Usefulness of Wave Data Assimilation to the WAVE WATCH III Modeling System
NASA Astrophysics Data System (ADS)
Choi, J. K.; Dykes, J. D.; Yaremchuk, M.; Wittmann, P.
2017-12-01
In-situ and remote-sensed wave data are more abundant currently than in years past, with excellent accuracy at global scales. Forecast skill of the WAVE WATCH III model is improved by assimilation of these measurements and they are also useful for model validation and calibration. It has been known that the impact of assimilation in wind-sea conditions is not large, but spectra that result in large swell with long term propagation are identified and assimilated, the improved accuracy of the initial conditions improve the long-term forecasts. The Navy's assimilation method started with the simple Optimal Interpolation (OI) method. Operationally, Fleet Numerical Meteorology and Oceanography Center uses the sequential 2DVar scheme, but a new approach has been tested based on an adjoint-free method to variational assimilation in WAVE WATCH III. We will present the status of wave data assimilation into the WAVE WATCH III numerical model and upcoming development of this new adjoint-free variational approach.
A New Methodology for the Extension of the Impact of Data Assimilation on Ocean Wave Prediction
2008-07-01
Assimilation method The analysis fields used were corrected by an assimilation method developed at the Norwegian Meteorological Insti- tute ( Breivik and Reistad...523–535 525 becomes equal to the solution obtained by optimal interpolation (see Bratseth 1986 and Breivik and Reistad 1994). The iterations begin with...updated accordingly. A more detailed description of the assimilation method is given in Breivik and Reistad (1994). 2.3 Kolmogorov–Zurbenko filters
Validation of a Wave Data Assimilation System Based on SWAN
NASA Astrophysics Data System (ADS)
Flampourisi, Stylianos; Veeramony, Jayaram; Orzech, Mark D.; Ngodock, Hans E.
2013-04-01
SWAN is one of the most broadly used models for wave predictions in the nearshore, with known and extensively studied limitations due to the physics and/or to the numerical implementation. In order to improve the performance of the model, a 4DVAR data assimilation system based on a tangent linear code and the corresponding adjoint from the numerical SWAN model has been developed at NRL(Orzech et. al., 2013), by implementing the methodology of Bennett 2002. The assimilation system takes into account the nonlinear triad and quadruplet interactions, depth-limited breaking, wind forcing, bottom friction and white-capping. Using conjugate gradient method, the assimilation system minimizes a quadratic penalty functional (which represents the overall error of the simulation) and generates the correction of the forward simulation in spatial, temporal and spectral domain. The weights are given to the output of the adjoint by calculating the covariance to an ensemble of forward simulations according to Evensen 2009. This presentation will focus on the extension of the system to a weak-constrainted data assimilation system and on the extensive validation of the system by using wave spectra for forcing, assimilation and validation, from FRF Duck, North Carolina, during August 2011. During this period, at the 17 m waverider buoy location, the wind speed was up to 35 m/s (due to Hurricane Irene) and the significant wave height varied from 0.5 m to 6 m and the peak period between 5 s and 18 s. In general, this study shows significant improvement of the integrated spectral properties, but the main benefit of assimilating the wave spectra (and not only their integrated properties) is that the accurate simulation of separated, in frequency and in direction, wave systems is possible even nearshore, where non-linear phenomena are dominant. The system is ready to be used for more precise reanalysis of the wave climate and climate variability, and determination of coastal hazards in regional or local scales, in case of available wave data. References: Orzech, M.D., J. Veeramony, and H.E. Ngodock, 2013: A variational assimilation system for nearshore wave modeling. J. Atm. & Oc. Tech., in press.
NASA Technical Reports Server (NTRS)
Hasselmann, Klaus; Hasselmann, Susanne; Bauer, Eva; Bruening, Claus; Lehner, Susanne; Graber, Hans; Lionello, Piero
1988-01-01
The applicability of ERS-1 wind and wave data for wave models was studied using the WAM third generation wave model and SEASAT altimeter, scatterometer and SAR data. A series of global wave hindcasts is made for the surface stress and surface wind fields by assimilation of scatterometer data for the full 96-day SEASAT and also for two wind field analyses for shorter periods by assimilation with the higher resolution ECMWF T63 model and by subjective analysis methods. It is found that wave models respond very sensitively to inconsistencies in wind field analyses and therefore provide a valuable data validation tool. Comparisons between SEASAT SAR image spectra and theoretical SAR spectra derived from the hindcast wave spectra by Monte Carlo simulations yield good overall agreement for 32 cases representing a wide variety of wave conditions. It is concluded that SAR wave imaging is sufficiently well understood to apply SAR image spectra with confidence for wave studies if supported by realistic wave models and theoretical computations of the strongly nonlinear mapping of the wave spectrum into the SAR image spectrum. A closed nonlinear integral expression for this spectral mapping relation is derived which avoids the inherent statistical errors of Monte Carlo computations and may prove to be more efficient numerically.
NASA Astrophysics Data System (ADS)
Ngodock, H.; Carrier, M.; Smith, S. R.; Souopgui, I.; Martin, P.; Jacobs, G. A.
2016-02-01
The representer method is adopted for solving a weak constraints 4dvar problem for the assimilation of ocean observations including along-track SSH, using a free surface ocean model. Direct 4dvar assimilation of SSH observations along the satellite tracks requires that the adjoint model be integrated with Dirac impulses on the right hand side of the adjoint equations for the surface elevation equation. The solution of this adjoint model will inevitably include surface gravity waves, and it constitutes the forcing for the tangent linear model (TLM) according to the representer method. This yields an analysis that is contaminated by gravity waves. A method for avoiding the generation of the surface gravity waves in the analysis is proposed in this study; it consists of removing the adjoint of the free surface from the right hand side (rhs) of the free surface mode in the TLM. The information from the SSH observations will still propagate to all other variables via the adjoint of the balance relationship between the barotropic and baroclinic modes, resulting in the correction to the surface elevation. Two assimilation experiments are carried out in the Gulf of Mexico: one with adjoint forcing included on the rhs of the TLM free surface equation, and the other without. Both analyses are evaluated against the assimilated SSH observations, SSH maps from Aviso and independent surface drifters, showing that the analysis that did not include adjoint forcing in the free surface is more accurate. This study shows that when a weak constraint 4dvar approach is considered for the assimilation of along-track SSH observations using a free surface model, with the aim of correcting the mesoscale circulation, an independent model error should not be assigned to the free surface.
High-Frequency Planetary Waves in the Polar Middle Atmosphere as seen in a data Assimilation System
NASA Technical Reports Server (NTRS)
Coy, L.; Stajner, I.; DaSilva, A. M.; Joiner, J.; Rood, R. B.; Pawson, S.; Lin, S. J.
2003-01-01
This study examines the winter southern hemisphere vortex of 1998 using four times daily output from a data assimilation system to focus on the polar 2-day, wave number 2 component of the 4-day wave. The data assimilation system products are from a test version of the finite volume data assimilation system (fvDAS) being developed at Goddard Space Flight Center (GSFC) and include an ozone assimilation system. Results show that the polar 2-day wave dominates during July 1998 at 70 degrees. The period of the quasi 2-day wave is somewhat shorter than 2 days (about 1.7 days) during July 1998 with an average perturbation temperature amplitude for the month of over 2.5 K. The 2-day wave propagates more slowly than the zonal mean zonal wind, consistent with Rossby wave theory, and has EP flux divergence regions associated with regions of negative horizontal potential vorticity gradients, as expected from linear instability theory. Results for the assimilation-produced ozone mixing ratio show that the 2-day wave represents a major source of ozone variation in this region. The ozone wave in the assimilation system is in good agreement with the wave seen in the POAM (Polar Ozone and Aerosol Measurement) ozone observations for the same time period. Some differences with linear instability theory are noted as well as spectral peaks in the ozone field, not seen in the temperature field, that may be a consequence of advection.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
Wave height data assimilation using non-stationary kriging
NASA Astrophysics Data System (ADS)
Tolosana-Delgado, R.; Egozcue, J. J.; Sáchez-Arcilla, A.; Gómez, J.
2011-03-01
Data assimilation into numerical models should be both computationally fast and physically meaningful, in order to be applicable in online environmental surveillance. We present a way to improve assimilation for computationally intensive models, based on non-stationary kriging and a separable space-time covariance function. The method is illustrated with significant wave height data. The covariance function is expressed as a collection of fields: each one is obtained as the empirical covariance between the studied property (significant wave height in log-scale) at a pixel where a measurement is located (a wave-buoy is available) and the same parameter at every other pixel of the field. These covariances are computed from the available history of forecasts. The method provides a set of weights, that can be mapped for each measuring location, and that do not vary with time. Resulting weights may be used in a weighted average of the differences between the forecast and measured parameter. In the case presented, these weights may show long-range connection patterns, such as between the Catalan coast and the eastern coast of Sardinia, associated to common prevailing meteo-oceanographic conditions. When such patterns are considered as non-informative of the present situation, it is always possible to diminish their influence by relaxing the covariance maps.
NASA Astrophysics Data System (ADS)
Flampouris, Stylianos; Penny, Steve; Alves, Henrique
2017-04-01
The National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (NOAA) provides the operational wave forecast for the US National Weather Service (NWS). Given the continuous efforts to improve forecast, NCEP is developing an ensemble-based data assimilation system, based on the local ensemble transform Kalman filter (LETKF), the existing operational global wave ensemble system (GWES) and on satellite and in-situ observations. While the LETKF was designed for atmospheric applications (Hunt et al 2007), and has been adapted for several ocean models (e.g. Penny 2016), this is the first time applied for oceanic waves assimilation. This new wave assimilation system provides a global estimation of the surface sea state and its approximate uncertainty. It achieves this by analyzing the 21-member ensemble of the significant wave height provided by GWES every 6h. Observations from four altimeters and all the available in-situ measurements are used in this analysis. The analysis of the significant wave height is used for initializing the next forecasting cycle; the data assimilation system is currently being tested for operational use.
Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting
NASA Astrophysics Data System (ADS)
Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.
2016-02-01
It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.
Tsunami Modeling and Prediction Using a Data Assimilation Technique with Kalman Filters
NASA Astrophysics Data System (ADS)
Barnier, G.; Dunham, E. M.
2016-12-01
Earthquake-induced tsunamis cause dramatic damages along densely populated coastlines. It is difficult to predict and anticipate tsunami waves in advance, but if the earthquake occurs far enough from the coast, there may be enough time to evacuate the zones at risk. Therefore, any real-time information on the tsunami wavefield (as it propagates towards the coast) is extremely valuable for early warning systems. After the 2011 Tohoku earthquake, a dense tsunami-monitoring network (S-net) based on cabled ocean-bottom pressure sensors has been deployed along the Pacific coast in Northeastern Japan. Maeda et al. (GRL, 2015) introduced a data assimilation technique to reconstruct the tsunami wavefield in real time by combining numerical solution of the shallow water wave equations with additional terms penalizing the numerical solution for not matching observations. The penalty or gain matrix is determined though optimal interpolation and is independent of time. Here we explore a related data assimilation approach using the Kalman filter method to evolve the gain matrix. While more computationally expensive, the Kalman filter approach potentially provides more accurate reconstructions. We test our method on a 1D tsunami model derived from the Kozdon and Dunham (EPSL, 2014) dynamic rupture simulations of the 2011 Tohoku earthquake. For appropriate choices of model and data covariance matrices, the method reconstructs the tsunami wavefield prior to wave arrival at the coast. We plan to compare the Kalman filter method to the optimal interpolation method developed by Maeda et al. (GRL, 2015) and then to implement the method for 2D.
Data Assimilation on a Quantum Annealing Computer: Feasibility and Scalability
NASA Astrophysics Data System (ADS)
Nearing, G. S.; Halem, M.; Chapman, D. R.; Pelissier, C. S.
2014-12-01
Data assimilation is one of the ubiquitous and computationally hard problems in the Earth Sciences. In particular, ensemble-based methods require a large number of model evaluations to estimate the prior probability density over system states, and variational methods require adjoint calculations and iteration to locate the maximum a posteriori solution in the presence of nonlinear models and observation operators. Quantum annealing computers (QAC) like the new D-Wave housed at the NASA Ames Research Center can be used for optimization and sampling, and therefore offers a new possibility for efficiently solving hard data assimilation problems. Coding on the QAC is not straightforward: a problem must be posed as a Quadratic Unconstrained Binary Optimization (QUBO) and mapped to a spherical Chimera graph. We have developed a method for compiling nonlinear 4D-Var problems on the D-Wave that consists of five steps: Emulating the nonlinear model and/or observation function using radial basis functions (RBF) or Chebyshev polynomials. Truncating a Taylor series around each RBF kernel. Reducing the Taylor polynomial to a quadratic using ancilla gadgets. Mapping the real-valued quadratic to a fixed-precision binary quadratic. Mapping the fully coupled binary quadratic to a partially coupled spherical Chimera graph using ancilla gadgets. At present the D-Wave contains 512 qbits (with 1024 and 2048 qbit machines due in the next two years); this machine size allows us to estimate only 3 state variables at each satellite overpass. However, QAC's solve optimization problems using a physical (quantum) system, and therefore do not require iterations or calculation of model adjoints. This has the potential to revolutionize our ability to efficiently perform variational data assimilation, as the size of these computers grows in the coming years.
Introduction and analysis of several FY3C-MWHTS cloud/rain screening methods
NASA Astrophysics Data System (ADS)
Li, Xiaoqing
2017-04-01
Data assimilation of satellite microwave sounders are very important for numerical weather prediction. Fengyun-3C (FY-3C),launched in September, 2013, has two such sounders: MWTS (MicroWave Temperature Sounder) and MWHTS (MicroWave Humidity and Temperature Sounder). These data should be quality-controlled before assimilation and cloud/rain detection is one of the crucial steps. This paper introduced different cloud/rain detection methods based on MWHTS, VIRR (Visible and InfraRed Radiometer) and MWRI (Microwave Radiation Imager) observations. We designed 6 cloud/rain detection combinations and then analyzed the application effect of these schemes. The difference between observations and model simulations for FY-3C MWHTS channels were calculated as a parameter for analysis. Both RTTOV and CRTM were used to fast simulate radiances of MWHTS channels.
High-Resolution Regional Reanalysis in China: Evaluation of 1 Year Period Experiments
NASA Astrophysics Data System (ADS)
Zhang, Qi; Pan, Yinong; Wang, Shuyu; Xu, Jianjun; Tang, Jianping
2017-10-01
Globally, reanalysis data sets are widely used in assessing climate change, validating numerical models, and understanding the interactions between the components of a climate system. However, due to the relatively coarse resolution, most global reanalysis data sets are not suitable to apply at the local and regional scales directly with the inadequate descriptions of mesoscale systems and climatic extreme incidents such as mesoscale convective systems, squall lines, tropical cyclones, regional droughts, and heat waves. In this study, by using a data assimilation system of Gridpoint Statistical Interpolation, and a mesoscale atmospheric model of Weather Research and Forecast model, we build a regional reanalysis system. This is preliminary and the first experimental attempt to construct a high-resolution reanalysis for China main land. Four regional test bed data sets are generated for year 2013 via three widely used methods (classical dynamical downscaling, spectral nudging, and data assimilation) and a hybrid method with data assimilation coupled with spectral nudging. Temperature at 2 m, precipitation, and upper level atmospheric variables are evaluated by comparing against observations for one-year-long tests. It can be concluded that the regional reanalysis with assimilation and nudging methods can better produce the atmospheric variables from surface to upper levels, and regional extreme events such as heat waves, than the classical dynamical downscaling. Compared to the ERA-Interim global reanalysis, the hybrid nudging method performs slightly better in reproducing upper level temperature and low-level moisture over China, which improves regional reanalysis data quality.
NASA Astrophysics Data System (ADS)
Devers, Alexandre; Vidal, Jean-Philippe; Lauvernet, Claire; Graff, Benjamin
2017-04-01
The knowledge of historical French weather has recently been improved through the development of the SCOPE (Spatially COherent Probabilistic Extended) Climate reconstruction, a probabilistic high-resolution daily reconstruction of precipitation and temperature covering the period 1871-2012 and based on the statistical downscaling of the Twentieth Century Reanalysis (Caillouet et al., 2016). However, historical surface observations - even though rather scarce and sparse - do exist from at least the beginning of the period considered, and this information does not currently feed SCOPE Climate reconstructions. The goal of this study is therefore to assimilate these historical observations into SCOPE Climate reconstructions in order to build a 150-year meteorological reanalysis over France. This study considers "offline" data assimilation methods - Kalman filtering methods like the Ensemble Square Root Filter - that have successfully been used in recent paleoclimate studies, i.e. at much larger temporal and spatial scales (see e.g. Bhend et al., 2012). These methods are here applied for reconstructing the 8-24 August 1893 heat wave in France, using all available daily temperature observations from that period. Temperatures reached that summer were indeed compared at the time to those of Senegal (Garnier, 2012). Results show a spatially coherent view of the heat wave at the national scale as well as a reduced uncertainty compared to initial meteorological reconstructions, thus demonstrating the added value of data assimilation. In order to assess the performance of assimilation methods in a more recent context, these methods are also used to reconstruct the well-known 3-14 August 2003 heat wave by using (1) all available stations, and (2) the same station density as in August 1893, the rest of the observations being saved for validation. This analysis allows comparing two heat waves having occurred 100 years apart in France with different associated uncertainties, in terms of dynamics and intensity. Bhend, J., Franke, J., Folini, D., Wild, M., and Brönnimann, S.: An ensemble-based approach to climate reconstructions, Clim. Past, 8, 963-976, doi: 10.5194/cp-8-963-2012, 2012 Caillouet, L., Vidal, J-P., Sauquet, E., and Graff, B.: Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France, Clim. Past, 12, 635-662, doi: 10.5194/cp-12-635-2016, 2016. Garnier, E.: Sécheresses et canicules avant le Global Warming - 1500-1950. In: Canicules et froids extrêmes. L'Événement climatique et ses représentations (II) Histoire, littérature, peinture (Berchtlod, J., Le Roy ladurie, E., Sermain, J.-P., and Vasak, A., Eds.), 297-325, Hermann, 2012.
Application Of Multi-grid Method On China Seas' Temperature Forecast
NASA Astrophysics Data System (ADS)
Li, W.; Xie, Y.; He, Z.; Liu, K.; Han, G.; Ma, J.; Li, D.
2006-12-01
Correlation scales have been used in traditional scheme of 3-dimensional variational (3D-Var) data assimilation to estimate the background error covariance for the numerical forecast and reanalysis of atmosphere and ocean for decades. However there are still some drawbacks of this scheme. First, the correlation scales are difficult to be determined accurately. Second, the positive definition of the first-guess error covariance matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. (2005) indicated that a traditional 3D-Var only corrects some certain wavelength errors and its accuracy depends on the accuracy of the first-guess covariance. And in general, short wavelength error can not be well corrected until long one is corrected and then inaccurate first-guess covariance may mistakenly take long wave error as short wave ones and result in erroneous analysis. For the purpose of quickly minimizing the errors of long and short waves successively, a new 3D-Var data assimilation scheme, called multi-grid data assimilation scheme, is proposed in this paper. By assimilating the shipboard SST and temperature profiles data into a numerical model of China Seas, we applied this scheme in two-month data assimilation and forecast experiment which ended in a favorable result. Comparing with the traditional scheme of 3D-Var, the new scheme has higher forecast accuracy and a lower forecast Root-Mean-Square (RMS) error. Furthermore, this scheme was applied to assimilate the SST of shipboard, AVHRR Pathfinder Version 5.0 SST and temperature profiles at the same time, and a ten-month forecast experiment on sea temperature of China Seas was carried out, in which a successful forecast result was obtained. Particularly, the new scheme is demonstrated a great numerical efficiency in these analyses.
Optimizing spectral wave estimates with adjoint-based sensitivity maps
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Flampouris, Stylianos
2014-04-01
A discrete numerical adjoint has recently been developed for the stochastic wave model SWAN. In the present study, this adjoint code is used to construct spectral sensitivity maps for two nearshore domains. The maps display the correlations of spectral energy levels throughout the domain with the observed energy levels at a selected location or region of interest (LOI/ROI), providing a full spectrum of values at all locations in the domain. We investigate the effectiveness of sensitivity maps based on significant wave height ( H s ) in determining alternate offshore instrument deployment sites when a chosen nearshore location or region is inaccessible. Wave and bathymetry datasets are employed from one shallower, small-scale domain (Duck, NC) and one deeper, larger-scale domain (San Diego, CA). The effects of seasonal changes in wave climate, errors in bathymetry, and multiple assimilation points on sensitivity map shapes and model performance are investigated. Model accuracy is evaluated by comparing spectral statistics as well as with an RMS skill score, which estimates a mean model-data error across all spectral bins. Results indicate that data assimilation from identified high-sensitivity alternate locations consistently improves model performance at nearshore LOIs, while assimilation from low-sensitivity locations results in lesser or no improvement. Use of sub-sampled or alongshore-averaged bathymetry has a domain-specific effect on model performance when assimilating from a high-sensitivity alternate location. When multiple alternate assimilation locations are used from areas of lower sensitivity, model performance may be worse than with a single, high-sensitivity assimilation point.
Nonlinear problems in data-assimilation : Can synchronization help?
NASA Astrophysics Data System (ADS)
Tribbia, J. J.; Duane, G. S.
2009-12-01
Over the past several years, operational weather centers have initiated ensemble prediction and assimilation techniques to estimate the error covariance of forecasts in the short and the medium range. The ensemble techniques used are based on linear methods. The theory This technique s been shown to be a useful indicator of skill in the linear range where forecast errors are small relative to climatological variance. While this advance has been impressive, there are still ad hoc aspects of its use in practice, like the need for covariance inflation which are troubling. Furthermore, to be of utility in the nonlinear range an ensemble assimilation and prediction method must be capable of giving probabilistic information for the situation where a probability density forecast becomes multi-modal. A prototypical, simplest example of such a situation is the planetary-wave regime transition where the pdf is bimodal. Our recent research show how the inconsistencies and extensions of linear methodology can be consistently treated using the paradigm of synchronization which views the problems of assimilation and forecasting as that of optimizing the forecast model state with respect to the future evolution of the atmosphere.
Balanced Atmospheric Data Assimilation
NASA Astrophysics Data System (ADS)
Hastermann, Gottfried; Reinhardt, Maria; Klein, Rupert; Reich, Sebastian
2017-04-01
The atmosphere's multi-scale structure poses several major challenges in numerical weather prediction. One of these arises in the context of data assimilation. The large-scale dynamics of the atmosphere are balanced in the sense that acoustic or rapid internal wave oscillations generally come with negligibly small amplitudes. If triggered artificially, however, through inappropriate initialization or by data assimilation, such oscillations can have a detrimental effect on forecast quality as they interact with the moist aerothermodynamics of the atmosphere. In the setting of sequential Bayesian data assimilation, we therefore investigate two different strategies to reduce these artificial oscillations induced by the analysis step. On the one hand, we develop a new modification for a local ensemble transform Kalman filter, which penalizes imbalances via a minimization problem. On the other hand, we modify the first steps of the subsequent forecast to push the ensemble members back to the slow evolution. We therefore propose the use of certain asymptotically consistent integrators that can blend between the balanced and the unbalanced evolution model seamlessly. In our work, we furthermore present numerical results and performance of the proposed methods for two nonlinear ordinary differential equation models, where we can identify the different scales clearly. The first one is a Lorenz 96 model coupled with a wave equation. In this case the balance relation is linear and the imbalances are caused only by the localization of the filter. The second one is the elastic double pendulum where the balance relation itself is already highly nonlinear. In both cases the methods perform very well and could significantly reduce the imbalances and therefore increase the forecast quality of the slow variables.
Covariance Function for Nearshore Wave Assimilation Systems
2018-01-30
covariance can be modeled by a parameterized Gaussian function, for nearshore wave assimilation applications, the covariance function depends primarily on...case of missing values at the compiled time series, the gaps were filled by weighted interpolation. The weights depend on the number of the...averaging, in order to create the continuous time series, filters out the dependency on the instantaneous meteorological and oceanographic conditions
Data assimilation and bathymetric inversion in a two-dimensional horizontal surf zone model
NASA Astrophysics Data System (ADS)
Wilson, G. W.; Ã-Zkan-Haller, H. T.; Holman, R. A.
2010-12-01
A methodology is described for assimilating observations in a steady state two-dimensional horizontal (2-DH) model of nearshore hydrodynamics (waves and currents), using an ensemble-based statistical estimator. In this application, we treat bathymetry as a model parameter, which is subject to a specified prior uncertainty. The statistical estimator uses state augmentation to produce posterior (inverse, updated) estimates of bathymetry, wave height, and currents, as well as their posterior uncertainties. A case study is presented, using data from a 2-D array of in situ sensors on a natural beach (Duck, NC). The prior bathymetry is obtained by interpolation from recent bathymetric surveys; however, the resulting prior circulation is not in agreement with measurements. After assimilating data (significant wave height and alongshore current), the accuracy of modeled fields is improved, and this is quantified by comparing with observations (both assimilated and unassimilated). Hence, for the present data, 2-DH bathymetric uncertainty is an important source of error in the model and can be quantified and corrected using data assimilation. Here the bathymetric uncertainty is ascribed to inadequate temporal sampling; bathymetric surveys were conducted on a daily basis, but bathymetric change occurred on hourly timescales during storms, such that hydrodynamic model skill was significantly degraded. Further tests are performed to analyze the model sensitivities used in the assimilation and to determine the influence of different observation types and sampling schemes.
2015-08-14
assimilated directly into a free surface ocean model using NCOM 4DVAR methods without generating gravity waves. The latter is a serious problem that... The bias of buoyancy frequency in the left plot of figure 4‐19 reveals that the NCOM 4DVAR is doing fairly well at predicting the stratification ...Test Report for the Navy Coastal Ocean Model Four-Dimensional Variational Assimilation (NCOM 4DVAR) System Version 1.0 Scott Smith matthew carrier
Real-time 3-D space numerical shake prediction for earthquake early warning
NASA Astrophysics Data System (ADS)
Wang, Tianyun; Jin, Xing; Huang, Yandan; Wei, Yongxiang
2017-12-01
In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake prediction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.
Violante-Carvalho, Nelson
2005-12-01
Synthetic Aperture Radar (SAR) onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM) imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI) scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.
The role of satellite directional wave spectra for the improvement of the ocean-waves coupling
NASA Astrophysics Data System (ADS)
Aouf, Lotfi; Hauser, Danièle; Chapron, Bertrand
2017-04-01
Swell waves are well captured by the Synthetic Aperture Radar (SAR) which provides the directional wave spectra for waves roughly larger than 200 m. Since the launch of sentinel-1A and 1B SAR directional wave spectra are available to improve the swell wave forecasting and the coupling processes at the air-sea interface. Moreover next year CFOSAT mission will provide directional wave spectra for waves with wavelengths comprised between 70 to 500 m. This study aims to evaluate the assimilation of SAR and synthetic CFOSAT wave spectra on the coupling between the wave model MFWAM and the ocean model NEMO. Three coupling processes as described in Breivik et al. (2014) of Stokes-Coriolis forcing, the ocean side stress and the turbulence injected by the wave breaking in the ocean mixed layer have been used. a coupling run is performed with and without assimilation of directional wave spectra. the impact of SAR wave data on key parameters such as surface sea temperature, currents and salinity is investigated. Particular attention is carried out for ocean areas with swell dominant wave climate.
A balanced Kalman filter ocean data assimilation system with application to the South Australian Sea
NASA Astrophysics Data System (ADS)
Li, Yi; Toumi, Ralf
2017-08-01
In this paper, an Ensemble Kalman Filter (EnKF) based regional ocean data assimilation system has been developed and applied to the South Australian Sea. This system consists of the data assimilation algorithm provided by the NCAR Data Assimilation Research Testbed (DART) and the Regional Ocean Modelling System (ROMS). We describe the first implementation of the physical balance operator (temperature-salinity, hydrostatic and geostrophic balance) to DART, to reduce the spurious waves which may be introduced during the data assimilation process. The effect of the balance operator is validated in both an idealised shallow water model and the ROMS model real case study. In the shallow water model, the geostrophic balance operator eliminates spurious ageostrophic waves and produces a better sea surface height (SSH) and velocity analysis and forecast. Its impact increases as the sea surface height and wind stress increase. In the real case, satellite-observed sea surface temperature (SST) and SSH are assimilated in the South Australian Sea with 50 ensembles using the Ensemble Adjustment Kalman Filter (EAKF). Assimilating SSH and SST enhances the estimation of SSH and SST in the entire domain, respectively. Assimilation with the balance operator produces a more realistic simulation of surface currents and subsurface temperature profile. The best improvement is obtained when only SSH is assimilated with the balance operator. A case study with a storm suggests that the benefit of the balance operator is of particular importance under high wind stress conditions. Implementing the balance operator could be a general benefit to ocean data assimilation systems.
The pre-Argo ocean reanalyses may be seriously affected by the spatial coverage of moored buoys
Sivareddy, S.; Paul, Arya; Sluka, Travis; Ravichandran, M.; Kalnay, Eugenia
2017-01-01
Assimilation methods, meant to constrain divergence of model trajectory from reality using observations, do not exactly satisfy the physical laws governing the model state variables. This allows mismatches in the analysis in the vicinity of observation locations where the effect of assimilation is most prominent. These mismatches are usually mitigated either by the model dynamics in between the analysis cycles and/or by assimilation at the next analysis cycle. However, if the observations coverage is limited in space, as it was in the ocean before the Argo era, these mechanisms may be insufficient to dampen the mismatches, which we call shocks, and they may remain and grow. Here we show through controlled experiments, using real and simulated observations in two different ocean models and assimilation systems, that such shocks are generated in the ocean at the lateral boundaries of the moored buoy network. They thrive and propagate westward as Rossby waves along these boundaries. However, these shocks are essentially eliminated by the assimilation of near-homogenous global Argo distribution. These findings question the fidelity of ocean reanalysis products in the pre-Argo era. For example, a reanalysis that ignores Argo floats and assimilates only moored buoys, wrongly represents 2008 as a negative Indian Ocean Dipole year. PMID:28429748
Inverse Regional Modeling with Adjoint-Free Technique
NASA Astrophysics Data System (ADS)
Yaremchuk, M.; Martin, P.; Panteleev, G.; Beattie, C.
2016-02-01
The ongoing parallelization trend in computer technologies facilitates the use ensemble methods in geophysical data assimilation. Of particular interest are ensemble techniques which do not require the development of tangent linear numerical models and their adjoints for optimization. These ``adjoint-free'' methods minimize the cost function within the sequence of subspaces spanned by a carefully chosen sets perturbations of the control variables. In this presentation, an adjoint-free variational technique (a4dVar) is demonstrated in an application estimating initial conditions of two numerical models: the Navy Coastal Ocean Model (NCOM), and the surface wave model (WAM). With the NCOM, performance of both adjoint and adjoint-free 4dVar data assimilation techniques is compared in application to the hydrographic surveys and velocity observations collected in the Adriatic Sea in 2006. Numerical experiments have shown that a4dVar is capable of providing forecast skill similar to that of conventional 4dVar at comparable computational expense while being less susceptible to excitation of ageostrophic modes that are not supported by observations. Adjoint-free technique constrained by the WAM model is tested in a series of data assimilation experiments with synthetic observations in the southern Chukchi Sea. The types of considered observations are directional spectra estimated from point measurements by stationary buoys, significant wave height (SWH) observations by coastal high-frequency radars and along-track SWH observations by satellite altimeters. The a4dVar forecast skill is shown to be 30-40% better than the skill of the sequential assimilaiton method based on optimal interpolation which is currently used in operations. Prospects of further development of the a4dVar methods in regional applications are discussed.
Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere
NASA Astrophysics Data System (ADS)
Pedatella, N. M.; Oberheide, J.; Sutton, E. K.; Liu, H.-L.; Anderson, J. L.; Raeder, K.
2016-04-01
The intraseasonal variability of the eastward propagating nonmigrating diurnal tide with zonal wave number 3 (DE3) during 2007 in the mesosphere, ionosphere, and thermosphere is investigated using a whole atmosphere model reanalysis and satellite observations. The atmospheric reanalysis is based on implementation of data assimilation in the Whole Atmosphere Community Climate Model (WACCM) using the Data Assimilation Research Testbed (DART) ensemble Kalman filter. The tidal variability in the WACCM+DART reanalysis is compared to the observed variability in the mesosphere and lower thermosphere (MLT) based on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) observations, in the ionosphere based on Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations, and in the upper thermosphere (˜475 km) based on Gravity Recovery and Climate Experiment (GRACE) neutral density observations. To obtain the short-term DE3 variability in the MLT and upper thermosphere, we apply the method of tidal deconvolution to the TIMED/SABER observations and consider the difference in the ascending and descending longitudinal wave number 4 structure in the GRACE observations. The results reveal that tidal amplitude changes of 5-10 K regularly occur on short timescales (˜10-20 days) in the MLT. Similar variability occurs in the WACCM+DART reanalysis and TIMED/SABER observations, demonstrating that the short-term variability can be captured in whole atmosphere models that employ data assimilation and in observations by the technique of tidal deconvolution. The impact of the short-term DE3 variability in the MLT on the ionosphere and thermosphere is also clearly evident in the COSMIC and GRACE observations. Analysis of the troposphere forcing in WACCM+DART and simulations of the Global Scale Wave Model (GSWM) show that the short-term DE3 variability in the MLT is not related to a single source; rather, it is due to a combination of changes in troposphere forcing, zonal mean atmosphere, and wave-wave interactions.
Sung, Aaron; Garcia, Nathan S.; Gracey, Andrew Y.; German, Donovan P.
2016-01-01
ABSTRACT The intertidal mussel Mytilus californianus is a critical foundation species that is exposed to fluctuations in the environment along tidal- and wave-exposure gradients. We investigated feeding and digestion in mussels under laboratory conditions and across environmental gradients in the field. We assessed whether mussels adopt a rate-maximization (higher ingestion and lower assimilation) or a yield-maximization acquisition (lower ingestion and higher assimilation) strategy under laboratory conditions by measuring feeding physiology and digestive enzyme activities. We used digestive enzyme activity to define resource acquisition strategies in laboratory studies, then measured digestive enzyme activities in three microhabitats at the extreme ends of the tidal- and wave-exposure gradients within a stretch of shore (<20 m) projected sea-ward. Our laboratory results indicated that mussels benefit from a high assimilation efficiency when food concentration is low and have a low assimilation efficiency when food concentration is high. Additionally, enzyme activities of carbohydrases amylase, laminarinase and cellulase were elevated when food concentration was high. The protease trypsin, however, did not increase with increasing food concentration. In field conditions, low-shore mussels surprisingly did not have high enzyme activities. Rather, high-shore mussels exhibited higher cellulase activities than low-shore mussels. Similarly, trypsin activity in the high-shore-wave-sheltered microhabitat was higher than that in high-shore-wave-exposed. As expected, mussels experienced increasing thermal stress as a function of reduced submergence from low to high shore and shelter from wave-splash. Our findings suggest that mussels compensate for limited feeding opportunities and thermal stress by modulating digestive enzyme activities. PMID:27402963
Efficient data assimilation algorithm for bathymetry application
NASA Astrophysics Data System (ADS)
Ghorbanidehno, H.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.
2017-12-01
Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing techniques. Data assimilation methods combine the remote sensing data and nearshore hydrodynamic models to estimate the unknown bathymetry and the corresponding uncertainties. In particular, several recent efforts have combined Kalman Filter-based techniques such as ensembled-based Kalman filters with indirect video-based observations to address the bathymetry inversion problem. However, these methods often suffer from ensemble collapse and uncertainty underestimation. Here, the Compressed State Kalman Filter (CSKF) method is used to estimate the bathymetry based on observed wave celerity. In order to demonstrate the accuracy and robustness of the CSKF method, we consider twin tests with synthetic observations of wave celerity, while the bathymetry profiles are chosen based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, NC. The first test case is a bathymetry estimation problem for a spatially smooth and temporally constant bathymetry profile. The second test case is a bathymetry estimation problem for a temporally evolving bathymetry from a smooth to a non-smooth profile. For both problems, we compare the results of CSKF with those obtained by the local ensemble transform Kalman filter (LETKF), which is a popular ensemble-based Kalman filter method.
The potential impact of scatterometry on oceanography - A wave forecasting case
NASA Technical Reports Server (NTRS)
Cane, M. A.; Cardone, V. J.
1981-01-01
A series of observing system simulation experiments have been performed in order to assess the potential impact of marine surface wind data on numerical weather prediction. In addition to conventional data, the experiments simulated the time-continuous assimilation of remotely sensed marine surface wind or temperature sounding data. The wind data were fabricated directly for model grid points intercepted by a Seasat-1 scatterometer swath and were assimilated into the lowest active level (945 mb) of the model using a localized successive correction method. It is shown that Seasat wind data can greatly improve numerical weather forecasts due to better definition of specific features. The case of the QE II storm is examined.
NASA Technical Reports Server (NTRS)
Coy, Lawrence; Pawson, Steven
2014-01-01
We examine the major stratosphere sudden warming (SSW) that occurred on 6 January 2013, using output from the NASA Global Modeling and Assimilation Office (GMAO) GEOS-5 (Goddard Earth Observing System) near-real-time data assimilation system (DAS). Results show that the major SSW of January 2013 falls into the vortex splitting type of SSW, with the initial planetary wave breaking occurring near 10 hPa. The vertical flux of wave activity at the tropopause responsible for the SSW occurred mainly in the Pacific Hemisphere, including the a pulse associated with the preconditioning of the polar vortex by wave 1 identified on 23 December 2012. While most of the vertical wave activity flux was in the Pacific Hemisphere, a rapidly developing tropospheric weather system over the North Atlantic on 28 December is shown to have produced a strong transient upward wave activity flux into the lower stratosphere coinciding with the peak of the SSW event. In addition, the GEOS-5 5-day forecasts accurately predicted the major SSW of January 2013 as well as the upper tropospheric disturbances responsible for the warming. The overall success of the 5-day forecasts provides motivation to produce regular 10-day forecasts with GEOS-5, to better support studies of stratosphere-troposphere interaction.
Image Registration and Data Assimilation as a QUBO on the D-Wave Quantum Annealer
NASA Astrophysics Data System (ADS)
Pelissier, C.; LeMoigne, J.; Halem, M.; Simpson, D. G.; Clune, T.
2016-12-01
The advent of the commercially available D-Wave quantum annealer has for the first time allowed investigations of the potential of quantum effects to efficiently carry out certain numerical tasks. The D-Wave computer was initially promoted as a tool to solve Quadratic Unconstrained Binary Optimization problems (QUBOs), but currently, it is also being used to generate the Boltzmann statistics required to train Restricted Boltzmann machines (RBMs). We consider the potential of this new architecture in performing numerical computations required to estimate terrestrial carbon fluxes from OCO-2 observations using the LIS model. The use of RBMs is being investigated in this work, but here we focus on the D-Wave as a QUBO solver, and it's potential to carry out image registration and data assimilation. QUBOs are formulated for both problems and results generated using the D-Wave 2Xtm at the NAS supercomputing facility are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Jim; Flicker, Dawn; Ide, Kayo
2006-05-20
This paper builds upon our recent data assimilation work with the extended Kalman filter (EKF) method [J. Kao, D. Flicker, R. Henninger, S. Frey, M. Ghil, K. Ide, Data assimilation with an extended Kalman filter for an impact-produced shock-wave study, J. Comp. Phys. 196 (2004) 705-723.]. The purpose is to test the capability of EKF in optimizing a model's physical parameters. The problem is to simulate the evolution of a shock produced through a high-speed flyer plate. In the earlier work, we have showed that the EKF allows one to estimate the evolving state of the shock wave from amore » single pressure measurement, assuming that all model parameters are known. In the present paper, we show that imperfectly known model parameters can also be estimated accordingly, along with the evolving model state, from the same single measurement. The model parameter optimization using the EKF can be achieved through a simple modification of the original EKF formalism by including the model parameters into an augmented state variable vector. While the regular state variables are governed by both deterministic and stochastic forcing mechanisms, the parameters are only subject to the latter. The optimally estimated model parameters are thus obtained through a unified assimilation operation. We show that improving the accuracy of the model parameters also improves the state estimate. The time variation of the optimized model parameters results from blending the data and the corresponding values generated from the model and lies within a small range, of less than 2%, from the parameter values of the original model. The solution computed with the optimized parameters performs considerably better and has a smaller total variance than its counterpart using the original time-constant parameters. These results indicate that the model parameters play a dominant role in the performance of the shock-wave hydrodynamic code at hand.« less
Determination of ocean surface heat fluxes by a variational method
NASA Astrophysics Data System (ADS)
Roquet, H.; Planton, S.; Gaspar, P.
1993-06-01
A new technique of determination of the "nonsolar" heat flux (sum of the latent, sensible, and net infrared fluxes) at the ocean surface is proposed. It applies when oceanic advection remains weak and thus relies on a one-dimensional modeling approach. It is based on a variational data assimilation scheme using the adjoint equation formalism. This allows to take advantage of all observed data with their error estimates. Results from experiments performed with station Papa (Gulf of Alaska) and Long-Term Upper Ocean Study (LOTUS, Sargasso Sea) data sets are discussed. The temperature profiles assimilation allows the one-dimensional model to reproduce correctly the temperature evolution at the surface and under the oceanic mixed layer at the two sites. The retrieved fluxes are compared to the fluxes calculated through classical empirical formulae. The diurnal dependence of the fluxes at the LOTUS site is particularly investigated. The results are also compared with those obtained using a simpler technique based on an iterative shooting method and allowing the assimilation of the only sea surface temperature. This second comparison reveals that the variability of the retrieved fluxes is damped when temperature in the inner ocean are assimilated. This is the case for the diurnal cycle at the LOTUS mooring. When the available current data at this site are assimilated, the diurnal variability of the retrieved fluxes is further decreased. This points out a model discrepancy in the representation of mixing processes associated to internal wave activity. The remaining part of the diurnal cycle is significant and could be due to a direct effect of air-sea temperature difference.
DARLA: Data Assimilation and Remote Sensing for Littoral Applications
2017-03-01
in the surf zone. The foam produced in an actively breaking crest, or wave roller, has a distinct signature in IR imagery. A retrieval algorithm is...the surface. The velocity profiles are obtained from a pulse-coherent acoustic Doppler sonar on a wave-following platform, termed a Surface Wave
Wakano, Joe Yuichiro; Gilpin, William; Kadowaki, Seiji; Feldman, Marcus W; Aoki, Kenichi
2018-02-01
Recent archaeological records no longer support a simple dichotomous characterization of the cultures/behaviors of Neanderthals and modern humans, but indicate much cultural/behavioral variability over time and space. Thus, in modeling the replacement or assimilation of Neanderthals by modern humans, it is of interest to consider cultural dynamics and their relation to demographic change. The ecocultural framework for the competition between hominid species allows their carrying capacities to depend on some measure of the levels of culture they possess. In the present study both population densities and the densities of skilled individuals in Neanderthals and modern humans are spatially distributed and subject to change by spatial diffusion, ecological competition, and cultural transmission within each species. We analyze the resulting range expansions in terms of the demographic, ecological and cultural parameters that determine how the carrying capacities relate to the local densities of skilled individuals in each species. Of special interest is the case of cognitive and intrinsic-demographic equivalence of the two species. The range expansion dynamics may consist of multiple wave fronts of different speeds, each of which originates from a traveling wave solution. Properties of these traveling wave solutions are mathematically derived. Depending on the parameters, these traveling waves can result in replacement of Neanderthals by modern humans, or assimilation of the former by the latter. In both the replacement and assimilation scenarios, the first wave of intrusive modern humans is characterized by a low population density and a low density of skilled individuals, with implications for archaeological visibility. The first invasion is due to weak interspecific competition. A second wave of invasion may be induced by cultural differences between moderns and Neanderthals. Spatially and temporally extended coexistence of the two species, which would have facilitated the transfer of genes from Neanderthal into modern humans and vice versa, is observed in the traveling waves, except when niche overlap between the two species is extremely high. Archaeological findings on the spatial and temporal distributions of the Initial Upper Palaeolithic and the Early Upper Palaeolithic and of the coexistence of Neanderthals and modern humans are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Adjoint-Based Sensitivity Maps for the Nearshore
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Ngodock, Hans
2013-04-01
The wave model SWAN (Booij et al., 1999) solves the spectral action balance equation to produce nearshore wave forecasts and climatologies. It is widely used by the coastal modeling community and is part of a variety of coupled ocean-wave-atmosphere model systems. A variational data assimilation system (Orzech et al., 2013) has recently been developed for SWAN and is presently being transitioned to operational use by the U.S. Naval Oceanographic Office. This system is built around a numerical adjoint to the fully nonlinear, nonstationary SWAN code. When provided with measured or artificial "observed" spectral wave data at a location of interest on a given nearshore bathymetry, the adjoint can compute the degree to which spectral energy levels at other locations are correlated with - or "sensitive" to - variations in the observed spectrum. Adjoint output may be used to construct a sensitivity map for the entire domain, tracking correlations of spectral energy throughout the grid. When access is denied to the actual locations of interest, sensitivity maps can be used to determine optimal alternate locations for data collection by identifying regions of greatest sensitivity in the mapped domain. The present study investigates the properties of adjoint-generated sensitivity maps for nearshore wave spectra. The adjoint and forward SWAN models are first used in an idealized test case at Duck, NC, USA, to demonstrate the system's effectiveness at optimizing forecasts of shallow water wave spectra for an inaccessible surf-zone location. Then a series of simulations is conducted for a variety of different initializing conditions, to examine the effects of seasonal changes in wave climate, errors in bathymetry, and variations in size and shape of the inaccessible region of interest. Model skill is quantified using two methods: (1) a more traditional correlation of observed and modeled spectral statistics such as significant wave height, and (2) a recently developed RMS spectral skill score summed over all frequency-directional bins. The relative advantages and disadvantages of these two methods are considered. References: Booij, N., R.C. Ris, and L.H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. 104 (C4), 7649-7666. Orzech, M.D., J. Veeramony, and H.E. Ngodock, 2013: A variational assimilation system for nearshore wave modeling. J. Atm. & Oc. Tech., in press.
NASA Astrophysics Data System (ADS)
Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli
2018-05-01
Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a useful guidance for future design of observing system in this region.
Newtonian nudging for a Richards equation-based distributed hydrological model
NASA Astrophysics Data System (ADS)
Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark
The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.
ERIC Educational Resources Information Center
Leonardo, Jennifer Braga
2016-01-01
This study investigated the contribution of assimilation, sociodemographic factors, and social supports to depressive symptoms in immigrant adolescents, using Waves I and II of the National Longitudinal Study of Adolescent Health (N = 4,263). Immigrant adolescents reported more risk factors and higher levels of depressive symptoms than native…
Determining Heterogeneous Bottom Friction Distributions using a Numerical Wave Model
2007-08-11
dissipation in this study. For a bathymetry inversion, how- ever, we would expect E to be more concentrated because of Easting Meters the local efTect of...numerical wave model, bottom dissipation , data assimilation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE...obviously, dissipation of wave energy as waves addition to its use in improving wave forecasting, assimi- propagate) as demonstrated in recent work
Model-Data Assimilation of Internal Waves during ASIAEX-2001
NASA Technical Reports Server (NTRS)
Liu, Antony; Zhao, Yun-He; Tang, T. Y.; Ramp, Steven R.
2003-01-01
In recent Asian Seas International Acoustics Experiment (ASIAEX), extensive moorings have been deployed around the continental shelf break area in the northeast of South China Sea in May 2001. Simultaneous RADARSAT SAR images have been collected during the field test to integrate with the in-situ measurements from moorings, ship-board sensors, and CTD casts. Besides it provides synoptic information, satellite imagery is very useful for tracking the internal waves, and locating surface fronts and mesoscale features. During ASIAEX in May 2001, many large internal waves were observed at the test area and were the major oceanic features for acoustic volume interaction. Based on the internal wave distribution maps compiled from satellite data, the wave crest can be as long as 200 km with amplitude of 100 m. Environmental parameters have been calculated based on extensive CTD casts data near the ASIAEX area. Nonlinear internal wave models have been applied to integrate and assimilate both SAR and mooring data. Using SAR data in deep water as an initial condition, numerical simulations produce the wave evolution on the continental shelf and compared reasonably well with the mooring measurements at the downstream station. The shoaling, turning, and dissipation of large internal waves on the shelf break, elevation solitons, and wave-wave interaction have been studied and are very important issues for acoustic propagation. The internal wave effects on acoustic modal coupling has been implicated and discussed.
DARLA: Data Assimilation and Remote Sensing for Littoral Applications
NASA Astrophysics Data System (ADS)
Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.
2012-12-01
DARLA is 5-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced data assimilation (DA) modeling to (a) evaluate and improve remote sensing retrieval algorithms for environmental parameters, (b) determine the extent to which remote sensing data can be used in place of in situ data in models, and (c) infer bathymetry for littoral environments by combining remotely-sensed parameters and data assimilation models. The project uses microwave, electro-optical, and infrared techniques to characterize the littoral ocean with a focus on wave and current parameters required for DA modeling. In conjunction with the RIVET (River and Inlets) Project, extensive in situ measurements provide ground truth for both the remote sensing retrieval algorithms and the DA modeling. Our goal is to use remote sensing to constrain data assimilation models of wave and circulation dynamics in a tidal inlet and surrounding beaches. We seek to improve environmental parameter estimation via remote sensing fusion, determine the success of using remote sensing data to drive DA models, and produce a dynamically consistent representation of the wave, circulation, and bathymetry fields in complex environments. The objectives are to test the following three hypotheses: 1. Environmental parameter estimation using remote sensing techniques can be significantly improved by fusion of multiple sensor products. 2. Data assimilation models can be adequately constrained (i.e., forced or guided) with environmental parameters derived from remote sensing measurements. 3. Bathymetry on open beaches, river mouths, and at tidal inlets can be inferred from a combination of remotely-sensed parameters and data assimilation models. Our approach is to conduct a series of field experiments combining remote sensing and in situ measurements to investigate signature physics and to gather data for developing and testing DA models. A preliminary experiment conducted at the Field Research Facility at Duck, NC in September 2010 focused on assimilation of tower-based electo-optical, infrared, and radar measurements in predictions of longshore currents. Here we provide an overview of our contribution to the RIVET I experiment at New River Inlet, NC in May 2012. During the course of the 3-week measurement period, continuous tower-based remote sensing measurements were made using electro-optical, infrared, and radar techniques covering the nearshore zone and the inlet mouth. A total of 50 hours of airborne measurements were made using high-resolution infrared imagers and a customized along track interferometric synthetic aperture radar (ATI SAR). The airborne IR imagery provides kilometer-scale mapping of frontal features that evolve as the inlet flow interacts with the oceanic wave and current fields. The ATI SAR provides maps of the two-dimensional surface currents. Near-surface measurements of turbulent velocities and surface waves using SWIFT drifters, designed to measures near-surface properties relevant to remote sensing, complimented the extensive in situ measurements by RIVET investigators.
Optimizing Spectral Wave Estimates with Adjoint-Based Sensitivity Maps
2014-02-18
J, Orzech MD, Ngodock HE (2013) Validation of a wave data assimilation system based on SWAN. Geophys Res Abst, (15), EGU2013-5951-1, EGU General ...surface wave spectra. Sensitivity maps are generally constructed for a selected system indicator (e.g., vorticity) by computing the differential of...spectral action balance Eq. 2, generally initialized at the off- shore boundary with spectral wave and other outputs from regional models such as
Mediterranea Forecasting System: a focus on wave-current coupling
NASA Astrophysics Data System (ADS)
Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina
2016-04-01
The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully coupled modelling system in order to achieve stronger enhancements of the hydrodynamic fields.
NASA Astrophysics Data System (ADS)
Mailly, T.; Blayo, E.; Verron, J.
1997-10-01
Two years of altimetric data from Topex/Poseidon (October 1992-September 1994) and ERS-1 (October 1992-December 1993) were assimilated into a numerical model of the North Atlantic. The results of these simulations are analysed in the Azores region to assess the performance of our model in this particular region. Maps of instantaneous dynamic topography and transports show that the model performs well in reproducing the velocities and transports of the Azores Front. Drifter data from the Semaphore experiment are also used to study the correlation between the drifter velocities and the corresponding model velocities. Some interesting oceanographic results are also obtained by examining the seasonal and interannual variability of the circulation and the influence of bathymetry on the variability of the Azores Front. Thus, on the basis of our two year experiment, it is possible to confirm the circulation patterns proposed by previous studies regarding the seasonal variations in the origin of the Azores Current. Moreover, it is shown that the Azores Current is quite narrow in the first year of assimilation (1992-1993), but becomes much wider in the second year (1993-1994). The role of the bathymetry appears important in this area since the mesoscale activity is shown to be strongly related to the presence of topographic slopes. Finally, spectral analyses of sea-level changes over time and space are used to identify two types of wave already noticed in other studies: a wave with (300 km)-1 wave number and (120 days)-1 frequency, which is characteristic of mesoscale undulation, and a wave with (600 km)-1 wave number and (250 days)-1 frequency which probably corresponds to a Rossby wave generated in the east of the basin.
NASA Astrophysics Data System (ADS)
Ren, Shuzhan; Polavarapu, Saroja M.; Shepherd, Theodore G.
2008-03-01
The mesospheric response to the 2002 Antarctic Stratospheric Sudden Warming (SSW) is analysed using the Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS), where it represents a vertical propagation of information from the observations into the data-free mesosphere. The CMAM-DAS simulates a cooling in the lowest part of the mesosphere which is accomplished by resolved motions, but which is extended to the mid- to upper mesosphere by the response of the model's non-orographic gravity-wave drag parameterization to the change in zonal winds. The basic mechanism is that elucidated by Holton consisting of a net eastward wave-drag anomaly in the mesosphere during the SSW, although in this case there is a net upwelling in the polar mesosphere. Since the zonal-mean mesospheric response is shown to be predictable, this demonstrates that variations in the mesospheric state can be slaved to the lower atmosphere through gravity-wave drag.
NASA Astrophysics Data System (ADS)
Vukicevic, T.; Uhlhorn, E.; Reasor, P.; Klotz, B.
2012-12-01
A significant potential for improving numerical model forecast skill of tropical cyclone (TC) intensity by assimilation of airborne inner core observations in high resolution models has been demonstrated in recent studies. Although encouraging , the results so far have not provided clear guidance on the critical information added by the inner core data assimilation with respect to the intensity forecast skill. Better understanding of the relationship between the intensity forecast and the value added by the assimilation is required to further the progress, including the assimilation of satellite observations. One of the major difficulties in evaluating such a relationship is the forecast verification metric of TC intensity: the maximum one-minute sustained wind speed at 10 m above surface. The difficulty results from two issues : 1) the metric refers to a practically unobservable quantity since it is an extreme value in a highly turbulent, and spatially-extensive wind field and 2) model- and observation-based estimates of this measure are not compatible in terms of spatial and temporal scales, even in high-resolution models. Although the need for predicting the extreme value of near surface wind is well justified, and the observation-based estimates that are used in practice are well thought of, a revised metric for the intensity is proposed for the purpose of numerical forecast evaluation and the impacts on the forecast. The metric should enable a robust observation- and model-resolvable and phenomenologically-based evaluation of the impacts. It is shown that the maximum intensity could be represented in terms of decomposition into deterministic and stochastic components of the wind field. Using the vortex-centric cylindrical reference frame, the deterministic component is defined as the sum of amplitudes of azimuthal wave numbers 0 and 1 at the radius of maximum wind, whereas the stochastic component is represented by a non-Gaussian PDF. This decomposition is exact and fully independent of individual TC properties. The decomposition of the maximum wind intensity was first evaluated using several sources of data including Step Frequency Microwave Radiometer surface wind speeds from NOAA and Air Force reconnaissance flights,NOAA P-3 Tail Doppler Radar measurements, and best track maximum intensity estimates as well as the simulations from Hurricane WRF Ensemble Data Assimilation System (HEDAS) experiments for 83 real data cases. The results confirmed validity of the method: the stochastic component of the maximum exibited a non-Gaussian PDF with small mean amplitude and variance that was comparable to the known best track error estimates. The results of the decomposition were then used to evaluate the impact of the improved initial conditions on the forecast. It was shown that the errors in the deterministic component of the intensity had the dominant effect on the forecast skill for the studied cases. This result suggests that the data assimilation of the inner core observations could focus primarily on improving the analysis of wave number 0 and 1 initial structure and on the mechanisms responsible for forcing the evolution of this low-wavenumber structure. For the latter analysis, the assimilation of airborne and satellite remote sensing observations could play significant role.
Data Assimilation Results from PLASMON
NASA Astrophysics Data System (ADS)
Jorgensen, A. M.; Lichtenberger, J.; Duffy, J.; Friedel, R. H.; Clilverd, M.; Heilig, B.; Vellante, M.; Manninen, J. K.; Raita, T.; Rodger, C. J.; Collier, A.; Reda, J.; Holzworth, R. H.; Ober, D. M.; Boudouridis, A.; Zesta, E.; Chi, P. J.
2013-12-01
VLF and magnetometer observations can be used to remotely sense the plasmasphere. VLF whistler waves can be used to measure the electron density and magnetic Field Line Resonance (FLR) measurements can be used to measure the mass density. In principle it is then possible to remotely map the plasmasphere with a network of ground-based stations which are also less expensive and more permanent than satellites. The PLASMON project, funded by the EU FP-7 program, is in the process of doing just this. A large number of ground-based observations will be input into a data assimilative framework which models the plasmasphere structure and dynamics. The data assimilation framework combines the Ensemble Kalman Filter with the Dynamic Global Core Plasma Model. In this presentation we will describe the plasmasphere model, the data assimilation approach that we have taken, PLASMON data and data assimilation results for specific events.
2010-09-30
Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING
Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization
NASA Astrophysics Data System (ADS)
Daglis, I. A.; Bourdarie, S.; Khotyaintsev, Y.; Santolik, O.; Horne, R.; Mann, I.; Turner, D.; Anastasiadis, A.; Angelopoulos, V.; Balasis, G.; Chatzichristou, E.; Cully, C.; Georgiou, M.; Glauert, S.; Grison, B.; Kolmasova, I.; Lazaro, D.; Macusova, E.; Maget, V.; Papadimitriou, C.; Ropokis, G.; Sandberg, I.; Usanova, M.
2012-09-01
We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Furthermore, we will incorporate multi-spacecraft particle measurements into data assimilation tools, aiming at a new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven to be a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system.
NASA Astrophysics Data System (ADS)
Tang, H.; WANG, J.
2017-12-01
Population living close to coastlines is increasing, which creates higher risks due to coastal hazards, such as the tsunami. However, the generation of a tsunami is not fully understood yet, especially for paleo-tsunami. Tsunami deposits are one of the concrete evidence in the geological record which we can apply for studying paleo-tsunami. The understanding of tsunami deposits has significantly improved over the last decades. There are many inversion models (e.g. TsuSedMod, TSUFLIND, and TSUFLIND-EnKF) to study the overland-flow characteristics based on tsunami deposits. However, none of them tries to reconstruct offshore tsunami wave characteristics (wave form, wave height, and length) based on tsunami deposits. Here we present a state-of-the-art inverse approach to reconstruct offshore tsunami wave based on the tsunami inundation data, the spatial distribution of tsunami deposits and Marine-terrestrial sediment signal in the tsunami deposits. Ensemble Kalman Filter (EnKF) Method is used for assimilating both sediment transport simulations and the field observation data. While more computationally expensive, the EnKF approach potentially provides more accurate reconstructions for tsunami waveform. In addition to the improvement of inversion results, the ensemble-based method can also quantify the uncertainties of the results. Meanwhile, joint inversion improves the resolution of tsunami waves compared with inversions using any single data type. The method will be tested by field survey data and gauge data from the 2011 Tohoku tsunami on Sendai plain area.
NASA Astrophysics Data System (ADS)
Lee, Hak Su; Seo, Dong-Jun; Liu, Yuqiong; McKee, Paul; Corby, Robert
2010-05-01
State updating of distributed hydrologic models via assimilation of streamflow data is subject to "overfitting" because large dimensionality of the state space of the model may render the assimilation problem seriously underdetermined. To examine the issue in the context of operational hydrology, we carried out a set of real-world experiments in which we assimilate streamflow data at interior and/or outlet locations into gridded SAC and kinematic-wave routing models of the U.S. National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM). We used for the experiments nine basins in the southern plains of the U.S. The experiments consist of selectively assimilating streamflow at different gauge locations, outlet and/or interior, and carrying out both dependent and independent validation. To assess the sensitivity of the quality of assimilation-aided streamflow simulation to the reduced dimensionality of the state space, we carried out data assimilation at spatially semi-distributed or lumped scale and by adjusting biases in precipitation and potential evaporation at a 6-hourly or larger scale. In this talk, we present the results and findings.
Vietnamese Refugees in the United States: Adaptation and Transitional Status.
ERIC Educational Resources Information Center
Nguyen, Liem T.; Henkin, Alan B.
1982-01-01
Profiles the "boat people," the second wave of refugees, and compares data with available research on the first wave of Vietnamese immigrants. Concludes that differences in background and conditions of migration affect sociocultural adjustment; the first group appears more acculturated but also seem more resistant to assimilation in the host…
NASA Astrophysics Data System (ADS)
Li, J.; Shi, P.; Chen, J.; Zhu, Y.; Li, B.
2016-12-01
There are many islands (or reefs) in the South China Sea. The hydrological properties (currents and waves) around the islands are highly spatially variable compared to those of coastal region of mainland, because the shorelines are more complex with much smaller scale, and the topographies are step-shape with a much sharper slope. The currents and waves with high spatial variations may destroy the buildings or engineering on shorelines, or even influence the structural stability of reefs. Therefore, it is necessary to establish monitoring systems to obtain the high-resolution hydrological information. This study propose a plan for developing a hydrological monitoring system based on HF radar on the shoreline of a typical island in the southern South China Sea: firstly, the HF radar are integrated with auxiliary equipment (such as dynamo, fuel tank, air conditioner, communication facilities) in a container to build a whole monitoring platform; synchronously, several buoys are set within the radar visibility for data calibration and validation; and finally, the current and wave observations collected by the HF radar are assimilated with numerical models to obtain long-term and high-precision reanalysis products. To test the feasibility of this plan, our research group has built two HF radar sites at the western coastal region of Guangdong Province. The collected data were used to extract surface current information and assimilated with an ocean model. The results show that the data assimilation can highly improve the surface current simulation, especially for typhoon periods. Continuous data with intervals between 6 and 12 hour are the most suitable for ideal assimilations. On the other hand, the test also reveal that developing similar monitoring system on island environments need advanced radars that have higher resolutions and a better performance for persistent work.
NASA Astrophysics Data System (ADS)
Taguchi, Masakazu
2017-09-01
This study compares large-scale dynamical variability in the extratropical stratosphere, such as major stratospheric sudden warmings (MSSWs), among the Japanese 55-year Reanalysis (JRA-55) family data sets. The JRA-55 family consists of three products: a standard product (STDD) of the JRA-55 reanalysis data and two sub-products of JRA-55C (CONV) and JRA-55AMIP (AMIP). CONV assimilates only conventional surface and upper-air observations without assimilation of satellite observations, whereas AMIP runs the same numerical weather prediction model without assimilation of observational data. A comparison of the occurrence of MSSWs in Northern Hemisphere (NH) winter shows that, compared to STDD, CONV delays several MSSWs by 1 to 4 days and also misses a few MSSWs. CONV also misses the Southern Hemisphere (SH) MSSW in September 2002. AMIP shows significantly fewer MSSWs in Northern Hemisphere winter and especially lacks MSSWs of the high aspect ratio of the polar vortex in which the vortex is highly stretched or split. A further examination of daily geopotential height differences between STDD and CONV reveals occasional peaks in both hemispheres that are separated from MSSWs. The delayed and missed MSSW cases have smaller height differences in magnitude than such peaks. The height differences for those MSSWs include large contributions from the zonal component, which reflects underestimations in the weakening of the zonal mean polar night jet in CONV. We also explore strong planetary wave forcings and associated polar vortex weakenings for STDD and AMIP. We find a lower frequency of strong wave forcings and weaker vortex responses to such wave forcings in AMIP, consistent with the lower MSSW frequency.
Optimal Spectral Decomposition (OSD) for Ocean Data Assimilation
2015-01-01
tropical North Atlantic from the Argo float data (Chu et al. 2007 ), and temporal and spatial variability of global upper-ocean heat content (Chu 2011...O. V. Melnichenko, and N. C. Wells, 2007 : Long baro- clinic Rossby waves in the tropical North Atlantic observed fromprofiling floats. J...Harrison, and D. Stammer , D., Eds., Vol. 2, ESA Publ. WPP- 306, doi:10.5270/OceanObs09.cwp.86. Tang, Y., and R. Kleeman, 2004: SST assimilation
NASA Astrophysics Data System (ADS)
Shao, Min
The troposphere and stratosphere are the two closest atmospheric layers to the Earth's surface. These two layers are separated by the so-called tropopause. On one hand, these two layers are largely distinguished, on the other hand, lots of evidences proved that connections are also existed between these two layers via various dynamical and chemical feedbacks. Both tropospheric and stratospheric waves can propagate through the tropopause and affect the down streams, despite the fact that this propagation of waves is relatively weaker than the internal interactions in both atmospheric layers. Major improvements have been made in numerical weather predictions (NWP) via data assimilation (DA) in the past 30 years. From optimal interpolation to variational methods and Kalman Filter, great improvements are also made in the development of DA technology. The availability of assimilating satellite radiance observation and the increasing amount of satellite measurements enabled the generation of better atmospheric initials for both global and regional NWP systems. The selection of DA schemes is critical for regional NWP systems. The performance of three major data assimilation (3D-Var, Hybrid, and EnKF) schemes on regional weather forecasts over the continental United States during winter and summer is investigated. Convergence rate in the variational methods can be slightly accelerated especially in summer by the inclusion of ensembles. When the regional model lid is set at 50-mb, larger improvements (10˜20%) in the initials are obtained over the tropopause and lower troposphere. Better forecast skills (˜10%) are obtained in all three DA schemes in summer. Among these three DA schemes, slightly better (˜1%) forecast skills are obtained in Hybrid configuration than 3D-Var. Overall better forecast skills are obtained in summer via EnKF scheme. An extra 22% skill in predicting summer surface pressure but 10% less skills in winter are given by EnKF when compared to 3D-Var. The different forecast skills obtained between variational methods and EnKF are mainly due to the opposite incremental features over ocean and mountainous regions and the inclusion of ensembles. Diurnal variations are observed in predictions. Variations in temperature and humidity are mainly produced by the one-time assimilation in a day and the variations in wind predictions are mainly come from model systematic errors. The assimilation of microwave and infrared satellite measurements alone is compared. Compared to microwave measurements, less than 1% extra performance skill is obtained over the tropopause when infrared measurements are assimilated alone. Large differences are observed in winter analysis when Hybrid scheme is applied. Compared to infrared measurements, an averaged extra 5% performance skill is obtained when microwave measurements are assimilated alone. Predictions made by microwave configuration (MW) shows an extra 3% forecast skill than infrared configuration (IR) at early forecasts. Major differences between MW and IR are located over the tropopause and lower troposphere. Extra 3% and 15% forecast skills for the tropopause wind and temperature are obtained by assimilating microwave measurements alone, respectively. Infrared measurements show slightly better forecast skills at lower troposphere at later forecast lead times. The impacts of the extended stratospheric layers by raising regional model lid from 50-mb to 10-mb and then to 1-mb and the assimilated stratospheric satellite measurements on tropospheric weather predictions are explored in the last section. An extra 10% performance skill over the initial tropopause is obtained by extending the model top to 1-mb. Significant improvements (15˜50%) in initials are obtained over tropopause and lower troposphere by assimilating stratospheric measurements. In the predictions, the stratospheric information can propagate through the tropopause layers and affect the lower troposphere after 2-3 days' propagation. The major improvements made by the extended stratospheric layers and measurements are located in the tropopause. An averaged extra 5% forecast skill is obtained by raising the model lid from 10-mb to 1-mb. An extra 7% forecast skill is obtained in the tropospheric humidity by assimilating stratospheric measurements. Significant improvements in the tropopause and tropospheric predictions are observed when multi-satellite stratospheric measurements extended to 1-mb are assimilated in regional NWP system. Major positive impacts on the tropospheric weather predictions are observed in the first 72-h forecast lead times due to the downward propagation of the microwave stratospheric measurements. A two-season comparison study shows that the assimilation of microwave stratospheric measurements extended to 1-mb will lead to an adjusted stratospheric temperature distribution which may related to an adjusted BDC. Small impacts on the tropospheric general circulations are also found. The tropospheric forecast skills are slightly improved in response to the stratospheric initial conditions and adjusted tropospheric general circulations. For the prediction of heavy precipitation events, an extra 14% forecast skill is obtained when the microwave stratospheric measurements extend to 1-mb are assimilated. The results obtained in this thesis indicate that the assimilation of satellite microwave measurements has the advantages for short-term regional weather forecast using ensemble related data assimilation scheme. Also, this thesis proposed that the assimilation of microwave stratospheric measurements extended to 1-mb can slightly improve the tropospheric weather forecast skills as a result of the tropospheric general circulations responded to the adjusted stratospheric initials.
Ocean Spectral Data Assimilation Without Background Error Covariance Matrix
2016-01-01
float data (Chu et al. 2007 ), and 97 temporal and spatial variability of the global upper ocean heat content (Chu 2011) from the data 98 of the Global...Melnichenko OV, Wells NC ( 2007 ) Long baroclinic Rossby waves in the 558 tropical North Atlantic observed from profiling floats. J Geophys Res...Hall, J, Harrison D.E. and Stammer , D., Eds., ESA Publication WPP-610 306. 611 612 Tang Y, Kleeman R (2004) SST assimilation experiments in a
2011-01-01
et al., 2008). Since wind observations are sparse and standard data assimilation systems ( DASs ) do not extend through the mesosphere, we have far...et al., 2008). Figure 1f plots a time-height cross section of wave- 2 F z at 60◦N, scaled by exp(z/2H), where z is pres- sure altitude and H =7 km. As
Newtonian Nudging For A Richards Equation-based Distributed Hydrological Model
NASA Astrophysics Data System (ADS)
Paniconi, C.; Marrocu, M.; Putti, M.; Verbunt, M.
In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimila- tion scheme. Nudging is shown to be successful in improving the hydrological sim- ulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitiv- ity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexi- ble, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be read- ily extended to any features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.
NASA Astrophysics Data System (ADS)
Fridman, Sergey V.; Nickisch, L. J.; Hausman, Mark; Zunich, George
2016-03-01
We describe the development of new HF data assimilation capabilities for our ionospheric inversion algorithm called GPSII (GPS Ionospheric Inversion). Previously existing capabilities of this algorithm included assimilation of GPS total electron content data as well as assimilation of backscatter ionograms. In the present effort we concentrated on developing assimilation tools for data related to HF propagation channels. Measurements of propagation delay, angle of arrival, and the ionosphere-induced Doppler from any number of known propagation links can now be utilized by GPSII. The resulting ionospheric model is consistent with all assimilated measurements. This means that ray tracing simulations of the assimilated propagation links are guaranteed to be in agreement with measured data within the errors of measurement. The key theoretical element for assimilating HF data is the raypath response operator (RPRO) which describes response of raypath parameters to infinitesimal variations of electron density in the ionosphere. We construct the RPRO out of the fundamental solution of linearized ray tracing equations for a dynamic magnetoactive plasma. We demonstrate performance and internal consistency of the algorithm using propagation delay data from multiple oblique ionograms (courtesy of Defence Science and Technology Organisation, Australia) as well as with time series of near-vertical incidence sky wave data (courtesy of the Intelligence Advanced Research Projects Activity HFGeo Program Government team). In all cases GPSII produces electron density distributions which are smooth in space and in time. We simulate the assimilated propagation links by performing ray tracing through GPSII-produced ionosphere and observe that simulated data are indeed in agreement with assimilated measurements.
A study on characteristics of retrospective optimal interpolation with WRF testbed
NASA Astrophysics Data System (ADS)
Kim, S.; Noh, N.; Lim, G.
2012-12-01
This study presents the application of retrospective optimal interpolation (ROI) with Weather Research and Forecasting model (WRF). Song et al. (2009) suggest ROI method which is an optimal interpolation (OI) that gradually assimilates observations over the analysis window for variance-minimum estimate of an atmospheric state at the initial time of the analysis window. Song and Lim (2011) improve the method by incorporating eigen-decomposition and covariance inflation. ROI method assimilates the data at post analysis time using perturbation method (Errico and Raeder, 1999) without adjoint model. In this study, ROI method is applied to WRF model to validate the algorithm and to investigate the capability. The computational costs for ROI can be reduced due to the eigen-decomposition of background error covariance. Using the background error covariance in eigen-space, 1-profile assimilation experiment is performed. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error by assimilation. The characteristics and strength/weakness of ROI method are investigated by conducting the experiments with other data assimilation method.
2014-10-13
synoptic and dynamic aspects of cyclogenesis, a multi-nested WRF model (with 2 km resolution in the innermost mesh) will be used to simulate both...intraseasonal and interannual variability of TC activity in the WNP. For the data assimilation task, WRF 3DVar assimilation system will be employed...simulated using WRF . This genesis is associated with Rossby wave energy dispersion of a pre- existing TC Bills (2000). Using the reanalysis data as an
Carreira, Bruno M; Segurado, Pedro; Laurila, Anssi; Rebelo, Rui
2017-01-01
In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton's condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N). The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i) heat waves may change the predominant impacts of this keystone species and ii) that by altering species' trophic niches, climate change may alter the main impacts of invasive alien species.
Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model
NASA Technical Reports Server (NTRS)
De Lannoy, Gabrielle J.M.; Reichle, Rolf H.; Houser, Paul R.; Arsenault, Kristi R.; Verhoest, Niko E.C.; Paulwels, Valentijn R.N.
2009-01-01
An ensemble Kalman filter (EnKF) is used in a suite of synthetic experiments to assimilate coarse-scale (25 km) snow water equivalent (SWE) observations (typical of satellite retrievals) into fine-scale (1 km) model simulations. Coarse-scale observations are assimilated directly using an observation operator for mapping between the coarse and fine scales or, alternatively, after disaggregation (re-gridding) to the fine-scale model resolution prior to data assimilation. In either case observations are assimilated either simultaneously or independently for each location. Results indicate that assimilating disaggregated fine-scale observations independently (method 1D-F1) is less efficient than assimilating a collection of neighboring disaggregated observations (method 3D-Fm). Direct assimilation of coarse-scale observations is superior to a priori disaggregation. Independent assimilation of individual coarse-scale observations (method 3D-C1) can bring the overall mean analyzed field close to the truth, but does not necessarily improve estimates of the fine-scale structure. There is a clear benefit to simultaneously assimilating multiple coarse-scale observations (method 3D-Cm) even as the entire domain is observed, indicating that underlying spatial error correlations can be exploited to improve SWE estimates. Method 3D-Cm avoids artificial transitions at the coarse observation pixel boundaries and can reduce the RMSE by 60% when compared to the open loop in this study.
Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Alexandra; Haller, Merrick; Walker, David
This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows:more » Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of forecasting in real-time, as the GPU-based wave model backbone was very computationally efficient. The data assimilation algorithm was developed on a polar grid domain in order to match the sampling characteristics of the observation system (wave imaging marine radar). For verification purposes, a substantial set of synthetic wave data (i.e. forward runs of the wave model) were generated to be used as ground truth for comparison to the reconstructions and forecasts produced by Wavecast. For these synthetic cases, Wavecast demonstrated very good accuracy, for example, typical forecast correlation coefficients were between 0.84-0.95 when compared to the input data. Dependencies on shadowing, observational noise, and forecast horizon were also identified. During the second year of the project, a short field deployment was conducted in order to assess forecast accuracy under field conditions. For this, a radar was installed on a fishing vessel and observations were collected at the South Energy Test Site (SETS) off the coast of Newport, OR. At the SETS site, simultaneous in situ wave observations were also available owing to an ongoing field project funded separately. Unfortunately, the position and heading information that was available for the fishing vessel were not of sufficient accuracy in order to validate the forecast in a phase-resolving sense. Instead, a spectral comparison was made between the Wavecast forecast and the data from the in situ wave buoy. Although the wave and wind conditions during the field test were complex, the comparison showed a promising reconstruction of the wave spectral shape, where both peaks in the bimodal spectrum were represented. However, the total reconstructed spectral energy (across all directions and frequencies) was limited to 44% of the observed spectrum. Overall, wave-by-wave forecasting using a data assimilation approach based on wave imaging radar observations and a physics-based wave model shows promise for short-term phase-resolved predictions. Two recommendations for future work are as follows: first, we would recommend additional focused field campaigns for algorithm validation. The field campaign should be long enough to capture a range of wave conditions relevant to the target application and WEC site. In addition, it will be crucial to make sure the vessel of choice has high accuracy position and heading instrumentation (this instrumentation is commercially available but not standard on commercial fishing vessels). The second recommendation is to expand the model physics in the wave model backbone to include some nonlinear effects. Specifically, the third-order correction to the wave speed due to amplitude dispersion would be the next step in order to more accurately represent the phase speeds of large amplitude waves.« less
NASA Astrophysics Data System (ADS)
Meier, Walter Neil
This thesis demonstrates the applicability of data assimilation methods to improve observed and modeled ice motion fields and to demonstrate the effects of assimilated motion on Arctic processes important to the global climate and of practical concern to human activities. Ice motions derived from 85 GHz and 37 GHz SSM/I imagery and estimated from two-dimensional dynamic-thermodynamic sea ice models are compared to buoy observations. Mean error, error standard deviation, and correlation with buoys are computed for the model domain. SSM/I motions generally have a lower bias, but higher error standard deviations and lower correlation with buoys than model motions. There are notable variations in the statistics depending on the region of the Arctic, season, and ice characteristics. Assimilation methods are investigated and blending and optimal interpolation strategies are implemented. Blending assimilation improves error statistics slightly, but the effect of the assimilation is reduced due to noise in the SSM/I motions and is thus not an effective method to improve ice motion estimates. However, optimal interpolation assimilation reduces motion errors by 25--30% over modeled motions and 40--45% over SSM/I motions. Optimal interpolation assimilation is beneficial in all regions, seasons and ice conditions, and is particularly effective in regimes where modeled and SSM/I errors are high. Assimilation alters annual average motion fields. Modeled ice products of ice thickness, ice divergence, Fram Strait ice volume export, transport across the Arctic and interannual basin averages are also influenced by assimilated motions. Assimilation improves estimates of pollutant transport and corrects synoptic-scale errors in the motion fields caused by incorrect forcings or errors in model physics. The portability of the optimal interpolation assimilation method is demonstrated by implementing the strategy in an ice thickness distribution (ITD) model. This research presents an innovative method of combining a new data set of SSM/I-derived ice motions with three different sea ice models via two data assimilation methods. The work described here is the first example of assimilating remotely-sensed data within high-resolution and detailed dynamic-thermodynamic sea ice models. The results demonstrate that assimilation is a valuable resource for determining accurate ice motion in the Arctic.
A case study of GWE satellite data impact on GLA assimilation analyses of two ocean cyclones
NASA Technical Reports Server (NTRS)
Gallimore, R. G.; Johnson, D. R.
1986-01-01
The effects of the Global Weather Experiment (GWE) data obtained on January 18-20, 1979 on Goddard Laboratory for Atmospheres assimilation analyses of simultaneous cyclones in the western Pacific and Atlantic oceans are examined. The ability of satellite data within assimilation models to determine the baroclinic structures of developing extratropical cyclones is evaluated. The impact of the satellite data on the amplitude and phase of the temperature structure within the storm domain, potential energy, and baroclinic growth rate is studied. The GWE data are compared with Data Systems Test results. It is noted that it is necessary to characterize satellite effects on the baroclinic structure of cyclone waves which degrade numerical weather predictions of cyclogenesis.
The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data
NASA Technical Reports Server (NTRS)
Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.
2014-01-01
We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.
NASA Astrophysics Data System (ADS)
Lee, H.; Seo, D.-J.; Liu, Y.; Koren, V.; McKee, P.; Corby, R.
2012-01-01
State updating of distributed rainfall-runoff models via streamflow assimilation is subject to overfitting because large dimensionality of the state space of the model may render the assimilation problem seriously under-determined. To examine the issue in the context of operational hydrology, we carry out a set of real-world experiments in which streamflow data is assimilated into gridded Sacramento Soil Moisture Accounting (SAC-SMA) and kinematic-wave routing models of the US National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM) with the variational data assimilation technique. Study basins include four basins in Oklahoma and five basins in Texas. To assess the sensitivity of data assimilation performance to dimensionality reduction in the control vector, we used nine different spatiotemporal adjustment scales, where state variables are adjusted in a lumped, semi-distributed, or distributed fashion and biases in precipitation and potential evaporation (PE) are adjusted hourly, 6-hourly, or kept time-invariant. For each adjustment scale, three different streamflow assimilation scenarios are explored, where streamflow observations at basin interior points, at the basin outlet, or at both interior points and the outlet are assimilated. The streamflow assimilation experiments with nine different basins show that the optimum spatiotemporal adjustment scale varies from one basin to another and may be different for streamflow analysis and prediction in all of the three streamflow assimilation scenarios. The most preferred adjustment scale for seven out of nine basins is found to be the distributed, hourly scale, despite the fact that several independent validation results at this adjustment scale indicated the occurrence of overfitting. Basins with highly correlated interior and outlet flows tend to be less sensitive to the adjustment scale and could benefit more from streamflow assimilation. In comparison to outlet flow assimilation, interior flow assimilation at any adjustment scale produces streamflow predictions with a spatial correlation structure more consistent with that of streamflow observations. We also describe diagnosing the complexity of the assimilation problem using the spatial correlation information associated with the streamflow process, and discuss the effect of timing errors in a simulated hydrograph on the performance of the data assimilation procedure.
Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization
NASA Astrophysics Data System (ADS)
Daglis, I.; Balasis, G.; Bourdarie, S.; Horne, R.; Khotyaintsev, Y.; Mann, I.; Santolik, O.; Turner, D.; Anastasiadis, A.; Georgiou, M.; Giannakis, O.; Papadimitriou, C.; Ropokis, G.; Sandberg, I.; Angelopoulos, V.; Glauert, S.; Grison, B., Kersten T.; Kolmasova, I.; Lazaro, D.; Mella, M.; Ozeke, L.; Usanova, M.
2013-09-01
We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Multi-spacecraft particle measurements will be incorporated into data assimilation tools, leading to new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven as a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system. The MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project has received funding from the European Union’s Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520.
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Pedatella, N. M.; Dou, Xiankang; Li, Tao; Chen, Tingdi
2016-03-01
The quasi 2 day wave (QTDW) observed during 2007 austral summer period is well reproduced in an reanalysis produced by the data assimilation version of the Whole Atmosphere Community Climate Model (WACCM + Data Assimilation Research Testbed) developed at National Center for Atmospheric Research (NCAR). It is found that the QTDW peaked 3 times from January to February but with different zonal wave numbers. Diagnostic analysis shows that the mean flow instabilities, refractive index, and critical layers of QTDWs are fundamental for their propagation and amplification, and thus, the temporal variations of the background wind are responsible for the different wave number structures at different times. The westward propagating wave number 2 mode (W2) grew and maximized in the first half of January, when the mean flow instabilities related to the summer easterly jet were enclosed by the critical layers of the westward propagating wave number 3 (W3) and wave number 4 (W4) modes. This prevented W3 and W4 from approaching and extracting energy from the unstable region. The W2 decayed rapidly thereafter due to the recession of critical layer and thus the lack of additional amplification by the mean flow instability. The W3 peaked in late January, when the instabilities were still encircled by the critical layer of W4. The attenuation of W3 afterward was also due to the disappearance of critical layer and thus the lack of overreflection. Finally, the W4 peaked in late February when both the instability and critical layer were appropriate.
Time delayed Ensemble Nudging Method
NASA Astrophysics Data System (ADS)
An, Zhe; Abarbanel, Henry
Optimal nudging method based on time delayed embedding theory has shows potentials on analyzing and data assimilation in previous literatures. To extend the application and promote the practical implementation, new nudging assimilation method based on the time delayed embedding space is presented and the connection with other standard assimilation methods are studied. Results shows the incorporating information from the time series of data can reduce the sufficient observation needed to preserve the quality of numerical prediction, making it a potential alternative in the field of data assimilation of large geophysical models.
Valdes-Abellan, Javier; Pachepsky, Yakov; Martinez, Gonzalo
2018-01-01
Data assimilation is becoming a promising technique in hydrologic modelling to update not only model states but also to infer model parameters, specifically to infer soil hydraulic properties in Richard-equation-based soil water models. The Ensemble Kalman Filter method is one of the most widely employed method among the different data assimilation alternatives. In this study the complete Matlab© code used to study soil data assimilation efficiency under different soil and climatic conditions is shown. The code shows the method how data assimilation through EnKF was implemented. Richards equation was solved by the used of Hydrus-1D software which was run from Matlab. •MATLAB routines are released to be used/modified without restrictions for other researchers•Data assimilation Ensemble Kalman Filter method code.•Soil water Richard equation flow solved by Hydrus-1D.
Multi-Spacecraft Data Assimilation and Reanalysis During the THEMIS and Van Allen Probes Era
NASA Astrophysics Data System (ADS)
Kellerman, A. C.; Shprits, Y.; Kondrashov, D. A.; Podladchikova, T.; Drozdov, A.; Subbotin, D.
2013-12-01
Earth's radiation belts are a dynamic system, controlled by competition between source, acceleration, loss and transport of particles. Solar wind pressure enhancements and outward transport are responsible for loss of electrons to the magnetopause, while wave-particle interactions inside the magnetosphere, driven by solar wind pressure and velocity variations, may lead to acceleration and radial diffusion of 10's of keV to MeV energy electrons, and pitch-angle scattering loss to the atmosphere. An understanding of the mechanisms behind the observed dynamics is critical to accurate modeling and hence forecasting of radiation belt conditions, important for design, and protection of our space-borne assets. The Versatile Electron Radiation Belt (VERB) model solves the Fokker-Planck diffusion equation in three dimensional invariant coordinates, which allows one to more effectively separate adiabatic and non-adiabatic changes in the radiation belt electron population. The model includes geomagnetic storm intensity dependent parameterizations of the following dominant magnetospheric waves: day- and night-side chorus, plasmaspheric hiss (in the inner magnetosphere and inside the plume region), lightning and anthropogenic generated waves, and electro-magnetic ion cyclotron (EMIC) waves, also inside of plasmaspheric plumes. The model is used to forecast the future state of the radiation belt electron population, while real-time data may be used to update the current state of the belts through assimilation with the model. The Kalman filter provides a computationally inexpensive method to assimilate data with a model, while taking into account the errors associated with each. System identification is performed to determine the model and observational bias and errors. The Kalman filter outputs an optimal estimate of the actual system state and the Kalman-gain weighted corrections (innovation) may be used to identify systematic differences between data and the model. Careful consideration of the innovation vector may lead to a new physical understanding of the radiation belt system, which can later be used to improve our model forecasts. In the current study, we explore the radiation belt dynamics of the current era including data from the THEMIS, Van Allen Probes, GPS satellites, Akebono, NOAA and Cluster spacecraft. Intercalibration is performed between spacecraft on an individual energy channel basis, and in invariant coordinates. The global reanalysis allows an unprecedented analysis of the source-acceleration-transport-loss relationship in Earth's radiation belts. This analysis is used to refine our model capabilities, and to prepare the 3-D reanalysis for real-time data. The global 3-D reanalysis is an important step towards full-scale modeling and operational forecasting of this dynamic region of space.
Global Scale Atmospheric Processes Research Program Review
NASA Technical Reports Server (NTRS)
Worley, B. A. (Editor); Peslen, C. A. (Editor)
1984-01-01
Global modeling; satellite data assimilation and initialization; simulation of future observing systems; model and observed energetics; dynamics of planetary waves; First Global Atmospheric Research Program Global Experiment (FGGE) diagnosis studies; and National Research Council Research Associateship Program are discussed.
NASA Astrophysics Data System (ADS)
Fujii, Yosuke; Tsujino, Hiroyuki; Toyoda, Takahiro; Nakano, Hideyuki
2017-08-01
This paper examines the difference in the Atlantic Meridional Overturning Circulation (AMOC) mean state between free and assimilative simulations of a common ocean model using a common interannual atmospheric forcing. In the assimilative simulation, the reproduction of cold cores in the Nordic Seas, which is absent in the free simulation, enhances the overflow to the North Atlantic and improves AMOC with enhanced transport of the deeper part of the southward return flow. This improvement also induces an enhanced supply of North Atlantic Deep Water (NADW) and causes better representation of the Atlantic deep layer despite the fact that correction by the data assimilation is applied only to temperature and salinity above a depth of 1750 m. It also affects Circumpolar Deep Water in the Southern Ocean. Although the earliest influence of the improvement propagated by coastal waves reaches the Southern Ocean in 10-15 years, substantial influence associated with the arrival of the renewed NADW propagates across the Atlantic Basin in several decades. Although the result demonstrates that data assimilation is able to improve the deep ocean state even if there is no data there, it also indicates that long-term integration is required to reproduce variability in the deep ocean originating from variations in the upper ocean. This study thus provides insights on the reliability of AMOC and the ocean state in the Atlantic deep layer reproduced by data assimilation systems.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Wang, B.; Wang, Y.
2007-12-01
Recently, a new data assimilation method called “3-dimensional variational data assimilation of mapped observation (3DVM)” has been developed by the authors. We have shown that the new method is very efficient and inexpensive compared with its counterpart 4-dimensional variational data assimilation (4DVar). The new method has been implemented into the Penn State/NCAR mesoscale model MM5V1 (MM5_3DVM). In this study, we apply the new method to the bogus data assimilation (BDA) available in the original MM5 with the 4DVar. By the new approach, a specified sea-level pressure (SLP) field (bogus data) is incorporated into MM5 through the 3DVM (for convenient, we call it variational bogus mapped data assimilation - BMDA) instead of the original 4DVar data assimilation. To demonstrate the effectiveness of the new 3DVM method, initialization and simulation of a landfalling typhoon - typhoon Dan (1999) over the western North Pacific with the new method are compared with that with its counterpart 4DVar in MM5. Results show that the initial structure and the simulated intensity and track are improved more significantly using 3DVM than 4DVar. Sensitivity experiments also show that the simulated typhoon track and intensity are more sensitive to the size of the assimilation window in the 4DVar than that in the 3DVM. Meanwhile, 3DVM takes much less computing cost than its counterpart 4DVar for a given time window.
A comparison of linear and non-linear data assimilation methods using the NEMO ocean model
NASA Astrophysics Data System (ADS)
Kirchgessner, Paul; Tödter, Julian; Nerger, Lars
2015-04-01
The assimilation behavior of the widely used LETKF is compared with the Equivalent Weight Particle Filter (EWPF) in a data assimilation application with an idealized configuration of the NEMO ocean model. The experiments show how the different filter methods behave when they are applied to a realistic ocean test case. The LETKF is an ensemble-based Kalman filter, which assumes Gaussian error distributions and hence implicitly requires model linearity. In contrast, the EWPF is a fully nonlinear data assimilation method that does not rely on a particular error distribution. The EWPF has been demonstrated to work well in highly nonlinear situations, like in a model solving a barotropic vorticity equation, but it is still unknown how the assimilation performance compares to ensemble Kalman filters in realistic situations. For the experiments, twin assimilation experiments with a square basin configuration of the NEMO model are performed. The configuration simulates a double gyre, which exhibits significant nonlinearity. The LETKF and EWPF are both implemented in PDAF (Parallel Data Assimilation Framework, http://pdaf.awi.de), which ensures identical experimental conditions for both filters. To account for the nonlinearity, the assimilation skill of the two methods is assessed by using different statistical metrics, like CRPS and Histograms.
NASA Astrophysics Data System (ADS)
Xu, Jianhui; Shu, Hong
2014-09-01
This study assesses the analysis performance of assimilating the Moderate Resolution Imaging Spectroradiometer (MODIS)-based albedo and snow cover fraction (SCF) separately or jointly into the physically based Common Land Model (CoLM). A direct insertion method (DI) is proposed to assimilate the black and white-sky albedos into the CoLM. The MODIS-based albedo is calculated with the MODIS bidirectional reflectance distribution function (BRDF) model parameters product (MCD43B1) and the solar zenith angle as estimated in the CoLM for each time step. Meanwhile, the MODIS SCF (MOD10A1) is assimilated into the CoLM using the deterministic ensemble Kalman filter (DEnKF) method. A new DEnKF-albedo assimilation scheme for integrating the DI and DEnKF assimilation schemes is proposed. Our assimilation results are validated against in situ snow depth observations from November 2008 to March 2009 at five sites in the Altay region of China. The experimental results show that all three data assimilation schemes can improve snow depth simulations. But overall, the DEnKF-albedo assimilation shows the best analysis performance as it significantly reduces the bias and root-mean-square error (RMSE) during the snow accumulation and ablation periods at all sites except for the Fuyun site. The SCF assimilation via DEnKF produces better results than the albedo assimilation via DI, implying that the albedo assimilation that indirectly updates the snow depth state variable is less efficient than the direct SCF assimilation. For the Fuyun site, the DEnKF-albedo scheme tends to overestimate the snow depth accumulation with the maximum bias and RMSE values because of the large positive innovation (observation minus forecast).
NASA Technical Reports Server (NTRS)
Joiner, J.; Dee, D. P.
1998-01-01
One of the outstanding problems in data assimilation has been and continues to be how best to utilize satellite data while balancing the tradeoff between accuracy and computational cost. A number of weather prediction centers have recently achieved remarkable success in improving their forecast skill by changing the method by which satellite data are assimilated into the forecast model from the traditional approach of assimilating retrievals to the direct assimilation of radiances in a variational framework. The operational implementation of such a substantial change in methodology involves a great number of technical details, e.g., pertaining to quality control procedures, systematic error correction techniques, and tuning of the statistical parameters in the analysis algorithm. Although there are clear theoretical advantages to the direct radiance assimilation approach, it is not obvious at all to what extent the improvements that have been obtained so far can be attributed to the change in methodology, or to various technical aspects of the implementation. The issue is of interest because retrieval assimilation retains many practical and logistical advantages which may become even more significant in the near future when increasingly high-volume data sources become available. The central question we address here is: how much improvement can we expect from assimilating radiances rather than retrievals, all other things being equal? We compare the two approaches in a simplified one-dimensional theoretical framework, in which problems related to quality control and systematic error correction are conveniently absent. By assuming a perfect radiative transfer model and perfect knowledge of radiance and background error covariances, we are able to formulate a nonlinear local error analysis for each assimilation method. Direct radiance assimilation is optimal in this idealized context, while the traditional method of assimilating retrievals is suboptimal because it ignores the cross-covariances between background errors and retrieval errors. We show that interactive retrieval assimilation (where the same background used for assimilation is also used in the retrieval step) is equivalent to direct assimilation of radiances with suboptimal analysis weights. We illustrate and extend these theoretical arguments with several one-dimensional assimilation experiments, where we estimate vertical atmospheric profiles using simulated data from both the High-resolution InfraRed Sounder 2 (HIRS2) and the future Atmospheric InfraRed Sounder (AIRS).
Low Frequency Oscillations in Assimilated Global Datasets Using TRMM Rainfall Observations
NASA Technical Reports Server (NTRS)
Tao, Li; Yang, Song; Zhang, Zhan; Hou, Arthur; Olson, William S.
2004-01-01
Global datasets for the period May-August 1998 from the Goddard Earth Observing System (GEOS) data assimilation system (DAS) with/without assimilated Tropical Rainfall Measuring Mission (TRMM) precipitation are analyzed against European Center for Medium-Range Weather Forecast (ECMWF) output, NOAA observed outgoing longwave radiation (OLR) data, and TRMM measured rainfall. The purpose of this study is to investigate the representation of the Madden-Julian Oscillation (MJO) in GEOS assimilated global datasets, noting the impact of TRMM observed rainfall on the MJO in GEOS data assimilations. A space-time analysis of the OLR data indicates that the observed OLR exhibits a spectral maximum for eastward-propagating wavenumber 1-3 disturbances with periods of 20-60 days in the 0deg-30degN latitude band. The assimilated OLR has a similar feature but with a smaller magnitude. However, OLR spectra from assimilations including TRMM rainfall data show better agreement with observed OLR spectra than spectra from assimilations without TRMM rainfall. Similar results are found for wavenumber 4-6 disturbances. There is a spectral peak for eastward-propagating wavenumber 4-6 disturbances with periods of 20-40 days near the equator, while for westward-moving disturbances, a spectral peak is noted for periods of 30-50 days near 25degN. To isolate the MJO, a 30-50 day band filter is selected for this study. It was found that the eastward-propagating waves from the band-filtered observed OLR between 10degs- 10degN are located in the eastern hemisphere. Similar patterns are evident in surface rainfall and the 850 hPa wind field. Assimilation of TRMM-observed rainfall reveals more distinct MJO features in the analysis than without rainfall assimilation. Similar analyses are also conducted over the Indian summer monsoon and East Asia summer monsoon regions, where the MJO is strongly related to the summer monsoon active-break patterns.
NASA Astrophysics Data System (ADS)
Wu, Kai; Shu, Hong; Nie, Lei; Jiao, Zhenhang
2018-01-01
Spatially correlated errors are typically ignored in data assimilation, thus degenerating the observation error covariance R to a diagonal matrix. We argue that a nondiagonal R carries more observation information making assimilation results more accurate. A method, denoted TC_Cov, was proposed for soil moisture data assimilation to estimate spatially correlated observation error covariance based on triple collocation (TC). Assimilation experiments were carried out to test the performance of TC_Cov. AMSR-E soil moisture was assimilated with a diagonal R matrix computed using the TC and assimilated using a nondiagonal R matrix, as estimated by proposed TC_Cov. The ensemble Kalman filter was considered as the assimilation method. Our assimilation results were validated against climate change initiative data and ground-based soil moisture measurements using the Pearson correlation coefficient and unbiased root mean square difference metrics. These experiments confirmed that deterioration of diagonal R assimilation results occurred when model simulation is more accurate than observation data. Furthermore, nondiagonal R achieved higher correlation coefficient and lower ubRMSD values over diagonal R in experiments and demonstrated the effectiveness of TC_Cov to estimate richly structuralized R in data assimilation. In sum, compared with diagonal R, nondiagonal R may relieve the detrimental effects of assimilation when simulated model results outperform observation data.
Effects of sounding temperature assimilation on weather forecasting - Model dependence studies
NASA Technical Reports Server (NTRS)
Ghil, M.; Halem, M.; Atlas, R.
1979-01-01
In comparing various methods for the assimilation of remote sounding information into numerical weather prediction (NWP) models, the problem of model dependence for the different results obtained becomes important. The paper investigates two aspects of the model dependence question: (1) the effect of increasing horizontal resolution within a given model on the assimilation of sounding data, and (2) the effect of using two entirely different models with the same assimilation method and sounding data. Tentative conclusions reached are: first, that model improvement as exemplified by increased resolution, can act in the same direction as judicious 4-D assimilation of remote sounding information, to improve 2-3 day numerical weather forecasts. Second, that the time continuous 4-D methods developed at GLAS have similar beneficial effects when used in the assimilation of remote sounding information into NWP models with very different numerical and physical characteristics.
Using Adjoint Methods to Improve 3-D Velocity Models of Southern California
NASA Astrophysics Data System (ADS)
Liu, Q.; Tape, C.; Maggi, A.; Tromp, J.
2006-12-01
We use adjoint methods popular in climate and ocean dynamics to calculate Fréchet derivatives for tomographic inversions in southern California. The Fréchet derivative of an objective function χ(m), where m denotes the Earth model, may be written in the generic form δχ=int Km(x) δln m(x) d3x, where δln m=δ m/m denotes the relative model perturbation. For illustrative purposes, we construct the 3-D finite-frequency banana-doughnut kernel Km, corresponding to the misfit of a single traveltime measurement, by simultaneously computing the 'adjoint' wave field s† forward in time and reconstructing the regular wave field s backward in time. The adjoint wave field is produced by using the time-reversed velocity at the receiver as a fictitious source, while the regular wave field is reconstructed on the fly by propagating the last frame of the wave field saved by a previous forward simulation backward in time. The approach is based upon the spectral-element method, and only two simulations are needed to produce density, shear-wave, and compressional-wave sensitivity kernels. This method is applied to the SCEC southern California velocity model. Various density, shear-wave, and compressional-wave sensitivity kernels are presented for different phases in the seismograms. We also generate 'event' kernels for Pnl, S and surface waves, which are the Fréchet kernels of misfit functions that measure the P, S or surface wave traveltime residuals at all the receivers simultaneously for one particular event. Effectively, an event kernel is a sum of weighted Fréchet kernels, with weights determined by the associated traveltime anomalies. By the nature of the 3-D simulation, every event kernel is also computed based upon just two simulations, i.e., its construction costs the same amount of computation time as an individual banana-doughnut kernel. One can think of the sum of the event kernels for all available earthquakes, called the 'misfit' kernel, as a graphical representation of the gradient of the misfit function. With the capability of computing both the value of the misfit function and its gradient, which assimilates the traveltime anomalies, we are ready to use a non-linear conjugate gradient algorithm to iteratively improve velocity models of southern California.
NASA Astrophysics Data System (ADS)
Singh, K.; Sandu, A.; Bowman, K. W.; Parrington, M.; Jones, D. B. A.; Lee, M.
2011-08-01
Chemistry transport models determine the evolving chemical state of the atmosphere by solving the fundamental equations that govern physical and chemical transformations subject to initial conditions of the atmospheric state and surface boundary conditions, e.g., surface emissions. The development of data assimilation techniques synthesize model predictions with measurements in a rigorous mathematical framework that provides observational constraints on these conditions. Two families of data assimilation methods are currently widely used: variational and Kalman filter (KF). The variational approach is based on control theory and formulates data assimilation as a minimization problem of a cost functional that measures the model-observations mismatch. The Kalman filter approach is rooted in statistical estimation theory and provides the analysis covariance together with the best state estimate. Suboptimal Kalman filters employ different approximations of the covariances in order to make the computations feasible with large models. Each family of methods has both merits and drawbacks. This paper compares several data assimilation methods used for global chemical data assimilation. Specifically, we evaluate data assimilation approaches for improving estimates of the summertime global tropospheric ozone distribution in August 2006 based on ozone observations from the NASA Tropospheric Emission Spectrometer and the GEOS-Chem chemistry transport model. The resulting analyses are compared against independent ozonesonde measurements to assess the effectiveness of each assimilation method. All assimilation methods provide notable improvements over the free model simulations, which differ from the ozonesonde measurements by about 20 % (below 200 hPa). Four dimensional variational data assimilation with window lengths between five days and two weeks is the most accurate method, with mean differences between analysis profiles and ozonesonde measurements of 1-5 %. Two sequential assimilation approaches (three dimensional variational and suboptimal KF), although derived from different theoretical considerations, provide similar ozone estimates, with relative differences of 5-10 % between the analyses and ozonesonde measurements. Adjoint sensitivity analysis techniques are used to explore the role of of uncertainties in ozone precursors and their emissions on the distribution of tropospheric ozone. A novel technique is introduced that projects 3-D-Variational increments back to an equivalent initial condition, which facilitates comparison with 4-D variational techniques.
Development of WRF-ROI system by incorporating eigen-decomposition
NASA Astrophysics Data System (ADS)
Kim, S.; Noh, N.; Song, H.; Lim, G.
2011-12-01
This study presents the development of WRF-ROI system, which is the implementation of Retrospective Optimal Interpolation (ROI) to the Weather Research and Forecasting model (WRF). ROI is a new data assimilation algorithm introduced by Song et al. (2009) and Song and Lim (2009). The formulation of ROI is similar with that of Optimal Interpolation (OI), but ROI iteratively assimilates an observation set at a post analysis time into a prior analysis, possibly providing the high quality reanalysis data. ROI method assimilates the data at post analysis time using perturbation method (Errico and Raeder, 1999) without adjoint model. In previous study, ROI method is applied to Lorenz 40-variable model (Lorenz, 1996) to validate the algorithm and to investigate the capability. It is therefore required to apply this ROI method into a more realistic and complicated model framework such as WRF. In this research, the reduced-rank formulation of ROI is used instead of a reduced-resolution method. The computational costs can be reduced due to the eigen-decomposition of background error covariance in the reduced-rank method. When single profile of observations is assimilated in the WRF-ROI system by incorporating eigen-decomposition, the analysis error tends to be reduced if compared with the background error. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error by assimilation.
Data Assimilation in the Solar Wind: Challenges and First Results
NASA Astrophysics Data System (ADS)
Lang, Matthew; Browne, Phil; van Leeuwen, Peter Jan; Owens, Matt
2017-04-01
Data assimilation (DA) is currently underused in the solar wind field to improve the modelled variables using observations. Data assimilation has been used in Numerical Weather Prediction (NWP) models with great success, and it can be seen that the improvement of DA methods in NWP modelling has led to improvements in forecasting skill over the past 20-30 years. The state of the art DA methods developed for NWP modelling have never been applied to space weather models, hence it is important to implement the improvements that can be gained from these methods to improve our understanding of the solar wind and how to model it. The ENLIL solar wind model has been coupled to the EMPIRE data assimilation library in order to apply these advanced data assimilation methods to a space weather model. This coupling allows multiple data assimilation methods to be applied to ENLIL with relative ease. I shall discuss twin experiments that have been undertaken, applying the LETKF to the ENLIL model when a CME occurs in the observation and when it does not. These experiments show that there is potential in the application of advanced data assimilation methods to the solar wind field, however, there is still a long way to go until it can be applied effectively. I shall discuss these issues and suggest potential avenues for future research in this area.
NASA Technical Reports Server (NTRS)
Yang, Shu-Chih; Rienecker, Michele; Keppenne, Christian
2010-01-01
This study investigates the impact of four different ocean analyses on coupled forecasts of the 2006 El Nino event. Forecasts initialized in June 2006 using ocean analyses from an assimilation that uses flow-dependent background error covariances are compared with those using static error covariances that are not flow dependent. The flow-dependent error covariances reflect the error structures related to the background ENSO instability and are generated by the coupled breeding method. The ocean analyses used in this study result from the assimilation of temperature and salinity, with the salinity data available from Argo floats. Of the analyses, the one using information from the coupled bred vectors (BV) replicates the observed equatorial long wave propagation best and exhibits more warming features leading to the 2006 El Nino event. The forecasts initialized from the BV-based analysis agree best with the observations in terms of the growth of the warm anomaly through two warming phases. This better performance is related to the impact of the salinity analysis on the state evolution in the equatorial thermocline. The early warming is traced back to salinity differences in the upper ocean of the equatorial central Pacific, while the second warming, corresponding to the mature phase, is associated with the effect of the salinity assimilation on the depth of the thermocline in the western equatorial Pacific. The series of forecast experiments conducted here show that the structure of the salinity in the initial conditions is important to the forecasts of the extension of the warm pool and the evolution of the 2006 El Ni o event.
Large-scale Rossby Normal Modes during Some Recent Northern Hemisphere Winters
2011-01-01
day wave has been observed ubiquitously in the troposphere (Madden, 1978) and in the middle atmosphere during winter (Forbes et al., 1995), as well as...assimilate version 2.2 limb retrievals of temperature, water vapor and ozone from the Microwave Limb Sounder (MLS) on NASA’s Aura satellite and...aspects of the wintertime meteorology have been documented: the tropospheric pre-conditioning of a SSW (Coy et al., 2009); the role of gravity wave
Simulation studies of the application of SEASAT data in weather and state of sea forecasting models
NASA Technical Reports Server (NTRS)
Cardone, V. J.; Greenwood, J. A.
1979-01-01
The design and analysis of SEASAT simulation studies in which the error structure of conventional analyses and forecasts is modeled realistically are presented. The development and computer implementation of a global spectral ocean wave model is described. The design of algorithms for the assimilation of theoretical wind data into computers and for the utilization of real wind data and wave height data in a coupled computer system are presented.
NASA Astrophysics Data System (ADS)
Hori, Takane; Ichimura, Tsuyoshi; Takahashi, Narumi
2017-04-01
Here we propose a system for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. Although, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2015, SC15) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Fujita et al. (2016, SC16) has improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, AGU Fall Meeting) has improved the high-fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for forecasting the slip velocity variation on the plate interface. Basic concept is given in Hori et al. (2014, Oceanography) introducing ensemble based sequential data assimilation procedure. Although the prototype described there is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model.
NASA Astrophysics Data System (ADS)
Lee, H.; Seo, D.; Koren, V.
2008-12-01
A prototype 4DVAR (four-dimensional variational) data assimilator for gridded Sacramento soil-moisture accounting and kinematic-wave routing models in the Hydrology Laboratory's Research Distributed Hydrologic Model (HL-RDHM) has been developed. The prototype assimilates streamflow and in-situ soil moisture data and adjusts gridded precipitation and climatological potential evaporation data to reduce uncertainty in the model initial conditions for improved monitoring and prediction of streamflow and soil moisture at the outlet and interior locations within the catchment. Due to large degrees of freedom involved, data assimilation (DA) into distributed hydrologic models is complex. To understand and assess sensitivity of the performance of DA to uncertainties in the model initial conditions and in the data, two synthetic experiments have been carried out in an ensemble framework. Results from the synthetic experiments shed much light on the potential and limitations with DA into distributed models. For initial real-world assessment, the prototype DA has also been applied to the headwater basin at Eldon near the Oklahoma-Arkansas border. We present these results and describe the next steps.
Coupling between the lower and middle atmosphere observed during a very severe cyclonic storm 'Madi'
NASA Astrophysics Data System (ADS)
Hima Bindu, H.; Venkat Ratnam, M.; Yesubabu, V.; Narayana Rao, T.; Eswariah, S.; Naidu, C. V.; Vijaya Bhaskara Rao, S.
2018-04-01
Synoptic-scale systems like cyclones can generate broad spectrum of waves, which propagate from its source to the middle atmosphere. Coupling between the lower and middle atmosphere over Tirupati (13.6°N, 79.4°E) is studied during a very severe cyclonic storm 'Madi' (06-13 December 2013) using Weather Research and Forecast (WRF) model assimilated fields and simultaneous meteor radar observations. Since high temporal and spatial measurements are difficult to obtain during these disturbances, WRF model simulations are obtained by assimilating conventional and satellite observations using 3DVAR technique. The obtained outputs are validated for their consistency in predicting cyclone track and vertical structure by comparing them with independent observations. The good agreement between the assimilated outputs and independent observations prompted us to use the model outputs to investigate the gravity waves (GWs) and tides over Tirupati. GWs with the periods 1-5 h are observed with clear downward phase propagation in the lower stratosphere. These upward propagating waves obtained from the model are also noticed in the meteor radar horizontal wind observations in the MLT region (70-110 km). Interestingly, enhancement in the tidal activity in both the zonal and meridional winds in the mesosphere and lower thermosphere (MLT) region is noticed during the peak cyclonic activity except the suppression of semi-diurnal tide in meridional wind. A very good agreement in the tidal activity is also observed in the horizontal winds in the troposphere and lower stratosphere from the WRF model outputs and ERA5. These results thus provide evidence on the vertical coupling of lower and middle atmosphere induced by the tropical cyclone.
Accelerating assimilation development for new observing systems using EFSO
NASA Astrophysics Data System (ADS)
Lien, Guo-Yuan; Hotta, Daisuke; Kalnay, Eugenia; Miyoshi, Takemasa; Chen, Tse-Chun
2018-03-01
To successfully assimilate data from a new observing system, it is necessary to develop appropriate data selection strategies, assimilating only the generally useful data. This development work is usually done by trial and error using observing system experiments (OSEs), which are very time and resource consuming. This study proposes a new, efficient methodology to accelerate the development using ensemble forecast sensitivity to observations (EFSO). First, non-cycled assimilation of the new observation data is conducted to compute EFSO diagnostics for each observation within a large sample. Second, the average EFSO conditionally sampled in terms of various factors is computed. Third, potential data selection criteria are designed based on the non-cycled EFSO statistics, and tested in cycled OSEs to verify the actual assimilation impact. The usefulness of this method is demonstrated with the assimilation of satellite precipitation data. It is shown that the EFSO-based method can efficiently suggest data selection criteria that significantly improve the assimilation results.
NASA Astrophysics Data System (ADS)
Battalio, Michael; Szunyogh, Istvan; Lemmon, Mark
2016-09-01
The energetics of the atmosphere of the northern hemisphere of Mars during the pre-winter solstice period are explored using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation, with the quasi-geostrophic omega equation providing vertical velocities. Traveling waves are typically triggered by geopotential flux convergence. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a global-scale dust storm. During the non-GDS years, results agree with that of a previous study using a general circulation model simulation. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.
Culture Training: Validation Evidence for the Culture Assimilator.
ERIC Educational Resources Information Center
Mitchell, Terence R.; And Others
The culture assimilator, a programed self-instructional approach to culture training, is described and a series of laboratory experiments and field studies validating the culture assimilator are reviewed. These studies show that the culture assimilator is an effective method of decreasing some of the stress experienced when one works with people…
Detailed Characterization of Nearshore Processes During NCEX
NASA Astrophysics Data System (ADS)
Holland, K.; Kaihatu, J. M.; Plant, N.
2004-12-01
Recent technology advances have allowed the coupling of remote sensing methods with advanced wave and circulation models to yield detailed characterizations of nearshore processes. This methodology was demonstrated as part of the Nearshore Canyon EXperiment (NCEX) in La Jolla, CA during Fall 2003. An array of high-resolution, color digital cameras was installed to monitor an alongshore distance of nearly 2 km out to depths of 25 m. This digital imagery was analyzed over the three-month period through an automated process to produce hourly estimates of wave period, wave direction, breaker height, shoreline position, sandbar location, and bathymetry at numerous locations during daylight hours. Interesting wave propagation patterns in the vicinity of the canyons were observed. In addition, directional wave spectra and swash / surf flow velocities were estimated using more computationally intensive methods. These measurements were used to provide forcing and boundary conditions for the Delft3D wave and circulation model, giving additional estimates of nearshore processes such as dissipation and rip currents. An optimal approach for coupling these remotely sensed observations to the numerical model was selected to yield accurate, but also timely characterizations. This involved assimilation of directional spectral estimates near the offshore boundary to mimic forcing conditions achieved under traditional approaches involving nested domains. Measurements of breaker heights and flow speeds were also used to adaptively tune model parameters to provide enhanced accuracy. Comparisons of model predictions and video observations show significant correlation. As compared to nesting within larger-scale and coarser resolution models, the advantages of providing boundary conditions data using remote sensing is much improved resolution and fidelity. For example, rip current development was both modeled and observed. These results indicate that this approach to data-model coupling is tenable and may be useful in near-real-time characterizations required by many applied scenarios.
On the wave number 2 eastward propagating quasi 2 day wave at middle and high latitudes
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Pedatella, N. M.; Dou, Xiankang; Liu, Yu
2017-04-01
The temperature and wind data sets from the ensemble data assimilation version of the Whole Atmosphere Community Climate Model + Data Assimilation Research Testbed (WACCM + DART) developed at the National Center for Atmospheric Research (NCAR) are utilized to study the seasonal variability of the eastward quasi 2 day wave (QTDW) with zonal wave number 2 (E2) during 2007. The aliasing ratio of E2 from wave number 3 (W3) in the synoptic WACCM data set is a constant value of 4 × 10-6% due to its uniform sampling pattern, whereas the aliasing is latitudinally dependent if the WACCM fields are sampled asynoptically based on the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) sampling. The aliasing ratio based on SABER sampling is 75% at 40°S during late January, where and when W3 peaks. The analysis of the synoptic WACCM data set shows that the E2 is in fact a winter phenomenon, which peaks in the stratosphere and lower mesosphere at high latitudes. In the austral winter period, the amplitudes of E2 can reach 10 K, 20 m/s, and 30 m/s for temperature, zonal, and meridional winds, respectively. In the boreal winter period, the wave perturbations are only one third as strong as those in austral winter. Diagnostic analysis also shows that the mean flow instabilities in the winter upper mesosphere polar region provide sources for the amplification of E2. This is different from the westward QTDWs, whose amplifications are related to the summer easterly jet. In addition, the E2 also peaks at lower altitude than the westward modes.
Adjoint-Free Variational Data Assimilation into a Regional Wave Model
2015-07-01
Wave Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...developed by Oceanweather, Inc. using the methodology of Cardone et al. (1995, 1996). The winds were taken for the period 11–20 September 2011 and...International Arctic Research Center, NSF Grants 1107925 and 1203740. It was also supported by theOffice of Naval Research (Program Element 0602435N, pro
User's Guide - WRF Lightning Assimilation
This document describes how to run WRF with the lightning assimilation technique described in Heath et al. (2016). The assimilation method uses gridded lightning data to trigger and suppress sub-grid deep convection in Kain-Fritsch.
NASA Astrophysics Data System (ADS)
Tang, Youhua; Pagowski, Mariusz; Chai, Tianfeng; Pan, Li; Lee, Pius; Baker, Barry; Kumar, Rajesh; Delle Monache, Luca; Tong, Daniel; Kim, Hyun-Cheol
2017-12-01
This study applies the Gridpoint Statistical Interpolation (GSI) 3D-Var assimilation tool originally developed by the National Centers for Environmental Prediction (NCEP), to improve surface PM2.5 predictions over the contiguous United States (CONUS) by assimilating aerosol optical depth (AOD) and surface PM2.5 in version 5.1 of the Community Multi-scale Air Quality (CMAQ) modeling system. An optimal interpolation (OI) method implemented earlier (Tang et al., 2015) for the CMAQ modeling system is also tested for the same period (July 2011) over the same CONUS. Both GSI and OI methods assimilate surface PM2.5 observations at 00:00, 06:00, 12:00 and 18:00 UTC, and MODIS AOD at 18:00 UTC. The assimilations of observations using both GSI and OI generally help reduce the prediction biases and improve correlation between model predictions and observations. In the GSI experiments, assimilation of surface PM2.5 (particle matter with diameter < 2.5 µm) leads to stronger increments in surface PM2.5 compared to its MODIS AOD assimilation at the 550 nm wavelength. In contrast, we find a stronger OI impact of the MODIS AOD on surface aerosols at 18:00 UTC compared to the surface PM2.5 OI method. GSI produces smoother result and yields overall better correlation coefficient and root mean squared error (RMSE). It should be noted that the 3D-Var and OI methods used here have several big differences besides the data assimilation schemes. For instance, the OI uses relatively big model uncertainties, which helps yield smaller mean biases, but sometimes causes the RMSE to increase. We also examine and discuss the sensitivity of the assimilation experiments' results to the AOD forward operators.
Global Adjoint Tomography: Combining Big Data with HPC Simulations
NASA Astrophysics Data System (ADS)
Bozdag, E.; Lefebvre, M. P.; Lei, W.; Peter, D. B.; Smith, J. A.; Komatitsch, D.; Tromp, J.
2014-12-01
The steady increase in data quality and the number of global seismographic stations have substantially grown the amount of data available for construction of Earth models. Meanwhile, developments in the theory of wave propagation, numerical methods and HPC systems have enabled unprecedented simulations of seismic wave propagation in realistic 3D Earth models which lead the extraction of more information from data, ultimately culminating in the use of entire three-component seismograms.Our aim is to take adjoint tomography further to image the entire planet which is one of the extreme cases in seismology due to its intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated in inversions. We have started low resolution (T > 27 s, soon will be > 17 s) global inversions with 253 earthquakes for a transversely isotropic crust and mantle model on Oak Ridge National Laboratory's Cray XK7 "Titan" system. Recent improvements in our 3D solvers, such as the GPU version of the SPECFEM3D_GLOBE package, will allow us perform higher-resolution (T > 9 s) and longer-duration (~180 m) simulations to take the advantage of high-frequency body waves and major-arc surface waves to improve imbalanced ray coverage as a result of uneven distribution of sources and receivers on the globe. Our initial results after 10 iterations already indicate several prominent features reported in high-resolution continental studies, such as major slabs (Hellenic, Japan, Bismarck, Sandwich, etc.) and enhancement in plume structures (the Pacific superplume, the Hawaii hot spot, etc.). Our ultimate goal is to assimilate seismic data from more than 6,000 earthquakes within the magnitude range 5.5 ≤ Mw ≤ 7.0. To take full advantage of this data set on ORNL's computational resources, we need a solid framework for managing big data sets during pre-processing (e.g., data requests and quality checks), gradient calculations, and post-processing (e.g., pre-conditioning and smoothing gradients) where we address the bottlenecks in our global seismic workflow based on ORNL's ADIOS libraries. We will present our "first generation" model, discuss challenges and future directions in global seismology.
Assimilation of snow covered area information into hydrologic and land-surface models
Clark, M.P.; Slater, A.G.; Barrett, A.P.; Hay, L.E.; McCabe, G.J.; Rajagopalan, B.; Leavesley, G.H.
2006-01-01
This paper describes a data assimilation method that uses observations of snow covered area (SCA) to update hydrologic model states in a mountainous catchment in Colorado. The assimilation method uses SCA information as part of an ensemble Kalman filter to alter the sub-basin distribution of snow as well as the basin water balance. This method permits an optimal combination of model simulations and observations, as well as propagation of information across model states. Sensitivity experiments are conducted with a fairly simple snowpack/water-balance model to evaluate effects of the data assimilation scheme on simulations of streamflow. The assimilation of SCA information results in minor improvements in the accuracy of streamflow simulations near the end of the snowmelt season. The small effect from SCA assimilation is initially surprising. It can be explained both because a substantial portion of snowmelts before any bare ground is exposed, and because the transition from 100% to 0% snow coverage occurs fairly quickly. Both of these factors are basin-dependent. Satellite SCA information is expected to be most useful in basins where snow cover is ephemeral. The data assimilation strategy presented in this study improved the accuracy of the streamflow simulation, indicating that SCA is a useful source of independent information that can be used as part of an integrated data assimilation strategy. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Shin-Woo; Noh, Nam-Kyu; Lim, Gyu-Ho
2013-04-01
This study presents the introduction of retrospective optimal interpolation (ROI) and its application with Weather Research and Forecasting model (WRF). Song et al. (2009) suggested ROI method which is an optimal interpolation (OI) that gradually assimilates observations over the analysis window for variance-minimum estimate of an atmospheric state at the initial time of the analysis window. The assimilation window of ROI algorithm is gradually increased, similar with that of the quasi-static variational assimilation (QSVA; Pires et al., 1996). Unlike QSVA method, however, ROI method assimilates the data at post analysis time using perturbation method (Verlaan and Heemink, 1997) without adjoint model. Song and Lim (2011) improved this method by incorporating eigen-decomposition and covariance inflation. The computational costs for ROI can be reduced due to the eigen-decomposition of background error covariance which can concentrate ROI analyses on the error variances of governing eigenmodes by transforming the control variables into eigenspace. A total energy norm is used for the normalization of each control variables. In this study, ROI method is applied to WRF model with Observing System Simulation Experiment (OSSE) to validate the algorithm and to investigate the capability. Horizontal wind, pressure, potential temperature, and water vapor mixing ratio are used for control variables and observations. Firstly, 1-profile assimilation experiment is performed. Subsequently, OSSE's are performed using the virtual observing system which consists of synop, ship, and sonde data. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error with the assimilation by ROI. The characteristics and strength/weakness of ROI method are also investigated by conducting the experiments with 3D-Var (3-dimensional variational) method and 4D-Var (4-dimensional variational) method. In the initial time, ROI produces a larger forecast error than that of 4D-Var. However, the difference between the two experimental results is decreased gradually with time, and the ROI shows apparently better result (i.e., smaller forecast error) than that of 4D-Var after 9-hour forecast.
Assimilation of SBUV Version 8 Radiances into the GEOS Ozone DAS
NASA Technical Reports Server (NTRS)
Mueller, Martin D.; Stajner, Ivanka; Bhartia, Pawan K.
2004-01-01
In operational weather forecasting, the assimilation of brightness temperatures from satellite sounders, instead of assimilation of 1D-retrievals has become increasingly common practice over the last two decades. Compared to these systems, assimilation of trace gases is still at a relatively early stage of development, and efforts to directly assimilate radiances instead of retrieved products have just begun a few years ago, partially because it requires much more computation power due to the employment of a radiative transport forward model (FM). This paper will focus on a method to assimilate SBUV/2 radiances (albedos) into the Global Earth Observation System Ozone Data Assimilation Scheme (GEOS-03DAS). While SBUV-type instruments cannot compete with newer sensors in terms of spectral and horizontal resolution, they feature a continuous data record back to 1978, which makes them very valuable for trend studies. Assimilation can help spreading their ground coverage over the whole globe, as has been previously demonstrated with the GEOS-03DAS using SBUV Version 6 ozone profiles. Now, the DAS has been updated to use the newly released SBUV Version 8 data. We will compare pre]lmlnarv results of SBUV radiance assimilation with the assimilation of retrieved ozone profiles, discuss methods to deal with the increased computational load, and try to assess the error characteristics and future potential of the new approach.
The Mediterranean Forecasting System: recent developments
NASA Astrophysics Data System (ADS)
Tonani, Marina; Oddo, Paolo; Korres, Gerasimos; Clementi, Emanuela; Dobricic, Srdjan; Drudi, Massimiliano; Pistoia, Jenny; Guarnieri, Antonio; Romaniello, Vito; Girardi, Giacomo; Grandi, Alessandro; Bonaduce, Antonio; Pinardi, Nadia
2014-05-01
Recent developments of the Mediterranean Monitoring and Forecasting Centre of the EU-Copernicus marine service, the Mediterranean Forecasting System (MFS), are presented. MFS provides forecast, analysis and reanalysis for the physical and biogeochemical parameters of the Mediterranean Sea. The different components of the system are continuously updated in order to provide to the users the best available product. This work is focus on the physical component of the system. The physical core of MFS is composed by an ocean general circulation model (NEMO) coupled with a spectral wave model (Wave Watch-III). The NEMO model provides to WW-III surface currents and SST fields, while WW-III returns back to NEMO the neutral component of the surface drag coefficient. Satellite Sea Level Anomaly observations and in-situ T & S vertical profiles are assimilated into this system using a variational assimilation scheme based on 3DVAR (Dobricic, 2008) . Sensitive experiments have been performed in order to assess the impact of the assimilation of the latest available SLA missions, Altika and Cryosat together with the long term available mission of Jason2. The results show a significant improvement of the MFS skill due to the multi-mission along track assimilation. The primitive equations module has been recently upgraded with the introduction of the atmospheric pressure term and a new, explicit, numerical scheme has been adopted to solve the barotropic component of the equations of motion. The SLA satellite observations for data assimilation have been consequently modified in order to account for the new atmospheric pressure term introduced in the equations. This new system has been evaluated using tide gauge coastal buoys and the satellite along track data. The quality of the SSH has improved significantly while a minor impact has been observed on the other state variables (temperature, salinity and currents). Experiments with a higher resolution NWP (numerical weather prediction) forcing provided by the COSMO-MED system (provided by the Italian Meteorological Office), have been performed and a pre-operational 3-day forecast production system has been developed. The comparison between this system and the official one forced by the ECMWF NWP data will be discussed.
NASA Technical Reports Server (NTRS)
Garfinkel, C. I.; Oman, L. D.
2018-01-01
The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.
Honma, Motoyasu; Plass, John; Brang, David; Florczak, Susan M; Grabowecky, Marcia; Paller, Ken A
2016-01-01
Plasticity is essential in body perception so that physical changes in the body can be accommodated and assimilated. Multisensory integration of visual, auditory, tactile, and proprioceptive signals contributes both to conscious perception of the body's current state and to associated learning. However, much is unknown about how novel information is assimilated into body perception networks in the brain. Sleep-based consolidation can facilitate various types of learning via the reactivation of networks involved in prior encoding or through synaptic down-scaling. Sleep may likewise contribute to perceptual learning of bodily information by providing an optimal time for multisensory recalibration. Here we used methods for targeted memory reactivation (TMR) during slow-wave sleep to examine the influence of sleep-based reactivation of experimentally induced alterations in body perception. The rubber-hand illusion was induced with concomitant auditory stimulation in 24 healthy participants on 3 consecutive days. While each participant was sleeping in his or her own bed during intervening nights, electrophysiological detection of slow-wave sleep prompted covert stimulation with either the sound heard during illusion induction, a counterbalanced novel sound, or neither. TMR systematically enhanced feelings of bodily ownership after subsequent inductions of the rubber-hand illusion. TMR also enhanced spatial recalibration of perceived hand location in the direction of the rubber hand. This evidence for a sleep-based facilitation of a body-perception illusion demonstrates that the spatial recalibration of multisensory signals can be altered overnight to stabilize new learning of bodily representations. Sleep-based memory processing may thus constitute a fundamental component of body-image plasticity.
On the assimilation of SWOT type data into 2D shallow-water models
NASA Astrophysics Data System (ADS)
Frédéric, Couderc; Denis, Dartus; Pierre-André, Garambois; Ronan, Madec; Jérôme, Monnier; Jean-Paul, Villa
2013-04-01
In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images is still delicate. In the present talk, we address the richness of satellite mapped information to constrain a 2D shallow-water model, but also related difficulties. 2D shallow models may be necessary for small scale modelling in particular for low-water and flood plain flows. Since in both cases, the dynamics of the wet-dry front is essential, one has to elaborate robust and accurate solvers. In this contribution we introduce robust second order, stable finite volume scheme [CoMaMoViDaLa]. Comparisons of real like tests cases with more classical solvers highlight the importance of an accurate flood plain modelling. A preliminary inverse study is presented in a flood plain flow case, [LaMo] [HoLaMoPu]. As a first step, a 0th order data processing model improves observation operator and produces more reliable water level derived from rough measurements [PuRa]. Then, both model and flow behaviours can be better understood thanks to variational sensitivities based on a gradient computation and adjoint equations. It can reveal several difficulties that a model designer has to tackle. Next, a 4D-Var data assimilation algorithm used with spatialized data leads to improved model calibration and potentially leads to identify river discharges. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. All these results and experiments (accurate wet-dry front dynamics, sensitivities analysis, identification of discharges and calibration of model) are currently performed in view to use data from the future SWOT mission. [CoMaMoViDaLa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus, K. Larnier. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Computational software http://www-gmm.insa-toulouse.fr/~monnier/DassFlow/ [HoLaMoPu] R. Hostache, X. Lai, J. Monnier, C. Puech. "Assimilation of spatial distributed water levels into a shallow-water flood model. Part II: using a remote sensing image of Mosel river". J. Hydrology (2010). [LaMo] X. Lai, J. Monnier. "Assimilation of spatial distributed water levels into a shallow-water flood model. Part I: mathematical method and test case". J. Hydrology (2009). [PuRa] C. Puech, D. Raclot. "Using geographic information systems and aerial photographs to determine water levels during floods". Hydrol. Process., 16, 1593 - 1602, (2002). [RoDa] H. Roux, D. Dartus. "Use of Parameter Optimization to Estimate a Flood Wave: Potential Applications to Remote Sensing of Rivers". J. Hydrology (2006).
NASA Astrophysics Data System (ADS)
Choi, Yonghan; Cha, Dong-Hyun; Lee, Myong-In; Kim, Joowan; Jin, Chun-Sil; Park, Sang-Hun; Joh, Min-Su
2017-06-01
A total of three binary tropical cyclone (TC) cases over the Western North Pacific are selected to investigate the effects of satellite radiance data assimilation on analyses and forecasts of binary TCs. Two parallel cycling experiments with a 6 h interval are performed for each binary TC case, and the difference between the two experiments is whether satellite radiance observations are assimilated. Satellite radiance observations are assimilated using the Weather Research and Forecasting Data Assimilation (WRFDA)'s three-dimensional variational (3D-Var) system, which includes the observation operator, quality control procedures, and bias correction algorithm for radiance observations. On average, radiance assimilation results in slight improvements of environmental fields and track forecasts of binary TC cases, but the detailed effects vary with the case. When there is no direct interaction between binary TCs, radiance assimilation leads to better depictions of environmental fields, and finally it results in improved track forecasts. However, positive effects of radiance assimilation on track forecasts can be reduced when there exists a direct interaction between binary TCs and intensities/structures of binary TCs are not represented well. An initialization method (e.g., dynamic initialization) combined with radiance assimilation and/or more advanced DA techniques (e.g., hybrid method) can be considered to overcome these limitations.
Study of Lamb Waves for Non-Destructive Testing Behind Screens
NASA Astrophysics Data System (ADS)
Kauffmann, P.; Ploix, M.-A.; Chaix, J.-F.; Gueudré, C.; Corneloup, G.; Baqué, F. AF(; )
2018-01-01
The inspection and control of sodium-cooled fast reactors (SFR) is a major issue for the nuclear industry. Ultrasonic solutions are under study because of the opacity of liquid sodium. In this paper, the use of leaky Lamb waves is considered for non-destructive testing (NDT) on parallel and immersed structures assimilated as plates. The first phase of our approach involved studying the propagation properties of leaky Lamb waves. Equations that model the propagation of Lamb waves in an immersed plate were solved numerically. The phase velocity can be experimentally measured using a two dimensional Fourier transform. The group velocity can be experimentally measured using a short-time Fourier transform technique. Attenuation of leaky Lamb waves is mostly due to the re-emission of energy into the surrounding fluid, and it can be measured by these two techniques.
NASA Technical Reports Server (NTRS)
Menard, Richard; Chang, Lang-Ping
1998-01-01
A Kalman filter system designed for the assimilation of limb-sounding observations of stratospheric chemical tracers, which has four tunable covariance parameters, was developed in Part I (Menard et al. 1998) The assimilation results of CH4 observations from the Cryogenic Limb Array Etalon Sounder instrument (CLAES) and the Halogen Observation Experiment instrument (HALOE) on board of the Upper Atmosphere Research Satellite are described in this paper. A robust (chi)(sup 2) criterion, which provides a statistical validation of the forecast and observational error covariances, was used to estimate the tunable variance parameters of the system. In particular, an estimate of the model error variance was obtained. The effect of model error on the forecast error variance became critical after only three days of assimilation of CLAES observations, although it took 14 days of forecast to double the initial error variance. We further found that the model error due to numerical discretization as arising in the standard Kalman filter algorithm, is comparable in size to the physical model error due to wind and transport modeling errors together. Separate assimilations of CLAES and HALOE observations were compared to validate the state estimate away from the observed locations. A wave-breaking event that took place several thousands of kilometers away from the HALOE observation locations was well captured by the Kalman filter due to highly anisotropic forecast error correlations. The forecast error correlation in the assimilation of the CLAES observations was found to have a structure similar to that in pure forecast mode except for smaller length scales. Finally, we have conducted an analysis of the variance and correlation dynamics to determine their relative importance in chemical tracer assimilation problems. Results show that the optimality of a tracer assimilation system depends, for the most part, on having flow-dependent error correlation rather than on evolving the error variance.
Mechanisms and Control of Phloem Transport in Trees: Fast and Slow - Sink and Source
NASA Astrophysics Data System (ADS)
Gessler, Arthur; Hagedorn, Frank; Galiano, Lucia; Schaub, Marcus; Joseph, Jobin; Arend, Matthias; Hommel, Robert; Kayler, Zachary
2017-04-01
Trees are large global stores of carbon that will be affected by increased carbon dioxide levels and climate change in the future. However, at present we cannot properly predict the carbon balance of forests as we lack knowledge on how plant physiological processes and especially the transport of carbon within the plant interact with environmental drivers and ecosystem-scale processes. The central conveyor belt for C allocation and distribution within the tree is the phloem and its functionality under environmental stress (esp. drought) is important for the avoidance of C starvation. This paper addresses the distribution of new assimilates within the plant, and sheds light on phloem transport mechanisms and transport control using 13C pulse labelling techniques. We provide experimental evidence that at least two mechanisms are employed to couple C sink processes to assimilation. We observed a fast increase of belowground respiration with the onset of photosynthesis, which we assume is induced by pressure concentration waves travelling through the phloem. A second, much later occurring peak in respiration is fueled by new 13C labeled assimilates. Moreover, we relate phloem transport velocity and intensity of labelled 13C assimilates to drought stress intensity and give indication how sink rather than source control might affect phloem transport in trees. During drought, net photosynthesis, soil respiration and the allocation of recent assimilates below ground were reduced. Carbohydrates accumulated in metabolically resting roots but not in leaves, indicating sink control of the tree carbon balance. After drought release, soil respiration recovered faster than assimilation and CO2 fluxes exceeded those in continuously watered trees for months. This stimulation was related to greater assimilate allocation to and metabolization in the rhizosphere. These findings show that trees prioritize the investment of assimilates below ground, probably to regain root functions after drought and indicate that sink activity governs carbon allocation not only during drought stress but also after stress release.
NASA Astrophysics Data System (ADS)
Zhou, Q.; Liu, L.
2017-12-01
Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation method that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics to the best.
NASA Astrophysics Data System (ADS)
Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.
2017-12-01
The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.
NASA Astrophysics Data System (ADS)
Wada, Akiyoshi; Kunii, Masaru
2017-05-01
For improving analyses of tropical cyclone (TC) and sea surface temperature (SST) and thereby TC simulations, a regional mesoscale strongly coupled atmosphere-ocean data assimilation system was developed with the local ensemble transform Kalman filter (LETKF) implemented with the Japan Meteorological Agency's nonhydrostatic model (NHM) coupled with a multilayer ocean model and the third-generation ocean wave model. The NHM-LETKF coupled data assimilation system was applied to Typhoon Sinlaku (2008) along with the original NHM-LETKF system to investigate the sensitivity of Sinlaku to SST assimilation with the Level 2 Pre-processed (L2P) standard product of satellite SST. SST calculated in the coupled-assimilation experiment with the coupled data assimilation system and the satellite SST (CPL) showed a better correlation with Optimally Interpolated SST than SST used in the control experiment with the original NHM-LETKF (CNTL) and SST calculated in the succession experiment with the coupled system without satellite SST (SUCC). The time series in the CPL experiment well captured the variation in the SST observed at the Kuroshio Extension Observation buoy site. In addition, TC-induced sea surface cooling was analyzed more realistically in the CPL experiment than that in the CNTL and SUCC experiments. However, the central pressure analyzed in each three experiments was overestimated compared with the Regional Specialized Meteorological Center Tokyo best-track central pressure, mainly due to the coarse horizontal resolution of 15 km. The 96 h TC simulations indicated that the CPL experiment provided more favorable initial and boundary conditions than the CNTL experiment to simulate TC tracks more accurately.
NASA Astrophysics Data System (ADS)
Mitchell, C. N.; Rankov, N. R.; Bust, G. S.; Miller, E.; Gaussiran, T.; Calfas, R.; Doyle, J. D.; Teig, L. J.; Werth, J. L.; Dekine, I.
2017-07-01
Ionospheric data assimilation is a technique to evaluate the 3-D time varying distribution of electron density using a combination of a physics-based model and observations. A new ionospheric data assimilation method is introduced that has the capability to resolve traveling ionospheric disturbances (TIDs). TIDs are important because they cause strong delay and refraction to radio signals that are detrimental to the accuracy of high-frequency (HF) geolocation systems. The capability to accurately specify the ionosphere through data assimilation can correct systems for the error caused by the unknown ionospheric refraction. The new data assimilation method introduced here uses ionospheric models in combination with observations of HF signals from known transmitters. The assimilation methodology was tested by the ability to predict the incoming angles of HF signals from transmitters at a set of nonassimilated test locations. The technique is demonstrated and validated using observations collected during 2 days of a dedicated campaign of ionospheric measurements at White Sands Missile Range in New Mexico in January 2014. This is the first time that full HF ionospheric data assimilation using an ensemble run of a physics-based model of ionospheric TIDs has been demonstrated. The results show a significant improvement over HF angle-of-arrival prediction using an empirical model and also over the classic method of single-site location using an ionosonde close to the midpoint of the path. The assimilative approach is extendable to include other types of ionospheric measurements.
NASA Technical Reports Server (NTRS)
Cattell, Cynthia A.
2004-01-01
This grant was focused on research in two specific areas: (1) development of new techniques and software for assimilation, analysis and visualization of data from multiple satellites making in-situ measurements; and (2) determination of the role of MHD waves in energy transport during storms and substorms. Results were obtained in both areas and presented at national meetings and in publications. The talks and papers that were supported in part or fully by this grant are listed in this paper.
NASA Technical Reports Server (NTRS)
Bosart, Lance F.
2001-01-01
The research effort supported by NASA Grant NAG5-7469, awarded to the University at Albany, State University of New York (UA/SUNY), comprises the following two projects: (1) the observational study of large-amplitude inertia-gravity wave environments over the continental United States; and (2) the definition of opportunities and issues in extratropical cyclone dynamics and related phenomenological studies that may be addressed using high-resolution global datasets produced by the Data Assimilation Office (DAO) at the NASA/Goddard Space Flight Center.
Information flow in an atmospheric model and data assimilation
NASA Astrophysics Data System (ADS)
Yoon, Young-noh
2011-12-01
Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background state estimate with new observations, and the cycle repeats. In an ensemble Kalman filter, the probability distribution of the state estimate is represented by an ensemble of sample states, and the covariance matrix is calculated using the ensemble of sample states. We perform numerical experiments on toy atmospheric models introduced by Lorenz in 2005 to study the information flow in an atmospheric model in conjunction with ensemble Kalman filtering for data assimilation. This dissertation consists of two parts. The first part of this dissertation is about the propagation of information and the use of localization in ensemble Kalman filtering. If we can perform data assimilation locally by considering the observations and the state variables only near each grid point, then we can reduce the number of ensemble members necessary to cover the probability distribution of the state estimate, reducing the computational cost for the data assimilation and the model integration. Several localized versions of the ensemble Kalman filter have been proposed. Although tests applying such schemes have proven them to be extremely promising, a full basic understanding of the rationale and limitations of localization is currently lacking. We address these issues and elucidate the role played by chaotic wave dynamics in the propagation of information and the resulting impact on forecasts. The second part of this dissertation is about ensemble regional data assimilation using joint states. Assuming that we have a global model and a regional model of higher accuracy defined in a subregion inside the global region, we propose a data assimilation scheme that produces the analyses for the global and the regional model simultaneously, considering forecast information from both models. We show that our new data assimilation scheme produces better results both in the subregion and the global region than the data assimilation scheme that produces the analyses for the global and the regional model separately.
ERIC Educational Resources Information Center
Sassier, Sharon L.
2006-01-01
Research on the educational enrollment of immigrants has typically asserted that today's immigrant children are educationally disadvantaged and that earlier waves of immigrants were more readily absorbed into the American educational system. This article addresses these assumptions, drawing on traditional assimilationist and status competition…
HF Surface Wave Radar for Oceanography -- A Review of Activities in Germany
2005-04-14
Environmental and Remote Sensing Center (NERSC). The model and data assimilation technique is described by Breivik and Sætra [2]. Figure 10 shows a...forecasts with the measurements taken at that time, the rms error increases to 20 cm/s. Breivik and Sætra, 2001, present scatter plots and correlations
Data assimilation method based on the constraints of confidence region
NASA Astrophysics Data System (ADS)
Li, Yong; Li, Siming; Sheng, Yao; Wang, Luheng
2018-03-01
The ensemble Kalman filter (EnKF) is a distinguished data assimilation method that is widely used and studied in various fields including methodology and oceanography. However, due to the limited sample size or imprecise dynamics model, it is usually easy for the forecast error variance to be underestimated, which further leads to the phenomenon of filter divergence. Additionally, the assimilation results of the initial stage are poor if the initial condition settings differ greatly from the true initial state. To address these problems, the variance inflation procedure is usually adopted. In this paper, we propose a new method based on the constraints of a confidence region constructed by the observations, called EnCR, to estimate the inflation parameter of the forecast error variance of the EnKF method. In the new method, the state estimate is more robust to both the inaccurate forecast models and initial condition settings. The new method is compared with other adaptive data assimilation methods in the Lorenz-63 and Lorenz-96 models under various model parameter settings. The simulation results show that the new method performs better than the competing methods.
Data assimilation to extract soil moisture information from SMAP observations
USDA-ARS?s Scientific Manuscript database
This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural Network(NN) and physically-based SMAP soil moisture retrievals were assimilated into the NASA Catchment model over the contiguous United Sta...
Ensemble Data Assimilation Without Ensembles: Methodology and Application to Ocean Data Assimilation
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume
2013-01-01
Two methods to estimate background error covariances for data assimilation are introduced. While both share properties with the ensemble Kalman filter (EnKF), they differ from it in that they do not require the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The first method is referred-to as SAFE (Space Adaptive Forecast error Estimation) because it estimates error covariances from the spatial distribution of model variables within a single state vector. It can thus be thought of as sampling an ensemble in space. The second method, named FAST (Flow Adaptive error Statistics from a Time series), constructs an ensemble sampled from a moving window along a model trajectory. The underlying assumption in these methods is that forecast errors in data assimilation are primarily phase errors in space and/or time.
Model Uncertainty Quantification Methods In Data Assimilation
NASA Astrophysics Data System (ADS)
Pathiraja, S. D.; Marshall, L. A.; Sharma, A.; Moradkhani, H.
2017-12-01
Data Assimilation involves utilising observations to improve model predictions in a seamless and statistically optimal fashion. Its applications are wide-ranging; from improving weather forecasts to tracking targets such as in the Apollo 11 mission. The use of Data Assimilation methods in high dimensional complex geophysical systems is an active area of research, where there exists many opportunities to enhance existing methodologies. One of the central challenges is in model uncertainty quantification; the outcome of any Data Assimilation study is strongly dependent on the uncertainties assigned to both observations and models. I focus on developing improved model uncertainty quantification methods that are applicable to challenging real world scenarios. These include developing methods for cases where the system states are only partially observed, where there is little prior knowledge of the model errors, and where the model error statistics are likely to be highly non-Gaussian.
Marsiglia, Flavio F.; Kulis, Stephen; Kellison, Joshua G.
2010-01-01
Objectives. Under an ecodevelopmental framework, we examined lifetime segmented assimilation trajectories (diverging assimilation pathways influenced by prior life conditions) and related them to quality-of-life indicators in a diverse sample of 258 men in the Pheonix, AZ, metropolitan area. Methods. We used a growth mixture model analysis of lifetime changes in socioeconomic status, and used acculturation to identify distinct lifetime segmented assimilation trajectory groups, which we compared on life satisfaction, exercise, and dietary behaviors. We hypothesized that lifetime assimilation change toward mainstream American culture (upward assimilation) would be associated with favorable health outcomes, and downward assimilation change with unfavorable health outcomes. Results. A growth mixture model latent class analysis identified 4 distinct assimilation trajectory groups. In partial support of the study hypotheses, the extreme upward assimilation trajectory group (the most successful of the assimilation pathways) exhibited the highest life satisfaction and the lowest frequency of unhealthy food consumption. Conclusions. Upward segmented assimilation is associated in adulthood with certain positive health outcomes. This may be the first study to model upward and downward lifetime segmented assimilation trajectories, and to associate these with life satisfaction, exercise, and dietary behaviors. PMID:20167890
NASA Astrophysics Data System (ADS)
Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.
2012-04-01
Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the scope of the 7th EU FP Project FIELD_AC, assesses the impact of coupling WAM and WRF on wind and wave forecasts on the Balearic Sea, and compares it with other possible improvements, like using available high-resolution circulation information from MyOcean GMES core services, or assimilating altimeter data on the Western Mediterranean. This is done in an ordered fashion following statistical design rules, which allows to extract main effects of each of the factors considered (coupling, better circulation information, data assimilation following Lionello et al., 1992) as well as two-factor interactions. Moreover, the statistical significance of these improvements can be tested in the future, though this requires maximum likelihood ratio tests with correlated data. Charnock, H. (1955) Wind stress on a water surface. Quart.J. Row. Met. Soc. 81: 639-640 Donelan, M. (1982) The dependence of aerodynamic drag coefficient on wave parameters. Proc. 1st Int. Conf. on Meteorology and Air-Sea Interactions of teh Coastal Zone. The Hague (Netherlands). AMS. 381-387 Janssen, P.A.E.M., Doyle, J., Bidlot, J., Hansen, B., Isaksen, L. and Viterbo, P. (1990) The impact of oean waves on the atmosphere. Seminars of the ECMWF. Lionello, P., Günther, H., and Janssen P.A.E.M. (1992) Assimilation of altimeter data in a global third-generation wave model. Journal of Geophysical Research 97 (C9): 453-474. Warner, J., Armstrong, B., He, R. and Zambon, J.B. (2010) Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Modelling 35: 230-244.
Sensitivity of WRF precipitation field to assimilation sources in northeastern Spain
NASA Astrophysics Data System (ADS)
Lorenzana, Jesús; Merino, Andrés; García-Ortega, Eduardo; Fernández-González, Sergio; Gascón, Estíbaliz; Hermida, Lucía; Sánchez, José Luis; López, Laura; Marcos, José Luis
2015-04-01
Numerical weather prediction (NWP) of precipitation is a challenge. Models predict precipitation after solving many physical processes. In particular, mesoscale NWP models have different parameterizations, such as microphysics, cumulus or radiation schemes. These facilitate, according to required spatial and temporal resolutions, precipitation fields with increasing reliability. Nevertheless, large uncertainties are inherent to precipitation forecasting. Consequently, assimilation methods are very important. The Atmospheric Physics Group at the University of León in Spain and the Castile and León Supercomputing Center carry out daily weather prediction based on the Weather Research and Forecasting (WRF) model, covering the entire Iberian Peninsula. Forecasts of severe precipitation affecting the Ebro Valley, in the southern Pyrenees range of northeastern Spain, are crucial in the decision-making process for managing reservoirs or initializing runoff models. These actions can avert floods and ensure uninterrupted economic activity in the area. We investigated a set of cases corresponding to intense or severe precipitation patterns, using a rain gauge network. Simulations were performed with a dual objective, i.e., to analyze forecast improvement using a specific assimilation method, and to study the sensitivity of model outputs to different types of assimilation data. A WRF forecast model initialized by an NCEP SST analysis was used as the control run. The assimilation was based on the Meteorological Assimilation Data Ingest System (MADIS) developed by NOAA. The MADIS data used were METAR, maritime, ACARS, radiosonde, and satellite products. The results show forecast improvement using the suggested assimilation method, and differences in the accuracy of forecast precipitation patterns varied with the assimilation data source.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume; Koster, Randal D. (Editor)
2014-01-01
An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory. SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele; Kovach, Robin M.; Vernieres, Guillaume
2014-01-01
An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory.SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.
The role of sleep spindles and slow-wave activity in integrating new information in semantic memory.
Tamminen, Jakke; Lambon Ralph, Matthew A; Lewis, Penelope A
2013-09-25
Assimilating new information into existing knowledge is a fundamental part of consolidating new memories and allowing them to guide behavior optimally and is vital for conceptual knowledge (semantic memory), which is accrued over many years. Sleep is important for memory consolidation, but its impact upon assimilation of new information into existing semantic knowledge has received minimal examination. Here, we examined the integration process by training human participants on novel words with meanings that fell into densely or sparsely populated areas of semantic memory in two separate sessions. Overnight sleep was polysomnographically monitored after each training session and recall was tested immediately after training, after a night of sleep, and 1 week later. Results showed that participants learned equal numbers of both word types, thus equating amount and difficulty of learning across the conditions. Measures of word recognition speed showed a disadvantage for novel words in dense semantic neighborhoods, presumably due to interference from many semantically related concepts, suggesting that the novel words had been successfully integrated into semantic memory. Most critically, semantic neighborhood density influenced sleep architecture, with participants exhibiting more sleep spindles and slow-wave activity after learning the sparse compared with the dense neighborhood words. These findings provide the first evidence that spindles and slow-wave activity mediate integration of new information into existing semantic networks.
USDA-ARS?s Scientific Manuscript database
Data assimilation and regression are two commonly used methods for predicting agricultural yield from remote sensing observations. Data assimilation is a generative approach because it requires explicit approximations of the Bayesian prior and likelihood to compute the probability density function...
The Culture Assimilator: An Approach to Cross-Cultural Training. Technical Report.
ERIC Educational Resources Information Center
Fiedler, Fred E.; And Others
The construction of self-administered, programed, culture training manuals, called "Culture Assimilators," is described here. These programs provide an apparently effective method for assisting members of one culture to interact and adjust successfully with members of another culture. Culture assimilators have been constructed for the…
A Hybrid Approach to Data Assimilation for Reconstructing the Evolution of Mantle Dynamics
NASA Astrophysics Data System (ADS)
Zhou, Quan; Liu, Lijun
2017-11-01
Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation approach that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics the best.
DARLA: Data Assimilation and Remote Sensing for Littoral Applications
2013-09-30
of a hydraulic jump around Jetty A. We also obverse the signature of a soliton wave east of Jetty A ( ). West of the mouth, the orbital velocity of...surface flows. (B) Plan view of the bathymetry [Jesse McNinch] (color contours, red is 1 m depth, dark blue is 10 m depth) and near surface flows
Assimilation of Dual-Polarimetric Radar Observations with WRF GSI
NASA Technical Reports Server (NTRS)
Li, Xuanli; Mecikalski, John; Fehnel, Traci; Zavodsky, Bradley; Srikishen, Jayanthi
2014-01-01
Dual-polarimetric (dual-pol) radar typically transmits both horizontally and vertically polarized radio wave pulses. From the two different reflected power returns, more accurate estimate of liquid and solid cloud and precipitation can be provided. The upgrade of the traditional NWS WSR-88D radar to include dual-pol capabilities will soon be completed for the entire NEXRAD network. Therefore, the use of dual-pol radar network will have a broad impact in both research and operational communities. The assimilation of dual-pol radar data is especially challenging as few guidelines have been provided by previous research. It is our goal to examine how to best use dual-pol radar data to improve forecast of severe storm and forecast initialization. In recent years, the Development Testbed Center (DTC) has released the community Gridpoint Statistical Interpolation (GSI) DA system for the Weather Research and Forecasting (WRF) model. The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this study explores regional assimilation of the dual-pol radar variables from the WSR-88D radars for real case storms. Our presentation will highlight our recent effort on incorporating the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and radial velocity (VR) data for initializing convective storms, with a significant focus being on an improved representation of hydrometeor fields. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to dual-pol variables. Beyond the dual-pol variable assimilation procedure developing within a GSI framework, highresolution (=1 km) WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast of precipitation fields and processes. Further details of the methodology of data assimilation, the impact of different dual-pol variables, the influence on precipitation forecast will be presented at the conference.
A multi-source data assimilation framework for flood forecasting: Accounting for runoff routing lags
NASA Astrophysics Data System (ADS)
Meng, S.; Xie, X.
2015-12-01
In the flood forecasting practice, model performance is usually degraded due to various sources of uncertainties, including the uncertainties from input data, model parameters, model structures and output observations. Data assimilation is a useful methodology to reduce uncertainties in flood forecasting. For the short-term flood forecasting, an accurate estimation of initial soil moisture condition will improve the forecasting performance. Considering the time delay of runoff routing is another important effect for the forecasting performance. Moreover, the observation data of hydrological variables (including ground observations and satellite observations) are becoming easily available. The reliability of the short-term flood forecasting could be improved by assimilating multi-source data. The objective of this study is to develop a multi-source data assimilation framework for real-time flood forecasting. In this data assimilation framework, the first step is assimilating the up-layer soil moisture observations to update model state and generated runoff based on the ensemble Kalman filter (EnKF) method, and the second step is assimilating discharge observations to update model state and runoff within a fixed time window based on the ensemble Kalman smoother (EnKS) method. This smoothing technique is adopted to account for the runoff routing lag. Using such assimilation framework of the soil moisture and discharge observations is expected to improve the flood forecasting. In order to distinguish the effectiveness of this dual-step assimilation framework, we designed a dual-EnKF algorithm in which the observed soil moisture and discharge are assimilated separately without accounting for the runoff routing lag. The results show that the multi-source data assimilation framework can effectively improve flood forecasting, especially when the runoff routing has a distinct time lag. Thus, this new data assimilation framework holds a great potential in operational flood forecasting by merging observations from ground measurement and remote sensing retrivals.
NASA Astrophysics Data System (ADS)
Hori, T.; Ichimura, T.
2015-12-01
Here we propose a system for monitoring and forecasting of crustal activity, especially great interplate earthquake generation and its preparation processes in subduction zone. Basically, we model great earthquake generation as frictional instability on the subjecting plate boundary. So, spatio-temporal variation in slip velocity on the plate interface should be monitored and forecasted. Although, we can obtain continuous dense surface deformation data on land and partly at the sea bottom, the data obtained are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1)&(2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2014, SC14) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 10.7 BlnDOF x 30 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, this meeting) has improved the high fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for forecasting the slip velocity variation on the plate interface. Basic concept is given in Hori et al. (2014, Oceanography) introducing ensemble based sequential data assimilation procedure. Although the prototype described there is for elastic half space model, we will apply it for 3D heterogeneous structure with the high fidelity FE model.
Error quantification of abnormal extreme high waves in Operational Oceanographic System in Korea
NASA Astrophysics Data System (ADS)
Jeong, Sang-Hun; Kim, Jinah; Heo, Ki-Young; Park, Kwang-Soon
2017-04-01
In winter season, large-height swell-like waves have occurred on the East coast of Korea, causing property damages and loss of human life. It is known that those waves are generated by a local strong wind made by temperate cyclone moving to eastward in the East Sea of Korean peninsula. Because the waves are often occurred in the clear weather, in particular, the damages are to be maximized. Therefore, it is necessary to predict and forecast large-height swell-like waves to prevent and correspond to the coastal damages. In Korea, an operational oceanographic system (KOOS) has been developed by the Korea institute of ocean science and technology (KIOST) and KOOS provides daily basis 72-hours' ocean forecasts such as wind, water elevation, sea currents, water temperature, salinity, and waves which are computed from not only meteorological and hydrodynamic model (WRF, ROMS, MOM, and MOHID) but also wave models (WW-III and SWAN). In order to evaluate the model performance and guarantee a certain level of accuracy of ocean forecasts, a Skill Assessment (SA) system was established as a one of module in KOOS. It has been performed through comparison of model results with in-situ observation data and model errors have been quantified with skill scores. Statistics which are used in skill assessment are including a measure of both errors and correlations such as root-mean-square-error (RMSE), root-mean-square-error percentage (RMSE%), mean bias (MB), correlation coefficient (R), scatter index (SI), circular correlation (CC) and central frequency (CF) that is a frequency with which errors lie within acceptable error criteria. It should be utilized simultaneously not only to quantify an error but also to improve an accuracy of forecasts by providing a feedback interactively. However, in an abnormal phenomena such as high-height swell-like waves in the East coast of Korea, it requires more advanced and optimized error quantification method that allows to predict the abnormal waves well and to improve the accuracy of forecasts by supporting modification of physics and numeric on numerical models through sensitivity test. In this study, we proposed an appropriate method of error quantification especially on abnormal high waves which are occurred by local weather condition. Furthermore, we introduced that how the quantification errors are contributed to improve wind-wave modeling by applying data assimilation and utilizing reanalysis data.
A Global Carbon Assimilation System using a modified EnKF assimilation method
NASA Astrophysics Data System (ADS)
Zhang, S.; Zheng, X.; Chen, Z.; Dan, B.; Chen, J. M.; Yi, X.; Wang, L.; Wu, G.
2014-10-01
A Global Carbon Assimilation System based on Ensemble Kalman filter (GCAS-EK) is developed for assimilating atmospheric CO2 abundance data into an ecosystem model to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribution. This assimilation approach is based on the ensemble Kalman filter (EnKF), but with several new developments, including using analysis states to iteratively estimate ensemble forecast errors, and a maximum likelihood estimation of the inflation factors of the forecast and observation errors. The proposed assimilation approach is tested in observing system simulation experiments and then used to estimate the terrestrial ecosystem carbon fluxes and atmospheric CO2 distributions from 2002 to 2008. The results showed that this assimilation approach can effectively reduce the biases and uncertainties of the carbon fluxes simulated by the ecosystem model.
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Song, Hyo-Jong; Jung, Jaehee; Lim, Gyu-Ho
2017-04-01
This study introduces a altered version of the incremental analysis updates (IAU), called the nonstationary IAU (NIAU) method, to enhance the assimilation accuracy of the IAU while retaining the continuity of the analysis. Analogous to the IAU, the NIAU is designed to add analysis increments at every model time step to improve the continuity in the intermittent data assimilation. Still, unlike the IAU, the NIAU method applies time-evolved forcing employing the forward operator as rectifications to the model. The solution of the NIAU is better than that of the IAU, of which analysis is performed at the start of the time window for adding the IAU forcing, in terms of the accuracy of the analysis field. It is because, in the linear systems, the NIAU solution equals that in an intermittent data assimilation method at the end of the assimilation interval. To have the filtering property in the NIAU, a forward operator to propagate the increment is reconstructed with only dominant singular vectors. An illustration of those advantages of the NIAU is given using the simple 40-variable Lorenz model.
Adjoint-Based Climate Model Tuning: Application to the Planet Simulator
NASA Astrophysics Data System (ADS)
Lyu, Guokun; Köhl, Armin; Matei, Ion; Stammer, Detlef
2018-01-01
The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in nonlinear coupled climate models.
NASA Astrophysics Data System (ADS)
Orlandi, A.; Ortolani, A.; Meneguzzo, F.; Levizzani, V.; Torricella, F.; Turk, F. J.
2004-03-01
In order to improve high-resolution forecasts, a specific method for assimilating rainfall rates into the Regional Atmospheric Modelling System model has been developed. It is based on the inversion of the Kuo convective parameterisation scheme. A nudging technique is applied to 'gently' increase with time the weight of the estimated precipitation in the assimilation process. A rough but manageable technique is explained to estimate the partition of convective precipitation from stratiform one, without requiring any ancillary measurement. The method is general purpose, but it is tuned for geostationary satellite rainfall estimation assimilation. Preliminary results are presented and discussed, both through totally simulated experiments and through experiments assimilating real satellite-based precipitation observations. For every case study, Rainfall data are computed with a rapid update satellite precipitation estimation algorithm based on IR and MW satellite observations. This research was carried out in the framework of the EURAINSAT project (an EC research project co-funded by the Energy, Environment and Sustainable Development Programme within the topic 'Development of generic Earth observation technologies', Contract number EVG1-2000-00030).
Vitousek, Sean; Barnard, Patrick; Limber, Patrick W.; Erikson, Li; Cole, Blake
2017-01-01
We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea-level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea-level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea-level rise scenarios of 0.93 to 2.0 m.
NASA Astrophysics Data System (ADS)
Vitousek, Sean; Barnard, Patrick L.; Limber, Patrick; Erikson, Li; Cole, Blake
2017-04-01
We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea level rise scenarios of 0.93 to 2.0 m.
NASA Astrophysics Data System (ADS)
Haupt, Sue Ellen; Beyer-Lout, Anke; Long, Kerrie J.; Young, George S.
Assimilating concentration data into an atmospheric transport and dispersion model can provide information to improve downwind concentration forecasts. The forecast model is typically a one-way coupled set of equations: the meteorological equations impact the concentration, but the concentration does not generally affect the meteorological field. Thus, indirect methods of using concentration data to influence the meteorological variables are required. The problem studied here involves a simple wind field forcing Gaussian dispersion. Two methods of assimilating concentration data to infer the wind direction are demonstrated. The first method is Lagrangian in nature and treats the puff as an entity using feature extraction coupled with nudging. The second method is an Eulerian field approach akin to traditional variational approaches, but minimizes the error by using a genetic algorithm (GA) to directly optimize the match between observations and predictions. Both methods show success at inferring the wind field. The GA-variational method, however, is more accurate but requires more computational time. Dynamic assimilation of a continuous release modeled by a Gaussian plume is also demonstrated using the genetic algorithm approach.
NASA Astrophysics Data System (ADS)
Arsenault, R.; Mai, J.; Latraverse, M.; Tolson, B.
2017-12-01
Probabilistic ensemble forecasts generated by the ensemble streamflow prediction (ESP) methodology are subject to biases due to errors in the hydrological model's initial states. In day-to-day operations, hydrologists must compensate for discrepancies between observed and simulated states such as streamflow. However, in data-scarce regions, little to no information is available to guide the streamflow assimilation process. The manual assimilation process can then lead to more uncertainty due to the numerous options available to the forecaster. Furthermore, the model's mass balance may be compromised and could affect future forecasts. In this study we propose a data-driven approach in which specific variables that may be adjusted during assimilation are defined. The underlying principle was to identify key variables that would be the most appropriate to modify during streamflow assimilation depending on the initial conditions such as the time period of the assimilation, the snow water equivalent of the snowpack and meteorological conditions. The variables to adjust were determined by performing an automatic variational data assimilation on individual (or combinations of) model state variables and meteorological forcing. The assimilation aimed to simultaneously optimize: (1) the error between the observed and simulated streamflow at the timepoint where the forecasts starts and (2) the bias between medium to long-term observed and simulated flows, which were simulated by running the model with the observed meteorological data on a hindcast period. The optimal variables were then classified according to the initial conditions at the time period where the forecast is initiated. The proposed method was evaluated by measuring the average electricity generation of a hydropower complex in Québec, Canada driven by this method. A test-bed which simulates the real-world assimilation, forecasting, water release optimization and decision-making of a hydropower cascade was developed to assess the performance of each individual process in the reservoir management chain. Here the proposed method was compared to the PF algorithm while keeping all other elements intact. Preliminary results are encouraging in terms of power generation and robustness for the proposed approach.
NASA Astrophysics Data System (ADS)
Fillion, Anthony; Bocquet, Marc; Gratton, Serge
2018-04-01
The analysis in nonlinear variational data assimilation is the solution of a non-quadratic minimization. Thus, the analysis efficiency relies on its ability to locate a global minimum of the cost function. If this minimization uses a Gauss-Newton (GN) method, it is critical for the starting point to be in the attraction basin of a global minimum. Otherwise the method may converge to a local extremum, which degrades the analysis. With chaotic models, the number of local extrema often increases with the temporal extent of the data assimilation window, making the former condition harder to satisfy. This is unfortunate because the assimilation performance also increases with this temporal extent. However, a quasi-static (QS) minimization may overcome these local extrema. It accomplishes this by gradually injecting the observations in the cost function. This method was introduced by Pires et al. (1996) in a 4D-Var context. We generalize this approach to four-dimensional strong-constraint nonlinear ensemble variational (EnVar) methods, which are based on both a nonlinear variational analysis and the propagation of dynamical error statistics via an ensemble. This forces one to consider the cost function minimizations in the broader context of cycled data assimilation algorithms. We adapt this QS approach to the iterative ensemble Kalman smoother (IEnKS), an exemplar of nonlinear deterministic four-dimensional EnVar methods. Using low-order models, we quantify the positive impact of the QS approach on the IEnKS, especially for long data assimilation windows. We also examine the computational cost of QS implementations and suggest cheaper algorithms.
NASA Technical Reports Server (NTRS)
Buchard, Virginie; Da Silva, Arlindo; Todling, Ricardo
2017-01-01
In the GEOS near real-time system, as well as in MERRA-2 which is the latest reanalysis produced at NASAs Global Modeling and Assimilation Office(GMAO), the assimilation of aerosol observations is performed by means of a so-called analysis splitting method. In line with the transition of the GEOS meteorological data assimilation system to a hybrid Ensemble-Variational formulation, we are updating the aerosol component of our assimilation system to an ensemble square root filter(EnSRF; Whitaker and Hamill (2002)) type of scheme.We present a summary of our preliminary results of the assimilation of column integrated aerosol observations (Aerosol Optical Depth; AOD) using an Ensemble Square Root Filters (EnSRF) scheme and the ensemble members produced routinely by the meteorological assimilation.
A method for screening of plant species for space use
NASA Technical Reports Server (NTRS)
Goeschl, J. D.; Sauer, R. L.; Scheld, H. W.
1986-01-01
A cost-effective methodology which monitors numerous dynamic aspects of carbon assimilation and allocation kinetics in live, intact plants is discussed. Analogous methods can apply to nitrogen uptake and allocation. This methodology capitalizes on the special properties of the short-lived, positron-gamma emitting isotope C-11 especially when applied as CO2-11 in a special extended square wave (ESW) pattern. The 20.4 minute half-life allows for repeated or continuous experiments on the same plant over periods of minutes, hours, days, or weeks. The steady-state isotope equilibrium approached during the ESW experiments, and the parameters which can be analyzed by this technique are also direct results of that short half-life. Additionally, the paired .511 MeV gamma rays penetrate any amount of tissue and their 180 deg opposite orientation provides good collimation and allows coincidence counting which nearly eliminates background.
Reconstruction of Historical Weather by Assimilating Old Weather Diary Data
NASA Astrophysics Data System (ADS)
Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.
2017-12-01
Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any assimilation. Non-assimilated fields are improved as well (e.g., RMSE from 40% to 29% and R 0.1 to 0.5 improved in TCC). Similarly, the assimilation of other variables shows improvements in atmospheric fields. These findings indicate the potential to reconstruct historical weather for the last five centuries by assimilating available weather descriptions.
NASA Astrophysics Data System (ADS)
Tanajura, C. A. S.; Lima, L. N.; Belyaev, K. P.
2015-09-01
The data of sea height anomalies calculated along the tracks of the Jason-1 and Jason-2 satellites are assimilated into the HYCOM hydrodynamic ocean model developed at the University of Miami, USA. We used a known method of data assimilation, the so-called ensemble method of the optimal interpolation scheme (EnOI). In this work, we study the influence of the assimilation of sea height anomalies on other variables of the model. The behavior of the time series of the analyzed and predicted values of the model is compared with a reference calculation (free run), i.e., with the behavior of model variables without assimilation but under the same initial and boundary conditions. The results of the simulation are also compared with the independent data of observations on moorings of the Pilot Research Array in the Tropical Atlantic (PIRATA) and the data of the ARGO floats using objective metrics. The investigations demonstrate that data assimilation under specific conditions results in a significant improvement of the 24-h prediction of the ocean state. The experiments also show that the assimilated fields of the ocean level contain a clearly pronounced mesoscale variability; thus they quantitatively differ from the dynamics obtained in the reference experiment.
Dai, Tie; Schutgens, Nick A J; Goto, Daisuke; Shi, Guangyu; Nakajima, Teruyuki
2014-12-01
A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Allard, R. A.; Campbell, T. J.; Edwards, K. L.; Smith, T.; Martin, P.; Hebert, D. A.; Rogers, W.; Dykes, J. D.; Jacobs, G. A.; Spence, P. L.; Bartels, B.
2014-12-01
The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®) is an atmosphere-ocean-wave modeling system developed by the Naval Research Laboratory which can be configured to cycle regional forecasts/analysis models in single-model (atmosphere, ocean, and wave) or coupled-model (atmosphere-ocean, ocean-wave, and atmosphere-ocean-wave) modes. The model coupling is performed using the Earth System Modeling Framework (ESMF). The ocean component is the Navy Coastal Ocean Model (NCOM), and the wave components include Simulating WAves Nearshore (SWAN) and WaveWatch-III. NCOM has been modified to include wetting and drying, the effects of Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum flux of surface waves, enhancement of bottom drag in shallow water, and enhanced vertical mixing due to Langmuir turbulence. An overview of the modeling system including ocean data assimilation and specification of boundary conditions will be presented. Results from a high-resolution (10-250m) modeling study from the Surfzone Coastal Oil Pathways Experiment (SCOPE) near Ft. Walton Beach, Florida in December 2013 will be presented. ®COAMPS is a registered trademark of the Naval Research Laboratory
Heat wave hazard classification and risk assessment using artificial intelligence fuzzy logic.
Keramitsoglou, Iphigenia; Kiranoudis, Chris T; Maiheu, Bino; De Ridder, Koen; Daglis, Ioannis A; Manunta, Paolo; Paganini, Marc
2013-10-01
The average summer temperatures as well as the frequency and intensity of hot days and heat waves are expected to increase due to climate change. Motivated by this consequence, we propose a methodology to evaluate the monthly heat wave hazard and risk and its spatial distribution within large cities. A simple urban climate model with assimilated satellite-derived land surface temperature images was used to generate a historic database of urban air temperature fields. Heat wave hazard was then estimated from the analysis of these hourly air temperatures distributed at a 1-km grid over Athens, Greece, by identifying the areas that are more likely to suffer higher temperatures in the case of a heat wave event. Innovation lies in the artificial intelligence fuzzy logic model that was used to classify the heat waves from mild to extreme by taking into consideration their duration, intensity and time of occurrence. The monthly hazard was subsequently estimated as the cumulative effect from the individual heat waves that occurred at each grid cell during a month. Finally, monthly heat wave risk maps were produced integrating geospatial information on the population vulnerability to heat waves calculated from socio-economic variables.
Hamilton, Tod G; Palermo, Tia; Green, Tiffany L
2015-12-01
A large literature has documented that Hispanic immigrants have a health advantage over their U.S.-born counterparts upon arrival in the United States. Few studies, however, have disentangled the effects of immigrants' arrival cohort from their tenure of U.S. residence, an omission that could produce imprecise estimates of the degree of health decline experienced by Hispanic immigrants as their U.S. tenure increases. Using data from the 1996-to-2014 waves of the March Current Population Survey, we show that the health (i.e., self-rated health) of Hispanic immigrants varies by both arrival cohort and U.S. tenure for immigrants hailing from most of the primary sending countries/regions of Hispanic immigrants. We also find evidence that acculturation plays an important role in determining the health trajectories of Hispanic immigrants. With respect to self-rated health, however, our findings demonstrate that omitting arrival-cohort measures from health assimilation models may result in overestimates of the degree of downward health assimilation experienced by Hispanic immigrants. © American Sociological Association 2015.
Upscaling with data assimilation in soil hydrology
USDA-ARS?s Scientific Manuscript database
Most of measurements in soil hydrology are point-based, and methods are needed to use the point-based data for estimating soil water contents at larger societally-important scales, such as field, hillslope or watershed. One group of appropriate methods involves data assimilation which is a methodolo...
On sequential data assimilation for scalar macroscopic traffic flow models
NASA Astrophysics Data System (ADS)
Blandin, Sébastien; Couque, Adrien; Bayen, Alexandre; Work, Daniel
2012-09-01
We consider the problem of sequential data assimilation for transportation networks using optimal filtering with a scalar macroscopic traffic flow model. Properties of the distribution of the uncertainty on the true state related to the specific nonlinearity and non-differentiability inherent to macroscopic traffic flow models are investigated, derived analytically and analyzed. We show that nonlinear dynamics, by creating discontinuities in the traffic state, affect the performances of classical filters and in particular that the distribution of the uncertainty on the traffic state at shock waves is a mixture distribution. The non-differentiability of traffic dynamics around stationary shock waves is also proved and the resulting optimality loss of the estimates is quantified numerically. The properties of the estimates are explicitly studied for the Godunov scheme (and thus the Cell-Transmission Model), leading to specific conclusions about their use in the context of filtering, which is a significant contribution of this article. Analytical proofs and numerical tests are introduced to support the results presented. A Java implementation of the classical filters used in this work is available on-line at http://traffic.berkeley.edu for facilitating further efforts on this topic and fostering reproducible research.
NASA Astrophysics Data System (ADS)
Ling, X.; Fu, C.; Yang, Z. L.; Guo, W.
2017-12-01
Information of the spatial and temporal patterns of leaf area index (LAI) is crucial to understand the exchanges of momentum, carbon, energy, and water between the terrestrial ecosystem and the atmosphere, while both in-situ observation and model simulation usually show distinct deficiency in terms of LAI coverage and value. Land data assimilation, combined with observation and simulation together, is a promising way to provide variable estimation. The Data Assimilation Research Testbed (DART) developed and maintained by the National Centre for Atmospheric Research (NCAR) provides a powerful tool to facilitate the combination of assimilation algorithms, models, and real (as well as synthetic) observations to better understanding of all three. Here we systematically investigated the effects of data assimilation on improving LAI simulation based on NCAR Community Land Model with the prognostic carbon-nitrogen option (CLM4CN) linked with DART using the deterministic Ensemble Adjustment Kalman Filter (EAKF). Random 40-member atmospheric forcing was used to drive the CLM4CN with or without LAI assimilation. The Global Land Surface Satellite LAI data (GLASS LAI) LAI is assimilated into the CLM4CN at a frequency of 8 days, and LAI (and leaf carbon / nitrogen) are adjusted at each time step. The results show that assimilating remotely sensed LAI into the CLM4CN is an effective method for improving model performance. In detail, the CLM4-CN simulated LAI systematically overestimates global LAI, especially in low latitude with the largest bias of 5 m2/m2. While if updating both LAI and leaf carbon and leaf nitrogen simultaneously during assimilation, the analyzed LAI can be corrected, especially in low latitude regions with the bias controlled around ±1 m2/m2. Analyzed LAI could also represent the seasonal variation except for the Southern Temperate (23°S-90°S). The obviously improved regions located in the center of Africa, Amazon, the South of Eurasia, the northeast of China, and the west of Europe, where were mainly covered by evergreen/deciduous forests and mixed forests. In addition, the best method for LAI assimilation should include the EAKF method, the accepted percentage of all observation, as well as the carbon-nitrogen control.
NASA Astrophysics Data System (ADS)
Silvestro, Paolo Cosmo; Yang, Hao; Jin, X. L.; Yang, Guijun; Casa, Raffaele; Pignatti, Stefano
2016-08-01
The ultimate aim of this work is to develop methods for the assimilation of the biophysical variables estimated by remote sensing in a suitable crop growth model. Two strategies were followed, one based on the use of Leaf Area Index (LAI) estimated by optical data, and the other based on the use of biomass estimated by SAR. The first one estimates LAI from the reflectance measured by the optical sensors on board of HJ1A, HJ1B and Landsat, using a method based on the training of artificial neural networks (ANN) with PROSAIL model simulations. The retrieved LAI is used to improve wheat yield estimation, using assimilation methods based on the Ensemble Kalman Filter, which assimilate the biophysical variables into growth crop model. The second strategy estimates biomass from SAR imagery. Polarimetric decomposition methods were used based on multi-temporal fully polarimetric Radarsat-2 data during the entire growing season. The estimated biomass was assimilating to FAO Aqua crop model for improving the winter wheat yield estimation, with the Particle Swarm Optimization (PSO) method. These procedures were used in a spatial application with data collected in the rural area of Yangling (Shaanxi Province) in 2014 and were validated for a number of wheat fields for which ground yield data had been recorded and according to statistical yield data for the area.
Efficient Data Assimilation Algorithms for Bathymetry Applications
NASA Astrophysics Data System (ADS)
Ghorbanidehno, H.; Kokkinaki, A.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.
2016-12-01
Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing monitoring. Data assimilation methods combine monitoring data and models of nearshore dynamics to estimate the unknown bathymetry and the corresponding uncertainties. Existing applications have been limited to the basic Kalman Filter (KF) and the Ensemble Kalman Filter (EnKF). The former can only be applied to low-dimensional problems due to its computational cost; the latter often suffers from ensemble collapse and uncertainty underestimation. This work explores the use of different variants of the Kalman Filter for bathymetry applications. In particular, we compare the performance of the EnKF to the Unscented Kalman Filter and the Hierarchical Kalman Filter, both of which are KF variants for non-linear problems. The objective is to identify which method can better handle the nonlinearities of nearshore physics, while also having a reasonable computational cost. We present two applications; first, the bathymetry of a synthetic one-dimensional cross section normal to the shore is estimated from wave speed measurements. Second, real remote measurements with unknown error statistics are used and compared to in situ bathymetric survey data collected at the USACE Field Research Facility in Duck, NC. We evaluate the information content of different data sets and explore the impact of measurement error and nonlinearities.
Seismic Window Selection and Misfit Measurements for Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Lei, W.; Bozdag, E.; Lefebvre, M.; Podhorszki, N.; Smith, J. A.; Tromp, J.
2013-12-01
Global Adjoint Tomography requires fast parallel processing of large datasets. After obtaing the preprocessed observed and synthetic seismograms, we use the open source software packages FLEXWIN (Maggi et al. 2007) to select time windows and MEASURE_ADJ to make measurements. These measurements define adjoint sources for data assimilation. Previous versions of these tools work on a pair of SAC files---observed and synthetic seismic data for the same component and station, and loop over all seismic records associated with one earthquake. Given the large number of stations and earthquakes, the frequent read and write operations create severe I/O bottlenecks on modern computing platforms. We present new versions of these tools utilizing a new seismic data format, namely the Adaptive Seismic Data Format(ASDF). This new format shows superior scalability for applications on high-performance computers and accommodates various types of data, including earthquake, industry and seismic interferometry datasets. ASDF also provides user-friendly APIs, which can be easily integrated into the adjoint tomography workflow and combined with other data processing tools. In addition to solving the I/O bottleneck, we are making several improvements to these tools. For example, FLEXWIN is tuned to select windows for different types of earthquakes. To capture their distinct features, we categorize earthquakes by their depths and frequency bands. Moreover, instead of only picking phases between the first P arrival and the surface-wave arrivals, our aim is to select and assimilate many other later prominent phases in adjoint tomography. For example, in the body-wave band (17 s - 60 s), we include SKS, sSKS and their multiple, while in the surface-wave band (60 s - 120 s) we incorporate major-arc surface waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juxiu Tong; Bill X. Hu; Hai Huang
2014-03-01
With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations,more » we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.« less
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.; Kidder, Stanley Q.; Scott, Robert W.
1988-01-01
The variational multivariate assimilation method described in a companion paper by Achtemeier and Ochs is applied to conventional and conventional plus satellite data. Ground-based and space-based meteorological data are weighted according to the respective measurement errors and blended into a data set that is a solution of numerical forms of the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation for a dry atmosphere. The analyses serve first, to evaluate the accuracy of the model, and second to contrast the analyses with and without satellite data. Evaluation criteria measure the extent to which: (1) the assimilated fields satisfy the dynamical constraints, (2) the assimilated fields depart from the observations, and (3) the assimilated fields are judged to be realistic through pattern analysis. The last criterion requires that the signs, magnitudes, and patterns of the hypersensitive vertical velocity and local tendencies of the horizontal velocity components be physically consistent with respect to the larger scale weather systems.
Advances in Land Data Assimilation at the NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Reichle, Rolf
2009-01-01
Research in land surface data assimilation has grown rapidly over the last decade. In this presentation we provide a brief overview of key research contributions by the NASA Goddard Space Flight Center (GSFC). The GSFC contributions to land assimilation primarily include the continued development and application of the Land Information System (US) and the ensemble Kalman filter (EnKF). In particular, we have developed a method to generate perturbation fields that are correlated in space, time, and across variables and that permit the flexible modeling of errors in land surface models and observations, along with an adaptive filtering approach that estimates observation and model error input parameters. A percentile-based scaling method that addresses soil moisture biases in model and observational estimates opened the path to the successful application of land data assimilation to satellite retrievals of surface soil moisture. Assimilation of AMSR-E surface soil moisture retrievals into the NASA Catchment model provided superior surface and root zone assimilation products (when validated against in situ measurements and compared to the model estimates or satellite observations alone). The multi-model capabilities of US were used to investigate the role of subsurface physics in the assimilation of surface soil moisture observations. Results indicate that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Building on this experience, GSFC leads the development of the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product for the planned NASA Soil-Moisture-Active-Passive (SMAP) mission. A key milestone was the design and execution of an Observing System Simulation Experiment that quantified the contribution of soil moisture retrievals to land data assimilation products as a function of retrieval and land model skill and yielded an estimate of the error budget for the SMAP L4_SM product. Terrestrial water storage observations from GRACE satellite system were also successfully assimilated into the NASA Catchment model and provided improved estimates of groundwater variability when compared to the model estimates alone. Moreover, satellite-based land surface temperature (LST) observations from the ISCCP archive were assimilated using a bias estimation module that was specifically designed for LST assimilation. As with soil moisture, LST assimilation provides modest yet statistically significant improvements when compared to the model or satellite observations alone. To achieve the improvement, however, the LST assimilation algorithm must be adapted to the specific formulation of LST in the land model. An improved method for the assimilation of snow cover observations was also developed. Finally, the coupling of LIS to the mesoscale Weather Research and Forecasting (WRF) model enabled investigations into how the sensitivity of land-atmosphere interactions to the specific choice of planetary boundary layer scheme and land surface model varies across surface moisture regimes, and how it can be quantified and evaluated against observations. The on-going development and integration of land assimilation modules into the Land Information System will enable the use of GSFC software with a variety of land models and make it accessible to the research community.
Preconditioning of the background error covariance matrix in data assimilation for the Caspian Sea
NASA Astrophysics Data System (ADS)
Arcucci, Rossella; D'Amore, Luisa; Toumi, Ralf
2017-06-01
Data Assimilation (DA) is an uncertainty quantification technique used for improving numerical forecasted results by incorporating observed data into prediction models. As a crucial point into DA models is the ill conditioning of the covariance matrices involved, it is mandatory to introduce, in a DA software, preconditioning methods. Here we present first studies concerning the introduction of two different preconditioning methods in a DA software we are developing (we named S3DVAR) which implements a Scalable Three Dimensional Variational Data Assimilation model for assimilating sea surface temperature (SST) values collected into the Caspian Sea by using the Regional Ocean Modeling System (ROMS) with observations provided by the Group of High resolution sea surface temperature (GHRSST). We also present the algorithmic strategies we employ.
A Comparison of Methods for a Priori Bias Correction in Soil Moisture Data Assimilation
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Reichle, Rolf H.; Harrison, Kenneth W.; Peters-Lidard, Christa D.; Yatheendradas, Soni; Santanello, Joseph A.
2011-01-01
Data assimilation is being increasingly used to merge remotely sensed land surface variables such as soil moisture, snow and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here, a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (i) parameter estimation to calibrate the land model to the climatology of the soil moisture observations, and (ii) scaling of the observations to the model s soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model s climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.
Wind growth and wave breaking in higher-order spectral phase resolved wave models
NASA Astrophysics Data System (ADS)
Leighton, R.; Walker, D. T.
2016-02-01
Wind growth and wave breaking are a integral parts of the wave evolution. Higher-OrderSpectral models (HoS) describing the non-linear evolution require empirical models for these effects. In particular, the assimilation of phase-resolved remotesensing data will require the prediction and modeling of wave breaking events.The HoS formulation used in this effort is based on fully nonlinear model of O. Nwogu (2009). The model for wave growth due to wind is based on the early normal and tangential stress model of Munk (1947). The model for wave breaking contains two parts. The first part initiates the breaking events based on the local wave geometry and the second part is a model for the pressure field, which acting against the surface normal velocity extracts energy from the wave. The models are tuned to balance the wind energy input with the breaking wave losses and to be similarfield observations of breaking wave coverage. The initial wave field, based on a Pierson-Moskowitz spectrum for 10 meter wind speed of 5-15 m/s, defined over a region of up to approximate 2.5 km on a side with the simulation running for several hundreds of peak wave periods. Results will be presented describing the evolution of the wave field.Sponsored by Office of Naval Research, Code 322
NASA Technical Reports Server (NTRS)
Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.
2006-01-01
Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.
NASA Astrophysics Data System (ADS)
Rüdiger, Christoph; Albergel, CléMent; Mahfouf, Jean-FrançOis; Calvet, Jean-Christophe; Walker, Jeffrey P.
2010-05-01
To quantify carbon and water fluxes between the vegetation and the atmosphere in a consistent manner, land surface models now include interactive vegetation components. These models treat the vegetation biomass as a prognostic model state, allowing the model to dynamically adapt the vegetation states to environmental conditions. However, it is expected that the prediction skill of such models can be greatly increased by assimilating biophysical observations such as leaf area index (LAI). The Jacobian of the observation operator, a central aspect of data assimilation methods such as the extended Kalman filter (EKF) and the variational assimilation methods, provides the required linear relationship between the observation and the model states. In this paper, the Jacobian required for assimilating LAI into the Interaction between the Soil, Biosphere and Atmosphere-A-gs land surface model using the EKF is studied. In particular, sensitivity experiments were undertaken on the size of the initial perturbation for estimating the Jacobian and on the length of the time window between initial state and available observation. It was found that small perturbations (0.1% of the state) typically lead to accurate estimates of the Jacobian. While other studies have shown that the assimilation of LAI with 10 day assimilation windows is possible, 1 day assimilation intervals can be chosen to comply with numerical weather prediction requirements. Moreover, the seasonal dependence of the Jacobian revealed contrasted groups of Jacobian values due to environmental factors. Further analyses showed the Jacobian values to vary as a function of the LAI itself, which has important implications for its assimilation in different seasons, as the size of the LAI increments will subsequently vary due to the variability of the Jacobian.
Aerosol Data Assimilation at GMAO
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Buchard, Virginie
2017-01-01
This presentation presents an overview of the aerosol data assimilation work performed at GMAO. The GMAO Forward Processing system and the biomass burning emissions from QFED are first presented. Then, the current assimilation of Aerosol Optical Depth (AOD), performed by means of the analysis splitting method is briefly described, followed by some results on the quality control of observations using a Neural Network trained using AERONET AOD. Some applications are shown such as the Mount Pinatubo eruption in 1991 using the MERRA-2 aerosol dataset. Finally preliminary results on the EnKF implementation for aerosol assimilation are presented.
The Solsticial Pause on Mars. Part 1; A Planetary Wave Reanalysis
NASA Technical Reports Server (NTRS)
Lewis, Stephen R.; Mulholland, David P.; Read, Peter L.; Montabone, Luca; Wilson, R. John; Smith, Michael D.
2015-01-01
Large-scale planetary waves are diagnosed from an analysis of profiles retrieved from the Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft during its scientific mapping phase. The analysis is conducted by assimilating thermal profiles and total dust opacity retrievals into a Mars global circulation model. Transient waves are largest throughout the northern hemisphere autumn, winter and spring period and almost absent during the summer. The southern hemisphere exhibits generally weaker transient wave behavior. A striking feature of the low-altitude transient waves in the analysis is that they show a broad subsidiary minimum in amplitude centred on the winter solstice, a period when the thermal contrast between the summer hemisphere and the winter pole is strongest and baroclinic wave activity might be expected to be strong. This behavior, here called the 'solsticial pause,' is present in every year of the analysis. This strong pause is under-represented in many independent model experiments, which tend to produce relatively uniform baroclinic wave activity throughout the winter. This paper documents and diagnoses the transient wave solsticial pause found in the analysis; a companion paper investigates the origin of the phenomenon in a series of model experiments.
A Comparison of Martian Transient Wave Energetics in High and Low Optical Depth Environments
NASA Astrophysics Data System (ADS)
Battalio, J. M.; Szunyogh, I.; Lemmon, M. T.
2016-12-01
The local energetics of individual transient eddies from the Mars Analysis Correction Data Assimilation (MACDA) is compared between a year with a global-scale dust storm (MY 25) and two years of relatively low optical depth conditions. Eddies in each year are considered from a period of strong wave activity in the northern hemisphere before the winter solstice (Ls=170-240°). The local growth of eddies is typically triggered by geopotential flux convergence. While all waves exhibit some baroclinic growth, baroclinic energy conversion is weaker in the waves that occur during the global-scale dust storm. The weaker baroclinic energy conversion in these waves, however, is compensated by a more intense barotropic transfer of the kinetic energy from the mean flow to the waves: the contribution from barotropic energy conversion allows eddies during the global-scale dust storm to attain roughly the same maximum eddy kinetic energy as eddies during the low optical depth years. Individual eddies in the waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation in both the high- and the low-optical-depth years.
From Patrick to John F.: Ethnic Names and Occupational Success in the Last Era of Mass Migration
Goldstein, Joshua R.; Stecklov, Guy
2016-01-01
Taking advantage of historical census records that include full first and last names, we apply a new approach to measuring the effect of cultural assimilation on economic success for the children of the last great wave of immigrants to the United States. We created a quantitative index of ethnic distinctiveness of first names and show the consequences of ethnic-sounding names for the occupational achievement of the adult children of European migrants. We find a consistent tendency for the children of Irish, Italian, German, and Polish immigrants with more “American”-sounding names to have higher occupational achievement. About one-third of this effect appears to be due to social class differences in name-giving, and the remaining two-thirds to signaling effects of the names themselves. An exception is found for Russian, predominantly Jewish, immigrants, where we find a positive effect of ethnic naming on occupational achievement. The divergent effects of our new measure of cultural assimilation, sometimes hurting and sometimes helping, lend historical empirical support to more recent theories of the advantages of different paths to assimilation. The effects of first names are robust to controls for the ethnic recognizability of last names, suggesting that immigrants’ success depended on being perceived as making an effort to assimilate rather than hiding one’s origins. PMID:27594705
Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei
2015-12-01
Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.
The use of satellite data assimilation methods in regional NWP for solar irradiance forecasting
NASA Astrophysics Data System (ADS)
Kurzrock, Frederik; Cros, Sylvain; Chane-Ming, Fabrice; Potthast, Roland; Linguet, Laurent; Sébastien, Nicolas
2016-04-01
As an intermittent energy source, the injection of solar power into electricity grids requires irradiance forecasting in order to ensure grid stability. On time scales of more than six hours ahead, numerical weather prediction (NWP) is recognized as the most appropriate solution. However, the current representation of clouds in NWP models is not sufficiently precise for an accurate forecast of solar irradiance at ground level. Dynamical downscaling does not necessarily increase the quality of irradiance forecasts. Furthermore, incorrectly simulated cloud evolution is often the cause of inaccurate atmospheric analyses. In non-interconnected tropical areas, the large amplitudes of solar irradiance variability provide abundant solar yield but present significant problems for grid safety. Irradiance forecasting is particularly important for solar power stakeholders in these regions where PV electricity penetration is increasing. At the same time, NWP is markedly more challenging in tropic areas than in mid-latitudes due to the special characteristics of tropical homogeneous convective air masses. Numerous data assimilation methods and strategies have evolved and been applied to a large variety of global and regional NWP models in the recent decades. Assimilating data from geostationary meteorological satellites is an appropriate approach. Indeed, models converting radiances measured by satellites into cloud properties already exist. Moreover, data are available at high temporal frequencies, which enable a pertinent cloud cover evolution modelling for solar energy forecasts. In this work, we present a survey of different approaches which aim at improving cloud cover forecasts using the assimilation of geostationary meteorological satellite data into regional NWP models. Various approaches have been applied to a variety of models and satellites and in different regions of the world. Current methods focus on the assimilation of cloud-top information, derived from infrared channels. For example, those information have been directly assimilated by modifying the water vapour profile in the initial conditions of the WRF model in California using GOES satellite imagery. In Europe, the assimilation of cloud-top height and relative humidity has been performed in an indirect approach using an ensemble Kalman filter. In this case Meteosat SEVIRI cloud information has been assimilated in the COSMO model. Although such methods generally provide improved cloud cover forecasts in mid-latitudes, the major limitation is that only clear-sky or completely cloudy cases can be considered. Indeed, fractional clouds cause a measured signal mixing cold clouds and warmer Earth surface. If the model's initial state is directly forced by cloud properties observed by satellite, the changed model fields have to be smoothed in order to avoid numerical instability. Other crucial aspects which influence forecast quality in the case of satellite radiance assimilation are channel selection, bias and error treatment. The overall promising satellite data assimilation methods in regional NWP have not yet been explicitly applied and tested under tropical conditions. Therefore, a deeper understanding on the benefits of such methods is necessary to improve irradiance forecast schemes.
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter
2016-04-01
The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.
NASA Astrophysics Data System (ADS)
Navon, M. I.; Stefanescu, R.
2013-12-01
Previous assimilation of lightning used nudging approaches. We develop three approaches namely, 3D-VAR WRFDA and1D+nD-VAR (n=3,4) WRFDA . The present research uses Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. To test performance of aforementioned schemes, we assess quality of resulting analysis and forecasts of precipitation compared to those from a control experiment and verify them against NCEP stage IV precipitation. Results demonstrate that assimilating lightning observations improves precipitation statistics during the assimilation window and for 3-7 h thereafter. The 1D+4D-VAR approach yielded the best performance significantly improving precipitation rmse errors by 25% and 27.5%,compared to control during the assimilation window for two tornadic test cases. Finally we propose a new approach to assimilate 2-D images of lightning flashes based on pixel intensity, mitigating dimensionality by a reduced order method.
Data assimilation of citizen collected information for real-time flood hazard mapping
NASA Astrophysics Data System (ADS)
Sayama, T.; Takara, K. T.
2017-12-01
Many studies in data assimilation in hydrology have focused on the integration of satellite remote sensing and in-situ monitoring data into hydrologic or land surface models. For flood predictions also, recent studies have demonstrated to assimilate remotely sensed inundation information with flood inundation models. In actual flood disaster situations, citizen collected information including local reports by residents and rescue teams and more recently tweets via social media also contain valuable information. The main interest of this study is how to effectively use such citizen collected information for real-time flood hazard mapping. Here we propose a new data assimilation technique based on pre-conducted ensemble inundation simulations and update inundation depth distributions sequentially when local data becomes available. The propose method is composed by the following two-steps. The first step is based on weighting average of preliminary ensemble simulations, whose weights are updated by Bayesian approach. The second step is based on an optimal interpolation, where the covariance matrix is calculated from the ensemble simulations. The proposed method was applied to case studies including an actual flood event occurred. It considers two situations with more idealized one by assuming continuous flood inundation depth information is available at multiple locations. The other one, which is more realistic case during such a severe flood disaster, assumes uncertain and non-continuous information is available to be assimilated. The results show that, in the first idealized situation, the large scale inundation during the flooding was estimated reasonably with RMSE < 0.4 m in average. For the second more realistic situation, the error becomes larger (RMSE 0.5 m) and the impact of the optimal interpolation becomes comparatively less effective. Nevertheless, the applications of the proposed data assimilation method demonstrated a high potential of this method for assimilating citizen collected information for real-time flood hazard mapping in the future.
Treating Sample Covariances for Use in Strongly Coupled Atmosphere-Ocean Data Assimilation
NASA Astrophysics Data System (ADS)
Smith, Polly J.; Lawless, Amos S.; Nichols, Nancy K.
2018-01-01
Strongly coupled data assimilation requires cross-domain forecast error covariances; information from ensembles can be used, but limited sampling means that ensemble derived error covariances are routinely rank deficient and/or ill-conditioned and marred by noise. Thus, they require modification before they can be incorporated into a standard assimilation framework. Here we compare methods for improving the rank and conditioning of multivariate sample error covariance matrices for coupled atmosphere-ocean data assimilation. The first method, reconditioning, alters the matrix eigenvalues directly; this preserves the correlation structures but does not remove sampling noise. We show that it is better to recondition the correlation matrix rather than the covariance matrix as this prevents small but dynamically important modes from being lost. The second method, model state-space localization via the Schur product, effectively removes sample noise but can dampen small cross-correlation signals. A combination that exploits the merits of each is found to offer an effective alternative.
Assimilation efficiency for sediment-sorbed benzo(a)pyrene by Diporeia spp.
Lydy, M.J.; Landrum, P.F.
1993-01-01
Two methods are currently available for determining contaminant assimilation efficiencies (AE) from ingested material in benthic invertebrates. These methods were compared using the Great Lakes amphipod Diporeia spp. and [14C]benzo(a)pyrene (BaP) sorbed to Florissant sediment (< 63 µm). The first approach, the direct measurement method, uses total organic carbon as a tracer and yielded AE values ranging from 45.9~50.4%. The second approach, the dual-labeled method, uses 51Cr as a non-assimilated tracer and did not yield AE values for our data. The inability of the dual-labeled approach to estimate AEs was due, in part, to the selective feeding by Diporeia resulting in a failure of the non-assimilated tracer (51Cr) to track with the assimilated tracer ([14C]BaP). The failure of the dual-labeled approach was not a result of an uneven distribution of the labels among particle size classes, but more likely resulted from differential sorption of the two isotopically labeled materials to particles of differing composition. The [14C]BaP apparently sorbs to organic particles that are selectively ingested, while the 51Cr apparently sorbs to particles which are selectively excluded by Diporeia. The dual-labeled approach would be a viable and easier experimental approach for determining AE values if the characteristics that govern selective feeding can be determined.
Assimilation of river altimetry data for effective bed elevation and roughness coefficient
NASA Astrophysics Data System (ADS)
Brêda, João Paulo L. F.; Paiva, Rodrigo C. D.; Bravo, Juan Martin; Passaia, Otávio
2017-04-01
Hydrodynamic models of large rivers are important prediction tools of river discharge, height and floods. However, these techniques still carry considerable errors; part of them related to parameters uncertainties related to river bathymetry and roughness coefficient. Data from recent spatial altimetry missions offers an opportunity to reduce parameters uncertainty through inverse methods. This study aims to develop and access different methods of altimetry data assimilation to improve river bottom levels and Manning roughness estimations in a 1-D hydrodynamic model. The case study was a 1,100 km reach of the Madeira River, a tributary of the Amazon. The tested assimilation methods are direct insertion, linear interpolation, SCE-UA global optimization algorithm and a Kalman Filter adaptation. The Kalman Filter method is composed by new physically based covariance functions developed from steady-flow and backwater equations. It is accessed the benefits of altimetry missions with different spatio-temporal resolutions, such as ICESAT-1, Envisat and Jason 2. Level time series of 5 gauging stations and 5 GPS river height profiles are used to assess and validate the assimilation methods. Finally, the potential of future missions are discussed, such as ICESAT-2 and SWOT satellites.
Verification and Validation of a Navy ESPC Hindcast with Loosely Coupled Data Assimilation
NASA Astrophysics Data System (ADS)
Metzger, E. J.; Barton, N. P.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T. R.; Ridout, J. A.; Franklin, D. S.; Zamudio, L.; Posey, P. G.; Reynolds, C. A.; Phelps, M.
2016-12-01
The US Navy is developing an Earth System Prediction Capability (ESPC) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. It will be a fully coupled global atmosphere/ocean/ice/wave/land prediction system providing daily deterministic forecasts out to 16 days at high horizontal and vertical resolution, and daily probabilistic forecasts out to 45 days at lower resolution. The system will run at the Navy DoD Supercomputing Resource Center with an initial operational capability scheduled for the end of FY18 and the final operational capability scheduled for FY22. The individual model and data assimilation components include: atmosphere - NAVy Global Environmental Model (NAVGEM) and Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR); ocean - HYbrid Coordinate Ocean Model (HYCOM) and Navy Coupled Ocean Data Assimilation (NCODA); ice - Community Ice CodE (CICE) and NCODA; WAVEWATCH III™ and NCODA; and land - NAVGEM Land Surface Model (LSM). Currently, NAVGEM/HYCOM/CICE are three-way coupled and each model component is cycling with its respective assimilation scheme. The assimilation systems do not communicate with each other, but future plans call for these to be coupled as well. NAVGEM runs with a 6-hour update cycle while HYCOM/CICE run with a 24-hour update cycle. The T359L50 NAVGEM/0.08° HYCOM/0.08° CICE system has been integrated in hindcast mode and verification/validation metrics have been computed against unassimilated observations and against stand-alone versions of NAVGEM and HYCOM/CICE. This presentation will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled ESPC system is performing with comparable skill to the stand-alone systems at the nowcast time.
NASA Astrophysics Data System (ADS)
Pinnington, Ewan; Casella, Eric; Dance, Sarah; Lawless, Amos; Morison, James; Nichols, Nancy; Wilkinson, Matthew; Quaife, Tristan
2016-04-01
Forest ecosystems play an important role in sequestering human emitted carbon-dioxide from the atmosphere and therefore greatly reduce the effect of anthropogenic induced climate change. For that reason understanding their response to climate change is of great importance. Efforts to implement variational data assimilation routines with functional ecology models and land surface models have been limited, with sequential and Markov chain Monte Carlo data assimilation methods being prevalent. When data assimilation has been used with models of carbon balance, background "prior" errors and observation errors have largely been treated as independent and uncorrelated. Correlations between background errors have long been known to be a key aspect of data assimilation in numerical weather prediction. More recently, it has been shown that accounting for correlated observation errors in the assimilation algorithm can considerably improve data assimilation results and forecasts. In this paper we implement a 4D-Var scheme with a simple model of forest carbon balance, for joint parameter and state estimation and assimilate daily observations of Net Ecosystem CO2 Exchange (NEE) taken at the Alice Holt forest CO2 flux site in Hampshire, UK. We then investigate the effect of specifying correlations between parameter and state variables in background error statistics and the effect of specifying correlations in time between observation error statistics. The idea of including these correlations in time is new and has not been previously explored in carbon balance model data assimilation. In data assimilation, background and observation error statistics are often described by the background error covariance matrix and the observation error covariance matrix. We outline novel methods for creating correlated versions of these matrices, using a set of previously postulated dynamical constraints to include correlations in the background error statistics and a Gaussian correlation function to include time correlations in the observation error statistics. The methods used in this paper will allow the inclusion of time correlations between many different observation types in the assimilation algorithm, meaning that previously neglected information can be accounted for. In our experiments we compared the results using our new correlated background and observation error covariance matrices and those using diagonal covariance matrices. We found that using the new correlated matrices reduced the root mean square error in the 14 year forecast of daily NEE by 44 % decreasing from 4.22 g C m-2 day-1 to 2.38 g C m-2 day-1.
NASA Astrophysics Data System (ADS)
Baker, N. L.; Tsu, J.; Swadley, S. D.
2017-12-01
We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of analyses and forecasts with in-situ observations and analyses from other NWP centers (e.g. ECMWF and GFS). [i] NAVy Global Environmental Model [ii] COAMPS® is a registered trademark of the Naval Research Laboratory for the Navy's Coupled Ocean Atmosphere Mesoscale Prediction System. [iii] NRL Atmospheric Variational Data Assimilation System
Ocean Data Assimilation in Support of Climate Applications: Status and Perspectives.
Stammer, D; Balmaseda, M; Heimbach, P; Köhl, A; Weaver, A
2016-01-01
Ocean data assimilation brings together observations with known dynamics encapsulated in a circulation model to describe the time-varying ocean circulation. Its applications are manifold, ranging from marine and ecosystem forecasting to climate prediction and studies of the carbon cycle. Here, we address only climate applications, which range from improving our understanding of ocean circulation to estimating initial or boundary conditions and model parameters for ocean and climate forecasts. Because of differences in underlying methodologies, data assimilation products must be used judiciously and selected according to the specific purpose, as not all related inferences would be equally reliable. Further advances are expected from improved models and methods for estimating and representing error information in data assimilation systems. Ultimately, data assimilation into coupled climate system components is needed to support ocean and climate services. However, maintaining the infrastructure and expertise for sustained data assimilation remains challenging.
NASA Astrophysics Data System (ADS)
Ren, Lei; Hartnett, Michael
2017-02-01
Accurate forecasting of coastal surface currents is of great economic importance due to marine activities such as marine renewable energy and fish farms in coastal regions in recent twenty years. Advanced oceanographic observation systems such as satellites and radars can provide many parameters of interest, such as surface currents and waves, with fine spatial resolution in near real time. To enhance modelling capability, data assimilation (DA) techniques which combine the available measurements with the hydrodynamic models have been used since the 1990s in oceanography. Assimilating measurements into hydrodynamic models makes the original model background states follow the observation trajectory, then uses it to provide more accurate forecasting information. Galway Bay is an open, wind dominated water body on which two coastal radars are deployed. An efficient and easy to implement sequential DA algorithm named Optimal Interpolation (OI) was used to blend radar surface current data into a three-dimensional Environmental Fluid Dynamics Code (EFDC) model. Two empirical parameters, horizontal correlation length and DA cycle length (CL), are inherent within OI. No guidance has previously been published regarding selection of appropriate values of these parameters or how sensitive OI DA is to variations in their values. Detailed sensitivity analysis has been performed on both of these parameters and results presented. Appropriate value of DA CL was examined and determined on producing the minimum Root-Mean-Square-Error (RMSE) between radar data and model background states. Analysis was performed to evaluate assimilation index (AI) of using an OI DA algorithm in the model. AI of the half-day forecasting mean vectors' directions was over 50% in the best assimilation model. The ability of using OI to improve model forecasts was also assessed and is reported upon.
NASA Astrophysics Data System (ADS)
Walford, Segayle Cereta
Forecasting subtle, small-scale convective cases in both winter and summer time is an ongoing challenge in weather forecasting. Recent studies have shown that better structure of moisture within the boundary layer is crucial for improving forecasting skills, particularly quantitative precipitation forecasting (QPF). Lidars, which take high temporal observations of moisture, are able to capture very detailed structures, especially within the boundary layer where convection often begins. This study first investigates the extent to which an aerosol and a water vapor lidar are able to capture key boundary layer processes necessary for the development of convection. The results of this preliminary study show that the water vapor lidar is best able to capture the small scale water vapor variability that is necessary for the development of convection. These results are then used to investigate impacts of assimilating moisture from the Howard University Raman Lidar (HURL) for one mesoscale convective case, July 27-28, 2006. The data for this case is from the Water Vapor Validation Experiment-Satellite and Sondes (WAVES) field campaign located at the Howard University Beltsville Site (HUBS) in Beltsville, MD. Specifically, lidar-based water vapor mixing ratio profiles are assimilated into the Weather Research and Forecasting (WRF) regional model over a 4 km grid resolution over Washington, DC. Model verification is conducted using the Meteorological Evaluation Tool (MET) and the results from the lidar run are then compared to a control (no assimilation) run. The findings indicate that quantitatively conclusions cannot be draw from this one case study. However, qualitatively, the assimilation of the lidar observations improved the equivalent potential temperature, and water vapor distribution of the region. This difference changed location, strength and spatial coverage of the convective system over the HUBS region.
CDEP Consortium on Ocean Data Assimilation for Seasonal-to-Interannual Prediction (ODASI)
NASA Technical Reports Server (NTRS)
Rienecker, Michele; Zebiak, Stephen; Kinter, James; Behringer, David; Rosati, Antonio; Kaplan, Alexey
2005-01-01
The ODASI consortium is focused activity of the NOAA/OGP/Climate Diagnostics and Experimental Prediction Program with the goal of improving ocean data assimilation methods and their implementations in support of seasonal forecasts with coupled general circulation models. The consortium is undertaking coordinated assimilation experiments, with common forcing data sets and common input data streams. With different assimilation systems and different models, we aim to understand what approach works best in improving forecast skill in the equatorial Pacific. The presentation will provide an overview of the consortium goals and plans and recent results focused towards evaluating data impacts.
NASA Astrophysics Data System (ADS)
Zhang, Rong; Zhang, Yijun; Xu, Liangtao; Zheng, Dong; Yao, Wen
2017-08-01
A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small-scale information can be incorporated to improve the quality of the initial condition and the subsequent forecasts. In this study, the empirical relationship between flash rate, water vapor mixing ratio, and graupel mixing ratio was used to adjust the model relative humidity, which was then assimilated by using the three-dimensional variational data assimilation system of the Weather Research and Forecasting model in cycling mode at 10-min intervals. To find the appropriate assimilation time-window length that yielded significant improvement in both the initial conditions and subsequent forecasts, four experiments with different assimilation time-window lengths were conducted for a squall line case that occurred on 10 July 2007 in North China. It was found that 60 min was the appropriate assimilation time-window length for this case, and longer assimilation window length was unnecessary since no further improvement was present. Forecasts of 1-h accumulated precipitation during the assimilation period and the subsequent 3-h accumulated precipitation were significantly improved compared with the control experiment without lightning data assimilation. The simulated reflectivity was optimal after 30 min of the forecast, it remained optimal during the following 42 min, and the positive effect from lightning data assimilation began to diminish after 72 min of the forecast. Overall, the improvement from lightning data assimilation can be maintained for about 3 h.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Norris, Peter M.
2013-01-01
Part I presented a Monte Carlo Bayesian method for constraining a complex statistical model of GCM sub-gridcolumn moisture variability using high-resolution MODIS cloud data, thereby permitting large-scale model parameter estimation and cloud data assimilation. This part performs some basic testing of this new approach, verifying that it does indeed significantly reduce mean and standard deviation biases with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud top pressure, and that it also improves the simulated rotational-Ramman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the OMI instrument. Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows finite jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast where the background state has a clear swath. This paper also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in the cloud observables on cloud vertical structure, beyond cloud top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification due to Riishojgaard (1998) provides some help in this respect, by better honoring inversion structures in the background state.
NASA Astrophysics Data System (ADS)
Norris, P. M.; da Silva, A. M., Jr.
2016-12-01
Norris and da Silva recently published a method to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation (CDA). The gridcolumn model includes assumed-PDF intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used are MODIS cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast where the background state has a clear swath. The new approach not only significantly reduces mean and standard deviation biases with respect to the assimilated observables, but also improves the simulated rotational-Ramman scattering cloud optical centroid pressure against independent (non-assimilated) retrievals from the OMI instrument. One obvious difficulty for the method, and other CDA methods, is the lack of information content in passive cloud observables on cloud vertical structure, beyond cloud-top and thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification due to Riishojgaard is helpful, better honoring inversion structures in the background state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorin, Alexandre J.; Morzfeld, Matthias; Tu, Xuemin
Implicit particle filters for data assimilation update the particles by first choosing probabilities and then looking for particle locations that assume them, guiding the particles one by one to the high probability domain. We provide a detailed description of these filters, with illustrative examples, together with new, more general, methods for solving the algebraic equations and with a new algorithm for parameter identification.
Land Surface Model Biases and their Impacts on the Assimilation of Snow-related Observations
NASA Astrophysics Data System (ADS)
Arsenault, K. R.; Kumar, S.; Hunter, S. M.; Aman, R.; Houser, P. R.; Toll, D.; Engman, T.; Nigro, J.
2007-12-01
Some recent snow modeling studies have employed a wide range of assimilation methods to incorporate snow cover or other snow-related observations into different hydrological or land surface models. These methods often include taking both model and observation biases into account throughout the model integration. This study focuses more on diagnosing the model biases and presenting their subsequent impacts on assimilating snow observations and modeled snowmelt processes. In this study, the land surface model, the Community Land Model (CLM), is used within the Land Information System (LIS) modeling framework to show how such biases impact the assimilation of MODIS snow cover observations. Alternative in-situ and satellite-based observations are used to help guide the CLM LSM in better predicting snowpack conditions and more realistic timing of snowmelt for a western US mountainous region. Also, MODIS snow cover observation biases will be discussed, and validation results will be provided. The issues faced with inserting or assimilating MODIS snow cover at moderate spatial resolutions (like 1km or less) will be addressed, and the impacts on CLM will be presented.
A Maximum Likelihood Ensemble Data Assimilation Method Tailored to the Inner Radiation Belt
NASA Astrophysics Data System (ADS)
Guild, T. B.; O'Brien, T. P., III; Mazur, J. E.
2014-12-01
The Earth's radiation belts are composed of energetic protons and electrons whose fluxes span many orders of magnitude, whose distributions are log-normal, and where data-model differences can be large and also log-normal. This physical system thus challenges standard data assimilation methods relying on underlying assumptions of Gaussian distributions of measurements and data-model differences, where innovations to the model are small. We have therefore developed a data assimilation method tailored to these properties of the inner radiation belt, analogous to the ensemble Kalman filter but for the unique cases of non-Gaussian model and measurement errors, and non-linear model and measurement distributions. We apply this method to the inner radiation belt proton populations, using the SIZM inner belt model [Selesnick et al., 2007] and SAMPEX/PET and HEO proton observations to select the most likely ensemble members contributing to the state of the inner belt. We will describe the algorithm, the method of generating ensemble members, our choice of minimizing the difference between instrument counts not phase space densities, and demonstrate the method with our reanalysis of the inner radiation belt throughout solar cycle 23. We will report on progress to continue our assimilation into solar cycle 24 using the Van Allen Probes/RPS observations.
Numerical Investigation of a Heated, Sheared Planetary Boundary Layer
NASA Astrophysics Data System (ADS)
Liou, Yu-Chieng
1996-01-01
A planetary boundary layer (PBL) developed on 11 July, 1987 during the First International Satellites Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) is investigated numerically by a two dimensional and a three dimensional large eddy simulation (LES) model. Most of the simulated mean and statistical properties are utilized to compare or verify against the observational results extracted from single Doppler lidar scans conducted by Gal-Chen et al. (1992) on the same day. Through the methods of field measurements and numerical simulations, it is found that this PBL, in contrast to the well-known convective boundary layer (CBL), is driven by not only buoyancy but also wind shear. Large eddies produced by the surface heating, as well as internal gravity waves excited by the convection, are both present in the boundary layer. The most unique feature is that in the stable layer, the momentum flux ({overlinerm u^' w^'}), transported by the gravity waves, is counter-gradient. The occurrence of this phenomenon is interpreted by Gal-Chen et al. (1992) using the theory of critical layer singularity, and is confirmed by the numerical simulations in this study. Qualitative agreements are achieved between the model-generated and lidar-derived results. However, quantitative comparisons are less satisfactory. The most serious discrepancy is that in the stable layer the magnitudes of the observed momentum flux ({overlinerm u^ ' w^'}) and vertical velocity variance ({overlinerm w^'^2}) are much larger than their simulated counterparts. Nevertheless, through the technique of numerical simulation, evidence is collected to show inconsistencies among the observations. Thus, the lidar measurements of {overline rm u^' w^'} and {overlinerm w^ '^2} seem to be doubtful. A Four Dimensional Data Assimilation (FDDA) experiment is performed in order to connect the evolution of the model integration with the observations. The results indicate that the dynamical relaxation (nudging) scheme appears to be an appropriate method by which the observed mean quantities such as mean wind ({overline u}) and potential temperature ({ overlinetheta}) can be assimilated into the model without causing data rejection.
NASA Astrophysics Data System (ADS)
Mangold, A.; de Backer, H.; de Paepe, B.; Dewitte, S.; Chiapello, I.; Derimian, Y.; Kacenelenbogen, M.; LéOn, J.-F.; Huneeus, N.; Schulz, M.; Ceburnis, D.; O'Dowd, C.; Flentje, H.; Kinne, S.; Benedetti, A.; Morcrette, J.-J.; Boucher, O.
2011-02-01
A near real-time system for assimilation and forecasts of aerosols, greenhouse and trace gases, extending the ECMWF Integrated Forecasting System (IFS), has been developed in the framework of the Global and regional Earth-system Monitoring using Satellite and in-situ data (GEMS) project. The GEMS aerosol modeling system is novel as it is the first aerosol model fully coupled to a numerical weather prediction model with data assimilation. A reanalysis of the period 2003-2009 has been carried out with the same system. During its development phase, the aerosol system was first run for the time period January 2003 to December 2004 and included sea salt, desert dust, organic matter, black carbon, and sulfate aerosols. In the analysis, Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) at 550 nm over ocean and land (except over bright surfaces) was assimilated. This work evaluates the performance of the aerosol system by means of case studies. The case studies include (1) the summer heat wave in Europe in August 2003, characterized by forest fire aerosol and conditions of high temperatures and stagnation, favoring photochemistry and secondary aerosol formation, (2) a large Saharan dust event in March 2004, and (3) periods of high and low sea salt aerosol production. During the heat wave period in 2003, the linear correlation coefficients between modeled and observed AOD (550 nm) and between modeled and observed PM2.5 mass concentrations are 0.82 and 0.71, respectively, for all investigated sites together. The AOD is slightly and the PM2.5 mass concentration is clearly overestimated by the aerosol model during this period. The simulated sulfate mass concentration is significantly correlated with observations but is distinctly overestimated. The horizontal and vertical locations of the main features of the aerosol distribution during the Saharan dust outbreak are generally well captured, as well as the timing of the AOD peaks. The aerosol model simulates winter sea salt AOD reasonably well, however, showing a general overestimation. Summer sea salt events show a better agreement. Overall, the assimilation of MODIS AOD data improves the subsequent aerosol predictions when compared with observations, in particular concerning the correlation and AOD peak values. The assimilation is less effective in correcting a positive (PM2.5, sulfate mass concentration, Angström exponent) or negative (desert dust plume AOD) model bias.
NASA Astrophysics Data System (ADS)
Pan, Xiaoduo; Li, Xin; Cheng, Guodong
2017-04-01
Traditionally, ground-based, in situ observations, remote sensing, and regional climate modeling, individually, cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrain. Data assimilation techniques are often used to assimilate ground observations and remote sensing products into models for dynamic downscaling. In this study, the Weather Research and Forecasting (WRF) model was used to assimilate two satellite precipitation products (TRMM 3B42 and FY-2D) using the 4D-Var data assimilation method. The results show that the assimilation of remote sensing precipitation products can improve the initial WRF fields of humidity and temperature, thereby improving precipitation forecasting and decreasing the spin-up time. Hence, assimilating TRMM and FY-2D remote sensing precipitation products using WRF 4D-Var can be viewed as a positive step toward improving the accuracy and lead time of numerical weather prediction models, particularly for short-term weather forecasting. Future work is proposed to assimilate a suite of remote sensing data, e.g., the combination of precipitation and soil moisture data, into a WRF model to improve 7-8 day forecasts of precipitation and other atmospheric variables.
Optimality in Data Assimilation
NASA Astrophysics Data System (ADS)
Nearing, Grey; Yatheendradas, Soni
2016-04-01
It costs a lot more to develop and launch an earth-observing satellite than it does to build a data assimilation system. As such, we propose that it is important to understand the efficiency of our assimilation algorithms at extracting information from remote sensing retrievals. To address this, we propose that it is necessary to adopt completely general definition of "optimality" that explicitly acknowledges all differences between the parametric constraints of our assimilation algorithm (e.g., Gaussianity, partial linearity, Markovian updates) and the true nature of the environmetnal system and observing system. In fact, it is not only possible, but incredibly straightforward, to measure the optimality (in this more general sense) of any data assimilation algorithm as applied to any intended model or natural system. We measure the information content of remote sensing data conditional on the fact that we are already running a model and then measure the actual information extracted by data assimilation. The ratio of the two is an efficiency metric, and optimality is defined as occurring when the data assimilation algorithm is perfectly efficient at extracting information from the retrievals. We measure the information content of the remote sensing data in a way that, unlike triple collocation, does not rely on any a priori presumed relationship (e.g., linear) between the retrieval and the ground truth, however, like triple-collocation, is insensitive to the spatial mismatch between point-based measurements and grid-scale retrievals. This theory and method is therefore suitable for use with both dense and sparse validation networks. Additionally, the method we propose is *constructive* in the sense that it provides guidance on how to improve data assimilation systems. All data assimilation strategies can be reduced to approximations of Bayes' law, and we measure the fractions of total information loss that are due to individual assumptions or approximations in the prior (i.e., the model uncertainty distribution), and in the likelihood (i.e., the observation operator and observation uncertainty distribution). In this way, we can directly identify the parts of a data assimilation algorithm that contribute most to assimilation error in a way that (unlike traditional DA performance metrics) considers nonlinearity in the model and observation and non-optimality in the fit between filter assumptions and the real system. To reiterate, the method we propose is theoretically rigorous but also dead-to-rights simple, and can be implemented in no more than a few hours by a competent programmer. We use this to show that careful applications of the Ensemble Kalman Filter use substantially less than half of the information contained in remote sensing soil moisture retrievals (LPRM, AMSR-E, SMOS, and SMOPS). We propose that this finding may explain some of the results from several recent large-scale experiments that show lower-than-expected value to assimilating soil moisture retrievals into land surface models forced by high-quality precipitation data. Our results have important implications for the SMAP mission because over half of the SMAP-affiliated "early adopters" plan to use the EnKF as their primary method for extracting information from SMAP retrievals.
Mathematical foundations of hybrid data assimilation from a synchronization perspective
NASA Astrophysics Data System (ADS)
Penny, Stephen G.
2017-12-01
The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.
Mathematical foundations of hybrid data assimilation from a synchronization perspective.
Penny, Stephen G
2017-12-01
The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.
NASA Astrophysics Data System (ADS)
Haussaire, Jean-Matthieu; Bocquet, Marc
2016-04-01
Atmospheric chemistry models are becoming increasingly complex, with multiphasic chemistry, size-resolved particulate matter, and possibly coupled to numerical weather prediction models. In the meantime, data assimilation methods have also become more sophisticated. Hence, it will become increasingly difficult to disentangle the merits of data assimilation schemes, of models, and of their numerical implementation in a successful high-dimensional data assimilation study. That is why we believe that the increasing variety of problems encountered in the field of atmospheric chemistry data assimilation puts forward the need for simple low-order models, albeit complex enough to capture the relevant dynamics, physics and chemistry that could impact the performance of data assimilation schemes. Following this analysis, we developped a low-order coupled chemistry meteorology model named L95-GRS [1]. The advective wind is simulated by the Lorenz-95 model, while the chemistry is made of 6 reactive species and simulates ozone concentrations. With this model, we carried out data assimilation experiments to estimate the state of the system as well as the forcing parameter of the wind and the emissions of chemical compounds. This model proved to be a powerful playground giving insights on the hardships of online and offline estimation of atmospheric pollution. Building on the results on this low-order model, we test advanced data assimilation methods on a state-of-the-art chemical transport model to check if the conclusions obtained with our low-order model still stand. References [1] Haussaire, J.-M. and Bocquet, M.: A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes, Geosci. Model Dev. Discuss., 8, 7347-7394, doi:10.5194/gmdd-8-7347-2015, 2015.
NASA Technical Reports Server (NTRS)
Fukumori, Ichiro
1995-01-01
Sea surface height variability measured by TOPEX is analyzed in the tropical Pacific Ocean by way of assimilation into a wind-driven, reduced-gravity, shallow water model using an approximate Kalman filter and smoother. The analysis results in an optimal fit of the dynamic model to the observations, providing it dynamically consistent interpolation of sea level and estimation of the circulation. Nearly 80% of the expected signal variance is accounted for by the model within 20 deg of the equator, and estimation uncertainty is substantially reduced by the voluminous observation. Notable features resolved by the analysis include seasonal changes associated with the North Equatorial Countercurrent and equatorial Kelvin and Rossby waves. Significant discrepancies are also found between the estimate and TOPEX measurements, especially near the eastern boundary. Improvements in the estimate made by the assimilation are validated by comparisons with independent tide gauge and current meter observations. The employed filter and smoother are based on approximately computed estimation error covariance matrices, utilizing a spatial transformation and an symptotic approximation. The analysis demonstrates the practical utility of a quasi-optimal filter and smoother.
An Integrated Network of In situ and Remote Sensors to Characterize the Somali Current
2015-09-30
streams for assimilation into numerical models • Introduce oceanography as an applied science to the Government of the Seychelles APPROACH...by U.S. Navy assets, indigenous Seychelles fishing vessels and by the Royal Australian Navy (RAN) during this period of performance. Figure (1...depicts a buoy deployment evolution in June 2015 and is representative of most deployments. Miniature wave buoy deployment dates: Seychelles
Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review
Montzka, Carsten; Pauwels, Valentijn R. N.; Franssen, Harrie-Jan Hendricks; Han, Xujun; Vereecken, Harry
2012-01-01
More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA) methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational methods (3/4D-VAR). In this review, we distinguish between four major DA approaches: (1) univariate single-scale DA (UVSS), which is the approach used in the majority of published DA applications, (2) univariate multiscale DA (UVMS) referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3) multivariate single-scale DA (MVSS) dealing with the assimilation of at least two different data types, and (4) combined multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a simulation model. Existing approaches can be used to simultaneously update several model states and model parameters if applicable. In other words, the basic principles for multivariate data assimilation are already available. We argue that a better understanding of the measurement errors for different observation types, improved estimates of observation bias and improved multiscale assimilation methods for data which scale nonlinearly is important to properly weight them in multiscale multivariate data assimilation. In this context, improved cross-validation of different data types, and increased ground truth verification of remote sensing products are required. PMID:23443380
Scalable and balanced dynamic hybrid data assimilation
NASA Astrophysics Data System (ADS)
Kauranne, Tuomo; Amour, Idrissa; Gunia, Martin; Kallio, Kari; Lepistö, Ahti; Koponen, Sampsa
2017-04-01
Scalability of complex weather forecasting suites is dependent on the technical tools available for implementing highly parallel computational kernels, but to an equally large extent also on the dependence patterns between various components of the suite, such as observation processing, data assimilation and the forecast model. Scalability is a particular challenge for 4D variational assimilation methods that necessarily couple the forecast model into the assimilation process and subject this combination to an inherently serial quasi-Newton minimization process. Ensemble based assimilation methods are naturally more parallel, but large models force ensemble sizes to be small and that results in poor assimilation accuracy, somewhat akin to shooting with a shotgun in a million-dimensional space. The Variational Ensemble Kalman Filter (VEnKF) is an ensemble method that can attain the accuracy of 4D variational data assimilation with a small ensemble size. It achieves this by processing a Gaussian approximation of the current error covariance distribution, instead of a set of ensemble members, analogously to the Extended Kalman Filter EKF. Ensemble members are re-sampled every time a new set of observations is processed from a new approximation of that Gaussian distribution which makes VEnKF a dynamic assimilation method. After this a smoothing step is applied that turns VEnKF into a dynamic Variational Ensemble Kalman Smoother VEnKS. In this smoothing step, the same process is iterated with frequent re-sampling of the ensemble but now using past iterations as surrogate observations until the end result is a smooth and balanced model trajectory. In principle, VEnKF could suffer from similar scalability issues as 4D-Var. However, this can be avoided by isolating the forecast model completely from the minimization process by implementing the latter as a wrapper code whose only link to the model is calling for many parallel and totally independent model runs, all of them implemented as parallel model runs themselves. The only bottleneck in the process is the gathering and scattering of initial and final model state snapshots before and after the parallel runs which requires a very efficient and low-latency communication network. However, the volume of data communicated is small and the intervening minimization steps are only 3D-Var, which means their computational load is negligible compared with the fully parallel model runs. We present example results of scalable VEnKF with the 4D lake and shallow sea model COHERENS, assimilating simultaneously continuous in situ measurements in a single point and infrequent satellite images that cover a whole lake, with the fully scalable VEnKF.
Multivariate and multiscale data assimilation in terrestrial systems: a review.
Montzka, Carsten; Pauwels, Valentijn R N; Franssen, Harrie-Jan Hendricks; Han, Xujun; Vereecken, Harry
2012-11-26
More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA) methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational methods (3/4D-VAR). In this review, we distinguish between four major DA approaches: (1) univariate single-scale DA (UVSS), which is the approach used in the majority of published DA applications, (2) univariate multiscale DA (UVMS) referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3) multivariate single-scale DA (MVSS) dealing with the assimilation of at least two different data types, and (4) combined multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a simulation model. Existing approaches can be used to simultaneously update several model states and model parameters if applicable. In other words, the basic principles for multivariate data assimilation are already available. We argue that a better understanding of the measurement errors for different observation types, improved estimates of observation bias and improved multiscale assimilation methods for data which scale nonlinearly is important to properly weight them in multiscale multivariate data assimilation. In this context, improved cross-validation of different data types, and increased ground truth verification of remote sensing products are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodds, W. K.; Collins, S. M.; Hamilton, S. K.
Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Lastly, Isotope tracer studies, combined with modeling andmore » food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers.« less
Assimilating NOAA SST data into BSH operational circulation model for North and Baltic Seas
NASA Astrophysics Data System (ADS)
Losa, Svetlana; Schroeter, Jens; Nerger, Lars; Janjic, Tijana; Danilov, Sergey; Janssen, Frank
A data assimilation (DA) system is developed for BSH operational circulation model in order to improve forecast of current velocities, sea surface height, temperature and salinity in the North and Baltic Seas. Assimilated data are NOAA sea surface temperature (SST) data for the following period: 01.10.07 -30.09.08. All data assimilation experiments are based on im-plementation of one of the so-called statistical DA methods -Singular Evolutive Interpolated Kalman (SEIK) filter, -with different ways of prescribing assumed model and data errors statis-tics. Results of the experiments will be shown and compared against each other. Hydrographic data from MARNET stations and sea level at series of tide gauges are used as independent information to validate the data assimilation system. Keywords: Operational Oceanography and forecasting
Dodds, W. K.; Collins, S. M.; Hamilton, S. K.; ...
2014-10-01
Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Lastly, Isotope tracer studies, combined with modeling andmore » food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers.« less
NASA Astrophysics Data System (ADS)
Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena
2015-04-01
The paper concerns data assimilation problem for an atmospheric chemistry transport and transformation models. Data assimilation is carried out within variation approach on a single time step of the approximated model. A control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the minimum of the target functional combining control function norm to a misfit between measured and model-simulated analog of data. This provides a flow-dependent and physically-plausible structure of the resulting analysis and reduces the need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. Extension of the atmospheric transport model with a chemical transformations module influences data assimilation algorithms performance. This influence is investigated with numerical experiments for different meteorological conditions altering convection-diffusion processes characteristics, namely strong, medium and low wind conditions. To study the impact of transformation and data assimilation, we compare results for a convection-diffusion model (without data assimilation), convection-diffusion with assimilation, convection-diffusion-reaction (without data assimilation) and convection-diffusion-reaction-assimilation models. Both high dimensionalities of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the algorithms. Computational issues with complicated models can be solved by using a splitting technique. As the result a model is presented as a set of relatively independent simple models equipped with a kind of coupling procedure. With regard to data assimilation two approaches can be identified. In a fine-grained approach data assimilation is carried out on the separate splitting stages [1,2] independently on shared measurement data. The same situation arises when constructing a hybrid model out of two models each having its own assimilation scheme. In integrated schemes data assimilation is carried out with respect to the split model as a whole. First approach is more efficient from computational point of view, for in some important cases it can be implemented without iterations [2]. Its shortcoming is that control functions in different part of the model are adjusted independently thus having less evident physical sense. With the aid of numerical experiments we compare the two approaches. Work has been partially supported by COST Action ES1004 STSM Grants #16817 and #21654, RFBR 14-01-31482 mol a and 14-01-00125, Programmes # 4 Presidium RAS and # 3 MSD RAS, integration projects SB RAS #8 and #35. References: [1] V. V. Penenko Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment Num. Anal. and Appl., 2009 V 2 No 4, 341-351. [2] A.V. Penenko and V.V. Penenko. Direct data assimilation method for convection-diffusion models based on splitting scheme. Computational technologies, 19(4):69-83, 2014.
Yeast identification: reassessment of assimilation tests as sole universal identifiers.
Spencer, J; Rawling, S; Stratford, M; Steels, H; Novodvorska, M; Archer, D B; Chandra, S
2011-11-01
To assess whether assimilation tests in isolation remain a valid method of identification of yeasts, when applied to a wide range of environmental and spoilage isolates. Seventy-one yeast strains were isolated from a soft drinks factory. These were identified using assimilation tests and by D1/D2 rDNA sequencing. When compared to sequencing, assimilation test identifications (MicroLog™) were 18·3% correct, a further 14·1% correct within the genus and 67·6% were incorrectly identified. The majority of the latter could be attributed to the rise in newly reported yeast species. Assimilation tests alone are unreliable as a universal means of yeast identification, because of numerous new species, variability of strains and increasing coincidence of assimilation profiles. Assimilation tests still have a useful role in the identification of common species, such as the majority of clinical isolates. It is probable, based on these results, that many yeast identifications reported in older literature are incorrect. This emphasizes the crucial need for accurate identification in present and future publications. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
The Failure to Construct Proof Based on Assimilation and Accommodation Framework from Piaget
ERIC Educational Resources Information Center
Netti, Syukma; Nusantara, Toto; Subanji; Abadyo; Anwar, Lathiful
2016-01-01
The purpose of this article is to describe the process of a proof construction. It is more specific on the failure of the process. Piaget's frameworks, assimilation and accommodation, were used to analyze it. Method of this research was qualitative method. Data were collected by asking five students working on problems of proof using think aloud…
Application of the Newtonian nudging data assimilation method for the Biebrza River flow model
NASA Astrophysics Data System (ADS)
Miroslaw-Swiatek, Dorota
2010-05-01
Data assimilation provides a tool for integrating observations of spatially distributed environmental variables with model predictions. In this paper a simple data assimilation technique, the Newtonian nudging to individual observations method, has been implemented in the 1D St. Venant equations. The method involves adding a term to the prognostic equation. This term is proportional to the difference between the value calculated in the model at a given point in time and space and the one resulted from observations. Improving the model with available measurement observations is accomplished by adequate weighting functions, that can incorporate prior knowledge about the spatial and temporal variability of the state variables being assimilated. The article contains a description of the numerical model, which employs the finite element method (FEM) to solve the 1D St. Venant equations modified by the ‘nudging' method. The developed model was applied to the Biebrza River, situated in the north-eastern part of Poland, flowing through the last extensive, fairly undisturbed river-marginal peatland in Europe. A 41 km long reach of the Lower Biebrza River described by 68 cross-sections was selected for the study. The observed water stage collected by automatic sensors was the subject of the data assimilation in the Newtonian nudging to individual observations method. The water level observation data were collected in four observation points along a river with time interval 6 hours for one year. The obtained results show a prediction with no nudging and influence of the nudging term on water stages forecast. The developed model enables integrating water stage observation with an unsteady river flow model for improved water level prediction.
Operational Forecasting and Warning systems for Coastal hazards in Korea
NASA Astrophysics Data System (ADS)
Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon
2017-04-01
Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.
Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind
NASA Technical Reports Server (NTRS)
Alexander, M. J.; Rosenlof, K. H.
1996-01-01
The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.
NASA Technical Reports Server (NTRS)
Gourdeau, L.; Verron, J.; Murtugudde, R.; Busalacchi, A. J.
1997-01-01
A new implementation of the extended Kaman filter is developed for the purpose of assimilating altimetric observations into a primitive equation model of the tropical Pacific. Its specificity consists in defining the errors into a reduced basis that evolves in time with the model dynamic. Validation by twin experiments is conducted and the method is shown to be efficient in quasi real conditions. Data from the first 2 years of the Topex/Poseidon mission are assimilated into the Gent & Cane [1989] model. Assimilation results are evaluated against independent in situ data, namely TAO mooring observations.
NLDAS Views of North American 2011 Extreme Events
NASA Technical Reports Server (NTRS)
Rui, Hualan; Teng, William L.; Vollmer, Bruce; Mocko, David; Lei, Guang-Dih
2014-01-01
2011 was marked as one of the most extreme years in recent history. Over the course of the year, weather-related extreme events, such as floods, heat waves, blizzards, tornadoes, and wildfires, caused tremendous loss of human life and property. The North American Land Data Assimilation System (NLDAS, http:ldas.gsfc.nasa.govnldas) data set, with high spatial and temporal resolutions (0.125 x 0.125, hourly) and various water- and energy-related variables, is an excellent data source for case studies of extreme events. This presentation illustrates some extreme events from 2011 in North America, including the Groundhog Day Blizzard, the July heat wave, Hurricane Irene, and Tropical Storm Lee, all utilizing NLDAS Phase 2 (NLDAS-2) data.
NASA Astrophysics Data System (ADS)
Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence
2018-04-01
Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).
NASA Astrophysics Data System (ADS)
Aalstad, Kristoffer; Westermann, Sebastian; Vikhamar Schuler, Thomas; Boike, Julia; Bertino, Laurent
2018-01-01
With its high albedo, low thermal conductivity and large water storing capacity, snow strongly modulates the surface energy and water balance, which makes it a critical factor in mid- to high-latitude and mountain environments. However, estimating the snow water equivalent (SWE) is challenging in remote-sensing applications already at medium spatial resolutions of 1 km. We present an ensemble-based data assimilation framework that estimates the peak subgrid SWE distribution (SSD) at the 1 km scale by assimilating fractional snow-covered area (fSCA) satellite retrievals in a simple snow model forced by downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (accessible from satellite products) to the peak SSD. Peak subgrid SWE is assumed to be lognormally distributed, which can be translated to a modeled time series of fSCA through the snow model. Assimilation of satellite-derived fSCA facilitates the estimation of the peak SSD, while taking into account uncertainties in both the model and the assimilated data sets. As an extension to previous studies, our method makes use of the novel (to snow data assimilation) ensemble smoother with multiple data assimilation (ES-MDA) scheme combined with analytical Gaussian anamorphosis to assimilate time series of Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 fSCA retrievals. The scheme is applied to Arctic sites near Ny-Ålesund (79° N, Svalbard, Norway) where field measurements of fSCA and SWE distributions are available. The method is able to successfully recover accurate estimates of peak SSD on most of the occasions considered. Through the ES-MDA assimilation, the root-mean-square error (RMSE) for the fSCA, peak mean SWE and peak subgrid coefficient of variation is improved by around 75, 60 and 20 %, respectively, when compared to the prior, yielding RMSEs of 0.01, 0.09 m water equivalent (w.e.) and 0.13, respectively. The ES-MDA either outperforms or at least nearly matches the performance of other ensemble-based batch smoother schemes with regards to various evaluation metrics. Given the modularity of the method, it could prove valuable for a range of satellite-era hydrometeorological reanalyses.
Low-dimensional Representation of Error Covariance
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan
2000-01-01
Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.
NASA Astrophysics Data System (ADS)
Lin, Jia-Ting; Liu, Hanli; Liu, Jann-Yenq; Lin, Charles C. H.; Chen, Chia-Hung; Chang, Loren; Chen, Wei-Han
In this study, ionospheric peak densities obtained from radio occultation soundings of FORMOSAT-3/COSMIC are decomposed into their various constituent tidal components for studying the stratospheric sudden warming (SSW) effects on the tidal responses during the 2008/2009. The observations are further compared with the results from an atmosphere-ionosphere coupled model, TIME-GCM. The model assimilates MERRA 3D meteorological data between the lower-boundary (~30km) and 0.1h Pa (~62km) by a nudging method. The comparison shows general agreement in the major features of decrease of migrating tidal signatures (DW1, SW2 and TW3) in ionosphere around the growth phase of SSW, with phase/time shifts in the daily time of maximum around EIA and middle latitudes. Both the observation and simulation indicate a pronounced enhancement of the ionospheric SW2 signatures after the stratospheric temperature increase. The model suggest that the typical morning enhancement/afternoon reduction of electron density variation is mainly caused by modification of the ionospheric migrating tidal signatures. The model shows that the thermospheric SW2 tide variation is similar to ionosphere as well as the phase shift. These phases shift of migrating tides are highly related to the present of induced secondary planetary wave 1 in the E region.
NASA Technical Reports Server (NTRS)
Girotto, Manuela; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Rodell, Matthew
2017-01-01
Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0 - 5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.
NASA Astrophysics Data System (ADS)
Girotto, M.; Reichle, R. H.; De Lannoy, G.; Rodell, M.
2017-12-01
Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0-5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.
A new Method for the Estimation of Initial Condition Uncertainty Structures in Mesoscale Models
NASA Astrophysics Data System (ADS)
Keller, J. D.; Bach, L.; Hense, A.
2012-12-01
The estimation of fast growing error modes of a system is a key interest of ensemble data assimilation when assessing uncertainty in initial conditions. Over the last two decades three methods (and variations of these methods) have evolved for global numerical weather prediction models: ensemble Kalman filter, singular vectors and breeding of growing modes (or now ensemble transform). While the former incorporates a priori model error information and observation error estimates to determine ensemble initial conditions, the latter two techniques directly address the error structures associated with Lyapunov vectors. However, in global models these structures are mainly associated with transient global wave patterns. When assessing initial condition uncertainty in mesoscale limited area models, several problems regarding the aforementioned techniques arise: (a) additional sources of uncertainty on the smaller scales contribute to the error and (b) error structures from the global scale may quickly move through the model domain (depending on the size of the domain). To address the latter problem, perturbation structures from global models are often included in the mesoscale predictions as perturbed boundary conditions. However, the initial perturbations (when used) are often generated with a variant of an ensemble Kalman filter which does not necessarily focus on the large scale error patterns. In the framework of the European regional reanalysis project of the Hans-Ertel-Center for Weather Research we use a mesoscale model with an implemented nudging data assimilation scheme which does not support ensemble data assimilation at all. In preparation of an ensemble-based regional reanalysis and for the estimation of three-dimensional atmospheric covariance structures, we implemented a new method for the assessment of fast growing error modes for mesoscale limited area models. The so-called self-breeding is development based on the breeding of growing modes technique. Initial perturbations are integrated forward for a short time period and then rescaled and added to the initial state again. Iterating this rapid breeding cycle provides estimates for the initial uncertainty structure (or local Lyapunov vectors) given a specific norm. To avoid that all ensemble perturbations converge towards the leading local Lyapunov vector we apply an ensemble transform variant to orthogonalize the perturbations in the sub-space spanned by the ensemble. By choosing different kind of norms to measure perturbation growth, this technique allows for estimating uncertainty patterns targeted at specific sources of errors (e.g. convection, turbulence). With case study experiments we show applications of the self-breeding method for different sources of uncertainty and different horizontal scales.
Advances in Global Adjoint Tomography - Data Assimilation and Inversion Strategy
NASA Astrophysics Data System (ADS)
Ruan, Y.; Lei, W.; Lefebvre, M. P.; Modrak, R. T.; Smith, J. A.; Bozdag, E.; Tromp, J.
2016-12-01
Seismic tomography provides the most direct way to understand Earth's interior by imaging elastic heterogeneity, anisotropy and anelasticity. Resolving thefine structure of these properties requires accurate simulations of seismic wave propagation in complex 3-D Earth models. On the supercomputer "Titan" at Oak Ridge National Laboratory, we are employing a spectral-element method (Komatitsch & Tromp 1999, 2002) in combination with an adjoint method (Tromp et al., 2005) to accurately calculate theoretical seismograms and Frechet derivatives. Using 253 carefully selected events, Bozdag et al. (2016) iteratively determined a transversely isotropic earth model (GLAD_M15) using 15 preconditioned conjugate-gradient iterations. To obtain higher resolution images of the mantle, we have expanded our database to more than 4,220 Mw5.0-7.0 events occurred between 1995 and 2014. Instead of using the entire database all at once, we choose to draw subsets of about 1,000 events from our database for each iteration to achieve a faster convergence rate with limited computing resources. To provide good coverage of deep structures, we selected approximately 700 deep and intermedia earthquakes and 300 shallow events to start a new iteration. We reinverted the CMT solutions of these events in the latest model, and recalculated synthetic seismograms. Using the synthetics as reference seismograms, we selected time windows that show good agreement with data and make measurements within the windows. From the measurements we further assess the overall quality of each event and station, and exclude bad measurements base upon certain criteria. So far, with very conservative criteria, we have assimilated more than 8.0 million windows from 1,000 earthquakes in three period bands for the new iteration. For subsequent iterations, we will change the period bands and window selecting criteria to include more window. In the inversion, dense array data (e.g., USArray) usually dominate model updates. In order to better handle this issue, we introduced weighting of stations and events based upon their relative distance and showed that the contribution from dense array is better balanced in the Frechet derivatives. We will present a summary of this form of data assimilation and preliminary results of the first few iterations.
Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models
NASA Astrophysics Data System (ADS)
Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon-Hurtado, Juan; Solomatine, Dimitri
2015-09-01
Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing observations, within water models. Current hydrologic and hydraulic research works consider assimilation of observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile communication devices are becoming also increasingly available. The main goal and innovation of this study is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space and intermittent in time in the context of two different semi-distributed hydrological model structures. The developed method is applied to the Brue basin, where the dynamic observations are imitated by the synthetic observations of discharge. The results of this study show how model structures and sensors locations affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation of such uncertain observations from dynamic sensors can provide model improvements similar to those of streamflow observations coming from a non-optimal network of static physical sensors. This can be a potential application of recent efforts to build citizen observatories of water, which can make the citizens an active part in information capturing, evaluation and communication, helping simultaneously to improvement of model-based flood forecasting.
Assimilating Eulerian and Lagrangian data in traffic-flow models
NASA Astrophysics Data System (ADS)
Xia, Chao; Cochrane, Courtney; DeGuire, Joseph; Fan, Gaoyang; Holmes, Emma; McGuirl, Melissa; Murphy, Patrick; Palmer, Jenna; Carter, Paul; Slivinski, Laura; Sandstede, Björn
2017-05-01
Data assimilation of traffic flow remains a challenging problem. One difficulty is that data come from different sources ranging from stationary sensors and camera data to GPS and cell phone data from moving cars. Sensors and cameras give information about traffic density, while GPS data provide information about the positions and velocities of individual cars. Previous methods for assimilating Lagrangian data collected from individual cars relied on specific properties of the underlying computational model or its reformulation in Lagrangian coordinates. These approaches make it hard to assimilate both Eulerian density and Lagrangian positional data simultaneously. In this paper, we propose an alternative approach that allows us to assimilate both Eulerian and Lagrangian data. We show that the proposed algorithm is accurate and works well in different traffic scenarios and regardless of whether ensemble Kalman or particle filters are used. We also show that the algorithm is capable of estimating parameters and assimilating real traffic observations and synthetic observations obtained from microscopic models.
NASA Astrophysics Data System (ADS)
Hyer, E. J.; Zhang, J. L.; Reid, J. S.; Curtis, C. A.; Westphal, D. L.
2007-12-01
Quantitative models of the transport and evolution of atmospheric pollution have graduated from the laboratory to become a part of the operational activity of forecast centers. Scientists studying the composition and variability of the atmosphere put great efforts into developing methods for accurately specifying sources of pollution, including natural and anthropogenic biomass burning. These methods must be adapted for use in operational contexts, which impose additional strictures on input data and methods. First, only input data sources available in near real-time are suitable for use in operational applications. Second, operational applications must make use of redundant data sources whenever possible. This is a shift in philosophy: in a research context, the most accurate and complete data set will be used, whereas in an operational context, the system must be designed with maximum redundancy. The goal in an operational context is to produce, to the extent possible, consistent and timely output, given sometimes inconsistent inputs. The Naval Aerosol Analysis and Prediction System (NAAPS), a global operational aerosol analysis and forecast system, recently began incorporating assimilation of satellite-derived aerosol optical depth. Assimilation of satellite AOD retrievals has dramatically improved aerosol analyses and forecasts from this system. The use of aerosol data assimilation also changes the strategy for improving the smoke source function. The absolute magnitude of emissions events can be refined through feedback from the data assimilation system, both in real- time operations and in post-processing analysis of data assimilation results. In terms of the aerosol source functions, the largest gains in model performance are now to be gained by reducing data latency and minimizing missed detections. In this presentation, recent model development work on the Fire Locating and Monitoring of Burning Emissions (FLAMBE) system that provides smoke aerosol boundary conditions for NAAPS is described, including redundant integration of multiple satellite platforms and development of feedback loops between the data assimilation system and smoke source.
The Role of Scale and Model Bias in ADAPT's Photospheric Eatimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godinez Vazquez, Humberto C.; Hickmann, Kyle Scott; Arge, Charles Nicholas
2015-05-20
The Air Force Assimilative Photospheric flux Transport model (ADAPT), is a magnetic flux propagation based on Worden-Harvey (WH) model. ADAPT would be used to provide a global photospheric map of the Earth. A data assimilation method based on the Ensemble Kalman Filter (EnKF), a method of Monte Carlo approximation tied with Kalman filtering, is used in calculating the ADAPT models.
USDA-ARS?s Scientific Manuscript database
Data from modern soil water contents probes can be used for data assimilation in soil water flow modeling, i.e. continual correction of the flow model performance based on observations. The ensemble Kalman filter appears to be an appropriate method for that. The method requires estimates of the unce...
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Cooper, Robert; Pawson, Steven; Sun, Zhibin
2009-01-01
We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%.
DasPy – Open Source Multivariate Land Data Assimilation Framework with High Performance Computing
NASA Astrophysics Data System (ADS)
Han, Xujun; Li, Xin; Montzka, Carsten; Kollet, Stefan; Vereecken, Harry; Hendricks Franssen, Harrie-Jan
2015-04-01
Data assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. Multivariate data assimilation refers to the simultaneous assimilation of observation data for multiple model state variables into a simulation model. Our main motivation was to develop an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with C++ and Fortran language. This system has been evaluated in several soil moisture, L-band brightness temperature and land surface temperature assimilation studies. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be represented by perturbed atmospheric forcings, perturbed soil and vegetation properties and model initial conditions. The CLM4.5 (Community Land Model) was integrated as the model operator. The CMEM (Community Microwave Emission Modelling Platform), COSMIC (COsmic-ray Soil Moisture Interaction Code) and the two source formulation were integrated as observation operators for assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy is parallelized using the hybrid MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) techniques. All the input and output data flow is organized efficiently using the commonly used NetCDF file format. Online 1D and 2D visualization of data assimilation results is also implemented to facilitate the post simulation analysis. In summary, DasPy is a ready to use open source parallel multivariate land data assimilation framework.
The Distribution of Carbon Monoxide in the GOCART Model
NASA Technical Reports Server (NTRS)
Fan, Xiaobiao; Chin, Mian; Einaudi, Franco (Technical Monitor)
2000-01-01
Carbon monoxide (CO) is an important trace gas because it is a significant source of tropospheric Ozone (O3) as well as a major sink for atmospheric hydroxyl radical (OH). The distribution of CO is set by a balance between the emissions, transport, and chemical processes in the atmosphere. The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the atmospheric distribution of CO. The GOCART model is driven by the assimilated meteorological data from the Goddard Earth Observing System Data Assimilation System (GEOS DAS) in an off-line mode. We study the distribution of CO on three time scales: (1) day to day fluctuation produced by the synoptic waves; (2) seasonal changes due to the annual cycle of CO sources and sinks; and (3) interannual variability induced by dynamics. Comparison of model results with ground based and remote sensing measurements will also be presented.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2011-01-01
The Global Modeling and Assimilation Office at NASA's Goddard Space Flight Center is developing a number of experimental prediction and analysis products suitable for research and applications. The prediction products include a large suite of subseasonal and seasonal hindcasts and forecasts (as a contribution to the US National MME), a suite of decadal (10-year) hindcasts (as a contribution to the IPCC decadal prediction project), and a series of large ensemble and high resolution simulations of selected extreme events, including the 2010 Russian and 2011 US heat waves. The analysis products include an experimental atlas of climate (in particular drought) and weather extremes. This talk will provide an update on those activities, and discuss recent efforts by WCRP to leverage off these and similar efforts at other institutions throughout the world to develop an experimental global drought early warning system.
Assimilation of Wave and Current Data for Prediction of Inlet and River Mouth Dynamics
2013-07-01
onto the Delft3D computational grid and the specification of Riemann -type boundary conditions for the boundary-normal velocity and surface elevation...conditions from time- history data from in situ tide gages. The corrections are applied to the surface-elevation contribution to the Riemann boundary...The algorithms described above are all of the strong-constraint variational variety, and make use of adjoint solvers corresponding to the various
Bayesian Modeling of the Assimilative Capacity Component of Stream Nutrient Export
Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a TMDL load capacity is developed...
NASA Astrophysics Data System (ADS)
Trudel, Mélanie; Leconte, Robert; Paniconi, Claudio
2014-06-01
Data assimilation techniques not only enhance model simulations and forecast, they also provide the opportunity to obtain a diagnostic of both the model and observations used in the assimilation process. In this research, an ensemble Kalman filter was used to assimilate streamflow observations at a basin outlet and at interior locations, as well as soil moisture at two different depths (15 and 45 cm). The simulation model is the distributed physically-based hydrological model CATHY (CATchment HYdrology) and the study site is the Des Anglais watershed, a 690 km2 river basin located in southern Quebec, Canada. Use of Latin hypercube sampling instead of a conventional Monte Carlo method to generate the ensemble reduced the size of the ensemble, and therefore the calculation time. Different post-assimilation diagnostics, based on innovations (observation minus background), analysis residuals (observation minus analysis), and analysis increments (analysis minus background), were used to evaluate assimilation optimality. An important issue in data assimilation is the estimation of error covariance matrices. These diagnostics were also used in a calibration exercise to determine the standard deviation of model parameters, forcing data, and observations that led to optimal assimilations. The analysis of innovations showed a lag between the model forecast and the observation during rainfall events. Assimilation of streamflow observations corrected this discrepancy. Assimilation of outlet streamflow observations improved the Nash-Sutcliffe efficiencies (NSE) between the model forecast (one day) and the observation at both outlet and interior point locations, owing to the structure of the state vector used. However, assimilation of streamflow observations systematically increased the simulated soil moisture values.
Tang, Youhua; Chai, Tianfeng; Pan, Li; Lee, Pius; Tong, Daniel; Kim, Hyun-Cheol; Chen, Weiwei
2015-10-01
We employed an optimal interpolation (OI) method to assimilate AIRNow ozone/PM2.5 and MODIS (Moderate Resolution Imaging Spectroradiometer) aerosol optical depth (AOD) data into the Community Multi-scale Air Quality (CMAQ) model to improve the ozone and total aerosol concentration for the CMAQ simulation over the contiguous United States (CONUS). AIRNow data assimilation was applied to the boundary layer, and MODIS AOD data were used to adjust total column aerosol. Four OI cases were designed to examine the effects of uncertainty setting and assimilation time; two of these cases used uncertainties that varied in time and location, or "dynamic uncertainties." More frequent assimilation and higher model uncertainties pushed the modeled results closer to the observation. Our comparison over a 24-hr period showed that ozone and PM2.5 mean biases could be reduced from 2.54 ppbV to 1.06 ppbV and from -7.14 µg/m³ to -0.11 µg/m³, respectively, over CONUS, while their correlations were also improved. Comparison to DISCOVER-AQ 2011 aircraft measurement showed that surface ozone assimilation applied to the CMAQ simulation improves regional low-altitude (below 2 km) ozone simulation. This paper described an application of using optimal interpolation method to improve the model's ozone and PM2.5 estimation using surface measurement and satellite AOD. It highlights the usage of the operational AIRNow data set, which is available in near real time, and the MODIS AOD. With a similar method, we can also use other satellite products, such as the latest VIIRS products, to improve PM2.5 prediction.
Thermospheric Extension of the Quasi 6-day Wave Observed by the TIMED Satellite
NASA Astrophysics Data System (ADS)
Gan, Q.; Oberheide, J.
2017-12-01
The quasi 6-day wave is one of the most prevailing planetary waves in the mesosphere and lower thermosphere (MLT) region. Its peak amplitude can attain 20-30 m/s in low-latitude zonal winds at around equinoxes. Consequently, it is anticipated that the 6-day wave can induce not only significantly dynamic effects (via wave-mean flow and wave-wave interactions) in the MLT, but also have significant impacts on the Thermosphere and Ionosphere (T-I). The understanding of the 6-day wave impact on the T-I system has been advanced a lot due to the recent development of whole atmosphere models and new satellite observations. Three pathways were widely proposed to explain the upward coupling due to the 6-day wave: E-region dynamo modulation, dissipation and nonlinear interaction with thermal tides. The current work aims to show a comprehensive pattern of the 6-day wave from the mesosphere up to the thermosphere/ionosphere in neutral fields (temperature, 3-D winds and density) and plasma drifts. To achieve this goal, we carry out the 6-day wave diagnostics by two different means. Firstly, the output of a one-year WACCM+DART run with data assimilation is analyzed to show the global structure of the 6-day wave in the MLT, followed by E-P flux diagnostics to elucidate the 6-day wave source and wave-mean flow interactions. Secondly, we produce observation-based 6-day wave patterns throughout the whole thermosphere by constraining modeled (TIME-GCM) 6-day wave patterns with observed 6-day wave patterns from SABER and TIDI in the MLT region. This allows us to fill the 110-400 km gap between remote sensing and in-situ satellites, and to obtain more realistic 6-day wave plasma drift patterns.
NASA Astrophysics Data System (ADS)
Kaurkin, M. N.; Ibrayev, R. A.; Belyaev, K. P.
2018-01-01
A parallel realization of the Ensemble Optimal Interpolation (EnOI) data assimilation (DA) method in conjunction with the eddy-resolving global circulation model is implemented. The results of DA experiments in the North Atlantic with the assimilation of the Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO) data from the Jason-1 satellite are analyzed. The results of simulation are compared with the independent temperature and salinity data from the ARGO drifters.
Ngodock, Hans; Carrier, Matthew; Fabre, Josette; Zingarelli, Robert; Souopgui, Innocent
2017-07-01
This study presents the theoretical framework for variational data assimilation of acoustic pressure observations into an acoustic propagation model, namely, the range dependent acoustic model (RAM). RAM uses the split-step Padé algorithm to solve the parabolic equation. The assimilation consists of minimizing a weighted least squares cost function that includes discrepancies between the model solution and the observations. The minimization process, which uses the principle of variations, requires the derivation of the tangent linear and adjoint models of the RAM. The mathematical derivations are presented here, and, for the sake of brevity, a companion study presents the numerical implementation and results from the assimilation simulated acoustic pressure observations.
NASA Astrophysics Data System (ADS)
Xu, Tongren; Bateni, S. M.; Neale, C. M. U.; Auligne, T.; Liu, Shaomin
2018-03-01
In different studies, land surface temperature (LST) observations have been assimilated into the variational data assimilation (VDA) approaches to estimate turbulent heat fluxes. The VDA methods yield accurate turbulent heat fluxes, but they need an adjoint model, which is difficult to derive and code. They also cannot directly calculate the uncertainty of their estimates. To overcome the abovementioned drawbacks, this study assimilates LST data from Geostationary Operational Environmental Satellite into the ensemble Kalman smoother (EnKS) data assimilation system to estimate turbulent heat fluxes. EnKS does not need to derive the adjoint term and directly generates statistical information on the accuracy of its predictions. It uses the heat diffusion equation to simulate LST. EnKS with the state augmentation approach finds the optimal values for the unknown parameters (i.e., evaporative fraction and neutral bulk heat transfer coefficient, CHN) by minimizing the misfit between LST observations from Geostationary Operational Environmental Satellite and LST estimations from the heat diffusion equation. The augmented EnKS scheme is tested over six Ameriflux sites with a wide range of hydrological and vegetative conditions. The results show that EnKS can predict not only the model parameters and turbulent heat fluxes but also their uncertainties over a variety of land surface conditions. Compared to the variational method, EnKS yields suboptimal turbulent heat fluxes. However, suboptimality of EnKS is small, and its results are comparable to those of the VDA method. Overall, EnKS is a feasible and reliable method for estimation of turbulent heat fluxes.
Building occupancy simulation and data assimilation using a graph-based agent-oriented model
NASA Astrophysics Data System (ADS)
Rai, Sanish; Hu, Xiaolin
2018-07-01
Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.
Coupled Data Assimilation in Navy ESPC
NASA Astrophysics Data System (ADS)
Barron, C. N.; Spence, P. L.; Frolov, S.; Rowley, C. D.; Bishop, C. H.; Wei, M.; Ruston, B.; Smedstad, O. M.
2017-12-01
Data assimilation under global coupled Earth System Prediction Capability (ESPC) presents significantly greater challenges than data assimilation in forecast models of a single earth system like the ocean and atmosphere. In forecasts of a single component, data assimilation has broad flexibility in adjusting boundary conditions to reduce forecast errors; coupled ESPC requires consistent simultaneous adjustment of multiple components within the earth system: air, ocean, ice, and others. Data assimilation uses error covariances to express how to consistently adjust model conditions in response to differences between forecasts and observations; in coupled ESPC, these covariances must extend from air to ice to ocean such that changes within one fluid are appropriately balanced with corresponding adjustments in the other components. We show several algorithmic solutions that allow us to resolve these challenges. Specifically, we introduce the interface solver method that augments existing stand-alone systems for ocean and atmosphere by allowing them to be influenced by relevant measurements from the coupled fluid. Plans are outlined for implementing coupled data assimilation within ESPC for the Navy's global coupled model. Preliminary results show the impact of assimilating SST-sensitive radiances in the atmospheric model and first results of hybrid DA in a 1/12 degree model of the global ocean.
A 3D Optimal Interpolation Assimilation Scheme of HF Radar Current Data into a Numerical Ocean Model
NASA Astrophysics Data System (ADS)
Ragnoli, Emanuele; Zhuk, Sergiy; Donncha, Fearghal O.; Suits, Frank; Hartnett, Michael
2013-04-01
In this work a technique for the 3D assimilation of ocean surface current measurements into a numerical ocean model based on data from High Frequency Radar (HFR) systems is presented. The technique is the combination of supplementary forcing on the surface and of and Ekman layer projection of the correction in the depth. Optimal interpolation through BLUE (Best Linear Unbiased Estimator) of the model predicted velocity and HFR observations is computed in order to derive a supplementary forcing applied at the surface boundary. In the depth the assimilation is propagated using an additional Ekman pumping (vertical velocity) based on the correction achieved by BLUE. In this work a HFR data assimilation system for hydrodynamic modelling of Galway Bay in Ireland is developed; it demonstrates the viability of adopting data assimilation techniques to improve the performance of numerical models in regions characterized by significant wind-driven flows. A network of CODAR Seasonde high frequency radars (HFR) deployed within Galway Bay, on the West Coast of Ireland, provides flow measurements adopted for this study. This system provides real-time synoptic measurements of both ocean surface currents and ocean surface waves in regions of the bay where radials from two or more radars intersect. Radar systems have a number of unique advantages in ocean modelling data assimilation schemes, namely, the ability to provide two-dimensional mapping of surface currents at resolutions that capture the complex structure related to coastal topography and the intrinsic instability scales of coastal circulation at a relatively low-cost. The radar system used in this study operates at a frequency of 25MHz which provides a sampling range of 25km at a spatial resolution of 300m.A detailed dataset of HFR observed velocities is collected at 60 minute intervals for a period chosen for comparison due to frequent occurrences of highly-energetic, storm-force events. In conjunction with this, a comprehensive weather station, tide gauge and river monitoring program is conducted. The data are then used to maintain density fields within the model and to force the wind direction and magnitude on flows. The Data Assimilation scheme is then assessed and validated via HFR surface flow measurements.
NASA Technical Reports Server (NTRS)
White, Warren B.; Tai, Chang-Kou; Holland, William R.
1990-01-01
The optimal interpolation method of Lorenc (1981) was used to conduct continuous assimilation of altimetric sea level differences from the simulated Geosat exact repeat mission (ERM) into a three-layer quasi-geostrophic eddy-resolving numerical ocean box model that simulates the statistics of mesoscale eddy activity in the western North Pacific. Assimilation was conducted continuously as the Geosat tracks appeared in simulated real time/space, with each track repeating every 17 days, but occurring at different times and locations within the 17-day period, as would have occurred in a realistic nowcast situation. This interpolation method was also used to conduct the assimilation of referenced altimetric sea level differences into the same model, performing the referencing of altimetric sea sevel differences by using the simulated sea level. The results of this dynamical interpolation procedure are compared with those of a statistical (i.e., optimum) interpolation procedure.
NASA Astrophysics Data System (ADS)
Pan, M.; Wood, E. F.
2004-05-01
This study explores a method to estimate various components of the water cycle (ET, runoff, land storage, etc.) based on a number of different info sources, including both observations and observation-enhanced model simulations. Different from existing data assimilations, this constrained Kalman filtering approach keeps the water budget perfectly closed while updating the states of the underlying model (VIC model) optimally using observations. Assimilating different data sources in this way has several advantages: (1) physical model is included to make estimation time series smooth, missing-free, and more physically consistent; (2) uncertainties in the model and observations are properly addressed; (3) model is constrained by observation thus to reduce model biases; (4) balance of water is always preserved along the assimilation. Experiments are carried out in Southern Great Plain region where necessary observations have been collected. This method may also be implemented in other applications with physical constraints (e.g. energy cycles) and at different scales.
Norris, Peter M.; da Silva, Arlindo M.
2018-01-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational–Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state. PMID:29618848
NASA Technical Reports Server (NTRS)
Norris, Peter M.; da Silva, Arlindo M.
2016-01-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state.
Norris, Peter M; da Silva, Arlindo M
2016-07-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state.
NASA Astrophysics Data System (ADS)
Debreu, Laurent; Neveu, Emilie; Simon, Ehouarn; Le Dimet, Francois Xavier; Vidard, Arthur
2014-05-01
In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. On a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse grid correction step. We show that even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid methods. The view of the multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale dependent weighting of the multigrid preconditioner and the usual background error covariance matrix based preconditioner is proposed and brings significant improvements. [1] Laurent Debreu, Emilie Neveu, Ehouarn Simon, François-Xavier Le Dimet and Arthur Vidard, 2014: Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems, submitted to QJRMS, http://hal.inria.fr/hal-00874643 [2] Emilie Neveu, Laurent Debreu and François-Xavier Le Dimet, 2011: Multigrid methods and data assimilation - Convergence study and first experiments on non-linear equations, ARIMA, 14, 63-80, http://intranet.inria.fr/international/arima/014/014005.html
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Song, Xuehang; Ye, Ming
A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less
An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System
NASA Astrophysics Data System (ADS)
Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong
2018-03-01
An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.
Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast
NASA Technical Reports Server (NTRS)
Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.
2014-01-01
Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.
Disconfirmed hedonic expectations produce perceptual contrast, not assimilation.
Zellner, Debra A; Strickhouser, Dinah; Tornow, Carina E
2004-01-01
In studies of hedonic ratings, contrast is the usual result when expectations about test stimuli are produced through the presentation of context stimuli, whereas assimilation is the usual result when expectations about test stimuli are produced through labeling, advertising, or the relaying of information to the subject about the test stimuli. Both procedures produce expectations that are subsequently violated, but the outcomes are different. The present studies demonstrate that both assimilation and contrast can occur even when expectations are produced by verbal labels and the degree of violation of the expectation is held constant. One factor determining whether assimilation or contrast occurs appears to be the certainty of the expectation. Expectations that convey certainty are produced by methods that lead to social influence on subjects' ratings, producing assimilation. When social influence is not a factor and subjects give judgments influenced only by the perceived hedonic value of the stimulus, contrast is the result.
NASA Astrophysics Data System (ADS)
Farhadi, L.; Bateni, S. M.; Auligne, T.; Navari, M.
2017-12-01
Snow emissivity is a key parameter for the estimation of snow surface temperature, which is needed as an initial value in climate models and determination of the outgoing long-wave radiation. Moreover, snow emissivity is required for retrieval of atmospheric parameters (e.g., temperature and humidity profiles) from satellite measurements and satellite data assimilations in numerical weather prediction systems. Microwave emission models and remote sensing data cannot accurately estimate snow emissivity due to limitations attributed to each of them. Existing microwave emission models introduce significant uncertainties in their snow emissivity estimates. This is mainly due to shortcomings of the dense media theory for snow medium at high frequencies, and erroneous forcing variables. The well-known limitations of passive microwave data such as coarse spatial resolution, saturation in deep snowpack, and signal loss in wet snow are the major drawbacks of passive microwave retrieval algorithms for estimation of snow emissivity. A full exploitation of the information contained in the remote sensing data can be achieved by merging them with snow emission models within a data assimilation framework. Such an optimal merging can overcome the specific limitations of models and remote sensing data. An Ensemble Batch Smoother (EnBS) data assimilation framework was developed in this study to combine the synthetically generated passive microwave brightness temperatures at 1.4-, 18.7-, 36.5-, and 89-GHz frequencies with the MEMLS microwave emission model to reduce the uncertainty of the snow emissivity estimates. We have used the EnBS algorithm in the context of observing system simulation experiment (or synthetic experiment) at the local scale observation site (LSOS) of the NASA CLPX field campaign. Our findings showed that the developed methodology significantly improves the estimates of the snow emissivity. The simultaneous assimilation of passive microwave brightness temperatures at all frequencies (i.e., 1.4-, 18.7-, 36.5-, and 89-GHz) reduce the root-mean-square-error (RMSE) of snow emissivity at 1.4-, 18.7-, 36.5-, and 89-GHz (H-pol.) by 80%, 42%, 52%, 40%, respectively compared to the corresponding snow emissivity estimates from the open-loop model.
NASA Astrophysics Data System (ADS)
Strobach, E.; Molod, A.; Menemenlis, D.; Forget, G.; Hill, C. N.; Campin, J. M.; Heimbach, P.
2017-12-01
Forcing ocean models with reanalysis data is a common practice in ocean modeling. As part of this practice, prescribed atmospheric state variables and interactive ocean SST are used to calculate fluxes between the ocean and the atmosphere. When forcing an ocean model with reanalysis fields, errors in the reanalysis data, errors in the ocean model and errors in the forcing formulation will generate a different solution compared to other ocean reanalysis solutions (which also have their own errors). As a first step towards a consistent coupled ocean-atmosphere reanalysis, we compare surface heat fluxes from a state-of-the-art atmospheric reanalysis, the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), to heat fluxes from a state-of-the-art oceanic reanalysis, the Estimating the Circulation and Climate of the Ocean Version 4, Release 2 (ECCO-v4). Then, we investigate the errors associated with the MITgcm ocean model in its ECCO-v4 ocean reanalysis configuration (1992-2011) when it is forced with MERRA-2 atmospheric reanalysis fields instead of with the ECCO-v4 adjoint optimized ERA-interim state variables. This is done by forcing ECCO-v4 ocean with and without feedbacks from MERRA-2 related to turbulent fluxes of heat and moisture and the outgoing long wave radiation. In addition, we introduce an intermediate forcing method that includes only the feedback from the interactive outgoing long wave radiation. The resulting ocean circulation is compared with ECCO-v4 reanalysis and in-situ observations. We show that, without feedbacks, imbalances in the energy and the hydrological cycles of MERRA-2 (which are directly related to the fact it was created without interactive ocean) result in considerable SST drifts and a large reduction in sea level. The bulk formulae and interactive outgoing long wave radiation, although providing air-sea feedbacks and reducing model-data misfit, strongly relax the ocean to observed SST and may result in unwanted features such as large change in the water budget. These features have implications in on desired forcing recipe to be used. The results strongly and unambiguously argue for next generation data assimilation climate studies to involve fully coupled systems.
Assimilation of satellite altimeter data into an open ocean model
NASA Astrophysics Data System (ADS)
Vogeler, Armin; SchröTer, Jens
1995-08-01
Geosat sea surface height data are assimilated into an eddy-resolving quasi-geostrophic open ocean model using the adjoint technique. The method adjusts the initial conditions for all layers and is successful on the timescale of a few weeks. Time-varying values for the open boundaries are prescribed by a much larger quasi-geostrophic model of the Antarctic Circumpolar Current (ACC). Both models have the same resolution of approximately 20×20 km (1/3°×1/6°), have three layers, and include realistic bottom topography and coastlines. The open model box is embedded in the African sector of the ACC. For continuous assimilation of satellite data into the larger model the nudging technique is applied. These results are used for the adjoint optimization procedure as boundary conditions and as a first guess for the initial condition. For the open model box the difference between model and satellite sea surface height that remains after the nudging experiment amounts to a 19-cm root-mean-square error (rmse). By assimilation into the regional model this value can be reduced to a 6-cm rmse for an assimilation period of 20 days. Several experiments which attempt to improve the convergence of the iterative optimization method are reported. Scaling and regularization by smoothing have to be applied carefully. Especially during the first 10 iterations, the convergence can be improved considerably by low-pass filtering of the cost function gradient. The result of a perturbation experiment shows that for longer assimilation periods the influence of the boundary values becomes dominant and they should be determined inversely by data assimilation into the open ocean model.
NASA Astrophysics Data System (ADS)
McDonald, S. E.; Sassi, F.; Tate, J.; McCormack, J.; Kuhl, D. D.; Drob, D. P.; Metzler, C.; Mannucci, A. J.
2018-06-01
The lower atmosphere contributes significantly to the day-to-day variability of the ionosphere, especially during solar minimum conditions. Ionosphere/atmosphere model simulations that incorporate meteorology from data assimilation analysis products can be critically important for elucidating the physical processes that have substantial impact on ionospheric weather. In this study, the NCAR Whole Atmosphere Community Climate Model, extended version with specified dynamics (SD-WACCM-X) is coupled with an ionospheric model (Sami3 is Another Model of the Ionosphere) to study day-to-day variability in the ionosphere during January 2010. Lower atmospheric weather patterns are introduced into the SAMI3/SD-WACCM-X simulations using the 6-h Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) data assimilation products. The same time period is simulated using the new atmospheric forecast model, the High Altitude Navy Global Environmental Model (HA-NAVGEM), a hybrid 4D-Var prototype data assimilation with the ability to produce meteorological fields at a 3-h cadence. Our study shows that forcing SD-WACCM-X with HA-NAVGEM better resolves the semidiurnal tides and introduces more day-to-day variability into the ionosphere than forcing with NOGAPS-ALPHA. The SAMI3/SD-WACCM-X/HA-NAVGEM simulation also more accurately captures the longitudinal variability associated with non-migrating tides in the equatorial ionization anomaly (EIA) region as compared to total electron content (TEC) maps derived from GPS data. Both the TEC maps and the SAMI3/SD-WACCM-X/HA-NAVGEM simulation show an enhancement in TEC over South America during 17-21 January 2010, which coincides with the commencement of a stratospheric warming event on 19 January 2010. Analysis of the SAMI3/SD-WACCM-X/HA-NAVGEM simulations indicates non-migrating tides (including DW4, DE2 and SW5) played a role during 17-21 January in shifting the phase of the wave-3 pattern in the ionosphere on these days. Constructive interference of wave-3 and wave-4 patterns in the E × B drifts contributed to the enhanced TEC in the South American longitude sector. The results of the study highlight the importance of high fidelity meteorology in understanding the day-to-day variability of the ionosphere.
Assimilation of LAI time-series in crop production models
NASA Astrophysics Data System (ADS)
Kooistra, Lammert; Rijk, Bert; Nannes, Louis
2014-05-01
Agriculture is worldwide a large consumer of freshwater, nutrients and land. Spatial explicit agricultural management activities (e.g., fertilization, irrigation) could significantly improve efficiency in resource use. In previous studies and operational applications, remote sensing has shown to be a powerful method for spatio-temporal monitoring of actual crop status. As a next step, yield forecasting by assimilating remote sensing based plant variables in crop production models would improve agricultural decision support both at the farm and field level. In this study we investigated the potential of remote sensing based Leaf Area Index (LAI) time-series assimilated in the crop production model LINTUL to improve yield forecasting at field level. The effect of assimilation method and amount of assimilated observations was evaluated. The LINTUL-3 crop production model was calibrated and validated for a potato crop on two experimental fields in the south of the Netherlands. A range of data sources (e.g., in-situ soil moisture and weather sensors, destructive crop measurements) was used for calibration of the model for the experimental field in 2010. LAI from cropscan field radiometer measurements and actual LAI measured with the LAI-2000 instrument were used as input for the LAI time-series. The LAI time-series were assimilated in the LINTUL model and validated for a second experimental field on which potatoes were grown in 2011. Yield in 2011 was simulated with an R2 of 0.82 when compared with field measured yield. Furthermore, we analysed the potential of assimilation of LAI into the LINTUL-3 model through the 'updating' assimilation technique. The deviation between measured and simulated yield decreased from 9371 kg/ha to 8729 kg/ha when assimilating weekly LAI measurements in the LINTUL model over the season of 2011. LINTUL-3 furthermore shows the main growth reducing factors, which are useful for farm decision support. The combination of crop models and sensor techniques shows promising results for precision agriculture application and thereby for reduction of the footprint agriculture has on the world's resources.
Adjustment of trendy, gaming and less assimilated tweens in the United States
Comulada, W. Scott; Rotheram-Borus, Mary Jane; Carey, George; Poris, Michelle; Lord, Lynwood R.; Mayfield Arnold, Elizabeth
2014-01-01
Youth transitioning from childhood to adolescence (tweens) are exposed to increasing amounts of media and advertisement. Tweens have also emerged as a major marketing segment for corporate America with increasing buying power.We examine how tweens relate to popular culture messages and the association of different orientations to popular culture on adjustment. A secondary data analysis was conducted on a marketing survey of 3527 tweens, aged 10–14 years, obtained from 49 schools using stratified sampling methods. A sample of children nationwide described their preferences on popular culture and measures of psychosocial adjustment. Using cluster analysis, we identified three main clusters or adaptation styles of tweens: (1) those who enjoyed gaming, (2) trendy youth and (3) youth less assimilated into popular culture. There were differences in clusters based on adjustment indices. Gaming and trendy tweens reported higher self-perceptions of being smart, caring and confident compared to less assimilated tweens. However, gaming and trendy tweens worried more about fitting in than less assimilated tweens. Gaming and trendy tweens also endorsed future goals and traditional values more strongly than less assimilated tweens. Trendy tweens reported the strongest positive feelings about substance use. Results suggest that for each method of adaptation (gamer, trendy and less assimilated), there are unique differences in adjustment that can impact the child’s future. Parents and service providers must recognize the complexity of these decisions and be sensitive to the unique needs of youth as they move from childhood to adolescence. PMID:25580153
Adjustment of trendy, gaming and less assimilated tweens in the United States.
Comulada, W Scott; Rotheram-Borus, Mary Jane; Carey, George; Poris, Michelle; Lord, Lynwood R; Mayfield Arnold, Elizabeth
2011-09-01
Youth transitioning from childhood to adolescence (tweens) are exposed to increasing amounts of media and advertisement. Tweens have also emerged as a major marketing segment for corporate America with increasing buying power.We examine how tweens relate to popular culture messages and the association of different orientations to popular culture on adjustment. A secondary data analysis was conducted on a marketing survey of 3527 tweens, aged 10-14 years, obtained from 49 schools using stratified sampling methods. A sample of children nationwide described their preferences on popular culture and measures of psychosocial adjustment. Using cluster analysis, we identified three main clusters or adaptation styles of tweens: (1) those who enjoyed gaming, (2) trendy youth and (3) youth less assimilated into popular culture. There were differences in clusters based on adjustment indices. Gaming and trendy tweens reported higher self-perceptions of being smart, caring and confident compared to less assimilated tweens. However, gaming and trendy tweens worried more about fitting in than less assimilated tweens. Gaming and trendy tweens also endorsed future goals and traditional values more strongly than less assimilated tweens. Trendy tweens reported the strongest positive feelings about substance use. Results suggest that for each method of adaptation (gamer, trendy and less assimilated), there are unique differences in adjustment that can impact the child's future. Parents and service providers must recognize the complexity of these decisions and be sensitive to the unique needs of youth as they move from childhood to adolescence.
Data assimilation using a GPU accelerated path integral Monte Carlo approach
NASA Astrophysics Data System (ADS)
Quinn, John C.; Abarbanel, Henry D. I.
2011-09-01
The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a graphics processing unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases.
On the estimation of ice thickness from scattering observations
NASA Astrophysics Data System (ADS)
Williams, T. D.; Squire, V. A.
2010-04-01
This paper is inspired by the proposition that it may be possible to extract descriptive physical parameters - in particular the ice thickness, of a sea-ice field from ocean wave information. The motivation is that mathematical theory describing wave propagation in such media has reached a point where the inherent heterogeneity, expressed as pressure ridge keels and sails, leads, thickness variations and changes of material property and draught, can be fully assimilated exactly or through approximations whose limitations are understood. On the basis that leads have the major wave scattering effect for most sea-ice [Williams, T.D., Squire, V.A., 2004. Oblique scattering of plane flexural-gravity waves by heterogeneities in sea ice. Proc. R. Soc. Lon. Ser.-A 460 (2052), 3469-3497], a model two dimensional sea-ice sheet composed of a large number of such features, randomly dispersed, is constructed. The wide spacing approximation is used to predict how wave trains of different period will be affected, after first establishing that this produces results that are very close to the exact solution. Like Kohout and Meylan [Kohout, A.L., Meylan, M.H., 2008. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. J. Geophys. Res. 113, C09016, doi:10.1029/2007JC004434], we find that on average the magnitude of a wave transmitted by a field of leads decays exponentially with the number of leads. Then, by fitting a curve based on this assumption to the data, the thickness of the ice sheet is obtained. The attenuation coefficient can always be calculated numerically by ensemble averaging but in some cases more rapidly computed approximations work extremely well. Moreover, it is found that the underlying thickness can be determined to good accuracy by the method as long as Archimedean draught is correctly provided for, suggesting that waves can indeed be effective as a remote sensing agent to measure ice thickness in areas where pressure ridges are not sizeable, i.e. away from coastal regions of high deformation.
NASA Astrophysics Data System (ADS)
McCreight, J. L.; Wu, Y.; Gochis, D.; Rafieeinasab, A.; Dugger, A. L.; Yu, W.; Cosgrove, B.; Cui, Z.; Oubeidillah, A.; Briar, D.
2016-12-01
The streamflow (discharge) data assimilation capability in version 1 of the National Water Model (NWM; a WRF-Hydro configuration) is applied and evaluated in a 5-year (2011-2015) retrospective study using NLDAS2 forcing data over CONUS. This talk will describe the NWM V1 operational nudging (continuous-time) streamflow data assimilation approach, its motivation, and its relationship to this retrospective evaluation. Results from this study will provide a an analysis-based (not forecast-based) benchmark for streamflow DA in the NWM. The goal of the assimilation is to reduce discharge bias and improve channel initial conditions for discharge forecasting (though forecasts are not considered here). The nudging method assimilates discharge observations at nearly 7,000 USGS gages (at frequency up to 1/15 minutes) to produce a (univariate) discharge reanalysis (i.e. this is the only variable affected by the assimilation). By withholding 14% nested gages throughout CONUS in a separate validation run, we evaluate the downstream impact of assimilation at upstream gages. Based on this sample, we estimate the skill of the streamflow reanalysis at ungaged locations and examine factors governing the skill of the assimilation. Comparison of assimilation and open-loop runs is presented. Performance of DA under both high and low flow regimes and selected flooding events is examined. Preliminary evaluation of nudging parameter sensitivity and its relationship to flow regime will be presented.
NLDAS Views of North American 2011 Extreme Events
NASA Technical Reports Server (NTRS)
Rui, Hualan; Teng, William; Vollmer, Bruce; Mocko, David; Lei, Guang-Dih
2012-01-01
2011 was marked as one of the most extreme years in recent history. Over the course of the year, weather-related extreme events, such as floods, heat waves, blizzards, tornadoes, and wildfires, caused tremendous loss of human life and property. The North American Land Data Assimilation System (NLDAS, http://ldas.gsfc.nasa.gov/nldas/) data set, with high spatial and temporal resolutions (0.125? x 0.125?, hourly) and various water- and energy-related variables, is an excellent data source for case studies of extreme events. This presentation illustrates some extreme events from 2011 in North America, including the Groundhog Day Blizzard, the July heat wave, Hurricane Irene, and Tropical Storm Lee, all utilizing NLDAS Phase 2 (NLDAS-2) data.
NASA Astrophysics Data System (ADS)
Hostache, R.; Matgen, P.; Giustarini, L.; Tailliez, C.; Iffly, J.-F.
2011-11-01
The main objective of this study is to contribute to the development and the improvement of flood forecasting systems. Since hydrometric stations are often poorly distributed for monitoring the propagation of extreme flood waves, the study aims at evaluating the hydrometric value of the Global Navigation Satellite System (GNSS). Integrated with satellite telecommunication systems, drifting or anchored floaters equipped with navigation systems such as GPS and Galileo, enable the quasi-continuous measurement and near real-time transmission of water level and flow velocity data, from virtually any point in the world. The presented study investigates the effect of assimilating GNSS-derived water level and flow velocity measurements into hydraulic models in order to reduce the associated predictive uncertainty.
NASA Astrophysics Data System (ADS)
Oubanas, Hind; Gejadze, Igor; Malaterre, Pierre-Olivier; Mercier, Franck
2018-04-01
The upcoming Surface Water and Ocean Topography satellite mission, to be launched in 2021, will measure river water surface elevation, slope and width, with an unprecedented level of accuracy for a remote sensing tool. This work investigates the river discharge estimation from synthetic SWOT observations, in the presence of strong uncertainties in the model inputs, i.e. the river bathymetry and bed roughness. The estimation problem is solved by a novel variant of the standard variational data assimilation, the '4D-Var' method, involving the full Saint-Venant 1.5D-network hydraulic model SIC2. The assimilation scheme simultaneously estimates the discharge, bed elevation and bed roughness coefficient and is designed to assimilate both satellite and in situ measurements. The method is tested on a 50 km-long reach of the Garonne River during a five-month period of the year 2010, characterized by multiple flooding events. First, the impact of the sampling frequency on discharge estimation is investigated. Secondly, discharge as well as the spatially distributed bed elevation and bed roughness coefficient are determined simultaneously. Results demonstrate feasibility and efficiency of the chosen combination of the estimation method and of the hydraulic model. Assimilation of the SWOT data results into an accurate estimation of the discharge at observation times, and a local improvement in the bed level and bed roughness coefficient. However, the latter estimates are not generally usable for different independent experiments.
BEATBOX v1.0: Background Error Analysis Testbed with Box Models
NASA Astrophysics Data System (ADS)
Knote, Christoph; Barré, Jérôme; Eckl, Max
2018-02-01
The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.
POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
NASA Astrophysics Data System (ADS)
Ştefănescu, R.; Sandu, A.; Navon, I. M.
2015-08-01
This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush-Kuhn-Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for proper orthogonal decomposition (POD) ROM data assimilation using both Galerkin and Petrov-Galerkin projections. For the first time POD, tensorial POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov-Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.
Diagnostic Comparison of Meteorological Analyses during the 2002 Antarctic Winter
NASA Technical Reports Server (NTRS)
Manney, Gloria L.; Allen, Douglas R.; Kruger, Kirstin; Naujokat, Barbara; Santee, Michelle L.; Sabutis, Joseph L.; Pawson, Steven; Swinbank, Richard; Randall, Cora E.; Simmons, Adrian J.;
2005-01-01
Several meteorological datasets, including U.K. Met Office (MetO), European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and NASA's Goddard Earth Observation System (GEOS-4) analyses, are being used in studies of the 2002 Southern Hemisphere (SH) stratospheric winter and Antarctic major warming. Diagnostics are compared to assess how these studies may be affected by the meteorological data used. While the overall structure and evolution of temperatures, winds, and wave diagnostics in the different analyses provide a consistent picture of the large-scale dynamics of the SH 2002 winter, several significant differences may affect detailed studies. The NCEP-NCAR reanalysis (REAN) and NCEP-Department of Energy (DOE) reanalysis-2 (REAN-2) datasets are not recommended for detailed studies, especially those related to polar processing, because of lower-stratospheric temperature biases that result in underestimates of polar processing potential, and because their winds and wave diagnostics show increasing differences from other analyses between similar to 30 and 10 hPa (their top level). Southern Hemisphere polar stratospheric temperatures in the ECMWF 40-Yr Re-analysis (ERA-40) show unrealistic vertical structure, so this long-term reanalysis is also unsuited for quantitative studies. The NCEP/Climate Prediction Center (CPC) objective analyses give an inferior representation of the upper-stratospheric vortex. Polar vortex transport barriers are similar in all analyses, but there is large variation in the amount, patterns, and timing of mixing, even among the operational assimilated datasets (ECMWF, MetO, and GEOS-4). The higher-resolution GEOS-4 and ECMWF assimilations provide significantly better representation of filamentation and small-scale structure than the other analyses, even when fields gridded at reduced resolution are studied. The choice of which analysis to use is most critical for detailed transport studies (including polar process modeling) and studies involving synoptic evolution in the upper stratosphere. The operational assimilated datasets are better suited for most applications than the NCEP/CPC objective analyses and the reanalysis datasets.
NASA Astrophysics Data System (ADS)
Limber, P. W.; Barnard, P.; Erikson, L. H.
2016-02-01
Modeling coastal geomorphic change over multi-decadal time and regional spatial scales (i.e. >20 km alongshore) is in high demand due to rising global sea levels and heavily populated coastal zones, but is challenging for several reasons: adequate geomorphic and oceanographic data often does not exist over the entire study area or time period; models can be too computationally expensive; and model uncertainty is high. In the absence of rich datasets and unlimited computer processing power, researchers are forced to leverage existing data, however sparse, and find analytical methods that minimize computation time without sacrificing (too much) model reliability. Machine learning techniques, such as artificial neural networks, can assimilate and efficiently extrapolate geomorphic model behavior over large areas. They can also facilitate ensemble model forecasts over a broad range of parameter space, which is useful when a paucity of observational data inhibits the constraint of model parameters. Here, we assimilate the behavior of two established process-based sea cliff erosion and retreat models into a neural network to forecast the impacts of sea level rise on sea cliff retreat in Southern California ( 400 km) through the 21st century. Using inputs such as historical cliff retreat rates, mean wave power, and whether or not a beach is present, the neural network independently reproduces modeled sea cliff retreat as a function of sea level rise with a high degree of confidence (R2 > 0.9, mean squared error < 0.1 m yr-1). Results will continuously improve as more model scenarios are assimilated into the neural network, and more field data (i.e., cliff composition and rock hardness) becomes available to tune the cliff retreat models. Preliminary results suggest that sea level rise rates of 2 to 20 mm yr-1 during the next century could accelerate historical cliff retreat rates in Southern California by an average of 0.10 - 0.56 m yr-1.
Numerical Simulations and Observations of Surface Wave Fields Under an Extreme Tropical Cyclone
2009-09-01
the initial condition is first generated using the Gener- alized Digital Environmental Model ( GDEM ) monthly ocean temperature and salinity climatology...soscale eddies in the Gulf of Mexico, but no real-time data assimilation is done in the Caribbean Sea. Instead, the GDEM monthly climatology data are used... GDEM monthly climatology to initialize the 3D tem- perature and current fields in our ocean model. Since the climatology data smooth out most of the
A Variational Assimilation System for Nearshore Wave Modeling
2013-05-01
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number ...5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10
Multi-Scale 4DVAR Assimilation of Glider Teams on the North Carolina Shelf
NASA Astrophysics Data System (ADS)
Osborne, J. J. V.; Carrier, M.; Book, J. W.; Barron, C. N.; Rice, A. E.; Rowley, C. D.; Smedstad, L.; Souopgui, I.; Teague, W. J.
2017-12-01
We demonstrate a method to assimilate glider profile data from multiple gliders in close proximity ( 10 km or less). Gliders were deployed in a field experiment from 17 May until 4 June 2017, north of Cape Hatteras and inshore of the Gulf Stream. Gliders were divided into two teams, generally two or three gliders per team. One team was tasked with station keeping and the other with moving and sampling regions of high variability in temperature and salinity. Glider data are assimilated into the Relocatable Navy Coastal Ocean Model (RELO NCOM) with four dimensional variational assimilation (NCOM-4DVAR). RELO NCOM is used by the US Navy to predict the ocean. RELO NCOM is a baroclinic, Boussinesq, free-surface, and hydrostatic ocean model with a flexible sigma-z vertical coordinate. Two domains are used, one focused north and one focused south of Cape Hatteras. The domains overlap near the gliders, thus providing two forecasts near the gliders. Both domains have 1 km horizontal resolution. Data are assimilated in a newly-developed multi-scale data-processing and assimilating approach using NCOM-4DVAR. This enables NCOM-4DVAR to use many more observations than standard NCOM-4DVAR, improving the analysis and forecast. Assimilation experiments use station-keeping glider data, moving glider data, or all glider data. Sea surface temperature (SST) data and satellite altimeter (SSH) data are also assimilated. An additional experiment omits glider data but still assimilates SST and SSH data. Conductivity, temperature, and depth (CTD) profiles from the R/V Savannah are used for validation, including data from an underway CTD (UCTD). Data from glider teams have the potential to significantly improve model forecasts. Missions using teams of gliders can be planned to maximize data assimilation for optimal impact on model predictions.
Next generation initiation techniques
NASA Technical Reports Server (NTRS)
Warner, Tom; Derber, John; Zupanski, Milija; Cohn, Steve; Verlinde, Hans
1993-01-01
Four-dimensional data assimilation strategies can generally be classified as either current or next generation, depending upon whether they are used operationally or not. Current-generation data-assimilation techniques are those that are presently used routinely in operational-forecasting or research applications. They can be classified into the following categories: intermittent assimilation, Newtonian relaxation, and physical initialization. It should be noted that these techniques are the subject of continued research, and their improvement will parallel the development of next generation techniques described by the other speakers. Next generation assimilation techniques are those that are under development but are not yet used operationally. Most of these procedures are derived from control theory or variational methods and primarily represent continuous assimilation approaches, in which the data and model dynamics are 'fitted' to each other in an optimal way. Another 'next generation' category is the initialization of convective-scale models. Intermittent assimilation systems use an objective analysis to combine all observations within a time window that is centered on the analysis time. Continuous first-generation assimilation systems are usually based on the Newtonian-relaxation or 'nudging' techniques. Physical initialization procedures generally involve the use of standard or nonstandard data to force some physical process in the model during an assimilation period. Under the topic of next-generation assimilation techniques, variational approaches are currently being actively developed. Variational approaches seek to minimize a cost or penalty function which measures a model's fit to observations, background fields and other imposed constraints. Alternatively, the Kalman filter technique, which is also under investigation as a data assimilation procedure for numerical weather prediction, can yield acceptable initial conditions for mesoscale models. The third kind of next-generation technique involves strategies to initialize convective scale (non-hydrostatic) models.
I Know There Is No Justice: Palestinian Perceptions of Higher Education in Jordan
ERIC Educational Resources Information Center
Marar, Marianne Maurice
2011-01-01
This qualitative study utilizes critical ethnography methods to illustrate Palestinian refugee perceptions of higher education in Jordan. Participants addressed their assimilation to the Jordanian national identity as a means of obtaining education. Content and access to education were more important than assimilation, maintenance of ethnic…
USDA-ARS?s Scientific Manuscript database
The performance of conventional filtering methods can be degraded by ignoring the time lag between soil moisture and discharge response when discharge observations are assimilated into streamflow modelling. This has led to the ongoing development of more optimal ways to implement sequential data ass...
Assimilation of qualitative hydrological information in water-related risk framework
NASA Astrophysics Data System (ADS)
Mazzoleni, Maurizio; Alfonso, Leonardo; Solomatine, Dimitri
2013-04-01
In recent years water-related risks are increasing worldwide. In particular, floods have been one of the most damaging natural disasters in Europe, in terms of economic losses. Non-structural measures such as flood risk mapping are generally used to reduce the impact of flood in important area. The increasing data availability makes it possible to develop new models which can be used to assimilate different kinds of information and reduce the uncertainty of the state of a basin. The aim of this work is to propose a methodology to assimilate uncertain, qualitative information within hydrological models in order to improve the evaluation of catchment responses. Qualitative information is defined here as the one that can be interpreted as and assimilated into a hydrological model as a fuzzy value, for instance those coming from text messages or citizen's pictures. The methodology is applied in the Brue catchment, located in the South West of England, having a drainage area of 135 km2, average annual rainfall of 867 mm and average discharge of 1.92 m3/s at Lovington considering the period among 1961 and 1990. In order to estimate the response of the catchment to a flood event with given intensity, a conceptual distributed hydrological model was implemented. First, the basin was divided in different sub-basins, then, the hydrograph at the outlet section was estimated using a Nash cascade model and the propagation of the flood wave was carried out considering the lag time in the other each sub-basins. The assimilation of the qualitative information was carried out using different techniques. The results of this work show how the spatial location and uncertainty of the qualitative information can affect the flow hydrograph in the outlet section and the consequent flood extent in the downstream area. This study is part of the FP7 European Project WeSenseIt.
NASA Astrophysics Data System (ADS)
Han, X.; Li, X.; He, G.; Kumbhar, P.; Montzka, C.; Kollet, S.; Miyoshi, T.; Rosolem, R.; Zhang, Y.; Vereecken, H.; Franssen, H.-J. H.
2015-08-01
Data assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. Multivariate data assimilation refers to the simultaneous assimilation of observation data from multiple model state variables into a simulation model. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. We developed an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with the C++ and Fortran programming languages. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be introduced by perturbed atmospheric forcing data, and represented by perturbed soil and vegetation parameters and model initial conditions. The Community Land Model (CLM) was integrated as the model operator. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. The Community Microwave Emission Modelling platform (CMEM), COsmic-ray Soil Moisture Interaction Code (COSMIC) and the Two-Source Formulation (TSF) were integrated as observation operators for the assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy has been evaluated in several assimilation studies of neutron count intensity (soil moisture), L-band brightness temperature and land surface temperature. DasPy is parallelized using the hybrid Message Passing Interface and Open Multi-Processing techniques. All the input and output data flows are organized efficiently using the commonly used NetCDF file format. Online 1-D and 2-D visualization of data assimilation results is also implemented to facilitate the post simulation analysis. In summary, DasPy is a ready to use open source parallel multivariate land data assimilation framework.
2009-02-01
Evensen, G., 2003: The ensemble Kalman filter : Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–357, doi:10.1007/s10236-003...0036-9. ——, 2006: Data Assimilation: The Ensemble Kalman Filter . Springer, 288 pp. Fang, F., C. C. Pain, I. M. Navon, G. J. Gorman, M. D. Piggott, P. A...E. J. Kostelich, M. Corazza, E. Kalnay, and D. J. Patil, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428
Variability in Tropospheric Ozone over China Derived from Assimilated GOME-2 Ozone Profiles
NASA Astrophysics Data System (ADS)
van Peet, J. C. A.; van der A, R. J.; Kelder, H. M.
2016-08-01
A tropospheric ozone dataset is derived from assimilated GOME-2 ozone profiles for 2008. Ozone profiles are retrieved with the OPERA algorithm, using the optimal estimation method. The retrievals are done on a spatial resolution of 160×160 km on 16 layers ranging from the surface up to 0.01 hPa. By using the averaging kernels in the data assimilation, the algorithm maintains the high resolution vertical structures of the model, while being constrained by observations with a lower vertical resolution.
Assimilation of MODIS and VIIRS AOD to improve aerosols forecasts with FV3-GOCART
NASA Astrophysics Data System (ADS)
Pagowski, M.
2017-12-01
In 2016 NOAA chose the FV3 dynamical core as a basis for its future global modeling system. We present an implementation of aerosol module in the FV3 model and its assimilation framework. The parameterization of aerosols is based on the GOCART scheme. The assimilation methodology relies on hybrid 3D-Var and EnKF methods. Aerosol observations include aerosol optical depth at 550 nm from VIIRS satellite. Results and evaluation of the system against independent observations and NASA's MERRA-2 is shown.
A simple lightning assimilation technique for improving ...
Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly averaged bias of 6 h accumulated rainfall is reduced from 0.54 to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF applications. The
A Simple Lightning Assimilation Technique For Improving ...
Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: Force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly-averaged bias of 6-h accumulated rainfall is reduced from 0.54 mm to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF appli
The quasi 2 day wave response in TIME-GCM nudged with NOGAPS-ALPHA
NASA Astrophysics Data System (ADS)
Wang, Jack C.; Chang, Loren C.; Yue, Jia; Wang, Wenbin; Siskind, D. E.
2017-05-01
The quasi 2 day wave (QTDW) is a traveling planetary wave that can be enhanced rapidly to large amplitudes in the mesosphere and lower thermosphere (MLT) region during the northern winter postsolstice period. In this study, we present five case studies of QTDW events during January and February 2005, 2006 and 2008-2010 by using the Thermosphere-Ionosphere-Mesosphere Electrodynamics-General Circulation Model (TIME-GCM) nudged with the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) Weather Forecast Model. With NOGAPS-ALPHA introducing more realistic lower atmospheric forcing in TIME-GCM, the QTDW events have successfully been reproduced in the TIME-GCM. The nudged TIME-GCM simulations show good agreement in zonal mean state with the NOGAPS-ALPHA 6 h reanalysis data and the horizontal wind model below the mesopause; however, it has large discrepancies in the tropics above the mesopause. The zonal mean zonal wind in the mesosphere has sharp vertical gradients in the nudged TIME-GCM. The results suggest that the parameterized gravity wave forcing may need to be retuned in the assimilative TIME-GCM.
NASA Astrophysics Data System (ADS)
Dorband, J. E.; Tilak, N.; Radov, A.
2016-12-01
In this paper, a classical computer implementation of RBM is compared to a quantum annealing based RBM running on a D-Wave 2X (an adiabatic quantum computer). The codes for both are essentially identical. Only a flag is set to change the activation function from a classically computed logistic function to the D-Wave. To obtain greater understanding of the behavior of the D-Wave, a study of the stochastic properties of a virtual qubit (a 12 qubit chain) and a cell of qubits (an 8 qubit cell) was performed. We will present the results of comparing the D-Wave implementation with a theoretically errorless adiabatic quantum computer. The main purpose of this study is to develop a generic RBM regression tool in order to infer CO2 fluxes from the NASA satellite OCO-2 observed CO2 concentrations and predicted atmospheric states using regression models. The carbon fluxes will then be assimilated into a land surface model to predict the Net Ecosystem Exchange at globally distributed regional sites.
A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm
NASA Astrophysics Data System (ADS)
Auroux, D.; Blum, J.
2008-03-01
This paper deals with a new data assimilation algorithm, called Back and Forth Nudging. The standard nudging technique consists in adding to the equations of the model a relaxation term that is supposed to force the observations to the model. The BFN algorithm consists in repeatedly performing forward and backward integrations of the model with relaxation (or nudging) terms, using opposite signs in the direct and inverse integrations, so as to make the backward evolution numerically stable. This algorithm has first been tested on the standard Lorenz model with discrete observations (perfect or noisy) and compared with the variational assimilation method. The same type of study has then been performed on the viscous Burgers equation, comparing again with the variational method and focusing on the time evolution of the reconstruction error, i.e. the difference between the reference trajectory and the identified one over a time period composed of an assimilation period followed by a prediction period. The possible use of the BFN algorithm as an initialization for the variational method has also been investigated. Finally the algorithm has been tested on a layered quasi-geostrophic model with sea-surface height observations. The behaviours of the two algorithms have been compared in the presence of perfect or noisy observations, and also for imperfect models. This has allowed us to reach a conclusion concerning the relative performances of the two algorithms.
NASA Astrophysics Data System (ADS)
Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.
2016-12-01
Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.
Role of Forcing Uncertainty and Background Model Error Characterization in Snow Data Assimilation
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Dong, Jiarul; Peters-Lidard, Christa D.; Mocko, David; Gomez, Breogan
2017-01-01
Accurate specification of the model error covariances in data assimilation systems is a challenging issue. Ensemble land data assimilation methods rely on stochastic perturbations of input forcing and model prognostic fields for developing representations of input model error covariances. This article examines the limitations of using a single forcing dataset for specifying forcing uncertainty inputs for assimilating snow depth retrievals. Using an idealized data assimilation experiment, the article demonstrates that the use of hybrid forcing input strategies (either through the use of an ensemble of forcing products or through the added use of the forcing climatology) provide a better characterization of the background model error, which leads to improved data assimilation results, especially during the snow accumulation and melt-time periods. The use of hybrid forcing ensembles is then employed for assimilating snow depth retrievals from the AMSR2 (Advanced Microwave Scanning Radiometer 2) instrument over two domains in the continental USA with different snow evolution characteristics. Over a region near the Great Lakes, where the snow evolution tends to be ephemeral, the use of hybrid forcing ensembles provides significant improvements relative to the use of a single forcing dataset. Over the Colorado headwaters characterized by large snow accumulation, the impact of using the forcing ensemble is less prominent and is largely limited to the snow transition time periods. The results of the article demonstrate that improving the background model error through the use of a forcing ensemble enables the assimilation system to better incorporate the observational information.
Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances
2006-01-01
In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.
Assimilation of SMOS Retrievals in the Land Information System
NASA Technical Reports Server (NTRS)
Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.; Crosson, William L.
2016-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in the upper 5 cm with a 30-50 km resolution and a mission accuracy requirement of 0.04 cm(sub 3 cm(sub -3). These observations can be used to improve land surface model soil moisture states through data assimilation. In this paper, SMOS soil moisture retrievals are assimilated into the Noah land surface model via an Ensemble Kalman Filter within the NASA Land Information System. Bias correction is implemented using Cumulative Distribution Function (CDF) matching, with points aggregated by either land cover or soil type to reduce sampling error in generating the CDFs. An experiment was run for the warm season of 2011 to test SMOS data assimilation and to compare assimilation methods. Verification of soil moisture analyses in the 0-10 cm upper layer and root zone (0-1 m) was conducted using in situ measurements from several observing networks in the central and southeastern United States. This experiment showed that SMOS data assimilation significantly increased the anomaly correlation of Noah soil moisture with station measurements from 0.45 to 0.57 in the 0-10 cm layer. Time series at specific stations demonstrate the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with station measurements. Among the bias correction methods, the correction based on soil type performed best at bias reduction but also reduced correlations. The vegetation-based correction did not produce any significant differences compared to using a simple uniform correction curve.
Assimilation of SMOS Retrievals in the Land Information System
Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.; Crosson, William L.
2018-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in the upper 5 cm with a 30-50 km resolution and a mission accuracy requirement of 0.04 cm3 cm−3. These observations can be used to improve land surface model soil moisture states through data assimilation. In this paper, SMOS soil moisture retrievals are assimilated into the Noah land surface model via an Ensemble Kalman Filter within the NASA Land Information System. Bias correction is implemented using Cumulative Distribution Function (CDF) matching, with points aggregated by either land cover or soil type to reduce sampling error in generating the CDFs. An experiment was run for the warm season of 2011 to test SMOS data assimilation and to compare assimilation methods. Verification of soil moisture analyses in the 0-10 cm upper layer and root zone (0-1 m) was conducted using in situ measurements from several observing networks in the central and southeastern United States. This experiment showed that SMOS data assimilation significantly increased the anomaly correlation of Noah soil moisture with station measurements from 0.45 to 0.57 in the 0-10 cm layer. Time series at specific stations demonstrate the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with station measurements. Among the bias correction methods, the correction based on soil type performed best at bias reduction but also reduced correlations. The vegetation-based correction did not produce any significant differences compared to using a simple uniform correction curve. PMID:29367795
NASA Astrophysics Data System (ADS)
Winiarek, Victor; Vira, Julius; Bocquet, Marc; Sofiev, Mikhail; Saunier, Olivier
2011-06-01
In the event of an accidental atmospheric release of radionuclides from a nuclear power plant, accurate real-time forecasting of the activity concentrations of radionuclides is required by the decision makers for the preparation of adequate countermeasures. The accuracy of the forecast plume is highly dependent on the source term estimation. On several academic test cases, including real data, inverse modelling and data assimilation techniques were proven to help in the assessment of the source term. In this paper, a semi-automatic method is proposed for the sequential reconstruction of the plume, by implementing a sequential data assimilation algorithm based on inverse modelling, with a care to develop realistic methods for operational risk agencies. The performance of the assimilation scheme has been assessed through the intercomparison between French and Finnish frameworks. Two dispersion models have been used: Polair3D and Silam developed in two different research centres. Different release locations, as well as different meteorological situations are tested. The existing and newly planned surveillance networks are used and realistically large multiplicative observational errors are assumed. The inverse modelling scheme accounts for strong error bias encountered with such errors. The efficiency of the data assimilation system is tested via statistical indicators. For France and Finland, the average performance of the data assimilation system is strong. However there are outlying situations where the inversion fails because of a too poor observability. In addition, in the case where the power plant responsible for the accidental release is not known, robust statistical tools are developed and tested to discriminate candidate release sites.
The Impact of Assimilation of GPM Clear Sky Radiance on HWRF Hurricane Track and Intensity Forecasts
NASA Astrophysics Data System (ADS)
Yu, C. L.; Pu, Z.
2016-12-01
The impact of GPM microwave imager (GMI) clear sky radiances on hurricane forecasting is examined by ingesting GMI level 1C recalibrated brightness temperature into the NCEP Gridpoint Statistical Interpolation (GSI)- based ensemble-variational hybrid data assimilation system for the operational Hurricane Weather Research and Forecast (HWRF) system. The GMI clear sky radiances are compared with the Community Radiative Transfer Model (CRTM) simulated radiances to closely study the quality of the radiance observations. The quality check result indicates the presence of bias in various channels. A static bias correction scheme, in which the appropriate bias correction coefficients for GMI data is evaluated by applying regression method on a sufficiently large sample of data representative to the observational bias in the regions of concern, is used to correct the observational bias in GMI clear sky radiances. Forecast results with and without assimilation of GMI radiance are compared using hurricane cases from recent hurricane seasons (e.g., Hurricane Joaquin in 2015). Diagnoses of data assimilation results show that the bias correction coefficients obtained from the regression method can correct the inherent biases in GMI radiance data, significantly reducing observational residuals. The removal of biases also allows more data to pass GSI quality control and hence to be assimilated into the model. Forecast results for hurricane Joaquin demonstrates that the quality of analysis from the data assimilation is sensitive to the bias correction, with positive impacts on the hurricane track forecast when systematic biases are removed from the radiance data. Details will be presented at the symposium.
Assimilation of SMOS (and SMAP) Retrieved Soil Moisture into the Land Information System
NASA Technical Reports Server (NTRS)
Blankenship, Clay; Zavodsky, Bradley; Case, Jonathan; Stano, Geoffrey
2016-01-01
Goal: Accurate, high-resolution (approx.3 km) soil moisture in near-real time. Situational awareness (drought assessment, flood and fire threat). Local modeling applications (to improve sfc-PBL exchanges) Method: Assimilate satellite soil moisture retrievals into a land surface model. Combines high-resolution geophysical model data with latest satellite observations.
NASA Astrophysics Data System (ADS)
Demissie, Henok K.; Bacopoulos, Peter
2017-05-01
A rich dataset of time- and space-varying velocity measurements for a macrotidal estuary was used in the development of a vector-based formulation of bottom roughness in the Advanced Circulation (ADCIRC) model. The updates to the parallel code of ADCIRC to include directionally based drag coefficient are briefly discussed in the paper, followed by an application of the data assimilation (nudging analysis) to the lower St. Johns River (northeastern Florida) for parameter estimation of anisotropic Manning's n coefficient. The method produced converging estimates of Manning's n values for ebb (0.0290) and flood (0.0219) when initialized with uniform and isotropic setting of 0.0200. Modeled currents, water levels and flows were improved at observation locations where data were assimilated as well as at monitoring locations where data were not assimilated, such that the method increases model skill locally and non-locally with regard to the data locations. The methodology is readily transferrable to other circulation/estuary models, given pre-developed quality mesh/grid and adequate data available for assimilation.
On the problem of data assimilation by means of synchronization
NASA Astrophysics Data System (ADS)
Szendro, Ivan G.; RodríGuez, Miguel A.; López, Juan M.
2009-10-01
The potential use of synchronization as a method for data assimilation is investigated in a Lorenz96 model. Data representing the reality are obtained from a Lorenz96 model with added noise. We study the assimilation scheme by means of synchronization for different noise intensities. We use a novel plot representation of the synchronization error in a phase diagram consisting of two variables: the amplitude and the width of the error after a suitable logarithmic transformation (the so-called mean-variance of logarithms diagram). Our main result concerns the existence of an "optimal" coupling for which the synchronization is maximal. We finally show how this allows us to quantify the degree of assimilation, providing a criterion for the selection of optimal couplings and validity of models.
Data Assimilation in the ADAPT Photospheric Flux Transport Model
Hickmann, Kyle S.; Godinez, Humberto C.; Henney, Carl J.; ...
2015-03-17
Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF)more » to accomplish data assimilation, allowing the covariance structure of the flux-transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.« less
Short-Term Retrospective Land Data Assimilation Schemes
NASA Technical Reports Server (NTRS)
Houser, P. R.; Cosgrove, B. A.; Entin, J. K.; Lettenmaier, D.; ODonnell, G.; Mitchell, K.; Marshall, C.; Lohmann, D.; Schaake, J. C.; Duan, Q.;
2000-01-01
Subsurface moisture and temperature and snow/ice stores exhibit persistence on various time scales that has important implications for the extended prediction of climatic and hydrologic extremes. Hence, to improve their specification of the land surface, many numerical weather prediction (NWP) centers have incorporated complex land surface schemes in their forecast models. However, because land storages are integrated states, errors in NWP forcing accumulates in these stores, which leads to incorrect surface water and energy partitioning. This has motivated the development of Land Data Assimilation Schemes (LDAS) that can be used to constrain NWP surface storages. An LDAS is an uncoupled land surface scheme that is forced primarily by observations, and is therefore less affected by NWP forcing biases. The implementation of an LDAS also provides the opportunity to correct the model's trajectory using remotely-sensed observations of soil temperature, soil moisture, and snow using data assimilation methods. The inclusion of data assimilation in LDAS will greatly increase its predictive capacity, as well as provide high-quality land surface assimilated data.
2007-09-30
marine.usf.edu Aida Alvera -Azcárate Phone: (727) 553-3508 Fax: (727) 553 1189 email: aalvera@marine.usf.edu Alexander Barth, Phone: (727...WFS and the data assimilation are being performed by Alexander Barth. The Cariaco nesting is performed by Aida Alvera -Azcárate. WORK COMPLETED...363–380. Barth, A., Beckers, J.-M., Alvera -Azcárate, A. and Weisberg, R.H. (2007), Filtering inertia-gravity waves from the initial conditions of
2011-11-20
Breivik and Reistad 1994; Lionello et al. 1992, 1995; Abdalla et al. 2005; Emmanouil et al. 2007) and optimization of the direct model outputs by using...neutral winds and new stress tables in WAM. ECMWF Research Department Memo R60.9/JB/0400 Breivik LA, Reistad M (1994) Assimilation of ERS-1...geometry graduate texts in mathematics, vol 120, 2nd edn. Springer-Verlag, Berlin Emmanouil G, Galanis G, Kallos G, Breivik LA, Heilberg H, Reistad M
Variational data assimilation for tropospheric chemistry modeling
NASA Astrophysics Data System (ADS)
Elbern, Hendrik; Schmidt, Hauke; Ebel, Adolf
1997-07-01
The method of variational adjoint data assimilation has been applied to assimilate chemistry observations into a comprehensive tropospheric gas phase model. The rationale of this method is to find the correct initial values for a subsequent atmospheric chemistry model run when observations scattered in time are available. The variational adjoint technique is esteemed to be a promising tool for future advanced meteorological forecasting. The stimulating experience gained with the application of four-dimensional variational data assimilation in this research area has motivated the attempt to apply the technique to air quality modeling and analysis of the chemical state of the atmosphere. The present study describes the development and application of the adjoint of the second-generation regional acid deposition model gas phase mechanism, which is used in the European air pollution dispersion model system. Performance results of the assimilation scheme using both model-generated data and real observations are presented for tropospheric conditions. In the former case it is demonstrated that time series of only few or even one measured key species convey sufficient information to improve considerably the analysis of unobserved species which are directly coupled with the observed species. In the latter case a Lagrangian approach is adopted where trajectory calculations between two comprehensively furnished measurement sites are carried out. The method allows us to analyze initial data for air pollution modeling even when only sparse observations are available. Besides remarkable improvements of the model performance by properly analyzed initial concentrations, it is shown that the adjoint algorithm offers the feasibility to estimate the sensitivity of ozone concentrations relative to its precursors.
Data assimilation experiments using diffusive back-and-forth nudging for the NEMO ocean model
NASA Astrophysics Data System (ADS)
Ruggiero, G. A.; Ourmières, Y.; Cosme, E.; Blum, J.; Auroux, D.; Verron, J.
2015-04-01
The diffusive back-and-forth nudging (DBFN) is an easy-to-implement iterative data assimilation method based on the well-known nudging method. It consists of a sequence of forward and backward model integrations, within a given time window, both of them using a feedback term to the observations. Therefore, in the DBFN, the nudging asymptotic behaviour is translated into an infinite number of iterations within a bounded time domain. In this method, the backward integration is carried out thanks to what is called backward model, which is basically the forward model with reversed time step sign. To maintain numeral stability, the diffusion terms also have their sign reversed, giving a diffusive character to the algorithm. In this article the DBFN performance to control a primitive equation ocean model is investigated. In this kind of model non-resolved scales are modelled by diffusion operators which dissipate energy that cascade from large to small scales. Thus, in this article, the DBFN approximations and their consequences for the data assimilation system set-up are analysed. Our main result is that the DBFN may provide results which are comparable to those produced by a 4Dvar implementation with a much simpler implementation and a shorter CPU time for convergence. The conducted sensitivity tests show that the 4Dvar profits of long assimilation windows to propagate surface information downwards, and that for the DBFN, it is worth using short assimilation windows to reduce the impact of diffusion-induced errors. Moreover, the DBFN is less sensitive to the first guess than the 4Dvar.
Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J
2017-01-01
A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Using Data Assimilation Methods of Prediction of Solar Activity
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina N.; Collins, Nancy S.
2017-01-01
The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and long-term sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.
NASA Astrophysics Data System (ADS)
Wu, Mousong; Sholze, Marko
2017-04-01
We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.
A reanalysis of ozone on Mars from assimilation of SPICAM observations
NASA Astrophysics Data System (ADS)
Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.; Lefèvre, Franck
2018-03-01
We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S-10°S from LS = 135-180° and at northern polar (60°N-90°N) latitudes during northern fall (LS = 150-195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S-10°S from LS = 135-180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics.
POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ştefănescu, R., E-mail: rstefane@vt.edu; Sandu, A., E-mail: sandu@cs.vt.edu; Navon, I.M., E-mail: inavon@fsu.edu
2015-08-15
This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush–Kuhn–Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for proper orthogonal decomposition (POD) ROM data assimilation using both Galerkin and Petrov–Galerkin projections. For the first time POD, tensorialmore » POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov–Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.« less
Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)
2000-01-01
A method is developed to retrieve surface ground temperature (Tg) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing long-wave radiation (CLR) is sensitive to upper level moisture (q(sub h)) over wet regions and Tg over dry regions The clear sky window flux from 800 to 1200 /cm (RadWn) is sensitive to low level moisture (q(sub j)) and Tg. Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub t) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in Tg, q(sub h) and q(sub t). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing (Delta)Tg and broad layer (Delta)q(sub l) from 500 hPa to surface and (Delta)q(sub h) from 200 to 500 hPa provides a good approximation to the full radiative transfer calculations, typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters. Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for (Delta)T to about 20% for (Delta)q(sub t). Our initial application of the methodology employed an early CERES-TRMM data set (CLR and Radwn) to assess the quality of the GEOS2 data. The results showed that over the tropical and subtropical oceans GEOS2 is, in general, too wet in the upper troposphere (mean bias of 0.99 mm) and too dry in the lower troposphere (mean bias of -4.7 mm). We note that these errors, as well as a cold bias in the Tg, have largely been corrected in the current version of GEOS-2 with the introduction of a land surface model, a moist turbulence scheme and the assimilation of SSTM/I total precipitable water.
Joint Center for Satellite Data Assimilation Overview and Research Activities
NASA Astrophysics Data System (ADS)
Auligne, T.
2017-12-01
In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.
NASA Technical Reports Server (NTRS)
Capotondi, Antonietta; Holland, William R.; Malanotte-Rizzoli, Paola
1995-01-01
The improvement in the climatological behavior of a numerical model as a consequence of the assimilation of surface data is investigated. The model used for this study is a quasigeostrophic (QG) model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height that have been obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. Comparisons of the assimilation results with available in situ observations show a significant improvement in the degree of realism of the climatological model behavior, with respect to the model in which no data are assimilated. The remaining discrepancies in the model mean circulation seem to be mainly associated with deficiencies in the mean component of the surface data that are assimilated. On the other hand, the possibility of building into the model more realistic eddy characteristics through the assimilation of the surface eddy field proves very successful in driving components of the mean model circulation that are in relatively good agreement with the available observations. Comparisons with current meter time series during a time period partially overlapping the Geosat mission show that the model is able to 'correctly' extrapolate the instantaneous surface eddy signals to depths of approximately 1500 m. The correlation coefficient between current meter and model time series varies from values close to 0.7 in the top 1500 m to values as low as 0.1-0.2 in the deep ocean.
NASA Astrophysics Data System (ADS)
Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.
2017-11-01
A parameterization of the dynamical and thermal effects of orographic gravity waves (OGWs) and assimilation quasibiennial oscillations (QBOs) of the zonal wind in the equatorial lower atmosphere are implemented into the numerical model of the general circulation of the middle and upper atmosphere MUAM. The sensitivity of vertical ozone fluxes to the effects of stationary OGWs at different QBO phases at altitudes up to 100 km for January is investigated. The simulated changes in vertical velocities produce respective changes in vertical ozone fluxes caused by the effects of the OGW parameterization and the transition from the easterly to the westerly QBO phase. These changes can reach 40 - 60% in the Northern Hemisphere at altitudes of the middle atmosphere.
NASA Astrophysics Data System (ADS)
Penenko, Alexey; Penenko, Vladimir
2014-05-01
Contact concentration measurement data assimilation problem is considered for convection-diffusion-reaction models originating from the atmospheric chemistry study. High dimensionality of models imposes strict requirements on the computational efficiency of the algorithms. Data assimilation is carried out within the variation approach on a single time step of the approximated model. A control function is introduced into the source term of the model to provide flexibility for data assimilation. This function is evaluated as the minimum of the target functional that connects its norm to a misfit between measured and model-simulated data. In the case mathematical model acts as a natural Tikhonov regularizer for the ill-posed measurement data inversion problem. This provides flow-dependent and physically-plausible structure of the resulting analysis and reduces a need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. The advantage comes at the cost of the adjoint problem solution. This issue is solved within the frameworks of splitting-based realization of the basic convection-diffusion-reaction model. The model is split with respect to physical processes and spatial variables. A contact measurement data is assimilated on each one-dimensional convection-diffusion splitting stage. In this case a computationally-efficient direct scheme for both direct and adjoint problem solution can be constructed based on the matrix sweep method. Data assimilation (or regularization) parameter that regulates ratio between model and data in the resulting analysis is obtained with Morozov discrepancy principle. For the proper performance the algorithm takes measurement noise estimation. In the case of Gaussian errors the probability that the used Chi-squared-based estimate is the upper one acts as the assimilation parameter. A solution obtained can be used as the initial guess for data assimilation algorithms that assimilate outside the splitting stages and involve iterations. Splitting method stage that is responsible for chemical transformation processes is realized with the explicit discrete-analytical scheme with respect to time. The scheme is based on analytical extraction of the exponential terms from the solution. This provides unconditional positive sign for the evaluated concentrations. Splitting-based structure of the algorithm provides means for efficient parallel realization. The work is partially supported by the Programs No 4 of Presidium RAS and No 3 of Mathematical Department of RAS, by RFBR project 11-01-00187 and Integrating projects of SD RAS No 8 and 35. Our studies are in the line with the goals of COST Action ES1004.
Application of optimal data assimilation techniques in oceanography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, R.N.
Application of optimal data assimilation methods in oceanography is, if anything, more important than it is in numerical weather prediction, due to the sparsity of data. Here, a general framework is presented and practical examples taken from the author`s work are described, with the purpose of conveying to the reader some idea of the state of the art of data assimilation in oceanography. While no attempt is made to be exhaustive, references to other lines of research are included. Major challenges to the community include design of statistical error models and handling of strong nonlinearity.
El Nino and the Global Ocean Observing System
NASA Technical Reports Server (NTRS)
Halpern, David
1999-01-01
Until a decade ago, an often-quoted expression in oceanography is that very few observations are recorded throughout the ocean. Now, the sentiment is no longer valid in the uppermost 10% of the tropical Pacific Ocean nor at the surface of the global ocean. One of the remarkable legacies of the 1985-1994 Tropical Oceans Global Atmosphere (TOGA) Program is an in situ marine meteorological and upper oceanographic measurement array throughout the equatorial Pacific to monitor the development and maintenance of El Nino episodes. The TOGA Observing System, which initially consisted of moored- and drifting-buoy arrays, a network of commercial ships, and coastal and island stations, now includes a constellation of satellites and data-assimilating models to simulate subsurface oceanographic conditions. The El Nino and La Nina tropical Pacific Ocean observing system represents the initial phase of an integrated global ocean observing system. Remarkable improvements have been made in ocean model simulation of subsurface currents, but some problems persist. For example, the simulation of the South Equatorial Current (SEC) remains an important challenge in the 2S-2N Pacific equatorial wave guide. During El Nino the SEC at the equator is reduced and sometimes the direction is reversed, becoming eastward. Both conditions allow warm water stored in the western Pacific to invade the eastern region, creating an El Nino episode. Assimilation of data is a tenet of faith to correct simulation errors caused by deficiencies in surface fluxes (especially wind stress) and parameterizations of subgrid-scale physical processes. In the first of two numerical experiments, the Pacific SEC was simulated with and without assimilation of subsurface temperature data. Along the equator, a very weak SEC occurred throughout the eastern Pacific, independent of assimilation of data. However, as displayed in the diagram, in the western Pacific there was no satisfactory agreement between the two simulations. To help determine reliability of the simulated SEC in the western Pacific, current measurements recorded during the 9-19 October 1994 voyage of the French research vessel L'Atalante are also shown in the diagram. With data assimilation, the simulated SEC was in much better agreement with L'Atalante observations. The simulated SEC with data assimilation was far from perfect, in part because of the sparsity of subsurface temperature observations. In the next experiment, TOPEX/POSEIDON sea surface height data in combination with subsurface temperatures will be assimilated to assess further improvement of the simulation of the SEC.
NASA Astrophysics Data System (ADS)
Cushley, A. C.; Noel, J. M. A.
2015-12-01
Amateur radio and other transmissions used for dedicated purposes, such as the Automatic Packet Reporting System (APRS) and Automatic Dependent Surveillance Broadcast (ADS-B), are signals that exist for another reason, but can be used for ionospheric sounding. Whether mandated and government funded or voluntarily constructed and operated, these networks provide data that can be used for scientific and operational purposes which rely on space weather data. Given the current state of the global economic environment and fiscal consequences to scientific research funding in Canada, these types of networks offer an innovative solution with preexisting hardware for more real-time and archival space-weather data to supplement current methods, particularly for data assimilation, modelling and forecasting. Furthermore, mobile ground-based transmitters offer more flexibility for deployment than stationary receivers. Numerical modelling has demonstrated that APRS and ADS-B signals are subject to Faraday rotation (FR) as they pass through the ionosphere. Ray tracingtechniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization. The modelled FR was computed and converted to total electron content (TEC) along the raypaths. TEC data can be used as input for computerized ionospheric tomography (CIT) in order to reconstruct electron density maps of the ionosphere.
Grain growth prediction based on data assimilation by implementing 4DVar on multi-phase-field model
NASA Astrophysics Data System (ADS)
Ito, Shin-ichi; Nagao, Hiromichi; Kasuya, Tadashi; Inoue, Junya
2017-12-01
We propose a method to predict grain growth based on data assimilation by using a four-dimensional variational method (4DVar). When implemented on a multi-phase-field model, the proposed method allows us to calculate the predicted grain structures and uncertainties in them that depend on the quality and quantity of the observational data. We confirm through numerical tests involving synthetic data that the proposed method correctly reproduces the true phase-field assumed in advance. Furthermore, it successfully quantifies uncertainties in the predicted grain structures, where such uncertainty quantifications provide valuable information to optimize the experimental design.
NASA Astrophysics Data System (ADS)
Chen, S. S.; Curcic, M.
2017-12-01
The need for acurrate and integrated impact forecasts of extreme wind, rain, waves, and storm surge is growing as coastal population and built environment expand worldwide. A key limiting factor in forecasting impacts of extreme weather events associated with tropical cycle and winter storms is fully coupled atmosphere-wave-ocean model interface with explicit momentum and energy exchange. It is not only critical for accurate prediction of storm intensity, but also provides coherent wind, rian, ocean waves and currents forecasts for forcing for storm surge. The Unified Wave INterface (UWIN) has been developed for coupling of the atmosphere-wave-ocean models. UWIN couples the atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). It is a physically based and computationally efficient coupling sytem that is flexible to use in a multi-model system and portable for transition to the next generation global Earth system prediction mdoels. This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It has been used and extensively tested and verified in regional coupled model forecasts of tropical cycles and winter storms (Chen and Curcic 2016, Curcic et al. 2016, and Judt et al. 2016). We will present 1) an overview of UWIN and its applications in fully coupled atmosphere-wave-ocean model predictions of hurricanes and coastal winter storms, and 2) implenmentation of UWIN in the NASA GMAO GEOS-5.
NASA Astrophysics Data System (ADS)
Lu, F.; Liu, Z.; Liu, Y.; Zhang, S.; Jacob, R. L.
2017-12-01
The Regional Coupled Data Assimilation (RCDA) method is introduced as a tool to study coupled climate dynamics and teleconnections. The RCDA method is built on an ensemble-based coupled data assimilation (CDA) system in a coupled general circulation model (CGCM). The RCDA method limits the data assimilation to the desired model components (e.g. atmosphere) and regions (e.g. the extratropics), and studies the ensemble-mean model response (e.g. tropical response to "observed" extratropical atmospheric variability). When applied to the extratropical influence on tropical climate, the RCDA method has shown some unique advantages, namely the combination of a fully coupled model, real-world observations and an ensemble approach. Tropical variability (e.g. El Niño-Southern Oscillation or ENSO) and climatology (e.g. asymmetric Inter-Tropical Convergence Zone or ITCZ) were initially thought to be determined mostly by local forcing and ocean-atmosphere interaction in the tropics. Since late 20th century, numerous studies have showed that extratropical forcing could affect, or even largely determine some aspects of the tropical climate. Due to the coupled nature of the climate system, however, the challenge of determining and further quantifying the causality of extratropical forcing on the tropical climate remains. Using the RCDA method, we have demonstrated significant control of extratropical atmospheric forcing on ENSO variability in a CGCM, both with model-generated and real-world observation datasets. The RCDA method has also shown robust extratropical impact on the tropical double-ITCZ bias in a CGCM. The RCDA method has provided the first systematic and quantitative assessment of extratropical influence on tropical climatology and variability by incorporating real world observations in a CGCM.
IASI Radiance Data Assimilation in Local Ensemble Transform Kalman Filter
NASA Astrophysics Data System (ADS)
Cho, K.; Hyoung-Wook, C.; Jo, Y.
2016-12-01
Korea institute of Atmospheric Prediction Systems (KIAPS) is developing NWP model with data assimilation systems. Local Ensemble Transform Kalman Filter (LETKF) system, one of the data assimilation systems, has been developed for KIAPS Integrated Model (KIM) based on cubed-sphere grid and has successfully assimilated real data. LETKF data assimilation system has been extended to 4D- LETKF which considers time-evolving error covariance within assimilation window and IASI radiance data assimilation using KPOP (KIAPS package for observation processing) with RTTOV (Radiative Transfer for TOVS). The LETKF system is implementing semi operational prediction including conventional (sonde, aircraft) observation and AMSU-A (Advanced Microwave Sounding Unit-A) radiance data from April. Recently, the semi operational prediction system updated radiance observations including GPS-RO, AMV, IASI (Infrared Atmospheric Sounding Interferometer) data at July. A set of simulation of KIM with ne30np4 and 50 vertical levels (of top 0.3hPa) were carried out for short range forecast (10days) within semi operation prediction LETKF system with ensemble forecast 50 members. In order to only IASI impact, our experiments used only conventional and IAIS radiance data to same semi operational prediction set. We carried out sensitivity test for IAIS thinning method (3D and 4D). IASI observation number was increased by temporal (4D) thinning and the improvement of IASI radiance data impact on the forecast skill of model will expect.
NASA Astrophysics Data System (ADS)
Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc
2016-11-01
In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We also examine how the assimilation can influence the modelled aerosol vertical distribution. The results show that a 2-D continuous AOD assimilation can improve the 3-D vertical profile, as a result of differential horizontal transport of aerosols in the model.
Portes, Alejandro; Fernández-Kelly, Patricia; Haller, William
2013-01-01
This paper summarises a research program on the new immigrant second generation initiated in the early 1990s and completed in 2006. The four field waves of the Children of Immigrants Longitudinal Study (CILS) are described and the main theoretical models emerging from it are presented and graphically summarised. After considering critical views of this theory, we present the most recent results from this longitudinal research program in the forum of quantitative models predicting downward assimilation in early adulthood and qualitative interviews identifying ways to escape it by disadvantaged children of immigrants. Quantitative results strongly support the predicted effects of exogenous variables identified by segmented assimilation theory and identify the intervening factors during adolescence that mediate their influence on adult outcomes. Qualitative evidence gathered during the last stage of the study points to three factors that can lead to exceptional educational achievement among disadvantaged youths. All three indicate the positive influence of selective acculturation. Implications of these findings for theory and policy are discussed. PMID:23626483
Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals
NASA Astrophysics Data System (ADS)
Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.
2016-12-01
The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.
Development of the Joint NASA/NCAR General Circulation Model
NASA Technical Reports Server (NTRS)
Lin, S.-J.; Rood, R. B.
1999-01-01
The Data Assimilation Office at NASA/Goddard Space Flight Center is collaborating with NCAR/CGD in an ambitious proposal for the development of a unified climate, numerical weather prediction, and chemistry transport model which is suitable for global data assimilation of the physical and chemical state of the Earth's atmosphere. A prototype model based on the NCAR CCM3 physics and the NASA finite-volume dynamical core has been built. A unique feature of the NASA finite-volume dynamical core is its advanced tracer transport algorithm on the floating Lagrangian control-volume coordinate. The model currently has a highly idealized ozone production/loss chemistry derived from the observed 2D (latitude-height) climatology of the recent decades. Nevertheless, the simulated horizontal wave structure of the total ozone is in good qualitative agreement with the observed (TOMS). Long term climate simulations and NWP experiments have been carried out. Current up to date status and futur! e plan will be discussed in the conference.
NASA Astrophysics Data System (ADS)
Wang, Wentao; Yu, Zhiming; Wu, Zaixing; Song, Shuqun; Song, Xiuxian; Yuan, Yongquan; Cao, Xihua
2018-07-01
Being supplied from both terrestrial inputs and internal regeneration, nitrate is usually in excess in the Changjiang River estuary (CRE) and adjacent waters (CREAW). As significant reactions in the nitrogen cycle, nitrate assimilation and nitrification rates were calculated by field incubation experiments following the isotope dilution method during June and November 2014. Besides this, distribution of other field parameters in the CREAW were also investigated. The results showed that the nitrate assimilation rates were higher in nearshore areas and lower in offshore areas. The nitrate assimilation rates were also higher during June, at 0.3-11.9 μmol L-1 d-1, whereas the rates were 0-3.2 μmol L-1 d-1 in November. The highest rate was observed in the surface water of the estuary, where the chlorophyll-a (chl-a) concentration reached 11.02 μg L-1. In addition, the phytoplankton community structure affected the nitrate assimilation rates, and dinoflagellates presented weaker nitrate assimilation abilities than those of diatoms. By contrast, the nitrification rates were higher in nearshore areas in June but higher in offshore areas in November. The nitrification rates were 0-4.1 μmol L-1 d-1 and 0-3.6 μmol L-1 d-1 in June and November, respectively. At most sites, the nitrification rates were positively correlated with the ammonium concentrations and were higher in November, which might be attributable to the higher temperature. Moreover, a theoretical calculation was used to study the regional nitrate flux throughout the vertical water column. The results showed that a gradual supplement from nitrification might replenish the nitrate consumed by assimilation far from the CRE. The overall result was that terrestrial input remained the primary source of estuarine nitrate; however, the role of internal nitrate regeneration, which would be effective for primary production in the CREAW, should also be highlighted as a source of nitrate, especially in offshore areas.
NASA Technical Reports Server (NTRS)
Kim, Min-Jeong; Jin, Jianjun; McCarty, Will; El Akkraoui, Amal; Todling, Ricardo; Gelaro, Ron
2018-01-01
Many numerical weather prediction (NWP) centers assimilate radiances affected by clouds and precipitation from microwave sensors, with the expectation that these data can provide critical constraints on meteorological parameters in dynamically sensitive regions to make significant impacts on forecast accuracy for precipitation. The Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center assimilates all-sky microwave radiance data from various microwave sensors such as all-sky GPM Microwave Imager (GMI) radiance in the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), which includes the GEOS atmospheric model, the Gridpoint Statistical Interpolation (GSI) atmospheric analysis system, and the Goddard Aerosol Assimilation System (GAAS). So far, most of NWP centers apply same large data thinning distances, that are used in clear-sky radiance data to avoid correlated observation errors, to all-sky microwave radiance data. For example, NASA GMAO is applying 145 km thinning distances for most of satellite radiance data including microwave radiance data in which all-sky approach is implemented. Even with these coarse observation data usage in all-sky assimilation approach, noticeable positive impacts from all-sky microwave data on hurricane track forecasts were identified in GEOS-5 system. The motivation of this study is based on the dynamic thinning distance method developed in our all-sky framework to use of denser data in cloudy and precipitating regions due to relatively small spatial correlations of observation errors. To investigate the benefits of all-sky microwave radiance on hurricane forecasts, several hurricane cases selected between 2016-2017 are examined. The dynamic thinning distance method is utilized in our all-sky approach to understand the sources and mechanisms to explain the benefits of all-sky microwave radiance data from various microwave radiance sensors like Advanced Microwave Sounder Unit (AMSU-A), Microwave Humidity Sounder (MHS), and GMI on GEOS-5 analyses and forecasts of various hurricanes.
Assimilation of CryoSat-2 altimetry to a hydrodynamic model of the Brahmaputra river
NASA Astrophysics Data System (ADS)
Schneider, Raphael; Nygaard Godiksen, Peter; Ridler, Marc-Etienne; Madsen, Henrik; Bauer-Gottwein, Peter
2016-04-01
Remote sensing provides valuable data for parameterization and updating of hydrological models, for example water level measurements of inland water bodies from satellite radar altimeters. Satellite altimetry data from repeat-orbit missions such as Envisat, ERS or Jason has been used in many studies, also synthetic wide-swath altimetry data as expected from the SWOT mission. This study is one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, namely CryoSat-2. CryoSat-2 is equipped with the SIRAL instrument, a new type of radar altimeter similar to SRAL on Sentinel-3. CryoSat-2 SARIn level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra river basin in South Asia set up in the DHI MIKE 11 software. CryoSat-2 water levels were extracted over river masks derived from Landsat imagery. After discharge calibration, simulated water levels were fitted to the CryoSat-2 data along the Assam valley by adapting cross section shapes and datums. The resulting hydrodynamic model shows accurate spatio-temporal representation of water levels, which is a prerequisite for real-time model updating by assimilation of CryoSat-2 altimetry or multi-mission data in general. For this task, a data assimilation framework has been developed and linked with the MIKE 11 model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. Different types of error models, data assimilation methods, etc. can easily be used and tested. Furthermore, it is not only possible to update the water level of the hydrodynamic model, but also the states of the rainfall-runoff models providing the forcing of the hydrodynamic model. The setup has been used to assimilate CryoSat-2 observations over the Assam valley for the years 2010 to 2013. Different data assimilation methods and localizations were tested, together with different model error representations. Furthermore, the impact of different filtering and clustering methods and error descriptions of the CryoSat-2 observations was evaluated. Performance improvement in terms of discharge and water level forecast due to the assimilation of satellite altimetry data was then evaluated. The model forecasts were also compared to climatology and persistence forecasts. Using ensemble based filters, the evaluation was done not only based on performance criteria for the central forecast such as root-mean-square error (RMSE) and Nash-Sutcliffe model efficiency (NSE), but also based on sharpness, reliability and continuous ranked probability score (CRPS) of the ensemble of probabilistic forecasts.
Measurement of 14CO2 Assimilation in Soils: an Experiment for the Biological Exploration of Mars
Hubbard, Jerry S.; Hobby, George L.; Horowitz, Norman H.; Geiger, Paul J.; Morelli, Frank A.
1970-01-01
A method is described for the measurement of 14CO2 assimilation by microorganisms in soils. A determination involves exposing soil to 14CO2, pyrolyzing the exposed soil, trapping the organic pyrolysis products on a column of firebrick coated with CuO, combusting the trapped organics by heating, and measuring the radioactivity in the CO2 produced in the combustion. The detection of significant levels of 14C in the trapped organic fraction appears to be an unambiguous indication of biological activity. The 14CO2 which is adsorbed or exchanged into soils by nonbiological processes does not interfere. The method easily detects the 14CO2 fixed by 102 to 103 algae after light exposure for 3 to 24 hr. Assimilation of 14C is also demonstrable in dark-exposed soils containing 105 to 106 heterotrophic bacteria. Possible applications of the method in the biological exploration of Mars are discussed. Images PMID:16349879
NASA Technical Reports Server (NTRS)
Cohn, S. E.
1982-01-01
Numerical weather prediction (NWP) is an initial-value problem for a system of nonlinear differential equations, in which initial values are known incompletely and inaccurately. Observational data available at the initial time must therefore be supplemented by data available prior to the initial time, a problem known as meteorological data assimilation. A further complication in NWP is that solutions of the governing equations evolve on two different time scales, a fast one and a slow one, whereas fast scale motions in the atmosphere are not reliably observed. This leads to the so called initialization problem: initial values must be constrained to result in a slowly evolving forecast. The theory of estimation of stochastic dynamic systems provides a natural approach to such problems. For linear stochastic dynamic models, the Kalman-Bucy (KB) sequential filter is the optimal data assimilation method, for linear models, the optimal combined data assimilation-initialization method is a modified version of the KB filter.
Ocean Predictability and Uncertainty Forecasts Using Local Ensemble Transfer Kalman Filter (LETKF)
NASA Astrophysics Data System (ADS)
Wei, M.; Hogan, P. J.; Rowley, C. D.; Smedstad, O. M.; Wallcraft, A. J.; Penny, S. G.
2017-12-01
Ocean predictability and uncertainty are studied with an ensemble system that has been developed based on the US Navy's operational HYCOM using the Local Ensemble Transfer Kalman Filter (LETKF) technology. One of the advantages of this method is that the best possible initial analysis states for the HYCOM forecasts are provided by the LETKF which assimilates operational observations using ensemble method. The background covariance during this assimilation process is implicitly supplied with the ensemble avoiding the difficult task of developing tangent linear and adjoint models out of HYCOM with the complicated hybrid isopycnal vertical coordinate for 4D-VAR. The flow-dependent background covariance from the ensemble will be an indispensable part in the next generation hybrid 4D-Var/ensemble data assimilation system. The predictability and uncertainty for the ocean forecasts are studied initially for the Gulf of Mexico. The results are compared with another ensemble system using Ensemble Transfer (ET) method which has been used in the Navy's operational center. The advantages and disadvantages are discussed.
Data Assimilation Methods on a Non-conservative Adaptive Mesh
NASA Astrophysics Data System (ADS)
Guider, Colin Thomas; Rabatel, Matthias; Carrassi, Alberto; Jones, Christopher K. R. T.
2017-04-01
Adaptive mesh methods are used to model a wide variety of physical phenomena. Some of these models, in particular those of sea ice movement, are particularly interesting in that they use a remeshing process to remove and insert mesh points at various points in their evolution. This presents a challenge in developing compatible data assimilation schemes, as the dimension of the state space we wish to estimate can change over time when these remeshings occur. In this work, we first describe a remeshing scheme for an adaptive mesh in one dimension. We then develop advanced data assimilation methods that are appropriate for such a moving and remeshed grid. We hope to extend these techniques to two-dimensional models, like the Lagrangian sea ice model neXtSIM te{ns}. \\bibitem{ns} P. Rampal, S. Bouillon, E. Ólason, and M. Morlighem. ne{X}t{SIM}: a new {L}agrangian sea ice model. {The Cryosphere}, 10 (3): 1055-1073, 2016.
NASA Technical Reports Server (NTRS)
Wargan, K.; Stajner, I.; Pawson, S.
2003-01-01
In a data assimilation system the forecast error covariance matrix governs the way in which the data information is spread throughout the model grid. Implementation of a correct method of assigning covariances is expected to have an impact on the analysis results. The simplest models assume that correlations are constant in time and isotropic or nearly isotropic. In such models the analysis depends on the dynamics only through assumed error standard deviations. In applications to atmospheric tracer data assimilation this may lead to inaccuracies, especially in regions with strong wind shears or high gradient of potential vorticity, as well as in areas where no data are available. In order to overcome this problem we have developed a flow-dependent covariance model that is based on short term evolution of error correlations. The presentation compares performance of a static and a flow-dependent model applied to a global three- dimensional ozone data assimilation system developed at NASA s Data Assimilation Office. We will present some results of validation against WMO balloon-borne sondes and the Polar Ozone and Aerosol Measurement (POAM) III instrument. Experiments show that allowing forecast error correlations to evolve with the flow results in positive impact on assimilated ozone within the regions where data were not assimilated, particularly at high latitudes in both hemispheres and in the troposphere. We will also discuss statistical characteristics of both models; in particular we will argue that including evolution of error correlations leads to stronger internal consistency of a data assimilation ,
Implicit assimilation for marine ecological models
NASA Astrophysics Data System (ADS)
Weir, B.; Miller, R.; Spitz, Y. H.
2012-12-01
We use a new data assimilation method to estimate the parameters of a marine ecological model. At a given point in the ocean, the estimated values of the parameters determine the behaviors of the modeled planktonic groups, and thus indicate which species are dominant. To begin, we assimilate in situ observations, e.g., the Bermuda Atlantic Time-series Study, the Hawaii Ocean Time-series, and Ocean Weather Station Papa. From there, we estimate the parameters at surrounding points in space based on satellite observations of ocean color. Given the variation of the estimated parameters, we divide the ocean into regions meant to represent distinct ecosystems. An important feature of the data assimilation approach is that it refines the confidence limits of the optimal Gaussian approximation to the distribution of the parameters. This enables us to determine the ecological divisions with greater accuracy.
Assessing the performance of dynamical trajectory estimates
NASA Astrophysics Data System (ADS)
Bröcker, Jochen
2014-06-01
Estimating trajectories and parameters of dynamical systems from observations is a problem frequently encountered in various branches of science; geophysicists for example refer to this problem as data assimilation. Unlike as in estimation problems with exchangeable observations, in data assimilation the observations cannot easily be divided into separate sets for estimation and validation; this creates serious problems, since simply using the same observations for estimation and validation might result in overly optimistic performance assessments. To circumvent this problem, a result is presented which allows us to estimate this optimism, thus allowing for a more realistic performance assessment in data assimilation. The presented approach becomes particularly simple for data assimilation methods employing a linear error feedback (such as synchronization schemes, nudging, incremental 3DVAR and 4DVar, and various Kalman filter approaches). Numerical examples considering a high gain observer confirm the theory.
Assessing the performance of dynamical trajectory estimates.
Bröcker, Jochen
2014-06-01
Estimating trajectories and parameters of dynamical systems from observations is a problem frequently encountered in various branches of science; geophysicists for example refer to this problem as data assimilation. Unlike as in estimation problems with exchangeable observations, in data assimilation the observations cannot easily be divided into separate sets for estimation and validation; this creates serious problems, since simply using the same observations for estimation and validation might result in overly optimistic performance assessments. To circumvent this problem, a result is presented which allows us to estimate this optimism, thus allowing for a more realistic performance assessment in data assimilation. The presented approach becomes particularly simple for data assimilation methods employing a linear error feedback (such as synchronization schemes, nudging, incremental 3DVAR and 4DVar, and various Kalman filter approaches). Numerical examples considering a high gain observer confirm the theory.
A Probabilistic Collocation Based Iterative Kalman Filter for Landfill Data Assimilation
NASA Astrophysics Data System (ADS)
Qiang, Z.; Zeng, L.; Wu, L.
2016-12-01
Due to the strong spatial heterogeneity of landfill, uncertainty is ubiquitous in gas transport process in landfill. To accurately characterize the landfill properties, the ensemble Kalman filter (EnKF) has been employed to assimilate the measurements, e.g., the gas pressure. As a Monte Carlo (MC) based method, the EnKF usually requires a large ensemble size, which poses a high computational cost for large scale problems. In this work, we propose a probabilistic collocation based iterative Kalman filter (PCIKF) to estimate permeability in a liquid-gas coupling model. This method employs polynomial chaos expansion (PCE) to represent and propagate the uncertainties of model parameters and states, and an iterative form of Kalman filter to assimilate the current gas pressure data. To further reduce the computation cost, the functional ANOVA (analysis of variance) decomposition is conducted, and only the first order ANOVA components are remained for PCE. Illustrated with numerical case studies, this proposed method shows significant superiority in computation efficiency compared with the traditional MC based iterative EnKF. The developed method has promising potential in reliable prediction and management of landfill gas production.
Immigration, Occupation and Inequality in Emergent Nineteenth-Century New England Cities
Leonard, Susan Hautaniemi; Robinson, Christopher; Anderton, Douglas L.
2017-01-01
This paper explores the social interactions of immigration, occupation and wealth in two urban industrial cities of nineteenth century New England that were largely built upon, and shaped by, immigration: the very rapidly growing factory town of Holyoke, Massachusetts and a more mixed market and steadily growing nearby community of Northampton, Massachusetts. Both communities were emergent, rapidly industrializing, inland cities, providing a quite distinct immigration context than large established cities of the East Coast. Both were destinations for the same general ethnic immigration waves over the late nineteenth century, but with very different, and differently impacted, social spaces into which immigrants arrived. Contrasting and considering both these emergent cities allows us to ascertain the extent to which the occupational distribution and accumulation of wealth by immigrant groups supports the broad pattern of nineteenth-century assimilation, and reveals ways in which other migration processes may have been at odds, or intertwined, with the long-term historical assimilation of immigrants in such communities. Our findings support a traditional assimilationist perspective in emergent urban-industrial centers. However, they also reveal the role of universal immiseration in an industrial city dual-labor market in facilitating or forcing assimilation, the temporal advantages for ethnic groups of arriving early in growing settlements, and the more individualistic nature of economic enclaves in gaining advantages over time that did not manifest across broad immigrant or occupational groups. PMID:29307945
Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment
NASA Technical Reports Server (NTRS)
Prive, N. C.; Errico, Ronald M.
2015-01-01
The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.
The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis
NASA Astrophysics Data System (ADS)
Montabone, Luca; Lewis, Stephen R.; Steele, Liam J.; Holmes, James; Read, Peter L.; Valeanu, Alexandru; Smith, Michael D.; Kass, David; Kleinboehl, Armin; LMD Team, MGS/TES Team, MRO/MCS Team
2016-10-01
The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This four-dimensional dataset has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office.The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") located at the following URL: http://macdap.physics.ox.ac.uk/The first paper about MACDA reanalysis of TES retrievals appeared in 2006, although the acronym MACDA was not yet used at that time. Ten years later, MACDA v1.0 has been used by several researchers worldwide and has contributed to the advancement of the knowledge about the martian atmosphere in critical areas such as the radiative impact of water ice clouds, the solsticial pause in baroclinic wave activity, and the climatology and dynamics of polar vortices, to cite only a few. It is therefore timely to review the scientific results obtained by using such Mars reference atmospheric reanalysis, in order to understand what priorities the user community should focus on in the next decade.MACDA is an ongoing collaborative project, and work funded by NASA MDAP Programme is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) retrievals of thermal and dust opacity profiles. MACDA 2.0 is also going to be based on an improved version of the underlying MGCM and an updated scheme to fully assimilate (radiative active) tracers, such as dust.
Generalized Background Error covariance matrix model (GEN_BE v2.0)
NASA Astrophysics Data System (ADS)
Descombes, G.; Auligné, T.; Vandenberghe, F.; Barker, D. M.
2014-07-01
The specification of state background error statistics is a key component of data assimilation since it affects the impact observations will have on the analysis. In the variational data assimilation approach, applied in geophysical sciences, the dimensions of the background error covariance matrix (B) are usually too large to be explicitly determined and B needs to be modeled. Recent efforts to include new variables in the analysis such as cloud parameters and chemical species have required the development of the code to GENerate the Background Errors (GEN_BE) version 2.0 for the Weather Research and Forecasting (WRF) community model to allow for a simpler, flexible, robust, and community-oriented framework that gathers methods used by meteorological operational centers and researchers. We present the advantages of this new design for the data assimilation community by performing benchmarks and showing some of the new features on data assimilation test cases. As data assimilation for clouds remains a challenge, we present a multivariate approach that includes hydrometeors in the control variables and new correlated errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter statistics for chemical species, which shows that it is a tool flexible enough to involve new control variables. While the generation of the background errors statistics code has been first developed for atmospheric research, the new version (GEN_BE v2.0) can be easily extended to other domains of science and be chosen as a testbed for diagnostic and new modeling of B. Initially developed for variational data assimilation, the model of the B matrix may be useful for variational ensemble hybrid methods as well.
Generalized background error covariance matrix model (GEN_BE v2.0)
NASA Astrophysics Data System (ADS)
Descombes, G.; Auligné, T.; Vandenberghe, F.; Barker, D. M.; Barré, J.
2015-03-01
The specification of state background error statistics is a key component of data assimilation since it affects the impact observations will have on the analysis. In the variational data assimilation approach, applied in geophysical sciences, the dimensions of the background error covariance matrix (B) are usually too large to be explicitly determined and B needs to be modeled. Recent efforts to include new variables in the analysis such as cloud parameters and chemical species have required the development of the code to GENerate the Background Errors (GEN_BE) version 2.0 for the Weather Research and Forecasting (WRF) community model. GEN_BE allows for a simpler, flexible, robust, and community-oriented framework that gathers methods used by some meteorological operational centers and researchers. We present the advantages of this new design for the data assimilation community by performing benchmarks of different modeling of B and showing some of the new features in data assimilation test cases. As data assimilation for clouds remains a challenge, we present a multivariate approach that includes hydrometeors in the control variables and new correlated errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter statistics for chemical species, which shows that it is a tool flexible enough to implement new control variables. While the generation of the background errors statistics code was first developed for atmospheric research, the new version (GEN_BE v2.0) can be easily applied to other domains of science and chosen to diagnose and model B. Initially developed for variational data assimilation, the model of the B matrix may be useful for variational ensemble hybrid methods as well.
Li, Xue Jian; Mao, Fang Jie; Du, Hua Qiang; Zhou, Guo Mo; Xu, Xiao Jun; Li, Ping Heng; Liu, Yu Li; Cui, Lu
2016-12-01
LAI is one of the most important observation data in the research of carbon cycle of forest ecosystem, and it is also an important parameter to drive process-based ecosystem model. The Moso bamboo forest (MBF) and Lei bamboo forest (LBF) were selected as the study targets. Firstly, the MODIS LAI time series data during 2014-2015 was assimilated with Dual Ensemble Kalman Filter method. Secondly, the high quality assimilated MBF LAI and LBF LAI were used as input dataset to drive BEPS model for simulating the gross primary productivity (GPP), net ecosystem exchange (NEE) and total ecosystem respiration (TER) of the two types of bamboo forest ecosystem, respectively. The modeled carbon fluxes were evaluated by the observed carbon fluxes data, and the effects of different quality LAI inputs on carbon cycle simulation were also studied. The LAI assimilated using Dual Ensemble Kalman Filter of MBF and LBF were significantly correlated with the observed LAI, with high R 2 of 0.81 and 0.91 respectively, and lower RMSE and absolute bias, which represented the great improvement of the accuracy of MODIS LAI products. With the driving of assimilated LAI, the modeled GPP, NEE, and TER were also highly correlated with the flux observation data, with the R 2 of 0.66, 0.47, and 0.64 for MBF, respectively, and 0.66, 0.45, and 0.73 for LBF, respectively. The accuracy of carbon fluxes modeled with assimilated LAI was higher than that acquired by the locally adjusted cubic-spline capping method, in which, the accuracy of mo-deled NEE for MBF and LBF increased by 11.2% and 11.8% at the most degrees, respectively.
NASA Astrophysics Data System (ADS)
Wang, Pei; Li, Jun; Li, Zhenglong; Lim, Agnes H. N.; Li, Jinlong; Schmit, Timothy J.; Goldberg, Mitchell D.
2017-12-01
Hyperspectral infrared (IR) sounders provide high vertical resolution atmospheric sounding information that can improve the forecast skill in numerical weather prediction. Commonly, only clear radiances are assimilated, because IR sounder observations are highly affected by clouds. A cloud-clearing (CC) technique, which removes the cloud effects from an IR cloudy field of view (FOV) and derives the cloud-cleared radiances (CCRs) or clear-sky equivalent radiances, can be an alternative yet effective way to take advantage of the thermodynamic information from cloudy skies in data assimilation. This study develops a Visible Infrared Imaging Radiometer Suite (VIIRS)-based CC method for deriving Cross-track Infrared Sounder (CrIS) CCRs under partially cloudy conditions. Due to the lack of absorption bands on VIIRS, two important quality control steps are implemented in the CC process. Validation using VIIRS clear radiances indicates that the CC method can effectively obtain the CrIS CCRs for FOVs with partial cloud cover. To compare the impacts from assimilation of CrIS original radiances and CCRs, three experiments are carried out on two storm cases, Hurricane Joaquin (2015) and Hurricane Matthew (2016), using Gridpoint Statistical Interpolation assimilation system and Weather Research and Forecasting-Advanced Research Version models. At the analysis time, more CrIS observations are assimilated when using CrIS CCRs than with CrIS original radiances. Comparing temperature, specific humidity, and U/V winds with radiosondes indicates that the data impacts are growing larger with longer time forecasts (beyond 72 h forecast). Hurricane track forecasts also show improvements from the assimilation of CrIS CCRs due to better weather system forecasts. The impacts of CCRs on intensity are basically neutral with mixed positive and negative results.
Development of KIAPS Observation Processing Package for Data Assimilation System
NASA Astrophysics Data System (ADS)
Kang, Jeon-Ho; Chun, Hyoung-Wook; Lee, Sihye; Han, Hyun-Jun; Ha, Su-Jin
2015-04-01
The Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded in 2011 by the Korea Meteorological Administration (KMA) to develop Korea's own global Numerical Weather Prediction (NWP) system as nine year (2011-2019) project. Data assimilation team at KIAPS has been developing the observation processing system (KIAPS Package for Observation Processing: KPOP) to provide optimal observations to the data assimilation system for the KIAPS Global Model (KIAPS Integrated Model - Spectral Element method based on HOMME: KIM-SH). Currently, the KPOP is capable of processing the satellite radiance data (AMSU-A, IASI), GPS Radio Occultation (GPS-RO), AIRCRAFT (AMDAR, AIREP, and etc…), and synoptic observation (SONDE and SURFACE). KPOP adopted Radiative Transfer for TOVS version 10 (RTTOV_v10) to get brightness temperature (TB) for each channel at top of the atmosphere (TOA), and Radio Occultation Processing Package (ROPP) 1-dimensional forward module to get bending angle (BA) at each tangent point. The observation data are obtained from the KMA which has been composited with BUFR format to be converted with ODB that are used for operational data assimilation and monitoring at the KMA. The Unified Model (UM), Community Atmosphere - Spectral Element (CAM-SE) and KIM-SH model outputs are used for the bias correction (BC) and quality control (QC) of the observations, respectively. KPOP provides radiance and RO data for Local Ensemble Transform Kalman Filter (LETKF) and also provides SONDE, SURFACE and AIRCRAFT data for Three-Dimensional Variational Assimilation (3DVAR). We are expecting all of the observation type which processed in KPOP could be combined with both of the data assimilation method as soon as possible. The preliminary results from each observation type will be introduced with the current development status of the KPOP.
Prospect of Using Numerical Dynamo Model for Prediction of Geomagnetic Secular Variation
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Tangborn, Andrew
2003-01-01
Modeling of the Earth's core has reached a level of maturity to where the incorporation of observations into the simulations through data assimilation has become feasible. Data assimilation is a method by which observations of a system are combined with a model output (or forecast) to obtain a best guess of the state of the system, called the analysis. The analysis is then used as an initial condition for the next forecast. By doing assimilation, not only we shall be able to predict partially secular variation of the core field, we could also use observations to further our understanding of dynamical states in the Earth's core. One of the first steps in the development of an assimilation system is a comparison between the observations and the model solution. The highly turbulent nature of core dynamics, along with the absence of any regular external forcing and constraint (which occurs in atmospheric dynamics, for example) means that short time comparisons (approx. 1000 years) cannot be made between model and observations. In order to make sensible comparisons, a direct insertion assimilation method has been implemented. In this approach, magnetic field observations at the Earth's surface have been substituted into the numerical model, such that the ratio of the multiple components and the dipole component from observation is adjusted at the core-mantle boundary and extended to the interior of the core, while the total magnetic energy remains unchanged. This adjusted magnetic field is then used as the initial field for a new simulation. In this way, a time tugged simulation is created which can then be compared directly with observations. We present numerical solutions with and without data insertion and discuss their implications for the development of a more rigorous assimilation system.
Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Moradkhani, H.; Marshall, L.; Sharma, A.; Geenens, G.
2018-02-01
The increasing availability of earth observations necessitates mathematical methods to optimally combine such data with hydrologic models. Several algorithms exist for such purposes, under the umbrella of data assimilation (DA). However, DA methods are often applied in a suboptimal fashion for complex real-world problems, due largely to several practical implementation issues. One such issue is error characterization, which is known to be critical for a successful assimilation. Mischaracterized errors lead to suboptimal forecasts, and in the worst case, to degraded estimates even compared to the no assimilation case. Model uncertainty characterization has received little attention relative to other aspects of DA science. Traditional methods rely on subjective, ad hoc tuning factors or parametric distribution assumptions that may not always be applicable. We propose a novel data-driven approach (named SDMU) to model uncertainty characterization for DA studies where (1) the system states are partially observed and (2) minimal prior knowledge of the model error processes is available, except that the errors display state dependence. It includes an approach for estimating the uncertainty in hidden model states, with the end goal of improving predictions of observed variables. The SDMU is therefore suited to DA studies where the observed variables are of primary interest. Its efficacy is demonstrated through a synthetic case study with low-dimensional chaotic dynamics and a real hydrologic experiment for one-day-ahead streamflow forecasting. In both experiments, the proposed method leads to substantial improvements in the hidden states and observed system outputs over a standard method involving perturbation with Gaussian noise.
NASA Technical Reports Server (NTRS)
Reale, Oreste; Lau, William K.
2010-01-01
This article is a Reply to a Comment by Scott Braun on a previously published article by O. Reale, K.-M. Lau, and E. Brin: "Atlantic tropical cyclogenetic processes during SOP-3 NAMMA in the GEOS-5 global data assimilation and forecast system", by Reale, Lau and Brin, hereafter referred to as RA09. RA09 investigated the role of the Saharan Air Layer (SAL) in tropical cyclogenetic processes associated with a non-developing easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African Monsoon Multidisciplinary Analyses (MAMMA). The wave was chosen because both interact heavily with Saharan air. Results showed: a) very steep moisture gradients are associated with the SAL in forecasts and analyses even at great distance from the Sahara; b) a thermal dipole (warm above, cool below) in the non-developing case. RA09A suggested that radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis, and also indicated that only global horizontal resolutions on the order of 20-30 kilometers can capture the large-scale transport and the fine thermal structure of the SAL Braun (2010) questions those results attributing the wave dissipation to midlatitude air. The core discussion is on a dry filament preceding the wave, on the presence of dust, and on the origin of the air contained in this dry filament. In the 'Reply', higher resolution analyses than the ones used by Braun, taken at almost coincident times with Aqua and Terra passes, are shown, to emphasize how the channel of dry air associated with W1 is indeed rich in dust. Backtrajectories on a higher resolution grid are also performed, leading to results drastically different from Braun (2010), and in particularly showing that there is a clear contribution of Saharan air. Finally, the 'Reply' presents evidence on that analyses at a horizontal resolution of one degree are inadequate to investigate such feature.
CARINA Satellite Mission to Investigate the Upper Atmosphere below the F-Layer Ionosphere
NASA Astrophysics Data System (ADS)
Siefring, C. L.; Bernhardt, P. A.; Briczinski, S. J., Jr.; Huba, J.; Montgomery, J. A., Jr.
2017-12-01
A new satellite design permits broad science measurements from the ocean to the ionosphere by flying below the F-Layer. The satellite called CARINA for Coastal-Ocean, Assimilation, Radio, Ionosphere, Neutral-Drag, and Atmospherics. The unique system capabilities are long duration orbits below the ionosphere and a HF receiver to measure broadband signals. The CARINA science products include recording the ocean surface properties, data for assimilation into global ionosphere models, radio wave propagation measurements, in-situ observations of ionospheric structures, validating neutral drag models and theory, and broadband atmospheric lightning characterization. CARINA will also measure nonlinear wave-generation using ionospheric modification sites in Alaska, Norway, Puerto Rico, and Russia and collaborate with geophysics HF radars (such as Super-DARN) for system calibration. CARINA is a linear 6-U CubeSat with a long antenna extended in the wake direction. The CARINA science mission is supported by three instruments. First, the Electric Field Instrument (EFI) is a radio receiver covering the 2 to 18 MHz range. The receiver can capture both narrow and wide bandwidths for up to 10 minutes. EFI is designed to provide HF signal strength and phase, radar Doppler shift and group delay, and electron plasma density from photoelectron excited plasma waves. Second a Ram Langmuir Probe (RLP) measures high-resolution ion currents at a 10 kHz rate. These measurements yield electron and ion density at the spacecraft. Finally, the Orbiting GPS Receiver (OGR) provides dual frequency GPS position with ionosphere correction. OGR also measures total electron content above the spacecraft and L-Band scintillations. CARINA will be the lowest satellite in orbit at 250 km altitude, <0.01 eccentricity, and up to 4-month lifetime. The design supports unique capabilities with broad applications to the geosciences. Remote sensing of the ocean will sample the HF signals scattered from the rough sea surface to measure the wave height spectrum over large areas. CARINA will provide an enhanced understanding of HF system limiting phenomena such as travelling ionospheric disturbances, field aligned irregularities, sporadic-E and bottomside ionosphere structures.This work supported by the Naval Research Laboratory Base Program.
Enhanced Assimilation of InSAR Displacement and Well Data for Groundwater Monitoring
NASA Astrophysics Data System (ADS)
Abdullin, A.; Jonsson, S.
2016-12-01
Ground deformation related to aquifer exploitation can cause damage to buildings and infrastructure leading to major economic losses and sometimes even loss of human lives. Understanding reservoir behavior helps in assessing possible future ground movement and water depletion hazard of a region under study. We have developed an InSAR-based data assimilation framework for groundwater reservoirs that efficiently incorporates InSAR data for improved reservoir management and forecasts. InSAR displacement data are integrated with the groundwater modeling software MODFLOW using ensemble-based assimilation approaches. We have examined several Ensemble Methods for updating model parameters such as hydraulic conductivity and model variables like pressure head while simultaneously providing an estimate of the uncertainty. A realistic three-dimensional aquifer model was built to demonstrate the capability of the Ensemble Methods incorporating InSAR-derived displacement measurements. We find from these numerical tests that including both ground deformation and well water level data as observations improves the RMSE of the hydraulic conductivity estimate by up to 20% comparing to using only one type of observations. The RMSE estimation of this property after the final time step is similar for Ensemble Kalman Filter (EnKF), Ensemble Smoother (ES) and ES with multiple data assimilation (ES-MDA) methods. The results suggest that the high spatial and temporal resolution subsidence observations from InSAR are very helpful for accurately quantifying hydraulic parameters. We have tested the framework on several different examples and have found good performance in improving aquifer properties estimation, which should prove useful for groundwater management. Our ongoing work focuses on assimilating real InSAR-derived time series and hydraulic head data for calibrating and predicting aquifer properties of basin-wide groundwater systems.
Numerical modeling of marine Gravity data for tsunami hazard zone mapping
NASA Astrophysics Data System (ADS)
Porwal, Nipun
2012-07-01
Tsunami is a series of ocean wave with very high wavelengths ranges from 10 to 500 km. Therefore tsunamis act as shallow water waves and hard to predict from various methods. Bottom Pressure Recorders of Poseidon class considered as a preeminent method to detect tsunami waves but Acoustic Modem in Ocean Bottom Pressure (OBP) sensors placed in the vicinity of trenches having depth of more than 6000m fails to propel OBP data to Surface Buoys. Therefore this paper is developed for numerical modeling of Gravity field coefficients from Bureau Gravimetric International (BGI) which do not play a central role in the study of geodesy, satellite orbit computation, & geophysics but by mathematical transformation of gravity field coefficients using Normalized Legendre Polynomial high resolution ocean bottom pressure (OBP) data is generated. Real time sea level monitored OBP data of 0.3° by 1° spatial resolution using Kalman filter (kf080) for past 10 years by Estimating the Circulation and Climate of the Ocean (ECCO) has been correlated with OBP data from gravity field coefficients which attribute a feasible study on future tsunami detection system from space and in identification of most suitable sites to place OBP sensors near deep trenches. The Levitus Climatological temperature and salinity are assimilated into the version of the MITGCM using the ad-joint method to obtain the sea height segment. Then TOPEX/Poseidon satellite altimeter, surface momentum, heat, and freshwater fluxes from NCEP reanalysis product and the dynamic ocean topography DOT_DNSCMSS08_EGM08 is used to interpret sea-bottom elevation. Then all datasets are associated under raster calculator in ArcGIS 9.3 using Boolean Intersection Algebra Method and proximal analysis tools with high resolution sea floor topographic map. Afterward tsunami prone area and suitable sites for set up of BPR as analyzed in this research is authenticated by using Passive microwave radiometry system for Tsunami Hazard Zone Mapping by network of seismometers. Thus using such methodology for early Tsunami Hazard Zone Mapping also increase accuracy and reduce time period for tsunami predictions. KEYWORDS:, Tsunami, Gravity Field Coefficients, Ocean Bottom Pressure, ECCO, BGI, Sea Bottom Temperature, Sea Floor Topography.
NASA Astrophysics Data System (ADS)
Gustafsson, David; Pimentel, Rafael; Fabry, Pierre; Bercher, Nicolas; Roca, Mónica; Garcia-Mondejar, Albert; Fernandes, Joana; Lázaro, Clara; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme
2017-04-01
This communication is about the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) project, with a focus on the components dealing with assimilation of satellite altimetry data into hydrological models. The SHAPE research and development project started in September 2015, within the Scientific Exploitation of Operational Missions (SEOM) programme of the European Space Agency. The objectives of the project are to further develop and assess recent improvement in altimetry data, processing algorithms and methods for assimilation in hydrological models, with the overarching goal to support improved scientific use of altimetry data and improved inland water information. The objective is also to take scientific steps towards a future Inland Water dedicated processor on the Sentinel-3 ground segment. The study focuses on three main variables of interest in hydrology: river stage, river discharge and lake level. The improved altimetry data from the project is used to estimate river stage, river discharge and lake level information in a data assimilation framework using the hydrological dynamic and semi-distributed model HYPE (Hydrological Predictions for the Environment). This model has been developed by SMHI and includes data assimilation module based on the Ensemble Kalman filter method. The method will be developed and assessed for a number of case studies with available in situ reference data and satellite altimetry data based on mainly the CryoSat-2 mission on which the new processor will be run; Results will be presented from case studies on the Amazon and Danube rivers and Lake Vänern (Sweden). The production of alti-hydro products (water level time series) are improved thanks to the use of water masks. This eases the geo-selection of the CryoSat-2 altimetric measurements since there are acquired from a geodetic orbit and are thus spread along the river course in space and and time. The specific processing of data from this geodetic orbit space-time pattern will be discussed as well as the subsequent possible strategies for data assimilation into models (and eventually highlight a generalized approach toward multi-mission data processing). Notably, in case of data assimilation along the course of rivers, the river slope might be estimated and compensated for, in order to produce local water level "pseudo time series" at arbitrary locations, and specifically at model's inlets.
The effect of bathymetric filtering on nearshore process model results
Plant, N.G.; Edwards, K.L.; Kaihatu, J.M.; Veeramony, J.; Hsu, L.; Holland, K.T.
2009-01-01
Nearshore wave and flow model results are shown to exhibit a strong sensitivity to the resolution of the input bathymetry. In this analysis, bathymetric resolution was varied by applying smoothing filters to high-resolution survey data to produce a number of bathymetric grid surfaces. We demonstrate that the sensitivity of model-predicted wave height and flow to variations in bathymetric resolution had different characteristics. Wave height predictions were most sensitive to resolution of cross-shore variability associated with the structure of nearshore sandbars. Flow predictions were most sensitive to the resolution of intermediate scale alongshore variability associated with the prominent sandbar rhythmicity. Flow sensitivity increased in cases where a sandbar was closer to shore and shallower. Perhaps the most surprising implication of these results is that the interpolation and smoothing of bathymetric data could be optimized differently for the wave and flow models. We show that errors between observed and modeled flow and wave heights are well predicted by comparing model simulation results using progressively filtered bathymetry to results from the highest resolution simulation. The damage done by over smoothing or inadequate sampling can therefore be estimated using model simulations. We conclude that the ability to quantify prediction errors will be useful for supporting future data assimilation efforts that require this information.
Generation of Fine Scale Wind and Wave Climatologies
NASA Astrophysics Data System (ADS)
Vandenberghe, F. C.; Filipot, J.; Mouche, A.
2013-12-01
A tool to generate 'on demand' large databases of atmospheric parameters at high resolution has been developed for defense applications. The approach takes advantage of the zooming and relocation capabilities of the embedded domains that can be found in regional models like the community Weather Research and Forecast model (WRF). The WRF model is applied to dynamically downscale NNRP, CFSR and ERA40 global analyses and to generate long records, up to 30 years, of hourly gridded data over 200km2 domains at 3km grid increment. To insure accuracy, observational data from the NCAR ADP historical database are used in combination with the Four-Dimensional Data Assimilation (FDDA) techniques to constantly nudge the model analysis toward observations. The atmospheric model is coupled to secondary applications such as the NOAA's Wave Watch III model the Navy's APM Electromagnetic Propagation model, allowing the creation of high-resolution climatologies of surface winds, waves and electromagnetic propagation parameters. The system was applied at several coastal locations of the Mediterranean Sea where SAR wind and wave observations were available during the entire year of 2008. Statistical comparisons between the model output and SAR observations are presented. Issues related to the global input data, and the model drift, as well as the impact of the wind biases on wave simulations will be discussed.
Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation
NASA Astrophysics Data System (ADS)
Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei
2018-04-01
Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.
A Restricted Boltzman Neural Net to Infer Carbon Uptake from OCO-2 Satellite Data
NASA Astrophysics Data System (ADS)
Halem, M.; Dorband, J. E.; Radov, A.; Barr-Dallas, M.; Gentine, P.
2015-12-01
For several decades, scientists have been using satellite observations to infer climate budgets of terrestrial carbon uptake employing inverse methods in conjunction with ecosystem models and coupled global climate models. This is an extremely important Big Data calculation today since the net annual photosynthetic carbon uptake changes annually over land and removes on average ~20% of the emissions from human contributions to atmospheric loading of CO2 from fossil fuels. Unfortunately, such calculations have large uncertainties validated with in-situ networks of measuring stations across the globe. One difficulty in using satellite data for these budget calculations is that the models need to assimilate surface fluxes of CO2 as well as soil moisture, vegatation cover and the eddy covariance of latent and sensible heat to calculate the carbon fixed in the soil while satellite spectral observations only provide near surface concentrations of CO2. In July 2014, NASA successfully launched OCO-2 which provides 3km surface measurements of CO2 over land and oceans. We have collected nearly one year of Level 2 XCO2 data from the OCO-2 satellite for 3 sites of ~200 km2 at equatorial, temperate and high latitudes. Each selected site was part of the Fluxnet or ARM system with tower stations for measuring and collecting CO2 fluxes on an hourly basis, in addition to eddy transports of the other parameters. We are also planning to acquire the 4km NDVI products from MODIS and registering the data to the 3km XCO2 footprints for the three sites. We have implemented a restricted Boltzman machine on the quantum annealing D-Wave computer, a novel deep learning neural net, to be used for training with station data to infer CO2 fluxes from collocated XCO2, MODIS vegetative land cover and MERRA reanalysis surface exchange products. We will present performance assessments of the D-Wave Boltzman machine for generating XCO2 fluxes from the OCO-2 satellite observations for the 3 sites by validating with monthly station flux data for one year as a potential assimilation input to the LIS model for obtaining the Net Ecosystem Exchange.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Schubert, Siegfried; Rood, Richard
1995-01-01
The primary objective of the three-day workshop on results from the Data Assimilation Office (DAO) five-year assimilation was to provide timely feedback from the data users concerning the strengths and weaknesses of version 1 of the Goddard Earth Observing System (GEOS-1) assimilated products. A second objective was to assess user satisfaction with the current methods of data access and retrieval. There were a total of 49 presentations, with about half (23) of the presentations from scientists from outside of Goddard. The first two days were devoted to applications of data: studies of the energy diagnostics, precipitation and diabatic heating, hydrological modeling and moisture transport, cloud forcing and validation, various aspects of intraseasonal, seasonal, and interannual variability, ocean wind stress applications, and validation of surface fluxes. The last day included talks from the National Meteorological Center (NMC), the National Center for Atmospheric Research (NCAR), the Center for Ocean-Land-Atmosphere Studies (COLA), the United States Navy, and the European Center for Medium Range Weather Forecasts (ECMWF).
Development Of A Data Assimilation Capability For RAPID
NASA Astrophysics Data System (ADS)
Emery, C. M.; David, C. H.; Turmon, M.; Hobbs, J.; Allen, G. H.; Famiglietti, J. S.
2017-12-01
The global decline of in situ observations associated with the increasing ability to monitor surface water from space motivates the creation of data assimilation algorithms that merge computer models and space-based observations to produce consistent estimates of terrestrial hydrology that fill the spatiotemporal gaps in observations. RAPID is a routing model based on the Muskingum method that is capable of estimating river streamflow over large scales with a relatively short computing time. This model only requires limited inputs: a reach-based river network, and lateral surface and subsurface flow into the rivers. The relatively simple model physics imply that RAPID simulations could be significantly improved by including a data assimilation capability. Here we present the early developments of such data assimilation approach into RAPID. Given the linear and matrix-based structure of the model, we chose to apply a direct Kalman filter, hence allowing for the preservation of high computational speed. We correct the simulated streamflows by assimilating streamflow observations and our early results demonstrate the feasibility of the approach. Additionally, the use of in situ gauges at continental scales motivates the application of our new data assimilation scheme to altimetry measurements from existing (e.g. EnviSat, Jason 2) and upcoming satellite missions (e.g. SWOT), and ultimately apply the scheme globally.
NASA Astrophysics Data System (ADS)
Fer, I.; Kelly, R.; Andrews, T.; Dietze, M.; Richardson, A. D.
2016-12-01
Our ability to forecast ecosystems is limited by how well we parameterize ecosystem models. Direct measurements for all model parameters are not always possible and inverse estimation of these parameters through Bayesian methods is computationally costly. A solution to computational challenges of Bayesian calibration is to approximate the posterior probability surface using a Gaussian Process that emulates the complex process-based model. Here we report the integration of this method within an ecoinformatics toolbox, Predictive Ecosystem Analyzer (PEcAn), and its application with two ecosystem models: SIPNET and ED2.1. SIPNET is a simple model, allowing application of MCMC methods both to the model itself and to its emulator. We used both approaches to assimilate flux (CO2 and latent heat), soil respiration, and soil carbon data from Bartlett Experimental Forest. This comparison showed that emulator is reliable in terms of convergence to the posterior distribution. A 10000-iteration MCMC analysis with SIPNET itself required more than two orders of magnitude greater computation time than an MCMC run of same length with its emulator. This difference would be greater for a more computationally demanding model. Validation of the emulator-calibrated SIPNET against both the assimilated data and out-of-sample data showed improved fit and reduced uncertainty around model predictions. We next applied the validated emulator method to the ED2, whose complexity precludes standard Bayesian data assimilation. We used the ED2 emulator to assimilate demographic data from a network of inventory plots. For validation of the calibrated ED2, we compared the model to results from Empirical Succession Mapping (ESM), a novel synthesis of successional patterns in Forest Inventory and Analysis data. Our results revealed that while the pre-assimilation ED2 formulation cannot capture the emergent demographic patterns from ESM analysis, constrained model parameters controlling demographic processes increased their agreement considerably.
NASA Astrophysics Data System (ADS)
Amicarelli, A.; Gariazzo, C.; Finardi, S.; Pelliccioni, A.; Silibello, C.
2008-05-01
Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM10 concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode.
Data Assimilation by delay-coordinate nudging
NASA Astrophysics Data System (ADS)
Pazo, Diego; Lopez, Juan Manuel; Carrassi, Alberto
2016-04-01
A new nudging method for data assimilation, delay-coordinate nudging, is presented. Delay-coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time-step. Numerical experiments with a low order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an un-optimized formulation of the delay-nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay-coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal-to-decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures.
Specification and Prediction of the Radiation Environment Using Data Assimilative VERB code
NASA Astrophysics Data System (ADS)
Shprits, Yuri; Kellerman, Adam
2016-07-01
We discuss how data assimilation can be used for the reconstruction of long-term evolution, bench-marking of the physics based codes and used to improve the now-casting and focusing of the radiation belts and ring current. We also discuss advanced data assimilation methods such as parameter estimation and smoothing. We present a number of data assimilation applications using the VERB 3D code. The 3D data assimilative VERB allows us to blend together data from GOES, RBSP A and RBSP B. 1) Model with data assimilation allows us to propagate data to different pitch angles, energies, and L-shells and blends them together with the physics-based VERB code in an optimal way. We illustrate how to use this capability for the analysis of the previous events and for obtaining a global and statistical view of the system. 2) The model predictions strongly depend on initial conditions that are set up for the model. Therefore, the model is as good as the initial conditions that it uses. To produce the best possible initial conditions, data from different sources (GOES, RBSP A, B, our empirical model predictions based on ACE) are all blended together in an optimal way by means of data assimilation, as described above. The resulting initial conditions do not have gaps. This allows us to make more accurate predictions. Real-time prediction framework operating on our website, based on GOES, RBSP A, B and ACE data, and 3D VERB, is presented and discussed.
Sequential estimation and satellite data assimilation in meteorology and oceanography
NASA Technical Reports Server (NTRS)
Ghil, M.
1986-01-01
The central theme of this review article is the role that dynamics plays in estimating the state of the atmosphere and of the ocean from incomplete and noisy data. Objective analysis and inverse methods represent an attempt at relying mostly on the data and minimizing the role of dynamics in the estimation. Four-dimensional data assimilation tries to balance properly the roles of dynamical and observational information. Sequential estimation is presented as the proper framework for understanding this balance, and the Kalman filter as the ideal, optimal procedure for data assimilation. The optimal filter computes forecast error covariances of a given atmospheric or oceanic model exactly, and hence data assimilation should be closely connected with predictability studies. This connection is described, and consequences drawn for currently active areas of the atmospheric and oceanic sciences, namely, mesoscale meteorology, medium and long-range forecasting, and upper-ocean dynamics.
A new data assimilation engine for physics-based thermospheric density models
NASA Astrophysics Data System (ADS)
Sutton, E. K.; Henney, C. J.; Hock-Mysliwiec, R.
2017-12-01
The successful assimilation of data into physics-based coupled Ionosphere-Thermosphere models requires rethinking the filtering techniques currently employed in fields such as tropospheric weather modeling. In the realm of Ionospheric-Thermospheric modeling, the estimation of system drivers is a critical component of any reliable data assimilation technique. How to best estimate and apply these drivers, however, remains an open question and active area of research. The recently developed method of Iterative Re-Initialization, Driver Estimation and Assimilation (IRIDEA) accounts for the driver/response time-delay characteristics of the Ionosphere-Thermosphere system relative to satellite accelerometer observations. Results from two near year-long simulations are shown: (1) from a period of elevated solar and geomagnetic activity during 2003, and (2) from a solar minimum period during 2007. This talk will highlight the challenges and successes of implementing a technique suited for both solar min and max, as well as expectations for improving neutral density forecasts.
Transportation assimilation revisited: New evidence from repeated cross-sectional survey data
2018-01-01
Background Based on single cross-sectional data, prior research finds evidence of “transportation assimilation” among U.S. immigrants: the length of stay in the U.S. is negatively correlated with public transit use. This paper revisits this question by using repeated cross-sectional data, and examines the trend of transportation assimilation over time. Methods and results Using 1980, 1990, 2000 1% census and 2010 (1%) American Community Survey, I examine the relationship between the length of stay in the U.S. and public transit ridership among immigrants. I first run regressions separately in four data sets: I regress public transit ridership on the length of stay, controlling for other individual and geographic variables. I then compare the magnitudes of the relationship in four regressions. To study how the rate of transportation assimilation changes over time, I pool the data set and regress public transit ridership on the length of stay and its interactions with year dummies to compare the coefficients across surveys. Results confirm the conclusion of transportation assimilation: as the length of stay in the U.S. increases, an immigrant’s public transit use decreases. However, the repeated cross-section analysis suggests the assimilation rate has been decreasing in the past few decades. Conclusions This paper finds evidence of transportation assimilation: immigrants become less likely to ride public transit as the length of stay in the U.S. increases. The assimilation rate, however, has been decreasing over time. This paper finds that the rate of public transit ridership among new immigrants upon arrival, the geographic distribution of immigrants, and the changing demographics of the U.S. immigrants play roles in affecting the trend of transportation assimilation. PMID:29668676
NASA Technical Reports Server (NTRS)
Yang, R.; Houser, P.; Joiner, J.
1998-01-01
The surface ground temperature (Tg) is an important meteorological variable, because it represents an integrated thermal state of the land surface determined by a complex surface energy budget. Furthermore, Tg affects both the surface sensible and latent heat fluxes. Through these fluxes. the surface budget is coupled with the atmosphere above. Accurate Tg data are useful for estimating the surface radiation budget and fluxes, as well as soil moisture. Tg is not included in conventional synoptical weather station reports. Currently, satellites provide Tg estimates globally. It is necessary to carefully consider appropriate methods of using these satellite data in a data assimilation system. Recently, an Off-line Land surface GEOS Assimilation (OLGA) system was implemented at the Data Assimilation Office at NASA-GSFC. One of the goals of OLGA is to assimilate satellite-derived Tg data. Prior to the Tg assimilation, a thorough investigation of satellite- and model-derived Tg, including error estimates, is required. In this study we examine the Tg from the n Project (ISCCP DI) data and the OLGA simulations. The ISCCP data used here are 3-hourly DI data (2.5x2.5 degree resolution) for 1992 summer months (June, July, and August) and winter months (January and February). The model Tg for the same periods were generated by OLGA. The forcing data for this OLGA 1992 simulation were generated from the GEOS-1 Data Assimilation System (DAS) at Data Assimilation Office NASA-GSFC. We examine the discrepancies between ISCCP and OLGA Tg with a focus on its spatial and temporal characteristics, particularly on the diurnal cycle. The error statistics in both data sets, including bias, will be estimated. The impact of surface properties, including vegetation cover and type, topography, etc, on the discrepancies will be addressed.
NASA Technical Reports Server (NTRS)
Brubaker, N.; Jedlovec, G. J.
2004-01-01
With the preliminary release of AIRS Level 1 and 2 data to the scientific community, there is a growing need for an accurate AIRS cloud mask for data assimilation studies and in producing products derived from cloud free radiances. Current cloud information provided with the AIRS data are limited or based on simplified threshold tests. A multispectral cloud detection approach has been developed for AIRS that utilizes the hyper-spectral capabilities to detect clouds based on specific cloud signatures across the short wave and long wave infrared window regions. This new AIRS cloud mask has been validated against the existing AIRS Level 2 cloud product and cloud information derived from MODIS. Preliminary results for both day and night applications over the continental U.S. are encouraging. Details of the cloud detection approach and validation results will be presented at the conference.
NASA Astrophysics Data System (ADS)
Gerzen, Tatjana; Wilken, Volker; Hoque, Mainul; Minkwitz, David; Schlueter, Stefan
2016-04-01
The ionosphere is the upper part of the Earth's atmosphere, where sufficient free electrons exist to affect the propagation of radio waves. Therefore, the treatment of the ionosphere is a critical issue for many applications dealing with trans-ionospheric signals such as GNSS positioning, GNSS related augmentation systems (e.g. EGNOS and WAAS) and remote sensing. The European Geostationary Navigation Overlay Service (EGNOS) is the European Satellite Based Augmentation Service (SBAS) that provides value added services, in particular to safety critical GNSS applications, e.g. aviation and maritime traffic. In the frame of the European GNSS Evolution Programme (EGEP), ESA has launched several activities, supporting the design, development and qualification of the operational EGNOS infrastructure and associated services. Ionospheric Reference Scenarios (IRSs) are used by ESA in order to conduct the EGNOS performance simulations and to assure the capability for maintaining accuracy, integrity and availability of the EGNOS system, especially during ionospheric storm conditions. The project Data Assimilation Techniques for Ionospheric Reference Scenarios (DAIS) - aims the provision of improved EGNOS IRSs. The main tasks are the calculation and validation of time series of IRSs by a 3D assimilation approach that combines space borne and ground based GNSS observations as well as ionosonde measurements with an ionospheric background model. The special focus thereby is to demonstrate that space-based measurements can significantly contribute to fill data gaps in GNSS ground networks (particularly in Africa and over the oceans) when generating the IRSs. In this project we selected test periods of perturbed and nominal ionospheric conditions and filtered the collected data for outliers. We defined and developed an applicable technique for the 3D assimilation and applied this technique for the generation of IRSs covering the EGNOS V3 extended service area. Afterwards the generated 3D ionosphere reconstructions as well as the final IRSs are validated with independent GNSS slant TEC (Total Electron Content) data, vertical sounding observations and JASON 1 and 2 derived vertical TEC. This presentation gives an overview about the DAIS project and the achieved results. We outline the assimilation approach, show the reconstruction and the validation results and finally address open questions.
Comparison of different filter methods for data assimilation in the unsaturated zone
NASA Astrophysics Data System (ADS)
Lange, Natascha; Berkhahn, Simon; Erdal, Daniel; Neuweiler, Insa
2016-04-01
The unsaturated zone is an important compartment, which plays a role for the division of terrestrial water fluxes into surface runoff, groundwater recharge and evapotranspiration. For data assimilation in coupled systems it is therefore important to have a good representation of the unsaturated zone in the model. Flow processes in the unsaturated zone have all the typical features of flow in porous media: Processes can have long memory and as observations are scarce, hydraulic model parameters cannot be determined easily. However, they are important for the quality of model predictions. On top of that, the established flow models are highly non-linear. For these reasons, the use of the popular Ensemble Kalman filter as a data assimilation method to estimate state and parameters in unsaturated zone models could be questioned. With respect to the long process memory in the subsurface, it has been suggested that iterative filters and smoothers may be more suitable for parameter estimation in unsaturated media. We test the performance of different iterative filters and smoothers for data assimilation with a focus on parameter updates in the unsaturated zone. In particular we compare the Iterative Ensemble Kalman Filter and Smoother as introduced by Bocquet and Sakov (2013) as well as the Confirming Ensemble Kalman Filter and the modified Restart Ensemble Kalman Filter proposed by Song et al. (2014) to the original Ensemble Kalman Filter (Evensen, 2009). This is done with simple test cases generated numerically. We consider also test examples with layering structure, as a layering structure is often found in natural soils. We assume that observations are water content, obtained from TDR probes or other observation methods sampling relatively small volumes. Particularly in larger data assimilation frameworks, a reasonable balance between computational effort and quality of results has to be found. Therefore, we compare computational costs of the different methods as well as the quality of open loop model predictions and the estimated parameters. Bocquet, M. and P. Sakov, 2013: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlinear Processes in Geophysics 20(5): 803-818. Evensen, G., 2009: Data assimilation: The ensemble Kalman filter. Springer Science & Business Media. Song, X.H., L.S. Shi, M. Ye, J.Z. Yang and I.M. Navon, 2014: Numerical comparison of iterative ensemble Kalman filters for unsaturated flow inverse modeling. Vadose Zone Journal 13(2), 10.2136/vzj2013.05.0083.
Global SWOT Data Assimilation of River Hydrodynamic Model; the Twin Simulation Test of CaMa-Flood
NASA Astrophysics Data System (ADS)
Ikeshima, D.; Yamazaki, D.; Kanae, S.
2016-12-01
CaMa-Flood is a global scale model for simulating hydrodynamics in large scale rivers. It can simulate river hydrodynamics such as river discharge, flooded area, water depth and so on by inputting water runoff derived from land surface model. Recently many improvements at parameters or terrestrial data are under process to enhance the reproducibility of true natural phenomena. However, there are still some errors between nature and simulated result due to uncertainties in each model. SWOT (Surface water and Ocean Topography) is a satellite, which is going to be launched in 2021, can measure open water surface elevation. SWOT observed data can be used to calibrate hydrodynamics model at river flow forecasting and is expected to improve model's accuracy. Combining observation data into model to calibrate is called data assimilation. In this research, we developed data-assimilated river flow simulation system in global scale, using CaMa-Flood as river hydrodynamics model and simulated SWOT as observation data. Generally at data assimilation, calibrating "model value" with "observation value" makes "assimilated value". However, the observed data of SWOT satellite will not be available until its launch in 2021. Instead, we simulated the SWOT observed data using CaMa-Flood. Putting "pure input" into CaMa-Flood produce "true water storage". Extracting actual daily swath of SWOT from "true water storage" made simulated observation. For "model value", we made "disturbed water storage" by putting "noise disturbed input" to CaMa-Flood. Since both "model value" and "observation value" are made by same model, we named this twin simulation. At twin simulation, simulated observation of "true water storage" is combined with "disturbed water storage" to make "assimilated value". As the data assimilation method, we used ensemble Kalman filter. If "assimilated value" is closer to "true water storage" than "disturbed water storage", the data assimilation can be marked effective. Also by changing the input disturbance of "disturbed water storage", acceptable rate of uncertainty at the input may be discussed.
cBathy: A robust algorithm for estimating nearshore bathymetry
Plant, Nathaniel G.; Holman, Rob; Holland, K. Todd
2013-01-01
A three-part algorithm is described and tested to provide robust bathymetry maps based solely on long time series observations of surface wave motions. The first phase consists of frequency-dependent characterization of the wave field in which dominant frequencies are estimated by Fourier transform while corresponding wave numbers are derived from spatial gradients in cross-spectral phase over analysis tiles that can be small, allowing high-spatial resolution. Coherent spatial structures at each frequency are extracted by frequency-dependent empirical orthogonal function (EOF). In phase two, depths are found that best fit weighted sets of frequency-wave number pairs. These are subsequently smoothed in time in phase 3 using a Kalman filter that fills gaps in coverage and objectively averages new estimates of variable quality with prior estimates. Objective confidence intervals are returned. Tests at Duck, NC, using 16 surveys collected over 2 years showed a bias and root-mean-square (RMS) error of 0.19 and 0.51 m, respectively but were largest near the offshore limits of analysis (roughly 500 m from the camera) and near the steep shoreline where analysis tiles mix information from waves, swash and static dry sand. Performance was excellent for small waves but degraded somewhat with increasing wave height. Sand bars and their small-scale alongshore variability were well resolved. A single ground truth survey from a dissipative, low-sloping beach (Agate Beach, OR) showed similar errors over a region that extended several kilometers from the camera and reached depths of 14 m. Vector wave number estimates can also be incorporated into data assimilation models of nearshore dynamics.
NASA Technical Reports Server (NTRS)
Manney, Gloria L.; Krueger, Kirstin; Pawson, Steven; Minschwaner, Ken; Schwartz, Michael J.; Daffer, William H.; Livesey, Nathaniel J.; Mlynczak, Martin G.; Remsberg, Ellis E.; Russell, James M., III;
2008-01-01
Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data provide the first opportunity to characterize the four-dimensional stratopause evolution throughout the life-cycle of a major stratospheric sudden warming (SSW). The polar stratopause, usually higher than that at midlatitudes, dropped by 30 km and warmed during development of a major "wave 1" SSW in January 2006, with accompanying mesospheric cooling. When the polar vortex broke down, the stratopause cooled and became ill-defined, with a nearly isothermal stratosphere. After the polar vortex started to recover in the upper stratosphere/lower mesosphere (USLM), a cool stratopause reformed above 75 km, then dropped and warmed; both the mesosphere above and the stratosphere below cooled at this time. The polar stratopause remained separated from that at midlatitudes across the core of the polar night jet. In the early stages of the SSW, the strongly tilted (westward with increasing altitude) polar vortex extended into the mesosphere, and enclosed a secondary temperature maximum extending westward and slightly equatorward from the highest altitude part of the polar stratopause over the cool stratopause near the vortex edge. The temperature evolution in the USLM resulted in strongly enhanced radiative cooling in the mesosphere during the recovery from the SSW, but significantly reduced radiative cooling in the upper stratosphere. Assimilated meteorological analyses from the European Centre for Medium-Range weather Forecasts (ECMWF) and Goddard Earth Observing System Version 5.0.1 (GEOS-5), which are not constrained by data at polar stratopause altitudes and have model tops near 80 km, could not capture the secondary temperature maximum or the high stratopause after the SSW; they also misrepresent polar temperature structure during and after the stratopause breakdown, leading to large biases in their radiative heating rates. ECMWF analyses represent the stratospheric temperature structure more accurately, suggesting a better representation of vertical motion; GEOS-5 analyses more faithfully describe stratopause level wind and wave amplitudes. The high-quality satellite temperature data used here provide the first daily, global, multiannual data sets suitable for assessing and, eventually, improving representation of the USLM in models and assimilation systems.
Impacts of snow cover fraction data assimilation on modeled energy and moisture budgets
NASA Astrophysics Data System (ADS)
Arsenault, Kristi R.; Houser, Paul R.; De Lannoy, Gabriëlle J. M.; Dirmeyer, Paul A.
2013-07-01
Two data assimilation (DA) methods, a simple rule-based direct insertion (DI) approach and a one-dimensional ensemble Kalman filter (EnKF) method, are evaluated by assimilating snow cover fraction observations into the Community Land surface Model. The ensemble perturbation needed for the EnKF resulted in negative snowpack biases. Therefore, a correction is made to the ensemble bias using an approach that constrains the ensemble forecasts with a single unperturbed deterministic LSM run. This is shown to improve the final snow state analyses. The EnKF method produces slightly better results in higher elevation locations, whereas results indicate that the DI method has a performance advantage in lower elevation regions. In addition, the two DA methods are evaluated in terms of their overall impacts on the other land surface state variables (e.g., soil moisture) and fluxes (e.g., latent heat flux). The EnKF method is shown to have less impact overall than the DI method and causes less distortion of the hydrological budget. However, the land surface model adjusts more slowly to the smaller EnKF increments, which leads to smaller but slightly more persistent moisture budget errors than found with the DI updates. The DI method can remove almost instantly much of the modeled snowpack, but this also allows the model system to quickly revert to hydrological balance for nonsnowpack conditions.
Center for Geosciences/Atmospheric Research (CG/AR) Quarterly Report Number 21
2011-06-30
ended April 30. Research activity and/or results Dr. Yoo-Jeong Noh C3VP/CLEX-10 satellite and aircraft data analysis The manuscript that was...a contractor to the National Environmental Satellite , Data , & Information Service’s (NESDIS) Satellite Analysis Branch (SAB) at the World Weather...cira.colostate.edu Data Assimilation Methods Environmental Modeling and Assimilation Forsythe John CIRA forsythe@cira.colostate.edu Satellite
Do Assimilated Drifter Velocities Improve Lagrangian Predictability in an Operational Ocean Model?
2015-05-01
extended Kalman filter . Molcard et al. (2005) used a statistical method to cor- relate model and drifter velocities. Taillandier et al. (2006) describe the... temperature and salinity observations. Trajectory angular differ- ences are also reduced. 1. Introduction The importance of Lagrangian forecasts was seen... Temperature , salinity, and sea surface height (SSH, measured along-track by satellite altimeters) observa- tions are typically assimilated in
Weinrich, Lauren A.; Schneider, Orren D.; LeChevallier, Mark W.
2011-01-01
A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment. PMID:21148685
ERIC Educational Resources Information Center
Arar, Khalid
2016-01-01
The study traced the assimilation of new administrative software in an Arab school, assisted by collaboration between the school and an Arab academic teacher-training college in Israel. The research used a mixed-method paradigm. A questionnaire consisting of 81 items was administered to 55 of the school's teachers in two stages to elicit their…
ERIC Educational Resources Information Center
Makiya, George K.
2012-01-01
This dissertation reports on a multi-dimensional longitudinal investigation of the factors that influence Enterprise Architecture (EA) diffusion and assimilation within the U.S. federal government. The study uses publicly available datasets of 123 U.S. federal departments and agencies, as well as interview data among CIOs and EA managers within…
Assimilation of sea ice concentration data in the Arctic via DART/CICE5 in the CESM1
NASA Astrophysics Data System (ADS)
Zhang, Y.; Bitz, C. M.; Anderson, J. L.; Collins, N.; Hendricks, J.; Hoar, T. J.; Raeder, K.
2016-12-01
Arctic sea ice cover has been experiencing significant reduction in the past few decades. Climate models predict that the Arctic Ocean may be ice-free in late summer within a few decades. Better sea ice prediction is crucial for regional and global climate prediction that are vital to human activities such as maritime shipping and subsistence hunting, as well as wildlife protection as animals face habitat loss. The physical processes involved with the persistence and re-emergence of sea ice cover are found to extend the predictability of sea ice concentration (SIC) and thickness at the regional scale up to several years. This motivates us to investigate sea ice predictability stemming from initial values of the sea ice cover. Data assimilation is a useful technique to combine observations and model forecasts to reconstruct the states of sea ice in the past and provide more accurate initial conditions for sea ice prediction. This work links the most recent version of the Los Alamos sea ice model (CICE5) within the Community Earth System Model version 1.5 (CESM1.5) and the Data Assimilation Research Testbed (DART). The linked DART/CICE5 is ideal to assimilate multi-scale and multivariate sea ice observations using an ensemble Kalman filter (EnKF). The study is focused on the assimilation of SIC data that impact SIC, sea ice thickness, and snow thickness. The ensemble sea ice model states are constructed by introducing uncertainties in atmospheric forcing and key model parameters. The ensemble atmospheric forcing is a reanalysis product generated with DART and the Community Atmosphere Model (CAM). We also perturb two model parameters that are found to contribute significantly to the model uncertainty in previous studies. This study applies perfect model observing system simulation experiments (OSSEs) to investigate data assimilation algorithms and post-processing methods. One of the ensemble members of a CICE5 free run is chosen as the truth. Daily synthetic observations are obtained by adding 15% random noise to the truth. Experiments assimilating the synthetic observations are then conducted to test the effectiveness of different data assimilation algorithms (e.g., localization and inflation) and post-processing methods (e.g., how to distribute the total increment of SIC into each ice thickness category).
The feeding tube of cyst nematodes: characterisation of protein exclusion.
Eves-van den Akker, Sebastian; Lilley, Catherine J; Ault, James R; Ashcroft, Alison E; Jones, John T; Urwin, Peter E
2014-01-01
Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.
The Feeding Tube of Cyst Nematodes: Characterisation of Protein Exclusion
Eves-van den Akker, Sebastian; Lilley, Catherine J.; Ault, James R.; Ashcroft, Alison E.; Jones, John T.; Urwin, Peter E.
2014-01-01
Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry – mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins. PMID:24489891
NASA Astrophysics Data System (ADS)
Noh, S. J.; Rakovec, O.; Kumar, R.; Samaniego, L. E.
2015-12-01
Accurate and reliable streamflow prediction is essential to mitigate social and economic damage coming from water-related disasters such as flood and drought. Sequential data assimilation (DA) may facilitate improved streamflow prediction using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. However, if parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by model ensemble may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we evaluate impacts of streamflow data assimilation over European river basins. Especially, a multi-parametric ensemble approach is tested to consider the effects of parametric uncertainty in DA. Because augmentation of parameters is not required within an assimilation window, the approach could be more stable with limited ensemble members and have potential for operational uses. To consider the response times and non-Gaussian characteristics of internal hydrologic processes, lagged particle filtering is utilized. The presentation will be focused on gains and limitations of streamflow data assimilation and multi-parametric ensemble method over large-scale basins.
Does Ocean Color Data Assimilation Improve Estimates of Global Ocean Inorganic Carbon?
NASA Technical Reports Server (NTRS)
Gregg, Watson
2012-01-01
Ocean color data assimilation has been shown to dramatically improve chlorophyll abundances and distributions globally and regionally in the oceans. Chlorophyll is a proxy for phytoplankton biomass (which is explicitly defined in a model), and is related to the inorganic carbon cycle through the interactions of the organic carbon (particulate and dissolved) and through primary production where inorganic carbon is directly taken out of the system. Does ocean color data assimilation, whose effects on estimates of chlorophyll are demonstrable, trickle through the simulated ocean carbon system to produce improved estimates of inorganic carbon? Our emphasis here is dissolved inorganic carbon, pC02, and the air-sea flux. We use a sequential data assimilation method that assimilates chlorophyll directly and indirectly changes nutrient concentrations in a multi-variate approach. The results are decidedly mixed. Dissolved organic carbon estimates from the assimilation model are not meaningfully different from free-run, or unassimilated results, and comparisons with in situ data are similar. pC02 estimates are generally worse after data assimilation, with global estimates diverging 6.4% from in situ data, while free-run estimates are only 4.7% higher. Basin correlations are, however, slightly improved: r increase from 0.78 to 0.79, and slope closer to unity at 0.94 compared to 0.86. In contrast, air-sea flux of C02 is noticeably improved after data assimilation. Global differences decline from -0.635 mol/m2/y (stronger model sink from the atmosphere) to -0.202 mol/m2/y. Basin correlations are slightly improved from r=O.77 to r=0.78, with slope closer to unity (from 0.93 to 0.99). The Equatorial Atlantic appears as a slight sink in the free-run, but is correctly represented as a moderate source in the assimilation model. However, the assimilation model shows the Antarctic to be a source, rather than a modest sink and the North Indian basin is represented incorrectly as a sink rather than the source indicated by the free-run model and data estimates.
NASA Astrophysics Data System (ADS)
Greer, Katelynn R.
The polar winter middle atmosphere is a dynamically active region that is driven primarily by wave activity. Planetary waves intermittently disturbed the region at different levels and the most spectacular type of disturbance is a major Sudden Stratospheric Warming (SSW). However, other types of extreme disturbances occur on a more frequent, intraseasonal basis. One such disturbance is a synoptic-scale "weather event" observed in lidar and rocket soundings, soundings from the TIMED/SABER instrument and UK Meteorological Office (MetO) assimilated data. These disturbances are most easily identified near 42 km where temperatures are elevated over baseline conditions by a remarkable 50 K and an associated cooling is observed near 75 km. As these disturbances have a coupled vertical structure extending into the lower mesosphere, they are termed Upper Stratospheric/Lower Mesospheric (USLM) disturbances. This research begins with description of the phenomenology of USLM events in observations and the assimilated data set MetO, develops a description of the dynamics responsible for their development and places them in the context of the family of polar winter middle atmospheric disturbances. Climatologies indicates that USLM disturbances are commonly occurring polar wintertime disturbances of the middle atmosphere, have a remarkably repeating thermal structure, are located on the East side of the polar low and are related planetary wave activity. Using the same methodology for identifying USLM events and building climatologies of these events, the Whole Atmosphere Community Climate Model WACCM version 4 is established to spontaneously and internally generate USLM disturbances. Planetary waves are seen to break at a level just above the stratopause and convergence of the EP-flux vector is occurring in this region, decelerating the eastward zonal-mean wind and inducing ageostrophic vertical motion to maintain mass continuity. The descending air increases the horizontal temperature gradient at 2 hPa and is responsible for the stratopause warming. Embedded in this planetary wave breaking process is baroclinic instability, as indicated by the Charney-Stern criteria and an EP-flux analysis decomposed by planetary and synoptic-scale waves. It is recognized that USLM events are part of a family of disturbances that occur in the polar winter middle atmosphere which have the potential to impact the entire atmospheric column. Relationships between USLM events, minor SSWs and major SSWs are examined and displayed through a Venn diagram which looked for events that were linked to each other (or not) by temporal evolution of the polar vortex within 14 days. Critically, every identified major SSW (in both MetO and WACCM) is preceded by a USLM disturbance, and the baroclinic instability that is embedded in the planetary wave breaking of USLM disturbances mark significant disruption to the middle atmosphere, which may aid in the forecast of major SSWs. This leads to the proposal of new dynamics based definitions of minor and major SSWs.
NASA Astrophysics Data System (ADS)
Hori, T.; Agata, R.; Ichimura, T.; Fujita, K.; Yamaguchi, T.; Takahashi, N.
2017-12-01
Recently, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. For construct a system for monitoring and forecasting, it is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate inter-face and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Unstructured FE non-linear seismic wave simulation code has been developed. This achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. A high fidelity FEM simulation code with mesh generator has also been developed to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. This code has been improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, waveform inversion code for modeling 3D crustal structure has been developed, and the high-fidelity FEM code has been improved to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. We are developing the methods for forecasting the slip velocity variation on the plate interface. Although the prototype is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model. Furthermore, large-scale simulation codes for monitoring are being implemented on the GPU clusters and analysis tools are developing to include other functions such as examination in model errors.
NASA Astrophysics Data System (ADS)
Fairbairn, David; Lavinia Barbu, Alina; Napoly, Adrien; Albergel, Clément; Mahfouf, Jean-François; Calvet, Jean-Christophe
2017-04-01
This study evaluates the impact of assimilating surface soil moisture (SSM) and leaf area index (LAI) observations into a land surface model using the SAFRAN-ISBA-MODCOU (SIM) hydrological suite. SIM consists of three stages: (1) an atmospheric reanalysis (SAFRAN) over France, which forces (2) the three-layer ISBA land surface model, which then provides drainage and runoff inputs to (3) the MODCOU hydro-geological model. The drainage and runoff outputs from ISBA are validated by comparing the simulated river discharge from MODCOU with over 500 river-gauge observations over France and with a subset of stations with low-anthropogenic influence, over several years. This study makes use of the A-gs version of ISBA that allows for physiological processes. The atmospheric forcing for the ISBA-A-gs model underestimates direct shortwave and long-wave radiation by approximately 5 % averaged over France. The ISBA-A-gs model also substantially underestimates the grassland LAI compared with satellite retrievals during winter dormancy. These differences result in an underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess runoff flowing into the rivers and aquifers contributes to an overestimation of the SIM river discharge. Two experiments attempted to resolve these problems: (i) a correction of the minimum LAI model parameter for grasslands and (ii) a bias-correction of the model radiative forcing. Two data assimilation experiments were also performed, which are designed to correct random errors in the initial conditions: (iii) the assimilation of LAI observations and (iv) the assimilation of SSM and LAI observations. The data assimilation for (iii) and (iv) was done with a simplified extended Kalman filter (SEKF), which uses finite differences in the observation operator Jacobians to relate the observations to the model variables. Experiments (i) and (ii) improved the median SIM Nash scores by about 9 % and 18 % respectively. Experiment (iii) reduced the LAI phase errors in ISBA-A-gs but had little impact on the discharge Nash efficiency of SIM. In contrast, experiment (iv) resulted in spurious increases in drainage and runoff, which degraded the median discharge Nash efficiency by about 7 %. The poor performance of the SEKF originates from the observation operator Jacobians. These Jacobians are dampened when the soil is saturated and when the vegetation is dormant, which leads to positive biases in drainage and/or runoff and to insufficient corrections during winter, respectively. Possible ways to improve the model are discussed, including a new multi-layer diffusion model and a more realistic response of photosynthesis to temperature in mountainous regions. The data assimilation should be advanced by accounting for model and forcing uncertainties.
NASA Astrophysics Data System (ADS)
Yang, Guijun; Yang, Hao; Jin, Xiuliang; Pignatti, Stefano; Casa, Faffaele; Silverstro, Paolo Cosmo
2016-08-01
Drought is the most costly natural disasters in China and all over the world. It is very important to evaluate the drought-induced crop yield losses and further improve water use efficiency at regional scale. Firstly, crop biomass was estimated by the combined use of Synthetic Aperture Radar (SAR) and optical remote sensing data. Then the estimated biophysical variable was assimilated into crop growth model (FAO AquaCrop) by the Particle Swarm Optimization (PSO) method from farmland scale to regional scale.At farmland scale, the most important crop parameters of AquaCrop model were determined to reduce the used parameters in assimilation procedure. The Extended Fourier Amplitude Sensitivity Test (EFAST) method was used for assessing the contribution of different crop parameters to model output. Moreover, the AquaCrop model was calibrated using the experiment data in Xiaotangshan, Beijing.At regional scale, spatial application of our methods were carried out and validated in the rural area of Yangling, Shaanxi Province, in 2014. This study will provide guideline to make irrigation decision of balancing of water consumption and yield loss.
Observability of global rivers with future SWOT observations
NASA Astrophysics Data System (ADS)
Fisher, Colby; Pan, Ming; Wood, Eric
2017-04-01
The Surface Water and Ocean Topography (SWOT) mission is designed to provide global observations of water surface elevation and slope from which river discharge can be estimated using a data assimilation system. This mission will provide increased spatial and temporal coverage compared to current altimeters, with an expected accuracy for water level elevations of 10 cm on rivers greater than 100 m wide. Within the 21-day repeat cycle, a river reach will be observed 2-4 times on average. Due to the relationship between the basin orientation and the orbit, these observations are not evenly distributed in time, which will impact the derived discharge values. There is, then, a need for a better understanding of how the mission will observe global river basins. In this study, we investigate how SWOT will observe global river basins and how the temporal and spatial sampling impacts the discharge estimated from assimilation. SWOT observations can be assimilated using the Inverse Streamflow Routing (ISR) model of Pan and Wood [2013] with a fixed interval Kalman smoother. Previous work has shown that the ISR assimilation method can be used to reproduce the spatial and temporal dynamics of discharge within many global basins: however, this performance was strongly impacted by the spatial and temporal availability of discharge observations. In this study, we apply the ISR method to 32 global basins with different geometries and crossing patterns for the future orbit, assimilating theoretical SWOT-retrieved "gauges". Results show that the model performance varies significantly across basins and is driven by the orientation, flow distance, and travel time in each. Based on these properties, we quantify the "observability" of each basin and relate this to the performance of the assimilation. Applying this metric globally to a large variety of basins we can gain a better understanding of the impact that SWOT observations may have across basin scales. By determining the availability of SWOT observations in this manner, hydrologic data assimilation approaches like ISR can be optimized to provide useful discharge estimates in sparsely gauged regions where spatially and temporally consistent discharge records are most valuable. Pan, M; Wood, E F 2013 Inverse streamflow routing, HESS 17(11):4577-4588
Dynamic Tsunami Data Assimilation (DTDA) Based on Green's Function: Theory and Application
NASA Astrophysics Data System (ADS)
Wang, Y.; Satake, K.; Gusman, A. R.; Maeda, T.
2017-12-01
Tsunami data assimilation estimates the tsunami arrival time and height at Points of Interest (PoIs) by assimilating tsunami data observed offshore into a numerical simulation, without the need of calculating initial sea surface height at the source (Maeda et al., 2015). The previous tsunami data assimilation has two main problems: one is that it requires quite large calculating time because the tsunami wavefield of the whole interested region is computed continuously; another is that it relies on dense observation network such as Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET) in Japan or Cascadia Initiative (CI) in North America (Gusman et al., 2016), which is not practical for some area. Here we propose a new approach based on Green's function to speed up the tsunami data assimilation process and to solve the problem of sparse observation: Dynamic Tsunami Data Assimilation (DTDA). If the residual between the observed and calculated tsunami height is not zero, there will be an assimilation response around the station, usually a Gaussian-distributed sea surface displacement. The Green's function Gi,j is defined as the tsunami waveform at j-th grid caused by the propagation of assimilation response at i-th station. Hence, the forecasted waveforms at PoIs are calculated as the superposition of the Green's functions. In case of sparse observation, we could use the aircraft and satellite observations. The previous assimilation approach is not practical because it costs much time to assimilate moving observation, and to compute the tsunami wavefield of the interested region. In contrast, DTDA synthesizes the waveforms quickly as long as the Green's functions are calculated in advance. We apply our method to a hypothetic earthquake off the west coast of Sumatra Island similar to the 2004 Indian Ocean earthquake. Currently there is no dense observation network in that area, making it difficult for the previous assimilation approach. We used DTDA with aircraft and satellite observation above the Indian Ocean, to forecast the tsunami in Sri Lanka, India and Thailand. It shows that DTDA provides reliable tsunami forecasting for these countries, and the tsunami early warning can be issued half an hour before the tsunami arrives to reduce the damage along the coast.
NASA Astrophysics Data System (ADS)
Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.
2014-12-01
We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO2 concentrations and CO2 fluxes, mainly due to the simultaneous estimation of CO2 concentrations and CFs in our Tan-Tracker data assimilation system. A experiment for assimilating the real dry-air column CO2 retrievals (XCO2) from the Japanese Greenhouse Gases Observation Satellite (GOSAT) further demonstrates its potential wide applications.
NASA Astrophysics Data System (ADS)
Marquis, J. W.; Campbell, J. R.; Oyola, M. I.; Ruston, B. C.; Zhang, J.
2017-12-01
This is part II of a two-part series examining the impacts of aerosol particles on weather forecasts. In this study, the aerosol indirect effects on weather forecasts are explored by examining the temperature and moisture analysis associated with assimilating dust contaminated hyperspectral infrared radiances. The dust induced temperature and moisture biases are quantified for different aerosol vertical distribution and loading scenarios. The overall impacts of dust contamination on temperature and moisture forecasts are quantified over the west coast of Africa, with the assistance of aerosol retrievals from AERONET, MPL, and CALIOP. At last, methods for improving hyperspectral infrared data assimilation in dust contaminated regions are proposed.
GPS=A Good Candidate for Data Assimilation?
NASA Technical Reports Server (NTRS)
Poli, P.; Joiner, J.; Kursinski, R.; Einaudi, Franco (Technical Monitor)
2000-01-01
The Global Positioning System (GPS) enables positioning anywhere about our planet. The microwave signals sent by the 24 transmitters are sensitive to the atmosphere. Using the radio occultation technique, it is possible to perform soundings, with a Low Earth Orbiter (700 km) GPS receiver. The insensitiveness to clouds and aerosols, the relatively high vertical resolution (1.5 km), the self-calibration and stability of the GPS make it a priori a potentially good observing system candidate for data assimilation. A low-computing cost simple method to retrieve both temperature and humidity will be presented. Comparisons with radiosonde show the capability of the GPS to resolve the tropopause. Options for using GPS for data assimilation and remaining issues will be discussed.
Data assimialation for real-time prediction and reanalysis
NASA Astrophysics Data System (ADS)
Shprits, Y.; Kellerman, A. C.; Podladchikova, T.; Kondrashov, D. A.; Ghil, M.
2015-12-01
We discuss the how data assimilation can be used for the analysis of individual satellite anomalies, development of long-term evolution reconstruction that can be used for the specification models, and use of data assimilation to improve the now-casting and focusing of the radiation belts. We also discuss advanced data assimilation methods such as parameter estimation and smoothing.The 3D data assimilative VERB allows us to blend together data from GOES, RBSP A and RBSP B. Real-time prediction framework operating on our web site based on GOES, RBSP A, B and ACE data and 3D VERB is presented and discussed. In this paper we present a number of application of the data assimilation with the VERB 3D code. 1) Model with data assimilation allows to propagate data to different pitch angles, energies, and L-shells and blends them together with the physics based VERB code in an optimal way. We illustrate how we use this capability for the analysis of the previous events and for obtaining a global and statistical view of the system. 2) The model predictions strongly depend on initial conditions that are set up for the model. Therefore the model is as good as the initial conditions that it uses. To produce the best possible initial condition data from different sources ( GOES, RBSP A, B, our empirical model predictions based on ACE) are all blended together in an optimal way by means of data assimilation as described above. The resulting initial condition does not have gaps. That allows us to make a more accurate predictions.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Schubert, Siegfried; Rood, Richard; Park, Chung-Kyu; Wu, Chung-Yu; Kondratyeva, Yelena; Molod, Andrea; Takacs, Lawrence; Seablom, Michael; Higgins, Wayne
1995-01-01
The Data Assimilation Office (DAO) at Goddard Space Flight Center has produced a multiyear global assimilated data set with version 1 of the Goddard Earth Observing System Data Assimilation System (GEOS-1 DAS). One of the main goals of this project, in addition to benchmarking the GEOS-1 system, was to produce a research quality data set suitable for the study of short-term climate variability. The output, which is global and gridded, includes all prognostic fields and a large number of diagnostic quantities such as precipitation, latent heating, and surface fluxes. Output is provided four times daily with selected quantities available eight times per day. Information about the observations input to the GEOS-1 DAS is provided in terms of maps of spatial coverage, bar graphs of data counts, and tables of all time periods with significant data gaps. The purpose of this document is to serve as a users' guide to NASA's first multiyear assimilated data set and to provide an early look at the quality of the output. Documentation is provided on all the data archives, including sample read programs and methods of data access. Extensive comparisons are made with the corresponding operational European Center for Medium-Range Weather Forecasts analyses, as well as various in situ and satellite observations. This document is also intended to alert users of the data about potential limitations of assimilated data, in general, and the GEOS-1 data, in particular. Results are presented for the period March 1985-February 1990.
NASA Astrophysics Data System (ADS)
Cui, Yi-an; Liu, Lanbo; Zhu, Xiaoxiong
2017-08-01
Monitoring the extent and evolution of contaminant plumes in local and regional groundwater systems from existing landfills is critical in contamination control and remediation. The self-potential survey is an efficient and economical nondestructive geophysical technique that can be used to investigate underground contaminant plumes. Based on the unscented transform, we have built a Kalman filtering cycle to conduct time-lapse data assimilation for monitoring the transport of solute based on the solute transport experiment using a bench-scale physical model. The data assimilation was formed by modeling the evolution based on the random walk model and observation correcting based on the self-potential forward. Thus, monitoring self-potential data can be inverted by the data assimilation technique. As a result, we can reconstruct the dynamic process of the contaminant plume instead of using traditional frame-to-frame static inversion, which may cause inversion artifacts. The data assimilation inversion algorithm was evaluated through noise-added synthetic time-lapse self-potential data. The result of the numerical experiment shows validity, accuracy and tolerance to the noise of the dynamic inversion. To validate the proposed algorithm, we conducted a scaled-down sandbox self-potential observation experiment to generate time-lapse data that closely mimics the real-world contaminant monitoring setup. The results of physical experiments support the idea that the data assimilation method is a potentially useful approach for characterizing the transport of contamination plumes using the unscented Kalman filter (UKF) data assimilation technique applied to field time-lapse self-potential data.
Schlekat, C.E.; Decho, Alan W.; Chandler, G.T.
2000-01-01
We conducted experiments to determine effects of particle type on assimilatory metal bioavailability to Leptocheirus plumulosus, an infaunal, estuarine amphipod that is commonly used in sediment toxicity tests. The following particles were used to represent natural food items encountered by this surface-deposit and suspension-feeding amphipod: bacterial exopolymeric sediment coatings, polymeric coatings made from Spartina alterniflora extract, amorphous iron oxide coatings, the diatom Phaeodactylum tricornutum, the chlorophyte Dunaliella tertiolecta, processed estuarine sediment, and fresh estuarine sediment. Bioavailability of the gamma-emitting radioisotopes 110mAg, 109Cd, and 65Zn was measured as the efficiency with which L. plumulosus assimilated metals from particles using pulse-chase methods. Ag and Cd assimilation efficiencies were highest from bacterial exopolymeric coatings. Zn assimilation efficiency exhibited considerable interexperimental variation; the highest Zn assimilation efficiencies were measured from phytoplankton and processed sediment. In general, Ag and Cd assimilation efficiencies from phytoplankton were low and not related to the proportion of metal associated with cell cytosol or cytoplasm, a phenomenon reported for other particle-ingesting invertebrates. Amphipod digestive processes explain differences in Ag and Cd assimilation efficiencies between exopolymeric coatings and phytoplankton. Results highlight the importance of labile polymeric organic carbon sediment coatings in dietary metals uptake by this benthic invertebrate, rather than recalcitrant organic carbon, mineralogical features such as iron oxides, or phytoplankton.
Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations
NASA Astrophysics Data System (ADS)
Ciavatta, S.; Brewin, R. J. W.; Skákala, J.; Polimene, L.; de Mora, L.; Artioli, Y.; Allen, J. I.
2018-02-01
We assimilated phytoplankton functional types (PFTs) derived from ocean color into a marine ecosystem model, to improve the simulation of biogeochemical indicators and emerging properties in a shelf sea. Error-characterized chlorophyll concentrations of four PFTs (diatoms, dinoflagellates, nanoplankton, and picoplankton), as well as total chlorophyll for comparison, were assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The reanalysis simulations spanned the years 1998-2003. The skill of the reference and reanalysis simulations in estimating ocean color and in situ biogeochemical data were compared by using robust statistics. The reanalysis outperformed both the reference and the assimilation of total chlorophyll in estimating the ocean-color PFTs (except nanoplankton), as well as the not-assimilated total chlorophyll, leading the model to simulate better the plankton community structure. Crucially, the reanalysis improved the estimates of not-assimilated in situ data of PFTs, as well as of phosphate and pCO2, impacting the simulation of the air-sea carbon flux. However, the reanalysis increased further the model overestimation of nitrate, in spite of increases in plankton nitrate uptake. The method proposed here is easily adaptable for use with other ecosystem models that simulate PFTs, for, e.g., reanalysis of carbon fluxes in the global ocean and for operational forecasts of biogeochemical indicators in shelf-sea ecosystems.
The potential for geostationary remote sensing of NO2 to improve weather prediction
NASA Astrophysics Data System (ADS)
Liu, X.; Mizzi, A. P.; Anderson, J. L.; Fung, I. Y.; Cohen, R. C.
2016-12-01
Observations of surface winds remain sparse making it challenging to simulate and predict the weather in circumstances of light winds that are most important for poor air quality. Direct measurements of short-lived chemicals from space might be a solution to this challenge. Here we investigate the application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of surface wind fields. Specifically, synthetic NO2 observations are sampled from a "nature run (NR)" regarded as the true atmosphere. Then NO2 observations are assimilated using EAKF methods into a "control run (CR)" which differs from the NR in the wind field. Wind errors are generated by introducing (1) errors in the initial conditions, (2) creating a model error by using two different formulations for the planetary boundary layer, (3) and by combining both of these effects. The assimilation reduces wind errors by up to 50%, indicating the prospects for future geostationary atmospheric composition measurements to improve weather forecasting are substantial. We also examine the assimilation sensitivity to the data assimilation window length. We find that due to the temporal heterogeneity of wind errors, the success of this application favors chemical observations of high frequency, such as those from geostationary platform. We also show the potential to improve soil moisture field by assimilating NO2 columns.
Norris, Peter M; da Silva, Arlindo M
2016-07-01
A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC.
NASA Technical Reports Server (NTRS)
Norris, Peter M.; Da Silva, Arlindo M.
2016-01-01
A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC.
Norris, Peter M.; da Silva, Arlindo M.
2018-01-01
A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC. PMID:29618847
NASA Astrophysics Data System (ADS)
Merker, Claire; Ament, Felix; Clemens, Marco
2017-04-01
The quantification of measurement uncertainty for rain radar data remains challenging. Radar reflectivity measurements are affected, amongst other things, by calibration errors, noise, blocking and clutter, and attenuation. Their combined impact on measurement accuracy is difficult to quantify due to incomplete process understanding and complex interdependencies. An improved quality assessment of rain radar measurements is of interest for applications both in meteorology and hydrology, for example for precipitation ensemble generation, rainfall runoff simulations, or in data assimilation for numerical weather prediction. Especially a detailed description of the spatial and temporal structure of errors is beneficial in order to make best use of the areal precipitation information provided by radars. Radar precipitation ensembles are one promising approach to represent spatially variable radar measurement errors. We present a method combining ensemble radar precipitation nowcasting with data assimilation to estimate radar measurement uncertainty at each pixel. This combination of ensemble forecast and observation yields a consistent spatial and temporal evolution of the radar error field. We use an advection-based nowcasting method to generate an ensemble reflectivity forecast from initial data of a rain radar network. Subsequently, reflectivity data from single radars is assimilated into the forecast using the Local Ensemble Transform Kalman Filter. The spread of the resulting analysis ensemble provides a flow-dependent, spatially and temporally correlated reflectivity error estimate at each pixel. We will present first case studies that illustrate the method using data from a high-resolution X-band radar network.
A Variational Assimilation Method for Satellite and Conventional Data: Model 2 (version 1)
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.
1991-01-01
The Model II variational data assimilation model is the second of the four variational models designed to blend diverse meteorological data into a dynamically constrained data set. Model II differs from Model I in that it includes the thermodynamic equation as the fifth dynamical constraint. Thus, Model II includes all five of the primative equations that govern atmospheric flow for a dry atmosphere.
NASA Technical Reports Server (NTRS)
Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.
2013-01-01
In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.
Data assimilation problems in glaciology
NASA Astrophysics Data System (ADS)
Shapero, Daniel
Rising sea levels due to mass loss from Greenland and Antarctica threaten to inundate coastal areas the world over. For the purposes of urban planning and hazard mitigation, policy makers would like to know how much sea-level rise can be anticipated in the next century. To make these predictions, glaciologists use mathematical models of ice sheet flow, together with remotely-sensed observations of the current state of the ice sheets. The quantities that are observable over large spatial scales are the ice surface elevation and speed, and the elevation of the underlying bedrock. There are other quantities, such as the viscosity within the ice and the friction coefficient for sliding over the bed, that are just as important in dictating how fast the glacier flows, but that are not observable at large scales using current methods. These quantities can be inferred from observations by using data assimilation methods, applied to a model of glacier flow. In this dissertation, I will describe my work on data assimilation problems in glaciology. My main contributions so far have been: computing the bed stress underneath the three biggest Greenland outlet glaciers; developing additional tools for glacier modeling and data assimilation in the form of the open-source library icepack ; and improving the statistical methodology through the user of total variation priors.
NASA Astrophysics Data System (ADS)
Tagade, Piyush; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin
2017-03-01
A novel approach for integrating a pseudo-two dimensional electrochemical thermal (P2D-ECT) model and data assimilation algorithm is presented for lithium-ion cell state estimation. This approach refrains from making any simplifications in the P2D-ECT model while making it amenable for online state estimation. Though deterministic, uncertainty in the initial states induces stochasticity in the P2D-ECT model. This stochasticity is resolved by spectrally projecting the stochastic P2D-ECT model on a set of orthogonal multivariate Hermite polynomials. Volume averaging in the stochastic dimensions is proposed for efficient numerical solution of the resultant model. A state estimation framework is developed using a transformation of the orthogonal basis to assimilate the measurables with this system of equations. Effectiveness of the proposed method is first demonstrated by assimilating the cell voltage and temperature data generated using a synthetic test bed. This validated method is used with the experimentally observed cell voltage and temperature data for state estimation at different operating conditions and drive cycle protocols. The results show increased prediction accuracy when the data is assimilated every 30s. High accuracy of the estimated states is exploited to infer temperature dependent behavior of the lithium-ion cell.
Extratropical signature of the quasi-biennial oscillation
NASA Technical Reports Server (NTRS)
Ruzmaikin, Alexander; Feynman, Joan; Jiang, Xun; Yung, Yuk L.
2005-01-01
Using the assimilated data from the National Centers for Environmental Prediction (NCEP) reanalysis, we show that the extratropical signature of the tropical quasi-biennial oscillation (QBO) is seen mostly in the North Annular Mode (NAM) of atmospheric variability. To understand the extratropical manifestation of the QBO, we discuss two effects that have been suggested earlier: (1) The extratropical circulation is driven by the QBO modulation of the planetary wave flux, and (2) the extratropical circulation is driven by the QBO-induced meridional circulation. We found that the first effect is seen in wave 1 in the beginning of winter and in wave 2 in the end of winter. The QBO-induced circulation affects midlatitude regions over the entire winter. To investigate the QBONAM coupling, we use an equation that relates the stream function of the meridional circulation and the polar cap averaged temperature, which is a proxy for the NAM index. In addition to the annual (omega)a and the QBO frequency (omega)Q the spectrum of its solutions indicates the satellite frequencies at (omega)a +/- (o.
NASA Astrophysics Data System (ADS)
Einspigel, D.; Sachl, L.; Martinec, Z.
2014-12-01
We present the DEBOT model, which is a new global barotropic ocean model. The DEBOT model is primarily designed for modelling of ocean flow generated by the tidal attraction of the Moon and the Sun, however it can be used for other ocean applications where the barotropic model is sufficient, for instance, a tsunami wave propagation. The model has been thoroughly tested by several different methods: 1) synthetic example which involves a tsunami-like wave propagation of an initial Gaussian depression and testing of the conservation of integral invariants, 2) a benchmark study with another barotropic model, the LSGbt model, has been performed and 3) results of realistic simulations have been compared with data from tide gauge measurements around the world. The test computations prove the validity of the numerical code and demonstrate the ability of the DEBOT model to simulate the realistic ocean tides. The DEBOT model will be principaly applied in related geophysical disciplines, for instance, in an investigation of an influence of the ocean tides on the geomagnetic field or the Earth's rotation. A module for modelling of the secondary poloidal magnetic field generated by an ocean flow is already implemented in the DEBOT model and preliminary results will be presented. The future aim is to assimilate magnetic data provided by the Swarm satellite mission into the ocean flow model.
Bunge, Hans-Peter; Richards, M A; Baumgardner, J R
2002-11-15
Data assimilation is an approach to studying geodynamic models consistent simultaneously with observables and the governing equations of mantle flow. Such an approach is essential in mantle circulation models, where we seek to constrain an unknown initial condition some time in the past, and thus cannot hope to use first-principles convection calculations to infer the flow history of the mantle. One of the most important observables for mantle-flow history comes from models of Mesozoic and Cenozoic plate motion that provide constraints not only on the surface velocity of the mantle but also on the evolution of internal mantle-buoyancy forces due to subducted oceanic slabs. Here we present five mantle circulation models with an assimilated plate-motion history spanning the past 120 Myr, a time period for which reliable plate-motion reconstructions are available. All models agree well with upper- and mid-mantle heterogeneity imaged by seismic tomography. A simple standard model of whole-mantle convection, including a factor 40 viscosity increase from the upper to the lower mantle and predominantly internal heat generation, reveals downwellings related to Farallon and Tethys subduction. Adding 35% bottom heating from the core has the predictable effect of producing prominent high-temperature anomalies and a strong thermal boundary layer at the base of the mantle. Significantly delaying mantle flow through the transition zone either by modelling the dynamic effects of an endothermic phase reaction or by including a steep, factor 100, viscosity rise from the upper to the lower mantle results in substantial transition-zone heterogeneity, enhanced by the effects of trench migration implicit in the assimilated plate-motion history. An expected result is the failure to account for heterogeneity structure in the deepest mantle below 1500 km, which is influenced by Jurassic plate motions and thus cannot be modelled from sequential assimilation of plate motion histories limited in age to the Cretaceous. This result implies that sequential assimilation of past plate-motion models is ineffective in studying the temporal evolution of core-mantle-boundary heterogeneity, and that a method for extrapolating present-day information backwards in time is required. For short time periods (of the order of perhaps a few tens of Myr) such a method exists in the form of crude 'backward' convection calculations. For longer time periods (of the order of a mantle overturn), a rigorous approach to extrapolating information back in time exists in the form of iterative nonlinear optimization methods that carry assimilated information into the past through the use of an adjoint mantle convection model.
NASA Technical Reports Server (NTRS)
Anderson, D.; Hollingsworth, A.; Uppala, S.; Woiceshyn, P.
1987-01-01
The use of scatterometer and altimeter data in wind and wave assimilation, and the benefits this offers for quality assurance and validation of ERS-1 data were examined. Real time use of ERS-1 data was simulated through assimilation of Seasat scatterometer data. The potential for quality assurance and validation is demonstrated by documenting a series of substantial problems with the scatterometer data, which are known but took years to establish, or are new. A data impact study, and an analysis of the performance of ambiguity removal algorithms on real and simulated data were conducted. The impact of the data on analyses and forecasts is large in the Southern Hemisphere, generally small in the Northern Hemisphere, and occasionally large in the Tropics. Tests with simulated data give more optimistic results than tests with real data. Errors in ambiguity removal results occur in clusters. The probabilities which can be calculated for the ambiguous wind directions on ERS-1 contain more information than is given by a simple ranking of the directions.
Global adjoint tomography: First-generation model
Bozdag, Ebru; Peter, Daniel; Lefebvre, Matthieu; ...
2016-09-22
We present the first-generation global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. Synthetic seismograms were calculated using GPU-accelerated spectral-element simulations of global seismic wave propagation, accommodating effects due to 3-D anelastic crust & mantle structure, topography & bathymetry, the ocean load, ellipticity, rotation, and self-gravitation. Fréchet derivatives were calculated in 3-D anelastic models based on an adjoint-state method. The simulations were performed on the Cray XK7 named ‘Titan’, a computer with 18 688 GPU accelerators housed at Oak Ridge National Laboratory. The transversely isotropic global model is the result of 15 tomographic iterations, which systematicallymore » reduced differences between observed and simulated three-component seismograms. Our starting model combined 3-D mantle model S362ANI with 3-D crustal model Crust2.0. We simultaneously inverted for structure in the crust and mantle, thereby eliminating the need for widely used ‘crustal corrections’. We used data from 253 earthquakes in the magnitude range 5.8 ≤ M w ≤ 7.0. We started inversions by combining ~30 s body-wave data with ~60 s surface-wave data. The shortest period of the surface waves was gradually decreased, and in the last three iterations we combined ~17 s body waves with ~45 s surface waves. We started using 180 min long seismograms after the 12th iteration and assimilated minor- and major-arc body and surface waves. The 15th iteration model features enhancements of well-known slabs, an enhanced image of the Samoa/Tahiti plume, as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone and Erebus. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the starting model. Point-spread function tests demonstrate that we are approaching the resolution of continental-scale studies in some areas, for example, underneath Yellowstone. Here, this is a consequence of our multiscale smoothing strategy in which we define our smoothing operator as a function of the approximate Hessian kernel, thereby smoothing gradients less wherever we have good ray coverage, such as underneath North America.« less
Global adjoint tomography: First-generation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozdag, Ebru; Peter, Daniel; Lefebvre, Matthieu
We present the first-generation global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. Synthetic seismograms were calculated using GPU-accelerated spectral-element simulations of global seismic wave propagation, accommodating effects due to 3-D anelastic crust & mantle structure, topography & bathymetry, the ocean load, ellipticity, rotation, and self-gravitation. Fréchet derivatives were calculated in 3-D anelastic models based on an adjoint-state method. The simulations were performed on the Cray XK7 named ‘Titan’, a computer with 18 688 GPU accelerators housed at Oak Ridge National Laboratory. The transversely isotropic global model is the result of 15 tomographic iterations, which systematicallymore » reduced differences between observed and simulated three-component seismograms. Our starting model combined 3-D mantle model S362ANI with 3-D crustal model Crust2.0. We simultaneously inverted for structure in the crust and mantle, thereby eliminating the need for widely used ‘crustal corrections’. We used data from 253 earthquakes in the magnitude range 5.8 ≤ M w ≤ 7.0. We started inversions by combining ~30 s body-wave data with ~60 s surface-wave data. The shortest period of the surface waves was gradually decreased, and in the last three iterations we combined ~17 s body waves with ~45 s surface waves. We started using 180 min long seismograms after the 12th iteration and assimilated minor- and major-arc body and surface waves. The 15th iteration model features enhancements of well-known slabs, an enhanced image of the Samoa/Tahiti plume, as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone and Erebus. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the starting model. Point-spread function tests demonstrate that we are approaching the resolution of continental-scale studies in some areas, for example, underneath Yellowstone. Here, this is a consequence of our multiscale smoothing strategy in which we define our smoothing operator as a function of the approximate Hessian kernel, thereby smoothing gradients less wherever we have good ray coverage, such as underneath North America.« less
Air-Sea Interaction in the Somali Current Region
NASA Astrophysics Data System (ADS)
Jensen, T. G.; Rydbeck, A.
2017-12-01
The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the air-sea interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of Sea Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on air-sea fluxes.
Climate modulates internal wave activity in the Northern South China Sea
NASA Astrophysics Data System (ADS)
DeCarlo, Thomas M.; Karnauskas, Kristopher B.; Davis, Kristen A.; Wong, George T. F.
2015-02-01
Internal waves (IWs) generated in the Luzon Strait propagate into the Northern South China Sea (NSCS), enhancing biological productivity and affecting coral reefs by modulating nutrient concentrations and temperature. Here we use a state-of-the-art ocean data assimilation system to reconstruct water column stratification in the Luzon Strait as a proxy for IW activity in the NSCS and diagnose mechanisms for its variability. Interannual variability of stratification is driven by intrusions of the Kuroshio Current into the Luzon Strait and freshwater fluxes associated with the El Niño-Southern Oscillation. Warming in the upper 100 m of the ocean caused a trend of increasing IW activity since 1900, consistent with global climate model experiments that show stratification in the Luzon Strait increases in response to radiative forcing. IW activity is expected to increase in the NSCS through the 21st century, with implications for mitigating climate change impacts on coastal ecosystems.
Preckel, Franzis; Schmidt, Isabelle; Stumpf, Eva; Motschenbacher, Monika; Vogl, Katharina; Scherrer, Vsevolod; Schneider, Wolfgang
2017-11-23
Effects of full-time ability grouping on students' academic self-concept (ASC) and mathematics achievement were investigated in the first 3 years of secondary school (four waves of measurement; students' average age at first wave: 10.5 years). Students were primarily from middle and upper class families living in southern Germany. The study sample comprised 148 (60% male) students from 14 gifted classes and 148 (57% male) students from 25 regular classes (matched by propensity score matching). Data analyses involved multilevel and latent growth curve analyses. Findings revealed no evidence for contrast effects of class-average achievement or assimilation effects of class type on students' ASC. ASC remained stable over time. Students in gifted classes showed higher achievement gains than students in regular classes. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
The Energetics of Transient Eddies in the Martian Northern Hemisphere
NASA Astrophysics Data System (ADS)
Battalio, Joseph Michael; Szunyogh, Istvan; Lemmon, Mark T.
2016-10-01
The energetics of northern hemisphere transient waves in the Mars Analysis Correction Data Assimilation is analyzed. Three periods between the fall and spring equinoxes (Ls=200°-230°, 255°-285°, and 330°-360°) during three Mars Years are selected to exemplify the fall, winter, and spring wave activity. Fall and spring eddy energetics is similar with some inter-annual and inter-seasonal variability, but winter eddy kinetic energy and its transport are strongly reduced in intensity as a result of the solsticial pause in eddy activity. Barotropic energy conversion acts as a sink of eddy kinetic energy throughout the northern hemisphere eddy period with little reduction in amplitude during the solsticial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical shear profile of the westerly jet around winter solstice.
Lu, Qian; Chen, Paul; Addy, Min; Zhang, Renchuan; Deng, Xiangyuan; Ma, Yiwei; Cheng, Yanling; Hussain, Fida; Chen, Chi; Liu, Yuhuan; Ruan, Roger
2018-02-01
Ammonia toxicity in wastewater is one of the factors that limit the application of algae technology in wastewater treatment. This work explored the correlation between carbon sources and ammonia assimilation and applied a glucose-assisted nitrogen starvation method to alleviate ammonia toxicity. In this study, ammonia toxicity to Chlorella sp. was observed when NH 3 -N concentration reached 28.03mM in artificial wastewater. Addition of alpha-ketoglutarate in wastewater promoted ammonia assimilation, but low utilization efficiency and high cost of alpha-ketoglutarate limits its application in wastewater treatment. Comparison of three common carbon sources, glucose, citric acid, and sodium bicarbonate, indicates that in terms of ammonia assimilation, glucose is the best carbon source. Experimental results suggest that organic carbon with good ability of generating energy and hydride donor may be critical to ammonia assimilation. Nitrogen starvation treatment assisted by glucose increased ammonia removal efficiencies and algal viabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Counillon, Francois; Kimmritz, Madlen; Keenlyside, Noel; Wang, Yiguo; Bethke, Ingo
2017-04-01
The Norwegian Climate Prediction Model combines the Norwegian Earth System Model and the Ensemble Kalman Filter data assimilation method. The prediction skills of different versions of the system (with 30 members) are tested in the Nordic Seas and the Arctic region. Comparing the hindcasts branched from a SST-only assimilation run with a free ensemble run of 30 members, we are able to dissociate the predictability rooted in the external forcing from the predictability harvest from SST derived initial conditions. The latter adds predictability in the North Atlantic subpolar gyre and the Nordic Seas regions and overall there is very little degradation or forecast drift. Combined assimilation of SST and T-S profiles further improves the prediction skill in the Nordic Seas and into the Arctic. These lead to multi-year predictability in the high-latitudes. Ongoing developments of strongly coupled assimilation (ocean and sea ice) of ice concentration in idealized twin experiment will be shown, as way to further enhance prediction skill in the Arctic.
NASA Astrophysics Data System (ADS)
Eskes, H. J.; Piters, A. J. M.; Levelt, P. F.; Allaart, M. A. F.; Kelder, H. M.
1999-10-01
A four-dimensional data-assimilation method is described to derive synoptic ozone fields from total-column ozone satellite measurements. The ozone columns are advected by a 2D tracer-transport model, using ECMWF wind fields at a single pressure level. Special attention is paid to the modeling of the forecast error covariance and quality control. The temporal and spatial dependence of the forecast error is taken into account, resulting in a global error field at any instant in time that provides a local estimate of the accuracy of the assimilated field. The authors discuss the advantages of the 4D-variational (4D-Var) approach over sequential assimilation schemes. One of the attractive features of the 4D-Var technique is its ability to incorporate measurements at later times t > t0 in the analysis at time t0, in a way consistent with the time evolution as described by the model. This significantly improves the offline analyzed ozone fields.
NASA Astrophysics Data System (ADS)
Silvestro, Paolo Cosmo; Casa, Raffaele; Pignatti, Stefano; Castaldi, Fabio; Yang, Hao; Guijun, Yang
2016-08-01
The aim of this work was to develop a tool to evaluate the effect of water stress on yield losses at the farmland and regional scale, by assimilating remotely sensed biophysical variables into crop growth models. Biophysical variables were retrieved from HJ1A, HJ1B and Landsat 8 images, using an algorithm based on the training of artificial neural networks on PROSAIL.For the assimilation, two crop models of differing degree of complexity were used: Aquacrop and SAFY. For Aquacrop, an optimization procedure to reduce the difference between the remotely sensed and simulated CC was developed. For the modified version of SAFY, the assimilation procedure was based on the Ensemble Kalman Filter.These procedures were tested in a spatialized application, by using data collected in the rural area of Yangling (Shaanxi Province) between 2013 and 2015Results were validated by utilizing yield data both from ground measurements and statistical survey.
Dynamic calibration of agent-based models using data assimilation.
Ward, Jonathan A; Evans, Andrew J; Malleson, Nicolas S
2016-04-01
A widespread approach to investigating the dynamical behaviour of complex social systems is via agent-based models (ABMs). In this paper, we describe how such models can be dynamically calibrated using the ensemble Kalman filter (EnKF), a standard method of data assimilation. Our goal is twofold. First, we want to present the EnKF in a simple setting for the benefit of ABM practitioners who are unfamiliar with it. Second, we want to illustrate to data assimilation experts the value of using such methods in the context of ABMs of complex social systems and the new challenges these types of model present. We work towards these goals within the context of a simple question of practical value: how many people are there in Leeds (or any other major city) right now? We build a hierarchy of exemplar models that we use to demonstrate how to apply the EnKF and calibrate these using open data of footfall counts in Leeds.
NASA Astrophysics Data System (ADS)
Dorigo, W. A.; Zurita-Milla, R.; de Wit, A. J. W.; Brazile, J.; Singh, R.; Schaepman, M. E.
2007-05-01
During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise. In this paper, we present an overview of different methods that can be used to derive biophysical and biochemical canopy state variables from optical remote sensing data in the VNIR-SWIR regions. The overview is based on an extensive literature review where both statistical-empirical and physically based methods are discussed. Subsequently, the prevailing techniques of assimilating remote sensing data into agroecosystem models are outlined. The increasing complexity of data assimilation methods and of models describing agroecosystem functioning has significantly increased computational demands. For this reason, we include a short section on the potential of parallel processing to deal with the complex and computationally intensive algorithms described in the preceding sections. The studied literature reveals that many valuable techniques have been developed both for the retrieval of canopy state variables from reflective remote sensing data as for assimilating the retrieved variables in agroecosystem models. However, for agroecosystem modeling and remote sensing data assimilation to be commonly employed on a global operational basis, emphasis will have to be put on bridging the mismatch between data availability and accuracy on one hand, and model and user requirements on the other. This could be achieved by integrating imagery with different spatial, temporal, spectral, and angular resolutions, and the fusion of optical data with data of different origin, such as LIDAR and radar/microwave.
Operational Hydrological Forecasting During the Iphex-iop Campaign - Meet the Challenge
NASA Technical Reports Server (NTRS)
Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa D.; Barros, Ana P.
2016-01-01
An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basins outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15 h was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins.
Operational hydrological forecasting during the IPHEx-IOP campaign - Meet the challenge
NASA Astrophysics Data System (ADS)
Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa; Barros, Ana P.
2016-10-01
An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basin's outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15 h was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins.
Variational Assimilation of Sparse and Uncertain Satellite Data For 1D Saint-Venant River Models
NASA Astrophysics Data System (ADS)
Garambois, P. A.; Brisset, P.; Monnier, J.; Roux, H.
2016-12-01
Profusion of satellites are providing increasingly accurate measurements of continental water cyle, and water bodies variations while in situ observability is declining. The future Surface Water and Ocean Topography (SWOT) mission will provide maps of river surface elevations widths and slopes with an almost global coverage and temporal revisits. This will offer the possibility to address a larger variety of inverse problems in surface hydrology. Data assimilation techniques, that are broadly used in several scientific fields, aim to optimally combine models, system observations and prior information. Variational assimilation consists in iterative minimization of a discrepency measure between model outputs and observations, here for retrieving boundary conditions and parameters of a 1D Saint Venant model. Nevertheless, inferring river discharge and hydraulic parameters thanks to the observation of river surface is not straightforward. This is particularly true in the case of sparse and uncertain observations of flow state variables since they are governed by nonlinear physical processes. This paper investigates the identifiability of hydraulic controls given sparse and uncertain satellite observations of a river. The identifiability of river discharge alone and with roughness is tested for several spatio temporal patterns of river observations, including SWOT like observations. A new 1D Shallow water model with variational data assimilation, within the DassFlow chain is presented as well as postprocessing and observation operator dedicated to the future SWOT and SWOT simulator data. In view to decrease inverse problem dimensionality discharge is represented in a reduced basis. Moreover we introduce an original and reduced parametrization of the flow resistance that can account for various flow regimes along with a cross section design dedicated to remote sensing. We show which discharge temporal frequencies can be identified w.r.t observation ones and at which accuracy. Eventually the important question of the discharge identifiability potential between observation times and depending on the spatio-temporal sampling is adressed with respect to the wave lengths of the hydrological signals.
Wave Energetics of the Atmosphere of Mars
NASA Astrophysics Data System (ADS)
Battalio, Joseph Michael
A comprehensive assessment of the energetics of transient waves is presented for the atmosphere of Mars using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. Each hemisphere is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for each of the three Mars years available. Northern hemisphere fall and spring eddy energetics is similar with some inter-annual and inter-seasonal variability, but winter eddy kinetic energy and its transport are strongly reduced in intensity as a result of the winter solstitial pause in wave activity. Barotropic energy conversion acts as a sink of eddy kinetic energy throughout each year with little reduction in amplitude during the solstitial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical temperature profile around winter solstice. Traveling waves are typically triggered by geopotential flux convergence. Individual waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation. The southern hemisphere energetics is similar to the northern hemisphere in timing, but wave energetics is much weaker as a result of the high and zonally asymmetric topography. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a GDS. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.
Undoing an Epidemiological Paradox: The Tobacco Industry’s Targeting of US Immigrants
Acevedo-Garcia, Dolores; Barbeau, Elizabeth; Bishop, Jennifer Anne; Pan, Jocelyn; Emmons, Karen M.
2004-01-01
Objectives. We sought to ascertain whether the tobacco industry has conceptualized the US immigrant population as a separate market. Methods. We conducted a content analysis of major tobacco industry documents. Results. The tobacco industry has engaged in 3 distinct marketing strategies aimed at US immigrants: geographically based marketing directed toward immigrant communities, segmentation based on immigrants’ assimilation status, and coordinated marketing focusing on US immigrant groups and their countries of origin. Conclusions. Public health researchers should investigate further the tobacco industry’s characterization of the assimilated and non-assimilated immigrant markets, and its specific strategies for targeting these groups, in order to develop informed national and international tobacco control countermarketing strategies designed to protect immigrant populations and their countries of origin. PMID:15569972
Cornick, Matthew; Hunt, Brian; Ott, Edward; Kurtuldu, Huseyin; Schatz, Michael F
2009-03-01
Data assimilation refers to the process of estimating a system's state from a time series of measurements (which may be noisy or incomplete) in conjunction with a model for the system's time evolution. Here we demonstrate the applicability of a recently developed data assimilation method, the local ensemble transform Kalman filter, to nonlinear, high-dimensional, spatiotemporally chaotic flows in Rayleigh-Bénard convection experiments. Using this technique we are able to extract the full temperature and velocity fields from a time series of shadowgraph measurements. In addition, we describe extensions of the algorithm for estimating model parameters. Our results suggest the potential usefulness of our data assimilation technique to a broad class of experimental situations exhibiting spatiotemporal chaos.
Assimilation of Precipitation Measurement Missions Microwave Radiance Observations With GEOS-5
NASA Technical Reports Server (NTRS)
Jin, Jianjun; Kim, Min-Jeong; McCarty, Will; Akella, Santha; Gu, Wei
2015-01-01
The Global Precipitation Mission (GPM) Core Observatory satellite was launched in February, 2014. The GPM Microwave Imager (GMI) is a conically scanning radiometer measuring 13 channels ranging from 10 to 183 GHz and sampling between 65 S 65 N. This instrument is a successor to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI), which has observed 9 channels at frequencies ranging 10 to 85 GHz between 40 S 40 N since 1997. This presentation outlines the base procedures developed to assimilate GMI and TMI radiances in clear-sky conditions, including quality control methods, thinning decisions, and the estimation of, observation errors. This presentation also shows the impact of these observations when they are incorporated into the GEOS-5 atmospheric data assimilation system.
McHenry, John N; Vukovich, Jeffery M; Hsu, N Christina
2015-12-01
This two-part paper reports on the development, implementation, and improvement of a version of the Community Multi-Scale Air Quality (CMAQ) model that assimilates real-time remotely-sensed aerosol optical depth (AOD) information and ground-based PM2.5 monitor data in routine prognostic application. The model is being used by operational air quality forecasters to help guide their daily issuance of state or local-agency-based air quality alerts (e.g. action days, health advisories). Part 1 describes the development and testing of the initial assimilation capability, which was implemented offline in partnership with NASA and the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization (RPO). In the initial effort, MODIS-derived aerosol optical depth (AOD) data are input into a variational data-assimilation scheme using both the traditional Dark Target and relatively new "Deep Blue" retrieval methods. Evaluation of the developmental offline version, reported in Part 1 here, showed sufficient promise to implement the capability within the online, prognostic operational model described in Part 2. In Part 2, the addition of real-time surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the prognostic modeling system across the continental United States (CONUS) is presented. Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects.
NASA Astrophysics Data System (ADS)
Oigawa, Masanori; Tsuda, Toshitaka; Seko, Hiromu; Shoji, Yoshinori; Realini, Eugenio
2018-05-01
We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Rienecker, M. M.; Adamec, D.
1995-01-01
An ensemble of fraternal-twin experiments is used to assess the utility of optimal interpolation and model-based vertical empirical orthogonal functions (eofs) of streamfunction variability to assimilate satellite altimeter data into ocean models. Simulated altimeter data are assimilated into a basin-wide 3-layer quasi-geostrophic model with a horizontal grid spacing of 15 km. The effects of bottom topography are included and the model is forced by a wind stress curl distribution which is constant in time. The simulated data are extracted, along altimeter tracks with spatial and temporal characteristics of Geosat, from a reference model ocean with a slightly different climatology from that generated by the model used for assimilation. The use of vertical eofs determined from the model-generated streamfunction variability is shown to be effective in aiding the model's dynamical extrapolation of the surface information throughout the rest of the water column. After a single repeat cycle (17 days), the analysis errors are reduced markedly from the initial level, by 52% in the surface layer, 41% in the second layer and 11% in the bottom layer. The largest differences between the assimilation analysis and the reference ocean are found in the nonlinear regime of the mid-latitude jet in all layers. After 100 days of assimilation, the error in the upper two layers has been reduced by over 50% and that in the bottom layer by 38%. The essence of the method is that the eofs capture the statistics of the dynamical balances in the model and ensure that this balance is not inappropriately disturbed during the assimilation process. This statistical balance includes any potential vorticity homogeneity which may be associated with the eddy stirring by mid-latitude surface jets.
NASA Astrophysics Data System (ADS)
Widiastuti, E.; Steele-Dunne, S. C.; Gunter, B.; Weerts, A.; van de Giesen, N.
2009-12-01
Terrestrial water storage (TWS) is a key component of the terrestrial and global hydrological cycles, and plays a major role in the Earth’s climate. The Gravity Recovery and Climate Experiment (GRACE) twin satellite mission provided the first space-based dataset of TWS variations, albeit with coarse resolution and limited accuracy. Here, we examine the value of assimilating GRACE observations into a well-calibrated conceptual hydrology model of the Rhine river basin. In this study, the ensemble Kalman filter (EnKF) and smoother (EnKS) were applied to assimilate the GRACE TWS variation data into the HBV-96 rainfall run-off model, from February 2003 to December 2006. Two GRACE datasets were used, the DMT-1 models produced at TU Delft, and the CSR-RL04 models produced by UT-Austin . Each center uses its own data processing and filtering methods, yielding two different estimates of TWS variations and therefore two sets of assimilated TWS estimates. To validate the results, the model estimated discharge after the data assimilation was compared with measured discharge at several stations. As expected, the updated TWS was generally somewhere between the modeled and observed TWS in both experiments and the variance was also lower than both the prior error covariance and the assumed GRACE observation error. However, the impact on the discharge was found to depend heavily on the assimilation strategy used, in particular on how the TWS increments were applied to the individual storage terms of the hydrology model.
NASA Technical Reports Server (NTRS)
Larson, Jay W.
1998-01-01
Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.
The Kalman Filter and High Performance Computing at NASA's Data Assimilation Office (DAO)
NASA Technical Reports Server (NTRS)
Lyster, Peter M.
1999-01-01
Atmospheric data assimilation is a method of combining actual observations with model simulations to produce a more accurate description of the earth system than the observations alone provide. The output of data assimilation, sometimes called "the analysis", are accurate regular, gridded datasets of observed and unobserved variables. This is used not only for weather forecasting but is becoming increasingly important for climate research. For example, these datasets may be used to assess retrospectively energy budgets or the effects of trace gases such as ozone. This allows researchers to understand processes driving weather and climate, which have important scientific and policy implications. The primary goal of the NASA's Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. This presentation will: (1) describe ongoing work on the advanced Kalman/Lagrangian filter parallel algorithm for the assimilation of trace gases in the stratosphere; and (2) discuss the Kalman filter in relation to other presentations from the DAO on Four Dimensional Data Assimilation at this meeting. Although the designation "Kalman filter" is often used to describe the overarching work, the series of talks will show that the scientific software and the kind of parallelization techniques that are being developed at the DAO are very different depending on the type of problem being considered, the extent to which the problem is mission critical, and the degree of Software Engineering that has to be applied.
Assimilation of attenuated data from X-band network radars using ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Cheng, Jing
To use reflectivity data from X-band radars for quantitative precipitation estimation and storm-scale data assimilation, the effect of attenuation must be properly accounted for. Traditional approaches try to make correction to the attenuated reflectivity first before using the data. An alternative, theoretically more attractive approach builds the attenuation effect into the reflectivity observation operator of a data assimilation system, such as an ensemble Kalman filter (EnKF), allowing direct assimilation of the attenuated reflectivity and taking advantage of microphysical state estimation using EnKF methods for a potentially more accurate solution. This study first tests the approach for the CASA (Center for Collaborative Adaptive Sensing of the Atmosphere) X-band radar network configuration through observing system simulation experiments (OSSE) for a quasi-linear convective system (QLCS) that has more significant attenuation than isolated storms. To avoid the problem of potentially giving too much weight to fully attenuated reflectivity, an analytical, echo-intensity-dependent model for the observation error (AEM) is developed and is found to improve the performance of the filter. By building the attenuation into the forward observation operator and combining it with the application of AEM, the assimilation of attenuated CASA observations is able to produce a reasonably accurate analysis of the QLCS inside CASA radar network coverage. Compared with foregoing assimilation of radar data with weak radar reflectivity or assimilating only radial velocity data, our method can suppress the growth of spurious echoes while obtaining a more accurate analysis in the terms of root-mean-square (RMS) error. Sensitivity experiments are designed to examine the effectiveness of AEM by introducing multiple sources of observation errors into the simulated observations. The performance of such an approach in the presence of resolution-induced model error is also evaluated and good results are obtained. The same EnKF framework with attenuation correction is used to test different possible configurations of 2 hypothetical radars added to the existing network of 4 CASA radars through OSSEs. Though plans to expand the CASA radar network did not materialize, such experiments can provide guidance in the site selection of future X-band or other short-wavelength radar networks, as well as examining the benefit of X-band radar networks that consist of a much larger number of radars. Two QLCSs with different propagation speeds are generated and serve as the truth for our OSSEs. Assimilation and forecast results are compared among the OSSEs, assimilating only X-band or short-wavelength radar data. Overall, radar networks with larger downstream spatial coverage tend to provide overall the best analyses and 1-hour forecasts. The best analyses and forecasts of convective scale structure, however, are obtained when Dual- or Multi-Doppler coverage is preferred, even at the expense of minor loss in spatial coverage. Built-in attenuation correction is then applied, for the first time, to a real case (the 24 May 2011 tornadic storm near Chickasha, Oklahoma), using data from the X-band CASA radars. The attenuation correction procedure is found to be very effective---the analyses obtained using attenuated data are better than those obtained using pre-corrected data when all the values of reflectivity observations are assimilated. The effectiveness of the procedure is further examined by comparing the deterministic and ensemble forecasts started from the analysis of each experiment. The deterministic forecast experiment results indicate that assimilating un-corrected observations directly actually retains some information that might be lost in the pre-corrected CASA observations by forecasting a longer-lasting trailing line, similar to that observed in WSR-88D data. In the ensemble forecasts, assimilating un-corrected observations directly, using our attenuation-correcting EnKF, results in a forecast with a more intense tornado track than the experiment that assimilates all values of pre-corrected CASA data. This work is the first to assimilate attenuated observations from a radar network in OSSEs, as well as the first attempt to directly assimilate real, uncorrected CASA data into a numerical weather prediction (NWP) model using EnKF.
Nonlinear data assimilation for the regional modeling of maximum ozone values.
Božnar, Marija Zlata; Grašič, Boštjan; Mlakar, Primož; Gradišar, Dejan; Kocijan, Juš
2017-11-01
We present a new method of data assimilation with the aim of correcting the forecast of the maximum values of ozone in regional photo-chemical models for areas over complex terrain using multilayer perceptron artificial neural networks. Up until now, these types of models have been used as a single model for one location when forecasting concentrations of air pollutants. We propose a method for constructing a more ambitious model: a single model, which can be used at several locations because the model is spatially transferable and is valid for the whole 2D domain. To achieve this goal, we introduce three novel ideas. The new method improves correlation at measurement station locations by 10% on average and improves by approximately 5% elsewhere.
Data Assimilation for Applied Meteorology
NASA Astrophysics Data System (ADS)
Haupt, S. E.
2012-12-01
Although atmospheric models provide a best estimate of the future state of the atmosphere, due to sensitivity to initial condition, it is difficult to predict the precise future state. For applied problems, however, users often depend on having accurate knowledge of that future state. To improve prediction of a particular realization of an evolving flow field requires knowledge of the current state of that field and assimilation of local observations into the model. This talk will consider how dynamic assimilation can help address the concerns of users of atmospheric forecasts. First, we will look at the value of assimilation for the renewable energy industry. If the industry decision makers can have confidence in the wind and solar power forecasts, they can build their power allocations around the expected renewable resource, saving money for the ratepayers as well as reducing carbon emissions. We will assess the value to that industry of assimilating local real-time observations into the model forecasts and the value that is provided. The value of the forecasts with assimilation is important on both short (several hour) to medium range (within two days). A second application will be atmospheric transport and dispersion problems. In particular, we will look at assimilation of concentration data into a prediction model. An interesting aspect of this problem is that the dynamics are a one-way coupled system, with the fluid dynamic equations affecting the concentration equation, but not vice versa. So when the observations are of the concentration, one must infer the fluid dynamics. This one-way coupled system presents a challenge: one must first infer the changes in the flow field from observations of the contaminant, then assimilate that to recover both the advecting flow and information on the subgrid processes that provide the mixing. To accomplish such assimilation requires a robust method to match the observed contaminant field to that modeled. One approach is to separate the problem into a transport portion and a dispersion portion, representing the resolved flow and the unresolved portion. One then treats the resolved portion in a Lagrangian framework and the unresolved in an Eulerian framework to pose an optimization problem for both the transport and dispersion variables. We demonstrate how this problem can be solved by assimilating the data dynamically using a genetic algorithm variation approach (GA-Var). This technique is demonstrated on both a basic Gaussian puff problem and a Large Eddy Simulation. Finally we will show how assimilation can help bridge the gap between modeling flows at the mesoscale and flows at the fine scale that is often important for resolving flow around local features. By assimilating mesoscale model data into a computational fluid dynamics model, we can force the fine scale model to with the features at the mesoscale, providing a coupling mechanism.
NASA Astrophysics Data System (ADS)
Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena; Antokhin, Pavel
2016-04-01
The work is devoted to data assimilation algorithm for atmospheric chemistry transport and transformation models. In the work a control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the constrained minimum of the target functional combining a control function norm with a norm of the misfit between measured data and its model-simulated analog. Transport and transformation processes model is acting as a constraint. The constrained minimization problem is solved with Euler-Lagrange variational principle [1] which allows reducing it to a system of direct, adjoint and control function estimate relations. This provides a physically-plausible structure of the resulting analysis without model error covariance matrices that are sought within conventional approaches to data assimilation. High dimensionality of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the data assimilation algorithms. Computational issues with complicated models can be solved by using a splitting technique. Within this approach a complex model is split to a set of relatively independent simpler models equipped with a coupling procedure. In a fine-grained approach data assimilation is carried out quasi-independently on the separate splitting stages with shared measurement data [2]. In integrated schemes data assimilation is carried out with respect to the split model as a whole. We compare the two approaches both theoretically and numerically. Data assimilation on the transport stage is carried out with a direct algorithm without iterations. Different algorithms to assimilate data on nonlinear transformation stage are compared. In the work we compare data assimilation results for both artificial and real measurement data. With these data we study the impact of transformation processes and data assimilation to the performance of the modeling system [3]. The work has been partially supported by RFBR grant 14-01-00125 and RAS Presidium II.4P. References: [1] Penenko V.V., Tsvetova E.A., Penenko A.V. Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry // IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2015, v 51 , p. 311 - 319 [2] A.V. Penenko and V.V. Penenko. Direct data assimilation method for convection-diffusion models based on splitting scheme. Computational technologies, 19(4):69-83, 2014. [3] A. Penenko; V. Penenko; R. Nuterman; A. Baklanov and A. Mahura Direct variational data assimilation algorithm for atmospheric chemistry data with transport and transformation model, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, 968076 (November 19, 2015); doi:10.1117/12.2206008;http://dx.doi.org/10.1117/12.2206008
NASA Astrophysics Data System (ADS)
Neal, J. C.; Wood, M.; Bermúdez, M.; Hostache, R.; Freer, J. E.; Bates, P. D.; Coxon, G.
2017-12-01
Remote sensing of flood inundation extent has long been a potential source of data for constraining and correcting simulations of floodplain inundation. Hydrodynamic models and the computing resources to run them have developed to the extent that simulation of flood inundation in two-dimensional space is now feasible over large river basins in near real-time. However, despite substantial evidence that there is useful information content within inundation extent data, even from low resolution SAR such as that gathered by Envisat ASAR in wide swath mode, making use of the information in a data assimilation system has proved difficult. He we review recent applications of the Ensemble Kalman Filter (EnKF) and Particle Filter for assimilating SAR data, with a focus on the River Severn UK and compare these with complementary research that has looked at the internal error sources and boundary condition errors using detailed terrestrial data that is not available in most locations. Previous applications of the EnKF to this reach have focused on upstream boundary conditions as the source of flow error, however this description of errors was too simplistic for the simulation of summer flood events where localised intense rainfall can be substantial. Therefore, we evaluate the introduction of uncertain lateral inflows to the ensemble. A further limitation of the existing EnKF based methods is the need to convert flood extent to water surface elevations by intersecting the shoreline location with a high quality digital elevation model (e.g. LiDAR). To simplify this data processing step, we evaluate a method to directly assimilate inundation extent as a EnKF model state rather than assimilating water heights, potentially allowing the scheme to be used where high-quality terrain data are sparse.
Characterizing the intra-urban spatiotemporal dynamics of High Heat Stress Zones (Hotspots)
NASA Astrophysics Data System (ADS)
Shreevastava, A.; Rao, P. S.; McGrath, G. S.
2017-12-01
In this study, we present an innovative framework to characterize the spatio-temporal dynamics of High Heat Stress Zones (Hot spots) created within an Urban area in the event of a Heat Wave. Heat waves are one of the leading causes of weather-related human mortality in many countries, and cities receive its worst brunt. The extreme heat stress within urban areas is often a synergistic combination of large-scale meteorological events, and the locally exacerbated impacts due to Urban Heat Islands (UHI). UHI is typically characterized as the difference between mean temperature of the urban and rural area. As a result, it fails to capture the significant variability that exists within the city itself. This variability arises from the diverse and complex spatial geometries of cities. Previous studies that have attempted to quantify the heat stress at an intra-urban scale are labor intensive, expensive, and difficult to emulate globally as they rely on availability of extensive data and their assimilation. The proposed study takes advantage of the well-established notion of fractal properties of cities to make the methods scalable to other cities where in-situ observational data might not be available. As an input, land surface temperatures are estimated using Landsat data. Using clustering analysis, we probe the emergence of thermal hotspots. The probability distributions (PD) of these hotspots are found to follow a power-law distribution in agreement with fractal characteristics of the city. PDs of several archetypical cities are then investigated to compare the effect of different spatial structures (e.g. monocentric v/s polycentric, sprawl v/s compact). Further, the temporal variability of the distributions on a diurnal as well as a seasonal scale is discussed. Finally, the spatiotemporal dynamics of the urban hotspots under a heat-wave (E.g. Delhi Heat wave, 2015) are compared against the non-heat wave scenarios. In summary, a technique that is globally adaptive and scale independent, achieved by building on the fractal properties of cities, is presented here. Identification of hotspots and a diagnosis of their characteristics will help in targeting resources judiciously to those areas that warrant the most attention, thereby helping design cities which better mitigate heat stress.
Big Data and High-Performance Computing in Global Seismology
NASA Astrophysics Data System (ADS)
Bozdag, Ebru; Lefebvre, Matthieu; Lei, Wenjie; Peter, Daniel; Smith, James; Komatitsch, Dimitri; Tromp, Jeroen
2014-05-01
Much of our knowledge of Earth's interior is based on seismic observations and measurements. Adjoint methods provide an efficient way of incorporating 3D full wave propagation in iterative seismic inversions to enhance tomographic images and thus our understanding of processes taking place inside the Earth. Our aim is to take adjoint tomography, which has been successfully applied to regional and continental scale problems, further to image the entire planet. This is one of the extreme imaging challenges in seismology, mainly due to the intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated. We have started low-resolution inversions (T > 30 s and T > 60 s for body and surface waves, respectively) with a limited data set (253 carefully selected earthquakes and seismic data from permanent and temporary networks) on Oak Ridge National Laboratory's Cray XK7 "Titan" system. Recent improvements in our 3D global wave propagation solvers, such as a GPU version of the SPECFEM3D_GLOBE package, will enable us perform higher-resolution (T > 9 s) and longer duration (~180 m) simulations to take the advantage of high-frequency body waves and major-arc surface waves, thereby improving imbalanced ray coverage as a result of the uneven global distribution of sources and receivers. Our ultimate goal is to use all earthquakes in the global CMT catalogue within the magnitude range of our interest and data from all available seismic networks. To take the full advantage of computational resources, we need a solid framework to manage big data sets during numerical simulations, pre-processing (i.e., data requests and quality checks, processing data, window selection, etc.) and post-processing (i.e., pre-conditioning and smoothing kernels, etc.). We address the bottlenecks in our global seismic workflow, which are mainly coming from heavy I/O traffic during simulations and the pre- and post-processing stages, by defining new data formats for seismograms and outputs of our 3D solvers (i.e., meshes, kernels, seismic models, etc.) based on ORNL's ADIOS libraries. We will discuss our global adjoint tomography workflow on HPC systems as well as the current status of our global inversions.
Sengupta, Aritra; Foster, Scott D.; Patterson, Toby A.; Bravington, Mark
2012-01-01
Data assimilation is a crucial aspect of modern oceanography. It allows the future forecasting and backward smoothing of ocean state from the noisy observations. Statistical methods are employed to perform these tasks and are often based on or related to the Kalman filter. Typically Kalman filters assumes that the locations associated with observations are known with certainty. This is reasonable for typical oceanographic measurement methods. Recently, however an alternative and abundant source of data comes from the deployment of ocean sensors on marine animals. This source of data has some attractive properties: unlike traditional oceanographic collection platforms, it is relatively cheap to collect, plentiful, has multiple scientific uses and users, and samples areas of the ocean that are often difficult of costly to sample. However, inherent uncertainty in the location of the observations is a barrier to full utilisation of animal-borne sensor data in data-assimilation schemes. In this article we examine this issue and suggest a simple approximation to explicitly incorporate the location uncertainty, while staying in the scope of Kalman-filter-like methods. The approximation stems from a Taylor-series approximation to elements of the updating equation. PMID:22900005
NASA Astrophysics Data System (ADS)
Arge, C. N.; Henney, C. J.; Shurkin, K.; Wallace, S.
2017-12-01
As the primary input to nearly all coronal models, reliable estimates of the global solar photospheric magnetic field distribution are critical for accurate modeling and understanding of solar and heliospheric magnetic fields. The Air Force Data Assimilative Photospheric flux Transport (ADAPT) model generates synchronic (i.e., globally instantaneous) maps by evolving observed solar magnetic flux using relatively well understood transport processes when measurements are not available and then updating modeled flux with new observations (available from both the Earth and the far-side of the Sun) using data assimilation methods that rigorously take into account model and observational uncertainties. ADAPT is capable of assimilating line-of-sight and vector magnetic field data from all observatory sources including the expected photospheric vector magnetograms from the Polarimetric and Helioseismic Imager (PHI) on the Solar Orbiter, as well as those generated using helioseismic methods. This paper compares Wang-Sheeley-Arge (WSA) coronal and solar wind modeling results at Earth and STEREO A & B using ADAPT input model maps derived from both line-of-site and vector SDO/HMI magnetograms that include methods for incorporating observations of a large, newly emerged (July 2010) far-side active region (AR11087).
NASA Astrophysics Data System (ADS)
Onken, Reiner
2017-11-01
A relocatable ocean prediction system (ROPS) was employed to an observational data set which was collected in June 2014 in the waters to the west of Sardinia (western Mediterranean) in the framework of the REP14-MED experiment. The observational data, comprising more than 6000 temperature and salinity profiles from a fleet of underwater gliders and shipborne probes, were assimilated in the Regional Ocean Modeling System (ROMS), which is the heart of ROPS, and verified against independent observations from ScanFish tows by means of the forecast skill score as defined by Murphy(1993). A simplified objective analysis (OA) method was utilised for assimilation, taking account of only those profiles which were located within a predetermined time window W. As a result of a sensitivity study, the highest skill score was obtained for a correlation length scale C = 12.5 km, W = 24 h, and r = 1, where r is the ratio between the error of the observations and the background error, both for temperature and salinity. Additional ROPS runs showed that (i) the skill score of assimilation runs was mostly higher than the score of a control run without assimilation, (i) the skill score increased with increasing forecast range, and (iii) the skill score for temperature was higher than the score for salinity in the majority of cases. Further on, it is demonstrated that the vast number of observations can be managed by the applied OA method without data reduction, enabling timely operational forecasts even on a commercially available personal computer or a laptop.
Operational aspects of asynchronous filtering for improved flood forecasting
NASA Astrophysics Data System (ADS)
Rakovec, Oldrich; Weerts, Albrecht; Sumihar, Julius; Uijlenhoet, Remko
2014-05-01
Hydrological forecasts can be made more reliable and less uncertain by recursively improving initial conditions. A common way of improving the initial conditions is to make use of data assimilation (DA), a feedback mechanism or update methodology which merges model estimates with available real world observations. The traditional implementation of the Ensemble Kalman Filter (EnKF; e.g. Evensen, 2009) is synchronous, commonly named a three dimensional (3-D) assimilation, which means that all assimilated observations correspond to the time of update. Asynchronous DA, also called four dimensional (4-D) assimilation, refers to an updating methodology, in which observations being assimilated into the model originate from times different to the time of update (Evensen, 2009; Sakov 2010). This study investigates how the capabilities of the DA procedure can be improved by applying alternative Kalman-type methods, e.g., the Asynchronous Ensemble Kalman Filter (AEnKF). The AEnKF assimilates observations with smaller computational costs than the original EnKF, which is beneficial for operational purposes. The results of discharge assimilation into a grid-based hydrological model for the Upper Ourthe catchment in Belgian Ardennes show that including past predictions and observations in the AEnKF improves the model forecasts as compared to the traditional EnKF. Additionally we show that elimination of the strongly non-linear relation between the soil moisture storage and assimilated discharge observations from the model update becomes beneficial for an improved operational forecasting, which is evaluated using several validation measures. In the current study we employed the HBV-96 model built within a recently developed open source modelling environment OpenStreams (2013). The advantage of using OpenStreams (2013) is that it enables direct communication with OpenDA (2013), an open source data assimilation toolbox. OpenDA provides a number of algorithms for model calibration and assimilation and is suitable to be connected to any kind of environmental model. This setup is embedded in the Delft Flood Early Warning System (Delft-FEWS, Werner et al., 2013) for making all simulations and forecast runs and handling of all hydrological and meteorological data. References: Evensen, G. (2009), Data Assimilation: The Ensemble Kalman Filter, Springer, doi:10.1007/978-3-642-03711-5. OpenDA (2013), The OpenDA data-assimilation toolbox, www.openda.org, (last access: 1 November 2013). OpenStreams (2013), OpenStreams, www.openstreams.nl, (last access: 1 November 2013). Sakov, P., G. Evensen, and L. Bertino (2010), Asynchronous data assimilation with the EnKF, Tellus, Series A: Dynamic Meteorology and Oceanography, 62(1), 24-29, doi:10.1111/j.1600-0870.2009.00417.x. Werner, M., J. Schellekens, P. Gijsbers, M. van Dijk, O. van den Akker, and K. Heynert (2013), The Delft-FEWS flow forecasting system, Environ. Mod. & Soft., 40(0), 65-77, doi: http://dx.doi.org/10.1016/j.envsoft.2012.07.010.
Ii, Satoshi; Adib, Mohd Azrul Hisham Mohd; Watanabe, Yoshiyuki; Wada, Shigeo
2018-01-01
This paper presents a novel data assimilation method for patient-specific blood flow analysis based on feedback control theory called the physically consistent feedback control-based data assimilation (PFC-DA) method. In the PFC-DA method, the signal, which is the residual error term of the velocity when comparing the numerical and reference measurement data, is cast as a source term in a Poisson equation for the scalar potential field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries are recursively calculated by this scalar potential field. Hence, the flow field is physically consistent because it is driven by the calculated inlet and outlet pressures, without any artificial body forces. As compared with existing variational approaches, although this PFC-DA method does not guarantee the optimal solution, only one additional Poisson equation for the scalar potential field is required, providing a remarkable improvement for such a small additional computational cost at every iteration. Through numerical examples for 2D and 3D exact flow fields, with both noise-free and noisy reference data as well as a blood flow analysis on a cerebral aneurysm using actual patient data, the robustness and accuracy of this approach is shown. Moreover, the feasibility of a patient-specific practical blood flow analysis is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo
2004-01-01
The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.
Satellite Data Assimilation within KIAPS-LETKF system
NASA Astrophysics Data System (ADS)
Jo, Y.; Lee, S., Sr.; Cho, K.
2016-12-01
Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing an ensemble data assimilation system using four-dimensional local ensemble transform kalman filter (LETKF; Hunt et al., 2007) within KIAPS Integrated Model (KIM), referred to as "KIAPS-LETKF". KIAPS-LETKF system was successfully evaluated with various Observing System Simulation Experiments (OSSEs) with NCAR Community Atmospheric Model - Spectral Element (Kang et al., 2013), which has fully unstructured quadrilateral meshes based on the cubed-sphere grid as the same grid system of KIM. Recently, assimilation of real observations has been conducted within the KIAPS-LETKF system with four-dimensional covariance functions over the 6-hr assimilation window. Then, conventional (e.g., sonde, aircraft, and surface) and satellite (e.g., AMSU-A, IASI, GPS-RO, and AMV) observations have been provided by the KIAPS Package for Observation Processing (KPOP). Wind speed prediction was found most beneficial due to ingestion of AMV and for the temperature prediction the improvement in assimilation is mostly due to ingestion of AMSU-A and IASI. However, some degradation in the simulation of the GPS-RO is presented in the upper stratosphere, even though GPS-RO leads positive impacts on the analysis and forecasts. We plan to test the bias correction method and several vertical localization strategies for radiance observations to improve analysis and forecast impacts.
Coupled assimilation for an intermediated coupled ENSO prediction model
NASA Astrophysics Data System (ADS)
Zheng, Fei; Zhu, Jiang
2010-10-01
The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.
Ensemble Kalman Filter versus Ensemble Smoother for Data Assimilation in Groundwater Modeling
NASA Astrophysics Data System (ADS)
Li, L.; Cao, Z.; Zhou, H.
2017-12-01
Groundwater modeling calls for an effective and robust integrating method to fill the gap between the model and data. The Ensemble Kalman Filter (EnKF), a real-time data assimilation method, has been increasingly applied in multiple disciplines such as petroleum engineering and hydrogeology. In this approach, the groundwater models are sequentially updated using measured data such as hydraulic head and concentration data. As an alternative to the EnKF, the Ensemble Smoother (ES) was proposed with updating models using all the data together, and therefore needs a much less computational cost. To further improve the performance of the ES, an iterative ES was proposed for continuously updating the models by assimilating measurements together. In this work, we compare the performance of the EnKF, the ES and the iterative ES using a synthetic example in groundwater modeling. The hydraulic head data modeled on the basis of the reference conductivity field are utilized to inversely estimate conductivities at un-sampled locations. Results are evaluated in terms of the characterization of conductivity and groundwater flow and solute transport predictions. It is concluded that: (1) the iterative ES could achieve a comparable result with the EnKF, but needs a less computational cost; (2) the iterative ES has the better performance than the ES through continuously updating. These findings suggest that the iterative ES should be paid much more attention for data assimilation in groundwater modeling.
NASA Astrophysics Data System (ADS)
Kano, Masayuki; Miyazaki, Shin'ichi; Ishikawa, Yoichi; Hiyoshi, Yoshihisa; Ito, Kosuke; Hirahara, Kazuro
2015-10-01
Data assimilation is a technique that optimizes the parameters used in a numerical model with a constraint of model dynamics achieving the better fit to observations. Optimized parameters can be utilized for the subsequent prediction with a numerical model and predicted physical variables are presumably closer to observations that will be available in the future, at least, comparing to those obtained without the optimization through data assimilation. In this work, an adjoint data assimilation system is developed for optimizing a relatively large number of spatially inhomogeneous frictional parameters during the afterslip period in which the physical constraints are a quasi-dynamic equation of motion and a laboratory derived rate and state dependent friction law that describe the temporal evolution of slip velocity at subduction zones. The observed variable is estimated slip velocity on the plate interface. Before applying this method to the real data assimilation for the afterslip of the 2003 Tokachi-oki earthquake, a synthetic data assimilation experiment is conducted to examine the feasibility of optimizing the frictional parameters in the afterslip area. It is confirmed that the current system is capable of optimizing the frictional parameters A-B, A and L by adopting the physical constraint based on a numerical model if observations capture the acceleration and decaying phases of slip on the plate interface. On the other hand, it is unlikely to constrain the frictional parameters in the region where the amplitude of afterslip is less than 1.0 cm d-1. Next, real data assimilation for the 2003 Tokachi-oki earthquake is conducted to incorporate slip velocity data inferred from time dependent inversion of Global Navigation Satellite System time-series. The optimized values of A-B, A and L are O(10 kPa), O(102 kPa) and O(10 mm), respectively. The optimized frictional parameters yield the better fit to the observations and the better prediction skill of slip velocity afterwards. Also, further experiment shows the importance of employing a fine-mesh model. It will contribute to the further understanding of the frictional properties on plate interfaces and lead to the forecasting system that provides useful information on the possibility of consequent earthquakes.
NASA Astrophysics Data System (ADS)
Moslehi, M.; de Barros, F.
2017-12-01
Complexity of hydrogeological systems arises from the multi-scale heterogeneity and insufficient measurements of their underlying parameters such as hydraulic conductivity and porosity. An inadequate characterization of hydrogeological properties can significantly decrease the trustworthiness of numerical models that predict groundwater flow and solute transport. Therefore, a variety of data assimilation methods have been proposed in order to estimate hydrogeological parameters from spatially scarce data by incorporating the governing physical models. In this work, we propose a novel framework for evaluating the performance of these estimation methods. We focus on the Ensemble Kalman Filter (EnKF) approach that is a widely used data assimilation technique. It reconciles multiple sources of measurements to sequentially estimate model parameters such as the hydraulic conductivity. Several methods have been used in the literature to quantify the accuracy of the estimations obtained by EnKF, including Rank Histograms, RMSE and Ensemble Spread. However, these commonly used methods do not regard the spatial information and variability of geological formations. This can cause hydraulic conductivity fields with very different spatial structures to have similar histograms or RMSE. We propose a vision-based approach that can quantify the accuracy of estimations by considering the spatial structure embedded in the estimated fields. Our new approach consists of adapting a new metric, Color Coherent Vectors (CCV), to evaluate the accuracy of estimated fields achieved by EnKF. CCV is a histogram-based technique for comparing images that incorporate spatial information. We represent estimated fields as digital three-channel images and use CCV to compare and quantify the accuracy of estimations. The sensitivity of CCV to spatial information makes it a suitable metric for assessing the performance of spatial data assimilation techniques. Under various factors of data assimilation methods such as number, layout, and type of measurements, we compare the performance of CCV with other metrics such as RMSE. By simulating hydrogeological processes using estimated and true fields, we observe that CCV outperforms other existing evaluation metrics.
NASA Astrophysics Data System (ADS)
Hernandez, F.; Liang, X.
2017-12-01
Reliable real-time hydrological forecasting, to predict important phenomena such as floods, is invaluable to the society. However, modern high-resolution distributed models have faced challenges when dealing with uncertainties that are caused by the large number of parameters and initial state estimations involved. Therefore, to rely on these high-resolution models for critical real-time forecast applications, considerable improvements on the parameter and initial state estimation techniques must be made. In this work we present a unified data assimilation algorithm called Optimized PareTo Inverse Modeling through Inverse STochastic Search (OPTIMISTS) to deal with the challenge of having robust flood forecasting for high-resolution distributed models. This new algorithm combines the advantages of particle filters and variational methods in a unique way to overcome their individual weaknesses. The analysis of candidate particles compares model results with observations in a flexible time frame, and a multi-objective approach is proposed which attempts to simultaneously minimize differences with the observations and departures from the background states by using both Bayesian sampling and non-convex evolutionary optimization. Moreover, the resulting Pareto front is given a probabilistic interpretation through kernel density estimation to create a non-Gaussian distribution of the states. OPTIMISTS was tested on a low-resolution distributed land surface model using VIC (Variable Infiltration Capacity) and on a high-resolution distributed hydrological model using the DHSVM (Distributed Hydrology Soil Vegetation Model). In the tests streamflow observations are assimilated. OPTIMISTS was also compared with a traditional particle filter and a variational method. Results show that our method can reliably produce adequate forecasts and that it is able to outperform those resulting from assimilating the observations using a particle filter or an evolutionary 4D variational method alone. In addition, our method is shown to be efficient in tackling high-resolution applications with robust results.
Moisture Forecast Bias Correction in GEOS DAS
NASA Technical Reports Server (NTRS)
Dee, D.
1999-01-01
Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.
NASA Technical Reports Server (NTRS)
McCormack, J. P.; Coy, L.; Singer, W.
2013-01-01
This study uses global synoptic meteorological fields from a high-altitude data assimilation system to investigate the spatial and temporal characteristics of the quasi-2 day wave (Q2DW) and migrating diurnal tide during the Northern Hemisphere summers of 2007, 2008, and 2009. By applying a 2-dimensional fast Fourier transform to meridional wind and temperature fields, we are able to identify Q2DW source regions and to diagnose propagation of Q2DW activity into the upper mesosphere and lower thermosphere. We find that Q2DW is comprised primarily of westward propagating zonal wavenumber 3 and wavenumber 4 components that originate from within baroclinically unstable regions along the equatorward flank of the summer midlatitude easterly jet. Amplitude variations of wavenumbers 3 and 4 tend to be anti-correlated throughout the summer, with wavenumber 3 maximizing in July and wavenumber 4 maximizing in late June and early August. Monthly mean Q2DW amplitudes between 30 50N latitude are largest when diurnal tidal amplitudes are smallest and vice versa. However, there is no evidence of any rapid amplification of the Q2DW via nonlinear interaction with the diurnal tide. Instead, variations of Q2DW amplitudes during July are closely linked to variations in the strength and location of the easterly jet core from one summer to the next, with a stronger jet producing larger Q2DW amplitudes. Linear instability model calculations based on the assimilated wind fields find fast growing zonal wavenumber 3 and 4 modes with periods near 2 days in the vicinity of the easterly jet.
A 35-year hindcast for the Baltic Sea (1980-2014) - a statistical analysis
NASA Astrophysics Data System (ADS)
Gräwe, Ulf; Holtermann, Peter
2015-04-01
The Baltic Sea is a semi-enclosed sea with limited water exchange. The most important process that leads to deep water renewal of the Baltic Sea are inflows of dense, saline North Sea water. These water masses have to pass narrow channels and sills in the Danish Straits and three basins with increasing depth. Along this path, the inflowing gravity currents are subject to entrainment, vertical and horizontal mixing. Thus, physical and numerical mixing are crucial for the proper propagation of these inflows. Additionally, a permanent halocline and a summer thermocline are challenging for state of the art ocean models. Moreover, Holtermann et al (2014) could show, that boundary mixing in the deep basins dominates the vertical mixing of tracers. To tackle these challenges, we used the General Estuarine Transport Model (GETM) to give a state estimate for the Baltic Sea for the period 1980-2014. The setup has a horizontal resolution of 1 nm. In the vertical, terain following coordinates are used. A special feature of GETM is that it can run with vertical adaptive coordinates. Here we use an adaptation towards stratification. The minimum layer thickness is limited to 30 cm. We also include the effects of wind waves (by radiation stresses, and changes in the bottom stresses) into our simulations. The atmospheric forcing is taken from the global reanalysis of the NCEP-CFSR (Saha et al 2011) with a spatial resolution of 30 km and hourly values. The model validation at selected stations in the Baltic Sea shows an average Bias of ±0.15 psu and a RMSE of 0.4 psu. These values are similar to the data assimilation runs of Fu et al (2011) or Liu et al (2013). However, one has to note that our simulations are free runs without any nudging or data assimilation. Driven by the good performance of the model, we use the model output to provide a state estimate of the actual climate period (1980-2010). The analysis includes a quantification and estimation of: surge levels with a 30-year return period temperature maxima with a return period of 30 years (in the surface and bottom waters) duration of heat waves warming and desalination trends age of water masses with last surface contact. The presented model results might act as a reference to compare climate projections with the present state of the Baltic Sea. Moreover, the model system will act as inner core of a coupled hydrodynamic-biogeochemical model (ERGOM). References: Fu, W., She, J. & Dobrynin, M. A 20-year reanalysis experiment in the Baltic Sea using three-dimensional variational (3DVAR) method. Ocean Sci. 8, 827--844 (2012). Holtermann, P. L., Burchard, H., Gräwe, U., Klingbeil, K. & Umlauf, L. Deep-water dynamics and boundary mixing in a nontidal stratified basin: A modeling study of the Baltic Sea. J. Geophys. Res. Ocean. 119, 1465--1487 (2014). Liu, Y., Meier, H. E. M. & Axell, L. Reanalyzing temperature and salinity on decadal time scales using the ensemble optimal interpolation data assimilation method and a 3D ocean circulation model of the Baltic Sea. J. Geophys. Res. Ocean. 118, 5536--5554 (2013). Saha, S. et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 91, 1015--1057 (2010).
The performance of immigrants in the Norwegian labor market.
Hayfron, J E
1998-01-01
"This paper tests the assimilation hypothesis with Norwegian data. Using both cross-section and cohort analyses, the results show that the 1970-1979 immigrant cohort experienced an earnings growth of about 11% between 1980 and 1990, when their earnings profile was compared to that of natives. This is lower than the 19% assimilation rate predicted by the cross-section method. On the contrary, the results reveal a rapid earnings divergence across cohorts, and between the 1960-1969 cohort and natives." excerpt
A Weak Constraint 4D-Var Assimilation System for the Navy Coastal Model Using the Representer Method
2013-01-01
the help of the Parametric Fortrai compiler (PFC), Erwig et al. 2007 . Some general circulation models of the complexity of NCOM have seen 1 similar...the Mir general circulation model (MITgcm, Marotzke et al. 1999) also used in the ECCO consortium assimilation experiments ( Stammer et al. 2002...using the« inverse Regional Ocean Modeling System (IROMS, Di Lorenzo et al. 2007 ) with horizontal resolutions of 10 and 30km. The CCS is a large
A hybrid variational ensemble data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)
NASA Astrophysics Data System (ADS)
Gustafsson, N.; Bojarova, J.; Vignes, O.
2014-02-01
A hybrid variational ensemble data assimilation has been developed on top of the HIRLAM variational data assimilation. It provides the possibility of applying a flow-dependent background error covariance model during the data assimilation at the same time as full rank characteristics of the variational data assimilation are preserved. The hybrid formulation is based on an augmentation of the assimilation control variable with localised weights to be assigned to a set of ensemble member perturbations (deviations from the ensemble mean). The flow-dependency of the hybrid assimilation is demonstrated in single simulated observation impact studies and the improved performance of the hybrid assimilation in comparison with pure 3-dimensional variational as well as pure ensemble assimilation is also proven in real observation assimilation experiments. The performance of the hybrid assimilation is comparable to the performance of the 4-dimensional variational data assimilation. The sensitivity to various parameters of the hybrid assimilation scheme and the sensitivity to the applied ensemble generation techniques are also examined. In particular, the inclusion of ensemble perturbations with a lagged validity time has been examined with encouraging results.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Tachikawa, Y.; Shiiba, M.; Yorozu, K.; Kim, S.
2012-04-01
Data assimilation methods have received increased attention to accomplish uncertainty assessment and enhancement of forecasting capability in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modeling software are based on a deterministic approach. In this study, we developed a hydrological modeling framework for sequential data assimilation, so called MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modeling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. Sequential data assimilation based on the particle filters is available for any hydrologic models based on MPI-OHyMoS considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for short-term streamflow forecasting of several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and remotely-sensed rainfall data such as X-band or C-band radar is estimated and mitigated in the sequential data assimilation.
Assimilation by lunar mare basalts: Melting of crustal material and dissolution of anorthite
NASA Astrophysics Data System (ADS)
Finnila, A. B.; Hess, P. C.; Rutherford, M. J.
1994-07-01
We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10-12 sq m/s at 1340 C and 10-11 sq m/s at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.
Assimilation by lunar mare basalts: Melting of crustal material and dissolution of anorthite
NASA Technical Reports Server (NTRS)
Finnila, A. B.; Hess, P. C.; Rutherford, M. J.
1994-01-01
We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10(exp -12) sq m/s at 1340 C and 10(exp -11) sq m/s at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.
NASA Astrophysics Data System (ADS)
Klein, François; Goosse, Hugues
2018-06-01
The relationship between the East African rainfall and Indian Ocean sea-surface temperatures (SSTs) is well established. The potential interest of this covariance to improve reconstructions of both variables over the last centuries is examined here. This is achieved through an off-line method of data assimilation based on a particle filter, using hydroclimate-related records at four East African sites (Lake Naivasha, Lake Challa, Lake Malawi and Lake Masoko) and SSTs-related records at six oceanic sites spread over the Indian Ocean to constrain the Last Millennium Ensemble of simulations performed by CESM1. Skillful reconstructions of the Indian SSTs and East African rainfall can be obtained based on the assimilation of only one of these variables, when assimilating pseudo-proxy data deduced from the model CESM1. The skill of these reconstructions increases with the number of particles selected in the particle filter, although the improvement becomes modest beyond 99 particles. When considering a more realistic framework, the skill of the reconstructions is strongly deteriorated because of the model biases and the uncertainties of the real proxy-based reconstructions. However, it is still possible to obtain a skillful reconstruction of SSTs over most of the Indian Ocean only based on the assimilation of the six SST-related proxy records selected, as far as a local calibration is applied at all individual sites. This underlines once more the critical role of an adequate integration of the signal inferred from proxy records into the climate models for reconstructions based on data assimilation.
NASA Astrophysics Data System (ADS)
Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim
2017-07-01
Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.
Assimilation of surface NO2 and O3 observations into the SILAM chemistry transport model
NASA Astrophysics Data System (ADS)
Vira, J.; Sofiev, M.
2014-08-01
This paper describes assimilation of trace gas observations into the chemistry transport model SILAM using the 3D-Var method. Assimilation results for year 2012 are presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide (NO2). Both species are covered by the Airbase observation database, which provides the observational dataset used in this study. Attention is paid to the background and observation error covariance matrices, which are obtained primarily by iterative application of a posteriori diagnostics. The diagnostics are computed separately for two months representing summer and winter conditions, and further disaggregated by time of day. This allows deriving background and observation error covariance definitions which include both seasonal and diurnal variation. The consistency of the obtained covariance matrices is verified using χ2 diagnostics. The analysis scores are computed for a control set of observation stations withheld from assimilation. Compared to a free-running model simulation, the correlation coefficient for daily maximum values is improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2.
Nonlinear data assimilation: towards a prediction of the solar cycle
NASA Astrophysics Data System (ADS)
Svedin, Andreas
The solar cycle is the cyclic variation of solar activity, with a span of 9-14 years. The prediction of the solar cycle is an important and unsolved problem with implications for communications, aviation and other aspects of our high-tech society. Our interest is model-based prediction, and we present a self-consistent procedure for parameter estimation and model state estimation, even when only one of several model variables can be observed. Data assimilation is the art of comparing, combining and transferring observed data into a mathematical model or computer simulation. We use the 3DVAR methodology, based on the notion of least squares, to present an implementation of a traditional data assimilation. Using the Shadowing Filter — a recently developed method for nonlinear data assimilation — we outline a path towards model based prediction of the solar cycle. To achieve this end we solve a number of methodological challenges related to unobserved variables. We also provide a new framework for interpretation that can guide future predictions of the Sun and other astrophysical objects.
Analyzing Martian winds and tracer concentrations using Mars Observer data
NASA Technical Reports Server (NTRS)
Houben, Howard C.
1993-01-01
During the courses of a day, the Mars Observer spacecraft will acquire globally distributed profiles of the martian atmosphere. It is highly desirable that this data be assembled into synoptic weather maps (complete specifications of the atmospheric pressure, temperature, and winds at a given time), which can in turn be used as starting points in the study of many meteorological phenomena. Unfortunately, the special nature of the Mars Observer data presents several challenges above and beyond the usual difficult problem of data initialization. Mars Observer atmospheric data will consist almost exclusively of asynoptic vertical profiles of temperatures (or radiances) and pressures, whereas winds are generally in balance with horizontal gradients of these quantities (which will not be observed). It will therefore be necessary to resort to dynamical models to analyze the wind fields. As a rule, data assimilation into atmospheric models can result in the generation of spurious gravity waves, so special steps must be taken to suppress these. In addition, the asynoptic nature of the data will require a four-dimensional (space and time) data assimilation scheme. The problem is to find a full set of meteorological fields (winds and temperatures) such that, when marched forward in time in the model, they achieve a best fit (in the weighted least-squares sense) to the data. The proposed solution is to develop a model especially for the Mars Observer data assimilation problem. Gravity waves are filtered from the model by eliminating all divergence terms from the prognostic divergence equation. This leaves a diagnostic gradient wind relation between the rotational wind and the temperature field. The divergent wind is diagnosed as the wind required to maintain the gradient wind balance in the presence of the diabatic heating. The primitive equations of atmospheric dynamics (with three principal dependent variables) are thus reduced to a simpler system with a single prognostic equation for temperature - the variable that will be best observed. (This balance system was apparently first derived by Charney as a first-order Rossby number expansion of the equations of motion). Experience with a full primitive equation model of the martian atmosphere indicates that a further simplification is possible: at least for short-term integrations, the model can be linearized about the zonally symmetric basic state.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Tachikawa, Yasuto; Shiiba, Michiharu; Kim, Sunmin
Applications of data assimilation techniques have been widely used to improve upon the predictability of hydrologic modeling. Among various data assimilation techniques, sequential Monte Carlo (SMC) filters, known as "particle filters" provide the capability to handle non-linear and non-Gaussian state-space models. This paper proposes a dual state-parameter updating scheme (DUS) based on SMC methods to estimate both state and parameter variables of a hydrologic model. We introduce a kernel smoothing method for the robust estimation of uncertain model parameters in the DUS. The applicability of the dual updating scheme is illustrated using the implementation of the storage function model on a middle-sized Japanese catchment. We also compare performance results of DUS combined with various SMC methods, such as SIR, ASIR and RPF.
Assessing the Impact of Observations on Numerical Weather Forecasts Using the Adjoint Method
NASA Technical Reports Server (NTRS)
Gelaro, Ronald
2012-01-01
The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. This talk provides a general overview of the adjoint method, including the theoretical basis and practical implementation of the technique. Results are presented from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. When performed in conjunction with standard observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies may be important for optimizing the use of the current observational network and defining requirements for future observing systems
MODIS Data Assimilation in the CROPGRO model for improving soybean yield estimations
NASA Astrophysics Data System (ADS)
Richetti, J.; Monsivais-Huertero, A.; Ahmad, I.; Judge, J.
2017-12-01
Soybean is one of the main agricultural commodities in the world. Thus, having better estimates of its agricultural production is important. Improving the soybean crop models in Brazil is crucial for better understanding of the soybean market and enhancing decision making, because Brazil is the second largest soybean producer in the world, Parana state is responsible for almost 20% of it, and by itself would be the fourth greatest soybean producer in the world. Data assimilation techniques provide a method to improve spatio-temporal continuity of crops through integration of remotely sensed observations and crop growth models. This study aims to use MODIS EVI to improve DSSAT-CROPGRO soybean yield estimations in the Parana state, southern Brazil. The method uses the Ensemble Kalman filter which assimilates MODIS Terra and Aqua combined products (MOD13Q1 and MYD13Q1) into the CROPGRO model to improve the agricultural production estimates through update of light interception data over time. Expected results will be validated with monitored commercial farms during the period of 2013-2014.
Sampling strategies based on singular vectors for assimilated models in ocean forecasting systems
NASA Astrophysics Data System (ADS)
Fattorini, Maria; Brandini, Carlo; Ortolani, Alberto
2016-04-01
Meteorological and oceanographic models do need observations, not only as a ground truth element to verify the quality of the models, but also to keep model forecast error acceptable: through data assimilation techniques which merge measured and modelled data, natural divergence of numerical solutions from reality can be reduced / controlled and a more reliable solution - called analysis - is computed. Although this concept is valid in general, its application, especially in oceanography, raises many problems due to three main reasons: the difficulties that have ocean models in reaching an acceptable state of equilibrium, the high measurements cost and the difficulties in realizing them. The performances of the data assimilation procedures depend on the particular observation networks in use, well beyond the background quality and the used assimilation method. In this study we will present some results concerning the great impact of the dataset configuration, in particular measurements position, on the evaluation of the overall forecasting reliability of an ocean model. The aim consists in identifying operational criteria to support the design of marine observation networks at regional scale. In order to identify the observation network able to minimize the forecast error, a methodology based on Singular Vectors Decomposition of the tangent linear model is proposed. Such a method can give strong indications on the local error dynamics. In addition, for the purpose of avoiding redundancy of information contained in the data, a minimal distance among data positions has been chosen on the base of a spatial correlation analysis of the hydrodynamic fields under investigation. This methodology has been applied for the choice of data positions starting from simplified models, like an ideal double-gyre model and a quasi-geostrophic one. Model configurations and data assimilation are based on available ROMS routines, where a variational assimilation algorithm (4D-var) is included as part of the code These first applications have provided encouraging results in terms of increased predictability time and reduced forecast error, also improving the quality of the analysis used to recover the real circulation patterns from a first guess quite far from the real state.
Chen, Liwei; Pye, Jessica; Baird, Aaron
2013-01-01
Background Consumer use of mobile devices as health service delivery aids (mHealth) is growing, especially as smartphones become ubiquitous. However, questions remain as to how consumer traits, health perceptions, situational characteristics, and demographics may affect consumer mHealth usage intentions, assimilation, and channel preferences. Objective We examine how consumers’ personal innovativeness toward mobile services (PIMS), perceived health conditions, health care availability, health care utilization, demographics, and socioeconomic status affect their (1) mHealth usage intentions and extent of mHealth assimilation, and (2) preference for mHealth as a complement or substitute for in-person doctor visits. Methods Leveraging constructs from research in technology acceptance, technology assimilation, consumer behavior, and health informatics, we developed a cross-sectional online survey to study determinants of consumers’ mHealth usage intentions, assimilation, and channel preferences. Data were collected from 1132 nationally representative US consumers and analyzed by using moderated multivariate regressions and ANOVA. Results The results indicate that (1) 430 of 1132 consumers in our sample (37.99%) have started using mHealth, (2) a larger quantity of consumers are favorable to using mHealth as a complement to in-person doctor visits (758/1132, 66.96%) than as a substitute (532/1132, 47.00%), and (3) consumers’ PIMS and perceived health conditions have significant positive direct influences on mHealth usage intentions, assimilation, and channel preferences, and significant positive interactive influences on assimilation and channel preferences. The independent variables within the moderated regressions collectively explained 59.70% variance in mHealth usage intentions, 60.41% in mHealth assimilation, 34.29% in preference for complementary use of mHealth, and 45.30% in preference for substitutive use of mHealth. In a follow-up ANOVA examination, we found that those who were more favorable toward using mHealth as a substitute for in-person doctor visits than as a complement indicated stronger intentions to use mHealth (F 1,702=20.14, P<.001) and stronger assimilation of mHealth (F 1,702=41.866, P<.001). Conclusions Multiple predictors are shown to have significant associations with mHealth usage intentions, assimilation, and channel preferences. We suggest that future initiatives to promote mHealth should shift targeting of consumers from coarse demographics to nuanced considerations of individual dispositions toward mobile service innovations, complementary or substitutive channel use preferences, perceived health conditions, health services availability and utilization, demographics, and socioeconomic characteristics. PMID:23912839
NASA Astrophysics Data System (ADS)
Saynisch, Jan; Semmling, Maximilian; Wickert, Jens; Thomas, Maik
2015-11-01
The Agulhas current system transports warm and salty water masses from the Indian Ocean into the Southern Ocean and into the Atlantic. The transports impact past, present, and future climate on local and global scales. The size and variability, however, of the respective transports are still much debated. In this study, an idealized model based twin experiment is used to study whether sea surface height (SSH) anomalies estimated from reflected signals of the Global Navigation Satellite System reflectometry (GNSS-R) can be used to determine the internal water mass properties and transports of the Agulhas region. A space-borne GNSS-R detector on the International Space Station (ISS) is assumed and simulated. The detector is able to observe daily SSH fields with a spatial resolution of 1-5∘. Depending on reflection geometry, the precision of a single SSH observation is estimated to reach 3 cm (20 cm) when the carrier phase (code delay) information of the reflected GNSS signal is used. The average precision over the Agulhas region is 7 cm (42 cm). The proposed GNSS-R measurements surpass the radar-based satellite altimetry missions in temporal and spatial resolution but are less precise. Using the estimated GNSS-R characteristics, measurements of SSH are generated by sampling a regional nested general circulation model of the South African oceans. The artificial observations are subsequently assimilated with a 4DVAR adjoint data assimilation method into the same ocean model but with a different initial state and forcing. The assimilated and the original, i.e., the sampled model state, are compared to systematically identify improvements and degradations in the model variables that arise due to the assimilation of GNSS-R based SSH observations. We show that SSH and the independent, i.e., not assimilated model variables velocity, temperature, and salinity improve by the assimilation of GNSS-R based SSH observations. After the assimilation of 90 days of SSH observations, improvements in the independent variables cover the whole water column. Locally, up to 39 % of the original model state are recovered. Shorter assimilation windows result in enhanced reproduction of the observed and assimilated SSH but are accompanied by an insufficient or wrong recovery of sub-surface water properties. The assimilation of real GNSS-R observations, when available, and consequently the estimation of Agulhas water mass properties and the leakage of heat and salt into the Atlantic will benefit from this model-based study.
Simplification of the Kalman filter for meteorological data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1991-01-01
The paper proposes a new statistical method of data assimilation that is based on a simplification of the Kalman filter equations. The forecast error covariance evolution is approximated simply by advecting the mass-error covariance field, deriving the remaining covariances geostrophically, and accounting for external model-error forcing only at the end of each forecast cycle. This greatly reduces the cost of computation of the forecast error covariance. In simulations with a linear, one-dimensional shallow-water model and data generated artificially, the performance of the simplified filter is compared with that of the Kalman filter and the optimal interpolation (OI) method. The simplified filter produces analyses that are nearly optimal, and represents a significant improvement over OI.
NASA Astrophysics Data System (ADS)
Mitchell, K. E.
2006-12-01
The Environmental Modeling Center (EMC) of the National Centers for Environmental Prediction (NCEP) applies several different analyses of observed precipitation in both the data assimilation and validation components of NCEP's global and regional numerical weather and climate prediction/analysis systems (including in NCEP global and regional reanalysis). This invited talk will survey these data assimilation and validation applications and methodologies, as well as the temporal frequency, spatial domains, spatial resolution, data sources, data density and data quality control in the precipitation analyses that are applied. Some of the precipitation analyses applied by EMC are produced by NCEP's Climate Prediction Center (CPC), while others are produced by the River Forecast Centers (RFCs) of the National Weather Service (NWS), or by automated algorithms of the NWS WSR-88D Radar Product Generator (RPG). Depending on the specific type of application in data assimilation or model forecast validation, the temporal resolution of the precipitation analyses may be hourly, daily, or pentad (5-day) and the domain may be global, continental U.S. (CONUS), or Mexico. The data sources for precipitation include ground-based gauge observations, radar-based estimates, and satellite-based estimates. The precipitation analyses over the CONUS are analyses of either hourly, daily or monthly totals of precipitation, and they are of two distinct types: gauge-only or primarily radar-estimated. The gauge-only CONUS analysis of daily precipitation utilizes an orographic-adjustment technique (based on the well-known PRISM precipitation climatology of Oregon State University) developed by the NWS Office of Hydrologic Development (OHD). The primary NCEP global precipitation analysis is the pentad CPC Merged Analysis of Precipitation (CMAP), which blends both gauge observations and satellite estimates. The presentation will include a brief comparison between the CMAP analysis and other global precipitation analyses by other institutions. Other global precipitation analyses produced by other methodologies are also used by EMC in certain applications, such as CPC's well-known satellite-IR based technique known as "GPI", and satellite-microwave based estimates from NESDIS or NASA. Finally, the presentation will cover the three assimilation methods used by EMC to assimilate precipitation data, including 1) 3D-VAR variational assimilation in NCEP's Global Data Assimilation System (GDAS), 2) direct insertion of precipitation-inferred vertical latent heating profiles in NCEP's N. American Data Assimilation System (NDAS) and its N. American Regional Reanalysis (NARR) counterpart, and 3) direct use of observed precipitation to drive the Noah land model component of NCEP's Global and N. American Land Data Assimilation Systems (GLDAS and NLDAS). In the applications of precipitation analyses in data assimilation at NCEP, the analyses are temporally disaggregated to hourly or less using time-weights calculated from A) either radar-based estimates or an analysis of hourly gauge-observations for the CONUS-domain daily precipitation analyses, or B) global model forecasts of 6-hourly precipitation (followed by linear interpolation to hourly or less) for the global CMAP precipitation analysis.
Griffin, T L; Clarke, J L; Lancashire, E R; Pallan, M J; Adab, P
2017-08-29
Increasing prevalence of childhood obesity and its related consequences emphasises the importance of developing and evaluating interventions aimed at prevention. The importance of process evaluation in health intervention research is increasingly recognised, assessing implementation and participant response, and how these may relate to intervention success or failure. A comprehensive process evaluation was designed and undertaken for the West Midlands ActiVe lifestyle and healthy Eating in School children (WAVES) study that tested the effectiveness of an obesity prevention programme for children aged 6-7 years, delivered in 24 UK schools. The four intervention components were: additional daily school-time physical activity (PA); cooking workshops for children and parents; Villa Vitality (VV), a 6-week healthy lifestyle promotion programme run by a local football club; and signposting to local PA opportunities. Data relating to six dimensions (Fidelity, Reach, Recruitment, Quality, Participant Responsiveness, Context) were collected via questionnaires, logbooks, direct observations, focus groups and interviews. Multiple data collection methods allowed for data triangulation and validation of methods, comparing research observations with teacher records. The 6-stage WAVES study model ((i) Data collection, (ii) Collation, (iii) Tabulation, (iv) Score allocation and discussion, (v) Consultation, (vi) Final score allocation) was developed to guide the collection, assimilation and analysis of process evaluation data. Two researchers independently allocated school scores on a 5-point Likert scale for each process evaluation dimension. Researchers then discussed school score allocations and reached a consensus. Schools were ranked by total score, and grouped to reflect low, medium or high intervention implementation. The intervention was predominantly well-implemented and well-received by teachers, parents and children. The PA component was identified as the most challenging, VV the least. Median implementation score across schools was 56/75 (IQR, 51.0 - 60.8). Agreement between teacher logbooks and researcher observations was generally high, the main discrepancies occurred in session duration reporting where in some cases teachers' estimations tended to be higher than researchers'. The WAVES study model provides a rigorous and replicable approach to undertaking and analysing a multi-component process evaluation. Challenges to implementing school-based obesity prevention interventions have been identified which can be used to inform future trials. ISRCTN97000586 . 19 May 2010.
An extreme internal solitary wave event observed in the northern South China Sea
Huang, Xiaodong; Chen, Zhaohui; Zhao, Wei; Zhang, Zhiwei; Zhou, Chun; Yang, Qingxuan; Tian, Jiwei
2016-01-01
With characteristics of large amplitude and strong current, internal solitary wave (ISW) is a major hazard to marine engineering and submarine navigation; it also has significant impacts on marine ecosystems and fishery activity. Among the world oceans, ISWs are particular active in the northern South China Sea (SCS). In this spirit, the SCS Internal Wave Experiment has been conducted since March 2010 using subsurface mooring array. Here, we report an extreme ISW captured on 4 December 2013 with a maximum amplitude of 240 m and a peak westward current velocity of 2.55 m/s. To the authors’ best knowledge, this is the strongest ISW of the world oceans on record. Full-depth measurements also revealed notable impacts of the extreme ISW on deep-ocean currents and thermal structures. Concurrent mooring measurements near Batan Island showed that the powerful semidiurnal internal tide generation in the Luzon Strait was likely responsible for the occurrence of the extreme ISW event. Based on the HYCOM data-assimilation product, we speculate that the strong stratification around Batan Island related to the strengthening Kuroshio may have contributed to the formation of the extreme ISW. PMID:27444063
NASA Astrophysics Data System (ADS)
Yudin, V. A.; England, S.; Matsuo, T.; Wang, H.; Immel, T. J.; Eastes, R.; Akmaev, R. A.; Goncharenko, L. P.; Fuller-Rowell, T. J.; Liu, H.; Solomon, S. C.; Wu, Q.
2014-12-01
We review and discuss the capability of novel configurations of global community (WACCM-X and TIME-GCM) and planned-operational (WAM) models to support current and forthcoming space-borne missions to monitor the dynamics and composition of the Ionosphere-Thermosphere-Mesosphere (ITM) system. In the specified meteorology model configuration of WACCM-X, the lower atmosphere is constrained by operational analyses and/or short-term forecasts provided by the Goddard Earth Observing System (GEOS-5) of GMAO/NASA/GSFC. With the terrestrial weather of GEOS-5 and updated model physics, WACCM-X simulations are capable to reproduce the observed signatures of the perturbed wave dynamics and ion-neutral coupling during recent (2006-2013) stratospheric warming events, short-term, annual and year-to-year variability of prevailing flows, planetary waves, tides, and composition. With assimilation of the NWP data in the troposphere and stratosphere the planned-operational configuration of WAM can also recreate the observed features of the ITM day-to-day variability. These "terrestrial-weather" driven whole atmosphere simulations, with day-to-day variable solar and geomagnetic inputs, can provide specification of the background state (first guess) and errors for the inverse algorithms of forthcoming NASA ITM missions, such as ICON and GOLD. With two different viewing geometries (sun-synchronous, for ICON and geostationary for GOLD) these missions promise to perform complimentary global observations of temperature, winds and constituents to constrain the first-principle space weather forecast models. The paper will discuss initial designs of Observing System Simulation Experiments (OSSE) in the coupled simulations of TIME-GCM/WACCM-X/GEOS5 and WAM/GIP. As recognized, OSSE represent an excellent learning tool for designing and evaluating observing capabilities of novel sensors. The choice of assimilation schemes, forecast and observational errors will be discussed along with challenges and perspectives to constrain fast-varying dynamics of tides and planetary waves by observations made from sun-synchronous and geostationary space-borne platforms. We will also discuss how correlative space-borne and ground-based observations can evaluate OSSE results.
NASA Astrophysics Data System (ADS)
Ju, Lei; Zhang, Jiangjiang; Chen, Cheng; Wu, Laosheng; Zeng, Lingzao
2018-03-01
Spatial distribution of groundwater recharge/discharge fluxes has an important impact on mass and energy exchanges in shallow streambeds. During the last two decades, extensive studies have been devoted to the quantification of one-dimensional (1-D) vertical exchange fluxes. Nevertheless, few studies were conducted to characterize two-dimensional (2-D) heterogeneous flux fields that commonly exist in real-world cases. In this study, we used an iterative ensemble smoother (IES) to quantify the spatial distribution of 2-D exchange fluxes by assimilating hydraulic head and temperature measurements. Four assimilation scenarios corresponding to different potential field applications were tested. In the first three scenarios, the heterogeneous hydraulic conductivity fields were first inferred from hydraulic head and/or temperature measurements, and then the flux fields were derived through Darcy's law using the estimated conductivity fields. In the fourth scenario, the flux fields were estimated directly from the temperature measurements, which is more efficient and especially suitable for the situation that a complete knowledge of flow boundary conditions is unavailable. We concluded that, the best estimation could be achieved through jointly assimilating hydraulic head and temperature measurements, and temperature data were superior to the head data when they were used independently. Overall, the IES method provided more robust and accurate vertical flux estimations than those given by the widely used analytical solution-based methods. Furthermore, IES gave reasonable uncertainty estimations, which were unavailable in traditional methods. Since temperature can be accurately monitored with high spatial and temporal resolutions, the coupling of heat tracing techniques and IES provides promising potential in quantifying complex exchange fluxes under field conditions.
NASA Astrophysics Data System (ADS)
Noh, S.; Tachikawa, Y.; Shiiba, M.; Kim, S.
2011-12-01
Applications of the sequential data assimilation methods have been increasing in hydrology to reduce uncertainty in the model prediction. In a distributed hydrologic model, there are many types of state variables and each variable interacts with each other based on different time scales. However, the framework to deal with the delayed response, which originates from different time scale of hydrologic processes, has not been thoroughly addressed in the hydrologic data assimilation. In this study, we propose the lagged filtering scheme to consider the lagged response of internal states in a distributed hydrologic model using two filtering schemes; particle filtering (PF) and ensemble Kalman filtering (EnKF). The EnKF is one of the widely used sub-optimal filters implementing an efficient computation with limited number of ensemble members, however, still based on Gaussian approximation. PF can be an alternative in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions involved. In case of PF, advanced particle regularization scheme is implemented together to preserve the diversity of the particle system. In case of EnKF, the ensemble square root filter (EnSRF) are implemented. Each filtering method is parallelized and implemented in the high performance computing system. A distributed hydrologic model, the water and energy transfer processes (WEP) model, is applied for the Katsura River catchment, Japan to demonstrate the applicability of proposed approaches. Forecasted results via PF and EnKF are compared and analyzed in terms of the prediction accuracy and the probabilistic adequacy. Discussions are focused on the prospects and limitations of each data assimilation method.
NASA Astrophysics Data System (ADS)
Bocher, M.; Coltice, N.; Fournier, A.; Tackley, P. J.
2016-01-01
With the progress of mantle convection modelling over the last decade, it now becomes possible to solve for the dynamics of the interior flow and the surface tectonics to first order. We show here that tectonic data (like surface kinematics and seafloor age distribution) and mantle convection models with plate-like behaviour can in principle be combined to reconstruct mantle convection. We present a sequential data assimilation method, based on suboptimal schemes derived from the Kalman filter, where surface velocities and seafloor age maps are not used as boundary conditions for the flow, but as data to assimilate. Two stages (a forecast followed by an analysis) are repeated sequentially to take into account data observed at different times. Whenever observations are available, an analysis infers the most probable state of the mantle at this time, considering a prior guess (supplied by the forecast) and the new observations at hand, using the classical best linear unbiased estimate. Between two observation times, the evolution of the mantle is governed by the forward model of mantle convection. This method is applied to synthetic 2-D spherical annulus mantle cases to evaluate its efficiency. We compare the reference evolutions to the estimations obtained by data assimilation. Two parameters control the behaviour of the scheme: the time between two analyses, and the amplitude of noise in the synthetic observations. Our technique proves to be efficient in retrieving temperature field evolutions provided the time between two analyses is ≲10 Myr. If the amplitude of the a priori error on the observations is large (30 per cent), our method provides a better estimate of surface tectonics than the observations, taking advantage of the information within the physics of convection.
Lightning Forecasts and Data Assimilation into Numerical Weather Prediction Models
NASA Astrophysics Data System (ADS)
MacGorman, D. R.; Mansell, E. R.; Fierro, A.; Ziegler, C.
2012-12-01
This presentation reviews two aspects of lightning in numerical weather prediction (NWP) models: forecasting lightning and assimilating lightning data into NWP models to improve weather forecasts. One of the earliest routine forecasts of lightning was developed for fire weather operations. This approach used a multi-parameter regression analysis of archived cloud-to-ground (CG) lightning data and archived NWP data to optimize the combination of model state variables to use in forecast equations for various CG rates. Since then, understanding of how storms produce lightning has improved greatly. As the treatment of ice in microphysics packages used by NWP models has improved and the horizontal resolution of models has begun approaching convection-permitting scales (with convection-resolving scales on the horizon), it is becoming possible to use this improved understanding in NWP models to predict lightning more directly. An important role for data assimilation in NWP models is to depict the location, timing, and spatial extent of thunderstorms during model spin-up so that the effects of prior convection that can strongly influence future thunderstorm activity, such as updrafts and outflow boundaries, can be included in the initial state of a NWP model run. Radar data have traditionally been used, but systems that map lightning activity with varying degrees of coverage, detail, and detection efficiency are now available routinely over large regions and reveal information about storms that is complementary to the information provided by radar. Because data from lightning mapping systems are compact, easily handled, and reliably indicate the location and timing of thunderstorms, even in regions with little or no radar coverage, several groups have investigated techniques for assimilating these data into NWP models. This application will become even more valuable with the launch of the Geostationary Lightning Mapper on the GOES-R satellite, which will extend routine coverage even farther into remote regions and provides the most promising means for routine thunderstorm detection over oceans. On-going research is continually expanding the methods used to assimilate lightning data, which began with simple techniques for assimilating CG data and now are being extended to assimilate total lightning data. Most approaches either have used the lightning data simply to indicate where the subgrid scale convective parameterization of a model should produce deep convection or have used the lightning data to indicate how to modify a model variable related to thunderstorms, such as rainfall rate or water vapor mixing ratio. The developing methods for explicitly predicting lightning activity provide another, more direct means for assimilating total lightning data, besides providing information valuable to the general public and to many governmental and commercial enterprises. Such a direct approach could be particularly useful for ensemble techniques used to produce probabilistic thunderstorm forecasts.
Four-Dimensional Data Assimilation Using the Adjoint Method
NASA Astrophysics Data System (ADS)
Bao, Jian-Wen
The calculus of variations is used to confirm that variational four-dimensional data assimilation (FDDA) using the adjoint method can be implemented when the numerical model equations have a finite number of first-order discontinuous points. These points represent the on/off switches associated with physical processes, for which the Jacobian matrix of the model equation does not exist. Numerical evidence suggests that, in some situations when the adjoint method is used for FDDA, the temperature field retrieved using horizontal wind data is numerically not unique. A physical interpretation of this type of non-uniqueness of the retrieval is proposed in terms of energetics. The adjoint equations of a numerical model can also be used for model-parameter estimation. A general computational procedure is developed to determine the size and distribution of any internal model parameter. The procedure is then applied to a one-dimensional shallow -fluid model in the context of analysis-nudging FDDA: the weighting coefficients used by the Newtonian nudging technique are determined. The sensitivity of these nudging coefficients to the optimal objectives and constraints is investigated. Experiments of FDDA using the adjoint method are conducted using the dry version of the hydrostatic Penn State/NCAR mesoscale model (MM4) and its adjoint. The minimization procedure converges and the initialization experiment is successful. Temperature-retrieval experiments involving an assimilation of the horizontal wind are also carried out using the adjoint of MM4.
NASA Astrophysics Data System (ADS)
Shi, Y.; Davis, K. J.; Zhang, F.; Duffy, C.; Yu, X.
2014-12-01
A coupled physically based land surface hydrologic model, Flux-PIHM, has been developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM has been implemented and manually calibrated at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Model predictions of discharge, point soil moisture, point water table depth, sensible and latent heat fluxes, and soil temperature show good agreement with observations. When calibrated only using discharge, and soil moisture and water table depth at one point, Flux-PIHM is able to resolve the observed 101 m scale soil moisture pattern at the Shale Hills watershed when an appropriate map of soil hydraulic properties is provided. A Flux-PIHM data assimilation system has been developed by incorporating EnKF for model parameter and state estimation. Both synthetic and real data assimilation experiments have been performed at the Shale Hills watershed. Synthetic experiment results show that the data assimilation system is able to simultaneously provide accurate estimates of multiple parameters. In the real data experiment, the EnKF estimated parameters and manually calibrated parameters yield similar model performances, but the EnKF method significantly decreases the time and labor required for calibration. The data requirements for accurate Flux-PIHM parameter estimation via data assimilation using synthetic observations have been tested. Results show that by assimilating only in situ outlet discharge, soil water content at one point, and the land surface temperature averaged over the whole watershed, the data assimilation system can provide an accurate representation of watershed hydrology. Observations of these key variables are available with national and even global spatial coverage (e.g., MODIS surface temperature, SMAP soil moisture, and the USGS gauging stations). National atmospheric reanalysis products, soil databases and land cover databases (e.g., NLDAS-2, SSURGO, NLCD) can provide high resolution forcing and input data. Therefore the Flux-PIHM data assimilation system could be readily expanded to other watersheds to provide regional scale land surface and hydrologic reanalysis with high spatial temporal resolution.
Big Data, Deep Learning and Tianhe-2 at Sun Yat-Sen University, Guangzhou
NASA Astrophysics Data System (ADS)
Yuen, D. A.; Dzwinel, W.; Liu, J.; Zhang, K.
2014-12-01
In this decade the big data revolution has permeated in many fields, ranging from financial transactions, medical surveys and scientific endeavors, because of the big opportunities people see ahead. What to do with all this data remains an intriguing question. This is where computer scientists together with applied mathematicians have made some significant inroads in developing deep learning techniques for unraveling new relationships among the different variables by means of correlation analysis and data-assimilation methods. Deep-learning and big data taken together is a grand challenge task in High-performance computing which demand both ultrafast speed and large memory. The Tianhe-2 recently installed at Sun Yat-Sen University in Guangzhou is well positioned to take up this challenge because it is currently the world's fastest computer at 34 Petaflops. Each compute node of Tianhe-2 has two CPUs of Intel Xeon E5-2600 and three Xeon Phi accelerators. The Tianhe-2 has a very large fast memory RAM of 88 Gigabytes on each node. The system has a total memory of 1,375 Terabytes. All of these technical features will allow very high dimensional (more than 10) problem in deep learning to be explored carefully on the Tianhe-2. Problems in seismology which can be solved include three-dimensional seismic wave simulations of the whole Earth with a few km resolution and the recognition of new phases in seismic wave form from assemblage of large data sets.
Volcanic Ash Data Assimilation System for Atmospheric Transport Model
NASA Astrophysics Data System (ADS)
Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.
2017-12-01
The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.
The Improvement of Spatial-Temporal PM2.5 Resolution in Taiwan by Using Data Assimilation Method
NASA Astrophysics Data System (ADS)
Lin, Yong-Qing; Lin, Yuan-Chien
2017-04-01
Forecasting air pollution concentration, e.g., the concentration of PM2.5, is of great significance to protect human health and the environment. Accurate prediction of PM2.5 concentrations is limited in number and the data quality of air quality monitoring stations. The spatial and temporal variations of PM2.5 concentrations are measured by 76 National Air Quality Monitoring Stations (built by the TW-EPA) in Taiwan. The National Air Quality Monitoring Stations are costly and scarce because of the highly precise instrument and their size. Therefore, many places still out of the range of National Air Quality Monitoring Stations. Recently, there are an enormous number of portable air quality sensors called "AirBox" developed jointly by the Taiwan government and a private company. By virtue of its price and portative, the AirBox can provide higher resolution of space-time PM2.5 measurement. However, the spatiotemporal distribution and data quality are different between AirBox and National Air Quality Monitoring Stations. To integrate the heterogeneous PM2.5 data, the data assimilation method should be performed before further analysis. In this study, we propose a data assimilation method based on Ensemble Kalman Filter (EnKF), which is a variant of classic Kalman Filter, can be used to combine additional heterogeneous data from different source while modeling to improve the estimation of spatial-temporal PM2.5 concentration. The assimilation procedure uses the advantages of the two kinds of heterogeneous data and merges them to produce the final estimation. The results have shown that by combining AirBox PM2.5 data as additional information in our model based EnKF can bring the better estimation of spatial-temporal PM2.5 concentration and improve the it's space-time resolution. Under the approach proposed in this study, higher spatial-temporal resoultion could provide a very useful information for a better spatial-temporal data analysis and further environmental management, such as air pollution source localization and micro-scale air pollution analysis. Keywords: PM2.5, Data Assimilation, Ensemble Kalman Filter, Air Quality
Improving Incremental Balance in the GSI 3DVAR Analysis System
NASA Technical Reports Server (NTRS)
Errico, Ronald M.; Yang, Runhua; Kleist, Daryl T.; Parrish, David F.; Derber, John C.; Treadon, Russ
2008-01-01
The Gridpoint Statistical Interpolation (GSI) analysis system is a unified global/regional 3DVAR analysis code that has been under development for several years at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center. It has recently been implemented into operations at NCEP in both the global and North American data assimilation systems (GDAS and NDAS). An important aspect of this development has been improving the balance of the analysis produced by GSI. The improved balance between variables has been achieved through the inclusion of a Tangent Linear Normal Mode Constraint (TLNMC). The TLNMC method has proven to be very robust and effective. The TLNMC as part of the global GSI system has resulted in substantial improvement in data assimilation both at NCEP and at the NASA Global Modeling and Assimilation Office (GMAO).
Optimizing Tsunami Forecast Model Accuracy
NASA Astrophysics Data System (ADS)
Whitmore, P.; Nyland, D. L.; Huang, P. Y.
2015-12-01
Recent tsunamis provide a means to determine the accuracy that can be expected of real-time tsunami forecast models. Forecast accuracy using two different tsunami forecast models are compared for seven events since 2006 based on both real-time application and optimized, after-the-fact "forecasts". Lessons learned by comparing the forecast accuracy determined during an event to modified applications of the models after-the-fact provide improved methods for real-time forecasting for future events. Variables such as source definition, data assimilation, and model scaling factors are examined to optimize forecast accuracy. Forecast accuracy is also compared for direct forward modeling based on earthquake source parameters versus accuracy obtained by assimilating sea level data into the forecast model. Results show that including assimilated sea level data into the models increases accuracy by approximately 15% for the events examined.
Downscaling ocean conditions: Experiments with a quasi-geostrophic model
NASA Astrophysics Data System (ADS)
Katavouta, A.; Thompson, K. R.
2013-12-01
The predictability of small-scale ocean variability, given the time history of the associated large-scales, is investigated using a quasi-geostrophic model of two wind-driven gyres separated by an unstable, mid-ocean jet. Motivated by the recent theoretical study of Henshaw et al. (2003), we propose a straightforward method for assimilating information on the large-scale in order to recover the small-scale details of the quasi-geostrophic circulation. The similarity of this method to the spectral nudging of limited area atmospheric models is discussed. Results from the spectral nudging of the quasi-geostrophic model, and an independent multivariate regression-based approach, show that important features of the ocean circulation, including the position of the meandering mid-ocean jet and the associated pinch-off eddies, can be recovered from the time history of a small number of large-scale modes. We next propose a hybrid approach for assimilating both the large-scales and additional observed time series from a limited number of locations that alone are too sparse to recover the small scales using traditional assimilation techniques. The hybrid approach improved significantly the recovery of the small-scales. The results highlight the importance of the coupling between length scales in downscaling applications, and the value of assimilating limited point observations after the large-scales have been set correctly. The application of the hybrid and spectral nudging to practical ocean forecasting, and projecting changes in ocean conditions on climate time scales, is discussed briefly.
A Multigrid NLS-4DVar Data Assimilation Scheme with Advanced Research WRF (ARW)
NASA Astrophysics Data System (ADS)
Zhang, H.; Tian, X.
2017-12-01
The motions of the atmosphere have multiscale properties in space and/or time, and the background error covariance matrix (Β) should thus contain error information at different correlation scales. To obtain an optimal analysis, the multigrid three-dimensional variational data assimilation scheme is used widely when sequentially correcting errors from large to small scales. However, introduction of the multigrid technique into four-dimensional variational data assimilation is not easy, due to its strong dependence on the adjoint model, which has extremely high computational costs in data coding, maintenance, and updating. In this study, the multigrid technique was introduced into the nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method, which is an advanced four-dimensional ensemble-variational method that can be applied without invoking the adjoint models. The multigrid NLS-4DVar (MG-NLS-4DVar) scheme uses the number of grid points to control the scale, with doubling of this number when moving from a coarse to a finer grid. Furthermore, the MG-NLS-4DVar scheme not only retains the advantages of NLS-4DVar, but also sufficiently corrects multiscale errors to achieve a highly accurate analysis. The effectiveness and efficiency of the proposed MG-NLS-4DVar scheme were evaluated by several groups of observing system simulation experiments using the Advanced Research Weather Research and Forecasting Model. MG-NLS-4DVar outperformed NLS-4DVar, with a lower computational cost.
Reagan, Andrew J; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M
2016-01-01
A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.