addition to these group-level findings, it was noted that different patients exhibited different patterns of BS-IIV, indicating the existence of inter-individual variability in BS-IIV within the PWA group. Results may have implications for session-to-session fluctuations in attention during language testing and therapy for PWA. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hongjun; Lee, Sunghwan; Kim, Suran
2016-11-01
Interest has been growing in direct ethanol fuel cells (DEFCs) due to their non-toxicity, low cost and potential contribution to energy issues in third world countries. A reduction in fuel cross-over is of key importance to enhance the performance of DEFCs that operate at low temperatures (<100 °C). We report on the effect of the addition of phosphotungstic acid (PWA) in Nafion membrane on the ethanol-crossover for DEFC application. A set of PWANafion composite membranes (PWA 0, 5, 10, 15, 20 wt%) was prepared by solution casting and their microstructures, diffraction patterns and permeability were systematically characterized. The significant reductionmore » in ethanol-crossover was observed with increasing PWA concentration in PWA-Nafion membranes, which was mainly attributed to an improvement in crystallinity of the membrane. PWA provides additional nucleation sites during solidification leading to higher crystallinity, which is supported by the membrane permeability tests. These PWA-Nafion composites were implemented in proto-type DEFC devices as a membrane and the maximum power density achieved was 22% higher than that of commercial Nafion-117 device.« less
NASA Astrophysics Data System (ADS)
Dankowych, John Alexander
1980-06-01
We have performed an isobar model partial wave analysis (PWA) of a high statistics sample of the reaction (pi)('-)p (,(--->)) (pi)('+)(pi)('-)(pi)('0)n at 8.45 GeV/c. We present strong evidence for the existence of the unnatural parity, isoscalar (H) and isovector (A(,1)) axial-vector mesons. The intensity distributions show significant structure while the forward phase motion relative to the isospin-2 axial-vector partial wave is consistent with that expected for Breit-Wigner resonances. The A(,1) production is mainly via M = 1, natural parity exchange while the H is produced mainly in M = 0, natural parity exchange. From a Deck model fit we obtain for the A(,1) a mass of 1241 (+OR-) 80 MeV and a width of 380 (+OR-) 100 MeV; for the H we obtain a mass of 1194 (+OR-) 55 MeV and a width of 320 (+OR-) 50 MeV. In nucleon spin flip we have evidence for an isovector, pseudoscalar resonance ((pi)') under the A(,2). The natural parity states : the (omega)(IJP = 01-), the A(,2) (IJP = 12+) and the (omega)(,g )(IJP = 03-) are strong features of the data. In the IJP = 01- partial wave thre is more cross-section than that expected for just the (omega)(783) tail.
NASA Astrophysics Data System (ADS)
Hamelin, M.; Lethuillier, A.; Le Gall, A. A.; Grard, R.; Ciarletti, V.; Béghin, C.; Schwingenschuh, K.; Lorenz, R. D.; Lopez-Moreno, J. J.; Jernej, I.; Brown, V.; Ferri, F.
2014-12-01
Ten years after the successful landing of the HUYGENS probe on the surface of Titan, we reassess the complex permittivity measurements of the surface materials performed by the PWA-HASI experiment (Permittivity, Waves and Altimetry - Huygens Atmospheric Structure Instrument). The complex permittivity is inferred from the mutual impedance of a classical quadrupolar probe, ie. the ratio of the voltage measured by a receiving dipole over the current emitted by another dipole. Using a simple model of the quadrupole configuration, the dielectric constant of the material at the landing site was first estimated to be of the order of 1.8. A more realistic numerical model that took into account the influence of the HUYGENS gondola yielded a dielectric constant in the range 2-3 and a conductivity in the range 0.4 - 0.8 nS/m. due to uncertainties about the system geometry ( Grard et al., 2006). However, a puzzling experimental fact remains to be explained, namely a sudden variation of the amplitude and phase of the received voltage 11 mn after landing that cannot be associated with any lander mechanical disturbance. Permittivity estimations were based on the first 11 mn sequence. The present analysis takes advantage of a recent analysis of the landing process that provided more realistic final position and attitude for the HUYGENS lander (Schroder et al., 2012). The new results lie within former estimated ranges and attention is paid to their sensitivity to geometry and to the reference measurements collected immediately before landing. This point is particularly critical for the estimation of the conductivity. The complete data set has been analysed, including the sequence collected after the first 11 mn. We consider various scenarios that may explain the observed phase and amplitude discontinuity. We tested two layers ground models in order to investigate the possibility that the upper layer may have experienced a fast physical change due to deliquescence or outgasing. Unfortunately a rigid quadrupolar array measure the average electric properties of the ground and cannot detect any inhomogeneity. We present in addition the measurements made last May in the Dachstein ice cave in Austria, with a mockup of HUYGENS-PWA and a replica of the PP-SESAME instrument onboard the PHILAE lander of ROSETTA
Effects of mindfulness meditation on three individuals with aphasia.
Orenstein, Ellen; Basilakos, Alexandra; Marshall, Rebecca Shisler
2012-01-01
There is evidence to suggest that people with aphasia (PWA) may have deficits in attention stemming from the inefficient allocation of resources. The inaccurate perception of task demand, or sense of effort, may underlie the misallocation of the available attention resources. Given the lack of treatment options for improving attention in aphasia, Mindfulness Meditation, shown to improve attention in neurologically intact individuals, may prove effective in increasing attention in PWA. The purpose of the present study was to determine if Mindfulness Meditation improves divided attention or language in PWA and if it affects the overall sense of effort. A multiple baseline single-subject design was used to determine the effects of Mindfulness Meditation on divided attention for three PWA. Divided attention was measured using a non-linguistic divided attention task. Visual inspection of the data was used to determine changes in performance (sense of effort, reaction time and accuracy, language) over time. High performance observed on the attention measures suggests that PWA have varying degrees of attentional impairment that may surface when certain demands are presented. There were no observable changes in the performance on the sense of effort or language measures; however, measures of reaction time may indicate Mindfulness Meditation improved efficiency of task completion. All three participants reported that Mindfulness Meditation was easy to learn and carry out on a daily basis, and reported feeling more 'relaxed' and 'peaceful' after Mindfulness Meditation training than before. With the knowledge that PWA can learn meditative practices, and with such successful findings in neurologically intact individuals, it is important to continue evaluating the benefits of Mindfulness Meditation in PWA. © 2012 Royal College of Speech and Language Therapists.
Secondary orientation effects in a single crystal superalloy under mechanical and thermal loads
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.
1991-01-01
The nickel-base single crystal superalloy PWA 1480 is a candidate blading material for the advanced turbopump development program of the SSME. In order to improve thermal fatigue resistance of the turbine blades, the single crystal superalloy PWA 1480 is grown along the low modulus zone axes (001) crystal orientation by a directional solidification process. Since cubic single crystal materials such as PWA 1480 exhibit anisotropic elastic behavior, the stresses developed within the single crystal superalloy due to mechanical and thermal loads are likely to be affected by the exact orientation of the secondary crystallographic direction with respect to the geometry of the turbine blade. The effects of secondary crystal orientation on the elastic response of single crystal PWA 1480 superalloy were investigated.
Impaired postprandial endothelial function depends on the type of fat consumed by healthy men.
Berry, Sarah E E; Tucker, Sally; Banerji, Radhika; Jiang, Benyu; Chowienczyk, Phillip J; Charles, Sonia M; Sanders, Thomas A B
2008-10-01
Postprandial lipemia impairs endothelial function possibly via an oxidative stress mechanism. A stearic acid-rich triacylglycerol (TAG) (shea butter) results in a blunted postprandial increase in plasma TAG compared with an oleic acid-rich TAG; however, its acute effects on endothelial function and oxidative stress are unknown. A randomized crossover trial (n = 17 men) compared the effects of 50 g fat, rich in stearic acid [shea butter blend (SA)] or oleic acid [high oleic sunflower oil (HO)], on changes in endothelial function [brachial artery flow-mediated dilatation (FMD)], arterial tone [pulse wave analysis (PWA), and carotid-femoral pulse wave velocity (PWV(c-f))], and oxidative stress (plasma 8-isoprostane F2alpha) at fasting and 3 h following the test meals. The postprandial increase in plasma TAG was lower (66% lower incremental area under curve) following the SA meal [28.3 (9.7, 46.9)] than after the HO meal [83.4 (57.0, 109.8); P < 0.001] (geometric means with 95% CI, arbitary units). Following the HO meal, there was a decrease in FMD [-3.0% (-4.4, -1.6); P < 0.001] and an increase in plasma 8-isoprostane F2alpha [10.4ng/L (3.8, 16.9); P = 0.005] compared with fasting values, but no changes followed the SA meal. The changes in 8-isoprostane F2alpha and FMD differed between meals and were 14.0 ng/L (6.4, 21.6; P = 0.001) and 1.75% (0.10, 3.39; P = 0.02), respectively. The reductions in PWA and PWV c-f did not differ between meals. This study demonstrates that a stearic acid-rich fat attenuates the postprandial impairment in endothelial function compared with an oleic acid-rich fat and supports the hypothesis that postprandial lipemia impairs endothelial function via an increase in oxidative stress.
Random vibration (stress screening) of printed wiring assemblies
NASA Technical Reports Server (NTRS)
Bastien, Gilbert J.
1988-01-01
The results of a random vibration test screening (RVSS) study of the determination of the upper and lower vibration limits on printed wiring assemblies (PWA) are summarized. The study results are intended to serve as a guide for engineers and designers who make decisions on PWA features that need to withstand the stresses of dynamic testing and screening. The maximum allowable PWA deflection, G levels, and PSD levels are compared to the expected or actual levels to determine if deleterious effects will occur.
Vallila-Rohter, Sofia; Kiran, Swathi
2015-08-01
Our purpose was to study strategy use during nonlinguistic category learning in aphasia. Twelve control participants without aphasia and 53 participants with aphasia (PWA) completed a computerized feedback-based category learning task consisting of training and testing phases. Accuracy rates of categorization in testing phases were calculated. To evaluate strategy use, strategy analyses were conducted over training and testing phases. Participant data were compared with model data that simulated complex multi-cue, single feature, and random pattern strategies. Learning success and strategy use were evaluated within the context of standardized cognitive-linguistic assessments. Categorization accuracy was higher among control participants than among PWA. The majority of control participants implemented suboptimal or optimal multi-cue and single-feature strategies by testing phases of the experiment. In contrast, a large subgroup of PWA implemented random patterns, or no strategy, during both training and testing phases of the experiment. Person-to-person variability arises not only in category learning ability but also in the strategies implemented to complete category learning tasks. PWA less frequently developed effective strategies during category learning tasks than control participants. Certain PWA may have impairments of strategy development or feedback processing not captured by language and currently probed cognitive abilities.
Cameron, Ashley; McPhail, Steven; Hudson, Kyla; Fleming, Jennifer; Lethlean, Jennifer; Tan, Ngang Ju; Finch, Emma
2018-06-01
The aim of the study was to describe and compare the confidence and knowledge of health professionals (HPs) with and without specialized speech-language training for communicating with people with aphasia (PWA) in a metropolitan hospital setting. Ninety HPs from multidisciplinary teams completed a customized survey to identify their demographic information, knowledge of aphasia, current use of supported conversation strategies and overall communication confidence when interacting with PWA using a 100 mm visual analogue scale (VAS) to rate open-ended questions. Conventional descriptive statistics were used to examine the demographic information. Descriptive statistics and the Mann-Whitney U test were used to analyse VAS confidence rating data. The responses to the open-ended survey questions were grouped into four previously identified key categories. The HPs consisted of 22 (24.4%) participants who were speech-language pathologists and 68 (75.6%) participants from other disciplines (non-speech-language pathology HPs, non-SLP HPs). The non-SLP HPs reported significantly lower confidence levels (U = 159.0, p < 0.001, two-tailed) and identified fewer strategies for communicating effectively with PWA than the trained speech-language pathologists. The non-SLP HPs identified a median of two strategies identified [interquartile range (IQR) 1-3] in contrast to the speech-language pathologists who identified a median of eight strategies (IQR 7-12). These findings suggest that HPs, particularly those without specialized communication education, are likely to benefit from formal training to enhance their confidence, skills and ability to successfully communicate with PWA in their work environment. This may in turn increase the involvement of PWA in their health care decisions. Implications for Rehabilitation Interventions to remediate health professional's (particularly non-speech-language pathology health professionals) lower levels of confidence and ability to communicate with PWA may ultimately help ensure equal access for PWA. Promote informed collaborative decision-making, and foster patient-centred care within the health care setting.
Dieterle, M.; Werthmüller, D.; Abt, S.; ...
2018-06-21
Background: Photoproduction of mesons off quasi-free nucleons bound in the deuteron allows to study the elec- tromagnetic excitation spectrum of the neutron and the isospin structure of the excitation of nucleon resonances. The database for such reactions is much more sparse than for free proton targets. Purpose: Study experimentally single π0 photoproduction off quasi-free nucleons from the deuteron. Investigate nuclear effects by a comparison of the results for free protons and quasi-free protons. Use the quasi-free neutron data (corrected for nuclear effects) to test the predictions of reaction models and partial wave analysis (PWA) for γn → nπ 0 derivedmore » from the analysis of the other isospin channels. Methods: High statistics angular distributions and total cross sections for the photoproduction of π 0 mesons off the deuteron with coincident detection of recoil nucleons have been measured for the first time. The experiment was performed at the tagged photon beam of the Mainz Microtron (MAMI) accelerator for photon energies between 0.45 GeV and 1.4 GeV, using an almost 4π electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. A complete kinematic reconstruction of the final state removed the effects of Fermi motion. Results: Significant effects from final state interactions (FSI) were observed for participant protons in comparison to free proton targets (between 30% and almost 40%). The data in coincidence with recoil neutrons were corrected for such effects under the assumption that they are identical for participant protons and neutrons. Reaction model predictions and PWA for γn → nπ 0, based on fits to data for the other isospin channels, disagreed between themselves and no model provided a good description of the new data. Conclusions: The results demonstrate clearly the importance of a measurement of the fully neutral final state for the isospin decomposition of the cross section. Model refits, for example from the Bonn-Gatchina analysis, show that the new and the previous data for the other three isospin channels can be simultaneously described when the contributions of several partial waves are modified. Finally, the results are also relevant for the suppression of the higher resonance bumps in total photoabsorption on nuclei, which are not well understood.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieterle, M.; Werthmüller, D.; Abt, S.
Background: Photoproduction of mesons off quasi-free nucleons bound in the deuteron allows to study the elec- tromagnetic excitation spectrum of the neutron and the isospin structure of the excitation of nucleon resonances. The database for such reactions is much more sparse than for free proton targets. Purpose: Study experimentally single π0 photoproduction off quasi-free nucleons from the deuteron. Investigate nuclear effects by a comparison of the results for free protons and quasi-free protons. Use the quasi-free neutron data (corrected for nuclear effects) to test the predictions of reaction models and partial wave analysis (PWA) for γn → nπ 0 derivedmore » from the analysis of the other isospin channels. Methods: High statistics angular distributions and total cross sections for the photoproduction of π 0 mesons off the deuteron with coincident detection of recoil nucleons have been measured for the first time. The experiment was performed at the tagged photon beam of the Mainz Microtron (MAMI) accelerator for photon energies between 0.45 GeV and 1.4 GeV, using an almost 4π electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. A complete kinematic reconstruction of the final state removed the effects of Fermi motion. Results: Significant effects from final state interactions (FSI) were observed for participant protons in comparison to free proton targets (between 30% and almost 40%). The data in coincidence with recoil neutrons were corrected for such effects under the assumption that they are identical for participant protons and neutrons. Reaction model predictions and PWA for γn → nπ 0, based on fits to data for the other isospin channels, disagreed between themselves and no model provided a good description of the new data. Conclusions: The results demonstrate clearly the importance of a measurement of the fully neutral final state for the isospin decomposition of the cross section. Model refits, for example from the Bonn-Gatchina analysis, show that the new and the previous data for the other three isospin channels can be simultaneously described when the contributions of several partial waves are modified. Finally, the results are also relevant for the suppression of the higher resonance bumps in total photoabsorption on nuclei, which are not well understood.« less
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Swanson, Gregory R.
2000-01-01
High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.
Identification of piecewise affine systems based on fuzzy PCA-guided robust clustering technique
NASA Astrophysics Data System (ADS)
Khanmirza, Esmaeel; Nazarahari, Milad; Mousavi, Alireza
2016-12-01
Hybrid systems are a class of dynamical systems whose behaviors are based on the interaction between discrete and continuous dynamical behaviors. Since a general method for the analysis of hybrid systems is not available, some researchers have focused on specific types of hybrid systems. Piecewise affine (PWA) systems are one of the subsets of hybrid systems. The identification of PWA systems includes the estimation of the parameters of affine subsystems and the coefficients of the hyperplanes defining the partition of the state-input domain. In this paper, we have proposed a PWA identification approach based on a modified clustering technique. By using a fuzzy PCA-guided robust k-means clustering algorithm along with neighborhood outlier detection, the two main drawbacks of the well-known clustering algorithms, i.e., the poor initialization and the presence of outliers, are eliminated. Furthermore, this modified clustering technique enables us to determine the number of subsystems without any prior knowledge about system. In addition, applying the structure of the state-input domain, that is, considering the time sequence of input-output pairs, provides a more efficient clustering algorithm, which is the other novelty of this work. Finally, the proposed algorithm has been evaluated by parameter identification of an IGV servo actuator. Simulation together with experiment analysis has proved the effectiveness of the proposed method.
Boer, H; Emons, P A A
2004-02-01
We assessed the relation between accurate beliefs about HIV transmission and inaccurate beliefs about HIV transmission and emotional reactions to people with AIDS (PWA) and AIDS risk groups, stigmatizing attitudes and motivation to protect from HIV. In Chiang Rai, northern Thailand, 219 respondents filled in a structured questionnaire assessing accurate and inaccurate HIV transmission beliefs, emotional reactions towards PWA and AIDS risk groups, stigmatizing attitudes and motivation to protect from HIV according to variables from Protection Motivation Theory. Complete accurate beliefs about documented modes of HIV transmission were present in 47% of the respondents, while 26% of the respondents held one or more inaccurate beliefs about HIV transmission. Incomplete beliefs about documented modes of transmission were significantly related to stigmatizing beliefs towards people with AIDS (PWA), to lower vulnerability of HIV infection and lower self-efficacy in protection. Those who held inaccurate beliefs about HIV transmission reported more fear towards PWA and homosexuals and more irritation towards PWA and commercial sex workers. Persons who held inaccurate beliefs about HIV transmission also reported more stigmatizing attitudes, perceived AIDS as less severe, perceived a lower vulnerability and were less motivated to use condoms. Results of this study suggest that inaccurate beliefs about HIV transmission are related to fear and stigmatizing and undermine HIV prevention behaviour.
An Examination of Strategy Implementation During Abstract Nonlinguistic Category Learning in Aphasia
Kiran, Swathi
2015-01-01
Purpose Our purpose was to study strategy use during nonlinguistic category learning in aphasia. Method Twelve control participants without aphasia and 53 participants with aphasia (PWA) completed a computerized feedback-based category learning task consisting of training and testing phases. Accuracy rates of categorization in testing phases were calculated. To evaluate strategy use, strategy analyses were conducted over training and testing phases. Participant data were compared with model data that simulated complex multi-cue, single feature, and random pattern strategies. Learning success and strategy use were evaluated within the context of standardized cognitive–linguistic assessments. Results Categorization accuracy was higher among control participants than among PWA. The majority of control participants implemented suboptimal or optimal multi-cue and single-feature strategies by testing phases of the experiment. In contrast, a large subgroup of PWA implemented random patterns, or no strategy, during both training and testing phases of the experiment. Conclusions Person-to-person variability arises not only in category learning ability but also in the strategies implemented to complete category learning tasks. PWA less frequently developed effective strategies during category learning tasks than control participants. Certain PWA may have impairments of strategy development or feedback processing not captured by language and currently probed cognitive abilities. PMID:25908438
Ivanova, Maria V.; Hallowell, Brooke
2017-01-01
Purpose Language comprehension in people with aphasia (PWA) is frequently evaluated using multiple-choice displays: PWA are asked to choose the image that best corresponds to the verbal stimulus in a display. When a nontarget image is selected, comprehension failure is assumed. However, stimulus-driven factors unrelated to linguistic comprehension may influence performance. In this study we explore the influence of physical image characteristics of multiple-choice image displays on visual attention allocation by PWA. Method Eye fixations of 41 PWA were recorded while they viewed 40 multiple-choice image sets presented with and without verbal stimuli. Within each display, 3 images (majority images) were the same and 1 (singleton image) differed in terms of 1 image characteristic. The mean proportion of fixation duration (PFD) allocated across majority images was compared against the PFD allocated to singleton images. Results PWA allocated significantly greater PFD to the singleton than to the majority images in both nonverbal and verbal conditions. Those with greater severity of comprehension deficits allocated greater PFD to nontarget singleton images in the verbal condition. Conclusion When using tasks that rely on multiple-choice displays and verbal stimuli, one cannot assume that verbal stimuli will override the effect of visual-stimulus characteristics. PMID:28520866
Cross-situational word learning in aphasia.
Peñaloza, Claudia; Mirman, Daniel; Cardona, Pedro; Juncadella, Montserrat; Martin, Nadine; Laine, Matti; Rodríguez-Fornells, Antoni
2017-08-01
Human learners can resolve referential ambiguity and discover the relationships between words and meanings through a cross-situational learning (CSL) strategy. Some people with aphasia (PWA) can learn word-referent pairings under referential uncertainty supported by online feedback. However, it remains unknown whether PWA can learn new words cross-situationally and if such learning ability is supported by statistical learning (SL) mechanisms. The present study examined whether PWA can learn novel word-referent mappings in a CSL task without feedback. We also studied whether CSL is related to SL in PWA and neurologically healthy individuals. We further examined whether aphasia severity, phonological processing and verbal short-term memory (STM) predict CSL in aphasia, and also whether individual differences in verbal STM modulate CSL in healthy older adults. Sixteen people with chronic aphasia underwent a CSL task that involved exposure to a series of individually ambiguous learning trials and a SL task that taps speech segmentation. Their learning ability was compared to 18 older controls and 39 young adults recruited for task validation. CSL in the aphasia group was below the older controls and young adults and took place at a slower rate. Importantly, we found a strong association between SL and CSL performance in all three groups. CSL was modulated by aphasia severity in the aphasia group, and by verbal STM capacity in the older controls. Our findings indicate that some PWA can preserve the ability to learn new word-referent associations cross-situationally. We suggest that both PWA and neurologically intact individuals may rely on SL mechanisms to achieve CSL and that verbal STM also influences CSL. These findings contribute to the ongoing debate on the cognitive mechanisms underlying this learning ability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Östling, Gerd; Nilsson, Peter M.
2015-01-01
Introduction Arterial stiffness is an independent risk factor for cardiovascular morbidity and can be assessed by applanation tonometry by measuring pulse wave velocity (PWV) and augmentation index (AIX) by pressure pulse wave analysis (PWA). As an inexpensive and operator independent alternative, photoelectric plethysmography (PPG) has been introduced with analysis of the digital volume pulse wave (DPA) and its second derivatives of wave reflections. Objective The objective was to investigate the repeatability of arterial stiffness parameters measured by digital pulse wave analysis (DPA) and the associations to applanation tonometry parameters. Methods and Results 112 pregnant and non-pregnant individuals of different ages and genders were examined with SphygmoCor arterial wall tonometry and Meridian DPA finger photoplethysmography. Coefficients of repeatability, Bland-Altman plots, intraclass correlation coefficients and correlations to heart rate (HR) and body height were calculated for DPA variables, and the DPA variables were compared to tonometry variables left ventricular ejection time (LVET), PWV and AIX. No DPA variable showed any systematic measurement error or excellent repeatability, but dicrotic index (DI), dicrotic dilatation index (DDI), cardiac ejection elasticity index (EEI), aging index (AI) and second derivatives of the crude pulse wave curve, b/a and e/a, showed good repeatability. Overall, the correlations to AIX were better than to PWV, with correlations coefficients >0.70 for EEI, AI and b/a. Considering the level of repeatability and the correlations to tonometry, the overall best DPA parameters were EEI, AI and b/a. The two pansystolic time parameters, ejection time compensated (ETc) by DPA and LVET by tonometry, showed a significant but weak correlation. Conclusion For estimation of the LV function, ETc, EEI and b/a are suitable, for large artery stiffness EEI, and for small arteries DI and DDI. The only global parameter, AI, showed a high repeatability and the overall best correlations with AIX and PWV. PMID:26291079
Non-AIDS-Defining Cancer Mortality: Emerging Patterns in the Late HAART Era.
Zucchetto, Antonella; Virdone, Saverio; Taborelli, Martina; Grande, Enrico; Camoni, Laura; Pappagallo, Marilena; Regine, Vincenza; Grippo, Francesco; Polesel, Jerry; Dal Maso, Luigino; Suligoi, Barbara; Frova, Luisa; Serraino, Diego
2016-10-01
Non-AIDS-defining cancers (non-ADCs) have become the leading non-AIDS-related cause of death among people with HIV/AIDS. We aimed to quantify the excess risk of cancer-related deaths among Italian people with AIDS (PWA), as compared with people without AIDS (non-PWA). A nationwide, population-based, retrospective cohort study was carried out among 5285 Italian PWA, aged 15-74 years, diagnosed between 2006 and 2011. Date of death and multiple-cause-of-death data were retrieved up to December 2011. Excess mortality, as compared with non-PWA, was estimated using sex- and age-standardized mortality ratios (SMRs) and the corresponding 95% confidence intervals (CIs). Among 1229 deceased PWA, 10.3% reported non-ADCs in the death certificate, including lung (3.1%), and liver (1.4%), cancers. A 7.3-fold (95% CI: 6.1 to 8.7) excess mortality was observed for all non-ADCs combined. Statistically significant SMRs emerged for specific non-ADCs, ie, anus (5 deaths, SMR = 227.6, 95% CI: 73.9 to 531.0), Hodgkin lymphoma (12 deaths, SMR = 122.0, 95% CI: 63.0 to 213.0), unspecified uterus (4 deaths, SMR = 52.5, 95% CI: 14.3 to 134.5), liver (17 deaths, SMR = 13.2, 95% CI: 7.7 to 21.1), skin melanoma (4 deaths, SMR = 10.9, 95% CI: 3.0 to 27.8), lung (38 deaths, SMR = 8.0, 95% CI: 5.7 to 11.0), head and neck (9 deaths, SMR = 7.8, 95% CI: 3.6 to 14.9), leukemia (5 deaths, SMR = 7.6, 95% CI: 2.4 to 17.7), and colon-rectum (10 deaths, SMR = 5.4, 95% CI: 2.6 to 10.0). SMRs for non-ADCs were particularly elevated among PWA infected through injecting drug use. This population-based study documented extremely elevated risks of death for non-ADCs among PWA. These findings stress the need of preventive interventions for both virus-related and non-virus-related cancers among HIV-infected individuals.
Computer-aided diagnosis of alcoholism-related EEG signals.
Acharya, U Rajendra; S, Vidya; Bhat, Shreya; Adeli, Hojjat; Adeli, Amir
2014-12-01
Alcoholism is a severe disorder that affects the functionality of neurons in the central nervous system (CNS) and alters the behavior of the affected person. Electroencephalogram (EEG) signals can be used as a diagnostic tool in the evaluation of subjects with alcoholism. The neurophysiological interpretation of EEG signals in persons with alcoholism (PWA) is based on observation and interpretation of the frequency and power in their EEGs compared to EEG signals from persons without alcoholism. This paper presents a review of the known features of EEGs obtained from PWA and proposes that the impact of alcoholism on the brain can be determined by computer-aided analysis of EEGs through extracting the minute variations in the EEG signals that can differentiate the EEGs of PWA from those of nonaffected persons. The authors advance the idea of automated computer-aided diagnosis (CAD) of alcoholism by employing the EEG signals. This is achieved through judicious combination of signal processing techniques such as wavelet, nonlinear dynamics, and chaos theory and pattern recognition and classification techniques. A CAD system is cost-effective and efficient and can be used as a decision support system by physicians in the diagnosis and treatment of alcoholism especially those who do not specialize in alcoholism or neurophysiology. It can also be of great value to rehabilitation centers to assess PWA over time and to monitor the impact of treatment aimed at minimizing or reversing the effects of the disease on the brain. A CAD system can be used to determine the extent of alcoholism-related changes in EEG signals (low, medium, high) and the effectiveness of therapeutic plans. Copyright © 2014 Elsevier Inc. All rights reserved.
Kim, Esther S; Ruelling, Andrea; Garcia, J Renzo; Kajner, Rhonda
2017-03-01
For people with aphasia (PWA), attending an aphasia camp can result in increased confidence, social relationships, and greater participation in activities. Although much anecdotal evidence of the benefits of aphasia camps exists, systematic studies on outcomes from aphasia camp participation are lacking. The purpose of this pilot study was to examine the effect of attending the Alberta Aphasia Camp on quality of life for people with aphasia. Nine PWA who attended the inaugural Alberta Aphasia Camp completed the Assessment for Living with Aphasia-2 before and after camp. A subset of their caregivers (n = 4) completed the Communicative Effectiveness Index, a rating scale evaluating their PWA's communication, and were interviewed about their experiences and perceptions of camp participation. Significant changes were observed on total scores on the ALA-2, and in particular the Personal and Participation subtests. These improvements were corroborated by themes identified from interviews with caregivers. This study provides preliminary evidence that aphasia camp participation can result in improved outcomes for PWA across a range of domains. Aphasia camps provide a unique intervention for PWA and caregivers to experience therapeutic and recreational activities, respite and create social connections in a supported communication environment. Future studies should recruit a greater number of participants, employ control groups, and examine outcomes for caregivers.
Aphasia and Literacy--The Insider's Perspective
ERIC Educational Resources Information Center
Kjellén, Emma; Laakso, Katja; Henriksson, Ingrid
2017-01-01
Background: Few studies have investigated how people with aphasia (PWA) experience literacy skills. Taking the insider's perspective is a way to increase understanding of the individual experiences of literacy among PWA, which may have clinical implications. Aims: To describe how literacy, i.e., reading and writing, is experienced in everyday life…
Life prediction and constitutive models for engine hot section anisotropic materials
NASA Technical Reports Server (NTRS)
Swanson, G. A.
1984-01-01
The development of directionally solidified and single crystal alloys is perhaps the most important recent advancement in hot section materials technology. The objective is to develop knowledge that enables the designer to improve anisotropic gas turbine parts to their full potential. Two single crystal alloys selected were PWA 1480 and Alloy 185. The coatings selected were an overlay coating, PWA 286, and an aluminide diffusion coating, PWA 273. The constitutive specimens were solid and cylindrical; the fatigue specimens were hollow and cylindrical. Two thicknesses of substrate are utilized. Specimens of both thickness (0.4 and 1.5 mm) will be coated and then tested for tensile, creep, and fatigue properties.
Effect of CPAP on arterial stiffness in severely obese patients with obstructive sleep apnoea.
Seetho, Ian W; Asher, Rebecca; Parker, Robert J; Craig, Sonya; Duffy, Nick; Hardy, Kevin J; Wilding, John P H
2015-12-01
Obstructive sleep apnoea (OSA) may independently increase cardiovascular risk in obesity. Although there is evidence that arterial stiffness is altered in OSA, knowledge of these effects with continuous positive airway pressure (CPAP) in severe obesity (body mass index (BMI) ≥ 35 kg/m(2)) is limited. This study aimed to explore how arterial stiffness, as measured by the augmentation index (Aix), changed in severely obese patients with OSA who were treated with CPAP and in patients without OSA. Forty-two patients with severe obesity-22 with OSA, 20 without OSA-were recruited at baseline and followed-up after a median of 13.5 months. Pulse wave analysis (PWA) was performed using applanation tonometry at the radial artery to measure augmentation index (Aix), augmentation pressure (AP) and subendocardial viability ratio (SEVR). Cardiovascular parameters and body composition were also measured. There were significant improvements in Aix, AP (both P < 0.001) and SEVR (P = 0.021) in OSA patients on CPAP compared with subjects without OSA. Epworth scores (P < 0.001), systolic (P < 0.001) and mean arterial pressures (P = 0.002) improved with CPAP. Regression showed that CPAP was significantly associated with change in arterial stiffness from baseline. However, patients with OSA on CPAP continued to have increased arterial stiffness (Aix) (P < 0.001), AP (P = 0.028) and reduced SEVR (P = 0.002) relative to non-OSA patients. Although sleepiness and blood pressure improve with CPAP in severe obesity, CPAP alone is not sufficient to modify PWA measures to levels comparable with non-OSA patients. This supports a need for a multifaceted approach when managing cardiovascular risk in patients with severe obesity and obstructive sleep apnoea receiving CPAP therapy.
Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria
NASA Astrophysics Data System (ADS)
Chaves, M.; Preto, M.
2013-06-01
A hierarchy of models, ranging from high to lower levels of abstraction, is proposed to construct "minimal" but predictive and explanatory models of biological systems. Three hierarchical levels will be considered: Boolean networks, piecewise affine differential (PWA) equations, and a class of continuous, ordinary, differential equations' models derived from the PWA model. This hierarchy provides different levels of approximation of the biological system and, crucially, allows the use of theoretical tools to more exactly analyze and understand the mechanisms of the system. The Kai ABC oscillator, which is at the core of the cyanobacterial circadian rhythm, is analyzed as a case study, showing how several fundamental properties—order of oscillations, synchronization when mixing oscillating samples, structural robustness, and entrainment by external cues—can be obtained from basic mechanisms.
ERIC Educational Resources Information Center
Pompon, Rebecca Hunting; McNeil, Malcolm R.; Spencer, Kristie A.; Kendall, Diane L.
2015-01-01
Purpose: The integrity of selective attention in people with aphasia (PWA) is currently unknown. Selective attention is essential for everyday communication, and inhibition is an important part of selective attention. This study explored components of inhibition--both intentional and reactive inhibition--during spoken-word production in PWA and in…
Instability of a witness bunch in a plasma bubble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burov, A.; Lebedev, V.; Nagaitsev, S.
2016-02-16
The stability of a trailing witness bunch, accelerated by a plasma wake accelerator (PWA) in a blow-out regime, is discussed. The instability growth rate as well as the energy spread, required for BNS damping, are obtained. A relationship between the PWA power efficiency and the BNS energy spread is derived.
Pantomime Production by People with Aphasia: What Are Influencing Factors?
ERIC Educational Resources Information Center
van Nispen, Karin; van de Sandt-Koenderman, Mieke; Mol, Lisette; Krahmer, Emiel
2016-01-01
Purpose: The present article aimed to inform clinical practice on whether people with aphasia (PWA) deploy pantomime techniques similarly to participants without brain damage (PWBD) and if not, what factors influence these differences. Method: We compared 38 PWA to 20 PWBD in their use of 6 representation techniques ("handling,"…
Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning.
Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta
2015-01-01
Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning. © The Author(s) 2014.
Life prediction and constitutive models for engine hot section anisotropic materials program
NASA Technical Reports Server (NTRS)
Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.
1986-01-01
This report presents the results of the first year of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and/or fatigue data, tests were conducted on coated and uncoated PWA 1480 specimens tensilely loaded in the 100 , 110 , 111 , and 123 directions. A literature survey of constitutive models was completed for both single crystal alloys and metallic coating materials; candidate models were selected. One constitutive model under consideration for single crystal alloys applies Walker's micromechanical viscoplastic formulation to all slip systems participating in the single crystal deformation. The constitutive models for the overlay coating correlate the viscoplastic data well. For the aluminide coating, a unique test method is under development. LCF and TMF tests are underway. The two coatings caused a significant drop in fatigue life, and each produced a much different failure mechanism.
Reading and listening in people with aphasia: effects of syntactic complexity.
DeDe, Gayle
2013-11-01
The purpose of this study was to compare online effects of syntactic complexity in written and spoken sentence comprehension in people with aphasia (PWA) and adults with no brain damage (NBD). The participants in Experiment 1 were NBD older and younger adults (n = 20 per group). The participants in Experiment 2 were 10 PWA. In both experiments, the participants read and listened to sentences in self-paced reading and listening tasks. The experimental materials consisted of object cleft sentences (e.g., It was the girl who the boy hugged.) and subject cleft sentences (e.g., It was the boy who hugged the girl.). The predicted effects of syntactic complexity were observed in both Experiments 1 and 2: Reading and listening times were longer for the verb in sentences with object compared to subject relative clauses. The NBD controls showed exaggerated effects of syntactic complexity in reading compared to listening. The PWA did not show different modality effects from the NBD participants. Although effects of syntactic complexity were somewhat exaggerated in reading compared with listening, both the PWA and the NBD controls showed similar effects in both modalities.
A Taiwanese Mandarin Main Concept Analysis (TM-MCA) for Quantification of Aphasic Oral Discourse
ERIC Educational Resources Information Center
Kong, Anthony Pak-Hin; Yeh, Chun-Chih
2015-01-01
Background: Various quantitative systems have been proposed to examine aphasic oral narratives in English. A clinical tool for assessing discourse produced by Cantonese-speaking persons with aphasia (PWA), namely Main Concept Analysis (MCA), was developed recently for quantifying the presence, accuracy and completeness of a narrative. Similar…
NASA Astrophysics Data System (ADS)
Rogers, A. M.; Harmsen, S. C.; Herrmann, R. B.; Meremonte, M. E.
1987-04-01
As a first step in the assessment of the earthquake hazard in the southern Great Basin of Nevada-California, this study evaluates the attenuation of peak vertical ground motions using a number of different regression models applied to unfiltered and band-pass-filtered ground motion data. These data are concentrated in the distance range 10-250 km. The regression models include parameters to account for geometric spreading, anelastic attenuation with a power law frequency dependence, source size, and station site effects. We find that the data are most consistent with an essentially frequency-independent Q and a geometric spreading coefficient less than 1.0. Regressions are also performed on vertical component peak amplitudes reexpressed as pseudo-Wood-Anderson peak amplitude estimates (PWA), permitting comparison with earlier work that used Wood-Anderson (WA) data from California. Both of these results show that Q values in this region are high relative to California, having values in the range 700-900 over the frequency band 1-10 Hz. Comparison of ML magnitudes from stations BRK and PAS for earthquakes in the southern Great Basin shows that these two stations report magnitudes with differences that are distance dependent. This bias suggests that the Richter log A0 curve appropriate to California is too steep for earthquakes occurring in southern Nevada, a result implicitly supporting our finding that Q values are higher than those in California. The PWA attenuation functions derived from our data also indicate that local magnitudes reported by California observatories for earthquakes in this region may be overestimated by as much as 0.8 magnitude units in some cases. Both of these results will have an effect on the assessment of the earthquake hazard in this region. The robustness of our regression technique to extract the correct geometric spreading coefficient n and anelastic attenuation Q is tested by applying the technique to simulated data computed with given n and Q values. Using a stochastic modeling technique, we generate suites of seismograms for the distance range 10-200 km and for both WA and short-period vertical component seismometers. Regressions on the peak amplitudes from these records show that our regression model extracts values of n and Q approximately equal to the input values for either low-Q California attenuation or high-Q southern Nevada attenuation. Regressions on stochastically modeled WA and PWA amplitudes also provides a method of evaluating differences in magnitudes from WA and PWA amplitudes due to recording instrument response characteristics alone. These results indicate a difference between MLWA and MLPWA equal to 0.15 magnitude units, which we term the residual instrument correction. In contrast to the peak amplitude results, coda Q determinations using the single scatterer theory indicate that Qc values are dependent on source type and are proportional to ƒp, where p = 0.8 to 1.0. This result suggests that a difference exists between attenuation mechanisms for direct waves and backscattered waves in this region.
A Taiwanese Mandarin Main Concept Analysis (TM-MCA) for quantification of aphasic oral discourse.
Kong, Anthony Pak-Hin; Yeh, Chun-Chih
2015-01-01
Various quantitative systems have been proposed to examine aphasic oral narratives in English. A clinical tool for assessing discourse produced by Cantonese-speaking persons with aphasia (PWA), namely Main Concept Analysis (MCA), was developed recently for quantifying the presence, accuracy and completeness of a narrative. Similar tools for Mandarin speakers are currently absent. The first aim is to develop and establish the validity of the Taiwanese Mandarin Main Concept Analysis (TM-MCA) for the Mandarin-speaking population in Taiwan, given the paucity of related investigations. Another aim is to establish the influence of age and education level on Taiwanese Mandarin speakers' oral narrative abilities. The third purpose is to examine how well the TM-MCA could distinguish between native speakers with and without aphasia in Taiwan. The final aim is to examine the reliability and validity of the TM-MCA. Eight speech-language pathologists (SLPs) and eight neurologically intact participants were involved to establish the TM-MCA main concepts. Another 36 neurologically intact participants and 10 PWA participated to validate the TM-MCA by contrasting their performance. Both age and educational level affected the oral discourse performance among the neurologically intact adults. Significant differences on the TM-MCA measures were noted between the control group and the group with aphasia. Moreover, the degree of aphasia significantly affected the oral discourse of PWA. The TM-MCA is a culturally appropriate quantitative system for the Taiwanese Mandarin population. It can be used to supplement standardized aphasia tests to help SLPs make more informative decisions not only on clinical diagnosis but also on treatment planning. © 2015 Royal College of Speech and Language Therapists.
A Novel Pupillometric Method for Indexing Word Difficulty in Individuals with and without Aphasia
ERIC Educational Resources Information Center
Chapman, Laura R.; Hallowell, Brooke
2015-01-01
Purpose: Cognitive effort is a clinically important facet of linguistic processing that is often overlooked in the assessment and treatment of people with aphasia (PWA). Furthermore, there is a paucity of valid ways to index cognitive effort in PWA. The construct of cognitive effort has been indexed for decades via pupillometry (measurement of…
Detecting severity of delamination in a lap joint using S-parameters
NASA Astrophysics Data System (ADS)
Islam, M. M.; Huang, H.
2018-03-01
The scattering parameters (S-parameters) represent the frequency response of a two-port linear time-invariant network. Treating a lap joint structure instrumented with two piezoelectric wafer active transducers (PWaTs) as such a network, this paper investigates the application of the S-parameters for detecting the severity of delamination in the lap joint. The pulse-echo signal calculated from the reflection coefficients, namely the S 11 and S 22-parameters, can be divided into three signals, i.e. the excitation, resonant, and echo signals, based on their respective time spans. Analyzing the effects of the delamination on the resonant signal enables us to identify the resonance at which the resonant characteristics of the PWaTs are least sensitive to the delamination. Only at this resonance, we found that the reflection coefficients and the amplitude of the first arrival echo signal changed monotonously with the increase of the delamination length. This discovery is further validated by the time-domain pitch-catch signal calculated from the transmission coefficient (i.e. the S 21-parameter). In addition, comparing the pulse-echo signals obtained from both PWaTs enables us to determine the side of the lap joint that the delamination is located at. This work establishes the S-parameters as an effective tool to evaluate the effects of damage on the PWaT resonant characteristics, based on which the PWaT resonance can be selected judiciously for damage severity detection. Correlating the reflection and transmission coefficients also provide addition validations that increase the detection confidence.
ERIC Educational Resources Information Center
Heuer, Sabine; Ivanova, Maria V.; Hallowell, Brooke
2017-01-01
Purpose: Language comprehension in people with aphasia (PWA) is frequently evaluated using multiple-choice displays: PWA are asked to choose the image that best corresponds to the verbal stimulus in a display. When a nontarget image is selected, comprehension failure is assumed. However, stimulus-driven factors unrelated to linguistic…
The effect of acamprosate on alcohol and food craving in patients with alcohol dependence.
Han, Doug Hyun; Lyool, In Kyoon; Sung, Young Hoon; Lee, Sang Hoon; Renshaw, Perry F
2008-03-01
The balance between inhibitory (gamma aminobutyric acid; GABAergic) and excitatory (glutamatergic) neurotransmission is thought to be associated with craving for alcohol and food. The anticraving effect of acamprosate is thought to be mediated through modifying the balance of GABA and glutamate. Recent studies in animals have suggested that acamprosate may have non-selective effects on craving for both alcohol and food. The influence of acamprosate for reducing craving for alcohol and food was assessed in 204 in-patients with alcohol dependence (96 patients treated with acamprosate, PWA; 108 patients were not treated PNA) was assessed at baseline and following 1, 2, and 4 weeks of treatment. There was a significant reduction in craving for alcohol over 4 weeks of treatment in both PWA and PNA groups, but without significant group differences. In contrast, a reduction in food craving was observed only in the PWA group. In addition, there was a significant increase of body mass index (BMI) in the PNA group but not the PWA group over the 4-week period. These results demonstrate acamprosate nonselective effects on craving for drinking and eating in alcoholic patients.
Cognitive grammar and aphasic discourse.
Manning, Molly; Franklin, Sue
2016-01-01
In cognitive grammar (CG), there is no clear division between language and other cognitive processes; all linguistic form is conceptually meaningful. In this pilot study, a CG approach was applied to investigate whether people with aphasia (PWA) have cognitive linguistic difficulty not predicted from traditional, componential models of aphasia. Narrative samples from 22 PWA (6 fluent, 16 non-fluent) were compared with samples from 10 participants without aphasia. Between-group differences were tested statistically. PWA had significant difficulty with temporal sequencing, suggesting problems that are not uniquely linguistic. For some, these problems were doubly dissociated with naming, used as a general measure of severity, which indicates that cognitive linguistic difficulties are not linked with more widespread brain damage. Further investigation may lead to a richer account of aphasia in line with contemporary linguistics and cognitive science approaches.
Parotat, S; von Holleben, K; Arnold, S; Troeger, K; Luecker, E
2016-02-01
This study investigated the benefits of hot-water spraying (HWS) as a diagnostic test to verify the absence of signs of life (SOL) before scalding in pigs slaughtered with carbon dioxide (CO2) stunning. A total of 37 108 finishing pigs from five German abattoirs (A to E) operating at 55 to 571 pigs per hour were assessed. Suspended pigs were sprayed onto the muzzle, head and front legs (143 to 258 s post sticking for 4 to 10 s, 57°C to 72°C). Any active movements during HWS were rated as positive test outcomes. In comparison, SOL were considered to be absent if a subsequent manual examination was negative and no active movements were observed following HWS. The incidence of pigs with activity during hot-water spraying (PWA) was restricted to two abattoirs (B: 0.25%; D: 0.02%; A, C, E: 0.00%). PWA showed movements of facial muscles (88%), mouth opening (78%), righting reflex (63%), isolated leg movements (35%) and vocalization (4%). The manual examination was positive in 71% of PWA (corneal/dazzle reflex: 67%/53%, nasal septum pinch: 33%), whereas all inactive pigs tested negative (P99.9% in either case. Any positive manual findings as well as any respiratory activity were instantly terminated using a penetrating captive bolt. Active movements triggered by the shot were shown to be an indicator for SOL (P<0.001). Video analyses revealed that spontaneous movements (SM) following sticking were present in 100% of PWA as opposed to 3.1% in pigs without such activity (controls). Results for different categories of SM in PWA v. controls were as follows: 100% v. 2.6% for mouth opening, 16.0% v. 0.1% for righting reflex and 22.0% v. 0.9% for isolated leg movements (all P<0.001). First mouth opening after sticking was observed later in PWA (28±24 v. 10±7 s), but mouth openings were observed for a longer period of time (141±44 v. 27±25 s) (both P<0.001). PWA with shorter mouth-opening intervals showed higher movement intensities during HWS and more positive manual findings (P<0.05). We conclude that HWS is a promising test for SOL. SM and sustained mouth opening in particular are indicators for compromised animal welfare and affected pigs should be shot by captive bolt.
ERIC Educational Resources Information Center
McNeil, Malcolm R.; Pratt, Sheila R.; Szuminsky, Neil; Sung, Jee Eun; Fossett, Tepanta R. D.; Fassbinder, Wiltrud; Lim, Kyoung Yuel
2015-01-01
Purpose: This study assessed the reliability and validity of intermodality associations and differences in persons with aphasia (PWA) and healthy controls (HC) on a computerized listening and 3 reading versions of the Revised Token Test (RTT; McNeil & Prescott, 1978). Method: Thirty PWA and 30 HC completed the test versions, including a…
NASA Astrophysics Data System (ADS)
Amelard, Robert; Pfisterer, Kaylen J.; Jagani, Shubh; Clausi, David A.; Wong, Alexander
2018-02-01
Obstructive sleep apnea (OSA) affects 20% of the adult population, and is associated with cardiovascular and cognitive morbidities. However, it is estimated that up to 80% of treatable OSA cases remain undiagnosed. Cur- rent methods for diagnosing OSA are expensive, labor-intensive, and involve uncomfortable wearable sensors. This study explored the feasibility of non-contact biophotonic assessment of OSA cardiovascular biomarkers via photoplethysmography imaging (PPGI). In particular, PPGI was used to monitor the hemodynamic response to obstructive respiratory events. Sleep apnea onset was simulated using Muller's maneuver in which breathing was obstructed by a respiratory clamp. A custom PPGI system, coded hemodynamic imaging (CHI), was positioned 1 m above the bed and illuminated the participant's head with 850 nm light, providing non-intrusive illumination for night-time monitoring. A video was recorded before, during and following an apnea event at 60 fps, yielding 17 ms temporal resolution. Per-pixel absorbance signals were extracted using a Beer-Lambert derived light transport model, and subsequently denoised. The extracted hemodynamic signal exhibited dynamic temporal modulation during and following the apnea event. In particular, the pulse wave amplitude (PWA) decreased during obstructed breathing, indicating vasoconstriction. Upon successful inhalation, the PWA gradually increased toward homeostasis following a temporal phase delay. This temporal vascular tone modulation provides insight into autonomic and vascular response, and may be used to assess sleep apnea using non-contact biophotonic imaging.
Finch, Emma; Cameron, Ashley; Fleming, Jennifer; Lethlean, Jennifer; Hudson, Kyla; McPhail, Steven
2017-07-01
Aphasia is a common consequence of stroke. Despite receiving specialised training in communication, speech-language pathology students may lack confidence when communicating with People with Aphasia (PWA). This paper reports data from secondary outcome measures from a randomised controlled trial. The aim of the current study was to examine the effects of communication partner training on the communication skills of speech-language pathology students during conversations with PWA. Thirty-eight speech-language pathology students were randomly allocated to trained and untrained groups. The first group received a lecture about communication strategies for communicating with PWA then participated in a conversation with PWA (Trained group), while the second group of students participated in a conversation with the PWA without receiving the lecture (Untrained group). The conversations between the groups were analysed according to the Measure of skill in Supported Conversation (MSC) scales, Measure of Participation in Conversation (MPC) scales, types of strategies used in conversation, and the occurrence and repair of conversation breakdowns. The trained group received significantly higher MSC Revealing Competence scores, used significantly more props, and introduced significantly more new ideas into the conversation than the untrained group. The trained group also used more gesture and writing to facilitate the conversation, however, the difference was not significant. There was no significant difference between the groups according to MSC Acknowledging Competence scores, MPC Interaction or Transaction scores, or in the number of interruptions, minor or major conversation breakdowns, or in the success of strategies initiated to repair the conversation breakdowns. Speech-language pathology students may benefit from participation in communication partner training programs. Copyright © 2017 Elsevier Inc. All rights reserved.
Guo, Yiting Emily; Togher, Leanne; Power, Emma; Hutomo, Edwin; Yang, Yi-Fei; Tay, Arthur; Yen, Shih-Cheng; Koh, Gerald Choon-Huat
2017-04-01
Access2Aphasia™ is an iPad™-based aphasia assessment application that enables real-time audiovisual communication between people with aphasia (PWA) and speech-language pathologists (SLPs), and the use of supported conversation techniques. This study aimed to establish the reliability of aphasia assessment across the International Classification of Functioning, Disability and Health (ICF) using Access2Aphasia, and compare it with face-to-face (FTF) assessment. Consumer perspectives of Access2Aphasia were also examined. Thirty PWA were randomized into two conditions: online-led and FTF assessment. Participants in the online-led group were assessed remotely using Access2Aphasia™ in their own homes, while an FTF SLP scored silently simultaneously. Participants in the FTF group were assessed FTF using standard administration materials. Assessment included two subtests of the Psycholinguistic Assessment of Language Processing Activities (PALPA) and the Assessment of Living with Aphasia (ALA) to allow for outcomes to be captured across the ICF domains. Consumer perspectives on Access2Aphasia were obtained from both PWA and research SLPs in the online-led group. Kappa statistics indicated moderate to almost perfect agreement between online and FTF SLPs (k = 0.71-1.00). Intrarater and interrater reliability was excellent (ICC = 0.99-1.00) and equivalent for the online-led and FTF conditions. Both PWA and research SLPs in the online-led group reported being satisfied with the experience overall, with suggestions provided by research SLPs to improve Access2Aphasia. This study supports the provision of iPad-based aphasia assessments across the ICF in the online environment, with comparable reliability to FTF assessments. Future research is warranted to support the development of iPad-based aphasia assessment and treatment as an alternative mode of service delivery to PWA.
NASA Astrophysics Data System (ADS)
Cruz, R. P.; Nalin, M.; Ribeiro, S. J. L.; Molina, C.
2017-04-01
Organic-inorganic hybrids (OIH) synthesized by sol gel process containing phosphotungstic acid (PWA) entrapped have been attracted much attention for ultraviolet sensitive materials. However, the limitations for practical photochromic application of these materials are the poor interaction with flexible polymer substrates such as Poly(ethyleneterephthalate) (PET) and also photo response under ultraviolet radiation. This paper describes the use of the d-ureasil HOI, based on siliceous network grafted through linkages to both ends of polymer chain containing 2.5 poly(oxyethylene) units with PWA entrapped prepared as films on recycled PET. Films were characterized by IR-ATR, XRD, TG/DTG, UV-Vis and Contact angle. XRD patterns showed that both pristine hybrid matrix and those containing PWA are amorphous. IR showed that PWA structure is preserved in the matrix and interactions between them occur by intermolecular forces. Films are thermally stable up to 325 °C and contact angle of 25.1° showed a good wettability between substrate and hybrid matrix. Furthermore, films showed fast photochromic response after 1 min of ultraviolet exposure time. The bleaching process revealed that the relaxation process is dependent of the temperature and the activation energy of 47.2 kJ mol-1 was determined. The properties of these films make them potential candidates for applications in flexible photochromic materials.
Caplan, David; Michaud, Jennifer; Hufford, Rebecca
2015-01-01
Sixty-one people with aphasia (pwa) and 41 matched controls were tested for the ability to understand sentences that required the ability to process particular syntactic elements and assign particular syntactic structures. Participants paced themselves word-by-word through 20 examples of 11 spoken sentence types and indicated which of two pictures corresponded to the meaning of each sentence. Sentences were developed in pairs such that comprehension of the experimental version of a pair required an aspect of syntactic processing not required in the corresponding baseline sentence. The need for the syntactic operations required only in the experimental version was triggered at a "critical word" in the experimental sentence. Listening times for critical words in experimental sentences were compared to those for corresponding words in the corresponding baseline sentences. The results were consistent with several models of syntactic comprehension deficits in pwa: resource reduction, slowed lexical and/or syntactic processing, abnormal susceptibility to interference from thematic roles generated non-syntactically. They suggest that a previously unidentified disturbance limiting the duration of parsing and interpretation may lead to these deficits, and that this mechanism may lead to structure-specific deficits in pwa. The results thus point to more than one mechanism underlying syntactic comprehension disorders both across and within pwa.
Czajkowski, Robert; Ozymko, Zofia; de Jager, Victor; Siwinska, Joanna; Smolarska, Anna; Ossowicki, Adam; Narajczyk, Magdalena; Lojkowska, Ewa
2015-01-01
Pectinolytic Pectobacterium spp. and Dickeya spp. are necrotrophic bacterial pathogens of many important crops, including potato, worldwide. This study reports on the isolation and characterization of broad host lytic bacteriophages able to infect the dominant Pectobacterium spp. and Dickeya spp. affecting potato in Europe viz. Pectobacterium carotovorum subsp. carotovorum (Pcc), P. wasabiae (Pwa) and Dickeya solani (Dso) with the objective to assess their potential as biological disease control agents. Two lytic bacteriophages infecting stains of Pcc, Pwa and Dso were isolated from potato samples collected from two potato fields in central Poland. The ΦPD10.3 and ΦPD23.1 phages have morphology similar to other members of the Myoviridae family and the Caudovirales order, with a head diameter of 85 and 86 nm and length of tails of 117 and 121 nm, respectively. They were characterized for optimal multiplicity of infection, the rate of adsorption to the Pcc, Pwa and Dso cells, the latent period and the burst size. The phages were genotypically characterized with RAPD-PCR and RFLP techniques. The structural proteomes of both phages were obtained by fractionation of phage proteins by SDS-PAGE. Phage protein identification was performed by liquid chromatography-mass spectrometry (LC-MS) analysis. Pulsed-field gel electrophoresis (PFGE), genome sequencing and comparative genome analysis were used to gain knowledge of the length, organization and function of the ΦPD10.3 and ΦPD23.1 genomes. The potential use of ΦPD10.3 and ΦPD23.1 phages for the biocontrol of Pectobacterium spp. and Dickeya spp. infections in potato is discussed. PMID:25803051
Supporting Warfighters and U.S. Defense Sustainability with Strategic and Critical Materials
2010-06-01
S155, ZFNL 9207 300M (Round bar – BAE added testing) 18 - weeks Torsion Bars M50 (2.76 ‐ 8” Diameter) 14 - weeks Bearings AMS 6491, CFR 5200, CPW 378...D1198, DMD 119‐20, EMS 52491, GE C50TF56, KBM250, MSRR 6083, PWA 725, PWA 793 and othersM50 (0.5 ‐2.75” Diameter) 14 - weeks Bearings • Latrobe Steel
Life prediction and constitutive models for engine hot section anisotropic materials program
NASA Technical Reports Server (NTRS)
Nissley, D. M.; Meyer, T. G.
1992-01-01
This report presents the results from a 35 month period of a program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program is composed of a base program and an optional program. The base program addresses the high temperature coated single crystal regime above the airfoil root platform. The optional program investigates the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involve experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material form the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: (001), (011), (111), and (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal material were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were selected for TMF crack initiation of coated PWA 1480. An initial life model used to correlate smooth and notched fatigue data obtained in the option program shows promise. Computer software incorporating the overlay coating and PWA 1480 constitutive models was developed.
Johnson, Jeffrey P.; Villard, Sarah; Kiran, Swathi
2017-01-01
Purpose This study was conducted to investigate the static and dynamic relationships between impairment-level cognitive-linguistic abilities and activity-level functional communication skills in persons with aphasia (PWA). Method In Experiment 1, a battery of standardized assessments was administered to a group of PWA (N = 72) to examine associations between cognitive-linguistic ability and functional communication at a single time point. In Experiment 2, impairment-based treatment was administered to a subset of PWA from Experiment 1 (n = 39) in order to examine associations between change in cognitive-linguistic ability and change in function and associations at a single time point. Results In both experiments, numerous significant associations were found between scores on tests of cognitive-linguistic ability and a test of functional communication at a single time point. In Experiment 2, significant treatment-induced gains were seen on both types of measures in participants with more severe aphasia, yet cognitive-linguistic change scores were not significantly correlated with functional communication change scores. Conclusions At a single time point, cognitive-linguistic and functional communication abilities are associated in PWA. However, although changes on standardized assessments reflecting improvements in both types of skills can occur following an impairment-based therapy, these changes may not be significantly associated with each other. PMID:28196373
The response of the Italian press to AIDS: a 22-month analysis.
Aloisi; Girardi, E; Ippolito, G
2001-01-01
This study analyses the way in which the Italian press reported Acquired Immunodeficiency Syndrome (AIDS) over a 22-month period from September 1993 to June 1995, when no national AIDS information campaigns were made in Italy. During this period we collected, read, and categorized every article relating to Human Immunodeficiency Virus (HIV) and AIDS in fourteen newspapers and two news magazines with the highest national circulation. Articles were then assigned to one of six content categories: statistics, basic science, cure and vaccine, education/awareness and prevention issue, government or non-goverment organizations response, and people with AIDS (PWA) personal portrayals. A total of 4,228 articles referring to HIV/AIDS were identified. Analysis of the featured topics reveals several clear differences in the coverage of aspects of AIDS. The major category was represented by government or non-goverment organization response which accounted for 1,341 articles. Overall, this analysis suggests that, even long after the beginning of the epidemic, the press continues to see AIDS as an important issue. However, the articles explaining scientifically the AIDS epidemic were very few. The majority of AIDS-related information was spread in consequence of sensational events. Further analysis of PWA coverage shows that most articles discussed news that could provoke a negative feeling towards HIV-infected patients among the general population.
Fatigue Variability of a Single Crystal Superalloy at Elevated Temperature (Preprint)
2009-03-01
cast slabs of PWA 1484 with the primary longitudinal axis in the > direction (±5 °). The dogbone specimens had a 6 mm gage length and 4 mm...literature concerning the fatigue properties of PWA 1484. It has been reported that fatigue failures often start from eutectics and carbides [ 4 , 6 ...COVERED (From - To) March 2009 Journal Article Preprint 01 March 2009 – 01 March 2009 4 . TITLE AND SUBTITLE FATIGUE VARIABILITY OF A SINGLE CRYSTAL
Creep and Fatigue Interaction in the PWA 1484 Single Crystal Nickel-Base Alloy (Preprint)
2011-07-01
work by Zhang et al . has shown that during the early part of fatigue cycling dislocations are formed primarily in the γ matrix with the number of...dislocations increasing with the number of applied cycles [11]. Ott and Mughrabi showed that during fatigue of single crystal nickel base superalloys... al . and their research determined that the fatigue behavior of PWA1484 could be well represented by a Walker type fatigue model that also included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kageya, Tsuneo; Ho, Dao; Peng, Peng
E asymmetries have been extracted from double-polarizationexperiments in Hall-B of the Thomas Jefferson National Accelerator Facility (JLab). Results have been obtained from the E06-101 (g14) experiment, using circularly polarized photon beams, longitudinally polarized Deuterons in solid HD targets, and the CEBAF Large Acceptance Spectrometer (CLAS). The results cover a range inW from 1.48 to 2.32 GeV. Three independent analyses, using distinctly different methods, have been combined to obtain the final values, which have been published recently. Partial wave analyses (PWA), which have had to rely on a sparse neutron data base, havebeen significantly changed with the inclusion of these g14more » asymmetries.« less
Community Integration and Quality of Life in Aphasia after Stroke.
Lee, Hyejin; Lee, Yuna; Choi, Hyunsoo; Pyun, Sung-Bom
2015-11-01
To examine community integration and contributing factors in people with aphasia (PWA) following stroke and to investigate the relationship between community integration and quality of life (QOL). Thirty PWA and 42 age-and education-matched control subjects were involved. Main variables were as follows: socioeconomic status, mobility, and activity of daily living (ADL) (Modified Barthel Index), language function [Frenchay Aphasia Screening Test (FAST)], depression [Geriatric Depression Scale (GDS)], Community Integration Questionnaire (CIQ) and Stroke and Aphasia Quality of Life Scale-39 (SAQOL-39). Differences between aphasia and control groups and factors affecting community integration and QOL were analyzed. Home and social integration and productive activity were significantly decreased in the aphasia group compared to the control group; 8.5 and 18.3 points in total CIQ score, respectively. Amount of time spent outside the home and frequency of social contact were also significantly reduced in the aphasia group. Total mean score on the SAQOL-39 was 2.75±0.80 points and was significantly correlated with economic status, gait performance, ADL, depressive mood, and social domain score on the CIQ. Depression score measured by GDS was the single most important factor for the prediction of QOL, but the FAST score was significantly correlated only with the communication domain of the SAQOL-39. Community activities of PWA were very limited, and depression was highly associated with decreased community integration and QOL. Enhancing social participation and reducing emotional distress should be emphasized for rehabilitation of PWA.
Zhang, Jin; Liu, Jian; Lu, Shanfu; Zhu, Haijin; Aili, David; De Marco, Roland; Xiang, Yan; Forsyth, Maria; Li, Qingfeng; Jiang, San Ping
2017-09-20
As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH 2 -meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH - in the NH 2 -meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA-NH 2 -HMS nanoparticles are dispersed in the poly(ether sulfone)-polyvinylpyrrolidone (PES-PVP) matrix, forming a hybrid PWA-NH 2 -HMS/PES-PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA-NH 2 -HMS showed an enhanced proton conductivity of 0.175 S cm -1 and peak power density of 420 mW cm -2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH 2 -HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.
Life prediction and constitutive models for engine hot section anisotropic materials program
NASA Technical Reports Server (NTRS)
Nissley, D. M.; Meyer, T. G.; Walker, K. P.
1992-01-01
This report presents a summary of results from a 7 year program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program was composed of a base program and an optional program. The base program addressed the high temperature coated single crystal regime above the airfoil root platform. The optional program investigated the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involved experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material formed the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: group of zone axes (001), group of zone axes (011), group of zone axes (111), and group of zone axes (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal materials were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were developed for TMF crack initiation of coated PWA 1480. A life model was developed for smooth and notched fatigue in the option program. Finally, computer software incorporating the overlay coating and PWA 1480 constitutive and life models was developed.
The falsification of Chiral Nuclear Forces
NASA Astrophysics Data System (ADS)
Ruiz Arriola, E.; Amaro, J. E.; Navarro Perez, R.
2017-03-01
Predictive power in theoretical nuclear physics has been a major concern in the study of nuclear structure and reactions. The Effective Field Theory (EFT) based on chiral expansions provides a model independent hierarchy for many body forces at long distances but their predictive power may be undermined by the regularization scheme dependence induced by the counterterms and encoding the short distances dynamics which seem to dominate the uncertainties. We analyze several examples including zero energy NN scattering or perturbative counterterm-free peripheral scattering where one would expect these methods to work best and unveil relevant systematic discrepancies when a fair comparison to the Granada-2013 NN-database and partial wave analysis (PWA) is undertaken. Work supported by Spanish Ministerio de Economia y Competitividad and European FEDER funds (grant FIS2014-59386-P), the Agencia de Innovacion y Desarrollo de Andalucia (grant No. FQM225), the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0008511 (NUCLEI SciDAC Collaboration)
Warren, Tessa; Dickey, Michael Walsh; Liburd, Teljer L
2017-07-01
The rational inference, or noisy channel, account of language comprehension predicts that comprehenders are sensitive to the probabilities of different interpretations for a given sentence and adapt as these probabilities change (Gibson, Bergen & Piantadosi, 2013). This account provides an important new perspective on aphasic sentence comprehension: aphasia may increase the likelihood of sentence distortion, leading people with aphasia (PWA) to rely more on the prior probability of an interpretation and less on the form or structure of the sentence (Gibson, Sandberg, Fedorenko, Bergen & Kiran, 2015). We report the results of a sentence-picture matching experiment that tested the predictions of the rational inference account and other current models of aphasic sentence comprehension across a variety of sentence structures. Consistent with the rational inference account, PWA showed similar sensitivity to the probability of particular kinds of form distortions as age-matched controls, yet overall their interpretations relied more on prior probability and less on sentence form. As predicted by rational inference, but not by other models of sentence comprehension in aphasia, PWA's interpretations were more faithful to the form for active and passive sentences than for direct object and prepositional object sentences. However contra rational inference, there was no evidence that individual PWA's severity of syntactic or semantic impairment predicted their sensitivity to form versus the prior probability of a sentence, as cued by semantics. These findings confirm and extend previous findings that suggest the rational inference account holds promise for explaining aphasic and neurotypical comprehension, but they also raise new challenges for the account. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Kalluri, Sreeramesh; Mcgaw, Michael A.
1993-01-01
The influence of primary orientation on the elastic response of a (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical, thermal, and combined thermal and mechanical loading conditions using finite element techniques. Elastic stress analyses were performed using the MARC finite element code on a square plate of PWA 1480 material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered, with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal plate were determined for each loading condition. In this paper, the influence of the angular offset between the primary crystal orientation and the loading direction on the elastic stress response of the PWA 1480 plate is presented for different loading conditions. The influence of primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle, which is not typically controlled.
PWA prospects for K+Lambda and K+Sigma^0 photoproduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biplab Dey, Michael E. McCracken, Curtis A. Meyer
2012-04-01
We present a status update on the CMU group PWA efforts in the strangeness (K{sup +}{Lambda}/K{sup +}{Sigma}{sup 0}) sector. The bulk of the currently available data comes from recently published CLAS g11a results, with extensive polarization data expected soon from the CLAS g8 and g9 set of experiments. We give a brief description of issues pertaining to different sign conventions for the polarization observables in the literature, and normalization discrepancies between the CLAS-g11a results and older high energy data from SLAC/CEA/DESY that used an untagged photon beam.
Thermal and Structural Analysis of a Hollow Core Space Shuttle Main Engine (SSME) Turbine Blade
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Kalluri, Sreeramesh; McGaw, Michael A.
1995-01-01
The influence of primary and secondary orientations on the elastic response of a hollow core, (001)-oriented nickel base single-crystal superalloy turbine blade, was investigated under combined thermal and mechanical conditions. Finite element techniques is employed through MARC finite element code to conduct the analyses on a hollow core SSME turbine blade made out of PWA 1480 single crystal material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal blade were determined for different orientations of the blade. The influence of angular offsets such as the single crystal's primary and secondary orientations and the loading conditions on the elastic stress response of the PWA 1480 hollow blade are summarized. The influence of he primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle.
Nonbehavioral Selection for Pawns, Mutants of PARAMECIUM AURELIA with Decreased Excitability
Schein, Stanley J.
1976-01-01
The reversal response in Paramecium aurelia is mediated by calcium which carries the inward current during excitation. Electrophysiological studies indicate that strontium and barium can also carry the inward current. Exposure to high concentrations of barium rapidly paralyzes and later kills wild-type paramecia. Following mutagenesis with nitrosoguanidine, seven mutants which continued to swim in the `high-barium' solution were selected. All of the mutants show decreased reversal behavior, with phenotypes ranging from extremely non-reversing (`extreme' pawns) to nearly wild-type reversal behavior (`partial' pawns). The mutations fall into three complementation groups, identical to the pwA, pwB, and pwC genes of Kung et al. (1975). All of the pwA and pwB mutants withstand longer exposure to barium, the pwB mutants surviving longer than the pwA mutants. Among mutants of each gene, survival is correlated with loss of reversal behavior. Double mutants (A–B, A–C, B–C), identified in the exautogamous progeny of crosses between `partial' mutants, exhibited a more extreme non-reversing phenotype than either of their single-mutant (`partial' pawn) parents.———Inability to reverse could be expected from an alteration in the calcium-activated reversal mechanism or in excitation. A normal calcium-activated structure was demonstrated in all pawns by chlorpromazine treatment. In a separate report (Schein, Bennett and Katz 1976) the results of electrophysiological investigations directly demonstrate decreased excitability in all of the mutants, a decrease due to an altered calcium activation. The studies of the genetics, the survival in barium and the electro-physiology of the pawns demonstrate that the pwA and pwB genes have different effects on calcium activation. PMID:1001878
Pereira, T; Maldonado, J; Laranjeiro, M; Coutinho, R; Cardoso, E; Andrade, I; Conde, J
2014-01-01
Introduction. The aim of this study was to assess the vascular benefits of dark chocolate in healthy and young individuals. Methods. A randomized and controlled trial was carried out involving 60 healthy volunteers, randomized into two groups: control group (CG; n = 30) and intervention group (IG; n = 30). The IG ingested a daily dosage of 10 g of dark chocolate (>75% cocoa) for a month. Blood pressure (BP), flow-mediated dilation (FMD), arterial stiffness index (ASI), aortic pulse wave velocity (PWV), and pulse wave analysis (PWA) were assessed at baseline and one week after the one-month intervention period. Results. Arterial function improved after intervention in the IG, with PWV decreasing from 6.13 ± 0.41 m/s to 5.83 ± 0.53 m/s (P = 0.02), with no significant differences observed in the CG. A significant decrease in ASI (0.16 ± 0.01 to 0.13 ± 0.01; P < 0.001) and AiX (-15.88 ± 10.75 to -22.57 ± 11.16; P = 0.07) was also depicted for the IG. Endothelial function improved in the IG, with the FMD increasing 9.31% after the 1-month intervention (P < 0.001), with no significant variation in the CG. Conclusion. The daily ingestion of 10 g dark chocolate (>75% cocoa) during a month significantly improves vascular function in young and healthy individuals.
Pereira, T.; Maldonado, J.; Laranjeiro, M.; Coutinho, R.; Cardoso, E.; Andrade, I.; Conde, J.
2014-01-01
Introduction. The aim of this study was to assess the vascular benefits of dark chocolate in healthy and young individuals. Methods. A randomized and controlled trial was carried out involving 60 healthy volunteers, randomized into two groups: control group (CG; n = 30) and intervention group (IG; n = 30). The IG ingested a daily dosage of 10 g of dark chocolate (>75% cocoa) for a month. Blood pressure (BP), flow-mediated dilation (FMD), arterial stiffness index (ASI), aortic pulse wave velocity (PWV), and pulse wave analysis (PWA) were assessed at baseline and one week after the one-month intervention period. Results. Arterial function improved after intervention in the IG, with PWV decreasing from 6.13 ± 0.41 m/s to 5.83 ± 0.53 m/s (P = 0.02), with no significant differences observed in the CG. A significant decrease in ASI (0.16 ± 0.01 to 0.13 ± 0.01; P < 0.001) and AiX (−15.88 ± 10.75 to −22.57 ± 11.16; P = 0.07) was also depicted for the IG. Endothelial function improved in the IG, with the FMD increasing 9.31% after the 1-month intervention (P < 0.001), with no significant variation in the CG. Conclusion. The daily ingestion of 10 g dark chocolate (>75% cocoa) during a month significantly improves vascular function in young and healthy individuals. PMID:24982813
Metacognitive deficits in categorization tasks in a population with impaired inner speech.
Langland-Hassan, Peter; Gauker, Christopher; Richardson, Michael J; Dietz, Aimee; Faries, Frank R
2017-11-01
This study examines the relation of language use to a person's ability to perform categorization tasks and to assess their own abilities in those categorization tasks. A silent rhyming task was used to confirm that a group of people with post-stroke aphasia (PWA) had corresponding covert language production (or "inner speech") impairments. The performance of the PWA was then compared to that of age- and education-matched healthy controls on three kinds of categorization tasks and on metacognitive self-assessments of their performance on those tasks. The PWA showed no deficits in their ability to categorize objects for any of the three trial types (visual, thematic, and categorial). However, on the categorial trials, their metacognitive assessments of whether they had categorized correctly were less reliable than those of the control group. The categorial trials were distinguished from the others by the fact that the categorization could not be based on some immediately perceptible feature or on the objects' being found together in a type of scenario or setting. This result offers preliminary evidence for a link between covert language use and a specific form of metacognition. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of arterial oxygen saturation using RGB camera-based remote photoplethysmography
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Nakano, Kazuya; McDuff, Daniel; Niizeki, Kyuichi; Aizu, Yoshihisa; Haneishi, Hideaki
2018-02-01
Plethysmogram is the periodic variation in blood volume due to the cardiac pulse traveling through the body. Photo-plethysmograph (PPG) has been widely used to assess the cardiovascular system such as heart rate, blood pressure, cardiac output, vascular compliance. We have previously proposed a non-contact PPG imaging method using a digital red-green-blue camera. In the method, the Monte Carlo simulation for light transport is used to specify a relationship among the RGB-values and the concentrations of oxygenated hemoglobin (CHbO) and deoxygenated hemoglobin (CHbR). The total hemoglobin concentration (CHbT) can be calculated as a sum of CHbO and CHbR. Applying the fast Fourier transform (FFT) band pass filters to each pixel of the sequential images for CHbT along the time line, two-dimentional plethysmogram can be reconstructed. In this study, we further extend the method to imaging the arterial oxygen saturation (SaO2). The PPG signals for both CHbO and CHbR are extracted by the FFT band pass filter and the pulse wave amplitudes (PWAs) of CHbO and CHbR are calculated. We assume that the PWA for CHbO and that for CHbR are decreased and increased as SaO2 is decreased. The ratio of PWA for CHbO and that for CHbR are associated to the reference value of SaO2 measured by a commercially available pulse oximeter, which provide an empirical formula to estimate SaO2 from the PPG signal at each pixel of RGB image. In vivo animal experiments with rats during varying the fraction of inspired oxygen (FiO2) demonstrated the feasibility of the proposed method.
NASA Technical Reports Server (NTRS)
Knight, Brent; Montgomery, Randall; Geist, David; Hunt, Ron; LaVerde, Bruce; Towner, Robert
2013-01-01
In a recent experimental study, small Particle Impact Dampers (PID) were bonded directly to the surface of printed circuit board (PCB) or printed wiring assemblies (PWA), reducing the random vibration response and increasing the fatigue life. This study provides data verifying practicality of this approach. The measured peak strain and acceleration response of the fundamental out of plane bending mode was significantly attenuated by adding a PID device. Attenuation of this mode is most relevant to the fatigue life of a PWA because the local relative displacements between the board and the supported components, which ultimately cause fatigue failures of the electrical leads of the board-mounted components are dominated by this mode. Applying PID damping at the board-level of assembly provides mitigation with a very small mass impact, especially as compared to isolation at an avionics box or shelf level of assembly. When compared with other mitigation techniques at the PWA level (board thickness, stiffeners, constrained layer damping), a compact PID device has the additional advantage of not needing to be an integral part of the design. A PID can simply be bonded to heritage or commercial off the shelf (COTS) hardware to facilitate its use in environments beyond which it was originally qualified. Finite element analysis and test results show that the beneficial effect is not localized and that the attenuation is not due to the simple addition of mass. No significant, detrimental reduction in frequency was observed. Side-by-side life testing of damped and un-damped boards at two different thicknesses (0.070" and 0.090") has shown that the addition of a PID was much more significant to the fatigue life than increasing the thickness. High speed video, accelerometer, and strain measurements have been collected to correlate with analytical results.
A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys
NASA Technical Reports Server (NTRS)
Jayne, D. T.; Smialek, J. L.
1993-01-01
Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.
Life prediction and constitutive models for engine hot section anisotropic materials
NASA Technical Reports Server (NTRS)
Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.
1987-01-01
The results are presented of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and fatigue data, tests were conducted on uncoated and coated specimens loaded in the CH76 100 CH110 , CH76 110 CH110 , CH76 111 CH110 and CH76 123 CH110 crystallographic directions. Two constitutive models are being developed and evaluated for the single crystal materials: a micromechanic model based on crystallographic slip systems, and a macroscopic model which employs anisotropic tensors to model inelastic deformation anisotropy. Based on tests conducted on the overlay coating material, constitutive models for coatings also appear feasible and two initial models were selected. A life prediction approach was proposed for coated single crystal materials, including crack initiation either in the coating or in the substrate. The coating initiated failures dominated in the tests at load levels typical of gas turbine operation. Coating life was related to coating stress/strain history which was determined from specimen data using the constitutive models.
NASA Astrophysics Data System (ADS)
Li, Lichun
2002-09-01
These studies were performed to investigate the effects of thermal gradient (G) and growth velocity (V) on the microstructure development and solidification behavior of directionally solidified nickel-based superalloy PWA 1484. Directional solidification (DS) experiments were conducted using a Bridgman crystal growth facility. The solidification velocity ranged from 0.00005 to 0.01 cm/sec and thermal gradients ranged from 12 to 108°C/cm. The as-cast microstructures of DS samples were characterized by using conventional metallography; chemical composition and segregation of directionally solidified samples were analyzed with energy dispersive spectroscopy in SEM. A range of aligned solidification microstructures is exhibited by the alloy when examined as-cast at room temperature: dendrites, flanged cells, cells. The microstructure transitions from cellular to dendritic as the growth velocity increases. The experimental data for PWA1484 exhibits excellent agreement with the well-known exponential equation (lambda1 ∝ G -1/2V-1/4). However, the constant of proportionality is different depending upon the solidification microstructure: (1) dendritic growth with secondary arms leads to a marked dependence of lambda1 on G-1/2 V-1/4; (2) flanged cellular growth with no secondary arms leads to much lower dependence of lambda 1 on G-1/2V -1/4. The primary dendritic arm spacing results were also compared to recent theoretical models. The model of Hunt and Lu and the model of Ma and Sahm provided excellent agreement at medium to high thermal gradients and a wide range of solidification velocities. The anomalous behavior of lambda 1 with high growth velocity V at low G is analyzed based on the samples' microstructures. Off-axis heat flows were shown to cause radial non-uniformity in the dendrite arm spacing data for low thermal gradients and large withdrawal velocities. Various precipitates including gamma', (gamma ' + gamma) eutectic pool or divorced eutectic gamma ', and metal carbides were characterized. Processing conditions (growth velocity V and thermal gradient G) exert significant influence on both morphology and size of precipitates present. Freckle defects were observed on the surface of nickel-based superalloy MM247 cylindrical samples but not on the surface of cylindrical PWA 1484 samples. The Rayleigh number (Ra) that represents liquid instability at the interface was evaluated for MM247 and PWA 1484 in terms of a recently proposed theoretical equation. The effects of segregation, sloped solid/liquid interface and the morphology of dendritic/cellular trunks on the mushy zone convective flow and freckle formation are also discussed.
NASA Technical Reports Server (NTRS)
Telesman, Jack; Kantzos, Peter
1988-01-01
An in situ fatigue loading stage inside a scanning electron microscope (SEM) was used to determine the fatigue crack growth behavior of a PWA 1480 single-crystal nickel-based superalloy. The loading stage permits real-time viewing of the fatigue damage processes at high magnification. The PWA 1480 single-crystal, single-edge notch specimens were tested with the load axis parallel to the (100) orientation. Two distinct fatigue failure mechanisms were identified. The crack growth rate differed substantially when the failure occurred on a single slip system in comparison to multislip system failure. Two processes by which crack branching is produced were identified and are discussed. Also discussed are the observed crack closure mechanisms.
Florida's Medicaid AIDS Waiver: An Assessment of Dimensions of Quality
Cowart, Marie E.; Mitchell, Jean M.
1995-01-01
Some State Medicaid agencies have implemented home and community-based waiver programs targeting acquired immunodeficiency syndrome (AIDS) patients. Under these initiatives, State Medicaid agencies can provide home and community-based services to persons with AIDS (PWA) as an alternative to more costly Medicaid-covered institutional care. This article evaluates quality of care under the Florida Medicaid waiver for PWA along two dimensions: program effectiveness and client satisfaction. Clients are generally satisfied with their case managers and the range and availability of services. Case managers appear to be well trained. Moreover, the probability of turnover is quite low, despite heavy caseloads and high mortality. The major difficulty faced by clients and case managers relates to the process of becoming Medicaid eligible. PMID:10151885
1997-09-01
Since HIV is sexually transmitted, people living with AIDS and HIV (PWA/PHA) risk being stigmatized as immoral and promiscuous and they are often discriminated against in society. To this effect, the South African AIDS Law Project and Lawyers for Human Rights have developed a comprehensive resource manual detailing human rights with a special emphasis on issues relevant to PWA/PHA. The concept of the manual aimed to look at the legal and human rights questions that have been raised by the HIV/AIDS epidemic; inform people living with HIV/AIDS about their rights and the law; provide people working in businesses, trade unions, and nongovernmental organization with information about correct and incorrect responses to HIV/AIDS; and give victims of discrimination ideas on how to fight back. This manual initially introduces basic facts about HIV and AIDS and then describes the legal system and the Bill of Rights within the new South African Constitution. The main areas of focus in the manual include: 1) patient's medical rights, 2) employment rights, 3) women's rights, 4) the rights of lesbians and gay men, 5) the rights of youth and children, 6) the rights of prisoners, 7) social support for PWA, 8) HIV/AIDS and insurance law, 9) power of attorney and making wills, 10) criminal law, and 11) legal remedies, such as using the law to protect one's rights.
NASA Technical Reports Server (NTRS)
Arakere, N. K.; Swanson, G.
2002-01-01
High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297 finite element model runs. Fatigue lives at critical points in the blade are computed using finite element stress results and the failure criterion developed. Stress analysis results in the blade attachment region are also presented. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to significantly increase a component S resistance to fatigue crack growth with- out adding additional weight or cost. [DOI: 10.1115/1.1413767
Elastic response of (001)-oriented PWA 1480 single crystal - The influence of secondary orientation
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Abdul-Azis, Ali; Mcgaw, Michael
1991-01-01
The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.
Structural response of SSME turbine blade airfoils
NASA Technical Reports Server (NTRS)
Arya, V. K.; Abdul-Aziz, A.; Thompson, R. L.
1988-01-01
Reusable space propulsion hot gas-path components are required to operate under severe thermal and mechanical loading conditions. These operating conditions produce elevated temperature and thermal transients which results in significant thermally induced inelastic strains, particularly, in the turbopump turbine blades. An inelastic analysis for this component may therefore be necessary. Anisotropic alloys such as MAR M-247 or PWA-1480 are being considered to meet the safety and durability requirements of this component. An anisotropic inelastic structural analysis for an SSME fuel turbopump turbine blade was performed. The thermal loads used resulted from a transient heat transfer analysis of a turbine blade. A comparison of preliminary results from the elastic and inelastic analyses is presented.
Building a potential wetland restoration indicator for the contiguous United States
Horvath, Elena K.; Christensen, Jay R.; Mehaffey, Megan H.; Neale, Anne C.
2018-01-01
Wetlands provide key functions in the landscape from improving water quality, to regulating flows, to providing wildlife habitat. Over half of the wetlands in the contiguous United States (CONUS) have been converted to agricultural and urban land uses. However, over the last several decades, research has shown the benefits of wetlands to hydrologic, chemical, biological processes, spurring the creation of government programs and private initiatives to restore wetlands. Initiatives tend to focus on individual wetland creation, yet the greatest benefits are achieved when strategic restoration planning occurs across a watershed or multiple watersheds. For watershed-level wetland restoration planning to occur, informative data layers on potential wetland areas are needed. We created an indicator of potential wetland areas (PWA), using nationally available datasets to identify characteristics that could support wetland ecosystems, including: poorly drained soils and low-relief landscape positions as indicated by a derived topographic data layer. We compared our PWA with the National Wetlands Inventory (NWI) from 11 states throughout the CONUS to evaluate their alignment. The state-level percentage of NWI-designated wetlands directly overlapping the PWA ranged from 39 to 95%. When we included NWI that was immediately adjacent to the overlapping NWI, our range of correspondence to NWI ranged from 60 to 99%. Wetland restoration is more likely on certain landscapes (e.g., agriculture) than others due to the lack of substantive infrastructure and the potential for the restoration of hydrology; therefore, we combined the National Land Cover Dataset (NLCD) with the PWA to identify potentially restorable wetlands on agricultural land (PRW-Ag). The PRW-Ag identified a total of over 46 million ha with the potential to support wetlands. The largest concentrations of PRW-Ag occurred in the glaciated corn belt of the upper Mississippi River from Ohio to the Dakotas and in the Mississippi Alluvial Valley. The PRW-Ag layer could assist land managers in identifying sites that may qualify for enrollment in conservation programs, where planners can coordinate restoration efforts, or where decision makers can target resources to optimize the services provided across a watershed or multiple watersheds. PMID:29706804
Building a potential wetland restoration indicator for the contiguous United States.
Horvath, Elena K; Christensen, Jay R; Mehaffey, Megan H; Neale, Anne C
2017-01-01
Wetlands provide key functions in the landscape from improving water quality, to regulating flows, to providing wildlife habitat. Over half of the wetlands in the contiguous United States (CONUS) have been converted to agricultural and urban land uses. However, over the last several decades, research has shown the benefits of wetlands to hydrologic, chemical, biological processes, spurring the creation of government programs and private initiatives to restore wetlands. Initiatives tend to focus on individual wetland creation, yet the greatest benefits are achieved when strategic restoration planning occurs across a watershed or multiple watersheds. For watershed-level wetland restoration planning to occur, informative data layers on potential wetland areas are needed. We created an indicator of potential wetland areas (PWA), using nationally available datasets to identify characteristics that could support wetland ecosystems, including: poorly drained soils and low-relief landscape positions as indicated by a derived topographic data layer. We compared our PWA with the National Wetlands Inventory (NWI) from 11 states throughout the CONUS to evaluate their alignment. The state-level percentage of NWI-designated wetlands directly overlapping the PWA ranged from 39 to 95%. When we included NWI that was immediately adjacent to the overlapping NWI, our range of correspondence to NWI ranged from 60 to 99%. Wetland restoration is more likely on certain landscapes (e.g., agriculture) than others due to the lack of substantive infrastructure and the potential for the restoration of hydrology; therefore, we combined the National Land Cover Dataset (NLCD) with the PWA to identify potentially restorable wetlands on agricultural land (PRW-Ag). The PRW-Ag identified a total of over 46 million ha with the potential to support wetlands. The largest concentrations of PRW-Ag occurred in the glaciated corn belt of the upper Mississippi River from Ohio to the Dakotas and in the Mississippi Alluvial Valley. The PRW-Ag layer could assist land managers in identifying sites that may qualify for enrollment in conservation programs, where planners can coordinate restoration efforts, or where decision makers can target resources to optimize the services provided across a watershed or multiple watersheds.
Radiative Decay Width of Neutral non-Strange Baryons from PWA
NASA Astrophysics Data System (ADS)
Strakovsky, Igor I.; Briscoe, William J.; Kudryavtsev, Alexander E.; Kulikov, Viacheslav V.; Martemyanov, Maxim A.; Tarasov, Vladimir E.
2015-06-01
An overview of the GW SAID and ITEP groups effort to analyze pion photoproduction on the neutron-target will be given. The disentanglement the isoscalar and isovector EM couplings of N∗ and Δ∗ resonances does require compatible data on both proton and neutron targets. The final-state interaction plays a critical role in the state-of-the-art analysis in extraction of the γn → πN data from the deuteron target experiments. It is important component of the current JLab, MAMI-C, SPring-8, ELSA, and ELPH programs.
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.
1991-01-01
The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.
Pulmonary infections and risk of lung cancer among persons with AIDS.
Shebl, Fatma M; Engels, Eric A; Goedert, James J; Chaturvedi, Anil K
2010-11-01
Lung cancer risk is significantly increased among persons with AIDS (PWA), and increased smoking may not explain all of the elevated risk, suggesting a role for additional cofactors. We investigated whether AIDS-defining pulmonary infections (recurrent pneumonia, Pneumocystis jirovecii pneumonia, and pulmonary tuberculosis) affected the risk of subsequent lung cancer over 10 years after AIDS onset among 322,675 PWA, whose records were linked with cancer registries in 11 US regions. We assessed lung cancer hazard ratios (HRs) using Cox regression and indirectly adjusted HRs for confounding by smoking. Individuals with recurrent pneumonia (n = 5317) were at significantly higher lung cancer risk than those without [HR = 1.63, 95% confidence interval (CI) = 1.08 to 2.46, adjusted for age, race, sex, HIV acquisition mode, CD4 count, and AIDS diagnosis year]. This association was especially strong among young PWA (<50 years HR = 1.99 vs. ≥50 years HR = 1.10) and was significantly elevated during 5-10 years after recurrent pneumonia diagnosis (HR = 2.41; 95% CI = 1.07 to 5.47). Although attenuated, HRs for recurrent pneumonia remained nonsignificantly elevated after indirect adjustment for smoking. Lung cancer risk was unrelated to tuberculosis [(n = 13,878) HR = 1.12, 95% CI = 0.82 to 1.53] or Pneumocystis jirovecii pneumonia [(n = 69,771) HR = 0.97, 95% CI = 0.80 to 1.18]. The increased lung cancer risk associated with recurrent pneumonia supports the hypothesis that chronic pulmonary inflammation arising from infections contributes to lung carcinogenesis.
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Kumar, M. Vijaya; Lee, J. E.; Curreri, P. A.
1990-01-01
Primary dendrite spacings, secondary dendrite spacings, and microsegregation have been examined in PWA-1480 single crystal specimens which were directionally solidified during parabolic maneuvers on the KC-135 aircraft. Experimentally observed growth rate and thermal gradient dependence of primary dendrite spacings are in good agreement with predictions from dendrite growth models for binary alloys. Secondary dendrite coarsening kinetics show a reasonable fit with the predictions from an analytical model proposed by Kirkwood for a binary alloy. The partition coefficients of tantalum, titanium, and aluminum are observed to be less than unity, while that for tungsten and cobalt are greater than unity. This is qualitatively similar to the nickel base binaries. Microsegregation profiles experimentally observed for PWA-1480 superalloy show a good fit with Bower, Brody, and Flemings model developed for binary alloys. Transitions in gravity levels do not appear to affect primary dendrite spacings. A trend of decreased secondary arm spacings with transition from high gravity to the low gravity period was observed at a growth speed of 0.023 cm s(exp -1). However, definite conclusions can only be drawn by experiments at lower growth speeds which make it possible to examine the side-branch coarsening kinetics over a longer duration. Such experiments, not possible due to the insufficient low-gravity time of the KC-135, may be carried out in the low-gravity environment of space.
Sleep quality and risk factors of atherosclerosis in predialysis chronic kidney disease.
Guney, Ibrahim; Akgul, Yavuz S S; Gencer, Vedat; Aydemir, Harun; Aslan, Uysaler; Ecirli, Samil
2017-01-13
Chronic kidney disease (CKD) patients have more frequent sleep disorders and cardiovascular disease than normals. Since arterial stiffness as a risk factor of atherosclerosis can be evaluated with pulse wave velocity (PWV), we aimed to investigate the prevalance of sleep quality (SQ) and the relationship between SQ and risk factors of atherosclerosis and whether there is a relationship between SQ and PWV (the indicator of arterial stiffness) in predialysis CKD patients. This cross-sectional study was carried out in CKD patients followed at the Nephrology Department in Konya, Turkey, between November 2014 and March 2015. A total of 484 CKD patients were screened. Of the 484 patients, 285 patients were excluded. The remaining 199 CKD patients without cardiovascular disease at stage 3, 4, and 5 (predialysis) were included in the final study. The SQ of the patients was evaluated by the Pittsburgh Sleep Quality Index (PSQI). PWV was measured by using a single-cuff arteriography device (Mobil-O-Graph PWA, a model pulse wave analysis device; IEM). A total of 199 predialysis CKD patients were included in the study, 73 of whom (36.7 %) were 'poor sleepers' (global PSQI >5). Patients with poor SQ were older than those with good SQ (p = 0.077). SQ was worse in female patients compered to male patients (p = 0.001). SQ was worse in obese patients. As laboratory parameters, serum phosphorus, LDL cholesterol, and triglycerides levels correlated positively with SQ (respectively; r = 0.245, p&0.001; r = 0.142, p = 0.049; r = 0.142, p = 0.048). The indicator of arterial stiffness, PWV, was higher in patients with poor SQ (p = 0.033). Hyperphosphatemia and female gender are determined as risk factors for poor SQ in multivariate analysis (p = 0.049, ExpB = 1.477; p = 0.009, ExpB = 0,429, respectively). Our study showed for the first time that there is a relationship between SQ and risk factors of atherosclerosis in predialysis CKD patients.
[Pulse wave velocity as an early marker of diastolic heart failure in patients with hypertension].
Moczulska, Beata; Kubiak, Monika; Bryczkowska, Anna; Malinowska, Ewa
2017-04-21
According to the WHO, hypertension is one of the major causes of death worldwide. It leads to a number of severe complications. Diastolic heart failure, that is heart failure with preserved ejection fraction (HFPEF), is especially common. New, but simple, indices for the early detection of patients who have not yet developed complications or are in their early developmental stages are still searched for. The aim of this study is to examine the correlation between pulse wave velocity (PWV) and markers of diastolic heart failure (DHF) assessed in echocardiography in patients with hypertension and no symptoms of heart failure. The study was comprised of 65 patients with treated hypertension. Patients with symptoms of heart failure, those with diabetes and smokers were excluded. Arterial stiffness was measured with the Mobil-O-Graph NG PWA. Pulse wave velocity (PWV) was estimated. The following markers of diastolic heart failure were assessed in the echocardiographic examination: E/A ratio - the ratio of the early (E) to late (A) ventricular filling velocities, DT - decceleration time, E/E' - the ratio of mitral peak velocity of early filling (E) to early diastolic mitral annular velocity E' in tissue Doppler echocardiography. PWV was statistically significantly higher in the DHF group. In the group of patients with heart failure, the average E/A ratio was significantly lower as compared to the group with no heart failure. Oscillometric measurement of pulse wave velocity is non-invasive, lasts a few minutes and does not require the presence of a specialist. It allows for an early detection of patients at risk of diastolic heart failure even within the conditions of primary health care.
NASA Astrophysics Data System (ADS)
Li, Yutong; Hansen, Andreas; Karl Hedrick, J.; Zhang, Junzhi
2017-12-01
Active control of electric powertrains is challenging, due to the fact that backlash and structural flexibility in transmission components can cause severe performance degradation or even instability of the control system. Furthermore, high impact forces in transmissions reduce driving comfort and possibly lead to damage of the mechanical elements in contact. In this paper, a nonlinear electric powertrain is modelled as a piecewise affine (PWA) system. The novel receding horizon sliding control (RHSC) idea is extended to constrained PWA systems and utilised to systematically address the active control problem for electric powertrains. Simulations are conducted in Matlab/Simulink in conjunction with the high fidelity Carsim software. RHSC shows superior jerk suppression and target wheel speed tracking performance as well as reduced computational cost over classical model predictive control (MPC). This indicates the newly proposed RHSC is an effective method to address the active control problem for electric powertrains.
Aviation-fuel lubricity evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-07-01
Fuel-system components have experienced problems with the slipperiness or lubricity of the fuel back to the early 1960's. As a consequence of the level of refinement necessary for the PWA 523 fuel (now designated MIL-T-38219 grade JP-7) to obtain its high-temperature stability, many of the polar compounds contributing to lubricity had been removed, resulting in abnormal hydraulic fuel-pump wear. A lubricity-enhancing compound was developed (PWA 536) to eliminate the wear problem. High-pressure piston-type fuel pumps were one of the first parts of the engine fuel system to exhibit problems related to fuel properties. One early problem manifested itself as corrosionmore » of silver-plated slipper pads and was related to carryover of residual-chlorides fuel. Fuel controls were another part of the engine fuel system susceptible to fuel properties. Lack of lubricity agents caused fuel control sliding servo valves to stick.« less
Thin-film sensors for space propulsion technology: Fabrication and preparation for testing
NASA Technical Reports Server (NTRS)
Kim, Walter S.; Hepp, Aloysius F.
1989-01-01
The goal of this work is to develop and test thin-film thermocouples for Space Shuttle Main Engine (SSME) components. Thin-film thermocouples have been developed for aircraft gas turbine engines and are in use for temperature measurement on turbine blades up to 1800 F. Established aircraft engine gas turbine technology is currently being adapted to turbine engine blade materials and the environment encountered in the SSME, especially severe thermal shock from cryogenic fuel to combustion temperatures. Initial results using coupons of MAR M-246 (+Hf) and PWA 1480 have been followed by fabrication of thin-film thermocouples on SSME turbine blades. Current efforts are focused on preparing for testing in the Turbine Blade Tester at the NASA Marshall Space Flight Center (MSFC). Future work will include testing of thin-film thermocouples on SSME blades of single crystal PWA 1480 at MSFC.
Fracture of single crystals of the nickel-base superalloy PWA 1480E in helium at 22 C
NASA Technical Reports Server (NTRS)
Chen, P. S.; Wilcox, R. C.
1991-01-01
The fracture behavior and deformation of He-charged (at 22 C) single crystals of PWA 1480E Ni-base superalloy were investigated using SEM and TEM techniques to observe the behavior of tensile fractures in notched single crystals with seven different crystal growth orientations: 100-line, 110-line, 111-line, 013-line, 112-line, 123-line, and 223-line. To identify the cleavage plane orientation, a stereoscopic technique, combined with the use of planar gamma-prime morphologies, was applied. It was found that gamma-prime particles were orderly and closely aligned with edges along the 100-line, 010-line, and 001-line-oriented directions of the gamma matrix. Different crystal growth orientations were found not to affect the morphology of gamma-prime particles. The accumulation of dislocations around gamma/gamma-prime interfaces formed strong barriers to subsequent dislocation movement and was the primary strengthening mechanism at room temperature.
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1990-01-01
The microstructural variations in nickel based superalloys that result from modifications in processing were examined. These superalloys include MAR-M246(HF) and PWA1480. Alternate heat treatments for equiaxed as-cast specimens were studied and a sample matrix of 42 variations in the heat treatments were processed, as well as different directional solidification parameters. Variation in temperature and times for both solution and aging were performed. Photomicrographs were made of the microstructure and volume fraction analysis of primary gamma-prime and aged gamma-prime precipitates were performed. The results of the heat treatment, cooling rate, and directional solidification experiments are discussed.
Morphosyntactic Production and Verbal Working Memory: Evidence From Greek Aphasia and Healthy Aging.
Fyndanis, Valantis; Arcara, Giorgio; Christidou, Paraskevi; Caplan, David
2018-05-17
The present work investigated whether verbal working memory (WM) affects morphosyntactic production in configurations that do not involve or favor similarity-based interference and whether WM interacts with verb-related morphosyntactic categories and/or cue-target distance (locality). It also explored whether the findings related to the questions above lend support to a recent account of agrammatic morphosyntactic production: Interpretable Features' Impairment Hypothesis (Fyndanis, Varlokosta, & Tsapkini, 2012). A sentence completion task testing production of subject-verb agreement, tense/time reference, and aspect in local and nonlocal conditions and two verbal WM tasks were administered to 8 Greek-speaking persons with agrammatic aphasia (PWA) and 103 healthy participants. The 3 morphosyntactic categories dissociated in both groups (agreement > tense > aspect). A significant interaction emerged in both groups between the 3 morphosyntactic categories and WM. There was no main effect of locality in either of the 2 groups. At the individual level, all 8 PWA exhibited dissociations between agreement, tense, and aspect, and effects of locality were contradictory. Results suggest that individuals with WM limitations (both PWA and healthy older speakers) show dissociations between the production of verb-related morphosyntactic categories. WM affects performance shaping the pattern of morphosyntactic production (in Greek: subject-verb agreement > tense > aspect). The absence of an effect of locality suggests that executive capacities tapped by WM tasks are involved in morphosyntactic processing of demanding categories even when the cue is adjacent to the target. Results are consistent with the Interpretable Features' Impairment Hypothesis (Fyndanis et al., 2012). https://doi.org/10.23641/asha.6024428.
The Differential Cross Section and Λ Recoil Polarization from γδ -> Κ0(ρ)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compton, Nicholas; Thomas Jefferson National Accelerator Facility
2017-04-30
Presented is the analysis of the differential cross section and Λ recoil polarization from the reaction γδ -> Κ0(ρ). This work measured these observables over beam energies from 0.90 GeV to 3.0 GeV. These measurements are the first in this channel to cover such a wide range of energies. The data were taken using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory (JLAB) along with a tagged photon beam. This analysis was completed by identifying events of interest that decayed into the final state topology of π-π+,π-&rho'(ρ). Through conservation of energy and momentum, the Κ0, Λ and missing massmore » of the spectator proton were reconstructed. Utilizing the same analysis techniques, the observables were measured on two different experiments with good agreement. Photoproduction of strange mesons from the neutron are difficult to measure, consequently there are only a few measurements of this kind. Despite that, these reactions supply essential complementary data to those on the proton. The differential cross sections and the recoil polarization extracted, span the region where new nucleon resonances have been found from studies of the reaction γρ -> Κ+Λ. Comparisons between the Κ+Λ and Κ0Λ cross section demonstrate that possible interference terms near 1900 MeV are less pronounced in the latter. This unexpected result inspired a partial wave analyses (PWA) to be fitted to the data. The fit solution shows that this measurement fostered an improvement on the knowledge of observed resonance parameters, necessary to understanding these excited states. The study of nucleon resonances is a key motivating factor since the resonance masses can be calculated from the theory of the strong nuclear force, called quantum chromodynamics, or QCD.« less
Inner Speech's Relationship With Overt Speech in Poststroke Aphasia.
Stark, Brielle C; Geva, Sharon; Warburton, Elizabeth A
2017-09-18
Relatively preserved inner speech alongside poor overt speech has been documented in some persons with aphasia (PWA), but the relationship of overt speech with inner speech is still largely unclear, as few studies have directly investigated these factors. The present study investigates the relationship of relatively preserved inner speech in aphasia with selected measures of language and cognition. Thirty-eight persons with chronic aphasia (27 men, 11 women; average age 64.53 ± 13.29 years, time since stroke 8-111 months) were classified as having relatively preserved inner and overt speech (n = 21), relatively preserved inner speech with poor overt speech (n = 8), or not classified due to insufficient measurements of inner and/or overt speech (n = 9). Inner speech scores (by group) were correlated with selected measures of language and cognition from the Comprehensive Aphasia Test (Swinburn, Porter, & Al, 2004). The group with poor overt speech showed a significant relationship of inner speech with overt naming (r = .95, p < .01) and with mean length of utterance produced during a written picture description (r = .96, p < .01). Correlations between inner speech and language and cognition factors were not significant for the group with relatively good overt speech. As in previous research, we show that relatively preserved inner speech is found alongside otherwise severe production deficits in PWA. PWA with poor overt speech may rely more on preserved inner speech for overt picture naming (perhaps due to shared resources with verbal working memory) and for written picture description (perhaps due to reliance on inner speech due to perceived task difficulty). Assessments of inner speech may be useful as a standard component of aphasia screening, and therapy focused on improving and using inner speech may prove clinically worthwhile. https://doi.org/10.23641/asha.5303542.
The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects
NASA Technical Reports Server (NTRS)
Taylor, Patrick C.
2015-01-01
The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.
Progress in neutron electromagnetic couplings
NASA Astrophysics Data System (ADS)
Strakovsky, Igor; Briscoe, William; Kudryavtsev, Alexander; Kulikov, Viacheslav; Martemianov, Maxim; Tarasov, Vladimir; Workman, Ron
2016-05-01
An overview of the GW SAID and ITEP groups' effort to analyze pion photoproduction on the neutron-target will be given. The disentangling of the isoscalar and isovector EM couplings of N* and Δ* resonances does require compatible data on both proton and neutron targets. The final-state interactions play a critical role in the state-of-the-art analysis in extraction of the γn → πN data from the deuteron target experiments. Then resonance couplings determined by the SAID PWA technique are compared to previous findings. The neutron program is an important component of the current JLab, MAMI-C, SPring-8, ELSA, and ELPH studies.
Exclusive Meson Photoproduction off Bound Nucleons
NASA Astrophysics Data System (ADS)
Strakovsky, Igor; Briscoe, William
2017-09-01
An overview of the GW SAID group effort to analyze pion photoproduction on the neutron-target will be given. The disentangling of the isoscalar and isovector EM couplings of N * and Δ * resonances does require compatible data on both proton and neutron targets. The final-state interactions play a critical role in the state-of-the-art analysis in extraction of the γn -> π N data from the deuteron target experiments. Then resonance couplings determined by the SAID PWA technique are compared to previous findings. The neutron program is an important component of the current JLab, MAMI-C, SPring-8, ELSA, and ELPH studies. DOE Research Grant DE``SC0016583.
Yielding and deformation behavior of the single crystal nickel-base superalloy PWA 1480
NASA Technical Reports Server (NTRS)
Milligan, W. W., Jr.
1986-01-01
Interrupted tensile tests were conducted to fixed plastic strain levels in 100 ordered single crystals of the nickel based superalloy PWA 1480. Testing was done in the range of 20 to 1093 C, at strain rate of 0.5 and 50%/min. The yield strength was constant from 20 to 760 C, above which the strength dropped rapidly and became a stong function of strain rate. The high temperature data were represented very well by an Arrhenius type equation, which resulted in three distinct temperature regimes. The deformation substructures were grouped in the same three regimes, indicating that there was a fundamental relationship between the deformation mechanisms and activation energies. Models of the yielding process were considered, and it was found that no currently available model was fully applicable to this alloy. It was also demonstrated that the initial deformation mechanism (during yielding) was frequently different from that which would be inferred by examining specimens which were tested to failure.
Nanocomposite membranes (NCMs) of sodium alginate/poly(vinyl pyrrolidone) blend polymers incorporated with varying concentrations of phosphotungstic acid (H3PW12O40) (PWA) nanoparticles have been prepared and used in ethanol dehydration by the pervaporation (PV) technique. Effe...
A Method to Compute Periodic Sums
2013-10-15
the absolute performance of the present meth- ods with the smooth particle mesh Ewald ( SPME ) and other algorithms for periodic summation due to a...can be done using published data [14] comparing perfor- mance of the SPME and FMM-type PWA implementation for clusters, for relatively small size
An Examination of Strategy Implementation during Abstract Nonlinguistic Category Learning in Aphasia
ERIC Educational Resources Information Center
Vallila-Rohter, Sofia; Kiran, Swathi
2015-01-01
Purpose: Our purpose was to study strategy use during nonlinguistic category learning in aphasia. Method: Twelve control participants without aphasia and 53 participants with aphasia (PWA) completed a computerized feedback-based category learning task consisting of training and testing phases. Accuracy rates of categorization in testing phases…
Improved Warm-Working Process For An Iron-Base Alloy
NASA Technical Reports Server (NTRS)
Cone, Fred P.; Cryns, Brendan J.; Miller, John A.; Zanoni, Robert
1992-01-01
Warm-working process produces predominantly unrecrystallized grain structure in forgings of iron-base alloy A286 (PWA 1052 composition). Yield strength and ultimate strength increased, and elongation and reduction of area at break decreased. Improved process used on forgings up to 10 in. thick and weighing up to 900 lb.
The Diurnal Profile of Central Hemodynamics in a General Uruguayan Population.
Boggia, José; Luzardo, Leonella; Lujambio, Inés; Sottolano, Mariana; Robaina, Sebastián; Thijs, Lutgarde; Olascoaga, Alicia; Noboa, Oscar; Struijker-Boudier, Harry A; Safar, Michel E; Staessen, Jan A
2016-06-01
No previous population study assessed the diurnal profile of central arterial properties. In 167 participants (mean age, 56.1 years; 63.5% women), randomly recruited in Montevideo, Uruguay, we used the oscillometric Mobil-O-Graph 24-h PWA monitor to measure peripheral and central systolic (SBP), diastolic (DBP), and pulse (PP) pressures and central hemodynamics standardized to a heart rate of 75 bpm, including aortic pulse wave velocity, systolic augmentation (first/second peak × 100), and pressure amplification (peripheral PP/central PP). Over 24 hours, day and night, peripheral minus central differences in SBP/DBP and in PP averaged 12.2/-1.1, 14.0/-0.7, and 9.7/0.2mm Hg and 12.6, 14.7, and 9.5mm Hg, respectively (P < 0.001 except for nighttime DBP (P = 0.38)). The central-to-peripheral ratios of SBP, DBP, and PP were 0.89, 1.00, and 0.70 unadjusted, but after accounting for anthropometric characteristics decreased to 0.74, 0.97, and 0.63, respectively, with strong influence of height for SBP and DBP and of sex for PP. From day (10-20h) to nighttime (0-6h), peripheral (-10.4/-10.5 mm Hg) and central (-6.0/-11.3mm Hg) SBP/DBP, pulse wave velocity (-0.7 m/s) and pressure amplification (-0.05) decreased (P < 0.001), whereas central PP (+5.3mm Hg) and systolic augmentation (+2.3%) increased (P < 0.001). The diurnal rhythm of central pressure runs in parallel with that of peripheral pressure, but the nocturnal fall in SBP is smaller centrally than peripherally. pulse wave velocity, systolic augmentation, and pressure amplification loop through the day with high pulse wave velocity and pressure amplification but low systolic augmentation in the evening and opposite trends in the morning. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effects of Mindfulness Meditation on Three Individuals with Aphasia
ERIC Educational Resources Information Center
Orenstein, Ellen; Basilakos, Alexandra; Marshall, Rebecca Shisler
2012-01-01
Background: There is evidence to suggest that people with aphasia (PWA) may have deficits in attention stemming from the inefficient allocation of resources. The inaccurate perception of task demand, or sense of effort, may underlie the misallocation of the available attention resources. Given the lack of treatment options for improving attention…
Inner Speech's Relationship with Overt Speech in Poststroke Aphasia
ERIC Educational Resources Information Center
Stark, Brielle C.; Geva, Sharon; Warburton, Elizabeth A.
2017-01-01
Purpose: Relatively preserved inner speech alongside poor overt speech has been documented in some persons with aphasia (PWA), but the relationship of overt speech with inner speech is still largely unclear, as few studies have directly investigated these factors. The present study investigates the relationship of relatively preserved inner speech…
Enacting Change through Action Learning: Mobilizing and Managing Power and Emotion
ERIC Educational Resources Information Center
Conklin, James; Cohen-Schneider, Rochelle; Linkewich, Beth; Legault, Emma
2012-01-01
This paper reports on a study of how action learning facilitates the movement of knowledge between social contexts. The study involved a community organization that provides educational services related to aphasia and members of a complex continuing care (CCC) practice that received training from the agency. People with aphasia (PWA) (a disability…
NASA Astrophysics Data System (ADS)
Huang, Shenyan; An, Ke; Gao, Yan; Suzuki, Akane
2018-03-01
Constrained γ/ γ' lattice misfit as a function of temperature (room temperature, 871 °C, 982 °C, 1093 °C, and 1204 °C) is measured by neutron diffraction on the first-generation Ni-based single-crystal superalloy René N4 and second-generation superalloys René N5, CMSX4, and PWA1484. All the alloys studied show negative misfit at temperatures above 871 °C. For René N4, René N5, and PWA1484, the misfit becomes less negative at temperatures above 1093 °C, possibly due to either the chemistry effect or internal stress relaxation. The magnitude of the misfit shows a qualitative agreement with Caron's misfit model based on Vegard's coefficients. The Re-free alloy René N4 was found to have a larger γ lattice parameter and γ/ γ' misfit due to higher fractions of Cr, Ti, and Mo. After 100 hours of annealing at high temperatures, René N5 shows a more negative misfit than the misfit after the standard heat treatment.
Micromechanisms of thermomechanical fatigue: A comparison with isothermal fatigue
NASA Technical Reports Server (NTRS)
Bill, R. C.
1986-01-01
Thermomechanical Fatigue (TMF) experiments were conducted on Mar-M 200, B-1900, and PWA-1480 (single crystals) over temperature ranges representative of gas turbine airfoil environments. The results were examined from both a phenomenological basis and a micromechanical basis. Depending on constituents present in the superalloy system, certain micromechanisms dominated the crack initiation process and significantly influenced the TMF lives as well as sensitivity of the material to the type TMF cycle imposed. For instance, high temperature cracking around grain boundary carbides in Mar-M 200 resulted in short in-phase TMF lives compared to either out-of-phase or isothermal lives. In single crystal PWA-1480, the type of coating applied was seen to be the controlling factor in determining sensitivity to the type of TMF cycle imposed. Micromechanisms of deformation were observed over the temperature range of interest to the TMF cycles, and provided some insight as to the differences between TMF damage mechanisms and isothermal damage mechanisms. Finally, the applicability of various life prediction models to TMF results was reviewed. Current life prediction models based on isothermal data must be modified before being generally applied to TMF.
Notched fatigue of single crystal PWA 1480 at turbine attachment temperatures
NASA Technical Reports Server (NTRS)
Meyer, T. G.; Nissley, D. M.; Swanson, G. A.
1989-01-01
The focus is on the lower temperature, uncoated and notched features of gas turbine blades. Constitutive and fatigue life prediction models applicable to these regions are being developed. Fatigue results are presented which were obtained thus far. Fatigue tests are being conducted on PWA 1480 single crystal material using smooth strain controlled specimens and three different notched specimens. Isothermal fatigue tests were conducted at 1200, 1400, and 1600 F. The bulk of the tests were conducted at 1200 F. The strain controlled tests were conducted at 0.4 percent per second strain rate and the notched tests were cycled at 1.0 cycle per second. A clear orientation dependence is observed in the smooth strain controlled fatigue results. The fatigue lifes of the thin, mild notched specimens agree fairly well with this smooth data when elastic stress range is used as a correlating parameter. Finite element analyses were used to calculate notch stresses. Fatigue testing will continue to further explore the trends observed thus far. Constitutive and life prediction models are being developed.
Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480
NASA Technical Reports Server (NTRS)
Majumdar, S.; Antolovich, S. D.; Milligan, W. W.
1985-01-01
PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.
Investigation of Advanced Processed Single-Crystal Turbine Blade Alloys
NASA Technical Reports Server (NTRS)
Peters, B. J.; Biondo, C. M.; DeLuca, D. P.
1995-01-01
This investigation studied the influence of thermal processing and microstructure on the mechanical properties of the single-crystal, nickel-based superalloys PWA 1482 and PWA 1484. The objective of the program was to develop an improved single-crystal turbine blade alloy that is specifically tailored for use in hydrogen fueled rocket engine turbopumps. High-gradient casting, hot isostatic pressing (HIP), and alternate heat treatment (HT) processing parameters were developed to produce pore-free, eutectic-free microstructures with different (gamma)' precipitate morphologies. Test materials were cast in high thermal gradient solidification (greater than 30 C/cm (137 F/in.)) casting furnaces for reduced dendrite arm spacing, improved chemical homogeneity, and reduced interdendritic pore size. The HIP processing was conducted in 40 cm (15.7 in.) diameter production furnaces using a set of parameters selected from a trial matrix study. Metallography was conducted on test samples taken from each respective trial run to characterize the as-HIP microstructure. Post-HIP alternate HT processes were developed for each of the two alloys. The goal of the alternate HT processing was to fully solution the eutectic gamma/(gamma)' phase islands and to develop a series of modified (gamma)' morphologies for subsequent characterization testing. This was accomplished by slow cooling through the (gamma)' solvus at controlled rates to precipitate volume fractions of large (gamma)'. Post-solution alternate HT parameters were established for each alloy providing additional volume fractions of finer precipitates. Screening tests included tensile, high-cycle fatigue (HCF), smooth and notched low-cycle fatigue (LCF), creep, and fatigue crack growth evaluations performed in air and high pressure (34.5 MPa (5 ksi)) hydrogen at room and elevated temperature. Under the most severe embrittling conditions (HCF and smooth and notched LCF in 34.5 MPa (5 ksi) hydrogen at 20 C (68 F), screening test results showed increases in fatigue life typically on the order of 1OX, when compared to the current Space Shuttle Main Engine (SSME) Alternate Turbopump (AT) blade alloy (PWA 1480).
Lee, Choon Sung; Hwang, Chang Ju; Lim, Eic Ju; Lee, Dong-Ho; Cho, Jae Hwan
2016-12-01
OBJECTIVE Postoperative shoulder imbalance (PSI) is a critical consideration after corrective surgery for a double thoracic curve (Lenke Type 2); however, the radiographic factors related to PSI remain unclear. The purpose of this study was to identify the radiographic factors related to PSI after corrective surgery for adolescent idiopathic scoliosis (AIS) in patients with a double thoracic curve. METHODS This study included 80 patients with Lenke Type 2 AIS who underwent corrective surgery. Patients were grouped according to the presence [PSI(+)] or absence [PSI(-)] of shoulder imbalance at the final follow-up examination (differences of 20, 15, and 10 mm were used). Various radiographic parameters, including the Cobb angle of the proximal and middle thoracic curves (PTC and MTC), radiographic shoulder height (RSH), clavicle angle, T-1 tilt, trunk shift, and proximal and distal wedge angles (PWA and DWA), were assessed before and after surgery and compared between groups. RESULTS Overall, postoperative RSH decreased with time in the PSI(-) group but not in the PSI(+) group. Statistical analyses revealed that the preoperative Risser grade (p = 0.048), postoperative PWA (p = 0.028), and postoperative PTC/MTC ratio (p = 0.011) correlated with PSI. Presence of the adding-on phenomenon was also correlated with PSI, although this result was not statistically significant (p = 0.089). CONCLUSIONS Postoperative shoulder imbalance is common after corrective surgery for Lenke Type 2 AIS and correlates with a higher Risser grade, a larger postoperative PWA, and a higher postoperative PTC/MTC ratio. Presence of the distal adding-on phenomenon is associated with an increased PSI trend, although this result was not statistically significant. However, preoperative factors other than the Risser grade that affect the development of PSI were not identified by the study. Additional studies are required to reveal the risk factors for the development of PSI.
NASA Technical Reports Server (NTRS)
Walston, William S.
1990-01-01
A study was conducted on the effects of internal hydrogen and microstructure on the deformation and fracture of a single crystal nickel-base superalloy. In particular, room temperature plane strain fracture toughness and tensile tests were performed on hydrogen-free and hydrogen charged samples of PWA 1480. The role of microstructure was incorporated by varying the levels of porosity and eutectic gamma/gamma prime through hot isostatic pressing and heat treatment. The room temperature behavior of PWA 1480 was unusual because precipitate shearing was not the primary deformation mechanism at all strains. At strains over 1 percent, dislocations were trapped in the gamma matrix and an attempt was made to relate this behavior to compositional differences between PWA 1480 and other superalloys. Another unique feature of the tensile behavior was cleavage of the eutectic gamma/gamma prime, which is believed to initiate the failure process. Fracture occurred on (111) planes and is likely a result of shear localization along these planes. Elimination of the eutectic gamma/gamma prime greatly improved the tensile ductility, but pososity had no effect on tensile properties. Large quantities of hydrogen (1.74 at. percent) were gas-phase charged into the material, but surprisingly this was not a function of the amount of porosity or eutectic gamma/gamma prime present. Desorption experiments suggest that the vast majority of hydrogen is at reversible lattice trapping sites. This large, uniform concentration of hydrogen dramatically reduced the tensile strain to failure, but only slightly affected the reduction in area. Available hydrogen embrittlement models were examined in light of these results and it was found that the hydrogen enhanced localized plasticity model can explain much of the tensile behavior. K(IC) fracture toughness tests were conducted, but it was necessary to also perform J(IC) tests to provide valid data.
Bricker-Katz, Geraldine; Lincoln, Michelle; McCabe, Patricia
2009-01-01
The International Classification of Functioning, Disability and Health (ICF) framework has a pragmatic focus on how impairment impacts the individual's activities and participation. Stuttering is known to impact communication in younger adults but this has not been established in older people who stutter. In this study, emotional reactions to stuttering were investigated in a group 55 years and older who self-reported stuttering since childhood. This was a cross-sectional descriptive design. Twelve participants who self-reported that they still stuttered and in whom stuttering was confirmed, and 14 controls completed the Fear of Negative Evaluation Scale (FNES), The Endler Multi-dimensional Anxiety Scales-Trait (EMAS-T) and The Australian Personal Wellbeing Index (PWA-I). Participants whose stuttering persisted also completed the Overall Assessment of Speakers Experience of Stuttering (OASES). The group who stuttered scored significantly higher on the FNES, with scores in the social phobia range. Responses on the OASES showed that stuttering continues to be a negative experience for this older group. Results for the EMAS-T and PWA-I were within the average range across both participant groups however significant differences existed between the groups in the social evaluative and physical danger domains of the EMAS-T, and the satisfaction with health domain of the PWA-I. Significant fear of negative evaluation, which is the key feature for social anxiety, was found in the group of older people who stuttered with a higher level of trait anxiety in social evaluative domains. The OASES showed that they also reacted to stuttering and communication in daily situations with moderate to severe impact scores which showed that stuttering impacted on speaking activities and by those negative experiences limited communication. Limited communication and restricted participation in the lives of older people have implications for healthy productive ageing and this is discussed.
ERIC Educational Resources Information Center
Levy, Joshua; Hoover, Elizabeth; Waters, Gloria; Kiran, Swathi; Caplan, David; Berardino, Alex; Sandberg, Chaleece
2012-01-01
Purpose: Prior studies of discourse comprehension have concluded that the deficits of persons with aphasia (PWA) in syntactically based comprehension of sentences in isolation are not predictive of deficits in comprehension of sentences in discourse (Brookshire & Nicholas, 1984; Caplan & Evans, 1990). However, these studies used semantically…
Semantic Fluency in Aphasia: Clustering and Switching in the Course of 1 Minute
ERIC Educational Resources Information Center
Bose, Arpita; Wood, Rosalind; Kiran, Swathi
2017-01-01
Background: Verbal fluency tasks are included in a broad range of aphasia assessments. It is well documented that people with aphasia (PWA) produce fewer items in these tasks. Successful performance on verbal fluency relies on the integrity of both linguistic and executive control abilities. It remains unclear if limited output in aphasia is…
Manufacturing Methods for Strategic Materials Reclamation.
1979-12-14
86 AIRCO Ingot N o. 4116 Casting Profile ......................................................... 199 87 Identification of Conversion of AIRCO Ingot...No. 4115 to Bar Stock .............. 201 88 6-in. RCS Billet Cutting Layout for Samples of Ingot No. 4115 Sent to P&WA 202 89 Identification of 1-in...132 31 Identification of Foreign Particles Detected in Rolled Plate .......................... 136 32 Mechanical Property Data of
Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude
2016-01-01
Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings.
Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude
2016-01-01
Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005
Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Swanson, Gregory
2000-01-01
Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach peak values at locations where fretting cracks have been observed. Fretting stresses at the attachment region are seen to vary significantly as a function of crystal orientation. Attempts to adapt techniques used for estimating fatigue life in the airfoil region, for life calculations in the attachment region, are presented. An effective model for predicting crystallographic crack initiation under mixed mode loading is required for life prediction under fretting action.
Industrial Technology Modernization Program. Project 32. Factory Vision. Phase 2
1988-04-01
instructions for the PWA’s, generating the numerical control (NC) program instructions for factory assembly equipment, controlling the process... generating the numerical control (NC) program instructions for factory assembly equipment, controlling the production process instructions and NC... Assembly Operations the "Create Production Process Program" will automatically generate a sequence of graphics pages (in paper mode), or graphics screens
ERIC Educational Resources Information Center
Hersh, Deborah
2015-01-01
Despite widespread support for user involvement in health care, people with aphasia (PWA) report feeling ignored and disempowered in care contexts. They also rarely have the opportunity to give feedback on their experiences of care post-stroke. However, it is important for health care professionals to hear this feedback, both to understand the…
Advanced single crystal for SSME turbopumps
NASA Technical Reports Server (NTRS)
Fritzemeier, L. G.
1989-01-01
The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Mcgaw, Michael A.
1992-01-01
Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the Space Shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. A stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. These methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.
NASA Astrophysics Data System (ADS)
Steuer, Susanne; Singer, Robert F.
2014-07-01
Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).
Sulfur and Moisture Effects on Alumina Scale and TBC Spallation
NASA Technical Reports Server (NTRS)
Smialek, James L.
2007-01-01
It has been well established that a few ppmw sulfur impurity may segregate to the interface of thermally grown alumina scales and the underlying substrate, resulting in bond degradation and premature spallation. This has been shown for NiAl and NiCrAl-based alloys, bare single crystal superalloys, or coated superalloys. The role of reactive elements (especially Y) has been to getter the sulfur in the bulk and preclude interfacial segregation. Pt additions are also very beneficial, however a similar thermodynamic explanation does not apply. The purpose of the present discussion is to highlight some observations of these effects on Rene'142, Rene'N5, PWA1480, and PWA1484. For PWA1480, we have mapped cyclic oxidation and spallation in terms of potential sulfur interfacial layers and found that a cumulative amount of about one monolayer is sufficient to degrade long term adhesion. Depending on substrate thickness, optimum performance occurs if sulfur is reduced below about 0.2-0.5 ppmw. This is accomplished in the laboratory by hydrogen annealing or commercially by melt-fluxing. Excellent 1150 C cyclic oxidation is thus demonstrated for desulfurized Rene'142, Rene'N5, and PWA1484. Alternatively, a series of N5 alloys provided by GE-AE have shown that as little as 15 ppmw of Y dopant was effective in providing remarkable scale adhesion. In support of a Y-S gettering mechanism, hydrogen annealing was unable to desulfurize these alloys from their initial level of 5 ppmw S. This impurity and critical doping level corresponds closely to YS or Y2S3 stoichiometry. In many cases, Y-doped alloys or alloys with marginal sulfur levels exhibit an oxidative sensitivity to the ambient humidity called Moisture-Induced Delayed Spallation (MIDS). After substantial scale growth, coupled with damage from repeated cycling, cold samples may spall after a period of time, breathing on them, or immersing them in water. While stress corrosion arguments may apply, we propose that the underlying cause is related to a hydrogen embrittlement reaction: Al alloy + 3 H2O = Al(OH)3 + 3H(+) + 3e(-). This mechanism is derived from an analogous moisture-induced hydrogen embrittlement mechanism originally shown for Ni3Al and FeAl intermetallics. Consequently, a cathodic hydrogen charging technique was used to demonstrate that electrolytic de-scaling occurs for these otherwise adherent alumina scales formed on Y-doped Rene'N5, in support of hydrogen effects. Finally, some TBC observations are discussed in light of all of the above. Plasma sprayed 8YSZ coatings, produced on PWA1484 without a bond coat, were found to survive more than 1000 1-hr cycles at 1100 C when desulfurized to below 0.1 ppmw. At higher sulfur (1.2 ppmw) levels, moisture sensitivity and delayed TBC failure, referred to as Desk Top Spallation, occurred at just 200 hr. Despite a large degree of scatter, a factor of 5 in life improvement is indicated for desulfurized samples in cyclic furnace tests, confirming the beneficial effect of low sulfur alloys on model TBC systems. (DTS and moisture effects are also observed on commercially applied PVD 7YSZ coatings on Rene'N5+Y with Pt-aluminide bond coats). These types of catastrophic failure were subverted on the model system by segmenting the substrate into a network of 0.010 high ribs, spaced in. apart, prior to plasma spraying. No failures occurred after 1000 cycles at 1150 C or after 2000 cycles at 1100 C, even after water immersion. The benefit is described in terms of elasticity models and a critical buckling stress.
Sahlem, Gregory L.; Badran, Bashar W.; Halford, Jonathan J.; Williams, Nolan R.; Korte, Jeffrey E.; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L.; Runion, Jennifer; Bachman, David L.; Uhde, Thomas W.; Borckardt, Jeffery J.; George, Mark S.
2015-01-01
Background A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current wave form (square in our study, nearly sinusoidal in the original). Objective/Hypothesis Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Methods Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517mA/CM2, and oscillated between zero and maximal current at a frequency of 0.75Hz. Stimulation occurred during five-five minute blocks with one-minute inter-block intervals (25 minutes total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. Results There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1±3.0SD more associations) (sham = 3.8±3.1S.D more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6±2.7 S.D. correctly typed sequences) compared to sham stimulation (2.3± 2.2 S.D. correctly typed sequences)]. Conclusion In this study, we failed to find improvements in declarative or performance memory and could not replicate an earlier study using nearly identical settings. Specifically we failed to find a beneficial effect on either overnight declarative or non-declarative memory consolidation via square-wave oscillating tDCS intervention applied bi-frontally during early NREM sleep. It is unclear if the morphology of the tDCS pulse is critical in any memory related improvements. PMID:25795621
NASA Technical Reports Server (NTRS)
Beghin, Christian; Randriamboarison, Orelien; Hamelin, Michel; Karkoschka, Erich; Sotin, Christophe; Whitten, Robert C.; Berthelier, Jean-Jacques; Grard, Rejean; Simoes, Fernando
2013-01-01
This study presents an approximate model for the atypical Schumann resonance in Titan's atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI-PWA) instrumentation during the descent of the Huygens Probe through Titan's atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan's ionosphere by the Saturn's magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan's atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water-ammonia ocean lying at a likely depth of 55-80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while convective processes cannot be ruled out.
Advanced High Cycle Fatigue (HCF) Life Assurance Methodologies
2004-07-01
Fatigue in 2024 - T351 Aluminum Alloy , Wear, 221(1), pp 24-36 (1998) 27. Doner, M., Bain, K.R., and Adams, J.H... alloy , PWA 1484, where temperature and orientation effects both have to be taken into account. Both fracture mechanics and fatigue life methods... effect on predicted fatigue life . On average, the fatigue life is several orders of magnitude less when residual stresses are included. The
Feasibility Study of Helicopter-Towed Air Custion Logistic Vehicles
1975-06-01
ILL7808/23699 ,ESSO/ ENCO TJ-15,ESSO/ ENCO 5251, TEXACO /CALTEX SATO 5180, 0 SINCLAIR TURBO OIL TYPE 11, P&WA 521B OUTPUT PAD(S): DUAL DRIVE PADS, AS 46963...Yi3 4 W’s ~" :.~ .. 3d Tyia Mode 913-30 DETOIT DISEL ~ )Gm Tyia Moel 9163-7300nealMoor MODEL 16V-149 F9163-7000 16V-149T 963-7300 .. . .... Tyia oe 1370
Low cycle fatigue behaviour of a plasma-sprayed coating material
NASA Technical Reports Server (NTRS)
Gayda, J.; Gabb, T. P.; Miner, R. V.
1986-01-01
Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.
First Experiments with Planar Wire Arrays on U Michigan's Linear Transformer Driver
NASA Astrophysics Data System (ADS)
Safronova, A. S.; Kantsyrev, V. L.; Weller, M. E.; Shrestha, I. K.; Shlyaptseva, V. V.; Cooper, M. C.; Lorance, M.; Stafford, A.; Patel, S. G.; Steiner, A. M.; Yager-Elorriaga, D. A.; Jordan, N. M.; Gilgenbach, R. M.
2014-10-01
For petawatt-class Z-pinch accelerators, a Linear Transformer Driver (LTD)-driven accelerator promises to be (at a given pinch current and implosion time) more efficient than the conventionally used Marx-driven accelerator. Because there exists almost no data on how wire arrays radiate on LTD-based machines in the USA, it is very important to perform radiation and plasma physics studies on this new type of generator. We report on the first outcome of the new partnership with University of Michigan (UM), which resulted in successful UNR-UM experiments on the low-impedance MAIZE generator with planar wire arrays (PWA). PWA is a novel wire array load that was introduced and tested in detail on high-impedance Zebra at UNR during the last years and found to be the most efficient radiator. Implosion of Al Double PWAs of different configurations were achieved on MAIZE, observed with a set of various diagnostics which include x-ray diode detectors, x-ray spectroscopy and imaging, and shadowgraphy. Al and Mg plasmas of more than 450 eV were studied in detail. Research supported by NNSA under DOE Cooperative Agreement DE-NA0001984. S. G. Patel and A. M. Steiner supported by Sandia National Laboratories. D. A. Yager-Elorriaga supported by NSF GF.
NASA Technical Reports Server (NTRS)
Vijayakumar, M.; Tewari, S. N.; Lee, J. E.; Curreri, P. A.
1990-01-01
Single crystal specimens of nickel base superalloy PWA-1480 were directionally solidified on ground and during low gravity (20 sec) and high gravity (90 sec) parabolic maneuver of KC-135 aircraft. Thermal profiles were measured during solidification by two in-situ thermocouples positioned along the sample length. The samples were quenched during either high or low gravity cycles so as to freeze the structures of the mushy zone developing under different gravity levels. Microsegregation was measured by examining the solutal profiles on several transverse cross-sections across primary dendrites along their length in the quenched mushy zone. Effect of gravity level on secondary arm coarsening kinetics and microsegregation have been investigated. The results indicate that there is no appreciable difference in the microsegregation and coarsening kinetics behavior in the specimens grown under high or low gravity. This suggests that short duration changes in gravity/levels (0.02 to 1.7 g) do not influence convection in the interdendritic region. Examination of the role of natural convection, in the melt near the primary dendrite tips, on secondary arm spacings requires low gravity periods longer than presently available on KC-135. Secondary arm coarsening kinetics show a reasonable fit with the predictions from a simple analytical model proposed by Kirkwood for a binary alloy.
The low cycle fatigue behavior of a plasma-sprayed coating material
NASA Technical Reports Server (NTRS)
Gayda, J.; Gabb, T. P.; Miner, R. V., Jr.
1986-01-01
Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C, but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.
Beyond Picture Naming: Norms and Patient Data for a Verb Generation Task**
Kurland, Jacquie; Reber, Alisson; Stokes, Polly
2014-01-01
Purpose The current study aimed to: 1) acquire a set of verb generation to picture norms; and 2) probe its utility as an outcomes measure in aphasia treatment. Method Fifty healthy volunteers participated in Phase I, the verb generation normative sample. They generated verbs for 218 pictures of common objects (ISI=5s). In Phase II, four persons with aphasia (PWA) generated verbs for 60 objects (ISI=10s). Their stimuli consisted of objects which were: 1) recently trained (for object naming; n=20); 2) untrained (a control set; n=20); or 3) from a set of pictures named correctly at baseline (n=20). Verb generation was acquired twice: two months into, and following, a six-month home practice program. Results No objects elicited perfect verb agreement in the normed sample. Stimuli with the highest percent agreement were mostly artifacts and dominant verbs primary functional associates. Although not targeted in treatment or home practice, PWA mostly improved performance in verb generation post-practice. Conclusions A set of clinically and experimentally useful verb generation norms was acquired for a subset of the Snodgrass and Vanderwart (1980) picture set. More cognitively demanding than confrontation naming, this task may help to fill the sizeable gap between object picture naming and propositional speech. PMID:24686752
Sulfur Impurities and the Microstructure of Alumina Scales
NASA Technical Reports Server (NTRS)
Smialek, James L.
1997-01-01
The relationship between the microstructure of alumina scales, adhesion, and sulfur content was examined through a series of nickel alloys oxidized in 1100 to 1200 deg. C cyclic or isothermal exposures in air. In cyclic tests of undoped NiCrAl, adhesion was produced when the sulfur content was reduced, without any change in scale microstructure. Although interfacial voids were not observed in cyclic tests of NiCrAl, they were promoted by long-term isothermal exposures, by sulfur doping, and in most exposures of NiAl. Two single crystal superalloys, PWA 1480 and Rene' N5, were also tested, either in the as-received condition or after the sulfur content had been reduced to less than 1 ppmw by hydrogen annealing. The unannealed alloys always exhibited spalling to bare metal, but interfacial voids were not observed consistently. Desulfurized PWA 1480 and Rene' N5 exhibited remarkable adhesion and no voidage for either isothermal or cyclic exposures. The most consistent microstructural feature was that, for the cases where voids did form, the scale undersides exhibited corresponding areas with ridged oxide grain boundaries. Voids were not required for spallation nor were other microstructural features essential for adhesion. These observations are consistent with the model whereby scale spallation is controlled primarily by interfacial sulfur segregation and the consequent degradation of oxide-metal bonding.
Sahlem, Gregory L; Badran, Bashar W; Halford, Jonathan J; Williams, Nolan R; Korte, Jeffrey E; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L; Runion, Jennifer; Bachman, David L; Uhde, Thomas W; Borckardt, Jeffery J; George, Mark S
2015-01-01
A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current waveform (square in our study, nearly sinusoidal in the original). Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517 mA/cm(2), and oscillated between zero and maximal current at a frequency of 0.75 Hz. Stimulation occurred during five-five minute blocks with 1-min inter-block intervals (25 min total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1 ± 3.0 SD more associations) (sham = 3.8 ± 3.1 SD more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6 ± 2.7 SD correctly typed sequences) compared to sham stimulation (2.3 ± 2.2 SD correctly typed sequences)]. In this study, we failed to find improvements in declarative or performance memory and could not replicate an earlier study using nearly identical settings. Specifically we failed to find a beneficial effect on either overnight declarative or non-declarative memory consolidation via square-wave oscillating tDCS intervention applied bi-frontally during early NREM sleep. It is unclear if the morphology of the tDCS pulse is critical in any memory related improvements. Copyright © 2015 Elsevier Inc. All rights reserved.
Constitutive and life modeling of single crystal blade alloys for root attachment analysis
NASA Technical Reports Server (NTRS)
Meyer, T. G.; Mccarthy, G. J.; Favrow, L. H.; Anton, D. L.; Bak, Joe
1988-01-01
Work to develop fatigue life prediction and constitutive models for uncoated attachment regions of single crystal gas turbine blades is described. At temperatures relevant to attachment regions, deformation is dominated by slip on crystallographic planes. However, fatigue crack initiation and early crack growth are not always observed to be crystallographic. The influence of natural occurring microporosity will be investigated by testing both hot isostatically pressed and conventionally cast PWA 1480 single crystal specimens. Several differnt specimen configurations and orientations relative to the natural crystal axes are being tested to investigate the influence of notch acuity and the material's anisotropy. Global and slip system stresses in the notched regions were determined from three dimensional stress analyses and will be used to develop fatigue life prediction models consistent with the observed lives and crack characteristics.
Creep and Fatigue Interaction Characteristics of PWA1484
2009-03-01
Tungsten) , 5.6% Al (aluminum) , 9% Ta (tantalum) , 3% Re (rhenium) , .1% Hf (hafnium) , and 59.3% Ni (nickel) by weight [1]. The alloy was invented...Work by Hael Mughrabi sought to determine the effect that the rafting behavior of the gamma prime precipitates had on the creep performance of...inclusions and in-homogeneities in 1961 [6]. Mughrabi further states that there is a tensile stress present in the gamma prime phase and a compressive
Fossett, Tepanta R D; McNeil, Malcolm R; Pratt, Sheila R; Tompkins, Connie A; Shuster, Linda I
Although many speech errors can be generated at either a linguistic or motoric level of production, phonetically well-formed sound-level serial-order errors are generally assumed to result from disruption of phonologic encoding (PE) processes. An influential model of PE (Dell, 1986; Dell, Burger & Svec, 1997) predicts that speaking rate should affect the relative proportion of these serial-order sound errors (anticipations, perseverations, exchanges). These predictions have been extended to, and have special relevance for persons with aphasia (PWA) because of the increased frequency with which speech errors occur and because their localization within the functional linguistic architecture may help in diagnosis and treatment. Supporting evidence regarding the effect of speaking rate on phonological encoding has been provided by studies using young normal language (NL) speakers and computer simulations. Limited data exist for older NL users and no group data exist for PWA. This study tested the phonologic encoding properties of Dell's model of speech production (Dell, 1986; Dell,et al., 1997), which predicts that increasing speaking rate affects the relative proportion of serial-order sound errors (i.e., anticipations, perseverations, and exchanges). The effects of speech rate on the error ratios of anticipation/exchange (AE), anticipation/perseveration (AP) and vocal reaction time (VRT) were examined in 16 normal healthy controls (NHC) and 16 PWA without concomitant motor speech disorders. The participants were recorded performing a phonologically challenging (tongue twister) speech production task at their typical and two faster speaking rates. A significant effect of increased rate was obtained for the AP but not the AE ratio. Significant effects of group and rate were obtained for VRT. Although the significant effect of rate for the AP ratio provided evidence that changes in speaking rate did affect PE, the results failed to support the model derived predictions regarding the direction of change for error type proportions. The current findings argued for an alternative concept of the role of activation and decay in influencing types of serial-order sound errors. Rather than a slow activation decay rate (Dell, 1986), the results of the current study were more compatible with an alternative explanation of rapid activation decay or slow build-up of residual activation.
Evaluation of Areas for Off-Road Recreational Motorcycle Use. Volume I. Evaluation Method.
1980-11-01
PwaLgraph 7 of AR 2109, Environmental Considerations, states that the environmental and related impact , (of ()RRV use will be assessed according to AR...with only one or more aspects of the subject, i.e., noise, soil damage, impact on vegetation, trail development, user profiles. or environmental...specifically identified in the 1972 and 1977 Executive Orders and AR 210-9 others such as impact and maneuver areas are generally known to be in direct
The Effect of Hydrogen Annealing and Sulfur Content on the Oxidation Resistance of PWA 1480
NASA Technical Reports Server (NTRS)
Smialek, James L.
1997-01-01
For many decades the dramatic effect of trace amounts of reactive elements on alumina and chromia scale adhesion has been recognized and widely studied. Although various theories have been used to account for such behavior, the connection between scale adhesion and sulfur segregation was initially reported by Smeggil et al. This study found strong surface segregation of sulfur from very low levels in the bulk which could then be curtailed by the addition of reactive elements. It was assumed that the reactive elements, which are strong sulfide formers, acted by getting sulfur in the bulk thus precluding sulfur segregation and weakening of the oxide-metal bond. Subsequent studies confirmed that adhesion could be produced by reducing the sulfur impurity level, without reactive elements. The understanding of this phenomenon has been applied to modern single crystal superalloys, where the addition of Y, although very effective, is problematic. Also problematic is definition of the level of sulfur that is acceptable and below which no further adhesion benefit is reached. Published works have indicated a broad transition defined by various materials and oxidation tests. The present study describes the oxidation behavior of one superalloy (PWA 1480) as a function of various sulfur contents produced by hydrogen annealing for various temperatures, times, and sample thicknesses. The purpose is to define more precisely a criterion for adhesion based on total sulfur reservoir and segregation potential.
Hypergolic Combustion Demonstration in a Reciprocating Internal Combustion Engine
1984-05-01
deposit problem encountered with Pearl Kerosene. Specifications and properties data for JP-7 fuel are in Table 5-2. 5.5.3. Methanol. Methanol ( CH OH...methylphenol, 0./1,000 bbls. 8.4 max. 8.4 PWA536, PPM 200-250 225 27 ’, •X TABLE 5-3. Typical Properties for Methanol(8) Formula CH 0,i Molecular weight 32.&2...46_ LIST OF REFERENCES (1) Hopple, L. 0. "Pyrophoric Combustion in Internal Combustion Engines," Eaton Technical Report No. 7845 , 1978. (2) Hoppie
Wear Resistant Coatings for Titanium.
1980-07-01
FISHTER NOOO1978-C-0889 UNCLASSIFIED PWA-FR-12303 NLlmhhhEEEEI, 111w .06 11112 1.1 4 Q MICROCOP AESOLUPON TEST CHART NATIONAL. BUREAU Of STANDARDS 1963... Compound ," ~ 113 g/22.7 kg (4 oz/50 Ib) Corrosion Inhibitor" ~ 4 mI/I (15 mI/gal) I. Fill tank to about of operating level with water 2. Add abrasive...slowly while circulating pump is on :. Add antisolidifying compound 4. Add corrosion inhibitor 5. F~ill to operating level. Etch Solution Hydrofluoric
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Mcgaw, Michael A.
1990-01-01
Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.
NASA Technical Reports Server (NTRS)
Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.
2006-01-01
The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand
Ruggieri, M
Mike Ruggieri writes from prison that he fared badly on the outside and returned to prison after quitting sobriety and abusing legal and illegal drugs. He warns incarcerated people with AIDS to have plenty of support to lean on when outside prison. He also recommends going to a semi-controlled environment like a halfway house, hospice, or treatment facility when leaving prison to make the transition a little easier. A positive attitude helps to keep him going, and he looks forward to the support of family and friends when he leaves prison. A list of PWA prisoner resources follows the article.
The influence of sense-contingent argument structure frequencies on ambiguity resolution in aphasia.
Huck, Anneline; Thompson, Robin L; Cruice, Madeline; Marshall, Jane
2017-06-01
Verbs with multiple senses can show varying argument structure frequencies, depending on the underlying sense. When acknowledge is used to mean 'recognise', it takes a direct object (DO), but when it is used to mean 'admit' it prefers a sentence complement (SC). The purpose of this study was to investigate whether people with aphasia (PWA) can exploit such meaning-structure probabilities during the reading of temporarily ambiguous sentences, as demonstrated for neurologically healthy individuals (NHI) in a self-paced reading study (Hare et al., 2003). Eleven people with mild or moderate aphasia and eleven neurologically healthy control participants read sentences while their eyes were tracked. Using adapted materials from the study by Hare et al. target sentences containing an SC structure (e.g. He acknowledged (that) his friends would probably help him a lot) were presented following a context prime that biased either a direct object (DO-bias) or sentence complement (SC-bias) reading of the verbs. Half of the stimuli sentences did not contain that so made the post verbal noun phrase (his friends) structurally ambiguous. Both groups of participants were influenced by structural ambiguity as well as by the context bias, indicating that PWA can, like NHI, use their knowledge of a verb's sense-based argument structure frequency during online sentence reading. However, the individuals with aphasia showed delayed reading patterns and some individual differences in their sensitivity to context and ambiguity cues. These differences compared to the NHI may contribute to difficulties in sentence comprehension in aphasia. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Wang, Jiang; Ren, Weili; Zhong, Yunbo; Li, Xi; Ren, Zhongming
2017-08-01
High magnetic fields are widely used to improve the microstructure and properties of materials during the solidification process. During the preparation of single-crystal turbine blades, the microstructure of the superalloy is the main factor that determines its mechanical properties. In this work, the effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys PWA1483 and CMSX-4 during directional solidification were investigated experimentally. The results showed that the magnetic field modified the primary dendrite arm spacing, γ' phase size, and microsegregation of the superalloys. In addition, the size and volume fractions of γ/ γ' eutectic and the microporosity were decreased in a high magnetic field. Analysis of variance (ANOVA) results showed that the effect of a high magnetic field on the microstructure during directional solidification was significant ( p < 0.05). Based on both experimental results and theoretical analysis, the modification of microstructure was attributed to thermoelectric magnetic convection occurring in the interdendritic regions under a high magnetic field. The present work provides a new method to optimize the microstructure of Ni-based single-crystal superalloy blades by applying a high magnetic field.
Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys
NASA Technical Reports Server (NTRS)
Swanson, G. R.; Arakere, N. K.
2000-01-01
High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.
NASA Technical Reports Server (NTRS)
Alter, W. S.; Parr, R. A.; Johnston, M. H.; Strizak, J. P.
1984-01-01
A screening program to determine the effects of high pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications is examined. The alloys chosen for the investigation are CM SX-2, CM SX-4C, Rene N-4, and PWA1480. Testing is carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens.
NASA Technical Reports Server (NTRS)
Gedwill, M. A.
1978-01-01
Several overlay coatings on ODS NiCrAl's were tested in Mach 1 and Mach 0.3 burner rigs to examine oxidation and thermal fatigue performance. The coatings were applied by various methods. Based on weight change, macroscopic, and metallographic observations in Mach 1 tests Nascoat 70 on TD-NiCrAl exhibited the best oxidation resistance. In Mach 0.3 tests PWA 267 and ATD-1, about equally, were the best coatings on YD-NiCrAl (Nascoat 70 was not tested in Mach 0.3 rigs).
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Demasi, J. T.; Sheffler, K. D.
1986-01-01
The objective of this program is to establish a methodology to predict Thermal Barrier Coating (TBC) life on gas turbine engine components. The approach involves experimental life measurement coupled with analytical modeling of relevant degradation modes. The coating being studied is a flight qualified two layer system, designated PWA 264, consisting of a nominal ten mil layer of seven percent yttria partially stabilized zirconia plasma deposited over a nominal five mil layer of low pressure plasma deposited NiCoCrAlY. Thermal barrier coating degradation modes being investigated include: thermomechanical fatigue, oxidation, erosion, hot corrosion, and foreign object damage.
Thin-film sensors for reusable space propulsion systems
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Kim, Walter S.
1989-01-01
Thin-film thermocouples (TFTCs) were developed for aircraft gas turbine engines and are in use for temperature measurement on turbine blades up to 1800 F. Established aircraft engine gas turbine technology is currently being adapted to turbine engine blade materials and the environment encountered in the Space Shuttle Main Engine (SSME)-severe thermal shock from cryogenic fuel to combustion temperatures. Initial results with coupons of MAR M-246 (+Hf) and PWA 1480 were followed by fabrication of TFTC on SSME turbine blades. Current efforts are focused on preparation for testing in the Turbine Blade Tester at NASA Marshall Space Flight Center.
Ntineri, A; Kollias, A; Zeniodi, M; Moyssakis, I; Georgakopoulos, D; Servos, G; Vazeou, A; Stergiou, G S
2015-06-01
Some studies suggested that ambulatory blood pressure (ABP) variability may provide useful information beyond that of average ABP levels. This study investigated the relationship between central ABP variability and target-organ damage in young individuals in whom the central-peripheral blood pressure discrepancy might be considerable. Apparently healthy adolescents and young adults referred for elevated blood pressure and healthy volunteers (age 12-26 years) were subjected to: (i) 24-hour monitoring of central ABP using a noninvasive brachial cuff-based oscillometric device (Mobil-O-Graph 24 h PWA); (ii) 24-hour pulse wave velocity (PWV) monitoring (Mobil-O-Graph 24 h PWA); (iii) echocardiographic determination of left ventricular mass index (LVMI); (iv) measurement (ultrasonography) of the common carotid intima-media thickness (IMT). The standard deviation (SD) of ABP (24-hour weighted/awake/asleep), as well as the respective coefficients of variation (CV) were used for assessing variability. The study included 68 individuals (mean age 18.7 ± 4.7 years, 52 males, body mass index [BMI] 24.5 ± 4.7 kg/m, 24 volunteers, 15 with hypertension [24-hour peripheral ABP >=95th percentile for adolescents or >=130/80 mmHg for adults]). LVMI was correlated with 24-hour/awake/asleep central systolic ABP (r=0.50/0.49/0.40, all p < 0.01), as well as with 24-hour weighted/awake/asleep SD of central systolic ABP (r = 0.40/0.37/0.30, all p < 0.05), whereas no association was observed for the respective CV. IMT was correlated with 24-hour/awake/asleep central pulse pressure (PP) (r = 0.37/0.33/0.27, all p < 0.05), 24-hour weighted/awake/asleep SD of central PP (r = 0.43/0.40/0.36, all p < 0.01) and the respective CV (r = 0.28/0.26/0.25, all p < 0.05). Regarding 24-hour PWV, there was a significant association with 24-hour/awake/asleep central systolic ABP (r = 0.94/0.88/0.84, all p < 0.001) and 24-hour weighted/awake/asleep SD of central PP (r = 0.48/0.51/0.25, all p < 0.05), but not with the respective CV. In multivariate regression analyses (independent variables: age, gender, BMI, central ABP and SD/CV of ABP values), LVMI and 24-hour PWV were determined by BMI, age, and 24-hour central systolic ABP, and IMT by male gender and 24-hour weighted SD of central PP. In young individuals, 24-hour central ABP variability appears to be associated only with early carotid damage when accounting for ABP levels, whereas LVMI and PWV are mainly determined by average ABP levels.
Improved Oxidation Life of Segmented Plasma Sprayed 8YSZ Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Smialek, James L.
2004-03-01
Unconventional plasma sprayed thermal barrier coating (TBC) systems were produced and evaluated by interrupted or cyclic furnace oxidation life testing. First, approximately 250 µm thick 8YSZ coatings were directly sprayed onto grit blasted surfaces of PWA 1484, without a bond coat, to take advantage of the excellent oxidation resistance of this superalloy. For nominal sulfur (S) contents of 1 ppmw, total coating separation took place at relatively short times (200 h at 1100°C). Reductions in the S content, by melt desulfurization commercially (0.3 ppmw) or by hydrogen (H2) annealing in the laboratory (0.01 ppmw), improved scale adhesion and extended life appreciably, by factors of 5-10. However, edge-initiated failure persisted, producing massive delamination as one sheet of coating. Secondly, surfaces of melt desulfurized PWA 1484 were machined with a grid of grooves or ribs (˜250 µm wide and high), resulting in a segmented TBC surface macrostructure, for the purpose of subverting this failure mechanism. In this case, failure occurred only as independent, single-segment events. For grooved samples, 1100 °C segment life was extended to ˜1000h for 5 mm wide segments, with no failure observed out to 2000 h for segments ≤2.5 mm wide. Ribbed samples were even more durable, and segments ≤6 mm remained intact for 2000 h. Larger segments failed by buckling at times inversely related to the segment width and decreased by oxidation effects at higher temperatures. This critical buckling size was consistent with that predicted for elastic buckling of a TBC plate subject to thermal expansion mismatch stresses. Thus, low S substrates demonstrate appreciable coating lives without a bond coat, while rib segmenting extends life considerably.
Thermal-structural analyses of Space Shuttle Main Engine (SSME) hot section components
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Thompson, Robert L.
1988-01-01
Three dimensional nonlinear finite element heat transfer and structural analyses were performed for the first stage high pressure fuel turbopump (HPFTP) blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 and single crystal (SC) PWA-1480 material properties were used for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress strain histories were calculated by using the MARC finite element computer code. The structural response of an SSME turbine blade was assessed and a greater understanding of blade damage mechanisms, convective cooling effects, and thermal mechanical effects was gained.
Thermal Conductivity Measurement of an Electron-Beam Physical-Vapor-Deposition Coating
Slifka, A. J.; Filla, B. J.
2003-01-01
An industrial ceramic thermal-barrier coating designated PWA 266, processed by electron-beam physical-vapor deposition, was measured using a steady-state thermal conductivity technique. The thermal conductivity of the mass fraction 7 % yttria-stabilized zirconia coating was measured from 100 °C to 900 °C. Measurements on three thicknesses of coatings, 170 μm, 350 μm, and 510 μm resulted in thermal conductivity in the range from 1.5 W/(m·K) to 1.7 W/(m·K) with a combined relative standard uncertainty of 20 %. The thermal conductivity is not significantly dependent on temperature. PMID:27413601
Thermal Conductivity Measurement of an Electron-Beam Physical-Vapor-Deposition Coating.
Slifka, A J; Filla, B J
2003-01-01
An industrial ceramic thermal-barrier coating designated PWA 266, processed by electron-beam physical-vapor deposition, was measured using a steady-state thermal conductivity technique. The thermal conductivity of the mass fraction 7 % yttria-stabilized zirconia coating was measured from 100 °C to 900 °C. Measurements on three thicknesses of coatings, 170 μm, 350 μm, and 510 μm resulted in thermal conductivity in the range from 1.5 W/(m·K) to 1.7 W/(m·K) with a combined relative standard uncertainty of 20 %. The thermal conductivity is not significantly dependent on temperature.
Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; August, R.; Nagpal, V.
1993-01-01
Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.
Progress toward determining the potential of ODS alloys for gas turbine applications
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.; Hoppin, G., III; Sheffler, K.
1983-01-01
The Materials for Advanced Turbine Engine (MATE) Program managed by the NASA Lewis Research Center is supporting two projects to evaluate the potential of oxide dispersion strengthened (ODS) alloys for aircraft gas turbine applications. One project involves the evaluation of Incoloy (TM) MA-956 for application as a combustor liner material. An assessment of advanced engine potential will be conducted by means of a test in a P&WA 2037 turbofan engine. The other project involves the evaluation of Inconel (TM) MA 6000 for application as a high pressure turbine blade material and includes a test in a Garrett TFE 731 turbofan engine. Both projects are progressing toward these engine tests in 1984.
NASA Technical Reports Server (NTRS)
Majumdar, S.; Kwasny, R.
1985-01-01
High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.
PAPER: The Precision Array to Probe the Epoch of Reionization
NASA Astrophysics Data System (ADS)
Backer, Donald C.; PAPER Team
2009-01-01
PAPER is being developed for an experiment series whose long term goal is detection of the power spectrum of faint, redshifted-21cm signals from hydrogen heated by the first stars during the epoch of reionization. Our instrumentation goals include: of dipole elements that are optimized for operation from 100-200 MHz with a clean beam response; amplifiers and receivers with good impedance match and smooth gain response over a wide bandpass; FPGA-based correlator (Parsons et al. 2008) capable of producing full stokes products for the non-tracking array; and a calibration and imaging package (AIPY) tailored to the unique problem of ultrawide field imaging. PAPER is being built and tested in stages at the NRAO Green Bank, WV site with deployment of the full instrument in Western Australia. Results from a 16-station deployment in September 2008 in Green Bank (PGB-16) are presented including: phase and amplitude calibration; RFI mitigation; full northern sky maps; and wide-field snapshot imaging. Our previous PGB-8 (8 dipole) results already reach down below 100 mJy per synthesized beam (4 K) in cold parts of the sky. We are developing new techniques to improve system stability: ambient temperature to track active balun gain variations and ORBCOM satellite monitoring to assess beam pattern and ionospheric phase gradients. In 2009 we will deploy a 64-antenna PAPER at the Murchison Radio Observatory in the outback of Western Australia (PWA-64). Our initial PWA-4 experiment in 2007 July with 4 dipoles showed the dramatic improvement in data quality owing to the ultra radio quiet site. A multi-month integration will be done during 2009 Sep-Dec when the coldest synchrotron sky is overhead at night, when the sun is down and the ionospheric column density is minimal. The depth of this integration toward our detection goal will be highly dependent on calibration and imaging algorithm development.
Cai, Guiqing; Edelmann, Lisa; Goldsmith, Juliet E; Cohen, Ninette; Nakamine, Alisa; Reichert, Jennifer G; Hoffman, Ellen J; Zurawiecki, Danielle M; Silverman, Jeremy M; Hollander, Eric; Soorya, Latha; Anagnostou, Evdokia; Betancur, Catalina; Buxbaum, Joseph D
2008-01-01
Background It has previously been shown that specific microdeletions and microduplications, many of which also associated with cognitive impairment (CI), can present with autism spectrum disorders (ASDs). Multiplex ligation-dependent probe amplification (MLPA) represents an efficient method to screen for such recurrent microdeletions and microduplications. Methods In the current study, a total of 279 unrelated subjects ascertained for ASDs were screened for genomic disorders associated with CI using MLPA. Fluorescence in situ hybridization (FISH), quantitative polymerase chain reaction (Q-PCR) and/or direct DNA sequencing were used to validate potential microdeletions and microduplications. Methylation-sensitive MLPA was used to characterize individuals with duplications in the Prader-Willi/Angelman (PWA) region. Results MLPA showed two subjects with typical ASD-associated interstitial duplications of the 15q11-q13 PWA region of maternal origin. Two additional subjects showed smaller, de novo duplications of the PWA region that had not been previously characterized. Genes in these two novel duplications include GABRB3 and ATP10A in one case, and MKRN3, MAGEL2 and NDN in the other. In addition, two subjects showed duplications of the 22q11/DiGeorge syndrome region. One individual was found to carry a 12 kb deletion in one copy of the ASPA gene on 17p13, which when mutated in both alleles leads to Canavan disease. Two subjects showed partial duplication of the TM4SF2 gene on Xp11.4, previously implicated in X-linked non-specific mental retardation, but in our subsequent analyses such variants were also found in controls. A partial duplication in the ASMT gene, located in the pseudoautosomal region 1 (PAR1) of the sex chromosomes and previously suggested to be involved in ASD susceptibility, was observed in 6–7% of the cases but in only 2% of controls (P = 0.003). Conclusion MLPA proves to be an efficient method to screen for chromosomal abnormalities. We identified duplications in 15q11-q13 and in 22q11, including new de novo small duplications, as likely contributing to ASD in the current sample by increasing liability and/or exacerbating symptoms. Our data indicate that duplications in TM4SF2 are not associated with the phenotype given their presence in controls. The results in PAR1/PAR2 are the first large-scale studies of gene dosage in these regions, and the findings at the ASMT locus indicate that further studies of the duplication of the ASMT gene are needed in order to gain insight into its potential involvement in ASD. Our studies also identify some limitations of MLPA, where single base changes in probe binding sequences alter results. In summary, our studies indicate that MLPA, with a focus on accepted medical genetic conditions, may be an inexpensive method for detection of microdeletions and microduplications in ASD patients for purposes of genetic counselling if MLPA-identified deletions are validated by additional methods. PMID:18925931
NASA Technical Reports Server (NTRS)
Miner, R. V.; Gaab, T. P.; Gayda, J.; Hemker, K. J.
1985-01-01
Single crystal superalloy specimens with various crystallographic directions along their axes were tested in compression at room temperature, 650, 760, 870, and 980 deg C. These results are compared with the tensile behavior studied previously. The alloy, Rene N4, was developed for gas turbine engine blades and has the nominal composition 3.7 Al, 4.2 Ti, 4 Ta, 0.5 Nb, 6 W, 1.5 Mo 9 Cr. 7.5 Co, balance Ni, in weight percent. Slip trace analysis showed that primary cube slip occurred even at room temperature for the 111 specimens. With increasing test temperature more orientations exhibited primary cube slip, until at 870 deg C only the 100 and 011 specimens exhibited normal octahedral slip. The yield strength for octahedral slip was numerically analysed using a model proposed by Lall, Chin, and Pope to explain deviations from Schmid's Law in the yielding behavior of a single phase Gamma prime alloy, Ni3(Al, Nb). The Schmid's Law deviations in Rene N4 were found to be largely due to a tension-compression anisotropy. A second effect, which increases trength for orientations away from 001, was found to be small in Rene N4. Analysis of recently published data on the single crystal superalloy PWA 1480 yielded the same result.
NDE of PWA 1480 single crystal turbine blade material
NASA Technical Reports Server (NTRS)
Klima, Stanley J.; Orange, Thomas W.; Dreshfield, Robert L.
1993-01-01
Cantilever bending fatigue specimens were examined by fluorescent liquid penetrant and radioactive gas penetrant (Krypton) non-destructive evaluation (NDE) methods and tested. Specimens with cast, ground, or polished surface were evaluated to study the effect of surface condition on NDE and fatigue crack initiation. Fractographic and metallurgical analyses were performed to determine the nature of crack precursors. Preliminary results show that fatigue strength was lower for specimens with cast surfaces than for specimens with machined surfaces. The liquid penetrant and gas penetrant techniques both provided indications of a large population of defects on the cast surfaces. On ground or polished specimen surfaces, the gas penetrant appeared to estimate the actual number of voids more accurately than the liquid penetrant.
Thermal barrier coating on high temperature industrial gas turbine engines
NASA Technical Reports Server (NTRS)
Carlson, N.; Stoner, B. L.
1977-01-01
The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.
Wenke, Rachel; Cardell, Elizabeth; Lawrie, Melissa; Gunning, Dana
2018-06-01
This pilot study aimed to evaluate the effects of an intensive hybrid service delivery model (i.e., combining face-to-face individual, computer and group therapy) on communication and well-being for people with aphasia (PWA) in the hospital setting. The study explored two different intensities of the hybrid model, 4 h/week (Hybrid-4) and 8 h/week (Hybrid-8) both for 8 weeks. Participants ranging from 1 month to 5 years post-onset were allocated using matched-pair randomisation to receive either Hybrid-4 (n = 5) or Hybrid-8 (n = 4) and assessed using a comprehensive language battery by a blinded assessor, as well as selected activity, participation and well-being measures before, immediately after and 4-week post-treatment. All participants in Hybrid-4 and three out of four participants in Hybrid-8 demonstrated clinically significant improvement to measures of language impairment immediately post-treatment, with the majority also demonstrating maintenance effects 4-week post-treatment. Clinically significant improvements to activity, participation and well-being measures were also observed across participants in both groups. Findings support the potential benefit of employing an intensive hybrid service model and suggest that both 4 and 8 h per week of impairment-based treatment for 8 weeks may result in improvements in communication and well-being for some PWA across different stages of recovery. Implications for rehabilitation The present findings help bridge the gap between what evidence suggests is effective intensity of rehabilitation for aphasia and what can be practically delivered in real-world hospital settings. Findings support the potential clinical value of employing a hybrid service model (using computer, group and individual therapy) to deliver intensive rehabilitation to people with aphasia in the hospital setting, and suggest that clinically significant improvements to communication and well-being can result when the model is delivered at either 4 or 8 h per week. The current study highlights that people with aphasia in the early stages of aphasia recovery can potentially benefit from intensive impairment-based hybrid models of intervention.
The effect of hydrogen on the deformation behavior of a single crystal nickel-base superalloy
NASA Technical Reports Server (NTRS)
Walston, W. S.; Thompson, A. W.; Bernstein, I. M.
1989-01-01
The effect of hydrogen on the tensile deformation behavior of PWA 1480 is presented. Tensile tests were interrupted at different plastic strain levels to observe the development of the dislocation structure. Transmission electron microscopy (TEM) foils were cut perpendicular to the tensile axis to allow the deformation of both phases to be simultaneously observed as well as parallel to zone axes (III) to show the superdislocations on their slip planes. Similar to other nickel-base superalloys, hydrogen was detrimental to the room temperature tensile properties of PWA 1480. There was little effect on strength, however the material was severely embrittled. Even without hydrogen, the elongation-to-failure was only approximately 3 percent. The tensile fracture surface was made up primarily of ductile voids with regions of cleavage fracture. These cleavage facets are the eutectic (gamma') in the microstructure. It was shown by quantitative fractography that hydrogen embrittles the eutectic (gamma') and causes the crack path to seek out and fracture through the eutectic (gamma'). There was two to three times the amount of cleavage on the fracture surface of the hydrogen-charged samples than on the surface of the uncharged samples. The effect of hydrogen can also be seen in the dislocation structure. There is a marked tendency for dislocation trapping in the gamma matrix with and without hydrogen at all plastic strain levels. Without hydrogen there is a high dislocation density in the gamma matrix leading to strain exhaustion in this region and failure through the matrix. The dislocation structure at failure with hydrogen is slightly different. The TEM foils cut parallel to zone axes (III) showed dislocations wrapping around gamma precipitates. Zone axes (001) foils show that there is a lower dislocation density in the gamma matrix which can be linked to the effects of hydrogen on the fracture behavior. The primary activity in the gamma precipitates is in the form of superlattice intrinsic stacking faults (SISFs). These faults have also been reported in other ordered alloys and superalloys.
DOT National Transportation Integrated Search
2003-04-01
Surface wave (Rayleigh wave) seismic data were acquired at six separate bridge sites in southeast Missouri. Each acquired surface wave data set was processed (spectral analysis of surface waves; SASW) and transformed into a site-specific vertical she...
Caplan, David; Michaud, Jennifer; Hufford, Rebecca
2013-01-01
Sixty one pwa were tested on syntactic comprehension in three tasks: sentence-picture matching, sentence-picture matching with auditory moving window presentation, and object manipulation. There were significant correlations of performances on sentences across tasks. First factors in unrotated factor analyses accounted for most of the variance on which all sentence types loaded in each task. Dissociations in performance between sentence types that differed minimally in their syntactic structures were not consistent across tasks. These results replicate previous results with smaller samples and provide important validation of basic aspects of aphasic performance in this area of language processing. They point to the role of a reduction in processing resources and of the interaction of task demands and parsing and interpretive abilities in the genesis of patient performance. PMID:24061104
Computer Aided Design of Ni-Based Single Crystal Superalloy for Industrial Gas Turbine Blades
NASA Astrophysics Data System (ADS)
Wei, Xianping; Gong, Xiufang; Yang, Gongxian; Wang, Haiwei; Li, Haisong; Chen, Xueda; Gao, Zhenhuan; Xu, Yongfeng; Yang, Ming
The influence of molybdenum, tungsten and cobalt on stress-rupture properties of single crystal superalloy PWA1483 has been investigated using the simulated calculation of JMatPro software which ha s been widely used to develop single crystal superalloy, and the effect of alloying element on the stability of strengthening phase has been revealed by using the Thermo-Calc software. Those properties calculation results showed that the increasing of alloy content could facilitate the precipitation of TCP phases and increase the lattice misfit between γ and γ' phase, and the effect of molybdenum, tantalum was the strongest and that of cobalt was the weakest. Then the chemical composition was optimized, and the selected compositions showed excellent microstructure stability and stress-rupture properties by the confirmation of d-electrons concept and software calculation.
The cyclic stress-strain behavior of a nickel-base superalloy at 650 C
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Welsch, G. E.
1986-01-01
It is pointed out that examinations of the monotonic tensile and fatigue behaviors of single crystal nickel-base superalloys have disclosed orientation-dependent tension-compression anisotropies and significant differences in the mechanical response of octahedral and cube slip at intermediate temperatures. An examination is conducted of the cyclic hardening response of the single crystal superalloy PWA 1480 at 650 C. In the considered case, tension-compression anisotropy is present, taking into account primarily conditions under which a single slip system is operative. Aspects of a deformation by single slip are considered along with cyclic hardening anisotropy in tension and compression. It is found that specimens deforming by octahedral slip on a single slip system have similar hardening responses in tensile and low cycle fatigue loading. Cyclic strain hardening is very low for specimens displaying single slip.
Dynamic characteristics of single crystal SSME blades
NASA Technical Reports Server (NTRS)
Moss, L. A.; Smith, T. E.
1987-01-01
The Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) blades are currently manufactured using a directionally solidified (DS) material, MAR-M-246+Hf. However, a necessity to reduce the occurrence of fatigue cracking within the DS blades has lead to an interest in the use of a single crystal (SC) material, PWA-1480. A study was initiated to determine the dynamic characteristics of the HPFTP blades made of SC material and find possible critical engine order excitations. This study examined both the first and second stage drive turbine blades of the HPFTP. The dynamic characterization was done analytically as well as experimentally. The analytical study examined the SC first stage HPFTP blade dynamic characteristics under typical operating conditions. The blades were analyzed using MSC/NASTRAN and a finite element model. Two operating conditions, 27500 RPM and 35000 RPM, were investigated.
Flexural Plate Wave Devices for Chemical Analysis
1991-04-16
Naval Research Laboratory Washi..gton. DC 20375-5000 NRL Memorandum Report 6815 AD-A234 129 Flexural Plate Wave Devices for Chemical Analysis JAY W...4. TITLE AND SUBTITLE S. FUNDING NUMBERS Flexural Plate Wave Devices for Chemical Analysis 6. AUTHOR(S) 61-1638-01 Jay W. Grate. Stuart W. Wenzel... ANALYSIS INTRODUCTION Flexural plate wave (FPW) devices offer many attractive features for chemical analysis (1-9). As gravimetric sensors for chemical
Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations
Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael
2014-01-01
Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.
Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials
NASA Astrophysics Data System (ADS)
Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.
2018-01-01
The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.
The Simple Lamb Wave Analysis to Characterize Concrete Wide Beams by the Practical MASW Test
Lee, Young Hak; Oh, Taekeun
2016-01-01
In recent years, the Lamb wave analysis by the multi-channel analysis of surface waves (MASW) for concrete structures has been an effective nondestructive evaluation, such as the condition assessment and dimension identification by the elastic wave velocities and their reflections from boundaries. This study proposes an effective Lamb wave analysis by the practical application of MASW to concrete wide beams in an easy and simple manner in order to identify the dimension and elastic wave velocity (R-wave) for the condition assessment (e.g., the estimation of elastic properties). This is done by identifying the zero-order antisymmetric (A0) and first-order symmetric (S1) modes among multimodal Lamb waves. The MASW data were collected on eight concrete wide beams and compared to the actual depth and to the pressure (P-) wave velocities collected for the same specimen. Information is extracted from multimodal Lamb wave dispersion curves to obtain the elastic stiffness parameters and the thickness of the concrete structures. Due to the simple and cost-effective procedure associated with the MASW processing technique, the characteristics of several fundamental modes in the experimental Lamb wave dispersion curves could be measured. Available reference data are in good agreement with the parameters that were determined by our analysis scheme. PMID:28773562
NASA Astrophysics Data System (ADS)
Xia, Jianghai
2014-04-01
This overview article gives a picture of multichannel analysis of high-frequency surface (Rayleigh and Love) waves developed mainly by research scientists at the Kansas Geological Survey, the University of Kansas and China University of Geosciences (Wuhan) during the last eighteen years by discussing dispersion imaging techniques, inversion systems, and real-world examples. Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocities of high-frequency surface waves. Multichannel analysis of surface waves—MASW used phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine near-surface S-wave velocities. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that inversion with higher modes and the fundamental mode simultaneously can increase model resolution and an investigation depth. Multichannel analysis of Love waves—MALW used phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities of shallow materials. Because of independence of compressional (P)-wave velocity, the MALW method has some attractive advantages, such as 1) Love-wave dispersion curves are simpler than Rayleigh wave's; 2) dispersion images of Love-wave energy have a higher signal to noise ratio and more focused than those generated from Rayleigh waves; and 3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.
Wave power potential in Malaysian territorial waters
NASA Astrophysics Data System (ADS)
Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul
2016-06-01
Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.
Half Moon Bay, Grays Harbor, Washington: Movable-Bed Physical Model Study
2006-09-01
wave machine used in Half Moon Bay physical model.................................50 Figure 28. Wave analysis output from model wave measurements...Point Chehalis used to reduce strong longshore current................82 Figure 46. Analysis of irregular waves measured at model wave Gauge 4...required several reconstruction efforts between origi- nal construction and present day due to the harsh wave climate on the Washington coast. After
Irregular Wave Energy Extraction Analysis for a Slider Crank WEC Power Take-Off System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun
2015-09-02
Slider crank Wave Energy Converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this WEC has been done under regular sinusoidal wave conditions, and a suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and the control methodology is modified to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that undermore » regular sinusoidal wave conditions, but still a reasonable amount of energy can be extracted.« less
[Research on a non-invasive pulse wave detection and analysis system].
Li, Ting; Yu, Gang
2008-10-01
A novel non-invasive pulse wave detection and analysis system has been developed, including the software and the hardware. Bi-channel signals can be acquired, stored and shown on the screen dynamically at the same time. Pulse wave can be reshown and printed after pulse wave analysis and pulse wave velocity analysis. This system embraces a computer which is designed for fast data saving, analyzing and processing, and a portable data sampling machine which is based on a singlechip. Experimental results have shown that the system is stable and easy to use, and the parameters are calculated accurately.
Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event
NASA Astrophysics Data System (ADS)
Liu, Lu; Ran, Lingkun; Gao, Shouting
2018-05-01
A numerical experiment was performed using the Weather Research and Forecasting (WRF) model to analyze the generation and propagation of inertia-gravity waves during an orographic rainstorm that occurred in the Sichuan area on 17 August 2014. To examine the spatial and temporal structures of the inertia-gravity waves and identify the wave types, three wavenumber-frequency spectral analysis methods (Fourier analysis, cross-spectral analysis, and wavelet cross-spectrum analysis) were applied. During the storm, inertia-gravity waves appeared at heights of 10-14 km, with periods of 80-100 min and wavelengths of 40-50 km. These waves were generated over a mountain and propagated eastward at an average speed of 15-20 m s-1. Meanwhile, comparison between the reconstructed inertia-gravity waves and accumulated precipitation showed there was a mutual promotion process between them. The Richardson number and Scorer parameter were used to demonstrate that the eastward-moving inertia-gravity waves were trapped in an effective atmospheric ducting zone with favorable reflector and critical level conditions, which were the primary causes of the long lives of the waves. Finally, numerical experiments to test the sensitivity to terrain and diabatic heating were conducted, and the results suggested a cooperative effect of terrain and diabatic heating contributed to the propagation and enhancement of the waves.
Alastruey, Jordi; Hunt, Anthony A E; Weinberg, Peter D
2014-01-01
We present a novel analysis of arterial pulse wave propagation that combines traditional wave intensity analysis with identification of Windkessel pressures to account for the effect on the pressure waveform of peripheral wave reflections. Using haemodynamic data measured in vivo in the rabbit or generated numerically in models of human compliant vessels, we show that traditional wave intensity analysis identifies the timing, direction and magnitude of the predominant waves that shape aortic pressure and flow waveforms in systole, but fails to identify the effect of peripheral reflections. These reflections persist for several cardiac cycles and make up most of the pressure waveform, especially in diastole and early systole. Ignoring peripheral reflections leads to an erroneous indication of a reflection-free period in early systole and additional error in the estimates of (i) pulse wave velocity at the ascending aorta given by the PU–loop method (9.5% error) and (ii) transit time to a dominant reflection site calculated from the wave intensity profile (27% error). These errors decreased to 1.3% and 10%, respectively, when accounting for peripheral reflections. Using our new analysis, we investigate the effect of vessel compliance and peripheral resistance on wave intensity, peripheral reflections and reflections originating in previous cardiac cycles. PMID:24132888
3D Guided Wave Motion Analysis on Laminated Composites
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara; Yu, Lingyu
2013-01-01
Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.
Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V
2014-01-01
Conventional haemodynamic analysis of pulmonary venous and left atrial (LA) pressure waveforms yields substantial forward and backward waves throughout the cardiac cycle; the reservoir wave model provides an alternative analysis with minimal waves during diastole. Pressure and flow in a single pulmonary vein (PV) and the main pulmonary artery (PA) were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading, and positive-end expiratory pressure (PEEP) were observed. The reservoir wave model was used to determine the reservoir contribution to PV pressure and flow. Subtracting reservoir pressure and flow resulted in ‘excess’ quantities which were treated as wave-related. Wave intensity analysis of excess pressure and flow quantified the contributions of waves originating upstream (from the PA) and downstream (from the LA and/or left ventricle (LV)). Major features of the characteristic PV waveform are caused by sequential LA and LV contraction and relaxation creating backward compression (i.e. pressure-increasing) waves followed by decompression (i.e. pressure-decreasing) waves. Mitral valve opening is linked to a backwards decompression wave (i.e. diastolic suction). During late systole and early diastole, forward waves originating in the PA are significant. These waves were attenuated less with volume loading and delayed with PEEP. The reservoir wave model shows that the forward and backward waves are negligible during LV diastasis and that the changes in pressure and flow can be accounted for by the discharge of upstream reservoirs. In sharp contrast, conventional analysis posits forward and backward waves such that much of the energy of the forward wave is opposed by the backward wave. PMID:25015922
Further SEASAT SAR coastal ocean wave analysis
NASA Technical Reports Server (NTRS)
Kasischke, E. S.; Shuchman, R. A.; Meadows, G. A.; Jackson, P. L.; Tseng, Y.
1981-01-01
Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results.
Caplan, David; Michaud, Jennifer; Hufford, Rebecca
2013-10-01
Sixty-one pwa were tested on syntactic comprehension in three tasks: sentence-picture matching, sentence-picture matching with auditory moving window presentation, and object manipulation. There were significant correlations of performances on sentences across tasks. First factors on which all sentence types loaded in unrotated factor analyses accounted for most of the variance in each task. Dissociations in performance between sentence types that differed minimally in their syntactic structures were not consistent across tasks. These results replicate previous results with smaller samples and provide important validation of basic aspects of aphasic performance in this area of language processing. They point to the role of a reduction in processing resources and of the interaction of task demands and parsing and interpretive abilities in the genesis of patient performance. Copyright © 2013 Elsevier Inc. All rights reserved.
Scale Adhesion, Sulfur Content, and TBC Failure on Single Crystal Superalloys
NASA Technical Reports Server (NTRS)
Smialek, James L.
2002-01-01
This paper summarizes the main effects of sulfur impurity content on the cyclic oxidation resistance of single crystal superalloys, with emphasis on scale and TBC adhesion. Eleven hundred degrees C cyclic oxidation of PWA 1480 produces scale spallation leading to a weight loss of more than 30 Mg/sq cm after 500 one-hr cycles for a sulfur content of 6 ppmw. The sulfur content was reduced to levels below 0.1 ppmw by hydrogen annealing, resulting in weight gains of only 0.5 to 1.0 Mg/sq cm after 1000 one-hr cycles. Samples were produced with various sulfur contents by adjusting the annealing temperature, time, and sample thickness (i.e., diffusion product Dt/L(exp 2)). The subsequent cyclic oxidation behavior, mapped over a sulfur content/thickness diagram, shows a transition to adherent behavior at sulfur levels equivalent to 1 monolayer of total segregation. Additional information is contained in the original extended abstract.
The Effect of Hydrogen Annealing on the Impurity Content of Alumina-Forming Alloys
NASA Technical Reports Server (NTRS)
Smialek, James L.
2000-01-01
Previously, the effect of hydrogen annealing on increasing the adhesion of Al2O3 scales had been related to the effective desulfurization that occurred during this process. The simultaneous reduction of other impurities has now been re-examined for up to 20 impurity elements in the case of five different alloys (NiCrAl, FeCrAl, PWA 1480, Rene'142, and Rene'N5). Hydrogen annealing produced measurable reductions in elemental concentration for B, C, Na, Mg, P, K, Sr, or Sn in varying degrees for at least one and up to three of these alloys. No single element was reduced by hydrogen annealing for all the alloys except sulfur. In many cases spalling occurred at low levels of these other impurities, while in other cases the scales were adherent at high levels of the impurities. No impurity besides sulfur was strongly correlated with adhesion.
NASA Technical Reports Server (NTRS)
Goldsmith, I. M.
1981-01-01
The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
ERIC Educational Resources Information Center
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
In situ fatigue loading stage inside scanning electron microscope
NASA Technical Reports Server (NTRS)
Telesman, Jack; Kantzos, Peter; Brewer, David
1988-01-01
A fatigue loading stage inside a scanning electron microscopy (SEM) was developed. The stage allows dynamic and static high-magnification and high-resolution viewing of the fatigue crack initiation and crack propagation processes. The loading stage is controlled by a closed-loop servohydraulic system. Maximum load is 1000 lb (4450 N) with test frequencies ranging up to 30 Hz. The stage accommodates specimens up to 2 inches (50 mm) in length and tolerates substantial specimen translation to view the propagating crack. At room temperature, acceptable working resolution is obtainable for magnifications ranging up to 10,000X. The system is equipped with a high-temperature setup designed for temperatures up to 2000 F (1100 C). The signal can be videotaped for further analysis of the pertinent fatigue damage mechanisms. The design allows for quick and easy interchange and conversion of the SEM from a loading stage configuration to its normal operational configuration and vice versa. Tests are performed entirely in the in-situ mode. In contrast to other designs, the NASA design has greatly extended the life of the loading stage by not exposing the bellows to cyclic loading. The loading stage was used to investigate the fatigue crack growth mechanisms in the (100)-oriented PWA 1480 single-crystal, nickel-based supperalloy. The high-magnification observations revealed the details of the crack growth processes.
Time-localized frequency analysis of ultrasonic guided waves for nondestructive testing
NASA Astrophysics Data System (ADS)
Shin, Hyeon Jae; Song, Sung-Jin
2000-05-01
A time-localized frequency (TLF) analysis is employed for the guided wave mode identification and improved guided wave applications. For the analysis of time-localized frequency contents of digitized ultrasonic signals, TLF analysis consists of splitting the time domain signal into overlapping segments, weighting each with the hanning window, and forming the columns of discrete Fourier transforms. The result is presented by a frequency versus time domain diagram showing frequency variation along the signal arrival time. For the demonstration of the utility of TLF analysis, an experimental group velocity dispersion pattern obtained by TLF analysis is compared with the dispersion diagram obtained by theory of elasticity. Sample piping is carbon steel piping that is used for the transportation of natural gas underground. Guided wave propagation characteristic on the piping is considered with TLF analysis and wave structure concepts. TLF analysis is used for the detection of simulated corrosion defects and the assessment of weld joint using ultrasonic guided waves. TLF analysis has revealed that the difficulty of mode identification in multi-mode propagation could be overcome. Group velocity dispersion pattern obtained by TLF analysis agrees well with theoretical results.
NASA Astrophysics Data System (ADS)
Naumenko, Natalya F.
2014-09-01
A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.
NASA Astrophysics Data System (ADS)
Beli, D.; Mencik, J.-M.; Silva, P. B.; Arruda, J. R. F.
2018-05-01
The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.
Yi-Hsiang Yu's expertise is in marine energy system design and performance analysis, hydrodynamics , a wave-to-wire numerical model for design and analysis of wave energy conversion systems, wave tank the design load for wave energy systems. Yi-Hsiang is currently serving as the associate editor of the
Wave number determination of Pc 1-2 mantle waves considering He++ ions: A Cluster study
NASA Astrophysics Data System (ADS)
Grison, B.; Escoubet, C. P.; Santolík, O.; Cornilleau-Wehrlin, N.; Khotyaintsev, Y.
2014-09-01
The present case study concerns narrowband electromagnetic emission detected in the distant cusp region simultaneously with upgoing plasma flows. The wave properties match the usual properties of the Pc 1-2 mantle waves: small angle between the wave vector and the magnetic field line, left-hand polarization, and propagation toward the ionosphere. We report here the first direct wave vector measurement of these waves (about 1.2 × 10- 2 rad/km) through multi spacecraft analysis using the three magnetic components and, at the same time, through single spacecraft analysis based on the refractive index analysis using the three magnetic components and two electric components. The refractive index analysis offers a simple way to estimate wave numbers in this frequency range. Numerical calculations are performed under the observed plasma conditions. The obtained results show that the ion distribution functions are unstable to ion cyclotron instability at the observed wave vector value, due to the large ion temperature anisotropy. We thus show that these electromagnetic ion cyclotron (EMIC) waves are amplified in the distant cusp region. The Poynting flux of the waves is counterstreaming with respect to the plasma flow. This sense of propagation is consistent with the time necessary to amplify the emissions to the observed level. We point out the role of the wave damping at the He++ gyrofrequency to explain that such waves cannot be observed from the ground at the cusp foot print location.
The Solsticial Pause on Mars. Part 1; A Planetary Wave Reanalysis
NASA Technical Reports Server (NTRS)
Lewis, Stephen R.; Mulholland, David P.; Read, Peter L.; Montabone, Luca; Wilson, R. John; Smith, Michael D.
2015-01-01
Large-scale planetary waves are diagnosed from an analysis of profiles retrieved from the Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft during its scientific mapping phase. The analysis is conducted by assimilating thermal profiles and total dust opacity retrievals into a Mars global circulation model. Transient waves are largest throughout the northern hemisphere autumn, winter and spring period and almost absent during the summer. The southern hemisphere exhibits generally weaker transient wave behavior. A striking feature of the low-altitude transient waves in the analysis is that they show a broad subsidiary minimum in amplitude centred on the winter solstice, a period when the thermal contrast between the summer hemisphere and the winter pole is strongest and baroclinic wave activity might be expected to be strong. This behavior, here called the 'solsticial pause,' is present in every year of the analysis. This strong pause is under-represented in many independent model experiments, which tend to produce relatively uniform baroclinic wave activity throughout the winter. This paper documents and diagnoses the transient wave solsticial pause found in the analysis; a companion paper investigates the origin of the phenomenon in a series of model experiments.
Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen
2012-01-01
Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.
Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen
2012-01-01
Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824
Khoshdel, Ali R; Mousavi-Asl, Benyamin; Shekarchi, Babak; Amini, Kazem; Mirzaii-Dizgah, Iraj
2016-01-01
Chronic exposure to noise is known to cause a wide range of health problems including extracellular matrix (ECM) proliferation and involvement of cardiovascular system. There are a few studies to investigate noise-induced vascular changes using noninvasive methods. In this study we used carotid artery intima-media thickness (CIMT) and aortic augmentation as indices of arterial properties and cystatin C as a serum biomarker relating to ECM metabolism. Ninety-three male participants were included in this study from aeronautic technicians: 39 with and 54 without a history of wide band noise (WBN) exposure. For better discrimination, the participants were divided into the two age groups: <40 and >40 years old. Adjusted aortic augmentation index (AI) for a heart rate equal to 75 beats per minute (AIx@HR75) were calculated using pulse wave analysis (PWA). CIMT was measured in 54 participants who accepted to undergo Doppler ultrasonography. Serum cystatin C was also measured. Among younger individuals the mean CIMT was 0.85 ± 0.09 mm and 0.75 ± 0.22 mm in the in the exposed and the control groups respectively. Among older individuals CIMT had a mean of 1.04 ± 0.22 mm vs. 1.00 ± 0.25 mm for the exposed vs. the control group. However, in both age groups the difference was not significant at the 0.05 level. A comparison of AIx@HR75 between exposure group and control group both in younger age group (5.46 ± 11.22 vs. 8.56 ± 8.66) and older age group (17.55 ± 10.07 vs. 16.61 ± 5.77) revealed no significant difference. We did not find any significant correlation between CIMT and AIx@HR75 in exposed group (r = 0.314, P value = 0.145) but the correlation was significant in control group (r = 0.455, P value = 0.019). Serum cystatin C level was significantly lower in individuals with WBN exposure compared to controls (441.10 ± 104.70 ng/L vs. 616.89 ± 136.14, P value < 0.001) both in younger and older groups. We could not find any evidence for the association of WBN exposure with arterial properties, but cystatin C was significantly lower in the exposed group.
NASA Astrophysics Data System (ADS)
Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.
2013-12-01
Bursty Langmuir waves have been interpreted as the result of the superposition of multiple Langmuir normal-mode waves, with the resultant modulation being the beat pattern between waves with e.g. 10 kHz frequency differences. The normal-mode waves could be generated either through wave-wave interactions with VLF waves, or through independent linear processes. The CHARM II sounding rocket was launched into a substorm at 9:49 UT on 15 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the Dartmouth High-Frequency Experiment (HFE), a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz, as well as a number of charged particle detectors, including a wave-particle correlator. The payload also included a magnetometer and several low-frequency wave instruments. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, including several hundred discrete Langmuir-wave bursts. We show results of a statistical analysis of CHARM II data for the entire flight, comparing HFE data with the other payload instruments, specifically looking at timings and correlations between bursty Langmuir waves, Alfvén and whistler-mode waves, and electrons precipitating parallel to the magnetic field. Following a similar analysis on TRICE dayside sounding rocket data, we also calculate the fraction of correlated waves with VLF waves at appropriate frequencies to support the wave-wave interaction bursty Langmuir wave generation mechanism, and compare to results from CHARM II nightside data.
Long-term Recovery in Stroke Accompanied by Aphasia: A Reconsideration.
Holland, Audrey; Fromm, Davida; Forbes, Margaret; MacWhinney, Brian
2017-01-01
This work focuses on the twenty-six individuals who provided data to AphasiaBank on at least two occasions, with initial testing between 6 months and 5.8 years post-onset of aphasia. The data are archival in nature and were collected from the extensive database of aphasic discourse in AphasiaBank. The aim is to furnish data on the nature of long-term changes in both the impairment of aphasia as measured by the Western Aphasia Battery-Revised (WAB-R) and its expression in spoken discourse. AphasiaBank's demographic database was searched to discover all individuals who were tested twice at an interval of at least a year with either: 1) the AphasiaBank protocol; or 2) the AphasiaBank protocol at first testing, and the Famous People Protocol (FPP) at second testing. The Famous People Protocol is a measure developed to assess the communication strategies of individuals whose spoken language limitations preclude full participation in the AphasiaBank protocol. The 26 people with aphasia (PWA) who were identified had completed formal speech therapy before being seen for AphasiaBank. However, all were participants in aphasia centers where at least three hours of planned activities were available, in most cases, twice weekly. WAB-R Aphasia Quotient scores (AQ) were examined, and in those cases where AQ scores improved, changes were assessed on a number of measures from the AphasiaBank discourse protocol. Sixteen individuals demonstrated improved WAB-R AQ scores, defined as positive AQ change scores greater than the WAB-R AQ standard error of the mean (WAB-SEM); seven maintained their original WAB quotients, defined as AQ change scores that were not greater than the WAB-SEM; and the final three showed negative WAB-R change scores, defined as a negative WAB-R AQ change score greater than the WAB-SEM. Concurrent changes on several AphasiaBank tasks were also found, suggesting that the WAB-R improvements were noted in more natural discourse as well. These data are surprising, since conventional wisdom suggests that spontaneous improvement in language is unlikely to occur beyond one year. Long-term improvement or maintenance of early test scores, such as that shown here, has seldom been demonstrated in the absence of formal treatment. Speculations about why these PWA improved, maintained or declined in their scores are considered.
Air pollution in China: Status and spatiotemporal variations.
Song, Congbo; Wu, Lin; Xie, Yaochen; He, Jianjun; Chen, Xi; Wang, Ting; Lin, Yingchao; Jin, Taosheng; Wang, Anxu; Liu, Yan; Dai, Qili; Liu, Baoshuang; Wang, Ya-Nan; Mao, Hongjun
2017-08-01
In recent years, China has experienced severe and persistent air pollution associated with rapid urbanization and climate change. Three years' time series (January 2014 to December 2016) concentrations data of air pollutants including particulate matter (PM 2.5 and PM 10 ) and gaseous pollutants (SO 2 , NO 2 , CO, and O 3 ) from over 1300 national air quality monitoring sites were studied to understand the severity of China's air pollution. In 2014 (2015, 2016), annual population-weighted-average (PWA) values in China were 65.8 (55.0, 50.7) μg m -3 for PM 2.5 , 107.8 (91.1, 85.7) μg m -3 for PM 10 , 54.8 (56.2, 57.2) μg m -3 for O 3 _8 h, 39.6 (33.3, 33.4) μg m -3 for NO 2 , 34.1 (26, 21.9) μg m -3 for SO 2 , 1.2 (1.1, 1.1) mg m -3 for CO, and 0.60 (0.59, 0.58) for PM 2.5 /PM 10 , respectively. In 2014 (2015, 2016), 7% (14%, 19%), 17% (27%, 34%), 51% (67%, 70%) and 88% (97%, 98%) of the population in China lived in areas that meet the level of annual PM 2.5 , PM 10 , NO 2 , and SO 2 standard metrics from Chinese Ambient Air Quality Standards-Grade II. The annual PWA concentrations of PM 2.5 , PM 10 , O 3 _8 h, NO 2 , SO 2 , CO in the Northern China are about 40.4%, 58.9%, 5.9%, 24.6%, 96.7%, and 38.1% higher than those in Southern China, respectively. Though the air quality has been improving recent years, PM 2.5 pollution in wintertime is worsening, especially in the Northern China. The complex air pollution caused by PM and O 3 (the third frequent major pollutant) is an emerging problem that threatens the public health, especially in Chinese mega-city clusters. NOx controls were more beneficial than SO 2 controls for improvement of annual PM air quality in the northern China, central, and southwest regions. Future epidemiologic studies are urgently required to estimate the health impacts associated with multi-pollutants exposure, and revise more scientific air quality index standards. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zúñiga-Feest, Alejandra; Bustos-Salazar, Angela; Alves, Fernanda; Martinez, Vanessa; Smith-Ramírez, Cecilia
2017-06-01
Waterlogging decreases a plant's metabolism, stomatal conductance (gs) and photosynthetic rate (A); however, some evergreen species show acclimation to waterlogging. By studying both the physiological and morphological responses to waterlogging, the objective of this study was to assess the acclimation capacity of four swamp forest species that reside in different microhabitats. We proposed that species (Luma apiculata [D.C.] Burret. and Drimys winteri J.R. et G. Forster.) abundant in seasonally and intermittently waterlogged areas (SIWA) would have a higher acclimation capacity than species abundant in the inner swamp (Blepharocalyx cruckshanksii [H et A.] Mied. and Myrceugenia exsucca [D.C.] Berg.) where permanent waterlogging occurs (PWA); it was expected that the species from SIWA would maintain leaf expansion and gas exchange rates during intermittent waterlogging treatments. Conversely, we expected that PWA species would have higher constitutive waterlogging tolerance, and this would be reflected in the formation of lenticels and adventitious roots. Over the course of 2 months, we subjected seedlings to different waterlogging treatments: (i) permanent (sudden, SW), (ii) intermittent (gradual) or (iii) control (field capacity, C). Survival after waterlogging was high (≥80%) for all species and treatments, and only the growth rate of D. winteri subjected to SW was affected. Drimys winteri plants had low, but constant A and g during both waterlogging treatments. Conversely, L. apiculata had the highest A and g values, and g increased significantly during the first several days of waterlogging. In general, seedlings of all species subjected to waterlogging produced more adventitious roots and fully expanded leaves and had higher specific leaf area (SLA) and stomatal density (StD) than seedlings in the C treatment. From the results gathered here, we partially accept our hypothesis as all species showed high tolerance to waterlogging, maintained growth, and had increased A or g during different time points of waterlogging. Differences in leaf (SLA) and stomata functioning (gs, StD) plasticity likely allows plants to maintain positive carbon gains when waterlogging occurs. The species-specific differences found here were not entirely related to microhabitat distribution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Finite Element Analysis of Lamb Waves Acting within a Thin Aluminum Plate
2007-09-01
signal to avoid time aliasing % LambWaveMode % lamb wave mode to simulate; use proper phase velocity curve % thickness % thickness of...analysis of the simulated signal response data demonstrated that elevated temperatures delay wave propagation, although the delays are minimal at the...Echo Techniques Ultrasonic NDE techniques are based on the propagation and reflection of elastic waves , with the assumption that damage in the
Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow
NASA Astrophysics Data System (ADS)
Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy
2013-09-01
Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.
Defect induced guided waves mode conversion
NASA Astrophysics Data System (ADS)
Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw
2016-04-01
This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.
Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data
Araújo, Alex Maurício
2017-01-01
This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731
Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.
Espindola, Rafael Luz; Araújo, Alex Maurício
2017-01-01
This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.
Microstructure of the IMF turbulences at 2.5 AU
NASA Technical Reports Server (NTRS)
Mavromichalaki, H.; Vassilaki, A.; Marmatsouri, L.; Moussas, X.; Quenby, J. J.; Smith, E. J.
1995-01-01
A detailed analysis of small period (15-900 sec) magnetohydrodynamic (MHD) turbulences of the interplanetary magnetic field (IMF) has been made using Pioneer-11 high time resolution data (0.75 sec) inside a Corotating Interaction Region (CIR) at a heliocentric distance of 2.5 AU in 1973. The methods used are the hodogram analysis, the minimum variance matrix analysis and the cohenrence analysis. The minimum variance analysis gives evidence of linear polarized wave modes. Coherence analysis has shown that the field fluctuations are dominated by the magnetosonic fast modes with periods 15 sec to 15 min. However, it is also shown that some small amplitude Alfven waves are present in the trailing edge of this region with characteristic periods (15-200 sec). The observed wave modes are locally generated and possibly attributed to the scattering of Alfven waves energy into random magnetosonic waves.
Kayen, Robert E.; Carkin, Bradley A.; Allen, Trevor; Collins, Clive; McPherson, Andrew; Minasian, Diane L.
2015-01-01
One-dimensional shear-wave velocity (VS ) profiles are presented at 50 strong motion sites in New South Wales and Victoria, Australia. The VS profiles are estimated with the spectral analysis of surface waves (SASW) method. The SASW method is a noninvasive method that indirectly estimates the VS at depth from variations in the Rayleigh wave phase velocity at the surface.
Mynard, Jonathan P; Smolich, Joseph J
2016-04-15
Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. Copyright © 2016 the American Physiological Society.
Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.
2008-01-01
In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.
Analysis of a bubble deformation process in a microcapsule by shock waves for developing DDS
NASA Astrophysics Data System (ADS)
Tamagawa, Masaaki; Morimoto, Kenshi
2012-09-01
This paper describes development of DDS (drug delivery systems) microcapsule using underwater shock waves, especially (1) making polymer microcapsules including a bubble and analysis of a bubble deformation process in a polymer capsule by pressure wave, (2) making liposome microcapsules with different elastic membrane and disintegration tests by ultrasonic waves.
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
NASA Technical Reports Server (NTRS)
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Electromagnetic cyclotron waves in the solar wind: Wind observation and wave dispersion analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian, L. K., E-mail: lan.jian@nasa.gov; Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771; Moya, P. S.
2016-03-25
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and α-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Wave reflections in the pulmonary arteries analysed with the reservoir–wave model
Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V
2014-01-01
Conventional haemodynamic analysis of pressure and flow in the pulmonary circulation yields incident and reflected waves throughout the cardiac cycle, even during diastole. The reservoir–wave model provides an alternative haemodynamic analysis consistent with minimal wave activity during diastole. Pressure and flow in the main pulmonary artery were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading and positive end-expiratory pressure were observed. The reservoir–wave model was used to determine the reservoir contribution to pressure and flow and once subtracted, resulted in ‘excess’ quantities, which were treated as wave-related. Wave intensity analysis quantified the contributions of waves originating upstream (forward-going waves) and downstream (backward-going waves). In the pulmonary artery, negative reflections of incident waves created by the right ventricle were observed. Overall, the distance from the pulmonary artery valve to this reflection site was calculated to be 5.7 ± 0.2 cm. During 100% O2 ventilation, the strength of these reflections increased 10% with volume loading and decreased 4% with 10 cmH2O positive end-expiratory pressure. In the pulmonary arterial circulation, negative reflections arise from the junction of lobar arteries from the left and right pulmonary arteries. This mechanism serves to reduce peak systolic pressure, while increasing blood flow. PMID:24756638
Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis
NASA Astrophysics Data System (ADS)
Park, Sunyoung; Ishii, Miaki
2018-06-01
A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2017-08-01
The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.
NASA Astrophysics Data System (ADS)
Sollberger, David; Greenhalgh, Stewart A.; Schmelzbach, Cedric; Van Renterghem, Cédéric; Robertsson, Johan O. A.
2018-04-01
We provide a six-component (6-C) polarization model for P-, SV-, SH-, Rayleigh-, and Love-waves both inside an elastic medium as well as at the free surface. It is shown that single-station 6-C data comprised of three components of rotational motion and three components of translational motion provide the opportunity to unambiguously identify the wave type, propagation direction, and local P- and S-wave velocities at the receiver location by use of polarization analysis. To extract such information by conventional processing of three-component (3-C) translational data would require large and dense receiver arrays. The additional rotational components allow the extension of the rank of the coherency matrix used for polarization analysis. This enables us to accurately determine the wave type and wave parameters (propagation direction and velocity) of seismic phases, even if more than one wave is present in the analysis time window. This is not possible with standard, pure-translational 3-C recordings. In order to identify modes of vibration and to extract the accompanying wave parameters, we adapt the multiple signal classification algorithm (MUSIC). Due to the strong nonlinearity of the MUSIC estimator function, it can be used to detect the presence of specific wave types within the analysis time window at very high resolution. We show how the extracted wavefield properties can be used, in a fully automated way, to separate the wavefield into its different wave modes using only a single 6-C recording station. As an example, we apply the method to remove surface wave energy while preserving the underlying reflection signal and to suppress energy originating from undesired directions, such as side-scattered waves.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young
2017-05-01
This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.
Analysis of magnetometer data/wave signals in the Earth's magnetosphere
NASA Technical Reports Server (NTRS)
Engebretson, Mark J.
1993-01-01
Work on the reduction and analysis of Dynamics Explorer (DE) satellite magnetometer data with special emphasis on the ULF fluctuations and waves evident in such data is described. Research focused on the following: (1) studies of Pc 1 wave packets near the plasmapause; (2) satellite-ground pulsation study; (3) support for studies of ion energization processes; (4) search for Pc 1 wave events in 1981 DE 1 data; (5) study of Pc 3-5 events observed simultaneously by DE 1 and by AMPTE CCE; (6) support for studies of electromagnetic transients on DE 1; and (7) analysis of wave events induced by sudden impulses.
Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.
Nelson, Amber M; Hoffman, Joseph J; Anderson, Christian C; Holland, Mark R; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G
2011-10-01
Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. © 2011 Acoustical Society of America
Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone
Nelson, Amber M.; Hoffman, Joseph J.; Anderson, Christian C.; Holland, Mark R.; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G.
2011-01-01
Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. PMID:21973378
Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun
2015-08-24
A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from thatmore » under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.« less
Energy Extraction from a Slider-Crank Wave Energy Converter under Irregular Wave Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun
2015-10-19
A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from thatmore » under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.« less
Gialafos, Elias J; Dilaveris, Polychronis E; Synetos, Andreas G; Tsolakidis, George F; Papaioannou, Theodoros G; Andrikopoulos, George K; Richter, Dimitris J; Triposkiadis, Filippos; Gialafos, John E
2003-01-01
P wave analysis from the 12-lead ECG is a recent contribution of noninvasive electrocardiology. P wave analysis indices (maximum and minimum P wave duration, P wave dispersion [Pdis = Pmax-Pmin], adjusted P wave dispersion [APdis = Pdis/square root of measured leads], summated P wave duration [Psum], standard deviation of P wave duration [Psd], mean P wave duration [Pmean]) can predict atrial arrhythmias. However, the definitions of all these indices are based on few studies. The aim of this analysis was to define normal values of these indices and the examine possible associations between P wave indices and clinical variables. The study included 1,353 healthy men, 24 +/- 3 years of age, who answered a questionnaire and underwent a detailed physical examination and a digitized 12-lead surface ECG. All P wave indices were analyzed by two independent investigators. Mean values of the ECG indices were: Pmax: 96 +/- 11 ms, Pmin: 57 +/- 9 ms, Pdis: 38 +/- 10 ms, Psum: 924 +/- 96 ms, Psd: 12 +/- 3, APdis: 11 +/- 3 ms, and Pmean: 77 +/- 8 ms. Age was significantly related with Pmax (r = 0.277, P < 0.01), Pmin (r = 0.255, P < 0.001), Psum (r = 0.074, P < 0.01), and Pmean (r = 0.074, P < 0.01). All ECG indices were significantly associated with the R-R interval, and among each other. This study defined normal indices of wave duration and correlations among them. These markers may play an important predictive role in patients with atrial conduction abnormalities.
NASA Technical Reports Server (NTRS)
Wang, J.; Hastings, D. E.
1991-01-01
Current collecting systems moving in the ionosphere will induce electromagnetic wave radiation. The commonly used static analysis is incapable of studying the situation when such systems undergo transient processes. A dynamic analysis has been developed, and the radiation excitation processes are studied. This dynamic analysis is applied to study the temporal wave radiation from the activation of current collecting systems in space. The global scale electrodynamic interactions between a space-station-like structure and the ionospheric plasma are studied. The temporal evolution and spatial propagation of the electric wave field after the activation are described. The wave excitations by tethered systems are also studied. The dependencies of the temporal Alfven wave and lower hybrid wave radiation on the activation time and the space system structure are discussed. It is shown that the characteristics of wave radiation are determined by the matching of two sets of characteristic frequencies, and a rapid change in the current collection can give rise to substantial transient radiation interference. The limitations of the static and linear analysis are examined, and the condition under which the static assumption is valid is obtained.
Standing Waves in an Elastic Spring: A Systematic Study by Video Analysis
NASA Astrophysics Data System (ADS)
Ventura, Daniel Rodrigues; de Carvalho, Paulo Simeão; Dias, Marco Adriano
2017-04-01
The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be formed by an elastic deformation, a variation of pressure, changes in the intensity of electric or magnetic fields, a propagation of a temperature variation, or other disturbances. Moreover, a wave can be categorized as pulsed or periodic. Most importantly, conditions can be set such that waves interfere with one another, resulting in standing waves. These have many applications in technology, although they are not always readily identified and/or understood by all students. In this work, we use a simple setup including a low-cost constant spring, such as a Slinky, and the free software Tracker for video analysis. We show they can be very useful for the teaching of mechanical wave propagation and the analysis of harmonics in standing waves.
Conservation Laws and Ponderomotive Force for Non-WKB, MHD Waves in the Solar Wind
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Webb, G. M.; Zank, G. P.; Kaghashvili, E. K.; Ratkiewicz, R. E.
2004-12-01
The interaction of non-WKB Alfvén waves in the Solar Wind was investigated by Heinemann and Olbert (1980), MacGregor and Charbonneau (1994) and others. MacGregor and Charbonneau (1994) investigated non-WKB Alfvén wave driven winds. We discuss both the canonical and physical wave stress energy tensors for non-WKB, MHD waves and the ponderomotive force exerted by the waves on the wind for the case where both compressible (magneto-acoustic type waves) and incompressible waves (Alfvén waves) are present. The equations for the waves include the effects of wave mixing (i.e. the interaction of the waves with each other via gradients in the background flow). Wave mixing is known to be an important element of turbulence theory in the Solar Wind. However, only the wave mixing of Alfvénic type disturbances have been accounted for in present models of Solar Wind turbulence (e.g. Zhou and Matthaeus, 1990), which use Elssässer variables to describe the perturbations. The relationship between the present analysis and nearly incompressible MHD (reduced MHD) is at present unclear. Also unclear is the relationship between the present analysis and theories using wave-mean field interactions (e.g. Grimshaw (1984), Holm (1999)). The analysis is based on a theory for wave and background stress-energy tensors developed by Webb et al. (2004a,b) using a Lagrangian formulation of the total system of waves and background plasma (see e.g. Dewar (1970) for the WKB case). Conservation laws for the total system of waves and background plasma result from application of Noether's theorems relating Lie symmetries of the action to conservation laws.
NASA Astrophysics Data System (ADS)
Chang, Shi-Shing; Wu, John H.
1993-09-01
After the 2th world war, although the application of ultrasonic wave in industries is becoming more and more popular. But due to the restriction of the precise equivelent , experimental method and the support of the basic theoremsetc. Ultrasonic wave is not applied in precise measurement. Nowadays due to many conditions - the improvement in the production technic, the precise of the equivelent, causes to increase the application of ultrasonic wave. But it's still limited due to the lack of measurement and analysis theorem. In this paper, first we caculate translation of the stress wave (elastic wave) in material for the free surface of material by a normal impulse load. as the theorem analysis base in real application. It is applied to an experiment of film measurement. We can find the partical motion in material and the arriving time of wave front. Then we can estimate the thickness of layers and can prove the actual condition with the result of experiment. This resarch is not only in the theoretical investigation but also in setting overall the measurement system, and excutes the following three experiments: the thickness measurement of two layers, the thickness measurement of film material. the thickness measurement of air propagation. About the data processing, we relied on the frequency analysis to evalute the time difference of two overlapped ultrasonic wave signal. in the meanwhile. we also designed several computer programs to assist the sonic wave identification and signal analysis.
Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories
NASA Astrophysics Data System (ADS)
Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan
2017-10-01
Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.
Theoretical analysis of rotating two phase detonation in a rocket motor
NASA Technical Reports Server (NTRS)
Shen, I.; Adamson, T. C., Jr.
1973-01-01
Tangential mode, non-linear wave motion in a liquid propellant rocket engine is studied, using a two phase detonation wave as the reaction model. Because the detonation wave is followed immediately by expansion waves, due to the side relief in the axial direction, it is a Chapman-Jouguet wave. The strength of this wave, which may be characterized by the pressure ratio across the wave, as well as the wave speed and the local wave Mach number, are related to design parameters such as the contraction ratio, chamber speed of sound, chamber diameter, propellant injection density and velocity, and the specific heat ratio of the burned gases. In addition, the distribution of flow properties along the injector face can be computed. Numerical calculations show favorable comparison with experimental findings. Finally, the effects of drop size are discussed and a simple criterion is found to set the lower limit of validity of this strong wave analysis.
Analysis of the Interactions of Planetary Waves with the Mean Flow of the Stratosphere
NASA Technical Reports Server (NTRS)
Newman, Paul A.
2007-01-01
During the winter period, large scale waves (planetary waves) are observed to propagate from the troposphere into the stratosphere. Such wave events have been recognized since the 1 950s. The very largest wave events result in major stratospheric warmings. These large scale wave events have typical durations of a few days to 2 weeks. The wave events deposit easterly momentum in the stratosphere, decelerating the polar night jet and warming the polar region. In this presentation we show the typical characteristics of these events via a compositing analysis. We will show the typical periods and scales of motion and the associated decelerations and warmings. We will illustrate some of the differences between major and minor warming wave events. We will further illustrate the feedback by the mean flow on subsequent wave events.
NASA Astrophysics Data System (ADS)
Wang, Qun; Gao, Qing-Yu; Lü, Hua-Ping; Zheng, Zhi-Gang
2010-05-01
Multi-mode spiral wave and its breakup in 1-d and 2-d coupled oscillatory media is studied here by theoretic analysis and numerical simulations. The analysis in 1-d system shows that the dispersion relation curve could be non-monotonic depending on the coupling strength. It may also lead to the coexistence of different wave numbers within one system. Direct numerical observations in 1-d and 2-d systems conform to the prediction of dispersion relation analysis. Our findings indicate that the wave grouping can also be observed in oscillatory media without tip meandering and waves with negative group velocity can occur without inhomogeneity.
Asymptotic analysis of dissipative waves with applications to their numerical simulation
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
Various problems involving the interplay of asymptotics and numerics in the analysis of wave propagation in dissipative systems are studied. A general approach to the asymptotic analysis of linear, dissipative waves is developed. It was applied to the derivation of asymptotic boundary conditions for numerical solutions on unbounded domains. Applications include the Navier-Stokes equations. Multidimensional traveling wave solutions to reaction-diffusion equations are also considered. A preliminary numerical investigation of a thermo-diffusive model of flame propagation in a channel with heat loss at the walls is presented.
Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.
2011-01-01
The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.
The Detection of Gravitational Waves
NASA Astrophysics Data System (ADS)
Blair, David G.
2005-10-01
Part I. An Introduction to Gravitational Waves and Methods for their Detection: 1. Gravitational waves in general relativity D. G. Blair; 2. Sources of gravitational waves D. G. Blair; 3. Gravitational wave detectors D. G. Blair; Part II. Gravitational Wave Detectors: 4. Resonant-bar detectors D. G. Blair; 5. Gravity wave dewars W. O. Hamilton; 6. Internal friction in high Q materials J. Ferreirinko; 7. Motion amplifiers and passive transducers J. P. Richard; 8. Parametric transducers P. J. Veitch; 9. Detection of continuous waves K. Tsubono; 10. Data analysis and algorithms for gravitational wave-antennas G. V. Paalottino; Part III. Laser Interferometer Antennas: 11. A Michelson interferometer using delay lines W. Winkler; 12. Fabry-Perot cavity gravity-wave detectors R. W. P. Drever; 13. The stabilisation of lasers for interferometric gravitational wave detectors J. Hough; 14. Vibration isolation for the test masses in interferometric gravitational wave detectors N. A. Robertson; 15. Advanced techniques A. Brillet; 16. Data processing, analysis and storage for interferometric antennas B. F. Schutz; 17. Gravitational wave detection at low and very low frequencies R. W. Hellings.
Analysis of wave-like oscillations in parameters of sporadic E layer and neutral atmosphere
NASA Astrophysics Data System (ADS)
Mošna, Z.; Koucká Knížová, P.
2012-12-01
The present study mainly concerns the wave-like activity in the ionospheric sporadic E layer (Es) and in the lower lying stratosphere. The proposed analysis involves parameters describing the state of plasma in the sporadic E layer. Critical frequencies foEs and layer heights hEs were measured at the Pruhonice station (50°N, 14.5°E) during summer campaigns 2004, 2006 and 2008. Further, we use neutral atmosphere (temperature data at 10 hPa) data from the same time interval. The analysis concentrates on vertically propagating wave-like structures within distant atmospheric regions. By means of continuous wavelet transform (CWT) we have detected significant wave-like oscillation at periods covering tidal and planetary oscillation domains both in the Es layer parameters (some of them were reported earlier, for instance in works of Abdu et al., 2003; Pancheva and Mitchel, 2004; Pancheva et al., 2003; Šauli and Bourdillon, 2008) and in stratospheric temperature variations. Further analyses using cross wavelet transform (XWT) and wavelet coherence analysis (WTC) show that despite high wave-like activity in a wide period range, there are only limited coherent wave-like bursts present in both spectra. Such common coherent wave bursts occur on periods close to eigen-periods of the terrestrial atmosphere. We suppose that vertical coupling between atmospheric regions realized by vertically propagating planetary waves occurs predominantly on periods close to those of Rossby modes. Analysis of the phase shift between data from distant atmospheric regions reveals high variability and very likely supports the non-linear scenario of the vertical coupling provided by planetary waves.
Experiments in Wave Record Analysis.
1980-09-01
manipulation of wave records in digital form to produce a power density spectrum (PDS) with great efficiency. The PDS gives a presentation of the...instantaneous surface elevation digital points (the zero level reference). The individual period, Ti, was taken as the time difference between two successive...CONCLUSIONS This thesis presents the results of experiments in the analysis of ocean wave records. For this purpose 19 digitized records obtained from a wave
Sensitivity of a numerical wave model on wind re-analysis datasets
NASA Astrophysics Data System (ADS)
Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel
2017-03-01
Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.
Marine natural hazards in coastal zone: observations, analysis and modelling (Plinius Medal Lecture)
NASA Astrophysics Data System (ADS)
Didenkulova, Ira
2010-05-01
Giant surface waves approaching the coast frequently cause extensive coastal flooding, destruction of coastal constructions and loss of lives. Such waves can be generated by various phenomena: strong storms and cyclones, underwater earthquakes, high-speed ferries, aerial and submarine landslides. The most famous examples of such events are the catastrophic tsunami in the Indian Ocean, which occurred on 26 December 2004 and hurricane Katrina (28 August 2005) in the Atlantic Ocean. The huge storm in the Baltic Sea on 9 January 2005, which produced unexpectedly long waves in many areas of the Baltic Sea and the influence of unusually high surge created by long waves from high-speed ferries, should also be mentioned as examples of regional marine natural hazards connected with extensive runup of certain types of waves. The processes of wave shoaling and runup for all these different marine natural hazards (tsunami, coastal freak waves, ship waves) are studied based on rigorous solutions of nonlinear shallow-water theory. The key and novel results presented here are: i) parameterization of basic formulas for extreme runup characteristics for bell-shape waves, showing that they weakly depend on the initial wave shape, which is usually unknown in real sea conditions; ii) runup analysis of periodic asymmetric waves with a steep front, as such waves are penetrating inland over large distances and with larger velocities than symmetric waves; iii) statistical analysis of irregular wave runup demonstrating that wave nonlinearity nearshore does not influence on the probability distribution of the velocity of the moving shoreline and its moments, and influences on the vertical displacement of the moving shoreline (runup). Wave runup on convex beaches and in narrow bays, which allow abnormal wave amplification is also discussed. Described analytical results are used for explanation of observed extreme runup of tsunami, freak (sneaker) waves and ship waves on different coasts along different bottom profiles.
Aeroacoustic directivity via wave-packet analysis of mean or base flows
NASA Astrophysics Data System (ADS)
Edstrand, Adam; Schmid, Peter; Cattafesta, Louis
2017-11-01
Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.
Affect of Brush Seals on Wave Rotor Performance Assessed
NASA Technical Reports Server (NTRS)
1995-01-01
The NASA Lewis Research Center's experimental and theoretical research shows that wave rotor topping can significantly enhance gas turbine engine performance levels. Engine-specific fuel consumption and specific power are potentially enhanced by 15 and 20 percent, respectively, in small (e.g., 400 to 700 hp) and intermediate (e.g., 3000 to 5000 hp) turboshaft engines. Furthermore, there is potential for a 3- to 6-percent specific fuel consumption enhancement in large (e.g., 80,000 to 100,000 lbf) turbofan engines. This wave-rotor-enhanced engine performance is accomplished within current material-limited temperature constraints. The completed first phase of experimental testing involved a three-port wave rotor cycle in which medium total pressure inlet air was divided into two outlet streams, one of higher total pressure and one of lower total pressure. The experiment successfully provided the data needed to characterize viscous, partial admission, and leakage loss mechanisms. Statistical analysis indicated that wave rotor product efficiency decreases linearly with the rotor to end-wall gap, the square of the friction factor, and the square of the passage of nondimensional opening time. Brush seals were installed to further minimize rotor passage-to-cavity leakage. The graph shows the effect of brush seals on wave rotor product efficiency. For the second-phase experiment, which involves a four-port wave rotor cycle in which heat is added to the Brayton cycle in an external burner, a one-dimensional design/analysis code is used in conjunction with a wave rotor performance optimization scheme and a two-dimensional Navier-Stokes code. The purpose of the four-port experiment is to demonstrate and validate the numerically predicted four-port pressure ratio versus temperature ratio at pressures and temperatures lower than those that would be encountered in a future wave rotor/demonstrator engine test. Lewis and the Allison Engine Company are collaborating to investigate wave rotor integration in an existing turboshaft engine. Recent theoretical efforts include simulating wave rotor dynamics (e.g., startup and load-change transient analysis), modifying the one-dimensional wave rotor code to simulate combustion internal to the wave rotor, and developing an analytical wave rotor design/analysis tool based on macroscopic balances for parametric wave rotor/engine analysis.
Strong wave/mean-flow coupling in baroclinic acoustic streaming
NASA Astrophysics Data System (ADS)
Chini, Greg; Michel, Guillaume
2017-11-01
Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.
Short and long periodic atmospheric variations between 25 and 200 km
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1973-01-01
Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of gravity wave and planetary wave atmospheric variations are presented. Time structure of the gravity wave variations were determined by the analysis of residuals from harmonic analysis of time series data. Planetary wave contributions in the 25-85 km range were discovered and found to have significant height and latitudinal variation. Long period planetary waves, and seasonal variations were also computed by harmonic analysis. Revised height variations of the gravity wave contributions in the 25 to 85 km height range were computed. An engineering method and design values for gravity wave magnitudes and wave lengths are given to be used for such tasks as evaluating the effects on the dynamical heating, stability and control of spacecraft such as the space shuttle vehicle in launch or reentry trajectories.
Subharmonic edge waves on a large, shallow island
NASA Astrophysics Data System (ADS)
Foda, Mostafa A.
1988-08-01
Subharmonic resonance of edge waves by incident and reflected waves has been studied thus far for the case of a plane infinite beach. The analysis will be extended here to the case of a curved coastline, with a large radius of curvature and slowly varying beach slope in the longshore direction. It will be shown that the effects of such slow beach slope changes on a propagating edge wave are similar to the familiar shoaling effects on incident waves. The case of subharmonic edge wave generation on large shallow islands will be discussed in detail. The nonlinear analysis will show that within a certain range of island sizes, the generation mechanism can produce a stable standing edge wave around the island. For larger islands the solution disintegrates into two out-of-phase envelopes of opposite-going edge waves. For still larger islands, the generated progressive edge waves become unstable to sideband modulations.
Crack Detection with Lamb Wave Wavenumber Analysis
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara; Rogge, Matt; Yu, Lingyu
2013-01-01
In this work, we present our study of Lamb wave crack detection using wavenumber analysis. The aim is to demonstrate the application of wavenumber analysis to 3D Lamb wave data to enable damage detection. The 3D wavefields (including vx, vy and vz components) in time-space domain contain a wealth of information regarding the propagating waves in a damaged plate. For crack detection, three wavenumber analysis techniques are used: (i) two dimensional Fourier transform (2D-FT) which can transform the time-space wavefield into frequency-wavenumber representation while losing the spatial information; (ii) short space 2D-FT which can obtain the frequency-wavenumber spectra at various spatial locations, resulting in a space-frequency-wavenumber representation; (iii) local wavenumber analysis which can provide the distribution of the effective wavenumbers at different locations. All of these concepts are demonstrated through a numerical simulation example of an aluminum plate with a crack. The 3D elastodynamic finite integration technique (EFIT) was used to obtain the 3D wavefields, of which the vz (out-of-plane) wave component is compared with the experimental measurement obtained from a scanning laser Doppler vibrometer (SLDV) for verification purposes. The experimental and simulated results are found to be in close agreement. The application of wavenumber analysis on 3D EFIT simulation data shows the effectiveness of the analysis for crack detection. Keywords: : Lamb wave, crack detection, wavenumber analysis, EFIT modeling
Modeling of Mud-Wave Interaction: Mud-Induced Wave Transport & Wave-Induced Mud Transport
2007-11-01
seabed. This can be a fairly rapid process (i.e. of the order of tens of seconds, up to a few minutes at most, e.g. Foda and Zhang (1994); Lindenberg... analysis to shallow water waves and he assumes that the upper layer is non-viscous, and that the waves are sinusoidal and small compared to the water...the pressure and n = the normal vector to the interface, which is correct for ,, << 2,. Extending Gade’s analysis , assuming that superposition
A statistical study of EMIC waves observed by Cluster: 1. Wave properties
NASA Astrophysics Data System (ADS)
Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2015-07-01
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10 years (2001-2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.
Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.
Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng
2011-11-01
In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Gao, Shan; Li, Ming; Zong, Keqing; Chen, Haihong; Hu, Shenghong
2015-01-20
A novel "wave" signal-smoothing and mercury-removing device has been developed for laser ablation quadrupole and multiple collector ICPMS analysis. With the wave stabilizer that has been developed, the signal stability was improved by a factor of 6.6-10 and no oscillation of the signal intensity was observed at a repetition rate of 1 Hz. Another advantage of the wave stabilizer is that the signal decay time is similar to that without the signal-smoothing device (increased by only 1-2 s for a signal decay of approximately 4 orders of magnitude). Most of the normalized elemental signals (relative to those without the stabilizer) lie within the range of 0.95-1.0 with the wave stabilizer. Thus, the wave stabilizer device does not significantly affect the aerosol transport efficiency. These findings indicate that this device is well-suited for routine optimization of ICPMS, as well as low repetition rate laser ablation analysis, which provides smaller elemental fractionation and better spatial resolution. With the wave signal-smoothing and mercury-removing device, the mercury gas background is reduced by 1 order of magnitude. More importantly, the (202)Hg signal intensity produced in the sulfide standard MASS-1 by laser ablation is reduced from 256 to 0.7 mV by the use of the wave signal-smoothing and mercury-removing device. This result suggests that the mercury is almost completely removed from the sample aerosol particles produced by laser ablation with the operation of the wave mercury-removing device. The wave mercury-removing device that we have designed is very important for Pb isotope ratio and accessory mineral U-Pb dating analysis, where removal of the mercury from the background gas and sample aerosol particles is highly desired. The wave signal-smoothing and mercury-removing device was applied successfully to the determination of the (206)Pb/(204)Pb isotope ratio in samples with low Pb content and/or high Hg content.
Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun
2017-01-01
To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.
Fourier Analysis and the Rhythm of Conversation.
ERIC Educational Resources Information Center
Dabbs, James M., Jr.
Fourier analysis, a common technique in engineering, breaks down a complex wave form into its simple sine wave components. Communication researchers have recently suggested that this technique may provide an index of the rhythm of conversation, since vocalizing and pausing produce a complex wave form pattern of alternation between two speakers. To…
Self-adaptive method for high frequency multi-channel analysis of surface wave method
USDA-ARS?s Scientific Manuscript database
When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...
Rigorous coupled wave analysis of acousto-optics with relativistic considerations.
Xia, Guoqiang; Zheng, Weijian; Lei, Zhenggang; Zhang, Ruolan
2015-09-01
A relativistic analysis of acousto-optics is presented, and a rigorous coupled wave analysis is generalized for the diffraction of the acousto-optical effect. An acoustic wave generates a grating with temporally and spatially modulated permittivity, hindering direct applications of the rigorous coupled wave analysis for the acousto-optical effect. In a reference frame which moves with the acoustic wave, the grating is static, the medium moves, and the coupled wave equations for the static grating may be derived. Floquet's theorem is then applied to cast these equations into an eigenproblem. Using a Lorentz transformation, the electromagnetic fields in the grating region are transformed to the lab frame where the medium is at rest, and relativistic Doppler frequency shifts are introduced into various diffraction orders. In the lab frame, the boundary conditions are considered and the diffraction efficiencies of various orders are determined. This method is rigorous and general, and the plane waves in the resulting expansion satisfy the dispersion relation of the medium and are propagation modes. Properties of various Bragg diffractions are results, rather than preconditions, of this method. Simulations of an acousto-optical tunable filter made by paratellurite, TeO(2), are given as examples.
Research on ponderomotive driven Vlasov–Poisson system in electron acoustic wave parametric region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, C. Z.; Huang, T. W.; Liu, Z. J.
2014-03-15
Theoretical analysis and corresponding 1D Particle-in-Cell (PIC) simulations of ponderomotive driven Vlasov–Poisson system in electron acoustic wave (EAW) parametric region are demonstrated. Theoretical analysis identifies that under the resonant condition, a monochromatic EAW can be excited when the wave number of the drive ponderomotive force satisfies 0.26≲k{sub d}λ{sub D}≲0.53. If k{sub d}λ{sub D}≲0.26, nonlinear superposition of harmonic waves can be resonantly excited, called kinetic electrostatic electron nonlinear waves. Numerical simulations have demonstrated these wave excitation and evolution dynamics, in consistence with the theoretical predictions. The physical nature of these two waves is supposed to be interaction of harmonic waves, andmore » their similar phase space properties are also discussed.« less
NASA Astrophysics Data System (ADS)
Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.
2013-09-01
Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms
Ocean rogue waves and their phase space dynamics in the limit of a linear interference model.
Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter
2016-10-12
We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.
Ocean rogue waves and their phase space dynamics in the limit of a linear interference model
Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter
2016-01-01
We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability. PMID:27731411
Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.
Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S
2015-05-15
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.
NASA Astrophysics Data System (ADS)
Patra, Anindita; Bhaskaran, Prasad K.
2017-08-01
The head Bay region bordering the northern Bay of Bengal is a densely populated area with a complex geomorphologic setting, and highly vulnerable to extreme water levels along with other factors like sea level rise and impact of tropical cyclones. The influence of climate change on wind-wave regime from this region of Bay of Bengal is not known well and that requires special attention, and there is a need to perform its long-term assessment for societal benefits. This study provides a comprehensive analysis on the temporal variability in domain averaged wind speed, significant wave height (SWH) utilizing satellite altimeter data (1992-2012) and mean wave period using ECMWF reanalysis products ERA-Interim (1992-2012) and ERA-20C (1992-2010) over this region. The SWH derived from WAVEWATCH III (WW3) model along with the ERA-Interim reanalysis supplements the observed variability in satellite altimeter observations. Further, the study performs an extensive error estimation of SWH and mean wave period with ESSO-NIOT wave atlas that shows a high degree of under-estimation in the wave atlas mean wave period. Annual mean and wind speed maxima from altimeter show an increasing trend, and to a lesser extent in the SWH. Interestingly, the estimated trend is higher for maxima compared to the mean conditions. Analysis of decadal variability exhibits an increased frequency of higher waves in the present decade compared to the past. Linear trend analysis show significant upswing in spatially averaged ERA-20C mean wave period, whereas the noticed variations are marginal in the ERA-Interim data. A separate trend analysis for the wind-seas, swell wave heights and period from ERA-20C decipher the fact that distant swells governs the local wind-wave climatology over the head Bay region, and over time the swell activity have increased in this region.
Rigorous approaches to tether dynamics in deployment and retrieval
NASA Technical Reports Server (NTRS)
Antona, Ettore
1987-01-01
Dynamics of tethers in a linearized analysis can be considered as the superposition of propagating waves. This approach permits a new way for the analysis of tether behavior during deployment and retrieval, where a tether is composed by a part at rest and a part subjected to propagation phenomena, with the separating section depending on time. The dependence on time of the separating section requires the analysis of the reflection of the waves travelling toward the part at rest. Such a reflection generates a reflected wave, whose characteristics are determined. The propagation phenomena of major interest in a tether are transverse waves and longitudinal waves, all mathematically modelled by the vibrating chord equations, if the tension is considered constant along the tether. An interesting problem also considered is concerned with the dependence of the tether tension from the longitudinal position, due to microgravity, and the influence of this dependence on the propagation waves.
On the response of rubbers at high strain rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemczura, Johnathan Greenberg
In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between themore » experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.« less
NASA Technical Reports Server (NTRS)
Giamei, A. F.; Salkeld, R. W.; Hayes, C. W.
1981-01-01
The objective of the High-Pressure Turbine Fabrication Program was to demonstrate the application and feasibility of Pratt & Whitney Aircraft-developed two-piece, single crystal casting and bonding technology on the turbine blade and vane configurations required for the high-pressure turbine in the Energy Efficient Engine. During the first phase of the program, casting feasibility was demonstrated. Several blade and vane halves were made for the bonding trials, plus solid blades and vanes were successfully cast for materials evaluation tests. Specimens exhibited the required microstructure and chemical composition. Bonding feasibility was demonstrated in the second phase of the effort. Bonding yields of 75 percent for the vane and 30 percent for the blade were achieved, and methods for improving these yield percentages were identified. A bond process was established for PWA 1480 single crystal material which incorporated a transient liquid phase interlayer. Bond properties were substantiated and sensitivities determined. Tooling die materials were identified, and an advanced differential thermal expansion tooling concept was incorporated into the bond process.
Deficit-Lesion Correlations in Syntactic Comprehension in Aphasia
Caplan, David; Michaud, Jennifer; Hufford, Rebecca; Makris, Nikos
2015-01-01
The effects of lesions on syntactic comprehension were studied in thirty one people with aphasia (PWA). Participants were tested for the ability to parse and interpret four types of syntactic structures and elements -- passives, object extracted relative clauses, reflexives and pronouns – in three tasks – object manipulation, sentence picture matching with full sentence presentation and sentence picture matching with self-paced listening presentation. Accuracy, end-of-sentence RT and self-paced listening times for each word were measured. MR scans were obtained and analyzed for total lesion volume and for lesion size in 48 cortical areas. Lesion size in several areas of the left hemisphere was related to accuracy in particular sentence types in particular tasks and to self-paced listening times for critical words in particular sentence types. The results support a model of brain organization that includes areas that are specialized for the combination of particular syntactic and interpretive operations and the use of the meanings produced by those operations to accomplish task-related operations. PMID:26688433
Deficit-lesion correlations in syntactic comprehension in aphasia.
Caplan, David; Michaud, Jennifer; Hufford, Rebecca; Makris, Nikos
2016-01-01
The effects of lesions on syntactic comprehension were studied in thirty-one people with aphasia (PWA). Participants were tested for the ability to parse and interpret four types of syntactic structures and elements - passives, object extracted relative clauses, reflexives and pronouns - in three tasks - object manipulation, sentence picture matching with full sentence presentation and sentence picture matching with self-paced listening presentation. Accuracy, end-of-sentence RT and self-paced listening times for each word were measured. MR scans were obtained and analyzed for total lesion volume and for lesion size in 48 cortical areas. Lesion size in several areas of the left hemisphere was related to accuracy in particular sentence types in particular tasks and to self-paced listening times for critical words in particular sentence types. The results support a model of brain organization that includes areas that are specialized for the combination of particular syntactic and interpretive operations and the use of the meanings produced by those operations to accomplish task-related operations. Copyright © 2015 Elsevier Inc. All rights reserved.
The Shock and Vibration Digest, Volume 14, Number 2, February 1982
1982-02-01
figurations. 75 4J DUCTS 82-424 (Also see No. 346) Coupling Lou Factors for Statistical Energy Analysis of Sound Transnission at Rectangular...waves, Sound waves, Wave props- tures by means of statistical energy analysis (SEA) coupling gation loss factors for the structure-borne sound...multilayered panels are discussed. Statistical energy analysis (SEA) has proved to be a promising Experimental results of stiffened panels, damping tape
A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties
Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...
2015-07-23
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less
NASA Astrophysics Data System (ADS)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.
Shakya, Holly B.; Fleming, Paul; Saggurti, Niranjan; Donta, Balaiah; Silverman, Jay; Raj, Anita
2018-01-01
We conducted longitudinal analyses examining the associations between intimate partner violence (IPV) attitudes and women’s reported IPV in couples (N = 762) using 3 waves of data from a randomized controlled trial in Maharashtra, India. We found that, between Waves 1 and 2, men’s and women’s acceptance of IPV in the overall population decreased significantly while reports of IPV increased. These changes, we hypothesize, are evidence of an exogenous shock, possibly a high profile rape in Delhi in December 2012, that may have impacted the entire population. Cross-sectional associations between men’s attitudes towards IPV and reported IPV were not significant in Wave 1, while positively and significantly associated in Waves 2 and 3. Longitudinal analysis showed that reduction in men’s acceptance of IPV between Waves 1 and 2 was associated with a lower likelihood of reported IPV in Wave 3. Women’s Wave 1 acceptance of IPV was positively associated with reported IPV in the Wave 1 cross-sectional analysis, while Wave 2 and Wave 3 measures of IPV acceptance were negatively associated with reported IPV in Waves 2 and 3 respectively. Longitudinal analyses of the change in women’s attitudes towards IPV from Wave 1 to 2 and reported IPV in Wave 3 were insignificant. However, When women first reported IPV in Waves 2 or 3 they were less likely to report acceptance of IPV in that same wave. Findings suggest that changes in husbands’ IPV acceptance is predictive of subsequent IPV, while newly experienced IPV predicts decreased IPV acceptance for women. Wave 2 and Wave 3 results were significant for the control group only, evidence that the intervention affected those associations, potentially changing attitudes more quickly than behavior. We recommend interventions that expose community opposition to IPV as a new social norm, and analysis of how the 2012 Delhi rape case may have affected these norms. PMID:28260640
An impedance analysis of double-stream interaction in semiconductors
NASA Technical Reports Server (NTRS)
Chen, P. W.; Durney, C. H.
1972-01-01
The electromagnetic waves propagating through a drifting semiconductor plasma are studied from a macroscopic point of view in terms of double-stream interaction. The possible existing waves (helicon waves, longitudinal waves, ordinary waves, and pseudolongitudinal waves) which depend upon the orientation of the dc external magnetic field are derived. A powerful impedance concept is introduced to investigate the wave behavior of longitudinal (space charge) waves or pseudolongitudinal waves in a semiconductor plasma. The impedances due to one- and two-carrier stream interactions were calculated theoretically.
NASA Astrophysics Data System (ADS)
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2017-03-01
This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.
Generation mechanisms of fundamental rogue wave spatial-temporal structure.
Ling, Liming; Zhao, Li-Chen; Yang, Zhan-Ying; Guo, Boling
2017-08-01
We discuss the generation mechanism of fundamental rogue wave structures in N-component coupled systems, based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our analysis discloses that the pattern of a fundamental rogue wave is determined by the evolution energy and growth rate of the resonant perturbation that is responsible for forming the rogue wave. This finding allows one to predict the rogue wave pattern without the need to solve the N-component coupled nonlinear Schrödinger equation. Furthermore, our results show that N-component coupled nonlinear Schrödinger systems may possess N different fundamental rogue wave patterns at most. These results can be extended to evaluate the type and number of fundamental rogue wave structure in other coupled nonlinear systems.
Analysis of an axial compressor blade vibration based on wave reflection theory
NASA Technical Reports Server (NTRS)
Owczarek, J. A.
1983-01-01
The paper describes application of the theory of wave reflection in turbomachines to rotor blade vibrations measured in an axial compressor stage. The blade vibrations analyzed could not be predicted using various flutter prediction techniques. The wave reflection theory, first advanced in 1966, is expanded, and more general equations for the rotor blade excitation frequencies are derived. The results of the analysis indicate that all examined rotor blade vibrations can be explained by forced excitations caused by reflecting waves (pressure pulses). Wave reflections between the rotor blades and both the upstream and downstream stator vanes had to be considered.
Long-Term Global Morphology of Gravity Wave Activity Using UARS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.
1998-01-01
Progress in research into the global morphology of gravity wave activity using UARS data is described for the period March-June, 1998. Highlights this quarter include further progress in the analysis and interpretation of CRISTA temperature variances; model-generated climatologies of mesospheric gravity wave activity using the HWM-93 wind and temperature model; and modeling of gravity wave detection from space-based platforms. Preliminary interpretations and recommended avenues for further analysis are also described.
WaveNet: A Web-Based Metocean Data Access, Processing, and Analysis Tool. Part 3 - CDIP Database
2014-06-01
and Analysis Tool; Part 3 – CDIP Database by Zeki Demirbilek, Lihwa Lin, and Derek Wilson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) describes coupling of the Coastal Data Information Program ( CDIP ) database to WaveNet, the first module of MetOcnDat (Meteorological...provides a step-by-step procedure to access, process, and analyze wave and wind data from the CDIP database. BACKGROUND: WaveNet addresses a basic
Analysis of Slow-Wave Activity and Slow-Wave Oscillations Prior to Somnambulism
Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio
2010-01-01
Study Objectivies: Several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. Participants: Twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. Results: Analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. Conclusions: The specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined. Citation: Jaar O; Pilon M; Carrier J; Montplaisir J; Zadra A. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism. SLEEP 2010;33(11):1511-1516. PMID:21102993
NASA Astrophysics Data System (ADS)
Kodera, Yuki
2018-01-01
Large earthquakes with long rupture durations emit P wave energy throughout the rupture period. Incorporating late-onset P waves into earthquake early warning (EEW) algorithms could contribute to robust predictions of strong ground motion. Here I describe a technique to detect in real time P waves from growing ruptures to improve the timeliness of an EEW algorithm based on seismic wavefield estimation. The proposed P wave detector, which employs a simple polarization analysis, successfully detected P waves from strong motion generation areas of the 2011 Mw 9.0 Tohoku-oki earthquake rupture. An analysis using 23 large (M ≥ 7) events from Japan confirmed that seismic intensity predictions based on the P wave detector significantly increased lead times without appreciably decreasing the prediction accuracy. P waves from growing ruptures, being one of the fastest carriers of information on ongoing rupture development, have the potential to improve the performance of EEW systems.
Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia
NASA Astrophysics Data System (ADS)
Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas
2016-01-01
Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.
Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia.
Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas
2016-01-01
Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.
Self-consistent adjoint analysis for topology optimization of electromagnetic waves
NASA Astrophysics Data System (ADS)
Deng, Yongbo; Korvink, Jan G.
2018-05-01
In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.
NASA Astrophysics Data System (ADS)
Matsuda, Takashi S.; Nakamura, Takuji; Ejiri, Mitsumu K.; Tsutsumi, Masaki; Shiokawa, Kazuo
2014-08-01
We have developed a new analysis method for obtaining the power spectrum in the horizontal phase velocity domain from airglow intensity image data to study atmospheric gravity waves. This method can deal with extensive amounts of imaging data obtained on different years and at various observation sites without bias caused by different event extraction criteria for the person processing the data. The new method was applied to sodium airglow data obtained in 2011 at Syowa Station (69°S, 40°E), Antarctica. The results were compared with those obtained from a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal characteristics, such as wavelengths, phase velocities, and wave periods. The horizontal phase velocity of each wave event in the airglow images corresponded closely to a peak in the spectrum. The statistical results of spectral analysis showed an eastward offset of the horizontal phase velocity distribution. This could be interpreted as the existence of wave sources around the stratospheric eastward jet. Similar zonal anisotropy was also seen in the horizontal phase velocity distribution of the gravity waves by the event analysis. Both methods produce similar statistical results about directionality of atmospheric gravity waves. Galactic contamination of the spectrum was examined by calculating the apparent velocity of the stars and found to be limited for phase speeds lower than 30 m/s. In conclusion, our new method is suitable for deriving the horizontal phase velocity characteristics of atmospheric gravity waves from an extensive amount of imaging data.
NASA Technical Reports Server (NTRS)
Alexander, Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
NASA Technical Reports Server (NTRS)
Alexander, M. Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
Coronary wave energy: a novel predictor of functional recovery after myocardial infarction.
De Silva, Kalpa; Foster, Paul; Guilcher, Antoine; Bandara, Asela; Jogiya, Roy; Lockie, Tim; Chowiencyzk, Phil; Nagel, Eike; Marber, Michael; Redwood, Simon; Plein, Sven; Perera, Divaka
2013-04-01
Revascularization after acute coronary syndromes provides prognostic benefit, provided that the subtended myocardium is viable. The microcirculation and contractility of the subtended myocardium affect propagation of coronary flow, which can be characterized by wave intensity analysis. The study objective was to determine in acute coronary syndromes whether early wave intensity analysis-derived microcirculatory (backward) expansion wave energy predicts late viability, defined by functional recovery. Thirty-one patients (58±11 years) were enrolled after non-ST elevation myocardial infarction. Regional left ventricular function and late-gadolinium enhancement were assessed by cardiac magnetic resonance imaging, before and 3 months after revascularization. The backward-traveling (microcirculatory) expansion wave was derived from wave intensity analysis of phasic coronary pressure and velocity in the infarct-related artery, whereas mean values were used to calculate hyperemic microvascular resistance. Twelve-hour troponin T, left ventricular ejection fraction, and percentage late-gadolinium enhancement mass were 1.35±1.21 µg/L, 56±11%, and 8.4±6.0%, respectively. The infarct-related artery backward-traveling (microcirculatory) expansion wave was inversely correlated with late-gadolinium enhancement infarct mass (r=-0.81; P<0.0001) and strongly predicted regional left ventricular recovery (r=0.68; P=0.001). By receiver operating characteristic analysis, a backward-traveling (microcirculatory) expansion wave threshold of 2.8 W m(-2) s(-2)×10(5) predicted functional recovery with sensitivity and specificity of 0.91 and 0.82 (AUC 0.88). Hyperemic microvascular resistance correlated with late-gadolinium enhancement mass (r=0.48; P=0.03) but not left ventricular recovery (r=-0.34; P=0.07). The microcirculation-derived backward expansion wave is a new index that correlates with the magnitude and location of infarction, which may allow for the prediction of functional myocardial recovery. Coronary wave intensity analysis may facilitate myocardial viability assessment during cardiac catheterization.
Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy
Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.
2015-01-01
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615
Stability analysis and wave dynamics of an extended hybrid traffic flow model
NASA Astrophysics Data System (ADS)
Wang, Yu-Qing; Zhou, Chao-Fan; Li, Wei-Kang; Yan, Bo-Wen; Jia, Bin; Wang, Ji-Xin
2018-02-01
The stability analysis and wave dynamic properties of an extended hybrid traffic flow model, WZY model, are intensively studied in this paper. The linear stable condition obtained by the linear stability analysis is presented. Besides, by means of analyzing Korteweg-de Vries equation, we present soliton waves in the metastable region. Moreover, the multiscale perturbation technique is applied to derive the traveling wave solution of the model. Furthermore, by means of performing Darboux transformation, the first-order and second-order doubly-periodic solutions and rational solutions are presented. It can be found that analytical solutions match well with numerical simulations.
Changes in the extreme wave heights over the Baltic Sea
NASA Astrophysics Data System (ADS)
Kudryavtseva, Nadia; Soomere, Tarmo
2017-04-01
Storms over the Baltic Sea and northwestern Europe have a large impact on the population, offshore industry, and shipping. The understanding of extreme events in sea wave heights and their change due to the climate change and variability is critical for assessment of flooding risks and coastal protection. The BACCII Assessment of Climate Change for the Baltic Sea Basin showed that the extreme events analysis of wind waves is currently not very well addressed, as well as satellite observations of the wave heights. Here we discuss the analysis of all existing satellite altimetry data over the Baltic Sea Basin regarding extremes in the wave heights. In this talk for the first time, we present an analysis of 100-yr return periods, fitted generalized Pareto and Weibull distributions, number, and frequency of extreme events in wave heights in the Baltic Sea measured by the multi-mission satellite altimetry. The data span more than 23 years and provide an excellent spatial coverage over the Baltic Sea, allowing to study in details spatial variations and changes in extreme wave heights. The analysis is based on an application of the Initial Distribution Method, Annual Maxima method and Peak-Over-Threshold approach to satellite altimetry data, all validated in comparison with in-situ wave height measurements. Here we show that the 100-yr return periods of wave heights show significant spatial changes over the Baltic Sea indicating a decrease in the southern part of the Baltic Sea and an increase in adjacent areas, which can significantly affect coast vulnerability. Here we compare the observed shift with storm track database data and discuss a spatial correlation and possible connection between the changes in the storm tracks over the Baltic Sea and the change in the extreme wave heights.
NASA Astrophysics Data System (ADS)
Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.
2014-12-01
Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.
NASA Technical Reports Server (NTRS)
Ohnami, S.; Hayakawa, M.; Bell, T. F.; Ondoh, T.
1993-01-01
Nonlinear wave-wave interaction between signals from a ground-based VLF transmitter and narrow-band ELF emissions in the subauroral ionosphere is studied by means of the bispectrum and bicoherence analysis. A bicoherence analysis has indicated that the sideband structures around the Siple transmitter signal received onboard the ISIS satellite are due to the nonlinear interaction between the Siple VLF signal and the pre-existing ELF emission.
NASA Astrophysics Data System (ADS)
Adem, Abdullahi Rashid
2016-05-01
We consider a (2+1)-dimensional Korteweg-de Vries type equation which models the shallow-water waves, surface and internal waves. In the analysis, we use the Lie symmetry method and the multiple exp-function method. Furthermore, conservation laws are computed using the multiplier method.
Tsunamis generated by subaerial mass flows
Walder, S.J.; Watts, P.; Sorensen, O.E.; Janssen, K.
2003-01-01
Tsunamis generated in lakes and reservoirs by subaerial mass flows pose distinctive problems for hazards assessment because the domain of interest is commonly the "near field," beyond the zone of complex splashing but close enough to the source that wave propagation effects are not predominant. Scaling analysis of the equations governing water wave propagation shows that near-field wave amplitude and wavelength should depend on certain measures of mass flow dynamics and volume. The scaling analysis motivates a successful collapse (in dimensionless space) of data from two distinct sets of experiments with solid block "wave makers." To first order, wave amplitude/water depth is a simple function of the ratio of dimensionless wave maker travel time to dimensionless wave maker volume per unit width. Wave amplitude data from previous laboratory investigations with both rigid and deformable wave makers follow the same trend in dimensionless parameter space as our own data. The characteristic wavelength/water depth for all our experiments is simply proportional to dimensionless wave maker travel time, which is itself given approximately by a simple function of wave maker length/water depth. Wave maker shape and rigidity do not otherwise influence wave features. Application of the amplitude scaling relation to several historical events yields "predicted" near-field wave amplitudes in reasonable agreement with measurements and observations. Together, the scaling relations for near-field amplitude, wavelength, and submerged travel time provide key inputs necessary for computational wave propagation and hazards assessment.
Copepod Behavior Response in an Internal Wave Apparatus
NASA Astrophysics Data System (ADS)
Webster, D. R.; Jung, S.; Haas, K. A.
2017-11-01
This study is motivated to understand the bio-physical forcing in zooplankton transport in and near internal waves, where high levels of zooplankton densities have been observed in situ. A laboratory-scale internal wave apparatus was designed to create a standing internal wave for various physical arrangements that mimic conditions observed in the field. A theoretical analysis of a standing internal wave inside a two-layer stratification system including non-linear wave effects was conducted to derive the expressions for the independent variables controlling the wave motion. Focusing on a case with a density jump of 1.0 σt, a standing internal wave was generated with a clean interface and minimal mixing across the pycnocline. Spatial and frequency domain measurements of the internal wave were evaluated in the context of the theoretical analysis. Behavioral assays with a mixed population of three marine copepods were conducted in control (stagnant homogeneous fluid), stagnant density jump interface, and internal wave flow configurations. In the internal wave treatment, the copepods showed an acrobatic, orbital-like motion in and around the internal wave region (bounded by the crests and the troughs of the waves). Trajectories of passive, neutrally-buoyant particles in the internal wave flow reveal that they generally oscillate back-and-forth along fixed paths. Thus, we conclude that the looping, orbital trajectories of copepods in the region near the internal wave interface are due to animal behavior rather than passive transport.
Inversion of high frequency surface waves with fundamental and higher modes
Xia, J.; Miller, R.D.; Park, C.B.; Tian, G.
2003-01-01
The phase velocity of Rayleigh-waves of a layered earth model is a function of frequency and four groups of earth parameters: compressional (P)-wave velocity, shear (S)-wave velocity, density, and thickness of layers. For the fundamental mode of Rayleigh waves, analysis of the Jacobian matrix for high frequencies (2-40 Hz) provides a measure of dispersion curve sensitivity to earth model parameters. S-wave velocities are the dominant influence of the four earth model parameters. This thesis is true for higher modes of high frequency Rayleigh waves as well. Our numerical modeling by analysis of the Jacobian matrix supports at least two quite exciting higher mode properties. First, for fundamental and higher mode Rayleigh wave data with the same wavelength, higher modes can "see" deeper than the fundamental mode. Second, higher mode data can increase the resolution of the inverted S-wave velocities. Real world examples show that the inversion process can be stabilized and resolution of the S-wave velocity model can be improved when simultaneously inverting the fundamental and higher mode data. ?? 2002 Elsevier Science B.V. All rights reserved.
Preliminary Analysis of a Submerged Wave Energy Device
NASA Astrophysics Data System (ADS)
Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.
2016-02-01
Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.
Statistical analysis of dispersion relations in turbulent solar wind fluctuations using Cluster data
NASA Astrophysics Data System (ADS)
Perschke, C.; Narita, Y.
2012-12-01
Multi-spacecraft measurements enable us to resolve three-dimensional spatial structures without assuming Taylor's frozen-in-flow hypothesis. This is very useful to study frequency-wave vector diagram in solar wind turbulence through direct determination of three-dimensional wave vectors. The existence and evolution of dispersion relation and its role in fully-developed plasma turbulence have been drawing attention of physicists, in particular, if solar wind turbulence represents kinetic Alfvén or whistler mode as the carrier of spectral energy among different scales through wave-wave interactions. We investigate solar wind intervals of Cluster data for various flow velocities with a high-resolution wave vector analysis method, Multi-point Signal Resonator technique, at the tetrahedral separation about 100 km. Magnetic field data and ion data are used to determine the frequency- wave vector diagrams in the co-moving frame of the solar wind. We find primarily perpendicular wave vectors in solar wind turbulence which justify the earlier discussions about kinetic Alfvén or whistler wave. The frequency- wave vector diagrams confirm (a) wave vector anisotropy and (b) scattering in frequencies.
NASA Technical Reports Server (NTRS)
Goldsmith, V.; Morris, W. D.; Byrne, R. J.; Whitlock, C. H.
1974-01-01
A computerized wave climate model is developed that applies linear wave theory and shelf depth information to predict wave behavior as they pass over the continental shelf as well as the resulting wave energy distributions along the coastline. Reviewed are also the geomorphology of the Mid-Atlantic Continental Shelf, wave computations resulting from 122 wave input conditions, and a preliminary analysis of these data.
Lv, Xiaoyang; Sun, Wei; Yin, Jinfeng; Ni, Rong; Su, Rui; Wang, Qingzeng; Gao, Wen; Bao, Jianjun; Yu, Jiarui; Wang, Lihong; Chen, Ling
2016-01-01
Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep’s wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves, medium waves included 13 downregulated miRNAs that had regulatory effects on 64 upregulated genes and 4 upregulated miRNAs, which in turn had regulatory effects on 22 downregulated genes. Compared to medium waves, large waves consisted of 13 upregulated miRNAs that had regulatory effects on 48 downregulated genes. These differentially expressed miRNAs and genes may play a significant role in forming different patterns, and provide evidence for the molecular mechanisms underlying the formation of hair follicles of varying patterns. PMID:27404636
Receiver function analysis applied to refraction survey data
NASA Astrophysics Data System (ADS)
Subaru, T.; Kyosuke, O.; Hitoshi, M.
2008-12-01
For the estimation of the thickness of oceanic crust or petrophysical investigation of subsurface material, refraction or reflection seismic exploration is one of the methods frequently practiced. These explorations use four-component (x,y,z component of acceleration and pressure) seismometer, but only compressional wave or vertical component of seismometers tends to be used in the analyses. Hence, it is needed to use shear wave or lateral component of seismograms for more precise investigation to estimate the thickness of oceanic crust. Receiver function is a function at a place that can be used to estimate the depth of velocity interfaces by receiving waves from teleseismic signal including shear wave. Receiver function analysis uses both vertical and horizontal components of seismograms and deconvolves the horizontal with the vertical to estimate the spectral difference of P-S converted waves arriving after the direct P wave. Once the phase information of the receiver function is obtained, then one can estimate the depth of the velocity interface. This analysis has advantage in the estimation of the depth of velocity interface including Mohorovicic discontinuity using two components of seismograms when P-to-S converted waves are generated at the interface. Our study presents results of the preliminary study using synthetic seismograms. First, we use three types of geological models that are composed of a single sediment layer, a crust layer, and a sloped Moho, respectively, for underground sources. The receiver function can estimate the depth and shape of Moho interface precisely for the three models. Second, We applied this method to synthetic refraction survey data generated not by earthquakes but by artificial sources on the ground or sea surface. Compressional seismic waves propagate under the velocity interface and radiate converted shear waves as well as at the other deep underground layer interfaces. However, the receiver function analysis applied to the second model cannot clearly estimate the velocity interface behind S-P converted wave or multi-reflected waves in a sediment layer. One of the causes is that the incidence angles of upcoming waves are too large compared to the underground source model due to the slanted interface. As a result, incident converted shear waves have non-negligible energy contaminating the vertical component of seismometers. Therefore, recorded refraction waves need to be transformed from depth-lateral coordinate into radial-tangential coordinate, and then Ps converted waves can be observed clearly. Finally, we applied the receiver function analysis to a more realistic model. This model has not only similar sloping Mohorovicic discontinuity and surface source locations as second model but the surface water layer. Receivers are aligned on the sea bottom (OBS; Ocean Bottom Seismometer survey case) Due to intricately bounced reflections, simulated seismic section becomes more complex than the other previously-mentioned models. In spite of the complexity in the seismic records, we could pick up the refraction waves from Moho interface, after stacking more than 20 receiver functions independently produced from each shot gather. After these processing, the receiver function analysis is justified as a method to estimate the depths of velocity interfaces and would be the applicable method for refraction wave analysis. The further study will be conducted for more realistic model that contain inhomogeneous sediment model, for example, and finally used in the inversion of the depth of velocity interfaces like Moho.
Utilization of high-frequency Rayleigh waves in near-surface geophysics
Xia, J.; Miller, R.D.; Park, C.B.; Ivanov, J.; Tian, G.; Chen, C.
2004-01-01
Shear-wave velocities can be derived from inverting the dispersive phase velocity of the surface. The multichannel analysis of surface waves (MASW) is one technique for inverting high-frequency Rayleigh waves. The process includes acquisition of high-frequency broad-band Rayleigh waves, efficient and accurate algorithms designed to extract Rayleigh-wave dispersion curves from Rayleigh waves, and stable and efficient inversion algorithms to obtain near-surface S-wave velocity profiles. MASW estimates S-wave velocity from multichannel vertical compoent data and consists of data acquisition, dispersion-curve picking, and inversion.
NASA Technical Reports Server (NTRS)
Glytsis, Elias N.; Brundrett, David L.; Gaylord, Thomas K.
1993-01-01
A review of the rigorous coupled-wave analysis as applied to the diffraction of electro-magnetic waves by gratings is presented. The analysis is valid for any polarization, angle of incidence, and conical diffraction. Cascaded and/or multiplexed gratings as well as material anisotropy can be incorporated under the same formalism. Small period rectangular groove gratings can also be modeled using approximately equivalent uniaxial homogeneous layers (effective media). The ordinary and extraordinary refractive indices of these layers depend on the gratings filling factor, the refractive indices of the substrate and superstrate, and the ratio of the freespace wavelength to grating period. Comparisons of the homogeneous effective medium approximations with the rigorous coupled-wave analysis are presented. Antireflection designs (single-layer or multilayer) using the effective medium models are presented and compared. These ultra-short period antireflection gratings can also be used to produce soft x-rays. Comparisons of the rigorous coupled-wave analysis with experimental results on soft x-ray generation by gratings are also included.
A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid.
Santos, Juan E; Savioli, Gabriela B
2015-11-01
This paper presents an analysis of a model for the propagation of waves in a poroelastic solid saturated by a three-phase viscous, compressible fluid. The constitutive relations and the equations of motion are stated first. Then a plane wave analysis determines the phase velocities and attenuation coefficients of the four compressional waves and one shear wave that propagate in this type of medium. A procedure to compute the elastic constants in the constitutive relations is defined next. Assuming the knowledge of the shear modulus of the dry matrix, the other elastic constants in the stress-strain relations are determined by employing ideal gedanken experiments generalizing those of Biot's theory for single-phase fluids. These experiments yield expressions for the elastic constants in terms of the properties of the individual solid and fluids phases. Finally the phase velocities and attenuation coefficients of all waves are computed for a sample of Berea sandstone saturated by oil, gas, and water.
An improved numerical model for wave rotor design and analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack
1993-01-01
A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.
An improved numerical model for wave rotor design and analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack
1992-01-01
A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.
Flutter and forced response of mistuned rotors using standing wave analysis
NASA Technical Reports Server (NTRS)
Dugundji, J.; Bundas, D. J.
1983-01-01
A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motions, and mistuning effects in rotors.
Flutter and forced response of mistuned rotors using standing wave analysis
NASA Technical Reports Server (NTRS)
Bundas, D. J.; Dungundji, J.
1983-01-01
A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motion, and mistuning effects in rotors.
NASA Astrophysics Data System (ADS)
Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong
2017-12-01
The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.
NASA Astrophysics Data System (ADS)
Lieske, Mike; Schlurmann, Torsten
2016-04-01
INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common 3D wave analysis method, the Bayesian Directional Spectrum method (BDM). BDM was presented by Hashimoto et al. (1988). Lastly, identification of the wave-current interaction, the results from experiment with simultaneous waves and currents are compared with results for only-currents and only-waves in order to identify and exemplify the significance of nonlinear interaction processes. RESULTS The first results of the wave-current interaction show, as expected, a reduction in the wave height in the direction of flow and an increase in wave heights against the flow with unidirectional monochromatic waves. The superposition of current and orbital velocities cannot be conducted linearly. Furthermore, the results show a current domination for low wave periods and wave domination for larger wave periods. The criterion of a current or wave domination will be presented in the presentation. ACKNOWLEDGEMENT The support of the KFKI research project "Seegangsbelastungen (Seele)" (Contract No. 03KIS107) by the German "Federal Ministry of Education and Research (BMBF)" is gratefully acknowledged.
Modes of embayed beach dynamics: analysis reveals emergent timescales
NASA Astrophysics Data System (ADS)
Murray, K. T.; Murray, A.; Limber, P. W.; Ells, K. D.
2013-12-01
Embayed beaches, or beaches positioned between rocky headlands, exhibit morphologic changes over many length and time scales. Beach sediment is transported as a result of the day-to-day wave forcing, causing patterns of erosion and accretion. We use the Rocky Coastline Evolution Model (RCEM) to investigate how patterns of shoreline change depend on wave climate (the distribution of wave-approach angles) and beach characteristics. Measuring changes in beach width through time allows us to track the evolution of the shape of the beach and the movement of sand within it. By using Principle Component Analysis (PCA), these changes can be categorized into modes, where the first few modes explain the majority of the variation in the time series. We analyze these modes and how they vary as a function of wave climate and headland/bay aspect ratio. In the purposefully simple RCEM, sediment transport is wave-driven and affected by wave shadowing behind the headlands. The rock elements in our model experiments (including the headlands) are fixed and unerodable so that this analysis can focus purely on sand dynamics between the headlands, without a sand contribution from the headlands or cliffs behind the beach. The wave climate is characterized by dictating the percentage of offshore waves arriving from the left and the percentage of waves arriving from high angles (very oblique to the coastline orientation). A high-angle dominated wave climate tends to amplify coastline perturbations, whereas a lower-angle wave climate is diffusive. By changing the headland/bay aspect ratio and wave climate, we can perform PCA analysis of generalized embayed beaches with differing anatomy and wave climate forcings. Previous work using PCA analysis of embayed beaches focused on specific locations and shorter timescales (<30 years; Short and Trembanis, 2004). By using the RCEM, we can more broadly characterize beach dynamics over longer timescales. The first two PCA modes, which explain a majority of the beach width time series variation (typically >70%), are a 'breathing' mode and a 'rotational' mode. The newly identified breathing mode captures the sand movement from the middle of the beach towards the edges (thickening the beach along the headlands), and the rotational mode describes the movement of sand towards one headland or another, both in response to stochastic fluctuations about the mean wave climate. The two main modes operate independently and on different timescales. In a weakly low-angle dominated wave climate, the breathing mode tends to be the first mode (capturing the most variance), but with greater low-angle dominance (greater morphological diffusivity), the rotational mode tends to be first. The aspect ratio of the bay also affects the order of the modes, because wave shadowing affects sediment transport behind the headlands. Previous work has attributed beach rotation to changes in various climate indices such as the North Atlantic Oscillation (Thomas et al., 2011); however, PCA analysis of the RCEM results suggests that embayed beaches can have characteristic timescales of sand movement that result from internal system dynamics, emerging even within a statistically constant wave climate. These results suggest that morphologic changes in embayed beaches can occur independently of readily identifiable shifts in forcing.
A review of wave mechanics in the pulmonary artery with an emphasis on wave intensity analysis.
Su, J; Hilberg, O; Howard, L; Simonsen, U; Hughes, A D
2016-12-01
Mean pulmonary arterial pressure and pulmonary vascular resistance (PVR) remain the most common haemodynamic measures to evaluate the severity and prognosis of pulmonary hypertension. However, PVR only captures the non-oscillatory component of the right ventricular hydraulic load and neglects the dynamic compliance of the pulmonary arteries and the contribution of wave transmission. Wave intensity analysis offers an alternative way to assess the pulmonary vasculature in health and disease. Wave speed is a measure of arterial stiffness, and the magnitude and timing of wave reflection provide information on the degree of impedance mismatch between the proximal and distal circulation. Studies in the pulmonary artery have demonstrated distinct differences in arterial wave propagation between individuals with and without pulmonary vascular disease. Notably, greater wave speed and greater wave reflection are observed in patients with pulmonary hypertension and in animal models exposed to hypoxia. Studying wave propagation makes a valuable contribution to the assessment of the arterial system in pulmonary hypertension, and here, we briefly review the current state of knowledge of the methods used to evaluate arterial waves in the pulmonary artery. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
A review of wave mechanics in the pulmonary artery with an emphasis on wave intensity analysis
Su, Junjing; Hilberg, Ole; Howard, Luke; Simonsen, Ulf; Hughes, Alun D
2016-01-01
Mean pulmonary arterial pressure and pulmonary vascular resistance remain the most common hemodynamic measures to evaluate the severity and prognosis of pulmonary hypertension. However, pulmonary vascular resistance only captures the non-oscillatory component of the right ventricular hydraulic load and neglects the dynamic compliance of the pulmonary arteries and the contribution of wave transmission. Wave intensity analysis offers an alternative way to assess the pulmonary vasculature in health and disease. Wave speed is a measure of arterial stiffness and the magnitude and timing of wave reflection provide information on the degree of impedance mismatch between the proximal and distal circulation. Studies in the pulmonary artery have demonstrated distinct differences in arterial wave propagation between individuals with and without pulmonary vascular disease. Notably, greater wave speed and greater wave reflection are observed in patients with pulmonary hypertension and in animal models exposed to hypoxia. Studying wave propagation makes a valuable contribution to the assessment of the arterial system in pulmonary hypertension and here, we briefly review the current state of knowledge of the methods used to evaluate arterial waves in the pulmonary artery. PMID:27636734
NASA Astrophysics Data System (ADS)
Ren, Luchuan
2015-04-01
A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there exist differences in importance order in generating uncertainties of the maximum tsunami wave heights for same group parameters at different specific sites in offshore area. These results are helpful to deeply understand the relationship between the tsunami wave heights and the seismic tsunami source parameters. Keywords: Global sensitivity analysis; Tsunami wave height; Potential seismic tsunami source parameter; Morris method; Extended FAST method
Trends and Periodic Variability in Tropical Wave Clouds
NASA Astrophysics Data System (ADS)
Burgwardt, Lester Charles, III
This dissertation describes the acquisition and analysis of tropical wave cloudiness. Tropical wave positions for the years 2003 through 2013 were extracted via text mining, from the National Hurricane Center's Tropical Weather Discussion, a bulletin released every six hours and published on-line. Tropical wave tracks were developed from these positions using the Multiple Hypothesis Tracking algorithm. Satellite data from the Atmospheric Infrared Sounder (AIRS) was downloaded from the NASA Mirador website based on time and position of tracked tropical waves. The AIRS data was mosaicked to provide complete coverage between satellite swaths. The AIRS Level 2 Cloud Fraction Standard product was used exclusively in the analysis. Cloud fraction data was divided into upper and lower levels as provided in the AIRS product. A cloud fraction ratio was also developed to provide some indication of the insulating quality of clouds. The analysis discovered secular trends of varying degrees and direction depending on location of tropical waves. The analysis also found significant periodic variability within cloud fraction values, much of which correlated to known global oscillations such as El Nino and the Madden-Julian Oscillation. However a number of periodic signals found within tropical wave cloudiness could not be correlated with any of the known global and non-earth oscillations tested against. Future research ideas in the conclusions include an examination of those uncorrelated periodic signals. Also included in the conclusions are theories about differences in correlations to periodic signals within a tropical wave core versus correlations that are seen in surrounding cloud patterns.
Optimizing detection and analysis of slow waves in sleep EEG.
Mensen, Armand; Riedner, Brady; Tononi, Giulio
2016-12-01
Analysis of individual slow waves in EEG recording during sleep provides both greater sensitivity and specificity compared to spectral power measures. However, parameters for detection and analysis have not been widely explored and validated. We present a new, open-source, Matlab based, toolbox for the automatic detection and analysis of slow waves; with adjustable parameter settings, as well as manual correction and exploration of the results using a multi-faceted visualization tool. We explore a large search space of parameter settings for slow wave detection and measure their effects on a selection of outcome parameters. Every choice of parameter setting had some effect on at least one outcome parameter. In general, the largest effect sizes were found when choosing the EEG reference, type of canonical waveform, and amplitude thresholding. Previously published methods accurately detect large, global waves but are conservative and miss the detection of smaller amplitude, local slow waves. The toolbox has additional benefits in terms of speed, user-interface, and visualization options to compare and contrast slow waves. The exploration of parameter settings in the toolbox highlights the importance of careful selection of detection METHODS: The sensitivity and specificity of the automated detection can be improved by manually adding or deleting entire waves and or specific channels using the toolbox visualization functions. The toolbox standardizes the detection procedure, sets the stage for reliable results and comparisons and is easy to use without previous programming experience. Copyright © 2016 Elsevier B.V. All rights reserved.
The Third Planet: Surfers, Bedsprings and Harmonicas.
ERIC Educational Resources Information Center
Helms, Harry
1991-01-01
Examines the everywhere-observable phenomena of waveforms, and how waves transport energy across a distance within some given medium. Discusses how waves are described, what happens when waves meet, the specifics of standing waves and echoes, and an introduction to Fourier analysis. (JJK)
Impact analysis of air gap motion with respect to parameters of mooring system for floating platform
NASA Astrophysics Data System (ADS)
Shen, Zhong-xiang; Huo, Fa-li; Nie, Yan; Liu, Yin-dong
2017-04-01
In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.
North Atlantic storm driving of extreme wave heights in the North Sea
NASA Astrophysics Data System (ADS)
Bell, R. J.; Gray, S. L.; Jones, O. P.
2017-04-01
The relationship between storms and extreme ocean waves in the North Sea is assessed using a long-period wave data set and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to intense extratropical cyclone winds from either the cold conveyor belt (northerly-wind events) or the warm conveyor belt (southerly-wind events). The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearward round the cyclone to the cold side of the warm front. The northerly-wind events provide a larger fetch to the central North Sea to aid wave growth. Southerly-wind events are associated with the warm conveyor belts of intense extratropical cyclones that develop in the left upper tropospheric jet exit region. Ensemble sensitivity analysis can provide early warning of extreme wave events by demonstrating a relationship between wave height and high pressure to the west of the British Isles for northerly-wind events 48 h prior. Southerly-wind extreme events demonstrate sensitivity to low pressure to the west of the British Isles 36 h prior.
Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading
NASA Astrophysics Data System (ADS)
Seeram, Madhuri; Manohar, Y.
2018-06-01
In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.
Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading
NASA Astrophysics Data System (ADS)
Seeram, Madhuri; Manohar, Y.
2018-02-01
In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.
2011-09-30
Directional wave spectra analysis from a cross-shore array of acoustic Doppler profilers, accepted paper, 12th International Workshop on Wave Hindcasting and Forecasting, 30 October – 4 November 2011, Hilo , Hawaii .
Varma, N K; Kushwaha, R; Beydoun, A; Williams, W J; Drury, I
1997-10-01
The purpose of this paper is to compare the morphological features of interictal epileptiform discharges (IED) in patients with benign epilepsy of childhood with centrotemporal spikes to IED of those with symptomatic localization related epilepsies using information theory. Three patients from each clinical group were selected. Two-second epochs centered at the peak negativity of the sharp waves were analyzed from a referential montage during stage I sleep. The epochs from the two groups were compared using parametric and information theory analysis. Information analysis determined the likelihood of correctly identifying the clinical group based on the IED. Standard parametric, morphological and spectral analyses were also performed. We found no significant difference in the morphology of the sharp wave between the two groups. The after-going slow wave contained the greatest information that separated the two groups. This result was supported by morphological and spectral differences in the after-going slow wave. Greater distinguishing information is held in the after-going slow wave than the sharp wave for the identification of clinical groups. Information analysis may assist in differentiating clinical syndromes from EEG signals.
Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza
2014-01-01
The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates. Copyright © 2013 Elsevier B.V. All rights reserved.
The local properties of ocean surface waves by the phase-time method
NASA Technical Reports Server (NTRS)
Huang, Norden E.; Long, Steven R.; Tung, Chi-Chao; Donelan, Mark A.; Yuan, Yeli; Lai, Ronald J.
1992-01-01
A new approach using phase information to view and study the properties of frequency modulation, wave group structures, and wave breaking is presented. The method is applied to ocean wave time series data and a new type of wave group (containing the large 'rogue' waves) is identified. The method also has the capability of broad applications in the analysis of time series data in general.
Analysis of the Giacobini-Zinner bow wave
NASA Technical Reports Server (NTRS)
Smith, E. J.; Slavin, J. A.; Bame, S. J.; Thomsen, M. F.; Cowley, S. W. H.; Richardson, I. G.; Hovestadt, D.; Ipavich, F. M.; Ogilvie, K. W.; Coplan, M. A.
1986-01-01
The cometary bow wave of P/Giacobini-Zinner has been analyzed using the complete set of ICE field and particle observations to determine if it is a shock. Changes in the magnetic field and plasma flow velocities from upstream to downstream have been analyzed to determine the direction of the normal and the propagation velocity of the bow wave. The velocity has then been compared with the fast magnetosonic wave speed upstream to derive the Mach number and establish whether it is supersonic, i.e., a shock, or subsonic, i.e., a large amplitude wave. The various measurements have also been compared with values derived from a Rankine-Hugoniot analysis. The results indicate that, inbound, the bow wave is a shock with M = 1.5. Outbound, a subsonic Mach number is obtained, however, arguments are presented that the bow wave is also likely to be a shock at this location.
Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi; Yu, Yi-Hsiang; van Rij, Jennifer A
2017-08-14
Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designingmore » wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.« less
NASA Astrophysics Data System (ADS)
Cholemari, Murali R.; Arakeri, Jaywant H.
2005-08-01
We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.
Arctic Climate and Atmospheric Planetary Waves
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Haekkinen, S.
2000-01-01
Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J.; Chen, S. Y., E-mail: sychen531@163.com; Tang, C. J.
2014-01-15
The physical mechanism of the synergy current driven by lower hybrid wave (LHW) and electron cyclotron wave (ECW) in tokamaks is investigated using theoretical analysis and simulation methods in the present paper. Research shows that the synergy relationship between the two waves in velocity space strongly depends on the frequency ω and parallel refractive index N{sub //} of ECW. For a given spectrum of LHW, the parameter range of ECW, in which the synergy current exists, can be predicted by theoretical analysis, and these results are consistent with the simulation results. It is shown that the synergy effect is mainlymore » caused by the electrons accelerated by both ECW and LHW, and the acceleration of these electrons requires that there is overlap of the resonance regions of the two waves in velocity space.« less
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1980-01-01
Scanning beam microwave radars were used to measure ocean wave directional spectra from satellites. In principle, surface wave spectral resolution in wave number can be obtained using either short pulse (SP) or dual frequency (DF) techniques; in either case, directional resolution obtains naturally as a consequence of a Bragg-like wave front matching. A four frequency moment characterization of backscatter from the near vertical using physical optics in the high frequency limit was applied to an analysis of the SP and DF measurement techniques. The intrinsic electromagnetic modulation spectrum was to the first order in wave steepness proportional to the large wave directional slope spectrum. Harmonic distortion was small and was a minimum near 10 deg incidence. NonGaussian wave statistics can have an effect comparable to that in the second order of scattering from a normally distributed sea surface. The SP technique is superior to the DF technique in terms of measurement signal to noise ratio and contrast ratio.
Baldock, Tom E; Karampour, Hassan; Sleep, Rachael; Vyltla, Anisha; Albermani, Faris; Golshani, Aliasghar; Callaghan, David P; Roff, George; Mumby, Peter J
2014-09-15
Measurements of coral structural strength are coupled with a fluid dynamics-structural analysis to investigate the resilience of coral to wave loading under sea level rise and a typical Great Barrier Reef lagoon wave climate. The measured structural properties were used to determine the wave conditions and flow velocities that lead to structural failure. Hydrodynamic modelling was subsequently used to investigate the type of the bathymetry where coral is most vulnerable to breakage under cyclonic wave conditions, and how sea level rise (SLR) changes this vulnerability. Massive corals are determined not to be vulnerable to wave induced structural damage, whereas branching corals are susceptible at wave induced orbital velocities exceeding 0.5m/s. Model results from a large suite of idealised bathymetry suggest that SLR of 1m or a loss of skeleton strength of order 25% significantly increases the area of reef flat where branching corals are exposed to damaging wave induced flows. Copyright © 2014 Elsevier Ltd. All rights reserved.
Phase portrait analysis of super solitary waves and flat top solutions
NASA Astrophysics Data System (ADS)
Steffy, S. V.; Ghosh, S. S.
2018-06-01
The phase portrait analysis of super solitary waves has revealed a new kind of intermediate solution which defines the boundary between the two types of super solitary waves, viz., Type I and Type II. A Type I super solitary wave is known to be associated with an intermediate double layer while a Type II solution has no such association. The intermediate solution at the boundary has a flat top structure and is called a flat top solitary wave. Its characteristics resemble an amalgamation of a solitary wave and a double layer. It was found that, mathematically, such kinds of structures may emerge due to the presence of an extra nonlinearity. Although they are relatively unfamiliar in the realm of plasma physics, they have much wider applications in other physical systems.
Energy localization and frequency analysis in the locust ear.
Malkin, Robert; McDonagh, Thomas R; Mhatre, Natasha; Scott, Thomas S; Robert, Daniel
2014-01-06
Animal ears are exquisitely adapted to capture sound energy and perform signal analysis. Studying the ear of the locust, we show how frequency signal analysis can be performed solely by using the structural features of the tympanum. Incident sound waves generate mechanical vibrational waves that travel across the tympanum. These waves shoal in a tsunami-like fashion, resulting in energy localization that focuses vibrations onto the mechanosensory neurons in a frequency-dependent manner. Using finite element analysis, we demonstrate that two mechanical properties of the locust tympanum, distributed thickness and tension, are necessary and sufficient to generate frequency-dependent energy localization.
Anderson localization of shear waves observed by magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Papazoglou, S.; Klatt, D.; Braun, J.; Sack, I.
2010-07-01
In this letter we present for the first time an experimental investigation of shear wave localization using motion-sensitive magnetic resonance imaging (MRI). Shear wave localization was studied in gel phantoms containing arrays of randomly positioned parallel glass rods. The phantoms were exposed to continuous harmonic vibrations in a frequency range from 25 to 175 Hz, yielding wavelengths on the order of the elastic mean free path, i.e. the Ioffe-Regel criterion of Anderson localization was satisfied. The experimental setup was further chosen such that purely shear horizontal waves were induced to avoid effects due to mode conversion and pressure waves. Analysis of the distribution of shear wave intensity in experiments and simulations revealed a significant deviation from Rayleigh statistics indicating that shear wave energy is localized. This observation is further supported by experiments on weakly scattering samples exhibiting Rayleigh statistics and an analysis of the multifractality of wave functions. Our results suggest that motion-sensitive MRI is a promising tool for studying Anderson localization of time-harmonic shear waves, which are increasingly used in dynamic elastography.
NASA Astrophysics Data System (ADS)
Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu
2016-11-01
A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.
Extreme waves under Hurricane Ivan.
Wang, David W; Mitchell, Douglas A; Teague, William J; Jarosz, Ewa; Hulbert, Mark S
2005-08-05
Hurricane Ivan, a category 4 storm, passed directly over six wave-tide gauges deployed by the Naval Research Laboratory on the outer continental shelf in the northeastern Gulf of Mexico. Waves were observed with significant wave heights reaching 17.9 meters and maximum crest-to-trough individual wave heights of 27.7 meters (91 feet). Analysis suggests that significant wave heights likely surpassed 21 meters (69 feet) and that maximum crest-to-trough individual wave heights exceeded 40 meters (132 feet) near the eyewall.
Electrostatic waves driven by electron beam in lunar wake plasma
NASA Astrophysics Data System (ADS)
Sreeraj, T.; Singh, S. V.; Lakhina, G. S.
2018-05-01
A linear analysis of electrostatic waves propagating parallel to the ambient field in a four component homogeneous, collisionless, magnetised plasma comprising fluid protons, fluid He++, electron beam, and suprathermal electrons following kappa distribution is presented. In the absence of electron beam streaming, numerical analysis of the dispersion relation shows six modes: two electron acoustic modes (modes 1 and 6), two fast ion acoustic modes (modes 2 and 5), and two slow ion acoustic modes (modes 3 and 4). The modes 1, 2 and 3 and modes 4, 5, and 6 have positive and negative phase speeds, respectively. With an increase in electron beam speed, the mode 6 gets affected the most and the phase speed turns positive from negative. The mode 6 thus starts to merge with modes 2 and 3 and generates the electron beam driven fast and slow ion acoustic waves unstable with a finite growth. The electron beam driven slow ion-acoustic waves occur at lower wavenumbers, whereas fast ion-acoustic waves occur at a large value of wavenumbers. The effect of various other parameters has also been studied. We have applied this analysis to the electrostatic waves observed in lunar wake during the first flyby of the ARTEMIS mission. The analysis shows that the low (high) frequency waves observed in the lunar wake could be the electron beam driven slow (fast) ion-acoustic modes.
Determination of Shear Wave Velocity in Offshore Terengganu for Ground Response Analysis
NASA Astrophysics Data System (ADS)
Mazlina, M.; Liew, M. S.; Adnan, A.; Harahap, I. S. H.; Hamid, N. A.
2018-04-01
Amount of vibration received in any location can be analysed by conducting ground response analysis. Even though there are three different methods available in this analysis, One Dimensional ground response analysis method has been widely used. Shear wave velocity is one of the key parameters in this analysis. A lot of correlations have been formulated to determine shear wave velocity with cone penetration test. In this study, correlations developed for Quaternary geological age have been selected. Six equations have been adopted comprise of all soil and soil type dependent correlations. Two platforms sites consist of clay and combination of clay and sand have been analysed. Shear velocity to be used in ground response analysis has been obtained. Results have been illustrated in graphs where shear velocity for each case has been plotted. In avoiding under or over predicting of shear wave velocity, the average of all soil and soil type dependent results will be used as final Vs value.
AKNS eigenvalue spectrum for densely spaced envelope solitary waves
NASA Astrophysics Data System (ADS)
Slunyaev, Alexey; Starobor, Alexey
2010-05-01
The problem of the influence of one envelope soliton to the discrete eigenvalues of the associated scattering problem for the other envelope soliton, which is situated close to the first one, is discussed. Envelope solitons are exact solutions of the integrable nonlinear Schrödinger equation (NLS). Their generalizations (taking into account the background nonlinear waves [1-4] or strongly nonlinear effects [5, 6]) are possible candidates to rogue waves in the ocean. The envelope solitary waves could be in principle detected in the stochastic wave field by approaches based on the Inverse Scattering Technique in terms of ‘unstable modes' (see [1-3]), or envelope solitons [7-8]. However, densely spaced intense groups influence the spectrum of the associated scattering problem, so that the solitary trains cannot be considered alone. Here we solve the initial-value problem exactly for some simplified configurations of the wave field, representing two closely placed intense wave groups, within the frameworks of the NLS equation by virtue of the solution of the AKNS system [9]. We show that the analogues of the level splitting and the tunneling effects, known in quantum physics, exist in the context of the NLS equation, and thus may be observed in application to sea waves [10]. These effects make the detecting of single solitary wave groups surrounded by other nonlinear wave groups difficult. [1]. A.L. Islas, C.M. Schober (2005) Predicting rogue waves in random oceanic sea states. Phys. Fluids 17, 031701-1-4. [2]. A.R. Osborne, M. Onorato, M. Serio (2005) Nonlinear Fourier analysis of deep-water random surface waves: Theoretical formulation and and experimental observations of rogue waves. 14th Aha Huliko's Winter Workshop, Honolulu, Hawaii. [3]. C.M. Schober, A. Calini (2008) Rogue waves in higher order nonlinear Schrödinger models. In: Extreme Waves (Eds.: E. Pelinovsky & C. Kharif), Springer. [4]. N. Akhmediev, A. Ankiewicz, M. Taki (2009) Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675-678. [5]. A.I. Dyachenko, V.E. Zakharov (2008) On the formation of freak waves on the surface of deep water. JETP Lett. 88 (5), 307-311. [6]. A.V. Slunyaev (2009) Numerical simulation of "limiting" envelope solitons of gravity waves on deep water. JETP 109, 676-686. [7]. A. Slunyaev, E. Pelinovsky, and C. Guedes Soares (2005) Modeling freak waves from the North Sea. Appl. Ocean Res. 27, 12-22. [8]. A. Slunyaev (2006) Nonlinear analysis and simulations of measured freak wave time series. Eur. J. Mech. B / Fluids 25, 621-635. [9]. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur (1974) The inverse scattering transform - Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249-315. [10]. A.V. Starobor (2009) Interpretation of the inverse scattering data for the analysis of wave groups on water surface. Bachelor degree thesis. N. Novgorod State University, in Russian.
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices
Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; ...
2016-01-25
We explore linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. Formore » weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. Lastly, the transition between these two types of propagation is explored.« less
Orms, Natalie; Rehn, Dirk R; Dreuw, Andreas; Krylov, Anna I
2018-02-13
Density-based wave function analysis enables unambiguous comparisons of the electronic structure computed by different methods and removes ambiguity of orbital choices. We use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high- and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such as polyradicals. We show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of the bonding pattern.
Propagation path effects for rayleigh and love waves. Semi-annual technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrin, E.; Goforth, T.
Seismic surface waves are usually composed of overlapping wave trains representing multi-path propagation. A first task in the analysis of such waves is to identify and separate the various component wave trains so that each can be analyzed separately. Phase-matched filters are a class of linear filters in which the Fourier phase of the filter is made equal to that of a given signal. The authors previously described an iterative technique which can be used to find a phase-matched filter for a particular component of a seismic signal. Application of the filters to digital records of Rayleigh waves allowed multiplemore » arrivals to be identified and removed, and allowed recovery of the complex spectrum of the primary wave train along with its apparent group velocity dispersion curve. A comparable analysis of Love waves presents additional complications. Love waves are contaminated by both Love and Rayleigh multipathing and by primary off-axis Rayleigh energy. In the case of explosions, there is much less energy generated as Love waves than as Rayleigh waves. The applicability of phase-matched filtering to Love waves is demonstrated by its use on earthquakes occurring in the Norwegian Sea and near Iceland and on a nuclear explosion in Novaya Zemlya. Despite severe multipathing in two of the three events, the amplitude and phase of each of the primary Love waves were recovered without significant distortion.« less
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Barati, Mohammad Reza
2018-04-01
This article deals with the wave propagation analysis of single/double layered functionally graded (FG) size-dependent nanobeams in elastic medium and subjected to a longitudinal magnetic field employing nonlocal elasticity theory. Material properties of nanobeam change gradually according to the sigmoid function. Applying an analytical solution, the acoustical and optical dispersion relations are explored for various wave number, nonlocality parameter, material composition, elastic foundation constants, and magnetic field intensity. It is found that frequency and phase velocity of waves propagating in S-FGM nanobeam are significantly affected by these parameters. Also, presence of cut-off and escape frequencies in wave propagation analysis of embedded S-FGM nanobeams is investigated.
Refraction of coastal ocean waves
NASA Technical Reports Server (NTRS)
Shuchman, R. A.; Kasischke, E. S.
1981-01-01
Refraction of gravity waves in the coastal area off Cape Hatteras, NC as documented by synthetic aperture radar (SAR) imagery from Seasat orbit 974 (collected on September 3, 1978) is discussed. An analysis of optical Fourier transforms (OFTs) from more than 70 geographical positions yields estimates of wavelength and wave direction for each position. In addition, independent estimates of the same two quantities are calculated using two simple theoretical wave-refraction models. The OFT results are then compared with the theoretical results. A statistical analysis shows a significant degree of linear correlation between the data sets. This is considered to indicate that the Seasat SAR produces imagery whose clarity is sufficient to show the refraction of gravity waves in shallow water.
Relationship between stress wave velocities of green and dry veneer
Brian K. Brashaw; Xiping Wang; Robert J. Ross; Roy F. Pellerin
2004-01-01
This paper evaluates the relationship between the stress wave velocities of green and dry southern pine and Douglas-fir veneers. A commercial stress wave timer and a laboratory signal analysis system were used to measure the transit time required for an induced stress wave to travel the longitudinal length of each veneer. Stress wave transit times were measured in the...
Accuracy of Satellite-Measured Wave Heights in the Australian Region for Wave Power Applications
ERIC Educational Resources Information Center
Meath, Sian E.; Aye, Lu; Haritos, Nicholas
2008-01-01
This article focuses on the accuracy of satellite data, which may then be used in wave power applications. The satellite data are compared to data from wave buoys, which are currently considered to be the most accurate of the devices available for measuring wave characteristics. This article presents an analysis of satellite- (Topex/Poseidon) and…
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R.
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes aremore » limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.« less
NASA Astrophysics Data System (ADS)
Workman, R. L.; Tiator, L.; Wunderlich, Y.; Döring, M.; Haberzettl, H.
2017-01-01
We compare the methods of amplitude reconstruction, for a complete experiment and a truncated partial-wave analysis, applied to the photoproduction of pseudoscalar mesons. The approach is pedagogical, showing in detail how the amplitude reconstruction (observables measured at a single energy and angle) is related to a truncated partial-wave analysis (observables measured at a single energy and a number of angles).
Workman, R. L.; Tiator, L.; Wunderlich, Y.; ...
2017-01-19
Here, we compare the methods of amplitude reconstruction, for a complete experiment and a truncated partial-wave analysis, applied to the photoproduction of pseudoscalar mesons. The approach is pedagogical, showing in detail how the amplitude reconstruction (observables measured at a single energy and angle) is related to a truncated partial-wave analysis (observables measured at a single energy and a number of angles).
The propagation of wind errors through ocean wave hindcasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holthuijsen, L.H.; Booij, N.; Bertotti, L.
1996-08-01
To estimate uncertainties in wave forecast and hindcasts, computations have been carried out for a location in the Mediterranean Sea using three different analyses of one historic wind field. These computations involve a systematic sensitivity analysis and estimated wind field errors. This technique enables a wave modeler to estimate such uncertainties in other forecasts and hindcasts if only one wind analysis is available.
A pitfall of muting and removing bad traces in surface-wave analysis
NASA Astrophysics Data System (ADS)
Hu, Yue; Xia, Jianghai; Mi, Binbin; Cheng, Feng; Shen, Chao
2018-06-01
Multi-channel analysis of surface/Love wave (MASW/MALW) has been widely used to construct the shallow shear (S)-wave velocity profile. The key step in surface-wave analysis is to generate accurate dispersion energy and pick the dispersive curves for inversion along the peaks of dispersion energy at different frequencies. In near-surface surface-wave acquisition, bad traces are very common and inevitable due to the imperfections in the recording instruments or others. The existence of bad traces will cause some artifacts in the dispersion energy image. To avoid the interference of bad traces on the surface-wave analysis, the bad traces should be alternatively muted (zeroed) or removed (deleted) from the raw surface-wave data before dispersion measurement. Most geophysicists and civil engineers, however, are not aware of the differences and implications between muting and removing of bad traces in surface-wave analysis. A synthetic test and a real-world example demonstrate the potential pitfalls of applying muting and removing on bad traces when using different dispersion-imaging methods. We implement muting and removing on bad traces respectively before dispersion measurement, and compare the influence of the two operations on three dispersion-imaging methods, high-resolution linear Radon transform (HRLRT), f-k transformation, and phase shift method. Results indicate that when using the HRLRT to generate the dispersive energy, muting bad traces will cause an even more complicated and discontinuous dispersive energy. When f-k transformation is utilized to conduct dispersive analysis, bad traces should be muted instead of removed to generate an accurate dispersion image to avoid the uneven sampling problem in the Fourier transform. As for the phase shift method, the difference between the two operations is slight, but we suggest that removal should be chosen because the integral for the phase-shift operator of the zeroed traces would bring in the sloped aliasing. This study provides a pre-process guidance for the real-world surface-wave data processing when the recorded shot gather contains inevitable bad traces.
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
NASA Astrophysics Data System (ADS)
Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong
2016-06-01
According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.
NASA Astrophysics Data System (ADS)
Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.
2017-12-01
Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase velocities of multiple, interfering arrivals in one time window. We demonstrate how this property can be exploited to separate the wavefield into its elastic wave-modes and to isolate or suppress waves arriving from specific directions (directional filtering), both in a fully automated fashion.
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.
Impacts of wave-induced circulation in the surf zone on wave setup
NASA Astrophysics Data System (ADS)
Guérin, Thomas; Bertin, Xavier; Coulombier, Thibault; de Bakker, Anouk
2018-03-01
Wave setup corresponds to the increase in mean water level along the coast associated with the breaking of short-waves and is of key importance for coastal dynamics, as it contributes to storm surges and the generation of undertows. Although overall well explained by the divergence of the momentum flux associated with short waves in the surf zone, several studies reported substantial underestimations along the coastline. This paper investigates the impacts of the wave-induced circulation that takes place in the surf zone on wave setup, based on the analysis of 3D modelling results. A 3D phase-averaged modelling system using a vortex force formalism is applied to hindcast an unpublished field experiment, carried out at a dissipative beach under moderate to very energetic wave conditions (Hm 0 = 6m at breaking and Tp = 22s). When using an adaptive wave breaking parameterisation based on the beach slope, model predictions for water levels, short waves and undertows improved by about 30%, with errors reducing to 0.10 m, 0.10 m and 0.09 m/s, respectively. The analysis of model results suggests a very limited impact of the vertical circulation on wave setup at this dissipative beach. When extending this analysis to idealized simulations for different beach slopes ranging from 0.01 to 0.05, it shows that the contribution of the vertical circulation (horizontal and vertical advection and vertical viscosity terms) becomes more and more relevant as the beach slope increases. In contrast, for a given beach slope, the wave height at the breaking point has a limited impact on the relative contribution of the vertical circulation on the wave setup. For a slope of 0.05, the contribution of the terms associated with the vertical circulation accounts for up to 17% (i.e. a 20% increase) of the total setup at the shoreline, which provides a new explanation for the underestimations reported in previously published studies.
Arterial stiffness estimation based photoplethysmographic pulse wave analysis
NASA Astrophysics Data System (ADS)
Huotari, Matti; Maatta, Kari; Kostamovaara, Juha
2010-11-01
Arterial stiffness is one of the indices of vascular healthiness. It is based on pulse wave analysis. In the case we decompose the pulse waveform for the estimation and determination of arterial elasticity. Firstly, optically measured with photoplethysmograph and then investigating means by four lognormal pulse waveforms for which we can find very good fit between the original and summed decomposed pulse wave. Several studies have demonstrated that these kinds of measures predict cardiovascular events. While dynamic factors, e.g., arterial stiffness, depend on fixed structural features of the vascular wall. Arterial stiffness is estimated based on pulse wave decomposition analysis in the radial and tibial arteries. Elucidation of the precise relationship between endothelial function and vascular stiffness awaits still further study.
Plasma wave experiment for the ISEE-3 mission
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1982-01-01
Analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 mission is presented. The performance of work on the data analysis phase is summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y. S.; Cai, F.; Xu, W. M.
2011-09-28
The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums ofmore » cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.« less
Jupiter Data Analysis Program: Analysis of Voyager wideband plasma wave observations
NASA Technical Reports Server (NTRS)
Kurth, W. S.
1983-01-01
Voyager plasma wave wideband frames from the Jovian encounters are analyzed. The 511 frames which were analyzed were chosen on the basis of low-rate spectrum analyzer data from the plasma wave receiver. These frames were obtained in regions and during times of various types of plasma or radio wave activity as determined by the low-rate, low-resolution data and were processed in order to provide high resolution measurements of the plasma wave spectrum for use in the study of a number of outstanding problems. Chorus emissions at Jupiter were analyzed. The detailed temporal and spectral form of the very complex chorus emissions near L = 8 on the Voyager 1 inbound passage was compared to both terrestrial chorus emissions as well as to the theory which was developed to explain the terrestrial waves.
ERIC Educational Resources Information Center
Bhathal, Ragbir; Sharma, Manjula D.; Mendez, Alberto
2010-01-01
This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The…
NASA Astrophysics Data System (ADS)
Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D.
2015-12-01
An L-shaped array of three-component short period seismic stations was deployed at the Ross Ice Shelf, Antarctica approximately 100 km south of the ice edge, near 180° longitude, from November 18 through 28, 2014. Polarization analysis of data from these stations clearly shows propagating waves from below the ice shelf for frequencies below 2 Hz. Energy above 2 Hz is dominated by Rayleigh and Love waves propagating from the north. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile, from which we derive a density profile. The derived shear wave velocity profiles differ within the firn for the inversions using Rayleigh and Love wave dispersion curves. This difference is attributed to an effective anisotropy due to fine layering. The layered structure of firn, ice, water, and ocean floor results in a characteristic dispersion curve pattern below 7 Hz. We investigate the observed structures in more detail by forward modeling of Rayleigh wave dispersion curves for representative firn, ice, water, sediment structures. Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. Our results show that the analysis of high frequency Rayleigh waves on an ice shelf has the ability to resolve ice shelf thickness, water column thickness, and the physical properties of the underlying ocean floor using passive-source seismic data.
NASA Astrophysics Data System (ADS)
Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.
2010-09-01
Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave incidence in connection with macro scale circulation patterns in central European region.
Wave Dynamic Analysis of the Seismic Response of a Reinforced Concrete Building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astroza, Rodrigo; Saragoni, G. Rodolfo
2008-07-08
This paper evaluates the response of the seven-story instrumented building, Holiday Inn Hotel, during the 1994 Northridge earthquake through the wave propagation dynamic analysis. The building has been instrumented during other earthquakes, the most important of these was the 1971 San Fernando earthquake, where the building was located only 22 [km] from the epicenter and didn't showing structural damage. From the accelerograms analysis is detected the propagation of Rayleigh and soil waves in the building, where the first has a polarized particle motion on a vertical plane and the second has a coupled particle motion in the horizontal plane. Bothmore » waves impose their frequencies to the building response, whose fundamental frequency (1.4 [Hz] according to ambient vibration test) is less than the frequencies of the identified waves. Due to the impact that these observations have in the seismic design of buildings, as a first attempt, a simple method is proposed to estimate the drift produced by the propagation of a Rayleigh wave in buildings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang
The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of themore » device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.« less
Physics Structure Analysis of Parallel Waves Concept of Physics Teacher Candidate
NASA Astrophysics Data System (ADS)
Sarwi, S.; Supardi, K. I.; Linuwih, S.
2017-04-01
The aim of this research was to find a parallel structure concept of wave physics and the factors that influence on the formation of parallel conceptions of physics teacher candidates. The method used qualitative research which types of cross-sectional design. These subjects were five of the third semester of basic physics and six of the fifth semester of wave course students. Data collection techniques used think aloud and written tests. Quantitative data were analysed with descriptive technique-percentage. The data analysis technique for belief and be aware of answers uses an explanatory analysis. Results of the research include: 1) the structure of the concept can be displayed through the illustration of a map containing the theoretical core, supplements the theory and phenomena that occur daily; 2) the trend of parallel conception of wave physics have been identified on the stationary waves, resonance of the sound and the propagation of transverse electromagnetic waves; 3) the influence on the parallel conception that reading textbooks less comprehensive and knowledge is partial understanding as forming the structure of the theory.
NASA Astrophysics Data System (ADS)
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
Investigation of Kelvin wave periods during Hai-Tang typhoon using Empirical Mode Decomposition
NASA Astrophysics Data System (ADS)
Kishore, P.; Jayalakshmi, J.; Lin, Pay-Liam; Velicogna, Isabella; Sutterley, Tyler C.; Ciracì, Enrico; Mohajerani, Yara; Kumar, S. Balaji
2017-11-01
Equatorial Kelvin waves (KWs) are fundamental components of the tropical climate system. In this study, we investigate Kelvin waves (KWs) during the Hai-Tang typhoon of 2005 using Empirical Mode Decomposition (EMD) of regional precipitation, zonal and meridional winds. For the analysis, we use daily precipitation datasets from the Global Precipitation Climatology Project (GPCP) and wind datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-analysis (ERA-Interim). As an additional measurement, we use in-situ precipitation datasets from rain-gauges over the Taiwan region. The maximum accumulated precipitation was approximately 2400 mm during the period July 17-21, 2005 over the southwestern region of Taiwan. The spectral analysis using the wind speed at 950 hPa found in the 2nd, 3rd, and 4th intrinsic mode functions (IMFs) reveals prevailing Kelvin wave periods of ∼3 days, ∼4-6 days, and ∼6-10 days, respectively. From our analysis of precipitation datasets, we found the Kelvin waves oscillated with periods between ∼8 and 20 days.
NASA Astrophysics Data System (ADS)
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
The Geomorphology of Puget Sound Beaches
2006-10-01
of longer-term climate variations it is referred to as a meteorological residual. An analysis of regional air pressure and water level observations...wave and tidal climate . For further details on the analy- sis rational and methods, see Finlayson (2006) The clustering analysis resulted in four profile...energy compared with incident waves on the Pacific Coast, and (2) the wave climate is tightly coupled with local wind patterns. The direction of
NASA Technical Reports Server (NTRS)
Oswald, J. E.; Siegel, P. H.
1994-01-01
The finite difference time domain (FDTD) method is applied to the analysis of microwave, millimeter-wave and submillimeter-wave filter circuits. In each case, the validity of this method is confirmed by comparison with measured data. In addition, the FDTD calculations are used to design a new ultra-thin coplanar-strip filter for feeding a THz planar-antenna mixer.
Tympanal travelling waves in migratory locusts.
Windmill, James F C; Göpfert, Martin C; Robert, Daniel
2005-01-01
Hearing animals, including many vertebrates and insects, have the capacity to analyse the frequency composition of sound. In mammals, frequency analysis relies on the mechanical response of the basilar membrane in the cochlear duct. These vibrations take the form of a slow vibrational wave propagating along the basilar membrane from base to apex. Known as von Békésy's travelling wave, this wave displays amplitude maxima at frequency-specific locations along the basilar membrane, providing a spatial map of the frequency of sound--a tonotopy. In their structure, insect auditory systems may not be as sophisticated at those of mammals, yet some are known to perform sound frequency analysis. In the desert locust, this analysis arises from the mechanical properties of the tympanal membrane. In effect, the spatial decomposition of incident sound into discrete frequency components involves a tympanal travelling wave that funnels mechanical energy to specific tympanal locations, where distinct groups of mechanoreceptor neurones project. Notably, observed tympanal deflections differ from those predicted by drum theory. Although phenomenologically equivalent, von Békésy's and the locust's waves differ in their physical implementation. von Békésy's wave is born from interactions between the anisotropic basilar membrane and the surrounding incompressible fluids, whereas the locust's wave rides on an anisotropic membrane suspended in air. The locust's ear thus combines in one structure the functions of sound reception and frequency decomposition.
Using high speed smartphone cameras and video analysis techniques to teach mechanical wave physics
NASA Astrophysics Data System (ADS)
Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano
2017-07-01
We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses along a spring and the period of transverse standing waves generated in the same spring. These experiments can be helpful in addressing several relevant concepts about the physics of mechanical waves and in overcoming some of the typical student misconceptions in this same field.
Plane waves and structures in turbulent channel flow
NASA Technical Reports Server (NTRS)
Sirovich, L.; Ball, K. S.; Keefe, L. R.
1990-01-01
A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform
Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong
2016-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. PMID:27304979
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.
Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong
2016-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Wilson, Jeffrey D.
1993-01-01
The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive time-consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion characteristics and beam interaction impedance of a TunneLadder traveling-wave tube slow-wave structure were simulated using the code. When reasonable dimensional adjustments are made, computer results agree closely with experimental data. Modifications to the circuit geometry that would make the TunneLadder TWT easier to fabricate for higher frequency operation are explored.
Digital techniques for ULF wave polarization analysis
NASA Technical Reports Server (NTRS)
Arthur, C. W.
1979-01-01
Digital power spectral and wave polarization analysis are powerful techniques for studying ULF waves in the earth's magnetosphere. Four different techniques for using the spectral matrix to perform such an analysis have been presented in the literature. Three of these techniques are similar in that they require transformation of the spectral matrix to the principal axis system prior to performing the polarization analysis. The differences in the three techniques lie in the manner in which determine this transformation. A comparative study of these three techniques using both simulated and real data has shown them to be approximately equal in quality of performance. The fourth technique does not require transformation of the spectral matrix. Rather, it uses the measured spectral matrix and state vectors for a desired wave type to design a polarization detector function in the frequency domain. The design of various detector functions and their application to both simulated and real data will be presented.
Hsu, Chien-Chang; Cheng, Ching-Wen; Chiu, Yi-Shiuan
2017-02-15
Electroencephalograms can record wave variations in any brain activity. Beta waves are produced when an external stimulus induces logical thinking, computation, and reasoning during consciousness. This work uses the beta wave of major scale working memory N-back tasks to analyze the differences between young musicians and non-musicians. After the feature analysis uses signal filtering, Hilbert-Huang transformation, and feature extraction methods to identify differences, k-means clustering algorithm are used to group them into different clusters. The results of feature analysis showed that beta waves significantly differ between young musicians and non-musicians from the low memory load of working memory task. Copyright © 2017 Elsevier B.V. All rights reserved.
Statistical analysis of plasmatrough exohiss waves on Van Allen Probes
NASA Astrophysics Data System (ADS)
Zhu, H.; Chen, L.
2017-12-01
Plasmatrough exohiss waves have attracted much attention due to their potential important role in dynamics of radiation belt. We investigated three-year Van Allen Probe data and built up an event list of exohiss. The statistical analysis shows exohiss preferentially occurred in dayside at quite time and most wave power focuses on afternoon side of low L region. Consistent with plasmaspheric hiss, the peak frequency is around 200 Hz and wave amplitude decreases with L increasing. Furthermore, the ratios of equatorward Poynting fluxes to poleward Poynting fluxes significantly increase up to 10 times as magnetic latitude increasing up to 20 deg. Those results strong support that the formation of exohiss wave results from hiss leakage, particularly at quite time.
Explicit Solutions and Bifurcations for a Class of Generalized Boussinesq Wave Equation
NASA Astrophysics Data System (ADS)
Ma, Zhi-Min; Sun, Yu-Huai; Liu, Fu-Sheng
2013-03-01
In this paper, the generalized Boussinesq wave equation utt — uxx + a(um)xx + buxxxx = 0 is investigated by using the bifurcation theory and the method of phase portraits analysis. Under the different parameter conditions, the exact explicit parametric representations for solitary wave solutions and periodic wave solutions are obtained.
Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India
NASA Astrophysics Data System (ADS)
Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.
2016-05-01
Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.
Martínez, Alejandro; Míguez, Hernán; Sánchez-Dehesa, José; Martí, Javier
2005-05-30
This work presents a comprehensive analysis of electromagnetic wave propagation inside a two-dimensional photonic crystal in a spectral region in which the crystal behaves as an effective medium to which a negative effective index of refraction can be associated. It is obtained that the main plane wave component of the Bloch mode that propagates inside the photonic crystal has its wave vector k' out of the first Brillouin zone and it is parallel to the Poynting vector ( S' ? k'> 0 ), so light propagation in these composites is different from that reported for left-handed materials despite the fact that negative refraction can take place at the interface between air and both kinds of composites. However, wave coupling at the interfaces is well explained using the reduced wave vector ( k' ) in the first Brillouin zone, which is opposed to the energy flow, and agrees well with previous works dealing with negative refraction in photonic crystals.
A comparative analysis of heat waves and associated mortality in St. Louis, Missouri--1980 and 1995.
Smoyer, K E
1998-08-01
This research investigates heat-related mortality during the 1980 and 1995 heat waves in St. Louis, Missouri. St. Louis has a long history of extreme summer weather, and heat-related mortality is a public health concern. Heat waves are defined as days with apparent temperatures exceeding 40.6 degrees C (105 degrees F). The study uses a multivariate analysis to investigate the relationship between mortality and heat wave intensity, duration, and timing within the summer season. The heat wave of 1980 was more severe and had higher associated mortality than that of 1995. To learn if changing population characteristics, in addition to weather conditions, contributed to this difference, changes in population vulnerability between 1980 and 1995 are evaluated under simulated heat wave conditions. The findings show that St. Louis remains at risk of heat wave mortality. In addition, there is evidence that vulnerability has increased despite increased air-conditioning penetration and public health interventions.
Wave energy transfer in elastic half-spaces with soft interlayers.
Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey
2015-04-01
The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.
Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock
NASA Astrophysics Data System (ADS)
Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.
2017-12-01
We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.
Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean
2017-07-01
Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.
Mesoscale Variability in SUCCESS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Stewart, Richard W. (Technical Monitor)
1998-01-01
Analysis of meteorological, chemical and microphysical data from the airborne SUCCESS (SUbsonic aircraft Contrail and Cloud Effects Special Study) mission is reported. Careful analysis of the complex DC-8 flight pattern of May 2, 1996 reveals 19 linear flight segments within six main geographical areas, which we have analyzed. Significant mountain wave activity is revealed in the data from the MMS (Meteorology Measurement System) and MTP (Microwave Temperature Profiler) instruments on the DC-8, which resembles previous observations of mountain wave structures near Boulder, Colorado. Strong mountain-wave-induced upwelling downwind of the Rockies is noted. Turbulence is also noted in regions of the mountain wave consistent with overturning near the tropopause. Zonal winds recorded on the ER-2 are shown to be consistent with mountain wave breaking at or near critical levels in the stratosphere, consistent with the strong turbulence reported by the pilot during the ER-2 flight. These observations have been supported with spectral analyses and modeling studies. 'Postcasts' of mountain wave activity on May 2, 1996 using the Naval Research Laboratory Mountain Wave Forecast Model predicts both strong mountain wave activity near the tropopause and strong mountain-wave-induced turbulence in the stratosphere.
NASA Astrophysics Data System (ADS)
Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María
2016-01-01
Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.
Kelvin waves: a comparison study between SABER and normal mode analysis of ECMWF data
NASA Astrophysics Data System (ADS)
Blaauw, Marten; Garcia, Rolando; Zagar, Nedjeljka; Tribbia, Joe
2014-05-01
Equatorial Kelvin waves spectra are sensitive to the multi-scale variability of their source of tropical convective forcing. Moreover, Kelvin wave spectra are modified upward by changes in the background winds and stability. Recent high resolution data from observations as well as analyses are capable of resolving the slower Kelvin waves with shorter vertical wavelength near the tropical tropopause. In this presentation, results from a quantitive comparison study of stratospheric Kelvin waves in satellite data (SABER) and analysis data from the ECMWF operational archive will be shown. Temperature data from SABER is extracted over a six year period (2007-2012) with an effective vertical resolution of 2 km. Spectral power of stratospheric Kelvin waves in SABER data is isolated by selecting symmetric and eastward spectral components in the 8-20 days range. Global data from ECMWF operational analysis is extracted for the same six years on 91 model levels (top level at 0.01 hPa) and 25 km horizontal resolution. Using three-dimensional orthogonal normal-mode expansions, the input mass and wind data from ECMWF is projected onto balanced rotational modes and unbalanced inertia-gravity modes, including spectral data for pure Kelvin waves. The results show good agreement between Kelvin waves in SABER and ECMWF analyses data for: (i) the frequency shift of Kelvin wave variance with height and (ii) vertical wavelengths. Variability with respect to QBO will also be discussed. In a previous study, discrepancies in the upper stratosphere were found to be 60% and are found here to be 10% (8-20 day averaged value), which can be explained by the better stratosphere representation in the 91 model level version of the ECMWF operational model. New discrepancies in Kelvin wave variance are found in the lower stratosphere at 20 km. Averaged spectral power over the 8-20 day range is found to be 35% higher in ECMWF compared to SABER data. We compared results at 20 km with additional satellite data from HIRDLS (1 km eff. resolution) and conclude preliminary that SABER data does not represent the shortest 20 day Kelvin waves as well as HIRDLS and ECMWF operational analysis.
A two-step FEM-SEM approach for wave propagation analysis in cable structures
NASA Astrophysics Data System (ADS)
Zhang, Songhan; Shen, Ruili; Wang, Tao; De Roeck, Guido; Lombaert, Geert
2018-02-01
Vibration-based methods are among the most widely studied in structural health monitoring (SHM). It is well known, however, that the low-order modes, characterizing the global dynamic behaviour of structures, are relatively insensitive to local damage. Such local damage may be easier to detect by methods based on wave propagation which involve local high frequency behaviour. The present work considers the numerical analysis of wave propagation in cables. A two-step approach is proposed which allows taking into account the cable sag and the distribution of the axial forces in the wave propagation analysis. In the first step, the static deformation and internal forces are obtained by the finite element method (FEM), taking into account geometric nonlinear effects. In the second step, the results from the static analysis are used to define the initial state of the dynamic analysis which is performed by means of the spectral element method (SEM). The use of the SEM in the second step of the analysis allows for a significant reduction in computational costs as compared to a FE analysis. This methodology is first verified by means of a full FE analysis for a single stretched cable. Next, simulations are made to study the effects of damage in a single stretched cable and a cable-supported truss. The results of the simulations show how damage significantly affects the high frequency response, confirming the potential of wave propagation based methods for SHM.
The K-π+ S-wave from the D+→K-π+π+ decay
NASA Astrophysics Data System (ADS)
FOCUS Collaboration; Link, J. M.; Yager, P. M.; Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; Dos Reis, A. C.; Carrillo, S.; Cuautle, E.; Sánchez-Hernández, A.; Uribe, C.; Vázquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.; Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.; Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.; Casimiro, E.; Reyes, M.; Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; Dicorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T. F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Pegna, D. Lopes; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Göbel, C.; Otalora, J.; Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.; Wilson, J. R.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Moore, J. E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.; Sheaff, M.
2009-10-01
Using data from FOCUS (E831) experiment at Fermilab, we present a model independent partial-wave analysis of the K-π+ S-wave amplitude from the decay D+→K-π+π+. The S-wave is a generic complex function to be determined directly from the data fit. The P- and D-waves are parameterized by a sum of Breit-Wigner amplitudes. The measurement of the S-wave amplitude covers the whole elastic range of the K-π+ system.
Bitzen, Alexander; Sternickel, Karsten; Lewalter, Thorsten; Schwab, Jörg Otto; Yang, Alexander; Schrickel, Jan Wilko; Linhart, Markus; Wolpert, Christian; Jung, Werner; David, Peter; Lüderitz, Berndt; Nickenig, Georg; Lickfett, Lars
2007-10-01
Patients with atrial fibrillation (AF) often exhibit abnormalities of P wave morphology during sinus rhythm. We examined a novel method for automatic P wave analysis in the 24-hour-Holter-ECG of 60 patients with paroxysmal or persistent AF and 12 healthy subjects. Recorded ECG signals were transferred to the analysis program where 5-10 P and R waves were manually marked. A wavelet transform performed a time-frequency decomposition to train neural networks. Afterwards, the detected P waves were described using a Gauss function optimized to fit the individual morphology and providing amplitude and duration at half P wave height. >96% of P waves were detected, 47.4 +/- 20.7% successfully analyzed afterwards. In the patient population, the mean amplitude was 0.073 +/- 0.028 mV (mean variance 0.020 +/- 0.008 mV(2)), the mean duration at half height 23.5 +/- 2.7 ms (mean variance 4.2 +/- 1.6 ms(2)). In the control group, the mean amplitude (0.105 +/- 0.020 ms) was significantly higher (P < 0.0005), the mean variance of duration at half height (2.9 +/- 0.6 ms(2)) significantly lower (P < 0.0085). This method shows promise for identification of triggering factors of AF.
Time-Domain Pure-state Polarization Analysis of Surface Waves Traversing California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Walter, W R; Lay, T
A time-domain pure-state polarization analysis method is used to characterize surface waves traversing California parallel to the plate boundary. The method is applied to data recorded at four broadband stations in California from twenty-six large, shallow earthquakes which occurred since 1988, yielding polarization parameters such as the ellipticity, Euler angles, instantaneous periods, and wave incident azimuths. The earthquakes are located along the circum-Pacific margin and the ray paths cluster into two groups, with great-circle paths connecting stations MHC and PAS or CMB and GSC. The first path (MHC-PAS) is in the vicinity of the San Andreas Fault System (SAFS), andmore » the second (CMB-GSC) traverses the Sierra Nevada Batholith parallel to and east of the SAFS. Both Rayleigh and Love wave data show refractions due to lateral velocity heterogeneities under the path, indicating that accurate phase velocity and attenuation analysis requires array measurements. The Rayleigh waves are strongly affected by low velocity anomalies beneath Central California, with ray paths bending eastward as waves travel toward the south, while Love waves are less affected, providing observables to constrain the depth extent of the anomalies. Strong lateral gradients in the lithospheric structure between the continent and the ocean are the likely cause of the path deflections.« less
First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein, L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tseng, K.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-05-01
Aims: The detection and measurement of gravitational-waves from coalescing neutron-star binary systems is an important science goal for ground-based gravitational-wave detectors. In addition to emitting gravitational-waves at frequencies that span the most sensitive bands of the LIGO and Virgo detectors, these sources are also amongst the most likely to produce an electromagnetic counterpart to the gravitational-wave emission. A joint detection of the gravitational-wave and electromagnetic signals would provide a powerful new probe for astronomy. Methods: During the period between September 19 and October 20, 2010, the first low-latency search for gravitational-waves from binary inspirals in LIGO and Virgo data was conducted. The resulting triggers were sent to electromagnetic observatories for followup. We describe the generation and processing of the low-latency gravitational-wave triggers. The results of the electromagnetic image analysis will be described elsewhere. Results: Over the course of the science run, three gravitational-wave triggers passed all of the low-latency selection cuts. Of these, one was followed up by several of our observational partners. Analysis of the gravitational-wave data leads to an estimated false alarm rate of once every 6.4 days, falling far short of the requirement for a detection based solely on gravitational-wave data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bretschneider, C.L.; Huang, T.S.; Endo, H.
1980-07-01
This volume represents the details of the technical development of and the calibration of the two-directional three parameter wave forecasting relationships, which are specially adapted for forecasting hurricane significant wave height, H/sub s/, modal wave period f/sub 0//sup -1/ and the peak of the wave spectrum, S/sub max/. These three parameters lead to the determination of the three-parameter wave spectrum which has been verified by use of hurricane wind generated wave spectra from Hurricane Eloise (1975). The hurricane wind field is still based on the original US Weather Service model as given by Meyers (1954). Hurricane winds, waves and wavemore » spectra data from Hurricane Eloise (1975) published by Withee and Johnson, NOAA (1975), have been used. Although the data is of an analyzed form, the term raw data was used as distinguished from smoothed data. An analysis of the raw data is presented in this volume, and considerable sense of the analysis has been made. A weighted average technique was not used, but could have reduced the scatter in the so-called raw data during the first 2/3 of the storm when the winds and waves were less than gale force and quite variable. There is considerably less variability in the wind and wave data when the wind reaches gale force, and these are the data for which the greatest emphasis is given in the analysis. (WHK)« less
NASA Astrophysics Data System (ADS)
Workman, Eli Joseph
We present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher ( 2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves.
NASA Astrophysics Data System (ADS)
Workman, Eli; Lin, Fan-Chi; Koper, Keith D.
2017-01-01
We present a single station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 s the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 s, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher (˜2 per cent) and significantly higher (>20 per cent), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e. Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves and tilt noise.
Excitation of high-frequency surface waves with long duration in the Valley of Mexico
NASA Astrophysics Data System (ADS)
Iida, Masahiro
1999-04-01
During the 1985 Michoacan earthquake (Ms = 8.1), large-amplitude seismograms with extremely long duration were recorded in the lake bed zone of Mexico City. We interpret high-frequency seismic wave fields in the three geotechnical zones (the hill, the transition, and the lake bed zones) in the Valley of Mexico on the basis of a systematic analysis for borehole strong motion recordings. We make identification of wave types for real seismograms. First, amplitude ratios between surface and underground seismograms indicate that predominant periods of the surface seismograms are largely controlled by the wave field incident into surficial layers in the Valley of Mexico. We interpret recorded surface waves as fundamental-mode Love waves excited in the Mexican Volcanic Belt by calculating theoretical amplification for different-scale structures. Second, according to a cross-correlation analysis, the hill and transition seismograms are mostly surface waves. In the lake bed zone, while early portions are noisy body waves, late portions are mostly surface waves. Third, using two kinds of surface arrays with different station intervals, we investigate high-frequency surface-wave propagation in the lake bed zone. The wave propagation is very complicated, depending upon the time section and the frequency band. Finally, on the basis of a statistical time series model with an information criterion, we separate S- and surface-wave portions from lake bed seismograms. Surface waves are dominant and are recognized even in the early time section. Thus high-frequency surface waves with long duration in the Valley of Mexico are excited by the Mexican Volcanic Belt.
Su, Junjing; Manisty, Charlotte; Parker, Kim H; Simonsen, Ulf; Nielsen-Kudsk, Jens Erik; Mellemkjaer, Soren; Connolly, Susan; Lim, P Boon; Whinnett, Zachary I; Malik, Iqbal S; Watson, Geoffrey; Davies, Justin E; Gibbs, Simon; Hughes, Alun D; Howard, Luke
2017-10-31
In contrast to systemic hypertension, the significance of arterial waves in pulmonary hypertension (PH) is not well understood. We hypothesized that arterial wave energy and wave reflection are augmented in PH and that wave behavior differs between patients with pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Right heart catheterization was performed using a pressure and Doppler flow sensor-tipped catheter to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery. Wave intensity analysis was subsequently applied to the acquired data. Ten control participants, 11 patients with PAH, and 10 patients with CTEPH were studied. Wave speed and wave power were significantly greater in PH patients compared with controls, indicating increased arterial stiffness and right ventricular work, respectively. The ratio of wave power to mean right ventricular power was lower in PAH patients than CTEPH patients and controls. Wave reflection index in PH patients (PAH: ≈25%; CTEPH: ≈30%) was significantly greater compared with controls (≈4%), indicating downstream vascular impedance mismatch. Although wave speed was significantly correlated to disease severity, wave reflection indexes of patients with mildly and severely elevated pulmonary pressures were similar. Wave reflection in the pulmonary artery increased in PH and was unrelated to severity, suggesting that vascular impedance mismatch occurs early in the development of pulmonary vascular disease. The lower wave power fraction in PAH compared with CTEPH indicates differences in the intrinsic and/or extrinsic ventricular load between the 2 diseases. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference
NASA Astrophysics Data System (ADS)
Coccia, E.; Pizzella, G.; Ronga, F.
1995-07-01
The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On Production of Gravitational Radiation by Particle Accelerators and by High Power Lasers * NESTOR: An Underwater Cerenkov Detector for Neutrino Astronomy * A Cosmic-Ray Veto System for the Gravitational Wave Detector NAUTLUS * Interferometers * Development of a 20m Prototype Laser Interferometric Gravitational Wave Detector at NAO * Production of Higher-Order Light Modes by High Quality Optical Components * Vibration Isolation and Suspension Systems for Laser Interferometer Gravitational Wave Detectors * Quality Factors of Stainless Steel Pendulum Wires * Reduction of Suspension Thermal Noises in Laser Free Masses Gravitational Antenna by Correlation of the Output with Additional Optical Signal * Resonant Detectors * Regeneration Effects in a Resonant Gravitational Wave Detector * A Cryogenic Sapphire Transducer with Double Frequency Pumping for Resonant Mass GW Detectors * Effect of Parametric Instability of Gravitational Wave Antenna with Microwave Cavity Transducer * Resonators of Novel Geometry for Large Mass Resonant Transducers * Measurements on the Gravitational Wave Antenna ALTAIR Equipped with a BAE Transducer * The Rome BAE Transducer: Perspectives of its Application to Ultracryogenic Gravitational Wave Antennas * Behavior of a de SQUID Tightly Coupled to a High-Q Resonant Transducer * High Q-Factor LC Resonators for Optimal Coupling * Comparison Between Different Data Analysis Procedures for Gravitational Wave Pulse Detection * Supernova 1987A Rome Maryland Gravitational Radiation Antenna Observations * Analysis of the Data Recorded by the Maryland and Rome Gravitational-Wave Detectors and the Seismic Data from Moscow and Obninsk Station during SN1987A * Multitransducer Resonant Gravitational Antennas * Local Array of High Frequency Antennas * Interaction Cross-Sections for Spherical Resonant GW Antennae * Signal-To-Noise Analysis for a Spherical Gravitational Wave Antenna Instrumented with Multiple Transducers * On the Design of Ultralow Temperature Spherical Gravitational Wave Detectors * List of Participants
High-informative version of nonlinear transformation of Langmuir waves to electromagnetic waves
NASA Astrophysics Data System (ADS)
Erofeev, Vasily I.; Erofeev
2014-04-01
The concept of informativeness of nonlinear plasma physical scenario is discussed. Basic principles for heightening the informativeness of plasma kinetic models are explained. Former high-informative correlation analysis of plasma kinetics (Erofeev, V. 2011 High-Informative Plasma Theory, Saarbrücken: LAP) is generalized for studies of weakly turbulent plasmas that contain fields of solenoidal plasma waves apart from former potential ones. Respective machinery of plasma kinetic modeling is applied to an analysis of fusion of Langmuir waves with transformation to electromagnetic waves. It is shown that the customary version of this phenomenon (Terashima, Y. and Yajima, N. 1963 Prog. Theor. Phys. 30, 443; Akhiezer, I. A., Danelia, I. A. and Tsintsadze, N. L. 1964 Sov. Phys. JETP 19, 208; Al'tshul', L. M. and Karpman, V. I. 1965 Sov. Phys. JETP 20, 1043) substantially distorts the picture of merging of Langmuir waves with long wavelengths (λ >~ c/ωpe ).
NASA Astrophysics Data System (ADS)
Ozeki, Seiya; Kurita, Keisuke; Uehara, Choyu; Nakane, Noriaki; Sato, Toshio; Takeuchi, Shinichi
2018-07-01
In our research group, we previously developed a coiled stator ultrasound motor (CS-USM) for medical applications such as intravascular ultrasound (IVUS) devices. However, wave propagation on acoustic waveguides has not been investigated sufficiently in previous studies. In this study, we analyze the propagation velocity of elastic waves from the simulated the vibration displacement mode profile along a straight line acoustic waveguide via three-dimensional finite element method (FEM). Concerning results, elastic waves with vibration displacement along the thickness direction show dispersion characteristics corresponding to the a0 and a1 mode plate waves (Lamb waves) in the acoustic waveguide. Our theoretical hypotheses of the propagation velocities were closely borne out by experimental results. We further find that the dispersion characteristic is affected by the width of the acoustic waveguide. We believe that our findings can contribute to improved CS-USM designs for practical application.
Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke
2018-03-27
Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate.
NASA Astrophysics Data System (ADS)
Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.
2018-04-01
Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.
Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.
2014-01-01
Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.
1992-04-10
and passive tracer concentrations, and their cross correlations have generally been used to estimate the magnitude of dispersive atmospheric transport...of gravity waves and turbulence. . 10 III. METHODS .......... ........................ 12 A. Data .......... ........................ 12 B. Analysis ...unstable, i.e., strange. For waves or even limit cycle motion about fixed attractors, self-similarity does not occur. Pertinent to time series analysis , this
Using Wave-Current Observations to Predict Bottom Sediment Processes on Muddy Beaches
2012-09-30
Hill and Foda , 1999; Chan and Liu, 2009; Holland et al., 2009; and others). Many theoretical models of wave-mud interaction have been proposed...transformation (see Section Figure 5) emerges from the analysis Sheremet et al., 2005; Jaramillo et al., 2008; Robillard, 2009; ?; ?. Under energetic waves, the...et al., 2010). The ongoing work has three directions of research: Data analysis : reconstruct the sequence of bed states in storms captured in the
NASA Technical Reports Server (NTRS)
Melnick, Gary J.
1990-01-01
The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.
Full long-term design response analysis of a wave energy converter
Coe, Ryan G.; Michelen, Carlos; Eckert-Gallup, Aubrey; ...
2017-09-21
Efficient design of wave energy converters requires an accurate understanding of expected loads and responses during the deployment lifetime of a device. A study has been conducted to better understand best-practices for prediction of design responses in a wave energy converter. A case-study was performed in which a simplified wave energy converter was analyzed to predict several important device design responses. The application and performance of a full long-term analysis, in which numerical simulations were used to predict the device response for a large number of distinct sea states, was studied. Environmental characterization and selection of sea states for thismore » analysis at the intended deployment site were performed using principle-components analysis. The full long-term analysis applied here was shown to be stable when implemented with a relatively low number of sea states and convergent with an increasing number of sea states. As the number of sea states utilized in the analysis was increased, predicted response levels did not change appreciably. Furthermore, uncertainty in the response levels was reduced as more sea states were utilized.« less
Full long-term design response analysis of a wave energy converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Ryan G.; Michelen, Carlos; Eckert-Gallup, Aubrey
Efficient design of wave energy converters requires an accurate understanding of expected loads and responses during the deployment lifetime of a device. A study has been conducted to better understand best-practices for prediction of design responses in a wave energy converter. A case-study was performed in which a simplified wave energy converter was analyzed to predict several important device design responses. The application and performance of a full long-term analysis, in which numerical simulations were used to predict the device response for a large number of distinct sea states, was studied. Environmental characterization and selection of sea states for thismore » analysis at the intended deployment site were performed using principle-components analysis. The full long-term analysis applied here was shown to be stable when implemented with a relatively low number of sea states and convergent with an increasing number of sea states. As the number of sea states utilized in the analysis was increased, predicted response levels did not change appreciably. Furthermore, uncertainty in the response levels was reduced as more sea states were utilized.« less
NASA Astrophysics Data System (ADS)
Grison, B.; Escoubet, C.; Santolik, O.; Cornilleau-Wehrlin, N.
2013-12-01
The wavenumber is a key parameter to understand the physics of the interactions between the electromagnetic waves and the ionized particles in space plasmas. Search-coil magnetometers and electric antennas measure time series of both magnetic and electric field fluctuations, respectively. The fleet of four Cluster spacecraft made possible to determine the full wave vector and even to differentiate the waves present at the same frequency in the spacecraft frame through various techniques: k-filtering analysis, wave telescope, phase differentiating method. However the fleet configuration (inter-spacecraft separation, tetrahedron elongation and planarity) limit the possibilities to use these techniques. From single spacecraft measurements, assumptions concerning the wave mode -and thus, concerning the physical processes- are usually required to derive the corresponding wavenumber. Using three orthogonal magnetic components and two electric antennas, it is possible to estimate n/Z where n is the refractive index and Z the transfer function of the interface between the plasma and the electric antennas. For ULF waves we assume Z=1 and we thus obtain the wavenumber. We test this hypothesis on a case where the spacecraft are in a close configuration in the distant cusp region and where we are able to apply the k-filtering analysis, too. The results obtained by multispacecraft and multicomponents analysis are close to each other and permit us to precise the value of Z. We test this procedure on several events (in various regions of the magnetosphere) in order to get more precise wave number measurements from the single spacecraft analysis. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7-SPACE-2010-1) under grant agreement n. 284520 (MAARBLE).
NASA Astrophysics Data System (ADS)
Yin, X.; Xia, J.; Xu, H.
2016-12-01
Rayleigh and Love waves are two types of surface waves that travel along a free surface.Based on the assumption of horizontal layered homogenous media, Rayleigh-wave phase velocity can be defined as a function of frequency and four groups of earth parameters: P-wave velocity, SV-wave velocity, density and thickness of each layer. Unlike Rayleigh waves, Love-wave phase velocities of a layered homogenous earth model could be calculated using frequency and three groups of earth properties: SH-wave velocity, density, and thickness of each layer. Because the dispersion of Love waves is independent of P-wave velocities, Love-wave dispersion curves are much simpler than Rayleigh wave. The research of joint inversion methods of Rayleigh and Love dispersion curves is necessary. (1) This dissertation adopts the combinations of theoretical analysis and practical applications. In both lateral homogenous media and radial anisotropic media, joint inversion approaches of Rayleigh and Love waves are proposed to improve the accuracy of S-wave velocities.A 10% random white noise and a 20% random white noise are added to the synthetic dispersion curves to check out anti-noise ability of the proposed joint inversion method.Considering the influences of the anomalous layer, Rayleigh and Love waves are insensitive to those layers beneath the high-velocity layer or low-velocity layer and the high-velocity layer itself. Low sensitivities will give rise to high degree of uncertainties of the inverted S-wave velocities of these layers. Considering that sensitivity peaks of Rayleigh and Love waves separate at different frequency ranges, the theoretical analyses have demonstrated that joint inversion of these two types of waves would probably ameliorate the inverted model.The lack of surface-wave (Rayleigh or Love waves) dispersion data may lead to inaccuracy S-wave velocities through the single inversion of Rayleigh or Love waves, so this dissertation presents the joint inversion method of Rayleigh and Love waves which will improve the accuracy of S-wave velocities. Finally, a real-world example is applied to verify the accuracy and stability of the proposed joint inversion method. Keywords: Rayleigh wave; Love wave; Sensitivity analysis; Joint inversion method.
NASA Astrophysics Data System (ADS)
Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique
2018-01-01
The time and frequency analyses of the acoustic scattering by an elastic cylindrical shell in bistatic method show that the arrival times of the echoes and the resonance frequencies of the elastic waves propagating in and around the cylindrical shell are a function of the bistatic angle, β, between the emitter and receiver transducers. The aim of this work is to explain the observed results in time and frequency domains using time-frequency analysis and graphical interpretations. The performance of four widely used time-frequency representations, the Smoothed Pseudo Wigner-Ville (SPWV), the Spectrogram (SP), the reassignment SPWV, and the reassignment SP, are studied. The investigation into the evolution of the time-frequency plane as a function of the bistatic angle β shows that there are the waves propagating in counter-clockwise direction (labeled wave+) and the waves which propagate in clockwise direction (labeled waves-). In this paper the A, S0, and A1 circumferential waves are investigated. The graphical interpretations are used to explain the formation mechanism of these waves and the acoustic scattering in monostatic and bistatic configurations. The delay between the echoes of the waves+ and those of the waves- is expressed in the case of the circumnavigating wave (Scholte-Stoneley wave). This study shows that the observed waves at β = 0 ° and β = 18 0 ° are the result of the constructive interferences between the waves+ and the waves-. A comparative study of the physical properties (group velocity dispersion and cut-off frequency) of the waves+, the waves- and the waves observed in monostatic configuration is conducted. Furthermore, it is shown that the ability of the time-frequency representation to highlight the waves+ and the waves- is very useful, for example, for the detection and the localization of defaults, the classification purposes, etc.
Analysis of Measured and Simulated Supraglottal Acoustic Waves.
Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A
2016-09-01
To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
A multi-decadal wind-wave hindcast for the North Sea 1949-2014: coastDat2
NASA Astrophysics Data System (ADS)
Groll, Nikolaus; Weisse, Ralf
2017-12-01
Long and consistent wave data are important for analysing wave climate variability and change. Moreover, such wave data are also needed in coastal and offshore design and for addressing safety-related issues at sea. Using the third-generation spectral wave model WAM a multi-decadal wind-wave hindcast for the North Sea covering the period 1949-2014 was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis. In particular, comparisons of hindcast data with in situ and satellite observations show on average a reasonable agreement, while a tendency towards overestimation of the highest waves could be inferred. Despite these limitations, the wave hindcast still provides useful data for assessing wave climate variability and change as well as for risk analysis, in particular when conservative estimates are needed. Hindcast data are stored at the World Data Center for Climate (WDCC) and can be freely accessed using the doi:10.1594/WDCC/coastDat-2_WAM-North_Sea Groll and Weisse(2016) or via the coastDat web-page http://www.coastdat.de.
[Impact of heat waves on non-accidental deaths in Jinan, China].
Zhang, J; Liu, S Q; Zhou, L; Gong, S P; Liu, Y L; Zhang, Y; Zhang, J
2016-02-20
To assess the impact of heat waves on non-accidental deaths, and to investigate the influencing factors for deaths caused by heat waves in Jinan, China. Daily death data and meteorological data for summer days with or without heat waves in Jinan from 2012 to 2014 were collected, and a cross-over analysis was conducted to evaluate the influence of heat waves on non-accidental deaths and deaths caused by other reasons. The univariate and multivariate logistic regression models were used to investigate the influencing factors for deaths caused by heat waves. The risks of non-accidental deaths and deaths caused by circulation system diseases during the days with heat waves were 1.82 times(95% CI: 1.47~2.36) and 1.53 times(95% CI: 1.14~2.07) those during the days without heat waves. The multivariate logistic regression analysis showed that old age(≥75 years)(OR=1.184, 95% CI: 1.068~1.313), low educational level(OR=1.187, 95% CI: 1.064~1.324), and deaths outside hospital(OR=1.105, 95% CI: 1.009~1.210) were associated with the high risk of deaths during the days with heat waves. Heat waves significantly increase the risk of non-accidental deaths and deaths caused by circulation system diseases in Jinan, and the deaths during the days with heat waves are related to age, educational level, and place of death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orms, Natalie; Rehn, Dirk; Dreuw, Andreas
Density-based wave function analysis enables unambiguous comparisons of electronic structure computed by different methods and removes ambiguity of orbital choices. Here, we use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such asmore » polyradicals. We also show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of bonding pattern.« less
Orms, Natalie; Rehn, Dirk; Dreuw, Andreas; ...
2017-12-21
Density-based wave function analysis enables unambiguous comparisons of electronic structure computed by different methods and removes ambiguity of orbital choices. Here, we use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such asmore » polyradicals. We also show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of bonding pattern.« less
Study on evaluation methods for Rayleigh wave dispersion characteristic
Shi, L.; Tao, X.; Kayen, R.; Shi, H.; Yan, S.
2005-01-01
The evaluation of Rayleigh wave dispersion characteristic is the key step for detecting S-wave velocity structure. By comparing the dispersion curves directly with the spectra analysis of surface waves (SASW) method, rather than comparing the S-wave velocity structure, the validity and precision of microtremor-array method (MAM) can be evaluated more objectively. The results from the China - US joint surface wave investigation in 26 sites in Tangshan, China, show that the MAM has the same precision with SASW method in 83% of the 26 sites. The MAM is valid for Rayleigh wave dispersion characteristic testing and has great application potentiality for site S-wave velocity structure detection.
NASA Astrophysics Data System (ADS)
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2018-03-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.
Performance evaluation of distributed wavelength assignment in WDM optical networks
NASA Astrophysics Data System (ADS)
Hashiguchi, Tomohiro; Wang, Xi; Morikawa, Hiroyuki; Aoyama, Tomonori
2004-04-01
In WDM wavelength routed networks, prior to a data transfer, a call setup procedure is required to reserve a wavelength path between the source-destination node pairs. A distributed approach to a connection setup can achieve a very high speed, while improving the reliability and reducing the implementation cost of the networks. However, along with many advantages, several major challenges have been posed by the distributed scheme in how the management and allocation of wavelength could be efficiently carried out. In this thesis, we apply a distributed wavelength assignment algorithm named priority based wavelength assignment (PWA) that was originally proposed for the use in burst switched optical networks to the problem of reserving wavelengths of path reservation protocols in the distributed control optical networks. Instead of assigning wavelengths randomly, this approach lets each node select the "safest" wavelengths based on the information of wavelength utilization history, thus unnecessary future contention is prevented. The simulation results presented in this paper show that the proposed protocol can enhance the performance of the system without introducing any apparent drawbacks.
The fatigue damage behavior of a single crystal superalloy
NASA Technical Reports Server (NTRS)
Mcgaw, Michael A.
1988-01-01
The uniaxial fatigue behavior of a single crystal superalloy, PWA 1480, is described. Both monotonic tensile and constant amplitude fatigue tests were conducted at room temperature, in an effort to assess the applicability of polycrystalline-based fatigue life prediction methods to a single crystal superalloy. The observed constant amplitude behavior correlated best using a stress-based life criterion. Nearly all specimens failed at surface or slightly subsurface microporosity; this is thought to be responsible for the unusually large amount of scatter in the test results. An additional term is developed in the stress-life equation for the purpose of accounting for the effect of microporosity on fatigue life. The form chosen is a function of the effective area of the failure-producing microporosity projected on a plane perpendicular to the loading axis, as well as the applied stress. This additional term correlated the data to within factors of two on life. Although speculative, extrapolation of the microporosity relation to zero micropore area indicates that approximately an order of magnitude improvement in fatigue life should result.
Radiation from mixed multi-planar wire arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.
2014-03-15
The study of radiation from different wire materials in wire array Z-pinch plasma is a very challenging topic because it is almost impossible to separate different plasmas at the stagnation. A new approach is suggested based on planar wire array (PWA) loads to assess this problem. Multi-planar wire arrays are implemented that consist of few planes, each with the same number of wires and masses but from different wire materials, arranged in parallel rows. In particular, the experimental results obtained with triple PWAs (TPWAs) on the UNR Zebra generator are analyzed with Wire Ablation Dynamics Model, non-local thermodynamic equilibrium kineticmore » model, and 2D radiation magneto-hydrodynamic to illustrate this new approach. In TPWAs, two wire planes were from mid-atomic-number wire material and another plane was from alloyed Al, placed either in the middle or at the edge of the TPWA. Spatial and temporal properties of K-shell Al and L-shell Cu radiations were analyzed and compared from these two configurations of TPWAs. Advantages of the new approach are demonstrated and future work is discussed.« less
Bithermal fatigue: A simplified alternative to thermomechanical fatigue
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.
1988-01-01
A bithermal fatigue test technique was proposed as a simplified alternative to the thermomechanical fatigue test. Both the thermomechanical cycle and the bithermal technique can be used to study nonisothermal fatigue behavior. The difference between the two cycles is that in a conventional thermomechanical fatigue cycle the temperature is continuously varied concurrently with the applied mechanical strains, but in the bithermal fatigue cycle the specimen is held at zero load during the temperature excursions and all the loads are applied at the two extreme temperatures of the cycle. Experimentally, the bithermal fatigue test technique offers advantages such as ease in synchronizing the temperature and mechanical strain waveforms, in minimizing temperature gradients in the specimen gauge length, and in reducing and interpreting thermal fatigue such as the influence of alternate high and low temperatures on the cyclic stress-strain response characteristics, the effects of thermal state, and the possibility of introducing high- and low-temperature deformation mechanisms within the same cycle. The bithermal technique was used to study nonisothermal fatigue behavior of alloys such as single-crystal PWA 1480, single-crystal Rene N4, cast B1900+Hf, and wrought Haynes 188.
Standing Waves in an Elastic Spring: A Systematic Study by Video Analysis
ERIC Educational Resources Information Center
Rodrigues Ventura, Daniel; Simeão de Carvalho, Paulo; Adriano Dias, Marco
2017-01-01
The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be…
Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings
ERIC Educational Resources Information Center
Fang, Tian-Shen
2007-01-01
This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…
Pseudo-incompressible, finite-amplitude gravity waves: wave trains and stability
NASA Astrophysics Data System (ADS)
Schlutow, Mark; Klein, Rupert
2017-04-01
Based on weak asymptotic WKB-like solutions for two-dimensional atmospheric gravity waves (GWs) traveling wave solutions (wave trains) are derived and analyzed with respect to stability. A systematic multiple-scale analysis using the ratio of the dominant wavelength and the scale height as a scale separation parameter is applied on the fully compressible Euler equations. A distinguished limit favorable for GWs close to static instability, reveals that pseudo-incompressible rather than Boussinesq theory applies. A spectral expansion including a mean flow, combined with the additional WKB assumption of slowly varying phases and amplitudes, is used to find general weak asymptotic solutions. This ansatz allows for arbitrarily strong, non-uniform stratification and holds even for finite-amplitude waves. It is deduced that wave trains as leading order solutions can only exist if either some non-uniform background stratification is given but the wave train propagates only horizontally or if the wave train velocity vector is given but the background is isothermal. For the first case, general analytical solutions are obtained that may be used to model mountain lee waves. For the second case with the additional assumption of horizontal periodicity, upward propagating wave train fronts were found. These wave train fronts modify the mean flow beyond the non-acceleration theorem. Stability analysis reveal that they are intrinsically modulationally unstable. The range of validity for the scale separation parameter was tested with fully nonlinear simulations. Even for large values an excellent agreement with the theory was found.
Ahn, K J; Milde, F; Knorr, A
2007-01-12
Acoustic wave excitation of semiconductor quantum dots generates resonance fluorescence of electronic intersublevel excitations. Our theoretical analysis predicts acoustoluminescence, in particular, a conversion of acoustic into electromagnetic THz waves over a broad spectral range.
A Simple and Accurate Analysis of Conductivity Loss in Millimeter-Wave Helical Slow-Wave Structures
NASA Astrophysics Data System (ADS)
Datta, S. K.; Kumar, Lalit; Basu, B. N.
2009-04-01
Electromagnetic field analysis of a helix slow-wave structure was carried out and a closed form expression was derived for the inductance per unit length of the transmission-line equivalent circuit of the structure, taking into account the actual helix tape dimensions and surface current on the helix over the actual metallic area of the tape. The expression of the inductance per unit length, thus obtained, was used for estimating the increment in the inductance per unit length caused due to penetration of the magnetic flux into the conducting surfaces following Wheeler’s incremental inductance rule, which was subsequently interpreted for the attenuation constant of the propagating structure. The analysis was computationally simple and accurate, and accrues the accuracy of 3D electromagnetic analysis by allowing the use of dispersion characteristics obtainable from any standard electromagnetic modeling. The approach was benchmarked against measurement for two practical structures, and excellent agreement was observed. The analysis was subsequently applied to demonstrate the effects of conductivity on the attenuation constant of a typical broadband millimeter-wave helical slow-wave structure with respect to helix materials and copper plating on the helix, surface finish of the helix, dielectric loading effect and effect of high temperature operation - a comparative study of various such aspects are covered.
Characterization of rotary-percussion drilling as a seismic-while-drilling source
NASA Astrophysics Data System (ADS)
Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.
2018-04-01
This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.
High lateral resolution exploration using surface waves from noise records
NASA Astrophysics Data System (ADS)
Chávez-García, Francisco José Yokoi, Toshiaki
2016-04-01
Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to identify lateral variations of phase velocity inside the seismic line, and increase the lateral resolution compared with results of conventional analysis.
Asymptotic analysis of numerical wave propagation in finite difference equations
NASA Technical Reports Server (NTRS)
Giles, M.; Thompkins, W. T., Jr.
1983-01-01
An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.
Analysis and optimization of Love wave liquid sensors.
Jakoby, B; Vellekoop, M J
1998-01-01
Love wave sensors are highly sensitive microacoustic devices, which are well suited for liquid sensing applications thanks to the shear polarization of the wave. The sensing mechanism thereby relies on the mechanical (or acoustic) interaction of the device with the liquid. The successful utilization of Love wave devices for this purpose requires proper shielding to avoid unwanted electric interaction of the liquid with the wave and the transducers. In this work we describe the effects of this electric interaction and the proper design of a shield to prevent it. We present analysis methods, which illustrate the impact of the interaction and which help to obtain an optimized design of the proposed shield. We also present experimental results for devices that have been fabricated according to these design rules.
Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films
NASA Technical Reports Server (NTRS)
Hines, Jacqueline H. (Inventor)
2015-01-01
A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.
Numerical Simulation of Monitoring Corrosion in Reinforced Concrete Based on Ultrasonic Guided Waves
Zheng, Zhupeng; Lei, Ying; Xue, Xin
2014-01-01
Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale. PMID:25013865
Finite element analysis of electromagnetic propagation in an absorbing wave guide
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1986-01-01
Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.
Exploitation of SAR data for measurement of ocean currents and wave velocities
NASA Technical Reports Server (NTRS)
Shuchman, R. A.; Lyzenga, D. R.; Klooster, A., Jr.
1981-01-01
Methods of extracting information on ocean currents and wave orbital velocities from SAR data by an analysis of the Doppler frequency content of the data are discussed. The theory and data analysis methods are discussed, and results are presented for both aircraft and satellite (SEASAT) data sets. A method of measuring the phase velocity of a gravity wave field is also described. This method uses the shift in position of the wave crests on two images generated from the same data set using two separate Doppler bands. Results of the current measurements are pesented for 11 aircraft data sets and 4 SEASAT data sets.
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Sibeck, D. G.; Breneman, A.W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.
2014-01-01
We present a detailed outline and discussion of the analysis techniques used to compare the relevance of different energy dissipation mechanisms at collisionless shock waves. We show that the low-frequency, quasi-static fields contribute less to ohmic energy dissipation, (-j · E ) (minus current density times measured electric field), than their high-frequency counterparts. In fact, we found that high-frequency, large-amplitude (greater than 100 millivolts per meter and/or greater than 1 nanotesla) waves are ubiquitous in the transition region of collisionless shocks. We quantitatively show that their fields, through wave-particle interactions, cause enough energy dissipation to regulate the global structure of collisionless shocks. The purpose of this paper, part one of two, is to outline and describe in detail the background, analysis techniques, and theoretical motivation for our new results presented in the companion paper. The companion paper presents the results of our quantitative energy dissipation rate estimates and discusses the implications. Together, the two manuscripts present the first study quantifying the contribution that high-frequency waves provide, through wave-particle interactions, to the total energy dissipation budget of collisionless shock waves.
Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism.
Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio
2010-11-01
STUDY OBJECTIVIES: several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. the specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined.
Military applications and examples of near-surface seismic surface wave methods (Invited)
NASA Astrophysics Data System (ADS)
sloan, S.; Stevens, R.
2013-12-01
Although not always widely known or publicized, the military uses a variety of geophysical methods for a wide range of applications--some that are already common practice in the industry while others are truly novel. Some of those applications include unexploded ordnance detection, general site characterization, anomaly detection, countering improvised explosive devices (IEDs), and security monitoring, to name a few. Techniques used may include, but are not limited to, ground penetrating radar, seismic, electrical, gravity, and electromagnetic methods. Seismic methods employed include surface wave analysis, refraction tomography, and high-resolution reflection methods. Although the military employs geophysical methods, that does not necessarily mean that those methods enable or support combat operations--often times they are being used for humanitarian applications within the military's area of operations to support local populations. The work presented here will focus on the applied use of seismic surface wave methods, including multichannel analysis of surface waves (MASW) and backscattered surface waves, often in conjunction with other methods such as refraction tomography or body-wave diffraction analysis. Multiple field examples will be shown, including explosives testing, tunnel detection, pre-construction site characterization, and cavity detection.
Variation of Time Domain Failure Probabilities of Jack-up with Wave Return Periods
NASA Astrophysics Data System (ADS)
Idris, Ahmad; Harahap, Indra S. H.; Ali, Montassir Osman Ahmed
2018-04-01
This study evaluated failure probabilities of jack up units on the framework of time dependent reliability analysis using uncertainty from different sea states representing different return period of the design wave. Surface elevation for each sea state was represented by Karhunen-Loeve expansion method using the eigenfunctions of prolate spheroidal wave functions in order to obtain the wave load. The stochastic wave load was propagated on a simplified jack up model developed in commercial software to obtain the structural response due to the wave loading. Analysis of the stochastic response to determine the failure probability in excessive deck displacement in the framework of time dependent reliability analysis was performed by developing Matlab codes in a personal computer. Results from the study indicated that the failure probability increases with increase in the severity of the sea state representing a longer return period. Although the results obtained are in agreement with the results of a study of similar jack up model using time independent method at higher values of maximum allowable deck displacement, it is in contrast at lower values of the criteria where the study reported that failure probability decreases with increase in the severity of the sea state.
Numerical Investigation of Crossflow Instability on the HIFiRE-5
NASA Astrophysics Data System (ADS)
Lakebrink, Matthew T.
Stability analysis was performed with the Langley Stability and Transition Analysis Code (LASTRAC) on a 38.1% scale model of the HIFiRE-5 elliptic-cone forebody to study crossflow-induced transition in hypersonic boundary layers. A resolution study consisting of three grids (30e6, 45e6, and 91e6 points) indicated that the fine grid was sufficiently resolved. Results were largely insensitive to grid resolution over the acreage and near the attachment line. The percent variation in second-mode properties along the semi-minor axis was less than 1% between the medium and fine grids. The variation in crossflow-wave properties was less than 0.04% between the medium and fine grids. Comparisons were made between crossflow-wave properties computed using quasi-parallel Linear Stability Theory (LST), the Linear Parabolized Stability Equations (LPSE), and surface marching or two-plane LPSE (2pLPSE). Sensitivity to marching path was also explored by performing analysis along Group-Velocity Lines (GVL) and Inviscid Streamlines (ISL). The wave properties were largely insensitive to analysis type and marching path, with the greatest variation near the attachment line. The LPSE-growth rates were as much as 20% greater than LST. Results from LPSE and 2pLPSE were similar except near the attachment line, where 2pLPSE growth rates were about 30% greater. Growth rates for crossflow and second-mode waves computed with 2pLPSE were compared to Spatial BiGlobal (SBG) analysis. Crossflow growth rates agreed well between 2pLPSE and SBG, indicating that the more expensive SBG approach is unnecessary for crossflow computation over the acreage. Second-mode growth rates along the attachment line had similar peak frequencies between the various methods, but 2pLPSE and LST growth rates were as much as 200% and 30% greater than SBG respectively. These results represent the first comparison between SBG and conventional techniques for crossflow waves, and help to define best practices for the use of each technique. Crossflow-wave computations were compared to measurements made by Dr. Matt Borg in the Boeing AFOSR Mach 6 Quiet Tunnel (BAM6QT). Linear analysis for wave angle, phase speed, peak frequency, and spanwise wavelength agreed well with the experiment for sufficiently low Reynolds numbers. The Reynolds number at which linear theory deviated from the test data was termed the 'linear limit'. A stationary-crossflow N-factor of 8.2 correlated well with the linear limit, as did a traveling-wave amplitude of about 1%. Experimental PSD data was used to identify the onset of turbulence at the downstream end of the model, and the associated stationary-crossflow N-factor based on LST was 9.4. Correlating to the linear limit provides a way to conservatively estimate crossflow-induced transition using LST. Evolution of the crossflow waves between the linear limit and the breakdown to turbulence was studied using Non-linear PSE (NPSE). By exciting a combination of stationary and traveling waves, naturally excited harmonics grew downstream of the linear limit to amplitudes of about 2% based on peak temperature. The wave angles of these harmonics agreed well with the test data. For reasons unknown, such agreement was not realized for phase speed. Initial-amplitude sweeps were performed for both stationary and traveling waves. Initial stationary-wave amplitude had a strong influence on the peak-harmonic amplitude and location of transition onset, while initial amplitude of the traveling-waves primarily influenced the location of transition onset. This is the first dataset from which detailed comparisons have been made between stability analysis and quiet tunnel data for crossflow waves in both the linear and non-linear stages of evolution. Several of these comparisons serve as validation of LASTRAC for crossflow-wave analysis. Finally, to aid the comparison of stability analysis to experimental data in general, the sensitivities of crossflow-wave evolution to small-yaw angles and changes in wall temperature were investigated. A yaw angle of 0.5 degrees resulted in a change in N-factor of about 1 between the same point on opposite halves of the geometry. A 15K increase in wall temperature led to a 0.1 increase in N-factor. These results, which are the first of their kind, highlight the sensitivity of crossflow waves to subtle changes in boundary conditions, and serve to emphasize the importance of high-quality test data for which flow conditions are recorded as precisely as possible.
MmWave Vehicle-to-Infrastructure Communication :Analysis of Urban Microcellular Networks
DOT National Transportation Integrated Search
2017-05-01
Vehicle-to-infrastructure (V2I) communication may provide high data rates to vehicles via millimeterwave (mmWave) microcellular networks. This report uses stochastic geometry to analyze the coverage of urban mmWave microcellular networks. Prior work ...
Experiments with Tropical Cyclone Wave and Intensity Forecasts
2008-09-30
algorithm In collaboration with Paul Wittmann (Fleet Numerical Metorology and Oceanography Center) and Hendrik Tolman (National Centers for...Wittmann, P.A., C Sampson and H. Tolman: 2006: Wave Analysis Guidance for Tropical Cyclone Forecast Advisories. 9th International Workshop on Wave
Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blakeslee, Samuel Norman; Toman, William I.; Williams, Richard B.
The California Wave Energy Test Center (CalWave) Feasibility Study project was funded over multiple phases by the Department of Energy to perform an interdisciplinary feasibility assessment to analyze the engineering, permitting, and stakeholder requirements to establish an open water, fully energetic, grid connected, wave energy test center off the coast of California for the purposes of advancing U.S. wave energy research, development, and testing capabilities. Work under this grant included wave energy resource characterization, grid impact and interconnection requirements, port infrastructure and maritime industry capability/suitability to accommodate the industry at research, demonstration and commercial scale, and macro and micro sitingmore » considerations. CalWave Phase I performed a macro-siting and down-selection process focusing on two potential test sites in California: Humboldt Bay and Vandenberg Air Force Base. This work resulted in the Vandenberg Air Force Base site being chosen as the most favorable site based on a peer reviewed criteria matrix. CalWave Phase II focused on four siting location alternatives along the Vandenberg Air Force Base coastline and culminated with a final siting down-selection. Key outcomes from this work include completion of preliminary engineering and systems integration work, a robust turnkey cost estimate, shoreside and subsea hazards assessment, storm wave analysis, lessons learned reports from several maritime disciplines, test center benchmarking as compared to existing international test sites, analysis of existing applicable environmental literature, the completion of a preliminary regulatory, permitting and licensing roadmap, robust interaction and engagement with state and federal regulatory agency personnel and local stakeholders, and the population of a Draft Federal Energy Regulatory Commission (FERC) Preliminary Application Document (PAD). Analysis of existing offshore oil and gas infrastructure was also performed to assess the potential value and re-use scenarios of offshore platform infrastructure and associated subsea power cables and shoreside substations. The CalWave project team was well balanced and was comprised of experts from industry, academia, state and federal regulatory agencies. The result of the CalWave feasibility study finds that the CalWave Test Center has the potential to provide the most viable path to commercialization for wave energy in the United States.« less
Plasma wave experiment for the ISEE-3 mission
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1983-01-01
An analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 Mission is provided. Work on the data analysis phase of the contract from 1 October 1982 through 30 March 1983 is summarized.
Shear-wave velocity profiling according to three alternative approaches: A comparative case study
NASA Astrophysics Data System (ADS)
Dal Moro, G.; Keller, L.; Al-Arifi, N. S.; Moustafa, S. S. R.
2016-11-01
The paper intends to compare three different methodologies which can be used to analyze surface-wave propagation, thus eventually obtaining the vertical shear-wave velocity (VS) profile. The three presented methods (currently still quite unconventional) are characterized by different field procedures and data processing. The first methodology is a sort of evolution of the classical Multi-channel Analysis of Surface Waves (MASW) here accomplished by jointly considering Rayleigh and Love waves (analyzed according to the Full Velocity Spectrum approach) and the Horizontal-to-Vertical Spectral Ratio (HVSR). The second method is based on the joint analysis of the HVSR curve together with the Rayleigh-wave dispersion determined via Miniature Array Analysis of Microtremors (MAAM), a passive methodology that relies on a small number (4 to 6) of vertical geophones deployed along a small circle (for the common near-surface application the radius usually ranges from 0.6 to 5 m). Finally, the third considered approach is based on the active data acquired by a single 3-component geophone and relies on the joint inversion of the group-velocity spectra of the radial and vertical components of the Rayleigh waves, together with the Radial-to-Vertical Spectral Ratio (RVSR). The results of the analyses performed while considering these approaches (completely different both in terms of field procedures and data analysis) appear extremely consistent thus mutually validating their performances. Pros and cons of each approach are summarized both in terms of computational aspects as well as with respect to practical considerations regarding the specific character of the pertinent field procedures.
Weerasekara, Gihan; Tokunaga, Akihiro; Terauchi, Hiroki; Eberhard, Marc; Maruta, Akihiro
2015-01-12
One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.
Kowalski, Remi R; Beare, Richard; Mynard, Jonathan P; Cheong, Jeanie L Y; Doyle, Lex W; Smolich, Joseph J; Cheung, Michael M H
2018-03-29
To evaluate the wave reflection characteristics in the aortic arch and common carotid artery of ex-preterm adolescents and assess their relationship to central blood pressure in a cohort followed prospectively since birth. Central blood pressures, pulse wave velocity, augmentation index, microvascular reactive hyperemia, arterial distensibility, compliance and stiffness index, and also aortic and carotid wave intensity were measured in 18-year-olds born extremely preterm at below 28 weeks' gestation (n = 76) and term-born controls (n = 42). Compared with controls, ex-preterm adolescents had higher central systolic (111 ± 11 vs. 105 ± 10 mmHg; P < 0.001) and diastolic blood pressures (73 ± 7 vs. 67 ± 7 mmHg; P < 0.001). Although conventional measures of arterial function and biomechanics such as pulse wave velocity and augmentation index were no different between groups, wave intensity analysis revealed elevated backward compression wave area (-0.39 ± 0.21 vs. -0.29 ± 0.17 W/m/s × 10; P = 0.03), backward compression wave pressure change (9.0 ± 3.5 vs. 6.6 ± 2.5 mmHg; P = 0.001) and reflection index (0.44 ± 0.15 vs. 0.32 ± 0.08; P < 0.001) in the aorta of ex-preterm adolescents compared with controls. These changes were less pronounced in the carotid artery. On multivariable analysis, forward and backward compression wave areas were the only biomechanical variables associated with central systolic pressure. Ex-preterm adolescents demonstrate elevated wave reflection indices in the aortic arch, which correlate with central systolic pressure. Wave intensity analysis may provide a sensitive novel marker of evolving vascular dysfunction in ex-preterm survivors.
On the upper ocean turbulent dissipation rate due to microscale breakers and small whitecaps
NASA Astrophysics Data System (ADS)
Banner, Michael L.; Morison, Russel P.
2018-06-01
In ocean wave modelling, accurately computing the evolution of the wind-wave spectrum depends on the source terms and the spectral bandwidth used. The wave dissipation rate source term which spectrally quantifies wave breaking and other dissipative processes remains poorly understood, including the spectral bandwidth needed to capture the essential model physics. The observational study of Sutherland and Melville (2015a) investigated the relative dissipation rate contributions of breaking waves, from large-scale whitecaps to microbreakers. They concluded that a large fraction of wave energy was dissipated by microbreakers. However, in strong contrast with their findings, our analysis of their data and other recent data sets shows that for young seas, microbreakers and small whitecaps contribute only a small fraction of the total breaking wave dissipation rate. For older seas, we find microbreakers and small whitecaps contribute a large fraction of the breaking wave dissipation rate, but this is only a small fraction of the total dissipation rate, which is now dominated by non-breaking contributions. Hence, for all the wave age conditions observed, microbreakers make an insignificant contribution to the total wave dissipation rate in the wave boundary layer. We tested the sensitivity of the results to the SM15a whitecap analysis methodology by transforming the SM15a breaking data using our breaking crest processing methodology. This resulted in the small-scale breaking waves making an even smaller contribution to the total wave dissipation rate, and so the result is independent of the breaker processing methodology. Comparison with other near-surface total TKE dissipation rate observations also support this conclusion. These contributions to the spectral dissipation rate in ocean wave models are small and need not be explicitly resolved.
P-Wave Indices and Risk of Ischemic Stroke: A Systematic Review and Meta-Analysis.
He, Jinli; Tse, Gary; Korantzopoulos, Panagiotis; Letsas, Konstantinos P; Ali-Hasan-Al-Saegh, Sadeq; Kamel, Hooman; Li, Guangping; Lip, Gregory Y H; Liu, Tong
2017-08-01
Atrial cardiomyopathy is associated with an increased risk of ischemic stroke. P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area are electrocardiographic parameters that have been used to assess left atrial abnormalities related to developing atrial fibrillation. The aim of this systematic review and meta-analysis was to examine their values for predicting ischemic stroke risk. PubMed and EMBASE databases were searched until December 2016 for studies that evaluated the association between P-wave indices and stroke risk. Both fixed- and random-effects models were used to calculate the overall effect estimates. Ten studies examining P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area were included. P-wave terminal force in lead V 1 was found to be an independent predictor of stroke as both a continuous variable (odds ratio [OR] per 1 SD change, 1.18; 95% confidence interval [CI], 1.12-1.25; P <0.0001) and categorical variable (OR, 1.59; 95% CI, 1.10-2.28; P =0.01). P-wave duration was a significant predictor of incident ischemic stroke when analyzed as a categorical variable (OR, 1.86; 95% CI, 1.37-2.52; P <0.0001) but not when analyzed as a continuous variable (OR, 1.05; 95% CI, 0.98-1.13; P =0.15). Maximum P-wave area also predicted the risk of incident ischemic stroke (OR per 1 SD change, 1.10; 95% CI, 1.04-1.17). P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area are useful electrocardiographic markers that can be used to stratify the risk of incident ischemic stroke. © 2017 American Heart Association, Inc.
Kishima, Hideyuki; Mine, Takanao; Takahashi, Satoshi; Ashida, Kenki; Ishihara, Masaharu; Masuyama, Tohru
2018-04-24
The a-wave in left atrial pressure (LAP) is often not observed after cardioversion (CV). We hypothesized that repeated atrial fibrillation (AF) occurs in patients who do not show a-wave pattern after CV. We investigated the impact of "LAP pattern without a-wave" on the outcome after catheter ablation (CA) for AF. We studied 100 patients (64 males, age 66 ± 8 years, 42 with non-paroxysmal AF) who underwent CA for AF. Sustained- or induced-AF were terminated with internal CV, and LAP was measured during sinus rhythm (SR) after CV. LAP pattern without a-wave was defined as absence of a-wave (the "a-wave" was defined as a protruding part by 0.2 mmHg or more from the baseline) in LAP wave form. AF was terminated with CV in all patients. Recurrent AF was detected in 35/100 (35%) during the follow-up period (13.1 ± 7.8 month). Univariate analysis revealed higher prevalence of LAP pattern without a-wave (71 vs. 17%, P < 0.0001), larger left atrial volume, elevated E wave, and decreased deceleration time as significant variables. On multivariate analysis, LAP pattern without a-wave was only independently associated with recurrent AF (P = 0.0014, OR 9.865, 95% CI 2.327-54.861). Moreover, patients with LAP pattern without a-wave had a higher risk of recurrent AF than patients with a-wave (25/36 patients, 69 vs. 10/64 patients, 16%, log-rank P < 0.0001). Left atrial pressure pattern without a-wave in sinus rhythm after cardioversion could predict recurrence after catheter ablation for AF.
Qian, Yu; Zhang, Zhaoyang
2016-01-01
In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.
NASA Astrophysics Data System (ADS)
Landry, Blake J.; Hancock, Matthew J.; Mei, Chiang C.; García, Marcelo H.
2012-09-01
The ability to determine wave heights and phases along a spatial domain is vital to understanding a wide range of littoral processes. The software tool presented here employs established Stokes wave theory and sampling methods to calculate parameters for the incident and reflected components of a field of weakly nonlinear waves, monochromatic at first order in wave slope and propagating in one horizontal dimension. The software calculates wave parameters over an entire wave tank and accounts for reflection, weak nonlinearity, and a free second harmonic. Currently, no publicly available program has such functionality. The included MATLAB®-based open source code has also been compiled for Windows®, Mac® and Linux® operating systems. An additional companion program, VirtualWave, is included to generate virtual wave fields for WaveAR. Together, the programs serve as ideal analysis and teaching tools for laboratory water wave systems.
Validation of multi-mission satellite altimetry for the Baltic Sea region
NASA Astrophysics Data System (ADS)
Kudryavtseva, Nadia; Soomere, Tarmo; Giudici, Andrea
2016-04-01
Currently, three sources of wave data are available for the research community, namely, buoys, modelling, and satellite altimetry. The buoy measurements provide high-quality time series of wave properties but they are deployed only in a few locations. Wave modelling covers large domains and provides good results for the open sea conditions. However, the limitation of modelling is that the results are dependent on wind quality and assumptions put into the model. Satellite altimetry in many occasions provides homogeneous data over large sea areas with an appreciable spatial and temporal resolution. The use of satellite altimetry is problematic in coastal areas and partially ice-covered water bodies. These limitations can be circumvented by careful analysis of the geometry of the basin, ice conditions and spatial coverage of each altimetry snapshot. In this poster, for the first time, we discuss a validation of 30 years of multi-mission altimetry covering the whole Baltic Sea. We analysed data from RADS database (Scharroo et al. 2013) which span from 1985 to 2015. To assess the limitations of the satellite altimeter data quality, the data were cross-matched with available wave measurements from buoys of the Swedish Meteorological and Hydrological Institute and Finnish Meteorological Institute. The altimeter-measured significant wave heights showed a very good correspondence with the wave buoys. We show that the data with backscatter coefficients more than 13.5 and high errors in significant wave heights and range should be excluded. We also examined the effect of ice cover and distance from the land on satellite altimetry measurements. The analysis of cross-matches between the satellite altimetry data and buoys' measurements shows that the data are only corrupted in the nearshore domain within 0.2 degrees from the coast. The statistical analysis showed a significant decrease in wave heights for sea areas with ice concentration more than 30 percent. We also checked and corrected the data for biases between different missions. This analysis provides a unique uniform database of satellite altimetry measurements over the whole Baltic Sea, which can be further used for finding biases in wave modelling and studies of wave climatology. The database is available upon request.
Association between ICP pulse waveform morphology and ICP B waves.
Kasprowicz, Magdalena; Bergsneider, Marvin; Czosnyka, Marek; Hu, Xiao
2012-01-01
The study aimed to investigate changes in the shape of ICP pulses associated with different patterns of the ICP slow waves (0.5-2.0 cycles/min) during ICP overnight monitoring in hydrocephalus. Four patterns of ICP slow waves were characterized in 44 overnight ICP recordings (no waves - NW, slow symmetrical waves - SW, slow asymmetrical waves - AS, slow waves with plateau phase - PW). The morphological clustering and analysis of ICP pulse (MOCAIP) algorithm was utilized to calculate a set of metrics describing ICP pulse morphology based on the location of three sub-peaks in an ICP pulse: systolic peak (P(1)), tidal peak (P(2)) and dicrotic peak (P(3)). Step-wise discriminant analysis was applied to select the most characteristic morphological features to distinguish between different ICP slow waves. Based on relative changes in variability of amplitudes of P(2) and P(3) we were able to distinguish between the combined groups NW + SW and AS + PW (p < 0.000001). The AS pattern can be differentiated from PW based on respective changes in the mean curvature of P(2) and P(3) (p < 0.000001); however, none of the MOCAIP feature separates between NW and SW. The investigation of ICP pulse morphology associated with different ICP B waves may provide additional information for analysing recordings of overnight ICP.