Rago, Livia; Di Castelnuovo, Augusto; Assanelli, Deodato; Badilini, Fabio; Vaglio, Martino; Gianfagna, Francesco; Salvetti, Massimo; Zito, Francesco; Alessandrini, Francesco; Donati, Maria Benedetta; de Gaetano, Giovanni; Iacoviello, Licia
2013-02-01
We aimed at investigating the association between T-wave axis deviation, metabolic syndrome (MetS), its components and estimated risk of cardiovascular disease (CVD) at 10 years in an adult Italian population. 11,143 women (54 ± 11 years) and 9742 men (55 ± 11 years) were analyzed from the Moli-sani cohort, randomly recruited from the general population. MetS was defined using the ATPIII criteria. T-wave axis deviation was measured from the standard 12-lead resting electrocardiogram. CVD risk in ten years was estimated by the CUORE score. 29% of men and 27% of women with MetS showed borderline or abnormal T-wave as compared to 24% and 17% without MetS (p < 0.0001 for both genders). Among components of MetS, elevated waist and blood pressure were strongly associated with T-wave axis deviation, whereas glucose, HDL and triglycerides were only marginally. The odds of having borderline or abnormal T-wave axis deviation in multivariable regression analysis, was 1.38 (95% CI:1.25-1.53) in MetS men and 1.68 (95% CI:1.51-1.87) in MetS women compared to those without. Further adjustment for MetS components completely abolished the associations. Abnormal T-wave axis deviation was associated with an increased risk of CVD in 10 years in men (OR = 4.4; 95% CI:1.10-17.9). T-wave axis deviation is strongly associated with components of the MetS, in particular high waist circumference and blood pressure and with an increased CVD risk, particularly in men. ECG monitoring to identify T-wave axis deviation in obese, hypertensive or MetS subjects can be an early indicator of vascular disease and help in reducing cardiac events. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1990-01-01
Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis fiber axis) and the x1 axis for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers new nondestructive technique of evaluating stress in composites.
Effect of stress on energy flux deviation of ultrasonic waves in GR/EP composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1990-01-01
Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis (fiber axis) and the x1 for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers a new nondestructive technique of evaluating stress in composites.
Lehtonen, Arttu O; Langén, Ville L; Puukka, Pauli J; Kähönen, Mika; Nieminen, Markku S; Jula, Antti M; Niiranen, Teemu J
Scant data exist on incidence rates, correlates, and prognosis of electrocardiographic P-wave abnormalities in the general population. We recorded ECG and measured conventional cardiovascular risk factors in 5667 Finns who were followed up for incident atrial fibrillation (AF). We obtained repeat ECGs from 3089 individuals 11years later. The incidence rates of prolonged P-wave duration, abnormal P terminal force (PTF), left P-wave axis deviation, and right P-wave axis deviation were 16.0%, 7.4%, 3.4%, and 2.2%, respectively. Older age and higher BMI were associated with incident prolonged P-wave duration and abnormal PTF (P≤0.01). Higher blood pressure was associated with incident prolonged P-wave duration and right P-wave axis deviation (P≤0.01). During follow-up, only prolonged P-wave duration predicted AF (multivariable-adjusted hazard ratio, 1.38; P=0.001). Modifiable risk factors associate with P-wave abnormalities that are common and may represent intermediate steps of atrial cardiomyopathy on a pathway leading to AF. Copyright © 2017 Elsevier Inc. All rights reserved.
Nonlinear elastic effects on the energy flux deviation of ultrasonic waves in gr/ep composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1992-01-01
The effects of nonlinear elasticity on energy flux deviation in undirectional gr/ep composites are examined. The shift in the flux deviation is modeled using acoustoelasticity theory and the second- and third-order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress are considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3), while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1). For both conditions, the change in the energy flux deviation angle from the condition of zero applied stress is computed over the range of propagation directions of 0 to 60 deg from the fiber axis at two-degree intervals. A positive flux deviation angle implies the energy deviates away from the fiber direction toward the x1 axis, while a negative deviation means that the energy deviates toward the fibers. Over this range of fiber orientation angles, the energy of the quasi-longitudinal and pure mode transverse waves deviates toward the fibers, while that of the quasi-transverse mode deviates away from the fibers.
Case report: an electrocardiogram of spontaneous pneumothorax mimicking arm lead reversal.
Wieters, J Scott; Carlin, Joseph P; Morris, Andrew
2014-05-01
There are several previously documented findings for electrocardiograms (ECGs) of spontaneous pneumothorax. These findings include axis deviation, T-wave inversion, and right bundle branch block. When an ECG has the arm leads incorrectly placed, the ECG will display right axis deviation and inversion of the P waves in lead I. There have been no previously published ECGs of spontaneous pneumothorax that have shown the same findings as reversal of the limb leads of an ECG. A possible finding of spontaneous pneumothorax is an identical finding to that of an ECG that has been flagged for limb lead reversal. A patient presented in the emergency setting with acute chest pain and shortness of breath caused by a tension pneumothorax. An ECG was administered; findings indicated reversal of the arm leads (right axis deviation and inverted P waves in lead I), but there was no actual limb lead reversal present. ECG findings resolved upon resolution of the pneumothorax. If a patient presents with chest pain and shortness of breath, and the patient's ECG is flagged for limb lead reversal despite being set up correctly, the physician should raise clinical suspicion for a possible spontaneous pneumothorax. Copyright © 2014 Elsevier Inc. All rights reserved.
Extreme Right Axis Deviation in Acute Myocardial Infarction: A Hazardous Signal of Poor Prognosis.
Wang, Qingyu; Pan, Shuo; Liu, Fuqiang; Yang, Dan; Wang, Jun-Kui
2018-05-11
BACKGROUND New-onset extreme right axis deviation and right bundle branch block (RBBB) are rare during acute myocardial infarction (AMI), and has only been reported in several cases reflecting the severity of AMI. It could predict severe clinical complications and higher risks in coronary artery disease. Although there is little electrophysiological explanation, the complications are severe. They should be emphasized in newly diagnosed extreme right axis deviation and RBBB in AMI. CASE REPORT A 72-year-old male was admitted to our department with a chief complaint of intermittent retrosternal chest pain and was diagnosed with extensive anterior myocardial infarction with RBBB, by elevated myocardial enzymes and ECG. The main wave direction of QRS in lead aVR was positive and showed an extreme right axis deviation. After a month, the patient's chest distress and the RBBB vanished, but a right axis deviation still existed. The echocardiogram showed prior extensive anterior myocardial infarction (including apex myocardia) and lower LVEF. CONCLUSIONS New diagnosed RBBB and right axis deviation is uncommon and could be a useful clue to evaluate myocardial ischemia in AMI cases. This electrocardiographic marker can identify coronary artery occlusion where ST-segments are hard to evaluate, and hence, patients may benefit most from early and complete revascularization strategies such as primary angioplasty.
Nonlinear Elastic Effects on the Energy Flux Deviation of Ultrasonic Waves in GR/EP Composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1992-01-01
In isotropic materials, the direction of the energy flux (energy per unit time per unit area) of an ultrasonic plane wave is always along the same direction as the normal to the wave front. In anisotropic materials, however, this is true only along symmetry directions. Along other directions, the energy flux of the wave deviates from the intended direction of propagation. This phenomenon is known as energy flux deviation and is illustrated. The direction of the energy flux is dependent on the elastic coefficients of the material. This effect has been demonstrated in many anisotropic crystalline materials. In transparent quartz crystals, Schlieren photographs have been obtained which allow visualization of the ultrasonic waves and the energy flux deviation. The energy flux deviation in graphite/epoxy (gr/ep) composite materials can be quite large because of their high anisotropy. The flux deviation angle has been calculated for unidirectional gr/ep composites as a function of both fiber orientation and fiber volume content. Experimental measurements have also been made in unidirectional composites. It has been further demonstrated that changes in composite materials which alter the elastic properties such as moisture absorption by the matrix or fiber degradation, can be detected nondestructively by measurements of the energy flux shift. In this research, the effects of nonlinear elasticity on energy flux deviation in unidirectional gr/ep composites were studied. Because of elastic nonlinearity, the angle of the energy flux deviation was shown to be a function of applied stress. This shift in flux deviation was modeled using acoustoelastic theory and the previously measured second and third order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress were considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3) while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1).
NASA Astrophysics Data System (ADS)
Pengvanich, P.; Chernin, D. P.; Lau, Y. Y.; Luginsland, J. W.; Gilgenbach, R. M.
2007-11-01
Motivated by the current interest in mm-wave and THz sources, which use miniature, difficult-to-fabricate circuit components, we evaluate the statistical effects of random fabrication errors on a helix traveling wave tube amplifier's small signal characteristics. The small signal theory is treated in a continuum model in which the electron beam is assumed to be monoenergetic, and axially symmetric about the helix axis. Perturbations that vary randomly along the beam axis are introduced in the dimensionless Pierce parameters b, the beam-wave velocity mismatch, C, the gain parameter, and d, the cold tube circuit loss. Our study shows, as expected, that perturbation in b dominates the other two. The extensive numerical data have been confirmed by our analytic theory. They show in particular that the standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C, and d. Simple formulas have been derived which yield the output phase variations in terms of the statistical random manufacturing errors. This work was supported by AFOSR and by ONR.
Guided waves and defect scattering in metal matrix composite plates
NASA Technical Reports Server (NTRS)
Datta, Subhendu K.; Bratton, Robert L.; Shah, Arvind H.
1989-01-01
Guided Rayleigh-Lamb waves in a continuous graphite fiber reinforced magnesium plate has been studied. The interest in this material arises from its high thermal stability and because it provides high strength-to-weight ratio. Previous studies have shown that for wavelengths much larger than the fiber diameters and spacing, the material can be characterized as transversely isotropic with the symmetry axis aligned with the fiber direction. Because of the high longitudinal stiffness of the graphite fibers, the material shows strong anisotropy, with very high modulus in the fiber direction. For this reason, dispersion of guided waves is strongly influenced by the deviation of the direction of propagation from the symmetry axis. Results are given for propagation in different directions and for scattering of antiplane shear waves by surface-breaking cracks and delaminations.
Diagnostic value of QRS and S wave variation in patients with suspicion of acute pulmonary embolism.
Çağdaş, Metin; Karakoyun, Süleyman; Rencüzoğulları, İbrahim; Karabağ, Yavuz; Artaç, İnanç; İliş, Doğan; Hamideyin, Şerif; Karayol, Sibel; Çiftçi, Handan; Çınar, Tufan
2018-03-29
This study aimed to investigate the diagnostic value of QRS and S wave variation in patients admitted to the emergency department with suspicion of acute pulmonary embolism (APE). Computerized tomographic pulmonary angiography (CTPA) was performed in 118 consecutive patients to evaluate patients with suspected APE, and 106 subjects with appropriate electrocardiogram and CT images constituted the study population. Using CTPA, APE was diagnosed in 48.1% (n:51) of the study population. The comparison of patients with APE and those without APE revealed that increased heart rate, right axis deviation of QRS axis, complete or incomplete right bundle branch block, prominent S wave in lead D1, increased QRS duration, percentage of QRS (9,8[4,8-19,0] vs 3,8[2,7-71]; p<0,001), S wave variation (22,3[9,6-31,9] vs 4,8 [2-8]; p<0,001) and ΔS wave amplitude (1.1[0.5-1.5] vs 0.2[0.1-0.5]; p<0.001) were significantly associated with APE, but no relationship was detected with respect to the presence of atrial arrhythmias, clockwise rotation of the horizontal axis, fragmentation, ST segment deviation, T wave inversion, and S1Q3T3 and S1S2S3 patterns. The percentage of S wave variation (OR: 1072 per 1% increase, 95% CI:1011-1137) was found to be an independent predictor of APE. ΔS wave amplitude>0.5mm predicted APE with a sensitivity of 72.6% and a specificity of 74.6% (AUC:0.805, 95% CI: 0.717-0.876; p<0.001). The present study demonstrated that QRS and S wave variation could be useful electrocardiographic signs for the diagnosis of APE. Copyright © 2018. Published by Elsevier Inc.
Patanè, Salvatore; Marte, Filippo
2011-09-01
Changing axis deviation has been reported also during atrial fibrillation or atrial flutter. Changing axis deviation has been also reported during acute myocardial infarction associated with atrial fibrillation too or at the end of atrial fibrillation during acute myocardial infarction. Patients with unstable angina have a higher incidence of left main coronary artery (LMCA) and proximal left anterior descending (LAD) coronary artery disease compared to patients with stable angina pectoris. In 1982, Wellens and colleagues described two electrocardiographic patterns that were predictive of critical narrowing of the proximal LAD artery, and were subsequently termed Wellens' syndrome. The criteria were: a) prior history of chest pain, b) little or no cardiac enzyme elevation, c) no pathologic precordial ST segment elevation, d) no loss of precordial R waves, and e) biphasic T waves in leads V2 and V3, or asymmetric, often deeply inverted T waves in leads V2 and V3. The ECG changes are best recognized outside the episode of anginal pain. Lead aVR and lead v1 ST segment elevation, during chest pain, has been reported in patients with LMCA disease with ST segment depression in leads V3, V4 and V5 (with maximal depression in V4).We present a case of changing axis deviation in a 37-year-old Italian man with a LAD coronary artery subocclusion associated with a LMCA subocclusion. This case focuses attention on the importance of the recognition of the patterns suspected for LAD coronary artery disease or for LMCA disease. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
Bonaccio, Marialaura; Di Castelnuovo, Augusto; Rago, Livia; de Curtis, Amalia; Assanelli, Deodato; Badilini, Fabio; Vaglio, Martino; Costanzo, Simona; Persichillo, Mariarosaria; Cerletti, Chiara; Donati, Maria Benedetta; de Gaetano, Giovanni; Iacoviello, Licia
2015-11-25
T-wave axis deviation (TDev) may help identifying subjects at risk for major cardiac events and mortality, but the pathogenesis of TDev is not well established; in particular, the possible association between TDev and inflammation is unexplored and unknown. We aimed at investigating the association between low-grade inflammation and TDev abnormalities by conducting a cross-sectional analysis on 17,507 subjects apparently free from coronary heart and haematological diseases enrolled in the MOLI-SANI study. TDev was measured from a standard 12-lead resting electrocardiogram. High sensitivity (Hs) C-reactive protein (CRP), leukocyte (WBC) and platelet counts, neutrophil or granulocyte to lymphocyte ratios were used as markers of inflammation. In multivariable model subjects reporting high CRP levels had higher odds of having borderline and abnormal TDev (OR=1.70; 95 %CI: 1.53-1.90 and OR=1.72; 95 %CI: 1.23-2.41, respectively); the association was still significant, although reduced, after controlling for body mass index (OR=1.17; 95 %CI: 1.05-1.32, for borderline and OR=1.46; 95 %CI: 1.03-2.08, for abnormal). Similarly, higher neutrophil or granulocyte to lymphocyte ratios were associated with increased odds of having abnormal TDev. Neither platelet nor leukocyte counts were associated with abnormal TDev. The relationship between CRP with TDev abnormalities was significantly stronger in men, in non- obese or normotensive individuals, and in those without metabolic syndrome. In conclusion, C-reactive protein and some cellular biomarkers of inflammation such as granulocyte or neutrophil to lymphocyte ratios were independently associated with abnormal TDev, especially in subjects at low CVD risk. These results suggest that a low-grade inflammation likely contributes to the pathogenesis of T- wave axis deviation.
The electrocardiogram of athletes Comparison with untrained subjects1
Van Ganse, W.; Versee, L.; Eylenbosch, W.; Vuylsteek, K.
1970-01-01
The resting electrocardiograms of 30 cyclists currently involved in competitive sport were compared with those of an equal number of healthy controls matched for age, height, and weight. The cyclists had significantly lower heart rates, longer PQ,QRS, and QTc intervals, higher T waves in lead II, left axis deviation of the T wave, higher R waves in the right and deeper S waves in the left praecordial leads, and deeper S waves in the right and higher R waves in the left praecordial leads. The possible significance of these findings should be assessed by prolonged prospective studies in athletes and untrained control subjects. PMID:4245411
NASA Astrophysics Data System (ADS)
He, Xiao; Hu, Hengshan; Wang, Xiuming
2013-01-01
Sedimentary rocks can exhibit strong permeability anisotropy due to layering, pre-stresses and the presence of aligned microcracks or fractures. In this paper, we develop a modified cylindrical finite-difference algorithm to simulate the borehole acoustic wavefield in a saturated poroelastic medium with transverse isotropy of permeability and tortuosity. A linear interpolation process is proposed to guarantee the leapfrog finite difference scheme for the generalized dynamic equations and Darcy's law for anisotropic porous media. First, the modified algorithm is validated by comparison against the analytical solution when the borehole axis is parallel to the symmetry axis of the formation. The same algorithm is then used to numerically model the dipole acoustic log in a borehole with its axis being arbitrarily deviated from the symmetry axis of transverse isotropy. The simulation results show that the amplitudes of flexural modes vary with the dipole orientation because the permeability tensor of the formation is dependent on the wellbore azimuth. It is revealed that the attenuation of the flexural wave increases approximately linearly with the radial permeability component in the direction of the transmitting dipole. Particularly, when the borehole axis is perpendicular to the symmetry axis of the formation, it is possible to estimate the anisotropy of permeability by evaluating attenuation of the flexural wave using a cross-dipole sonic logging tool according to the results of sensitivity analyses. Finally, the dipole sonic logs in a deviated borehole surrounded by a stratified porous formation are modelled using the proposed finite difference code. Numerical results show that the arrivals and amplitudes of transmitted flexural modes near the layer interface are sensitive to the wellbore inclination.
Gudimetla, V S Rao; Holmes, Richard B; Smith, Carey; Needham, Gregory
2012-05-01
The effect of anisotropic Kolmogorov turbulence on the log-amplitude correlation function for plane-wave fields is investigated using analysis, numerical integration, and simulation. A new analytical expression for the log-amplitude correlation function is derived for anisotropic Kolmogorov turbulence. The analytic results, based on the Rytov approximation, agree well with a more general wave-optics simulation based on the Fresnel approximation as well as with numerical evaluations, for low and moderate strengths of turbulence. The new expression reduces correctly to previously published analytic expressions for isotropic turbulence. The final results indicate that, as asymmetry becomes greater, the Rytov variance deviates from that given by the standard formula. This deviation becomes greater with stronger turbulence, up to moderate turbulence strengths. The anisotropic effects on the log-amplitude correlation function are dominant when the separation of the points is within the Fresnel length. In the direction of stronger turbulence, there is an enhanced dip in the correlation function at a separation close to the Fresnel length. The dip is diminished in the weak-turbulence axis, suggesting that energy redistribution via focusing and defocusing is dominated by the strong-turbulence axis. The new analytical expression is useful when anisotropy is observed in relevant experiments. © 2012 Optical Society of America
Patanè, Salvatore; Marte, Filippo
2011-05-19
It has been rarely reported changing axis deviation also during atrial fibrillation or atrial flutter. Changing axis deviation has been also rarely reported during acute myocardial infarction associated with atrial fibrillation too. We present a case of a 49-year-old Italian man with revelation of changing axis deviation at the end of atrial fibrillation during acute myocardial infarction. Also this case focuses attention on changing axis deviation. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
Electrocardiographic features of patients with earthquake related posttraumatic stress disorder
İlhan, Erkan; Kaplan, Abdullah; Güvenç, Tolga Sinan; Biteker, Murat; Karabulut, Evindar; Işıklı, Serhan
2013-01-01
AIM: To analyze electrocardiographic features of patients diagnosed with posttraumatic stress disorder (PTSD) after the Van-Erciş earthquake, with a shock measuring 7.2 on the Richter scale that took place in Turkey in October 2011. METHODS: Surface electrocardiograms of 12 patients with PTSD admitted to Van Erciş State Hospital (Van, Turkey) from February 2012 to May 2012 were examined. Psychiatric interviews of the sex and age matched control subjects, who had experienced the earthquake, confirmed the absence of any known diagnosable psychiatric conditions in the control group. RESULTS: A wide range of electrocardiogram (ECG) parameters, such as P-wave dispersion, QT dispersion, QT interval, Tpeak to Tend interval, intrinsicoid deflection durations and other traditional parameters were similar in both groups. There was no one with an abnormal P wave axis, short or long PR interval, long or short QT interval, negative T wave in lateral leads, abnormal T wave axis, abnormal left or right intrinsicoid deflection duration, low voltage, left bundle branch block, right bundle branch block, left posterior hemiblock, left or right axis deviation, left ventricular hypertrophy, right or left atrial enlargement and pathological q(Q) wave in either group. CONCLUSION: The study showed no direct effect of earthquake related PTSD on surface ECG in young patients. So, we propose that PTSD has no direct effect on surface ECG but may cause electrocardiographic changes indirectly by triggering atherosclerosis and/or contributing to the ongoing atherosclerotic process. PMID:23538549
Acute myocardial infarction with changing axis deviation.
Patanè, Salvatore; Marte, Filippo
2011-07-01
Changing axis deviation has been rarely reported also during atrial fibrillation or atrial flutter. Changing axis deviation has been rarely reported also during acute myocardial infarction associated with atrial fibrillation. Isolated left posterior hemiblock is a very rare finding but the evidence of transient right axis deviation with a left posterior hemiblock pattern has been reported during acute anterior myocardial infarction as related with significant right coronary artery obstruction and collateral circulation between the left coronary system and the posterior descending artery. Left anterior hemiblock development during acute inferior myocardial infarction can be an indicator of left anterior descending coronary artery lesions, multivessel coronary artery disease, and impaired left ventricular systolic function. We present a case of changing axis deviation in a 62-year-old Italian man with acute myocardial infarction. Also this case focuses attention on changing axis deviation during acute myocardial infarction. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
Patanè, Salvatore; Marte, Filippo
2010-01-07
It has been rarely reported intermittent changing axis deviation also occurs during atrial fibrillation. Intermittent changing axis deviation during acute myocardial infarction and changing axis deviation associated with atrial fibrillation and acute myocardial infarction too have been also rarely reported. It has also been reported acute myocardial infarction during l-thyroxine substitution therapy in a patient with elevated levels of free triiodothyronine and without significant coronary artery stenoses. An acute myocardial infarction due to coronary spasm associated with l-thyroxine therapy has also been reported too. We present a case of changing axis deviation during acute myocardial infarction in a 56-year-old Italian woman with permanent atrial fibrillation and l-thyroxine therapy and without significant coronary stenoses. Also this case focuses attention on changing axis deviation in the presence of atrial fibrillation during acute myocardial infarction and on the possible development of acute myocardial infarction without significant coronary stenoses associated with l-thyroxine therapy.
Changing axis deviation during acute myocardial infarction.
Patanè, Salvatore; Marte, Filippo
2010-07-09
Changing axis deviation has been reported during acute myocardial infarction also associated with atrial fibrillation. Isolated left posterior hemiblock is a very rare finding but the evidence of transient right axis deviation with a left posterior hemiblock pattern has been reported during acute anterior myocardial infarction as related with significant right coronary artery obstruction and collateral circulation between the left coronary system and the posterior descending artery. We present a case of changing axis deviation in a 70-year-old Italian man with acute myocardial infarction. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.
T-wave axis deviation and left ventricular hypertrophy interaction in diabetes and hypertension.
Assanelli, Deodato; Di Castelnuovo, Augusto; Rago, Livia; Badilini, Fabio; Vinetti, Giovanni; Gianfagna, Francesco; Salvetti, Massimo; Zito, Francesco; Donati, Maria Benedetta; de Gaetano, Giovanni; Iacoviello, Licia
2013-01-01
Electrocardiographic signs of left ventricular hypertrophy (ECG-LVH) and T-wave axis (TA) deviation are independent predictors of fatal and non fatal events. We assessed the prevalence of ECG-LVH, TA abnormalities and their combination according to the presence or absence of diabetes and/or hypertension in a large sample of the adult general Italian population. Data from 10,184 women (54 ± 11 years) and 8775 men (54 ± 11 years) were analyzed from the Moli-sani cohort, a database of randomly recruited adults (age >35) from the general population of Molise, a central region of Italy that includes collection of standard 12-lead resting ECG. Subjects with previous myocardial infarction, angina, cerebrovascular disease or left bundle brunch block or missing values for TA or ECG-LVH have been excluded. TA was measured from the standard 12-lead ECG and it was defined as the rotation of the T wave in the frontal plane as computed by a proprietary algorithm (CalECG/Bravo, AMPS-LLC, NY). ECG-LVH was defined as Sokolow Lyon voltage (SLv) >35 mm or Cornell voltage duration Product (CP) >= 2440 mm*ms. Among subjects with ECG-LVH, prevalence of hypertension was 59.0% and 49.7%, respectively for men and women, whereas that of diabetes was 10.7% and 5.7%. In hypertensives, TA was normal in 72.3% of subjects, borderline in 24.8% and abnormal in 2.9%. In diabetics, TA was normal in 70.4% of subjects, borderline in 26.5% and abnormal in 3.1%. In both hypertensive and diabetic subjects, the prevalence of ECG-LVH, was significantly greater in subjects with borderline or abnormal TA. Hypertension was an independent predictor of abnormal TA (odd ratio: 1.38, P = .025). These results suggest that hypertension might play a relevant role in the pathogenesis of TA deviation. © 2013.
Teleseismic P-wave polarization analysis at the Gräfenberg array
NASA Astrophysics Data System (ADS)
Cristiano, L.; Meier, T.; Krüger, F.; Keers, H.; Weidle, C.
2016-12-01
P-wave polarization at the Gräfenberg array (GRF) in southern Germany is analysed in terms of azimuthal deviations and deviations in the vertical polarization using 20 yr of broad-band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth-dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyse their periodicity as a function of backazimuth. The dominant periods are 180° and 360°. At low frequencies, between 0.03 and 0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180° periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20°E with an uncertainty of about 8° and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low-frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high-frequency band between 0.1 and 0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360° periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric anisotropy in the area of the GRF array. Seismic anisotropy is more variable in the brittle upper crust compared to lower crustal and subcrustal depths.
Improved particle position accuracy from off-axis holograms using a Chebyshev model.
Öhman, Johan; Sjödahl, Mikael
2018-01-01
Side scattered light from micrometer-sized particles is recorded using an off-axis digital holographic setup. From holograms, a volume is reconstructed with information about both intensity and phase. Finding particle positions is non-trivial, since poor axial resolution elongates particles in the reconstruction. To overcome this problem, the reconstructed wavefront around a particle is used to find the axial position. The method is based on the change in the sign of the curvature around the true particle position plane. The wavefront curvature is directly linked to the phase response in the reconstruction. In this paper we propose a new method of estimating the curvature based on a parametric model. The model is based on Chebyshev polynomials and is fit to the phase anomaly and compared to a plane wave in the reconstructed volume. From the model coefficients, it is possible to find particle locations. Simulated results show increased performance in the presence of noise, compared to the use of finite difference methods. The standard deviation is decreased from 3-39 μm to 6-10 μm for varying noise levels. Experimental results show a corresponding improvement where the standard deviation is decreased from 18 μm to 13 μm.
What Are “X-shaped” Radio Sources Telling Us? II. Properties of a Sample of 87
NASA Astrophysics Data System (ADS)
Saripalli, Lakshmi; Roberts, David H.
2018-01-01
In an earlier paper, we presented Jansky Very Large Array multi-frequency, multi-array continuum imaging of a unique sample of low-axial ratio radio galaxies. In this paper, the second in the series, we examine the images to learn the phenomenology of how the off-axis emission relates to the main radio source. Inversion-symmetric offset emission appears to be bimodal and to originate from one of two strategic locations: outer ends of radio lobes (outer-deviation) or from inner ends (inner-deviation). The latter sources are almost always associated with edge-brightened sources. With S- and Z-shaped sources being a subset of outer-deviation sources, this class lends itself naturally to explanations involving black hole axis precession. Our data allow us to present a plausible model for the more enigmatic inner-deviation sources with impressive wings; as for outer-deviation sources these too require black hole axis shifts, although they also require plasma backflows into relic channels. Evolution in morphology over time relates the variety in structures in inner-deviation sources including XRGs. With features such as non-collinearities, central inner-S “spine,” corresponding lobe emission peaks, double and protruding hotspots not uncommon, black hole axis precession, drifts, or flips could be active in a significant fraction of radio sources with prominent off-axis emission. At least 4% of radio galaxies appear to undergo black hole axis rotation. Quasars offer a key signature for recognizing rotating axes. With a rich haul of sources that have likely undergone axis rotation, our work shows the usefulness of low-axial ratio sources in pursuing searches for binary supermassive black holes.
Patanè, Salvatore; Marte, Filippo
2009-06-26
Subclinical hyperthyroidism is an increasingly recognized entity that is defined as a normal serum free thyroxine and free triiodothyronine levels with a thyroid-stimulating hormone level suppressed below the normal range and usually undetectable. It has been reported that subclinical hyperthyroidism is not associated with CHD or mortality from cardiovascular causes but it is usually associated with a higher heart rate and a higher risk of supraventricular arrhythmias including atrial fibrillation and atrial flutter. Intermittent changing axis deviation during atrial fibrillation has also rarely been reported. We present a case of intermittent changing axis deviation with intermittent left anterior hemiblock in a 59-year-old Italian man with atrial flutter and subclinical hyperthyroidism. To our knowledge, this is the first report of intermittent changing axis deviation with intermittent left anterior hemiblock in a patient with atrial flutter.
Renganathan, P.; Winey, J. M.; Gupta, Y. M.
2017-01-19
Here, to gain insight into inelastic deformation mechanisms for shocked hexagonal close-packed (hcp) metals, particularly the role of crystal anisotropy, magnesium (Mg) single crystals were subjected to shock compression and release along the a-axis to 3.0 and 4.8 GPa elastic impact stresses. Wave profiles measured at several thicknesses, using laser interferometry, show a sharply peaked elastic wave followed by the plastic wave. Additionally, a smooth and featureless release wave is observed following peak compression. When compared to wave profiles measured previously for c-axis Mg, the elastic wave amplitudes for a-axis Mg are lower for the same propagation distance, and less attenuation of elastic wave amplitude is observed for a given peak stress. The featureless release wave for a-axis Mg is in marked contrast to the structured features observed for c-axis unloading. Numerical simulations, using a time-dependent anisotropic modeling framework, showed that the wave profiles calculated using prismatic slip or (10more » $$\\bar{1}$$2) twinning, individually, do not match the measured compression profiles for a-axis Mg. However, a combination of slip and twinning provides a good overall match to the measured compression profiles. In contrast to compression,prismatic slip alone provides a reasonable match to the measured release wave profiles; (10$$\\bar{1}$$2) twinning due to its uni-directionality is not activated during release. The experimental results and wave profile simulations for a-axis Mg presented here are quite different from the previously published c-axis results, demonstrating the important role of crystal anisotropy on the time-dependent inelastic deformation of Mg single crystals under shock compression and release.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renganathan, P.; Winey, J. M.; Gupta, Y. M.
Here, to gain insight into inelastic deformation mechanisms for shocked hexagonal close-packed (hcp) metals, particularly the role of crystal anisotropy, magnesium (Mg) single crystals were subjected to shock compression and release along the a-axis to 3.0 and 4.8 GPa elastic impact stresses. Wave profiles measured at several thicknesses, using laser interferometry, show a sharply peaked elastic wave followed by the plastic wave. Additionally, a smooth and featureless release wave is observed following peak compression. When compared to wave profiles measured previously for c-axis Mg, the elastic wave amplitudes for a-axis Mg are lower for the same propagation distance, and less attenuation of elastic wave amplitude is observed for a given peak stress. The featureless release wave for a-axis Mg is in marked contrast to the structured features observed for c-axis unloading. Numerical simulations, using a time-dependent anisotropic modeling framework, showed that the wave profiles calculated using prismatic slip or (10more » $$\\bar{1}$$2) twinning, individually, do not match the measured compression profiles for a-axis Mg. However, a combination of slip and twinning provides a good overall match to the measured compression profiles. In contrast to compression,prismatic slip alone provides a reasonable match to the measured release wave profiles; (10$$\\bar{1}$$2) twinning due to its uni-directionality is not activated during release. The experimental results and wave profile simulations for a-axis Mg presented here are quite different from the previously published c-axis results, demonstrating the important role of crystal anisotropy on the time-dependent inelastic deformation of Mg single crystals under shock compression and release.« less
Aktürk, Faruk; Bıyık, İsmail; Kocaş, Cüneyt; Ertürk, Mehmet; Yalçın, Ahmet Arif; Savaş, Ayfer Utku; Kuzer, Firuzan Pınar; Uzun, Fatih; Yıldırım, Aydın; Uslu, Nevzat; Çuhadaroğlu, Çağlar
2013-01-01
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of chronic morbidity and mortality. Bronchial obstruction and increased pulmonary vascular resistance impairs right atrial functions. In this study, we aimed to investigate the effect of bronchial obstruction on p wave axis in patients with COPD and usefulness of electrocardiography (ECG) in the evaluation of the severity of COPD. Ninety five patients (64 male and 31 female) included to the study. Patients were in sinus rhythm, with normal ejection fraction and heart chamber sizes. Their respiratory function tests and 12 lead electrocardiograms were obtained at same day. Correlations with severity of COPD and ECG findings including p wave axis, p wave duration, QRS axis, QRS duration were studied. The mean age was 58 ± 12 years. Their mean p wave axis was 62 ± 18 degrees. In this study, p wave axis has demonstrated significant positive correlations with stages of COPD and QRS axis but significant negative correlations with FEV1, FEF, BMI and QRS duration. P wave axis increases with increasing stages of COPD. Verticalization of the frontal p wave axis may be an early finding of worsening of COPD before occurrences of other ECG changes of hypertrophy and enlargement of right heart chambers such as p pulmonale. Verticalization of the frontal p wave axis reflecting right atrial electrical activity and right heart strain may be a useful parameter for quick estimation of the severity of COPD in an out-patient cared.
Hattori, Yusuke; Ishibashi, Kohei; Noda, Takashi; Okamura, Hideo; Kanzaki, Hideaki; Anzai, Toshihisa; Yasuda, Satoshi; Kusano, Kengo
2017-09-01
We describe the case of a 37-year-old woman who presented with complete right bundle branch block and right axis deviation. She was admitted to our hospital due to severe heart failure and was dependent on inotropic agents. Cardiac resynchronization therapy was initiated but did not improve her condition. After the optimization of the pacing timing, we performed earlier right ventricular pacing, which led to an improvement of her heart failure. Earlier right ventricular pacing should be considered in patients with complete right bundle branch block and right axis deviation when cardiac resynchronization therapy is not effective.
Patanè, Salvatore; Marte, Filippo
2011-08-04
Changing axis deviation has been rarely reported also during atrial fibrillation or atrial flutter. Changing axis deviation has been also rarely reported during acute myocardial infarction associated with atrial fibrillation or at the end of atrial fibrillation during acute myocardial infarction. Subclinical hyperthyroidism is an increasingly recognized entity that is defined as a normal serum free thyroxine and free triiodothyronine levels with a thyroid-stimulating hormone level suppressed below the normal range and usually undetectable. It has been reported that subclinical hyperthyroidism is not associated with coronary heart disease or mortality from cardiovascular causes but it is sufficient to induce arrhythmias including atrial fibrillation and atrial flutter. It has also been reported that increased factor X activity in patients with subclinical hyperthyroidism represents a potential hypercoagulable state. Serum troponin-I is a sensitive indicator of myocardial damage but abnormal troponin-I levels have been also reported without acute coronary syndrome and without cardiac damage. Abnormal troponin-I levels after supraventricular tachycardia have been also reported. We present a case of changing axis deviation in a 49-year-old Italian man with atrial fibrillation, exogenous subclinical hyperthyroidism and troponin-I positive without acute coronary syndrome. Also this case focuses attention on changing axis deviation, on subclinical hyperthyroidism and on the importance of a correct evaluation of abnormal troponin-I levels. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
Trajectory Control of Small Rotating Projectiles by Laser Sparks
NASA Astrophysics Data System (ADS)
Starikovskiy, Andrey; Limbach, Christopher; Miles, Richard
2015-09-01
The possibility of controlling the trajectory of the supersonic motion of a rotating axisymmetric projectile using a remotely generated laser spark was investigated. The dynamic images of the interaction of thermal inhomogeneity created by the laser spark with the bow shock in front of the projectile were obtained. The criterion for a strong shock wave interaction with the thermal inhomogeneity at different angles of a shock wave was derived. Significant changes in the configuration of the bow shock wave and changes in the pressure distribution over the surface of the rotating projectile can appear for laser spark temperature of T' = 2500-3000 K. The experiment showed that strong interaction takes place for both plane and oblique shock waves. The measurement of the velocity of the precession of the rotating projectile axis from the initial position in time showed that the angle of attack of the projectile deviates with a typical time of perturbation propagation along the projectile's surface. Thus the laser spark can change the trajectory of the rotating projectile, moving at supersonic speed, through the creation of thermal heterogeneity in front of it.
Congenital cardiac disease in dogs.
McCaw, D; Aronson, E
1984-07-01
Pulmonic stenosis is caused by a malformed pulmonic valve, stricture of the right ventricular outflow tract or stricture of the pulmonary artery. English Bulldogs, Beagles, Samoyeds, Fox Terriers and Chihuahuas are predisposed. Clinical signs in severely affected dogs include exercise intolerance, stunting, dyspnea, syncope and ascites. Auscultation reveals a high-frequency, crescendo-decrescendo murmur during systole, loudest over the left side of the thorax, near the sternal cardiac border. An ECG may reveal a right-axis deviation of greater than 120 degrees, S waves in leads I, II and III, deep S waves in CV6LL, CV6LU and V10, Q waves deeper than 0.5 mv in leads II, III and AVF, and positive T waves in lead V10. Plain film LAT thoracic radiographs reveal an elevated carina, increased sternal contact of the heart, loss of the cranial cardiac waist and a widened cardiac silhouette, with normal pulmonary vasculature. A DV projection reveals an inverted "D" shape of the right ventricle and a pulmonary artery bulge. A nonselective angiocardiogram reveals poststenotic dilation of the main pulmonary artery. Treatment involves surgical correction of the stenosis.
Dispersion and waves in bounded plasmas with subwavelength inhomogeneities: Genesis of MEFIB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Sudeep
Bounded plasma exhibit many interesting behavior that are not found in plasmas of 'infinite' extent such as space and astrophysical plasmas. Our studies have revealed that the dispersion properties of waves in a bounded magnetoplasma deviates considerably from the predictions of the Clemmow-Mullaly-Allis (CMA) model, giving rise to new regimes of wave propagation and absorption. The anisotropy of the medium dictated by the length scales of plasma nonuniformity and magnetostatic field inhomogeneity lead to rotation of the polarization axis an effect similar to the Cotton-Mouton effect in a magneto-optic medium but with distinct differences due to wave induced resonances. Thismore » article highlights some of these interesting effects observed experimentally and corroborated with Monte Carlo simulations. One of the principal outcomes of this research is the genesis of a novel multielement focused ion beam (MEFIB) system that utilizes compact bounded plasmas in a minimum – B field to provide intense focused ion beams of a variety of elements for new research in nanoscience and technology.« less
Optimal electrocardiographic limb lead set for rapid emphysema screening
Bajaj, Rishi; Chhabra, Lovely; Basheer, Zainab; Spodick, David H
2013-01-01
Background Pulmonary emphysema of any etiology has been shown to be strongly and quasidiagnostically associated with a vertical frontal P wave axis. A vertical P wave axis (>60 degrees) during sinus rhythm can be easily determined by a P wave in lead III greater than the P wave in lead I (bipolar lead set) or a dominantly negative P wave in aVL (unipolar lead set). The purpose of this investigation was to determine which set of limb leads may be better for identifying the vertical P vector of emphysema in adults. Methods Unselected consecutive electrocardiograms from 100 patients with a diagnosis of emphysema were analyzed to determine the P wave axis. Patients aged younger than 45 years, those not in sinus rhythm, and those with poor quality tracings were excluded. The electrocardiographic data were divided into three categories depending on the frontal P wave axis, ie, >60 degrees, 60 degrees, or <60 degrees, by each criterion (P amplitude lead III > lead I and a negative P wave in aVL). Results Sixty-six percent of patients had a P wave axis > 60 degrees based on aVL, and 88% of patients had a P wave axis > 60 degrees based on the P wave in lead III being greater than in lead I. Conclusion A P wave in lead III greater than that in lead I is a more sensitive marker than a negative P wave in aVL for diagnosing emphysema and is recommended for rapid routine screening. PMID:23378754
NASA Technical Reports Server (NTRS)
Barnhart, Paul J.; Greber, Isaac
1997-01-01
A series of experiments were performed to investigate the effects of Mach number variation on the characteristics of the unsteady shock wave/turbulent boundary layer interaction generated by a blunt fin. A single blunt fin hemicylindrical leading edge diameter size was used in all of the experiments which covered the Mach number range from 2.0 to 5.0. The measurements in this investigation included surface flow visualization, static and dynamic pressure measurements, both on centerline and off-centerline of the blunt fin axis. Surface flow visualization and static pressure measurements showed that the spatial extent of the shock wave/turbulent boundary layer interaction increased with increasing Mach number. The maximum static pressure, normalized by the incoming static pressure, measured at the peak location in the separated flow region ahead of the blunt fin was found to increase with increasing Mach number. The mean and standard deviations of the fluctuating pressure signals from the dynamic pressure transducers were found to collapse to self-similar distributions as a function of the distance perpendicular to the separation line. The standard deviation of the pressure signals showed initial peaked distribution, with the maximum standard deviation point corresponding to the location of the separation line at Mach number 3.0 to 5.0. At Mach 2.0 the maximum standard deviation point was found to occur significantly upstream of the separation line. The intermittency distributions of the separation shock wave motion were found to be self-similar profiles for all Mach numbers. The intermittent region length was found to increase with Mach number and decrease with interaction sweepback angle. For Mach numbers 3.0 to 5.0 the separation line was found to correspond to high intermittencies or equivalently to the downstream locus of the separation shock wave motion. The Mach 2.0 tests, however, showed that the intermittent region occurs significantly upstream of the separation line. Power spectral densities measured in the intermittent regions were found to have self-similar frequency distributions when compared as functions of a Strouhal number for all Mach numbers and interaction sweepback angles. The maximum zero-crossing frequencies were found to correspond with the peak frequencies in the power spectra measured in the intermittent region.
Grating tuned unstable resonator laser cavity
Johnson, Larry C.
1982-01-01
An unstable resonator to be used in high power, narrow line CO.sub.2 pump lasers comprises an array of four reflectors in a ring configuration wherein spherical and planar wavefronts are separated from each other along separate optical paths and only the planar wavefronts are impinged on a plane grating for line tuning. The reflector array comprises a concave mirror for reflecting incident spherical waves as plane waves along an output axis to form an output beam. A plane grating on the output axis is oriented to reflect a portion of the output beam off axis onto a planar relay mirror spaced apart from the output axis in proximity to the concave mirror. The relay mirror reflects plane waves from the grating to impinge on a convex expanding mirror spaced apart from the output axis in proximity to the grating. The expanding mirror reflects the incident planar waves as spherical waves to illuminate the concave mirror. Tuning is provided by rotating the plane grating about an axis normal to the output axis.
Complexities of follicle deviation during selection of a dominant follicle in Bos taurus heifers.
Ginther, O J; Baldrighi, J M; Siddiqui, M A R; Araujo, E R
2016-11-01
Follicle deviation during a follicular wave is a continuation in growth rate of the dominant follicle (F1) and decreased growth rate of the largest subordinate follicle (F2). The reliability of using an F1 of 8.5 mm to represent the beginning of expected deviation for experimental purposes during waves 1 and 2 (n = 26 per wave) was studied daily in heifers. Each wave was subgrouped as follows: standard subgroup (F1 larger than F2 for 2 days preceding deviation and F2 > 7.0 mm on the day of deviation), undersized subgroup (F2 did not attain 7.0 mm by the day of deviation), and switched subgroup (F2 larger than F1 at least once on the 2 days before or on the day of deviation). For each wave, mean differences in diameter between F1 and F2 changed abruptly at expected deviation in the standard subgroup but began 1 day before expected deviation in the undersized and switched subgroups. Concentrations of FSH in the wave-stimulating FSH surge and an increase in LH centered on expected deviation did not differ among subgroups. Results for each wave indicated that (1) expected deviation (F1, 8.5 mm) was a reliable representation of actual deviation in the standard subgroup but not in the undersized and switched subgroups; (2) concentrations of the gonadotropins normalized to expected deviation were similar among the three subgroups, indicating that the day of deviation was related to diameter of F1 and not F2; and (3) defining an expected day of deviation for experimental use should consider both diameter of F1 and the characteristics of deviation. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shao, Tongbin; Ji, Shaocheng; Oya, Shoma; Michibayashi, Katsuyoshi; Wang, Qian
2016-05-01
Measurements of crystallographic preferred orientations (CPO) and calculations of P- and S-wave velocities (Vp and Vs) and anisotropy were conducted on three quartz-mica schists and one felsic mylonite, which are representative of typical metamorphic rocks deformed in the middle crust beneath the southeastern Tibetan plateau. Results show that the schists have Vp anisotropy (AVp) ranging from 16.4% to 25.5% and maximum Vs anisotropy [AVs(max)] between 21.6% and 37.8%. The mylonite has lower AVp and AVs(max) but slightly higher foliation anisotropy, which are 13.2%, 18.5%, and 3.07%, respectively, due to the lower content and CPO strength of mica. With increasing mica content, the deformed rocks tend to form transverse isotropy (TI) with fast velocities in the foliation plane and slow velocities normal to the foliation. However, the presence of prismatic minerals (e.g., amphibole and sillimanite) forces the overall symmetry to deviate from TI. An increase in feldspar content reduces the bulk anisotropy caused by mica or quartz because the fast-axis of feldspar aligns parallel to the slow-axis of mica and/or quartz. The effect of quartz on seismic properties of mica-bearing rocks is complex, depending on its content and prevailing slip system. The greatest shear-wave splitting and fastest Vp both occur for propagation directions within the foliation plane, consistent with the fast Pms (S-wave converted from P-wave at the Moho) polarization directions in the west Yunnan where mica/amphibole-bearing rocks have developed pervasive subvertical foliation and subhorizontal lineation. The fast Pms directions are perpendicular to the approximately E-W orienting fast SKS (S-wave traversing the core as P-wave) directions, indicating a decoupling at the Moho interface between the crust and mantle beneath the region. The seismic data are inconsistent with the model of crustal channel flow as the latter should produce a subhorizontal foliation where vertically incident shear waves suffer little splitting.
Predictive role of P-wave axis abnormalities in secondary cardiovascular prevention.
Lazzeroni, Davide; Bini, Matteo; Camaiora, Umberto; Castiglioni, Paolo; Moderato, Luca; Ugolotti, Pietro Tito; Brambilla, Lorenzo; Brambilla, Valerio; Coruzzi, Paolo
2017-12-01
Background Abnormal P-wave axis has been correlated with an increased risk of all-cause and cardiovascular mortality in a general population. We aimed to evaluate the prognostic role of abnormal P-wave axis in patients undergoing myocardial revascularisation or cardiac valve surgery. Methods We considered data of 810 patients with available P-wave axis measure from a prospective monocentric registry of patients undergoing cardiovascular rehabilitation. A total of 436 patients (54%) underwent myocardial revascularisation, 253 (31%) valve surgery, 71 (9%) combined valve and coronary artery bypass graft surgery and 50 (6%) cardiac surgery for other cardiovascular disease. Mean follow-up was 47 ± 27 months. Results Over the whole group, P-wave axis was 43.8° ± 27.5° and an abnormal P-wave axis was found in 94 patients (12%). The risk of overall (hazard ratio (HR) 2.5, 95% confidence interval (CI) 1.6-4.0, P < 0.001) and cardiovascular mortality (HR 2.9, 95% CI 1.5-5.8, P = 0.002) was significantly higher in patients with abnormal P-wave axis even after adjustment for age, other electrocardiographic variables (PR, QRS, QTc intervals), left ventricular ejection fraction and left atrial volume index. After dividing the population according to the type of disease, patients with abnormal P-wave axis and ischaemic heart disease had 3.9-fold higher risk of cardiovascular mortality (HR 3.9, 95% CI 1.3-12.1, P = 0.017), while a 2.2-fold higher risk of cardiovascular mortality (HR 3.6, 95% CI 1.3-10.1, P = 0.015) was found in those with cardiac valve disease. Conclusion An abnormal P-wave axis represents an independent predictor of both overall and cardiovascular mortality in patients undergoing myocardial revascularisation or cardiac valve surgery.
NASA Astrophysics Data System (ADS)
Underwood, Thomas; Loebner, Keith; Cappelli, Mark
2015-11-01
Detailed measurements of the thermodynamic and electrodynamic plasma state variables within the plume of a pulsed plasma accelerator are presented. A quadruple Langmuir probe operating in current-saturation mode is used to obtain time resolved measurements of the plasma density, temperature, potential, and velocity along the central axis of the accelerator. This data is used in conjunction with a fast-framing, intensified CCD camera to develop and validate a model predicting the existence of two distinct types of ionization waves corresponding to the upper and lower solution branches of the Hugoniot curve. A deviation of less than 8% is observed between the quasi-steady, one-dimensional theoretical model and the experimentally measured plume velocity. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.
Manjunatha, B M; Al-Bulushi, S; Pratap, N
2014-04-01
Follicular wave emergence was synchronized by treating camels with GnRH when a dominant follicle (DF) was present in the ovaries. Animals were scanned twice a day from day 0 (day of GnRH treatment) to day 10, to characterize emergence and deviation of follicles during the development of the follicular wave. Follicle deviation in individual animals was determined by graphical method. Single DFs were found in 16, double DFs in 9 and triple DFs in two camels. The incidence of codominant (double and triple DFs) follicles was 41%. The interval from GnRH treatment to wave emergence, wave emergence to deviation, diameter and growth rate of F1 follicle before or after deviation did not differ between the animals with single and double DFs. The size difference between future DF(s) and the largest subordinate follicle (SF) was apparent from the day of wave emergence in single and double DFs. Overall, interval from GnRH treatment to wave emergence and wave emergence to the beginning of follicle deviation was 70.6 ± 1.4 and 58.6 ± 2.7 h, respectively. Mean size of the DF and largest SF at the beginning of deviation was 7.4 ± 0.2 and 6.3 ± 0.1 mm, respectively. In conclusion, the characteristics of follicle deviation are similar between the animals that developed single or double DFs. © 2013 Blackwell Verlag GmbH.
Spectral sensitivity of cones of the monkey Macaca fascicularis.
Baylor, D A; Nunn, B J; Schnapf, J L
1987-01-01
1. Spectral sensitivities of cones in the retina of cynomolgus monkeys were determined by recording photocurrents from single outer segments with a suction electrode. 2. The amplitude and shape of the response to a flash depended upon the number of photons absorbed but not the wave-length, so that the 'Principle of Univariance' was obeyed. 3. Spectra were obtained from five 'blue', twenty 'green', and sixteen 'red' cones. The wave-lengths of maximum sensitivity were approximately 430, 531 and 561 nm, respectively. 4. The spectra of the three types of cones had similar shapes when plotted on a log wave number scale, and were fitted by an empirical expression. 5. There was no evidence for the existence of subclasses of cones with different spectral sensitivities. Within a class, the positions of the individual spectra on the wave-length axis showed a standard deviation of less than 1.5 nm. 6. Psychophysical results on human colour matching (Stiles & Burch, 1955; Stiles & Burch, 1959) were well predicted from the spectral sensitivities of the monkey cones. After correction for pre-retinal absorption and pigment self-screening, the spectra of the red and green cones matched the respective pi 5 and pi 4 mechanisms of Stiles (1953, 1959). PMID:3443931
Moraes, Diego N; Nascimento, Bruno R; Beaton, Andrea Z; Soliman, Elsayed Z; Lima-Costa, Maria Fernanda; Dos Reis, Rodrigo C P; Ribeiro, Antonio Luiz P
2018-02-01
We sought to investigate the prognostic value of the electrocardiogram (ECG) electrical axes (P wave, T wave and QRS) as predictors of mortality in the 14-year follow-up of the prospective cohort of all residents ≥60 years living in the southeastern Brazilian city of Bambuí, a population with high prevalence of Chagas disease (ChD). Baseline ECG axes were automatically measured with normal values defined as follows: P-wave axis 0° to 75°, QRS axis -30° to 90°, and T axis 15° to 75°. Participants underwent annual follow-up visits and death was verified using death certificates. Cox proportional hazards regression was used to assess the prognostic value of ECG axes for all-cause mortality, after adjustment for potential confounders. From 1,742 qualifying residents, 1,462 were enrolled, of whom 557 (38.1%) had ChD. Mortality rate was 51.9%. In multivariable adjusted models, abnormal P-wave axis was associated with a 48% (hazard ratio [HR] = 1.48 [95% confidence interval (CI) 1.16-1.88]) increased mortality risk in patients with ChD and 43% (HR = 1.43 [CI 1.13-1.81]) in patients without ChD. Abnormal QRS axis was associated with a 34% (HR = 1.34 [CI 1.04-1.73]) increased mortality risk in patients with ChD, but not in individuals without ChD. Similarly, in the ChD group, abnormal T-wave axis was associated with a 35% (HR = 1.35 [CI 1.07-1.71]) increased mortality, but not in patients without ChD. In conclusion, abnormal P-wave, QRS, and T-wave axes were associated with increased all-cause mortality in patients with ChD. Abnormal P-wave axis was associated with mortality also among those without ChD, being the strongest predictor among ECG variables. Copyright © 2017 Elsevier Inc. All rights reserved.
Multipole plasmons in graphene nanoellipses
NASA Astrophysics Data System (ADS)
Wang, Weihua; Song, Zhengyong
2018-02-01
We study multipole plasmons in graphene nanoellipses under the quasi-static approximation. The graphene is characterized by a homogeneous surface conductivity, and two coupled differential and integral equations are solved self-consistently to investigate the plasmonic modes in nanoellipses with a fixed area. With respect to the major axis, the symmetric and antisymmetric modes originally doubly degenerate in nanodisks will show different behavior as the semi-major axis increases. The eigen frequencies of the symmetric modes decrease, while those of the antisymmetric modes increase. At the edges, the phase changes of the symmetric dipole modes are linear and independent on structural changes; the phase changes of antisymmetric modes deviate from linear relationship, and the deviation depends on the semi-major axis. As a very large aspect ratio, they exhibit sharp peaks at the endpoints of the minor axis and zero phase changes at the endpoints of the major axis. The non-degenerate breathing mode shows its hot spots at the endpoints of the minor axis, and its eigen frequency gradually increases as the semi-major axis increases.
Stable operating regime for traveling wave devices
Carlsten, Bruce E.
2000-01-01
Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.
High-resolution observations of active region moss and its dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, R. J.; McLaughlin, J. A., E-mail: richard.morton@northumbria.ac.uk
2014-07-10
The High Resolution Coronal Imager has provided the sharpest view of the EUV corona to date. In this paper, we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads that have widths with a mean and standard deviation of 440 ± 190 km (FWHM). The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere. The emission decreases alongmore » the features, implying that the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation of physical displacements of the moss fine structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic behavior, which we interpret as a signature of kink (Alfvénic) waves. Measurements of the properties of the transverse motions are made and the wave motions have means and standard deviations of 55 ± 37 km for the transverse displacement amplitude, 77 ± 33 s for the period, and 4.7 ± 2.5 km s{sup –1} for the velocity amplitude. The presence of waves in the transition region of hot loops could have important implications for the heating of active regions.« less
Analysis of electrocardiogram in chronic obstructive pulmonary disease patients.
Lazović, Biljana; Svenda, Mirjana Zlatković; Mazić, Sanja; Stajić, Zoran; Delić, Marina
2013-01-01
Chronic obstructive pulmonary disease is the fourth leading cause of mortality worldwide. It is defined as a persistent airflow limitation usually progressive and not fully reversible to treatment. The diagnosis of chronic obstructive pulmonary disease and severity of disease is confirmed by spirometry. Chronic obstructive pulmonary disease produces electrical changes in the heart which shows characteristic electrocardiogram pattern. The aim of this study was to observe and evaluate diagnostic values of electrocardiogram changes in chronic obstructive pulmonary disease patients with no other comorbidity. We analyzed 110 electrocardiogram findings in clinically stable chronic obstructive pulmonary disease patients and evaluated the forced expiratory volume in the first second, ratio of forces expiratory volume in the first second to the fixed vital capacity, chest radiographs and electrocardiogram changes such as p wave height, QRS axis and voltage, right bundle branch block, left bundle branch block, right ventricular hypertrophy, T wave inversion in leads V1-V3, S1S2S3 syndrome, transition zone in praecordial lead and QT interval. We found electrocardiogram changes in 64% patients, while 36% had normal electrocardiogram. The most frequent electrocardiogram changes observed were transition zone (76.36%) low QRS (50%) and p pulmonale (14.54%). Left axis deviation was observed in 27.27% patients. Diagnostic values of electrocardiogram in patients with chronic obstructive pulmonary disease suggest that chronic obstructive pulmonary disease patients should be screened electrocardiographically in addition to other clinical investigations.
Ginther, O J; Siddiqui, M A R; Araujo, E R; Dangudubiyyam, S V
2017-12-01
Observations were made on follicle dynamics and gonadotropin concentrations in anovulatory wave 2 and ovulatory wave 3 in three-wave interovulatory intervals (n = 15). Hypotheses were not used owing to inadequate availability of rationale. The future dominant follicles for waves 2 and 3 were designated DF2 and DF3 and the largest future subordinate follicles as SF2 and SF3, respectively. The day of expected diameter deviation (day 0) was defined as the day that DF2 or DF3 was closest to 8.5 mm. The first day that DF2 became smaller (P < 0.05) than DF3 was day 2 (10.7 ± 0.2 mm vs 11.8 ± 0.3 mm). The FSH surges 2 and 3 that stimulated waves 2 and 3 were similar at peak concentration, but the postsurge nadir of surge 2 occurred 1 day earlier than for surge 3. An LH increase was not temporally associated with deviation in wave 2, but an increase (P < 0.05) in LH in wave 3 began on day -1. Diameter of SF2 (6.5 ± 0.2 mm) on day 0 was less (P < 0.005) than for SF3 (7.2 ± 0.2 mm). Mean diameter of subordinate follicles in wave 2 did not differ among days. Diameter of subordinate follicles that attained ≥6 mm in wave 3 was greater (interaction, P < 0.02) by day 3 when in the right ovary (RO, 7.4 ± 0.2 mm) than when in the left ovary (LO, 5.6 ± 0.2 mm). The frequency of a conventional classification of deviation (future SF greater than 7.0 mm on day 0) was less (P < 0.001) for wave 2 (1 of 15 waves) than for wave 3 (8 of 15 waves). Novel observations involving DF2 and DF3 were (1) before deviation, diameter of DF2 vs DF3 and an incline in FSH surge 2 vs surge 3 were similar and (2) after deviation, smaller diameter of DF2 vs DF3 by day 2 was associated with an earlier cessation (nadir) in FSH surge 2 vs surge 3 and an absence of an LH increase during deviation. Novel observations involving subordinate follicles ≥6 mm were (1) before deviation, diameters were similar between waves 2 and 3 in association with the similar incline in FSH surges 2 vs 3 and (2) after deviation, a greater diameter increase of subordinates occurred in RO than in LO for wave 3, but an increase did not occur for either ovary in wave 2. The characteristics of diameter deviation were profoundly different between waves 2 and 3 owing to a smaller SF2 than SF3 at deviation but similar diameter of DF2 and DF3. Copyright © 2017 Elsevier Inc. All rights reserved.
[A new kinematics method of determing elbow rotation axis and evaluation of its feasibility].
Han, W; Song, J; Wang, G Z; Ding, H; Li, G S; Gong, M Q; Jiang, X Y; Wang, M Y
2016-04-18
To study a new positioning method of elbow external fixation rotation axis, and to evaluate its feasibility. Four normal adult volunteers and six Sawbone elbow models were brought into this experiment. The kinematic data of five elbow flexion were collected respectively by optical positioning system. The rotation axes of the elbow joints were fitted by the least square method. The kinematic data and fitting results were visually displayed. According to the fitting results, the average moving planes and rotation axes were calculated. Thus, the rotation axes of new kinematic methods were obtained. By using standard clinical methods, the entrance and exit points of rotation axes of six Sawbone elbow models were located under X-ray. And The kirschner wires were placed as the representatives of rotation axes using traditional positioning methods. Then, the entrance point deviation, the exit point deviation and the angle deviation of two kinds of located rotation axes were compared. As to the four volunteers, the indicators represented circular degree and coplanarity of elbow flexion movement trajectory of each volunteer were both about 1 mm. All the distance deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 3 mm. All the angle deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 5°. As to the six Sawbone models, the average entrance point deviations, the average exit point deviations and the average angle deviations of two different rotation axes determined by two kinds of located methods were respectively 1.697 2 mm, 1.838 3 mm and 1.321 7°. All the deviations were very small. They were all in an acceptable range of clinical practice. The values that represent circular degree and coplanarity of volunteer's elbow single curvature movement trajectory are very small. The result shows that the elbow single curvature movement can be regarded as the approximate fixed axis movement. The new method can replace the traditional method in accuracy. It can make up the deficiency of the traditional fixed axis method.
Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan
2017-02-08
In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic-mechanical-piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x -axis and y -axis in-plane and z -axis magnetic fields into piezoelectric voltage outputs. Under the x -axis magnetic field (sine-wave, 100 Hz, 0.2-3.2 gauss) and the z -axis magnetic field (sine-wave, 142 Hz, 0.2-3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13-26.15 mV with 8.79 mV/gauss and 1.31-8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x -axis vibration (sine-wave, 100 Hz, 3.5 g) and z -axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on.
Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan
2017-01-01
In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic–mechanical–piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x-axis and y-axis in-plane and z-axis magnetic fields into piezoelectric voltage outputs. Under the x-axis magnetic field (sine-wave, 100 Hz, 0.2–3.2 gauss) and the z-axis magnetic field (sine-wave, 142 Hz, 0.2–3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13–26.15 mV with 8.79 mV/gauss and 1.31–8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x-axis vibration (sine-wave, 100 Hz, 3.5 g) and z-axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on. PMID:28208693
United in prevention-electrocardiographic screening for chronic obstructive pulmonary disease.
Lazovic, Biljana; Mazic, Sanja; Stajic, Zoran; Djelic, Marina; Zlatkovic-Svenda, Mirjana; Putnikovic, Biljana
2013-01-01
NONE DECLARED. P-wave abnormalities on the resting electrocardiogram have been associated with cardiovascular or pulmonary disease. So far, "Gothic" P wave and verticalization of the frontal plane axis is related to lung disease, particularly obstructive lung disease. We tested if inverted P wave in AVl as a lone criteria of P wave axis >70° could be screening tool for emphysema. 1095 routine electrocardiograms (ECGs) were reviewed which yielded 478 (82,1%) ECGs with vertical P-axis in sinus rhythm. Charts were reviewed for the diagnosis of COPD and emphysema based on medical history and pulmonary function tests. Electrocardiogram is very effective screening tool not only in cardiovascular field but in chronic obstructive pulmonary disease. The verticality of the P axis is usually immediately apparent, making electrocardiogram rapid screening test for emphysema.
Shellan, Jeffrey B
2004-08-01
The propagation of an optical beam through atmospheric turbulence produces wave-front aberrations that can reduce the power incident on an illuminated target or degrade the image of a distant target. The purpose of the work described here was to determine by computer simulation the statistical properties of the normalized on-axis intensity--defined as (D/r0)2 SR--as a function of D/r0 and the level of adaptive optics (AO) correction, where D is the telescope diameter, r0 is the Fried coherence diameter, and SR is the Strehl ratio. Plots were generated of (D/r0)2 (SR) and sigmaSR/(SR), where (SR) and sigma(SR) are the mean and standard deviation, respectively, of the SR versus D/r0 for a wide range of both modal and zonal AO correction. The level of modal correction was characterized by the number of Zernike radial modes that were corrected. The amount of zonal AO correction was quantified by the number of actuators on the deformable mirror and the resolution of the Hartmann wave-front sensor. These results can be used to determine the optimum telescope diameter, in units of r0, as a function of the AO design. For the zonal AO model, we found that maximum on-axis intensity was achieved when the telescope diameter was sized so that the actuator spacing was equal to approximately 2r0. For modal correction, we found that the optimum value of D/r0 (maximum mean on-axis intensity) was equal to 1.79Nr + 2.86, where Nr is the highest Zernike radial mode corrected.
Changing axis deviation and paroxysmal atrial flutter associated with subclinical hyperthyroidism.
Patanè, Salvatore; Marte, Filippo
2010-10-08
Subclinical hyperthyroidism is an increasingly recognized entity that is defined as a normal serum free thyroxine and free triiodothyronine levels with a thyroid-stimulating hormone level suppressed below the normal range and usually undetectable. It has been reported that subclinical hyperthyroidism is not associated with coronary heart disease or mortality from cardiovascular causes but it is sufficient to induce arrhythmias including atrial fibrillation and atrial flutter. It has also been reported that increased factor X activity in patients with subclinical hyperthyroidism represents a potential hypercoagulable state. Rarely, it has also been reported intermittent changing axis deviation during atrial fibrillation and during atrial flutter. We present a case of paroxysmal atrial flutter and changing axis deviation associated with subclinical hyperthyroidism, in a 76-year-old Italian man. Also this case focuses attention on the importance of a correct evaluation of subclinical hyperthyroidism. Copyright © 2008 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nurlybek, A. Ispulov; Abdul, Qadir; M, A. Shah; Ainur, K. Seythanova; Tanat, G. Kissikov; Erkin, Arinov
2016-03-01
The thermoelastic wave propagation in a tetragonal syngony anisotropic medium of classes 4, 4/m having heterogeneity along z axis has been investigated by employing matrizant method. This medium has an axis of second-order symmetry parallel to z axis. In the case of the fourth-order matrix coefficients, the problems of wave refraction and reflection on the interface of homogeneous anisotropic thermoelastic mediums are solved analytically.
Millimeter wave spectrum of nitromethane
NASA Astrophysics Data System (ADS)
Ilyushin, Vadim
2018-03-01
A new study of the millimeter wave spectrum of nitromethane, CH3NO2, is reported. The new measurements covering the frequency range from 49 GHz to 237 GHz have been carried out using the spectrometer in IRA NASU (Ukraine). Transitions belonging to the |m| ≤ 8 torsional states have been analyzed using the Rho-axis-method and the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. A data set consisting of 5925 microwave line frequencies and including transitions with J up to 55 was fit using a model consisting of 97 parameters, and a weighted root-mean-square deviation of 0.84 was achieved. The analysis of the spectrum covers the m torsional states lying below the lowest small amplitude vibration in nitromethane molecule, which is the NO2 in plane rock at 475 cm-1. It serves as a preparatory step in further studies of intervibrational interactions in this molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, S; Clements, C; Hyer, D
2016-06-15
Purpose: To develop and demonstrate application of a method that characterizes deviation of linac x-ray beams from the centroid of the volumetric radiation isocenter as a function of gantry, collimator, and table variables. Methods: A set of Winston-Lutz ball-bearing images was used to determine the gantry radiation isocenter as the midrange of deviation values resulting from gantry and collimator rotation. Also determined were displacement of table axis from gantry isocenter and recommended table axis adjustment. The method, previously reported, has been extended to include the effect of collimator walkout by obtaining measurements with 0 and 180 degree collimator rotation formore » each gantry angle. Twelve images were used to characterize the volumetric isocenter for the full range of available gantry, collimator, and table rotations. Results: Three Varian True Beam, two Elekta Infinity and four Versa HD linacs at five institutions were tested using identical methodology. Varian linacs exhibited substantially less deviation due to head sag than Elekta linacs (0.4 mm vs. 1.2 mm on average). One linac from each manufacturer had additional isocenter deviation of 0.3 to 0.4 mm due to jaw instability with gantry and collimator rotation. For all linacs, the achievable isocenter tolerance was dependent on adjustment of collimator position offset, transverse position steering, and alignment of the table axis with gantry isocenter, facilitated by these test results. The pattern and magnitude of table axis wobble vs. table angle was reproducible and unique to each machine. Conclusion: This new method provides a comprehensive set of isocenter deviation values including all variables. It effectively facilitates minimization of deviation between beam center and target (ball-bearing) position. This method was used to quantify the effect of jaw instability on isocenter deviation and to identify the offending jaw. The test is suitable for incorporation into a routine machine QA program. Software development was performed by Radiological Imaging Technology, Inc.« less
Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3
NASA Technical Reports Server (NTRS)
Borkowski, Kazimierz J.; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca
2014-01-01
We report measurements of the X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60 along the X-ray bright SE-NW axis from 0.84 plus or minus 0.06% yr(exp -1) to 0.52% plus or minus 0.03 yr(exp -1). This corresponds to undecelerated ages of 120-190 yr, confirming the young age of G1.9+0.3 and implying a significant deceleration of the blast wave. The synchrotron-dominated X-ray emission brightens at a rate of 1.9% plus or minus 0.4% yr(exp -1). We identify bright outer and inner rims with the blast wave and reverse shock, respectively. Sharp density gradients in either the ejecta or ambient medium are required to produce the sudden deceleration of the reverse shock or the blast wave implied by the large spread in expansion ages. The blast wave could have been decelerated recently by an encounter with a modest density discontinuity in the ambient medium, such as may be found at a wind termination shock, requiring strong mass loss in the progenitor.
NASA Astrophysics Data System (ADS)
Tsang, Stephanie Doris
The motion of the mantle beneath the tectonic plates is still unknown. Mantle shears associated with flow generate anisotropy. In order to investigate the anisotropic properties within the Earth to a range of depths within the crust and upper mantle (and perhaps beyond), long-period Rayleigh waves (periods of 51:282 ≤
Anisotropy of the innermost inner core from body wave and normal mode observations
NASA Astrophysics Data System (ADS)
Deuss, A. F.; Smink, M.; Bouwman, D.; Ploegstra, J.; van Tent, R.
2016-12-01
It has been known for a long time that the Earth's inner core is cylindrically anisotropic, with waves that travel in the direction of the Earth's rotation axis arriving several seconds before waves travelling in the equatorial direction. Recently, several studies have suggested that the Earth's rotation axis may not be the fast anisotropy direction in the innermost inner core. Beghein and Trampert (2003) found that the Earth's rotation axis is slow, with the equatorial plane being fast. Wang et al (2015) found instead that the fast symmetry axis is in the equatorial plane. Here, we use both body wave and normal mode observations to test these two different hypotheses. Similar to Wang, we correct body wave PKIKP data for anisotropy in the upper inner core, and investigate if there is any anisotropy remaining in the innermost inner core. We find that the results strongly depend on the very limited number of polar direction waves with angle less than 25 degrees. With the limited data it is difficult to distinguish between the two different hypotheses, and if any tilted anisotropy is required at all. Normal modes see inner core anisotropy with north-south symmetry axis as anomalous zonal coefficients. We will show theoretically that if the anisotropy symmetry axis is tilted, non-zonal coefficients will also become anomalous. We search consistent anomalous non-zonal coefficients for modes sensitive to the innermost inner core. If the symmetry axis is still north south, but this is now the slow direction and the equatorial plane fast, then we predict negative zonal coefficients. This is observed for some normal modes, explaining why Beghein and Trampert (2003) found this type of anisotropy in the innermost inner core.
Method for non-contact particle manipulation and control of particle spacing along an axis
Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde
2013-09-10
One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel. At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.
Vortex reconnection rate, and loop birth rate, for a random wavefield
NASA Astrophysics Data System (ADS)
Hannay, J. H.
2017-04-01
A time dependent, complex scalar wavefield in three dimensions contains curved zero lines, wave ‘vortices’, that move around. From time to time pairs of these lines contact each other and ‘reconnect’ in a well studied manner, and at other times tiny loops of new line appear from nowhere (births) and grow, or the reverse, existing loops shrink and disappear (deaths). These three types are known to be the only generic events. Here the average rate of their occurrences per unit volume is calculated exactly for a Gaussian random wavefield that has isotropic, stationary statistics, arising from a superposition of an infinity of plane waves in different directions. A simplifying ‘axis fixing’ technique is introduced to achieve this. The resulting formulas are proportional to the standard deviation of angular frequencies, and depend in a simple way on the second and fourth moments of the power spectrum of the plane waves. Reconnections turn out to be more common than births and deaths combined. As an expository preliminary, the case of two dimensions, where the vortices are points, is studied and the average rate of pair creation (and likewise destruction) per unit area is calculated.
Rayleigh wave effects in an elastic half-space.
NASA Technical Reports Server (NTRS)
Aggarwal, H. R.
1972-01-01
Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.
Blunted HPA axis response to stress is related to a persistent dysregulation profile in youth
Greaves-Lord, Kirstin; Althoff, Robert R.; Hudziak, James J.; Dieleman, Gwendolyn C.; Verhulst, Frank C.; van der Ende, Jan
2013-01-01
The Child Behavior Checklist Dysregulation Profile (DP) in youth has been shown to be a predictor of psychopathology later in life. We examined the activity of the Hypothalamic Pituitary Adrenal (HPA) axis in youth with remitted, new, persistent, and no DP. Data from 489 youth (47% boys) participating in a Dutch longitudinal general population study were included (Wave 1 mean age=11.5, Wave 2=14.2). Wave 2 diurnal cortisol patterns and levels in response to a laboratory stress paradigm were compared in youth with DP at Wave 1 only, Wave 2 only, both Waves, and neither Wave. Youth with the DP at Wave 2 only or at both time points showed blunted cortisol responses to stress relative to the other two groups. There were no group or sex differences in diurnal cortisol activity. More research is needed to determine how the association between DP symptoms and HPA axis functioning changes over time. PMID:23603315
United in Prevention–Electrocardiographic Screening for Chronic Obstructive Pulmonary Disease
Mazic, Sanja; Stajic, Zoran; Djelic, Marina; Zlatkovic-Svenda, Mirjana; Putnikovic, Biljana
2013-01-01
CONFLICT OF INTEREST: NONE DECLARED Introduction P-wave abnormalities on the resting electrocardiogram have been associated with cardiovascular or pulmonary disease. So far, “Gothic” P wave and verticalization of the frontal plane axis is related to lung disease, particularly obstructive lung disease. Aim We tested if inverted P wave in AVl as a lone criteria of P wave axis >70° could be screening tool for emphysema. Material and method 1095 routine electrocardiograms (ECGs) were reviewed which yielded 478 (82,1%) ECGs with vertical P-axis in sinus rhythm. Charts were reviewed for the diagnosis of COPD and emphysema based on medical history and pulmonary function tests. Conclusion Electrocardiogram is very effective screening tool not only in cardiovascular field but in chronic obstructive pulmonary disease. The verticality of the P axis is usually immediately apparent, making electrocardiogram rapid screening test for emphysema. PMID:24058253
Implementation of small field radiotherapy dosimetry for spinal metastase case
NASA Astrophysics Data System (ADS)
Rofikoh, Wibowo, W. E.; Pawiro, S. A.
2017-07-01
The main objective of this study was to know dose profile of small field radiotherapy in the spinal metastase case with source axis distance (SAD) techniques. In addition, we evaluated and compared the dose planning of stereotactic body radiation therapy (SBRT) and conventional techniques to measurements with Exradin A16 and Gafchromic EBT3 film dosimeters. The results showed that film EBT3 had a highest precision and accuracy with the average of the standard deviation of ±1.7 and maximum discrepancy of 2.6 %. In addition, the average value of Full Wave Half Maximum (FWHM) and its largest deviation in small field size of 0.8 x 0.8 cm2 are 0.82 cm and 16.3 % respectively, while it was found around 2.36 cm and 3 % for the field size of 2.4 x 2.4 cm2. The comparison between penumbra width and the collimation was around of 37.1 % for the field size of 0.8 x 0.8 cm2, while it was found of 12.4 % for the field size of 2.4 x 2.4 cm2.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1978-01-01
Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.
Laser heterodyne surface profiler
Sommargren, G.E.
1980-06-16
A method and apparatus are disclosed for testing the deviation of the face of an object from a flat smooth surface using a beam of coherent light of two plane-polarized components, one of a frequency constantly greater than the other by a fixed amount to produce a difference frequency with a constant phase to be used as a reference, and splitting the beam into its two components. The separate components are directed onto spaced apart points on the face of the object to be tested for smoothness while the face of the object is rotated on an axis normal to one point, thereby passing the other component over a circular track on the face of the object. The two components are recombined after reflection to produce a reflected frequency difference of a phase proportional to the difference in path length of one component reflected from one point to the other component reflected from the other point. The phase of the reflected frequency difference is compared with the reference phase to produce a signal proportional to the deviation of the height of the surface along the circular track with respect to the fixed point at the center, thereby to produce a signal that is plotted as a profile of the surface along the circular track. The phase detector includes a quarter-wave plate to convert the components of the reference beam into circularly polarized components, a half-wave plate to shift the phase of the circularly polarized components, and a polarizer to produce a signal of a shifted phase for comparison with the phase of the frequency difference of the reflected components detected through a second polarizer. Rotation of the half-wave plate can be used for phase adjustment over a full 360/sup 0/ range.
Fallavollita, Pascal; Brand, Alexander; Wang, Lejing; Euler, Ekkehard; Thaller, Peter; Navab, Nassir; Weidert, Simon
2016-11-01
Determination of lower limb alignment is a prerequisite for successful orthopedic surgical treatment. Traditional methods include the electrocautery cord, alignment rod, or axis board which rely solely on C-arm fluoroscopy navigation and are radiation intensive. To assess a new augmented reality technology in determining lower limb alignment. A camera-augmented mobile C-arm (CamC) technology was used to create a panorama image consisting of hip, knee, and ankle X-rays. Twenty-five human cadaver legs were used for validation with random varus or valgus deformations. Five clinicians performed experiments that consisted in achieving acceptable mechanical axis deviation. The applicability of the CamC technology was assessed with direct comparison to ground-truth CT. A t test, Pearson's correlation, and ANOVA were used to determine statistical significance. The value of Pearson's correlation coefficient R was 0.979 which demonstrates a strong positive correlation between the CamC and ground-truth CT data. The analysis of variance produced a p value equal to 0.911 signifying that clinician expertise differences were not significant with regard to the type of system used to assess mechanical axis deviation. All described measurements demonstrated valid measurement of lower limb alignment. With minimal effort, clinicians required only 3 X-ray image acquisitions using the augmented reality technology to achieve reliable mechanical axis deviation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moseley, D; Dave, M
Purpose: Use Varian TrueBeam Developer mode to quantify the mechanical limits of the couch and to simulate 4D respiratory motion. Methods: An in-house MATLAB based GUI was created to make the BEAM XML files. The couch was moved in a triangular wave in the S/I direction with varying amplitudes (1mm, 5mm, 10mm, and 50mm) and periods (3s, 6s, and 9s). The periods were determined by specifying the speed. The theoretical positions were compared to the values recorded by the machine at 50 Hz. HD videos were taken for certain tests as external validation. 4D Respiratory motion was simulated by anmore » A/P MV beam being delivered while the couch moved in an elliptical manner. The ellipse had a major axis of 2 cm (S/I) and a minor axis of 1 cm (A/P). Results: The path planned by the TrueBeam deviated from the theoretical triangular form as the speed increased. Deviations were noticed starting at a speed of 3.33 cm/s (50mm amplitude, 6s period). The greatest deviation occurred in the 50mm- 3s sequence with a correlation value of −0.13 and a 27% time increase; the plan essentially became out of phase. Excluding these two, the plans had correlation values of 0.99. The elliptical sequence effectively simulated a respiratory pattern with a period of 6s. The period could be controlled by changing the speeds or the dose rate. Conclusion: The work first shows the quantification of the mechanical limits of the couch and the speeds at which the proposed plans begin to deviate. These limits must be kept in mind when programming other couch sequences. The methodology can be used to quantify the limits of other axes. Furthermore, the work shows the possibility of creating 4D respiratory simulations without using specialized phantoms or motion-platforms. This can be further developed to program patient-specific breathing patterns.« less
Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves
NASA Astrophysics Data System (ADS)
Heydari-Fard, M.; Hasani, S. N.
We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.
Holographic measurement of wave propagation in axi-symmetric shells
NASA Technical Reports Server (NTRS)
Evensen, D. A.; Aprahamian, R.; Jacoby, J. L.
1972-01-01
The report deals with the use of pulsed, double-exposure holographic interferometry to record the propagation of transverse waves in thin-walled axi-symmetric shells. The report is subdivided into sections dealing with: (1) wave propagation in circular cylindrical shells, (2) wave propagation past cut-outs and stiffeners, and (3) wave propagation in conical shells. Several interferograms are presented herein which show the waves reflecting from the shell boundaries, from cut-outs, and from stiffening rings. The initial response of the shell was nearly axi-symmetric in all cases, but nonsymmetric modes soon appeared in the radial response. This result suggests that the axi-symmetric response of the shell may be dynamically unstable, and thus may preferentially excite certain circumferential harmonics through parametric excitation. Attempts were made throughout to correlate the experimental data with analysis. For the most part, good agreement between theory and experiment was obtained. Occasional differences were attributed primarily to simplifying assumptions used in the analysis. From the standpoint of engineering applications, it is clear that pulsed laser holography can be used to obtain quantitative engineering data. Areas of dynamic stress concentration, stress concentration factors, local anomalies, etc., can be readily determined by holography.
True-triaxial experimental seismic velocities linked to an in situ 3D seismic velocity structure
NASA Astrophysics Data System (ADS)
Tibbo, M.; Young, R. P.
2017-12-01
Upscaling from laboratory seismic velocities to in situ field seismic velocities is a fundamental problem in rock physics. This study presents a unique situation where a 3D velocity structure of comparable frequency ranges is available both in situ and experimentally. The in situ data comes from the Underground Research Laboratory (URL) located in Manitoba, Canada. The velocity survey and oriented, cubic rock sample, are from the 420m level of the mine, where the geology is a homogeneous and isotropic granite. The triaxial in situ stress field at this level was determined and the Mine-by tunnel was excavated horizontally to maximize borehole break out. Ultrasonic velocity measurements for P-, S1-,and S2-waves were done in the tunnel sidewall, ceiling and far-field rock mass.The geophysical imaging cell (GIC) used in this study allows for true triaxial stress (σ1 > σ2 > σ3). Velocity surveys for P-, S1-, and S2-wave can be acquired along all three axes, and therefore the effects of σ1, σ2, σ3 on the velocity-stress relationship is obtained along all 3 axes. The cubic (80 mm) granite sample was prepared oriented to the in situ principle stress axis in the field. The stress path of the sample extraction from in situ stress was modeled in FLAC 3D (by Itasca inc ), and then reapplied in the GIC to obtain the laboratory velocities at in situ stress. Both laboratory and field velocities conclude the same maximum velocity axis, within error, to be along σ2 at 5880±60 m/s for P-wave. This deviation from the expected fast axis being σ1, is believed to be caused by an aligned microcrack fabric. The theory of acoustoelasticity, the dependence of acoustic wave velocity on stresses in the propagating isotropic medium, is applied to the borehole hoop and radial stresses produced by the Mine-by tunnel. The acoustoelastic effect involves determining the linear (second-order) and nonlinear (third-order) elastic constants, which are derived from the velocity-stress slopes obtained from both uniaxial and hydrostatic stress tests performed on the granite. The acoustoelastic model produces the in situ far field P-wave velocity, as well as similar near borehole field velocities. In summary, this study compares a 3D field and laboratory velocity structure, and shows the potential of the theory of acoustoelasticity for velocity-stress inversion.
NASA Astrophysics Data System (ADS)
Zou, Li; Tian, Shou-Fu; Feng, Lian-Li
2017-12-01
In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.
The mare: a 1000-pound guinea pig for study of the ovulatory follicular wave in women.
Ginther, O J
2012-03-15
The mare is a good comparative model for study of ovarian follicles in women, owing to striking similarities in follicular waves and the mechanism for selection of a dominant follicle. Commonality in follicle dynamics between mares and women include: (1) a ratio of 2.2:1 (mare:woman) in diameter of the largest follicle at wave emergence when the wave-stimulating FSH surge reaches maximum, in diameter increase of the two largest follicles between emergence and the beginning of deviation between the future dominant and subordinate follicles, in diameter of each of the two largest follicles at the beginning of deviation, and in maximum diameter of the preovulatory follicle; (2) emergence of the future ovulatory follicle before the largest subordinate follicle; (3) a mean interval of 1 day between emergence of individual follicles of the wave; (4) percentage increase in diameter of follicles for the 3 days before deviation; (5) deviation 3 or 4 days after emergence; (6) 25% incidence of a major anovulatory follicular wave emerging before the ovulatory wave; (7) 40% incidence of a predeviation follicle preceding the ovulatory wave; (8) small but significant increase in estradiol and LH before deviation; (9) cooperative roles of FSH and insulin-like growth factor 1 and its proteases in the deviation process; (10) age-related effects on the follicles and oocytes; (11) approximate 37-hour interval between administration of hCG and ovulation; and (12) similar gray-scale and color-Doppler ultrasound changes in the preovulatory follicle. In conclusion, the mare may be the premier nonprimate model for study of follicle dynamics in women. Copyright © 2012 Elsevier Inc. All rights reserved.
Experiments on Alfv'en waves in high beta plasmas
NASA Astrophysics Data System (ADS)
Gekelman, Walter; Pribyl, Patrick; Cooper, Chris; Vincena, Stephen
2008-11-01
The propagation of Alfv'en waves in high beta plasmas is of great interest in solar wind studies as well as in astrophysical plasmas. Alfv'en wave propagation in a high beta plasma is studied on the axis of a toroidal device at UCLA. The vacuum vessel is 30 meters in circumference, 2 meters wide and 3 meters tall. The plasma has a cross sectional area of 20 cm^2 and can be as long as 120 m which is hundreds of parallel Alfv'en wavelengths. The waves are launched using two orthogonal 5-turn , 5.7 cm diameter loops. The AC currents (10 kHz < f < 250 kHz) to the loops are as high as 2 kA p-p, producing fields of 1 kG on the axis of the antenna. The antenna coils are independently driven such that waves with arbitrary polarization can be launched. Movable three axis magnetic pickup loops detect the wave and are used to construct field maps in the machine. Wave propagation results as a function of plasma beta and input wave energy will be presented.
Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H
2017-12-12
A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.
Transverse Oscillations in Slender Ca ii H Fibrils Observed with Sunrise/SuFI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafarzadeh, S.; Solanki, S. K.; Gafeira, R.
We present observations of transverse oscillations in slender Ca ii H fibrils (SCFs) in the lower solar chromosphere. We use a 1 hr long time series of high- (spatial and temporal-) resolution seeing-free observations in a 1.1 Å wide passband covering the line core of Ca ii H 3969 Å from the second flight of the Sunrise balloon-borne solar observatory. The entire field of view, spanning the polarity inversion line of an active region close to the solar disk center, is covered with bright, thin, and very dynamic fine structures. Our analysis reveals the prevalence of transverse waves in SCFs with median amplitudes andmore » periods on the order of 2.4 ± 0.8 km s{sup −1} and 83 ± 29 s, respectively (with standard deviations given as uncertainties). We find that the transverse waves often propagate along (parts of) the SCFs with median phase speeds of 9 ± 14 km s{sup −1}. While the propagation is only in one direction along the axis in some of the SCFs, propagating waves in both directions, as well as standing waves are also observed. The transverse oscillations are likely Alfvénic and are thought to be representative of magnetohydrodynamic kink waves. The wave propagation suggests that the rapid high-frequency transverse waves, often produced in the lower photosphere, can penetrate into the chromosphere with an estimated energy flux of ≈15 kW m{sup −2}. Characteristics of these waves differ from those reported for other fibrillar structures, which, however, were observed mainly in the upper solar chromosphere.« less
Photoacoustic shock wave emission and cavitation from structured optical fiber tips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadzadeh, M.; Gonzalez-Avila, S. R.; Ohl, C. D., E-mail: cdohl@ntu.edu.sg
Photoacoustic waves generated at the tip of an optical fiber consist of a compressive shock wave followed by tensile diffraction waves. These tensile waves overlap along the fiber axis and form a cloud of cavitation bubbles. We demonstrate that shaping the fiber tip through micromachining alters the number and direction of the emitted waves and cavitation clouds. Shock wave emission and cavitation patterns from five distinctively shaped fiber tips have been studied experimentally and compared to a linear wave propagation model. In particular, multiple shock wave emission and generation of strong tension away from the fiber axis have been realizedmore » using modified fiber tips. These altered waveforms may be applied for novel microsurgery protocols, such as fiber-based histotripsy, by utilizing bubble-shock wave interaction.« less
Clement, Marta; Olivares, Jimena; Capilla, Jose; Sangrador, Jesús; Iborra, Enrique
2012-01-01
We investigate the excitation and propagation of acoustic waves in polycrystalline aluminum nitride films along the directions parallel and normal to the c-axis. Longitudinal and transverse propagations are assessed through the frequency response of surface acoustic wave and bulk acoustic wave devices fabricated on films of different crystal qualities. The crystalline properties significantly affect the electromechanical coupling factors and acoustic properties of the piezoelectric layers. The presence of misoriented grains produces an overall decrease of the piezoelectric activity, degrading more severely the excitation and propagation of waves traveling transversally to the c-axis. It is suggested that the presence of such crystalline defects in c-axis-oriented films reduces the mechanical coherence between grains and hinders the transverse deformation of the film when the electric field is applied parallel to the surface. © 2012 IEEE
Pure quasi-P wave equation and numerical solution in 3D TTI media
NASA Astrophysics Data System (ADS)
Zhang, Jian-Min; He, Bing-Shou; Tang, Huai-Gu
2017-03-01
Based on the pure quasi-P wave equation in transverse isotropic media with a vertical symmetry axis (VTI media), a quasi-P wave equation is obtained in transverse isotropic media with a tilted symmetry axis (TTI media). This is achieved using projection transformation, which rotates the direction vector in the coordinate system of observation toward the direction vector for the coordinate system in which the z-component is parallel to the symmetry axis of the TTI media. The equation has a simple form, is easily calculated, is not influenced by the pseudo-shear wave, and can be calculated reliably when δ is greater than ɛ. The finite difference method is used to solve the equation. In addition, a perfectly matched layer (PML) absorbing boundary condition is obtained for the equation. Theoretical analysis and numerical simulation results with forward modeling prove that the equation can accurately simulate a quasi-P wave in TTI medium.
NASA Astrophysics Data System (ADS)
Pengvanich, Phongphaeth
In this thesis, several contemporary issues on coherent radiation sources are examined. They include the fast startup and the injection locking of microwave magnetrons, and the effects of random manufacturing errors on phase and small signal gain of terahertz traveling wave amplifiers. In response to the rapid startup and low noise magnetron experiments performed at the University of Michigan that employed periodic azimuthal perturbations in the axial magnetic field, a systematic study of single particle orbits is performed for a crossed electric and periodic magnetic field. A parametric instability in the orbits, which brings a fraction of the electrons from the cathode toward the anode, is discovered. This offers an explanation of the rapid startup observed in the experiments. A phase-locking model has been constructed from circuit theory to qualitatively explain various regimes observed in kilowatt magnetron injection-locking experiments, which were performed at the University of Michigan. These experiments utilize two continuous-wave magnetrons; one functions as an oscillator and the other as a driver. Time and frequency domain solutions are developed from the model, allowing investigations into growth, saturation, and frequency response of the output. The model qualitatively recovers many of the phase-locking frequency characteristics observed in the experiments. Effects of frequency chirp and frequency perturbation on the phase and lockability have also been quantified. Development of traveling wave amplifier operating at terahertz is a subject of current interest. The small circuit size has prompted a statistical analysis of the effects of random fabrication errors on phase and small signal gain of these amplifiers. The small signal theory is treated with a continuum model in which the electron beam is monoenergetic. Circuit perturbations that vary randomly along the beam axis are introduced through the dimensionless Pierce parameters describing the beam-wave velocity mismatch (b), the gain parameter (C), and the cold tube circuit loss ( d). Our study shows that perturbation in b dominates the other two in terms of power gain and phase shift. Extensive data show that standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C and d.
Wide-field-of-view millimeter-wave telescope design with ultra-low cross-polarization
NASA Astrophysics Data System (ADS)
Bernacki, Bruce E.; Kelly, James F.; Sheen, David; Hatchell, Brian; Valdez, Patrick; Tedeschi, Jonathan; Hall, Thomas; McMakin, Douglas
2012-06-01
As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degrees of freedom that offer larger fields of view than possible with single-reflector designs. Dragone's graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone's geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone's design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low cross-polarization and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, S.; Adenwalla, S., E-mail: sadenwalla1@unl.edu; Borchers, J. A.
2015-02-14
A high frequency (88 MHz) traveling strain wave on a piezoelectric substrate is shown to change the magnetization direction in 40 μm wide Co bars with an aspect ratio of 10{sup 3}. The rapidly alternating strain wave rotates the magnetization away from the long axis into the short axis direction, via magnetoelastic coupling. Strain-induced magnetization changes have previously been demonstrated in ferroelectric/ferromagnetic heterostructures, with excellent fidelity between the ferromagnet and the ferroelectric domains, but these experiments were limited to essentially dc frequencies. Both magneto-optical Kerr effect and polarized neutron reflectivity confirm that the traveling strain wave does rotate the magnetization awaymore » from the long axis direction and both yield quantitatively similar values for the rotated magnetization. An investigation of the behavior of short axis magnetization with increasing strain wave amplitude on a series of samples with variable edge roughness suggests that the magnetization reorientation that is seen proceeds solely via coherent rotation. Polarized neutron reflectivity data provide direct experimental evidence for this model. This is consistent with expectations that domain wall motion cannot track the rapidly varying strain.« less
Accuracy of various impression materials and methods for two implant systems: An effect size study.
Schmidt, Alexander; Häussling, Teresa; Rehmann, Peter; Schaaf, Heidrun; Wöstmann, Bernd
2018-04-01
An accurate impression is required for implant treatment. The aim of this in-vitro study was to determine the effect size of the impression material/method, implant system and implant angulation on impression transfer precision. An upper jaw model with three BEGO and three Straumann implants (angulations 0°, 15°, 20°) in the left and right maxilla was used as a reference model. One polyether (Impregum Penta) and two polyvinyl siloxanes (Flexitime Monophase/Aquasil Ultra Monophase) were examined with two impression techniques (open and closed tray). A total of 60 impressions were made. A coordinate measurement machine was used to measure the target variables for 3D-shift, implant axis inclination and implant axis rotation. All the data were subjected to a four-way ANOVA. The effect size (partial eta-squared [η 2 P ]) was reported. The impression material had a significant influence on the 3D shift and the implant axis inclination deviation (p-values=.000), and both factors had very large effect sizes (3D-shift [η 2 P ]=.599; implant axis inclination [η 2 P ]=.298). Impressions made with polyvinyl siloxane exhibited the highest transfer precision. When the angulation of the implants was larger, more deviations occurred for the implant axis rotational deviation. The implant systems and impression methods showed partially significant variations (p-values=.001-.639) but only very small effect sizes (η 2 P =.001-.031). The impression material had the greatest effect size on accuracy in terms of the 3D shift and the implant axis inclination. For multiunit restorations with disparallel implants, polyvinyl siloxane materials should be considered. In addition, the effect size of a multivariate investigation should be reported. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Cosmological gravitational waves
NASA Technical Reports Server (NTRS)
Linder, Eric V.
1988-01-01
A cosmological background of gravitational waves would alter the propagation of radiation, inducing redshift fluctuations, apparent source position deflections, and luminosity variations. By comparing these astrophysical effects with observations, it is possible to deduce upper limits on the energy density present in gravitational waves. Emphasis is placed on microwave background anisotropy from the redshift deviations and galaxy clustering correlation functions from the angular deviations. Many of the gravitational wave effects are shown to be generalizations of the gravitational lensing formalism.
Borcherdt, Roger D.; Wennerberg, Leif
1985-01-01
The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guanglong; Xu, Yi; Cao, Yunjiu
The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized d{sub eq} inmore » scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.« less
Tracing the phase of focused broadband laser pulses
NASA Astrophysics Data System (ADS)
Hoff, Dominik; Krüger, Michael; Maisenbacher, Lothar; Sayler, A. M.; Paulus, Gerhard G.; Hommelhoff, Peter
2017-10-01
Precise knowledge of the behaviour of the phase of light in a focused beam is fundamental to understanding and controlling laser-driven processes. More than a hundred years ago, an axial phase anomaly for focused monochromatic light beams was discovered and is now commonly known as the Gouy phase. Recent theoretical work has brought into question the validity of applying this monochromatic phase formulation to the broadband pulses becoming ubiquitous today. Based on electron backscattering at sharp nanometre-scale metal tips, a method is available to measure light fields with sub-wavelength spatial resolution and sub-optical-cycle time resolution. Here we report such a direct, three-dimensional measurement of the spatial dependence of the optical phase of a focused, 4-fs, near-infrared pulsed laser beam. The observed optical phase deviates substantially from the monochromatic Gouy phase--exhibiting a much more complex spatial dependence, both along the propagation axis and in the radial direction. In our measurements, these significant deviations are the rule and not the exception for focused, broadband laser pulses. Therefore, we expect wide ramifications for all broadband laser-matter interactions, such as in high-harmonic and attosecond pulse generation, femtochemistry, ophthalmological optical coherence tomography and light-wave electronics.
High-J rotational spectrum of toluene in |m| ⩽ 3 torsional states
NASA Astrophysics Data System (ADS)
Ilyushin, Vadim V.; Alekseev, Eugene A.; Kisiel, Zbigniew; Pszczółkowski, Lech
2017-09-01
The study of the rotational spectrum of toluene (C6H5CH3) is considerably extended to include transitions in |m| ⩽ 3 torsional states up to the onset of the submillimeter wave region. New data involving torsion-rotation transitions up to 336 GHz were combined with previously published measurements and fitted using the rho-axis-method torsion-rotation Hamiltonian. The final fit used 50 parameters to give an overall weighted root-mean-square deviation of 0.69 for a dataset consisting of 8924 transitions with J up to 94 and Ka up to 50. The new analysis allowed us to resolve all problems encountered previously for m = 0 transitions beyond a certain combination of quantum numbers J and Ka when many lines of appreciable intensity and unambiguous assignment deviated from the distorted asymmetric rotor treatment. Those discrepancies are now identified to result from m = 0 ↔ m = 3 and m = 0 ↔ m = -3 resonances, which have been successfully encompassed by the current fit. At the same time an analogous problem was discovered and fitted for m = 2 transitions, which were found to be affected by many m = 1 ↔ m = 2 resonances.
Wide-Field-of-View Millimeter-Wave Telescope Design with Ultra-Low Cross-Polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.
2012-05-01
As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since most millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degreesmore » of freedom that offer larger fields of view than possible with single-reflector designs. Dragone’s graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone’s geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone’s design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low polarization crosstalk and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.« less
Electrocardiogram of Clinically Healthy Mithun (Bos frontalis): Variation among Strains
Sanyal, Sagar; Das, Pradip Kumar; Ghosh, Probal Ranjan; Das, Kinsuk; Vupru, Kezha V.; Rajkhowa, Chandan; Mondal, Mohan
2010-01-01
A study was conducted to establish the normal electrocardiogram in four different genetic strains of mithun (Bos frontalis). Electrocardiography, cardiac electrical axis, heart rate, rectal temperature and respiration rate were recorded in a total of 32 adult male mithun of four strains (n = 8 each). It was found that the respiration and heart rates were higher (P < .05) in Manipur than other three strains. Amplitude (P < .05) and duration of P wave and QRS complex differed (P < .01) among the strains. Mizoram strain had the highest amplitude and duration of P wave and QRS complex. On the other hand, higher (P < .05) amplitude and duration of T wave were recorded in Arunachalee and Mizoram strains. The mean electrical axis of QRS complex that were recorded for Arunachalee and Manipur strains were similar to that reported for other bovine species; whereas the electrical axis of QRS for Nagamese and Mizoram strains were more close to feline and caprine species, respectively. In conclusion, electrocardiogram of mithun revealed that the amplitude and duration of P wave, QRS complex and T wave were different among four different genetic strains of mithun and the electrical axis of QRS complex for Nagamese and Mizoram mithuns are dissimilar to bovine species. PMID:20886013
Neutral axis determination of full size concrete structures using coda wave measurements
NASA Astrophysics Data System (ADS)
Jiang, Hanwan; Zhan, Hanyu; Zhuang, Chenxu; Jiang, Ruinian
2018-03-01
Coda waves experiencing multiple scattering behaviors are sensitive to weak changes occurring in media. In this paper, a typical four-point bending test with varied external loads is conducted on a 30-meter T-beam that is removed from a bridge after being in service for 15 years, and the coda wave signals are collected with a couple of sources-receivers pairs. Then the observed coda waves at different loads are compared to calculate their relative velocity variations, which are utilized as the parameter to distinct the compression and tensile zones as well as determine the neutral axis position. Without any prior knowledge of the concrete beam, the estimated axis position agrees well with the associated strain gage measurement results, and the zones bearing stress and tension behaviors are indicated. The presented work offers significant potential for Non-Destructive Testing and Evaluation of full-size concrete structures in future work.
ECG feature extraction and disease diagnosis.
Bhyri, Channappa; Hamde, S T; Waghmare, L M
2011-01-01
An important factor to consider when using findings on electrocardiograms for clinical decision making is that the waveforms are influenced by normal physiological and technical factors as well as by pathophysiological factors. In this paper, we propose a method for the feature extraction and heart disease diagnosis using wavelet transform (WT) technique and LabVIEW (Laboratory Virtual Instrument Engineering workbench). LabVIEW signal processing tools are used to denoise the signal before applying the developed algorithm for feature extraction. First, we have developed an algorithm for R-peak detection using Haar wavelet. After 4th level decomposition of the ECG signal, the detailed coefficient is squared and the standard deviation of the squared detailed coefficient is used as the threshold for detection of R-peaks. Second, we have used daubechies (db6) wavelet for the low resolution signals. After cross checking the R-peak location in 4th level, low resolution signal of daubechies wavelet P waves and T waves are detected. Other features of diagnostic importance, mainly heart rate, R-wave width, Q-wave width, T-wave amplitude and duration, ST segment and frontal plane axis are also extracted and scoring pattern is applied for the purpose of heart disease diagnosis. In this study, detection of tachycardia, bradycardia, left ventricular hypertrophy, right ventricular hypertrophy and myocardial infarction have been considered. In this work, CSE ECG data base which contains 5000 samples recorded at a sampling frequency of 500 Hz and the ECG data base created by the S.G.G.S. Institute of Engineering and Technology, Nanded (Maharashtra) have been used.
Investigating Holey Metamaterial Effects in Terahertz Traveling-Wave Tube Amplifier
NASA Technical Reports Server (NTRS)
Starinshak, David P.; Wilson, Jeffrey D.; Chevalier, Christine T.
2007-01-01
Applying subwavelength holes to a novel traveling-wave tube amplifier is investigated. Plans to increase the on-axis impedance are discussed as well as optimization schemes to achieve this goal. Results suggest that an array of holes alone cannot significantly change the on-axis electric field in the vicinity of the electron beam. However, models of a beam tunnel with corrugated walls show promise in maximizing the amplifier s on-axis impedance. Additional work is required on the subject, and suggestions are made to determine research directions.
Oda, Sam Goldy Shoyama; Yamato, Ronaldo Jun; Fedullo, José Daniel Luzes; Leomil Neto, Moacir; Larsson, Maria Helena Matiko Akao
2009-09-01
Thirty-three captive leopard cats, Leopardus tigrinus, were anesthetized with xylazine (1-2 mg/kg) and ketamine (10 mg/kg), and electrocardiograph (ECG) tests were recorded in all leads with 1 cm = 1 mV sensibility and 25 mm/sec speed repeating DII lead at 50 mm/sec speed with the same sensibility. Results expressed by mean and standard deviation were: heart rate (HR) = 107 +/- 17 (bpm); P-wave = 0.048 +/- 0.072 (s) x 0.128 +/- 0.048 (mV); PR interval = 0.101 +/- 0.081 (s); QRS compound = 0.053 +/- 0.012 (s) x 1.446 +/- 0.602 (mV); QT interval = 0.231 +/- 0.028 (s); R-wave (CV6LL) = 1.574 +/- 0.527 (mV); R-wave (CV6LU) = 1.583 +/- 0.818 (mV); heart rhythm: normal sinus rhythm (15.2%), sinus rhythm with wandering pacemaker (WPM) (60.6%), sinus arrhythmia with WPM (24.2%); electric axis: between +30 degrees and +60 degrees (6.1%), +60 (6.1%), between +60 degrees and +90 degrees (57.6%), +90 degrees (9%), between +90 degrees and +120 degrees (21.2%); ST segment: normal (75.7%), elevation (18.2%), depression (6.1%); T-wave polarity (DII): positive (100%); T-wave (V10): absent (6.1%), negative (63.6%), positive (18.2%), and with interference (12.1%). Through ECG data comparison with other species, unique features of Leopardus tigrinus' (leopard cat) ECG parameters were detected. Some of the study animals presented with an R-wave amplitude that was indicative of left ventricle overload according to patterns for normal domestic cats (Felis cati). Echocardiographic exams revealed normal heart cavities' function and morphology. The aim of this study was to establish some electrocardiographic parameters of captive L. tigrinus.
NASA Astrophysics Data System (ADS)
Thomson, Richard E.; Davis, Earl E.
2017-07-01
Sequences of correlated seafloor temperature, current velocity, and acoustic backscatter events recorded at Ocean Drilling Program (ODP) sites at 4300 m depth in the Middle America Trench have been inferred to result from tidally induced turbidity currents generated in the vicinity of the 3300 m deep sill at the southern end of the trench. New data from the borehole observatories extend the temperature records to 11 years (November 2002 to December 2013) and confirm the highly episodic nature of the events. We present satellite altimetry data and ocean circulation model results to show that event timing is correlated with intraseasonal Kelvin wave motions in the equatorial Pacific. The observed temperature events had a mean (±1 standard deviation) occurrence interval of 61 (±24) days, which spans the periods of the first two baroclinic modes. Lag times between peak bottom water temperatures at the ODP sites and the passage of eastward-propagating Kelvin wave crests at locations in the eastern equatorial Pacific are consistent with the time for mode-1 waves to propagate to the southern end of the trench at a mean phase speed of 2.0 m s-1. Findings indicate that Kelvin wave currents augment tidal motions in the vicinity of the sill, triggering turbidity currents that travel northwestward along the trench axis at mean speeds of ˜0.1 m s-1. We conclude that mode-1 (or, possibly, mixed mode-1 and mode-2) baroclinic Kelvin waves generated by large-scale atmospheric processes in the western tropical Pacific lead to heat and mass transport deep within Middle America Trench in the eastern tropical Pacific.
Internal fixators: a safe option for managing distal femur fractures?
Batista, Bruno Bellaguarda; Salim, Rodrigo; Paccola, Cleber Antonio Jansen; Kfuri, Mauricio
2014-01-01
OBJECTIVE: Evaluate safety and reliability of internal fixator for the treatment of intra-articular and periarticular distal femur fractures. METHODS: Retrospective data evaluation of 28 patients with 29 fractures fixed with internal fixator was performed. There was a predominance of male patients (53.5%), with 52% of open wound fractures, 76% of AO33C type fractures, and a mean follow up of 21.3 months. Time of fracture healing, mechanical axis deviation, rate of infection and postoperative complications were registered. RESULTS: Healing rate was 93% in this sample, with an average time of 5.5 months. Twenty-seven percent of patients ended up with mechanical axis deviation, mostly resulting from poor primary intra-operative reduction. There were two cases of implant loosening; two implant breakage, and three patients presented stiff knee. No case of infection was observed. Healing rate in this study was comparable with current literature; there was a high degree of angular deviation, especially in the coronal plane. CONCLUSION: Internal fixators are a breakthrough in the treatment of knee fractures, but its use does not preclude application of principles of anatomical articular reduction and mechanical axis restoration. Level of Evidence II, Retrospective Study. PMID:25061424
Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field
Fishman, Randy S.
2018-01-03
Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less
Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field
NASA Astrophysics Data System (ADS)
Fishman, Randy S.
2018-01-01
Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.
Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishman, Randy S.
Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less
Sound pressure distribution within natural and artificial human ear canals: forward stimulation.
Ravicz, Michael E; Tao Cheng, Jeffrey; Rosowski, John J
2014-12-01
This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5-2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11-16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC.
Prater, Ronald; Moeller, Charles P.; Pinsker, Robert I.; ...
2014-06-26
Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called “helicons” or “whistlers”) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behavior of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly toward the plasma center. The high frequency also contributes to strong damping. Modeling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta ismore » above about 1.8%. Detailed analysis of ray behavior shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behavior in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n||, so wave accessibility issues can be reduced. Finally, use of a traveling wave antenna provides a very narrow n|| spectrum, which also helps avoid accessibility problems.« less
Upgraded FAA Airfield Capacity Model. Volume 2. Technical Description of Revisions
1981-02-01
the threshold t k a the time at which departure k is released FIGURE 3-1 TIME AXIS DIAGRAM OF SINGLE RUNWAY OPERATIONS 3-2 J"- SIGMAR the standard...standard deviation of the interarrival time. SIGMAR - the standard deviation of the arrival runway occupancy time. A-5 SINGLE - program subroutine for
NASA Astrophysics Data System (ADS)
Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Shipman, Steven T.; Mae, Yoshiaki; Hirose, Kazue; Hatanaka, Shota; Kobayashi, Kaori
2014-05-01
New and previous spectroscopic data were recorded for the two-top molecule methyl acetate using five spectrometers in four different labs: a room temperature chirped-pulse Fourier transform microwave (FTMW) spectrometer in the frequency range from 8.7 to 26.5 GHz, two molecular beam FTMW spectrometers (2-40 GHz), a free jet absorption Stark-modulated spectrometer (60-78 GHz), and a room temperature millimeter-wave spectrometer (44-68 GHz). Approximately 800 new lines with J up to 40 and K up to 16 were assigned. In total, 1603 lines were fitted with 34 parameters using an internal rotation Hamiltonian in the Rho Axis Method (RAM) and the program BELGI-Cs-2tops to standard deviations close to the experimental uncertainties. More precise determinations of the top-top interaction and the J, K dependent parameters were carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, Justin; Kennedy, M. J.; Selvidge, Jennifer
High performance III-V lasers at datacom and telecom wavelengths on on-axis (001) Si are needed for scalable datacenter interconnect technologies. We demonstrate electrically injected quantum dot lasers grown on on-axis (001) Si patterned with {111} v-grooves lying in the [110] direction. No additional Ge buffers or substrate miscut was used. The active region consists of five InAs/InGaAs dot-in-a-well layers. Here, we achieve continuous wave lasing with thresholds as low as 36 mA and operation up to 80°C.
Norman, Justin; Kennedy, M. J.; Selvidge, Jennifer; ...
2017-02-14
High performance III-V lasers at datacom and telecom wavelengths on on-axis (001) Si are needed for scalable datacenter interconnect technologies. We demonstrate electrically injected quantum dot lasers grown on on-axis (001) Si patterned with {111} v-grooves lying in the [110] direction. No additional Ge buffers or substrate miscut was used. The active region consists of five InAs/InGaAs dot-in-a-well layers. Here, we achieve continuous wave lasing with thresholds as low as 36 mA and operation up to 80°C.
Research on the unsteady hydrodynamic characteristics of vertical axis tidal turbine
NASA Astrophysics Data System (ADS)
Zhang, Xue-wei; Zhang, Liang; Wang, Feng; Zhao, Dong-ya; Pang, Cheng-yan
2014-03-01
The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.
NASA Astrophysics Data System (ADS)
Lebedev, M.; Collet, O.; Bona, A.; Gurevich, B.
2015-12-01
Estimations of hydrocarbon and water resources as well as reservoir management during production are the main challenges facing the resource recovery industry nowadays. The recently discovered reservoirs are not only deep but they are also located in complicated geological formations. Hence, the effect of anisotropy on reservoir imaging becomes significant. Shear wave (S-wave) splitting has been observed in the field and laboratory experiments for decades. Despite the fact that S-wave splitting is widely used for evaluation of subsurface anisotropy, the effects of stresses as well fluid saturation on anisotropy have not been understood in detail. In this paper we present the laboratory study of the effect of stress and saturation on S-wave splitting for a Bentheim sandstone sample. The cubic sample (50mm3), porosity 22%, density 1890kg/m3) was placed into a true-triaxial cell. The sample was subjected to several combinations of stresses varying from 0 to 10MPa and applied to the sample in two directions (X and Y), while no stress was applied to the sample in the Z-direction. The sample's bedding was nearly oriented parallel to Y-Z plane. The ultrasonic S-waves were exited at a frequency of 0.5MHz by a piezoelectric transducer and were propagating in the Z-direction. Upon wave arrival onto the free surface the displacement of the surface was monitored by a Laser Doppler interferometer. Hodograms of the central point of the dry sample (Fig. 1) demonstrate how S-wave polarizations for both "fast" and "slow" S-waves change when increasing the stress in the X direction, while the stress in direction Y is kept constant at 3 MPa. Polarization of the fast S wave is shifted towards the X-axis (axis of the maximum stress). While both S-wave velocities increase with stress, the anisotropy level remains the same. No shift of polarization of fast wave was observed when the stress along the Y-axis was kept at 3 MPa, while the stress along the X-axis was increasing. However, in that case, S-wave splitting is more prominent. The fast S-wave velocity is increasing with the stress increase while the slow S-wave velocity starts decreasing after 5MPa, indicating possible cracks opening in the Y-direction. Interestingly no change in anisotropy was observed for the water-saturated sample.
Power selective optical filter devices and optical systems using same
Koplow, Jeffrey P
2014-10-07
In an embodiment, a power selective optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes at least one substantially zero-order, zero-wave plate. The zero-order, zero-wave plate is configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. The zero-order, zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.
Novel theory for propagation of tilted Gaussian beam through aligned optical system
NASA Astrophysics Data System (ADS)
Xia, Lei; Gao, Yunguo; Han, Xudong
2017-03-01
A novel theory for tilted beam propagation is established in this paper. By setting the propagation direction of the tilted beam as the new optical axis, we establish a virtual optical system that is aligned with the new optical axis. Within the first order approximation of the tilt and off-axis, the propagation of the tilted beam is studied in the virtual system instead of the actual system. To achieve more accurate optical field distributions of tilted Gaussian beams, a complete diffraction integral for a misaligned optical system is derived by using the matrix theory with angular momentums. The theory demonstrates that a tilted TEM00 Gaussian beam passing through an aligned optical element transforms into a decentered Gaussian beam along the propagation direction. The deviations between the peak intensity axis of the decentered Gaussian beam and the new optical axis have linear relationships with the misalignments in the virtual system. ZEMAX simulation of a tilted beam through a thick lens exposed to air shows that the errors between the simulation results and theoretical calculations of the position deviations are less than 2‰ when the misalignments εx, εy, εx', εy' are in the range of [-0.5, 0.5] mm and [-0.5, 0.5]°.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grechka, V.; Tsvankin, I.
2000-02-01
Just as the transversely isotropic model with a vertical symmetry axis (VTI media) is typical for describing horizontally layered sediments, transverse isotropy with a tilted symmetry axis (TTI) describes dipping TI layers (such as tilted shale beds near salt domes) or crack systems. P-wave kinematic signatures in TTI media are controlled by the velocity V{sub PO} in the symmetry direction, Thomsen's anisotropic coefficients {xi} and {delta}, and the orientation (tilt {nu} and azimuth {beta}) of the symmetry axis. Here, the authors show that all five parameters can be obtained from azimuthally varying P-wave NMO velocities measured for two reflectors withmore » different dips and/or azimuths (one of the reflectors can be horizontal). The shear-wave velocity V{sub SO} in the symmetry direction, which has negligible influence on P-wave kinematic signatures, can be found only from the moveout of shear waves. Using the exact NMO equation, the authors examine the propagation of errors in observed moveout velocities into estimated values of the anisotropic parameters and establish the necessary conditions for a stable inversion procedure. Since the azimuthal variation of the NMO velocity is elliptical, each reflection event provides them with up to three constraints on the model parameters. Generally, the five parameters responsible for P-wave velocity can be obtained from two P-wave ellipses, but the feasibility of the moveout inversion strongly depends on the tilt {nu}. While most of the analysis is carried out for a single layer, the authors also extend the inversion algorithm to vertically heterogeneous TTI media above a dipping reflector using the generalized Dix equation. A synthetic example for a strongly anisotropic, stratified TTI medium demonstrates a high accuracy of the inversion.« less
Off-axis digital holographic microscopy with LED illumination based on polarization filtering.
Guo, Rongli; Yao, Baoli; Gao, Peng; Min, Junwei; Zhou, Meiling; Han, Jun; Yu, Xun; Yu, Xianghua; Lei, Ming; Yan, Shaohui; Yang, Yanlong; Dan, Dan; Ye, Tong
2013-12-01
A reflection mode digital holographic microscope with light emitting diode (LED) illumination and off-axis interferometry is proposed. The setup is comprised of a Linnik interferometer and a grating-based 4f imaging unit. Both object and reference waves travel coaxially and are split into multiple diffraction orders in the Fourier plane by the grating. The zeroth and first orders are filtered by a polarizing array to select orthogonally polarized object waves and reference waves. Subsequently, the object and reference waves are combined again in the output plane of the 4f system, and then the hologram with uniform contrast over the entire field of view can be acquired with the aid of a polarizer. The one-shot nature in the off-axis configuration enables an interferometric recording time on a millisecond scale. The validity of the proposed setup is illustrated by imaging nanostructured substrates, and the experimental results demonstrate that the phase noise is reduced drastically by an order of 68% when compared to a He-Ne laser-based result.
Excited-state vibronic wave-packet dynamics in H2 probed by XUV transient four-wave mixing
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.
2018-02-01
The complex behavior of a molecular wave packet initiated by an extreme ultraviolet (XUV) pulse is investigated with noncollinear wave mixing spectroscopy. A broadband XUV pulse spanning 12-16 eV launches a wave packet in H2 comprising a coherent superposition of multiple electronic and vibrational levels. The molecular wave packet evolves freely until a delayed few-cycle optical laser pulse arrives to induce nonlinear signals in the XUV via four-wave mixing (FWM). The angularly resolved FWM signals encode rich energy exchange processes between the optical laser field and the XUV-excited molecule. The noncollinear geometry enables spatial separation of ladder and V- or Λ-type transitions induced by the optical field. Ladder transitions, in which the energy exchange with the optical field is around 3 eV, appear off axis from the incident XUV beam. Each vibrationally revolved FWM line probes a different part of the wave packet in energy, serving as a promising tool for energetic tomography of molecular wave packets. V- or Λ-type transitions, in which the energy exchange is well under 1 eV, result in on-axis nonlinear signals. The first-order versus third-order interference of the on-axis signal serves as a mapping tool of the energy flow pathways. Intra- and interelectronic potential energy curve transitions are decisively identified. The current study opens possibilities for accessing complete dynamic information in XUV-excited complex systems.
Bloch wave deafness and modal conversion at a phononic crystal boundary
NASA Astrophysics Data System (ADS)
Laude, Vincent; Moiseyenko, Rayisa P.; Benchabane, Sarah; Declercq, Nico F.
2011-12-01
We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.
On possible plume-guided seismic waves
Julian, B.R.; Evans, J.R.
2010-01-01
Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband seismometers makes searching for these waves possible.
Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J
2011-04-13
We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.
Sound pressure distribution within natural and artificial human ear canals: Forward stimulation
Ravicz, Michael E.; Tao Cheng, Jeffrey; Rosowski, John J.
2014-01-01
This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5–2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11–16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC. PMID:25480061
Left Axis Deviation in Children Without Previously Known Heart Disease.
Schneider, Andrew E; Cannon, Bryan C; Johnson, Jonathan N; Ackerman, Michael J; Wackel, Philip L
2018-02-01
Left axis deviation (LAD) discovered in children via electrocardiogram (ECG) is uncommon but can be associated with heart disease (HD). The optimal diagnostic approach in a seemingly healthy child with LAD is unclear. We sought to better stratify which patients with LAD but without previously known HD may warrant additional workup. A retrospective chart review was performed to identify patients ≥1 to <18 years of age with LAD (QRS frontal plane axis 0 to -90) on an ECG between January 2002 and December 2014. Patients with known HD before their initial ECG were excluded. Overall, 296 patients were identified ( n = 181 [61%] male; mean age: 10.8 ± 4.6 years; mean QRS axis: -24 ± 22°). An echocardiogram was performed in 158 (53%) patients, with 24 (15%) having HD. Compared with those with an echocardiogram but without HD ( n = 134), patients with HD had a more negative mean QRS axis (-42 vs -27°; P = .002) and were more likely to have a QRS axis ≤-42° (58% vs 26%; P = .003), ECG chamber enlargement or hypertrophy (38% vs 5%; P < .0001), and abnormal cardiac physical examination findings (75% vs 8%; P < .0001). LAD discovered in isolation in the asymptomatic pediatric patient may not necessitate further cardiovascular investigation. Clinicians should consider obtaining an echocardiogram in patients with LAD and ECG cardiac chamber enlargement or hypertrophy, a QRS axis ≤-42°, and/or the presence of abnormal cardiac physical examination findings. Copyright © 2018 by the American Academy of Pediatrics.
All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.
Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan
2014-02-01
A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.
NASA Astrophysics Data System (ADS)
Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.
2017-09-01
We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important and timely reference for them.
Wave-plate structures, power selective optical filter devices, and optical systems using same
Koplow, Jeffrey P [San Ramon, CA
2012-07-03
In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.
Reduction of optically observed artillery blast wave trajectories using low dimensionality models
NASA Astrophysics Data System (ADS)
Steward, Bryan J.; Gross, Kevin C.; Perram, Glen P.
2011-05-01
Muzzle blast trajectories from firings of a 152 mm caliber gun howitzer were obtained with high-speed optical imagers and used to assess the fidelity with which low dimensionality models can be used for data reduction. Characteristic flow regions were defined for the blast waves. The near-field region was estimated to extend to 0.98 - 1.25 meters from the muzzle and the far-field region was estimated to begin at 2.61 - 3.31 meters. Blast wave geometries and radial trajectories were collected in the near through far-fields with visible imagers operating at 1,600 Hz. Beyond the near-field the blast waves exhibited a near-spherical geometry in which the major axis of the blast lay along the axis of the gun barrel and measured within 95% of the minor axis. Several blast wave propagation models were applied to the mid and far-field data to determine their ability to reduce the blast wave trajectories to fewer parameters while retaining the ability to distinguish amongst three munitions configurations. A total of 147 firings were observed and used to assess within-configuration variability relative to separation between configurations. Results show that all models perform well, and drag and point blast model parameters additionally provide insight into phenomenology of the blast.
Sjödin, Carl; Sondergaard, Soren; Johansson, Lotta
2018-06-01
The phlebostatic axis is the most commonly used anatomical external reference point for central venous pressure measurements. Deviation in the central venous pressure transducer alignment from the phlebostatic axis causes inadequate pressure readings, which may affect treatment decisions for critically ill patients in intensive care units. The primary aim of the study was to assess the variability in central venous pressure transducer levelling in the intensive care unit. We also assessed whether patient characteristics impacted on central venous pressure transducer alignment deviation. A sample of 61 critical care nurses was recruited and asked to place a transducer at the appropriate level for central venous pressure measurement. The measurements were performed in the intensive care unit on critically ill patients in supine and Fowler's positions. The variability among the participants using eyeball levelling and a laser levelling device was calculated in both sessions and adjusted for patient characteristics. A significant variation was found among critical care nurses in the horizontal levelling of the pressure transducer placement when measuring central venous pressure in the intensive care unit. Using a laser levelling device did not reduce the deviation from the phlebostatic axis. Patient characteristics had little impact on the deviation in the measurements. The anatomical external landmark for the phlebostatic axis varied between critical care nurses, as the variation in the central venous pressure transducer placement was not reduced with a laser levelling device. Standardisation of a zero-level for vascular pressures should be considered to reduce the variability in vascular pressure readings in the intensive care unit to improve patient treatment decisions. Further studies are needed to evaluate critical care nurses' knowledge and use of central venous pressure monitoring and whether assistive tools and/or routines can improve the accuracy in vascular pressure measurements in intensive care units. Copyright © 2018 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.
Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H
2013-01-01
Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (-) P wave in V1 or a biphasic (+/-) P wave in V1. s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward right atrial distortion rather than right atrial enlargement in causing vertical P-vector in emphysema.
Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide
2015-01-01
Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.
NASA Astrophysics Data System (ADS)
Sakuraba, A.
2015-12-01
I made a linear analysis of flow-induced oscillations along an underground cylindrical conduit with an elliptical cross section on the basis of the hypothesis that volcanic tremor is a result of magma movement through a conduit. As a first step to understand how the self oscillation occurs because of magma flow, I investigated surface wave propagation and attenuation along an infinitely long fluid-filled elliptic cylinder in an elastic medium. The boundary element method is used to obtain the two-dimensional wave field around the ellipse in the frequency-wavenumber domain. When the major axis is much greater than the minor axis of the ellipse, we obtain the analytic form of the dispersion relation of both the crack-wave mode (Korneev 2008, Lipovsky & Dunham 2015) and the Rayleigh-wave mode with flexural deformation. The crack-wave mode generally has a slower phase speed and a higher attenuation than the Rayleigh-wave mode. In the long-wavelength limit, the crack-wave mode disappears because of fluid viscosity, but the Rayleigh-wave mode exists with a constant Q-value that depends on viscosity. When the aspect ratio of the ellipse is finite, the surface waves can basically be understood as those propagating along a fluid pipe. The flexural mode does exist even when the wavelength is much longer than the major axis, but its phase speed coincides with that of the surrounding S-wave (Randall 1991). As its attenuation is zero in the long-wavelength limit, the flexural mode differs in nature from surface wave. I also obtain a result on linear stability of viscous flow through an elliptic cylinder. In this analysis, I made an assumption that the fluid inertia is so small that the Stokes equation can be used. As suggested by the author's previous study (Sakuraba & Yamauchi 2014), the flexural (Rayleigh-wave) mode is destabilized at a critical flow speed that decreases with the wavelength. However, when the wavelength is much greater than the major axis of the ellipse, the unstable solution does exist, but its linear growth rate in amplitude becomes almost zero. Therefore, the unstable solution effectively disappears in the long-wavelength limit, suggesting that the aspect ratio of the conduit is needed to be sufficiently large if the flow-induced oscillation caused by a moderate magma speed is an origin of volcanic tremor.
Modeling of roll/pitch determination with horizon sensors - Oblate Earth
NASA Astrophysics Data System (ADS)
Hablani, Hari B.
Model calculations are presented of roll/pitch determinations for oblate Earth, with horizon sensors. Two arrangements of a pair of horizon sensors are considered: left and right of the velocity vactor (i.e., along the pitch axis), and aft and forward (along the roll axis). Two approaches are used to obtain the roll/pitch oblateness corrections: (1) the crossing point approach, where the two crossings of the horizon sensor's scan and the earth's horizon are determined, and (2) by decomposing the angular deviation of the geocentric normal from the geodetic normal into roll and pitch components. It is shown that the two approaches yield essentially the same corrections if two sensors are used simultaneously. However, if the spacecraft is outfitted with only one sensor, the oblateness correction about one axis is far different from that predicted by the geocentric/geodetic angular deviation approach. In this case, the corrections may be calculated on ground for the sensor location under consideration and stored in the flight computer, using the crossing point approach.
On the Convection of a Binary Mixture in a Horizontal Layer Under High-frequency Vibrations
NASA Astrophysics Data System (ADS)
Smorodin, B. L.; Ishutov, S. M.; Myznikova, B. I.
2018-02-01
The convective instability and non-linear flows are considered in a horizontal, binary-mixture layer with negative Soret coupling, subjected to the high-frequency vibration whose axis is directed at an arbitrary angle to the layer boundaries. The limiting case of long-wave disturbances is studied using the perturbation method. The influence of the intensity and direction of vibration on the spatially-periodic traveling wave solution is analyzed. It is shown that the shift in the Rayleigh number range, in which the traveling wave regime exists, toward higher values is a response to a horizontal-to-vertical transition in the vibration axis orientation. The characteristics of amplitude- and phase-modulated traveling waves are obtained and discussed.
Stress waves in transversely isotropic media: The homogeneous problem
NASA Technical Reports Server (NTRS)
Marques, E. R. C.; Williams, J. H., Jr.
1986-01-01
The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.
The infrared bands Pechan prism axis parallel detection method
NASA Astrophysics Data System (ADS)
Qiang, Hua; Ji, Ming; He, Yu-lan; Wang, Nan-xi; Chang, Wei-jun; Wang, Ling; Liu, Li
2017-02-01
In this paper, we put forward a new method to adjust the air gap of the total reflection air gap of the infrared Pechan prism. The adjustment of the air gap in the air gap of the Pechan prism directly affects the parallelism of the optical axis, so as to affect the consistency of the optical axis of the infrared system. The method solves the contradiction between the total reflection and the high transmission of the infrared wave band, and promotes the engineering of the infrared wave band. This paper puts forward the method of adjusting and controlling, which can ensure the full reflection and high penetration of the light, and also can accurately measure the optical axis of the optical axis of the different Pechan prism, and can achieve the precision of the level of the sec. For Pechan prism used in the infrared band image de rotation, make the product to realize miniaturization, lightweight plays an important significance.
Expected neutrino fluence from short Gamma-Ray Burst 170817A and off-axis angle constraints
NASA Astrophysics Data System (ADS)
Biehl, D.; Heinze, J.; Winter, W.
2018-05-01
We compute the expected neutrino fluence from SGRB 170817A, associated with the gravitational wave event GW 170817, directly based on Fermi observations in two scenarios: structured jet and off-axis (observed) top-hat jet. While the expected neutrino fluence for the structured jet case is very small, large off-axis angles imply high radiation densities in the jet, which can enhance the neutrino production efficiency. In the most optimistic allowed scenario, the neutrino fluence can reach only 10-4 of the sensitivity of the neutrino telescopes. We furthermore demonstrate that the fact that gamma-rays can escape limits the baryonic loading (energy in protons versus photons) and the off-axis angle for the internal shock scenario. In particular, for a baryonic loading of 10, the off-axis angle is more strongly constrained by the baryonic loading than by the time delay between the gravitational wave event and the onset of the gamma-ray emission.
On the normal scalar ECG. A new classification system considering age, sex and heart position.
Lundh, B
1984-01-01
472 randomly selected men and women from the city of Lund were examined for disease in the heart, lungs and for hypertension. 163 men and 194 women who had no symptom or sign of disease were accepted for the further study. The prevalence of various exclusion criterias, such as symptoms and signs of heart disease, lung disease and other diseases which may possibly affect the ECG are reported as well as the distribution of blood pressures in the sample. A computer-averaged standard 12-lead ECG (leads aVL, I, -aVR, II, aVF, III, V1-V6) was recorded. All measurements of ECG-deflections have been made visually using a magnifying glass (6 times). ST-segments were classified according to the Punsar code by independent visual observers as well as by the computer. The mean frontal QRS-axis shifted to the left with advancing age, but the shift was statistically significant only in men. In both men and women there was a leftward shift of the mean frontal QRS-axis with increased weight, increased chest circumference and increased obesity index. The normal range of axis was found to be 0 degrees to 90 degrees in men and +15 degrees to 90 degrees in women. The problems concerning the definition of the electrical heart position is discussed. The concept of a Q-axis is introduced as an alternative way to indicate electrical heart position. There is a statistical significant relationship between the Q-axis and the QRS-axis in the frontal plane, although this relationship is not always apparent in the individual ECG. The presence or absence of a Q-wave in an individual lead was used to denote a lead as being a left ventricular lead or not. Using the Q-wave as a marker of heart position in the individual lead is more practical than to use the QRS-axis or the transitional zone. Duration and amplitude of the Q-wave have been measured. The upper limit of normal duration exceeded 0.03 s in leads aVL and aVF in men but not in women. The R-wave amplitudes proved to vary with age and heart position in men. In women variation of the R-wave amplitude was found with heart position but not with age.(ABSTRACT TRUNCATED AT 400 WORDS)
Helical localized wave solutions of the scalar wave equation.
Overfelt, P L
2001-08-01
A right-handed helical nonorthogonal coordinate system is used to determine helical localized wave solutions of the homogeneous scalar wave equation. Introducing the characteristic variables in the helical system, i.e., u = zeta - ct and v = zeta + ct, where zeta is the coordinate along the helical axis, we can use the bidirectional traveling plane wave representation and obtain sets of elementary bidirectional helical solutions to the wave equation. Not only are these sets bidirectional, i.e., based on a product of plane waves, but they may also be broken up into right-handed and left-handed solutions. The elementary helical solutions may in turn be used to create general superpositions, both Fourier and bidirectional, from which new solutions to the wave equation may be synthesized. These new solutions, based on the helical bidirectional superposition, are members of the class of localized waves. Examples of these new solutions are a helical fundamental Gaussian focus wave mode, a helical Bessel-Gauss pulse, and a helical acoustic directed energy pulse train. Some of these solutions have the interesting feature that their shape and localization properties depend not only on the wave number governing propagation along the longitudinal axis but also on the normalized helical pitch.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2000-01-01
An acoustic source inside of a 2-D jet excites an instability wave in the shear layer resulting in sound radiating away from the shear layer. Solve the linearized Euler equations to predict the sound radiation outside of the jet. The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary condition along the x-axis.
Numerical study on the interaction of a weak shock wave with an elliptic gas cylinder
NASA Astrophysics Data System (ADS)
Zhang, W.; Zou, L.; Zheng, X.; Wang, B.
2018-05-01
The interaction of a weak shock wave with a heavy elliptic gas cylinder is investigated by solving the Eulerian equations in two-dimensional Cartesian coordinates. An interface-capturing algorithm based on the γ -model and the finite volume weighed essential non-oscillatory scheme is employed to trace the motion of the discontinuous interface. Three gas pairs with different Atwood numbers ranging from 0.21 to 0.91 are considered, including carbon dioxide cylinder in air (air-CO_2 ), sulfur hexafluoride cylinder in air (air-SF_6 ), and krypton cylinder in helium (He-Kr). For each gas pair, the elliptic cylinder aspect ratio ranging from 1/4 to 4 is defined as the ratio of streamwise axis length to spanwise axis length. Special attention is given to the aspect ratio effects on wave patterns and circulation. With decreasing aspect ratio, the wave patterns in the interaction are summarized as transmitted shock reflection, regular interaction, and transmitted shock splitting. Based on the scaling law model of Samtaney and Zabusky (J Fluid Mech 269:45-78, 1994), a theoretical approach is developed for predicting the circulation at the time when the fastest shock wave reaches the leeward pole of the gas cylinder (i.e., the primary deposited circulation). For both prolate (i.e., the minor axis of the ellipse is along the streamwise direction) and oblate (i.e., the minor axis of the ellipse is along the spanwise direction) cases, the proposed approach is found to estimate the primary deposited circulation favorably.
Deviation characteristics of specular reflectivity of micro-rough surface from Fresnel's equation
NASA Astrophysics Data System (ADS)
Zhang, W. J.; Qiu, J.; Liu, L. H.
2015-07-01
Specular reflectivity is an important radiative property in thermal engineering applications and reflection-based optical constant determinations, yet it will be influenced by surface micro-roughness which cannot be completely removed during the polishing process. In this work, we examined the deviation characteristics of the specular reflectivity of micro-rough surfaces from that predicted by the Fresnel's equation under the assumption of smooth surface. The effects of incident angle and relative roughness were numerically investigated for both 1D and 2D micro randomly rough surfaces using full wave analysis under the condition that the relative roughness is smaller than 0.05. For transverse magnetic (TM) wave incidence, it is observed that the deviation of specular reflectivity dramatically rises as the incident angle approaches to the pseudo Brewster's angle, which violates the prediction based on Rayleigh criterion. While for the transverse electric (TE) wave incidence, the deviation of the specular reflectivity is much smaller and decreases monotonically with the increase of incident angle, which agrees with the predication from Rayleigh criterion. Generally, the deviation of specular reflectivity for both TM and TE increases with the relative roughness as commonly expected.
Waveguide apparatuses and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, James E.
2016-05-10
Optical fiber waveguides and related approaches are implemented to facilitate communication. As may be implemented in accordance with one or more embodiments, a waveguide has a substrate including a lattice structure having a plurality of lattice regions with a dielectric constant that is different than that of the substrate, a defect in the lattice, and one or more deviations from the lattice. The defect acts with trapped transverse modes (e.g., magnetic and/or electric modes) and facilitates wave propagation along a longitudinal direction while confining the wave transversely. The deviation(s) from the lattice produces additional modes and/or coupling effects.
NASA Astrophysics Data System (ADS)
Schutt, D.; Witt, D. R.; Aster, R. C.; Freymueller, J.; Cubley, J. F.
2017-12-01
Shear wave splitting results from the Northern Cordillera and surroundings will be presented. This complex tectonic setting contains a subduction zone responding to the Yakutat Indenter, an oceanic plateau fragment, a slab window under the Yukon Territory, and the actively uplifting Mackenzie Mountains. A particular goal of this project is to understand whether asthenospheric tractions play a significant role in Mackenzie Mountain uplift. Using a new method for calculating station-averaged splitting parameters, we have analyzed stations that span a large part of the region and therefore can see the variation in splitting parameters from the dynamic NA-PA subduction zone to the stable Slave Craton. Like other shear wave splitting studies in the Northern Cordillera, we find abrupt changes in fast axis direction along the continental margin, while the continental interior displays more coherent splitting parameters. This study is also the first to look at data from a recent deployment through center of the Mackenzie Mountains. Northeast of the Tintina Fault, we find average fast axes directions that are very close to the absolute NA plate motion but our large deviations from event to event suggest that there is some crustal anisotropy and/or dipping structure present. This observation appears to support the idea of a lower crustal décollement that has been put forth by Mazzoti and Hyndman [2002]. These results serve as a broad regional overview of mantle anisotropy and may also shed light on frozen lithospheric deformation.
Re-radiation of acoustic waves from the A0 wave on a submerged elastic shell
NASA Astrophysics Data System (ADS)
Ahyi, A. C.; Cao, Hui; Raju, P. K.; Überall, Herbert
2005-07-01
We consider evacuated thin semi-infinite shells immersed in a fluid, which may be either of cylindrical shape with a hemispherical shell endcap, or formed two-dimensionally by semi-infinite parallel plates joined together by a semi-cylinder. The connected shell portions are joined in a manner to satisfy continuity but with a discontinuous radius of curvature. Acoustic waves are considered incident along the axis of symmetry (say the z axis) onto the curved portion of the shell, where they, at the critical angle of coincidence, generate Lamb and Stoneley-type waves in the shell. Computations were carried out using a code developed by Cao et al. [Chinese J. Acoust. 14, 317 (1995)] and was used in order to computationally visualize the waves in the fluid that have been re-radiated by the shell waves a the critical angle. The frequency range was below that of the lowest Lamb wave, and only the A0 wave (and partly the S0 wave) was observed to re-radiate into the fluid under our assumptions. The results will be compared to experimental results in which the re-radiated waves are optically visualized by the Schardin-Cranz schlieren method. .
Ekino, T; Gabovich, A M; Suan Li, Mai; Szymczak, H; Voitenko, A I
2016-11-09
The quasiparticle tunnel current J(V) between the superconducting ab-planes along the c-axis and the corresponding conductance [Formula: see text] were calculated for symmetric junctions composed of disordered d-wave layered superconductors partially gapped by charge density waves (CDWs). Here, V is the voltage. Both the checkerboard and unidirectional CDWs were considered. It was shown that the spatial spread of the CDW-pairing strength substantially smears the peculiarities of G(V) appropriate to uniform superconductors. The resulting curves G(V) become very similar to those observed for a number of cuprates in intrinsic junctions, e.g. mesas. In particular, the influence of CDWs may explain the peak-dip-hump structures frequently found for high-T c oxides.
An image registration based ultrasound probe calibration
NASA Astrophysics Data System (ADS)
Li, Xin; Kumar, Dinesh; Sarkar, Saradwata; Narayanan, Ram
2012-02-01
Reconstructed 3D ultrasound of prostate gland finds application in several medical areas such as image guided biopsy, therapy planning and dose delivery. In our application, we use an end-fire probe rotated about its axis to acquire a sequence of rotational slices to reconstruct 3D TRUS (Transrectal Ultrasound) image. The image acquisition system consists of an ultrasound transducer situated on a cradle directly attached to a rotational sensor. However, due to system tolerances, axis of probe does not align exactly with the designed axis of rotation resulting in artifacts in the 3D reconstructed ultrasound volume. We present a rigid registration based automatic probe calibration approach. The method uses a sequence of phantom images, each pair acquired at angular separation of 180 degrees and registers corresponding image pairs to compute the deviation from designed axis. A modified shadow removal algorithm is applied for preprocessing. An attribute vector is constructed from image intensity and a speckle-insensitive information-theoretic feature. We compare registration between the presented method and expert-corrected images in 16 prostate phantom scans. Images were acquired at multiple resolutions, and different misalignment settings from two ultrasound machines. Screenshots from 3D reconstruction are shown before and after misalignment correction. Registration parameters from automatic and manual correction were found to be in good agreement. Average absolute differences of translation and rotation between automatic and manual methods were 0.27 mm and 0.65 degree, respectively. The registration parameters also showed lower variability for automatic registration (pooled standard deviation σtranslation = 0.50 mm, σrotation = 0.52 degree) compared to the manual approach (pooled standard deviation σtranslation = 0.62 mm, σrotation = 0.78 degree).
A Simple Pythagorean Interpretation of E2 = p2c2 + (mc2)2
NASA Astrophysics Data System (ADS)
Tobar, J. A.; Vargas, E. L.; Andrianarijaona, V. M.
2015-03-01
We are considering the relationship between the relativistic energy, the momentum, and the rest energy, E2 =p2c2 + (mc2)2 , and using geometrical means to analyze each individual portion in a spatial setting. The aforementioned equation suggests that pc and mc2 could be thought of as the two axis of a plane. According to de Broglie's hypothesis λ = h / p therefore suggesting that the pc-axis is connected to the wave properties of a moving object, and subsequently, the mc2-axis is connected to the particle properties. Consequently, these two axis could represent the particle and wave properties of the moving object. An overview of possible models and meaningful interpretations will be presented. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.
NASA Astrophysics Data System (ADS)
Thornton, Douglas E.; Spencer, Mark F.; Perram, Glen P.
2017-09-01
The effects of deep turbulence in long-range imaging applications presents unique challenges to properly measure and correct for aberrations incurred along the atmospheric path. In practice, digital holography can detect the path-integrated wavefront distortions caused by deep turbulence, and di erent recording geometries offer different benefits depending on the application of interest. Previous studies have evaluated the performance of the off-axis image and pupil plane recording geometries for deep-turbulence sensing. This study models digital holography in the on-axis phase shifting recording geometry using wave optics simulations. In particular, the analysis models spherical-wave propagation through varying deep-turbulence conditions to estimate the complex optical field, and performance is evaluated by calculating the field-estimated Strehl ratio and RMS wavefront error. Altogether, the results show that digital holography in the on-axis phase shifting recording geometry is an effective wavefront-sensing method in the presence of deep turbulence.
Comparison Of Methods Used In Cartography For The Skeletonisation Of Areal Objects
NASA Astrophysics Data System (ADS)
Szombara, Stanisław
2015-12-01
The article presents a method that would compare skeletonisation methods for areal objects. The skeleton of an areal object, being its linear representation, is used, among others, in cartographic visualisation. The method allows us to compare between any skeletonisation methods in terms of the deviations of distance differences between the skeleton of the object and its border from one side and the distortions of skeletonisation from another. In the article, 5 methods were compared: Voronoi diagrams, densified Voronoi diagrams, constrained Delaunay triangulation, Straight Skeleton and Medial Axis (Transform). The results of comparison were presented on the example of several areal objects. The comparison of the methods showed that in all the analysed objects the Medial Axis (Transform) gives the smallest distortion and deviation values, which allows us to recommend it.
Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H
2013-01-01
Introduction Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Materials and methods Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (−) P wave in V1 or a biphasic (+/−) P wave in V1. Results s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). Conclusion We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward right atrial distortion rather than right atrial enlargement in causing vertical P-vector in emphysema. PMID:23690680
Analysis of nodal aberration properties in off-axis freeform system design.
Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao
2016-08-20
Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.
Undamped electrostatic plasma waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentini, F.; Perrone, D.; Veltri, P.
2012-09-15
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations withmore » phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.« less
NASA Astrophysics Data System (ADS)
Patton, Howard J.
1985-08-01
Surface waves recorded at regional distances are used to study the source mechanisms of seven earthquakes in the western United States with magnitudes between 4.3 and 5.5. The source mechanisms of events in or on the margins of the Basin and Range show T-axis with an azimuth of N85°W +/- 16° and a plunge of 12° +/- 16°. Of the seven events, four have P-wave solutions that are inconsistent with surface-wave observations. Azimuths of the T-axis obtained from the surface-wave mechanisms and from the P-wave solutions differ by up to 45°. These events have dip-slip or oblique-slip mechanisms, and the source depths for three of the events are 5 km or less. Their source mechanisms and small magnitudes make identification of the P-wave first motion difficult due to poor signal-to-noise ratio of the initial P-wave and close arrivals of pP or sP with significant amplitude. We suggest that mis-identification of the P-wave first motion and distortion of the body-wave ray paths due to non-planar structure were sources of error in determining the nodal planes for these events.
Magnetic Helicity of Alfven Simple Waves
NASA Technical Reports Server (NTRS)
Webb, Gary M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D.
2010-01-01
The magnetic helicity of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulas. Two basic Alfven modes are identified: (a) the plane 1D Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis, with wave phase varphi=k_0(z-lambda t), where k_0 is the wave number and lambda is the group velocity of the wave, and (b)\\ the generalized Barnes (1976) simple Alfven wave in which the wave normal {bf n} moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (a) is analogous to the slab Alfven mode and the generalized Barnes solution (b) is analogous to the 2D mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Aifvenic fluctuations and structures observed in the solar wind are discussed.
Variability of single-leg versus double-leg stance radiographs in the varus knee.
Chen, Andrew; Rich, Valerie; Bain, Elizabeth; Sterett, William I
2009-07-01
We evaluated measured radiographic parameter variability between single-leg stance (SLS) and double-leg stance (DLS) radiographs in patients with varus knee malalignment, indicated for high tibial osteotomy. Fifty-three consecutive knees (mean, 49 years; range, 18-79 years) were evaluated for varus thrust. SLS and DLS radiographs were obtained. A single blinded observer measured mechanical axis angles and weight-bearing line (WBL) deviation using a goniometer. Mechanical axis angles averaged 9.1 degrees (DLS) and 11.3 degrees (SLS). SLS radiographs averaged 9% greater WBL medialization than did DLS. Medial opening averaged 16.4 mm (DLS) and 18.8 mm (SLS). DLS and SLS radiographs showed no significant differences in patients without varus thrust. Patients with varus thrust demonstrated differences in mechanical axis angles (DLS, 9.4 degrees; SLS, 12.2 degrees), WBL deviation (12.1% less), medialization (DLS), and medial opening necessary for correction (DLS, 16.6 mm; SLS, 20.3 mm). In varus thrust, SLS radiographs more closely replicate dynamic knee malalignment, possibly providing more accurate measurements of angular deformity.
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.
2015-10-01
> In this paper we review a recently developed approximate method for investigation of dynamics of compressible ellipsoidal figures. Collapse and subsequent behaviour are described by a system of ordinary differential equations for time evolution of semi-axes of a uniformly rotating, three-axis, uniform-density ellipsoid. First, we apply this approach to investigate dynamic stability of non-spherical bodies. We solve the equations that describe, in a simplified way, the Newtonian dynamics of a self-gravitating non-rotating spheroidal body. We find that, after loss of stability, a contraction to a singularity occurs only in a pure spherical collapse, and deviations from spherical symmetry prevent the contraction to the singularity through a stabilizing action of nonlinear non-spherical oscillations. The development of instability leads to the formation of a regularly or chaotically oscillating body, in which dynamical motion prevents the formation of the singularity. We find regions of chaotic and regular pulsations by constructing a Poincaré diagram. A real collapse occurs after damping of the oscillations because of energy losses, shock wave formation or viscosity. We use our approach to investigate approximately the first stages of collapse during the large scale structure formation. The theory of this process started from ideas of Ya. B. Zeldovich, concerning the formation of strongly non-spherical structures during nonlinear stages of the development of gravitational instability, known as `Zeldovich's pancakes'. In this paper the collapse of non-collisional dark matter and the formation of pancake structures are investigated approximately. Violent relaxation, mass and angular momentum losses are taken into account phenomenologically. We estimate an emission of very long gravitational waves during the collapse, and discuss the possibility of gravitational lensing and polarization of the cosmic microwave background by these waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C.; Hirshfield, J.L.; Ganguly, K.
1995-04-01
For high frequency gyrotrons or high gyroharmonic conversion, an axis encircling beam of high voltage is required to allow coupling to whispering gallery fields near the walls. Lower voltage is required for an annular beam of similar velocity ratio {alpha}. Here the authors present simulation results using a modified CARA for preparation of a 320 kV, 20 A, {alpha} = 1.5 annular beam driven at 11.424 GHz with an rf power of 5 MW and an injection voltage of 75 kV. It is shown that the beam quality can be considerably improved by so-called {open_quotes}detuning{close_quotes}, where the tapered axial magneticmore » field profiles in the CARA are caused to deviate a small amount from exact resonance. Under typical operating conditions, beams with axial velocity spreads of the order of 1% are predicted. This approach could be used to provide a high quality annular gyrating beam for multi-megawatt millimeter wave sources in the 100-200 GHz range.« less
Postimplant left ventricular assist device fit analysis using three-dimensional reconstruction.
Truong, Thang V; Stanfield, J Ryan; Chaffin, John S; Elkins, C Craig; Kanaly, Paul J; Horstmanshof, Douglas A; Long, James W; Snyder, Trevor A
2013-01-01
Left ventricular assist devices (LVADs) are blood pumps that augment the function of the failing heart to improve perfusion, resulting in improved survival. For LVADs to effectively unload the left ventricle, the inflow cannula (IC) should be unobstructed and ideally aligned with the heart's mitral valve (MV). We examined IC orientation deviation from a hypothesized conventional angle (45° right-posterior) and the approximate angle for direct IC-MV alignment in many patients. Three-dimensional anatomic models were created from computed tomography scans for 24 LVAD-implanted patients, and angles were measured between the IC and the apical z-axis in both the coronal and the sagittal planes. Common surgical IC angulation was found to be 22 ± 15° rightward and 21 ± 12° posterior from the apical z-axis; 38% (n = 9) of patients fell in this range. Direct IC-MV angulation was found to be 34 ± 8° rightward and 15 ± 7° posterior; only 8% (n = 2) of patients fell in this range. Rightward deviation toward ventricular septal wall and anterior deviation toward LV anterior freewall are associated with mortalities more so than leftward and posterior deviation. In conclusion, anatomic reconstruction may be a useful preoperative tool to obtain general population and patient-specific alignment for optimal LVAD implantation.
ERIC Educational Resources Information Center
Macdonald, Kenneth C.; Fox, Paul J.
1990-01-01
Described are concepts involved with the formation and actions of the Mid-Ocean Ridge. Sea-floor spreading, the magma supply model, discontinuities, off-axis structures, overlaps and deviation, and aquatic life are discussed. (CW)
Chhabra, Lovely; Sareen, Pooja; Gandagule, Amit; Spodick, David
2012-04-01
Verticalization of the P-wave axis is characteristic of chronic obstructive pulmonary disease (COPD). We studied the correlation of P-wave axis and computerized tomographically quantified emphysema in patients with COPD/emphysema. Individual correlation of P-wave axis with different structural types of emphysema was also studied. High-resolution computerized tomographic scans of 23 patients >45 years old with known COPD were reviewed to assess the type and extent of emphysema using computerized tomographic densitometric parameters. Electrocardiograms were then independently reviewed and the P-wave axis was calculated in customary fashion. Degree of the P vector (DOPV) and radiographic percent emphysematous area (RPEA) were compared for statistical correlation. The P vector and RPEA were also directly compared to the forced expiratory volume at 1 second. RPEA and the P vector had a significant positive correlation in all patients (r = +0.77, p <0.0001) but correlation was very strong in patients with predominant lower lobe emphysema (r = +0.89, p <0.001). Forced expiratory volume at 1 second and the P vector had almost a linear inverse correlation in predominantly lower lobe emphysema (r = -0.92, p <0.001). DOPV positively correlated with radiographically quantified emphysema. DOPV and RPEA were strong predictors of qualitative lung function in patients with predominantly lower lobe emphysema. In conclusion, a combination of high DOPV and predominantly lower lobe emphysema indicates severe obstructive lung dysfunction in patients with COPD. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
van Driel, Martin; Nissen-Meyer, Tarje; Stähler, Simon; Waszek, Lauren; Hempel, Stefanie; Auer, Ludwig; Deuss, Arwen
2014-05-01
We present a numerical method to compute high-frequency 3D elastic waves in fully anisotropic axisymmetric media. The method is based on a decomposition of the wavefield into a series of uncoupled 2D equations, for which the dependence of the wavefield on the azimuth can be solved analytically. The remaining 2D problems are then solved using a spectral element method (AxiSEM). AxiSEM was recently published open-source (Nissen-Meyer et al. 2014) as a production ready code capable to compute global seismic wave propagation up to frequencies of ~2Hz. It accurately models visco-elastic dissipation and anisotropy (van Driel et al., submitted to GJI) and runs efficiently on HPC resources using up to 10K cores. At very short period, the Fresnel Zone of body waves is narrow and sensitivity is focused around the geometrical ray. In cases where the azimuthal variations of structural heterogeneity exhibit long spatial wavelengths, so called 2.5D simulations (3D wavefields in 2D models) provide a good approximation. In AxiSEM, twodimensional variations in the source-receiver plane are effectively modelled as ringlike structures extending in the out-of-plane direction. In contrast to ray-theory, which is widely used in high-frequency applications, AxiSEM provides complete waveforms, thus giving access to frequency dependency, amplitude variations, and peculiar wave effects such as diffraction and caustics. Here we focus on the practical implications of the inherent axisymmetric geometry and show how the 2.5D-features of our method method can be used to model realistic anisotropic structures, by applying it to problems such as the D" region and the inner core.
Mapping Shear Zones, Faults, and Crustal Deformation Fabric With Receiver Functions
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, V.; Mahan, K. H.
2014-12-01
Dipping faults, shear zones, and pervasive anisotropic crustal fabric due to deformation are all capable of generating strong near-station mode conversions of teleseismic body waves, even for weak (a few percent) velocity anisotropy. These conversions can be found using the receiver function technique. Dipping foliation and dipping isotropic velocity contrasts can occur in isolation or together in deformed crust. Both generate receiver function arrivals that have a characteristic periodicity with azimuth. Different fixed azimuthal phase shifts between radial and tangential component receiver functions distinguish dipping or tilted structure and fabric from horizontal axis anisotropy. We demonstrate a method that uses these characteristics to map geologically relevant information such as strike and depth of foliation of dipping isotropic velocity contrasts and of horizontal symmetry axis anisotropy contrasts. The method uses waveforms without matching them via forward modeling, which makes choices such as slow versus fast axis symmetry and isotropic dip versus anisotropic axis tilt unnecessary. It also does not use shear wave splitting of the converted waves, which is more difficult to isolate. We show results from the continental U.S. and Canada and from the collision zones in the Himalaya and Tibetan Plateau and Taiwan. We discuss interpretation of our results in the light of recent laboratory measurements of deformed crustal rocks and contributions to the seismic signal from individual minerals such as micas, amphiboles, and quartz. Our observations are connected to geological ground truth by using structural maps and sample anisotropy determined using electron backscatter diffraction from exhumed deep crust in the Athabasca granulite province to predict the seismic signal from present-day deep crust. We also discuss the reconciliation of measurements from anisotropic receiver functions, surface waves, and split shear waves.
Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D
NASA Astrophysics Data System (ADS)
Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.
2017-10-01
An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.
Li, Guoliang; Han, Guangpu; Zhang, Jinxiu; Ma, Shiqiang; Guo, Donghui; Yuan, Fulu; Qi, Bingbing; Shen, Runbin
2013-07-01
To explore the application value of self-made tibial mechanical axis locator in tibial extra-articular deformity in total knee arthroplasty (TKA) for improving the lower extremity force line. Between January and August 2012, 13 cases (21 knees) of osteoarthritis with tibial extra-articular deformity were treated, including 5 males (8 knees) and 8 females (13 knees) with an average age of 66.5 years (range, 58-78 years). The disease duration was 2-5 years (mean, 3.5 years). The knee society score (KSS) was 45.5 +/- 15.5. Extra-articular deformities included 1 case of knee valgus (2 knees) and 12 cases of knee varus (19 knees). Preoperative full-length X-ray films of lower extremities showed 10-21 degrees valgus or varus deformity of tibial extra joint. Self-made tibial mechanical axis locator was used to determine and mark coronal tibial mechanical axis under X-ray before TKA, and then osteotomy was performed with extramedullary positioning device according to the mechanical axis marker.' All incisions healed by first intention, without related complications of infection and joint instability. All patients were followed up 5-12 months (mean, 8.3 months). The X-ray examination showed < 2 degrees knee deviation angle in the others except 1 case of 2.9 degrees knee deviation angle at 3 days after operation, and the accurate rate was 95.2%. No loosening or instability of prosthesis occurred during follow-up. KSS score was 85.5 +/- 15.0 at last follow-up, showing significant difference when compared with preoperative score (t=12.82, P=0.00). The seft-made tibial mechanical axis locator can improve the accurate rate of the lower extremity force line in TKA for tibia extra-articular deformity.
Calculating broad neutron resonances in a cut-off Woods-Saxon potential
NASA Astrophysics Data System (ADS)
Baran, Á.; Noszály, Cs.; Salamon, P.; Vertse, T.
2015-07-01
In a cut-off Woods-Saxon (CWS) potential with realistic depth S -matrix poles being far from the imaginary wave number axis form a sequence where the distances of the consecutive resonances are inversely proportional with the cut-off radius value, which is an unphysical parameter. Other poles lying closer to the imaginary wave number axis might have trajectories with irregular shapes as the depth of the potential increases. Poles being close repel each other, and their repulsion is responsible for the changes of the directions of the corresponding trajectories. The repulsion might cause that certain resonances become antibound and later resonances again when they collide on the imaginary axis. The interaction is extremely sensitive to the cut-off radius value, which is an apparent handicap of the CWS potential.
Orzó, László
2015-06-29
Retrieving correct phase information from an in-line hologram is difficult as the object wave field and the diffractions of the zero order and the conjugate object term overlap. The existing iterative numerical phase retrieval methods are slow, especially in the case of high Fresnel number systems. Conversely, the reconstruction of the object wave field from an off-axis hologram is simple, but due to the applied spatial frequency filtering the achievable resolution is confined. Here, a new, high-speed algorithm is introduced that efficiently incorporates the data of an auxiliary off-axis hologram in the phase retrieval of the corresponding in-line hologram. The efficiency of the introduced combined phase retrieval method is demonstrated by simulated and measured holograms.
NASA Astrophysics Data System (ADS)
Luznik, Luksa; Flack, Karen; Lust, Ethan
2016-11-01
2D PIV measurements in the near wake flow field (x/D<2) are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. All measurements were obtained in the USNA 380 ft tow tank with turbine towed at a constant carriage speed (Utow = 1.68 m/s), at the nominal tip speed ratio (TSR) of 7 and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. Near wake mapping is accomplished by "tiling" phase locked individual 2D PIV fields of view (nominally 30x30 cm2) with approximately 5 cm overlap. The discussion will focus on the downstream evolution of coherent tip vortices shed by the rotor blades and their vertical/horizontal displacements by the wave induced fluctuations. This observed phenomena ultimately results in significantly increased downstream wake expansion in comparison with the same conditions without waves. Office of Naval Research.
Generation of Elliptically Polarized Terahertz Waves from Antiferromagnetic Sandwiched Structure.
Zhou, Sheng; Zhang, Qiang; Fu, Shu-Fang; Wang, Xuan-Zhang; Song, Yu-Ling; Wang, Xiang-Guang; Qu, Xiu-Rong
2018-04-01
The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Xiao-Meng, E-mail: xiaomeng.shen@asu.edu; Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287; He, Zhao-Yu
2015-09-21
Mid-wave and long-wave infrared nBn photodetectors with absorbers consisting of InAs/InAsSb superlattices and barriers consisting of InAs/AlGaSb(As) superlattices were grown using molecular beam epitaxy. High-resolution X-ray diffraction showing significant differences in Ga composition in the barrier layer, and different dark current behavior at 77 K, suggested the possibility of different types of band alignments between the barrier layer and the absorber for the mid- and long-wave infrared samples. Examination of the barrier layers using off-axis electron holography showed the presence of positive charge with an estimated density of 1.8 × 10{sup 17}/cm{sup 3} in the mid-wave sample as a result of a type-IImore » band alignment, whereas negligible charge was detected in the long-wave sample, consistent with a type-I band alignment.« less
Ophus, Colin; Rasool, Haider I.; Linck, Martin; ...
2016-11-30
We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ophus, Colin; Rasool, Haider I.; Linck, Martin
We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less
Sun, Bing; Xin, Yanbin; Zhu, Xiaomei; Gao, Zhiying; Yan, Zhiyu; Ohshima, Takayuki
2018-04-01
In this work, the bacterial inactivation effects of shock waves, ultraviolet (UV) light, and electric field produced by high-voltage pulsed discharge in liquid with needle-plate configurations were studied. The contributions of each effect on the bacterial killing ratio in the discharge process were obtained individually by modifying reactor type and usage of glass, quartz, and black balloons. The results showed that the location from the discharge center axis significantly influenced the effects of shock waves and electric fields, although the effect of UV light was not affected by the location in the reactor. The effects of shock waves and electric fields were improved by decreasing the distance from the discharge center axis. Under this experimental condition, the effects of shock waves, UV light, and electric fields produced by discharges on bacterial inactivation were approximately 36.1%, 30.8%, 12.7%, respectively. Other contributions seemed to be due to activated species. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van Eerten, Hendrik; Zhang, Weiqun; MacFadyen, Andrew
2010-10-01
Starting as highly relativistic collimated jets, gamma-ray burst outflows gradually slow down and become nonrelativistic spherical blast waves. Although detailed analytical solutions describing the afterglow emission received by an on-axis observer during both the early and late phases of the outflow evolution exist, a calculation of the received flux during the intermediate phase and for an off-axis observer requires either a more simplified analytical model or direct numerical simulations of the outflow dynamics. In this paper, we present light curves for off-axis observers covering the long-term evolution of the blast wave, calculated from a high-resolution two-dimensional relativistic hydrodynamics simulation using a synchrotron radiation model. We compare our results to earlier analytical work and calculate the consequence of the observer angle with respect to the jet axis both for the detection of orphan afterglows and for jet break fits to the observational data. We confirm earlier results in the literature finding that only a very small number of local type Ibc supernovae can harbor an orphan afterglow. For off-axis observers, the observable jet break can be delayed up to several weeks, potentially leading to overestimation of the beaming-corrected total energy. In addition we find that, when using our off-axis light curves to create synthetic Swift X-ray data, jet breaks are likely to remain hidden in the data.
Arnold, Mobius; Ives, Robert Lawrence
2006-09-05
A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.
The relation of motion sickness to the spatial-temporal properties of velocity storage
NASA Technical Reports Server (NTRS)
Dai, Mingjia; Kunin, Mikhail; Raphan, Theodore; Cohen, Bernard; Young, L. R. (Principal Investigator)
2003-01-01
Tilting the head in roll to or from the upright while rotating at a constant velocity (roll while rotating, RWR) alters the position of the semicircular canals relative to the axis of rotation. This produces vertical and horizontal nystagmus, disorientation, vertigo, and nausea. With recurrent exposure, subjects habituate and can make more head movements before experiencing overpowering motion sickness. We questioned whether promethazine lessened the vertigo or delayed the habituation, whether habituation of the vertigo was related to the central vestibular time constant, i.e., to the time constant of velocity storage, and whether the severity of the motion sickness was related to deviation of the axis of eye velocity from gravity. Sixteen subjects received promethazine and placebo in a double-blind, crossover study in two consecutive 4-day test series 1 month apart, termed series I and II. Horizontal and vertical eye movements were recorded with video-oculography while subjects performed roll head movements of approx. 45 degrees over 2 s to and from the upright position while being rotated at 138 degrees /s around a vertical axis. Motion sickness was scaled from 1 (no sickness) to an endpoint of 20, at which time the subject was too sick to continue or was about to vomit. Habituation was determined by the number of head movements that subjects made before reaching the maximum motion sickness score of 20. Head movements increased steadily in each session with repeated testing, and there was no difference between the number of head movements made by the promethazine and placebo groups. Horizontal and vertical angular vestibulo-ocular reflex (aVOR) time constants declined in each test, with the declines being closely correlated to the increase in the number of head movements. The strength of vertiginous sensation was associated with the amount of deviation of the axis of eye velocity from gravity; the larger the deviation of the eye velocity axis from gravity, the more severe the motion sickness. Thus, promethazine neither reduced the nausea associated with RWR, nor retarded or hastened habituation. The inverse relationship between the aVOR time constants and number of head movements to motion sickness, and the association of the severity of motion sickness with the extent, strength, and time of deviation of eye velocity from gravity supports the postulate that the spatiotemporal properties of velocity storage, which are processed between the nodulus and uvula of the vestibulocerebellum and the vestibular nuclei, are likely to represent the source of the conflict responsible for producing motion sickness.
Ultrasonically-assisted Thermal Stir Welding System
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2014-01-01
A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.
Soto-Bustos, Ángel; Caro-Vadillo, Alicia; Martínez-DE-Merlo, Elena; Alonso-Alegre, Elisa González
2017-10-07
The purpose of this research was to compare the accuracy of newly described P wave-related parameters (P wave area, Macruz index and mean electrical axis) with classical P wave-related parameters (voltage and duration of P wave) for the assessment of left atrial (LA) size in dogs with degenerative mitral valve disease. One hundred forty-six dogs (37 healthy control dogs and 109 dogs with degenerative mitral valve disease) were prospectively studied. Two-dimensional echocardiography examinations and a 6-lead ECG were performed prospectively in all dogs. Echocardiography parameters, including determination of the ratios LA diameter/aortic root diameter and LA area/aortic root area, were compared to P wave-related parameters: P wave area, Macruz index, mean electrical axis voltage and duration of P wave. The results showed that P wave-related parameters (classical and newly described) had low sensitivity (range=52.3 to 77%; median=60%) and low to moderate specificity (range=47.2 to 82.5%; median 56.3%) for the prediction of left atrial enlargement. The areas under the curve of P wave-related parameters were moderate to low due to poor sensitivity. In conclusion, newly P wave-related parameters do not increase the diagnostic capacity of ECG as a predictor of left atrial enlargement in dogs with degenerative mitral valve disease.
SOTO-BUSTOS, Ángel; CARO-VADILLO, Alicia; MARTÍNEZ-DE-MERLO, Elena; ALONSO-ALEGRE, Elisa González
2017-01-01
The purpose of this research was to compare the accuracy of newly described P wave-related parameters (P wave area, Macruz index and mean electrical axis) with classical P wave-related parameters (voltage and duration of P wave) for the assessment of left atrial (LA) size in dogs with degenerative mitral valve disease. One hundred forty-six dogs (37 healthy control dogs and 109 dogs with degenerative mitral valve disease) were prospectively studied. Two-dimensional echocardiography examinations and a 6-lead ECG were performed prospectively in all dogs. Echocardiography parameters, including determination of the ratios LA diameter/aortic root diameter and LA area/aortic root area, were compared to P wave-related parameters: P wave area, Macruz index, mean electrical axis voltage and duration of P wave. The results showed that P wave-related parameters (classical and newly described) had low sensitivity (range=52.3 to 77%; median=60%) and low to moderate specificity (range=47.2 to 82.5%; median 56.3%) for the prediction of left atrial enlargement. The areas under the curve of P wave-related parameters were moderate to low due to poor sensitivity. In conclusion, newly P wave-related parameters do not increase the diagnostic capacity of ECG as a predictor of left atrial enlargement in dogs with degenerative mitral valve disease. PMID:28845021
Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.
2007-01-01
A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.
Mitri, F G
2017-02-01
The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto-fluidics would benefit from the results of the present investigation. Copyright © 2016 Elsevier B.V. All rights reserved.
Interferometric rotation sensor
NASA Technical Reports Server (NTRS)
Walsh, T. M.
1972-01-01
Sensor generates interference fringes varying in number (horizontally and vertically) as a function of the total angular deviation relative to the line-of-sight axis. Device eliminates errors from zero or null shift due to lack of electrical circuitry stability.
Comparison of the VISX wavescan and OPD-scan III with the subjective refraction.
Zhu, R; Long, K-L; Wu, X-M; Li, Q-D
2016-07-01
To compare the refractive errors measured by the VISX WaveScan, OPD-Scan III and the subjective refraction. The optometry accuracy of computer operated aberrometer used before refractive surgery has been debatable. Hence, a clear study on the role of such automated equipment in optometry is the need of the hour as compared to subjective refraction. Seventy-six patients (152 eyes) were recruited from January 2013 to December 2013. All patients were measured with subjective refraction by the phoropter (NIDEK, RT-5100), objective refraction by the WaveScan (AMO Company, USA), OPD-Scan III (Nidek Technologies, Japan). The sphere, cylinder, axis of the three methods were compared and analyzed. The diopter of sphere power measured by WaveScan was lower than that of the subjective refraction and the difference was 0.13 ± 0. 30D (t = 3. 753, p <0. 001). While the diopter of cylinder power was higher and the difference was 0.13 ±0.43D (t = 3. 664, p <0. 001). There was no significance for sphere, cylinder and spherical equivalent between OPD-Scan III and subjective refraction (p >0. 05). The value of the difference between WaveScan and subjective refraction was 5.87°±6.19°on average, while the difference between OPD-Scan III and subjective refraction was 3.82°±3.95°on average. The differences between the two were statistically significant (t =2. 817, p =0. 006). The results of sphere and cylinder measured by WaveScan and subjective refraction were different. As the latest integrated equipment, the Nidek OPD-Scan III gives a more accurate measurement of objective refraction when compared with subjective refraction. The latest Nidek OPD-Scan III may prove to be an useful tool for preoperative optometry deviation based on objective refraction.
Helical waves in easy-plane antiferromagnets
NASA Astrophysics Data System (ADS)
Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook
2017-12-01
Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.
Micro-blast waves using detonation transmission tubing
NASA Astrophysics Data System (ADS)
Samuelraj, I. Obed; Jagadeesh, G.; Kontis, K.
2013-07-01
Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX + traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength (10 < Δ {p}/{p}_0 ≲ 0.02) gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be 1.25 ± 0.94 J and the average TNT equivalent was found to be 0.3. The repeatability in generating these micro-blast waves using the Nonel tube was very good (± 2 %) and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.
Traveling wave device for combining or splitting symmetric and asymmetric waves
Möbius, Arnold; Ives, Robert Lawrence
2005-07-19
A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.
Shot H3837: Darht's first dual-axis explosive experiment
NASA Astrophysics Data System (ADS)
Harsh, James F.; Hull, Lawrence; Mendez, Jacob; McNeil, Wendy Vogan
2012-03-01
Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II.
Transient Wave Rotor Performance Investigated
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Lewis Research Center is investigating the wave rotor for use as a core gas generator in future gas turbine engines. The device, which uses gas-dynamic waves to transfer energy directly to and from the working fluid through which the waves travel, consists of a series of constant-area passages that rotate about an axis. Through rotation, the ends of the passages are periodically exposed to various circumferentially arranged ports that initiate the traveling waves within the passages.
NASA Astrophysics Data System (ADS)
Veselovskaya, T. V.; Klochan, E. L.; Lariontsev, E. G.; Parfenov, S. V.; Shelaev, A. N.
1990-07-01
Theoretical and experimental investigations demonstrated that in real acoustooptic modulators the diffraction of light by a standing ultrasonic wave may give rise to both phase and amplitude nonreciprocities of counterpropagating light waves. Analytic expressions are derived for the dependences of these nonreciprocities on the parameters of the traveling component of an ultrasonic wave in a modulator. It is shown that when the angle of incidence of light on a modulator deviates from the Bragg angle, the phase nonreciprocity may be suppressed, but the amplitude nonreciprocity becomes maximal and its sign is governed by the law of deviation of the angle of incidence from the Bragg angle. A diffraction acoustooptic feedback makes it possible not only to achieve mode locking with an acoustooptic modulator utilizing a traveling ultrasonic wave, but also to control the magnitude and sign of amplitude-frequency nonreciprocities. It is reported that an acoustooptic feedback can be used to generate self-pumping waves in a solid-state mode-locked ring laser and thus stabilize bidirectional lasing in a wide range of the frequency offset between the counterpropagating waves.
A Measuring System for Well Logging Attitude and a Method of Sensor Calibration
Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao
2014-01-01
This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°. PMID:24859028
A measuring system for well logging attitude and a method of sensor calibration.
Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao
2014-05-23
This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.
Effect of knots on stress waves in lumber
C.C. Gerhards
1982-01-01
An impact stress wave was induced in the end of 2 by 6 lumber containing knots. Rather than a normal, perpendicular-to-the-axis profile in transiting by a knot, the stress wave tended to Iead in zones of clear wood in the direction of the slope of grain or slope of the annual rings and to lag behind the knot. Of three methods evaluated to time the stress wave, the...
Effect of cross grain on stress waves in lumber
C.C. Gerhards
1980-01-01
An evaluation is made of the effect of cross grain on the transit time of longitudinal compression stress waves in Douglas-fir 2 by 8 lumber. Cross grain causes the stress wave to advance with a front or contour skewed in the direction of the grain angle, rather than to advance with a front normal to the long axis of lumber. Thus, the timing of the stress wave in...
NASA Astrophysics Data System (ADS)
Lan, Bo; Lowe, Michael J. S.; Dunne, Fionn P. E.
2015-10-01
A new spherical convolution approach has been presented which couples HCP single crystal wave speed (the kernel function) with polycrystal c-axis pole distribution function to give the resultant polycrystal wave speed response. The three functions have been expressed as spherical harmonic expansions thus enabling application of the de-convolution technique to enable any one of the three to be determined from knowledge of the other two. Hence, the forward problem of determination of polycrystal wave speed from knowledge of single crystal wave speed response and the polycrystal pole distribution has been solved for a broad range of experimentally representative HCP polycrystal textures. The technique provides near-perfect representation of the sensitivity of wave speed to polycrystal texture as well as quantitative prediction of polycrystal wave speed. More importantly, a solution to the inverse problem is presented in which texture, as a c-axis distribution function, is determined from knowledge of the kernel function and the polycrystal wave speed response. It has also been explained why it has been widely reported in the literature that only texture coefficients up to 4th degree may be obtained from ultrasonic measurements. Finally, the de-convolution approach presented provides the potential for the measurement of polycrystal texture from ultrasonic wave speed measurements.
On the Scattering of Sound by a Rectilinear Vortex
NASA Astrophysics Data System (ADS)
HOWE, M. S.
1999-11-01
A re-examination is made of the two-dimensional interaction of a plane, time-harmonic sound wave with a rectilinear vortex of small core diameter at low Mach number. Sakov [1] and Ford and Smith [2] have independently resolved the “infinite forward scatter” paradox encountered in earlier applications of the Born approximation to this problem. The first order scattered field (Born approximation) has nulls in the forward and back scattering directions, but the interaction of the wave with non-acoustically compact components of the vortex velocity field causes wavefront distortion, and the phase of the incident wave to undergo a significant variation across a parabolic domain whose axis extends along the direction of forward scatter from the vortex core. The transmitted wave crests of the incident wave become concave and convex, respectively, on opposite sides of the axis of the parabola, and focusing and defocusing of wave energy produces corresponding increases and decreases in wave amplitude. Wave front curvature decreases with increasing distance from the vortex core, with the result that the wave amplitude and phase are asymptotically equal to the respective values they would have attained in the absence of the vortex. The transverse acoustic dipole generated by translational motion of the vortex at the incident wave acoustic particle velocity, and the interaction of the incident wave with acoustically compact components of the vortex velocity field, are responsible for a system of cylindrically spreading, scattered waves outside the parabolic domain.
A novel method of measuring spatial rotation angle using MEMS tilt sensors
NASA Astrophysics Data System (ADS)
Cao, Jian'an; Zhu, Xin; Wu, Hao; Zhang, Leping
2017-10-01
This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α, the sensor’s swing angle on the measuring plane; β, the angle between the rotation axis and the horizontal plane; and γ, the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°.
NASA Astrophysics Data System (ADS)
Zhou, Yi; Li, Qi
2017-01-01
A dual-axis reflective continuous-wave terahertz (THz) confocal scanning polarization imaging system was adopted. THz polarization imaging experiments on gaps on film and metallic letters "BeLLE" were carried out. Imaging results indicate that the THz polarization imaging is sensitive to the tilted gap or wide flat gap, suggesting the THz polarization imaging is able to detect edges and stains. An image fusion method based on the digital image processing was proposed to ameliorate the imaging quality of metallic letters "BeLLE." Objective and subjective evaluation both prove that this method can improve the imaging quality.
ERP correlates of unexpected word forms in a picture–word study of infants and adults
Duta, M.D.; Styles, S.J.; Plunkett, K.
2012-01-01
We tested 14-month-olds and adults in an event-related potentials (ERPs) study in which pictures of familiar objects generated expectations about upcoming word forms. Expected word forms labelled the picture (word condition), while unexpected word forms mismatched by either a small deviation in word medial vowel height (mispronunciation condition) or a large deviation from the onset of the first speech segment (pseudoword condition). Both infants and adults showed sensitivity to both types of unexpected word form. Adults showed a chain of discrete effects: positivity over the N1 wave, negativity over the P2 wave (PMN effect) and negativity over the N2 wave (N400 effect). Infants showed a similar pattern, including a robust effect similar to the adult P2 effect. These observations were underpinned by a novel visualisation method which shows the dynamics of the ERP within bands of the scalp over time. The results demonstrate shared processing mechanisms across development, as even subtle deviations from expected word forms were indexed in both age groups by a reduction in the amplitude of characteristic waves in the early auditory evoked potential. PMID:22483072
Stability analysis for acoustic wave propagation in tilted TI media by finite differences
NASA Astrophysics Data System (ADS)
Bakker, Peter M.; Duveneck, Eric
2011-05-01
Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves stability, provided that the central difference operators of the second-order derivatives dominate over the twice applied operators of the first-order derivatives. In practice, it turns out that this is almost the case. Stability of the desired discretization scheme is enforced by slightly weighting down the mixed second-order derivatives in the wave equation. This has a minor, practically negligible, effect on the kinematics of wave propagation. Finally, it is shown that non-reflecting boundary conditions, enforced by applying a taper at the boundaries of the grid, do not harm the stability of the discretization scheme.
Diameter effect on stress-wave evaluation of modulus of elasticity of logs
Xiping Wang; Robert J. Ross; Brian K. Brashaw; John Punches; John R. Erickson; John W. Forsman; Roy E. Pellerin
2004-01-01
Recent studies on nondestructive evaluation (NDE) of logs have shown that a longitudinal stress-wave method can be used to nondestructively evaluate the modulus of elasticity (MOE) of logs. A strong relationship has been found between stress-wave MOE and static MOE of logs, but a significant deviation was observed between stress-wave and static values. The objective of...
Diameter effect on stress-wave evaluation of modulus of elasticity of logs
Xiping Wang; Robert J. Ross; Brian K. Brashaw; John R. Erickson; John W. Forsman; Roy Pellerin
2003-01-01
Recent studies on nondestructive evaluation (NDE) of logs have shown that a longitudinal stress-wave method can be used to nondestructively evaluate the modulus of elasticity (MOE) of logs. A strong relationship has been found between stress-wave MOE and static MOE of logs, but a significant deviation was observed between stress-wave and static values. The objective of...
Identification of P/S-wave successions for application in microseismicity
NASA Astrophysics Data System (ADS)
Deflandre, J.-P.; Dubesset, M.
1992-09-01
Interpretation of P/S-wave successions is used in induced or passive microseismicity. It makes the location of microseismic events possible when the triangulation technique cannot be used. To improve the reliability of the method, we propose a technique that identifies the P/S-wave successions among recorded wave successions. A polarization software is used to verify the orthogonality between the P and S polarization axes. The polarization parameters are computed all along the 3-component acoustic signal. Then the algorithm detects time windows within which the signal polarization axis is perpendicular to the polarization axis of the wave in the reference time window (representative of the P wave). The technique is demonstrated for a synthetic event, and three application cases are presented. The first one corresponds to a calibration shot within which the arrivals of perpendicularly polarized waves are correctly detected in spite of their moderate amplitude. The second example presents a microseismic event recorded during gas withdrawal from an underground gas storage reservoir. The last example is chosen as a counter-example, concerning a microseismic event recorded during a hydraulic fracturing job. The detection algorithm reveals that, in this case, the wave succession does not correspond to a P/S one. This implies that such an event must not be located by the method based on the interpretation of a P/S-wave succession as no such a succession is confirmed.
Motwani, Manoj
2017-01-01
To demonstrate how using the Wavelight Contoura measured astigmatism and axis eliminates corneal astigmatism and creates uniformly shaped corneas. A retrospective analysis was conducted of the first 50 eyes to have bilateral full WaveLight ® Contoura LASIK correction of measured astigmatism and axis (vs conventional manifest refraction), using the Layer Yolked Reduction of Astigmatism Protocol in all cases. All patients had astigmatism corrected, and had at least 1 week of follow-up. Accuracy to desired refractive goal was assessed by postoperative refraction, aberration reduction via calculation of polynomials, and postoperative visions were analyzed as a secondary goal. The average difference of astigmatic power from manifest to measured was 0.5462D (with a range of 0-1.69D), and the average difference of axis was 14.94° (with a range of 0°-89°). Forty-seven of 50 eyes had a goal of plano, 3 had a monovision goal. Astigmatism was fully eliminated from all but 2 eyes, and 1 eye had regression with astigmatism. Of the eyes with plano as the goal, 80.85% were 20/15 or better, and 100% were 20/20 or better. Polynomial analysis postoperatively showed that at 6.5 mm, the average C3 was reduced by 86.5% and the average C5 by 85.14%. Using WaveLight ® Contoura measured astigmatism and axis removes higher order aberrations and allows for the creation of a more uniform cornea with accurate removal of astigmatism, and reduction of aberration polynomials. WaveLight ® Contoura successfully links the refractive correction layer and aberration repair layer using the Layer Yolked Reduction of Astigmatism Protocol to demonstrate how aberration removal can affect refractive correction.
Reliability of frames of reference used for tibial component rotation in total knee arthroplasty.
Page, Stephen R; Deakin, Angela H; Payne, Anthony P; Picard, Frederic
2011-01-01
This study evaluated seven different frames of reference used for tibial component rotation in total knee arthroplasty (TKA) to determine which ones showed good reliability between bone specimens. An optoelectronic system based around a computer-assisted surgical navigation system was used to measure and locate 34 individual anatomical landmarks on 40 tibias. Each particular frame of reference was reconstructed from a group of data points taken from the surface of each bone. The transverse axis was used as the baseline to which the other axes were compared, and the differences in angular rotation between the other six reference frames and the transverse axis were calculated. There was high variability in the tibial rotational alignment associated with all frames of reference. Of the references widely used in current TKA procedures, the tibial tuberosity axis and the anterior condylar axis had lower standard deviations (6.1° and 7.3°, respectively) than the transmalleolar axis and the posterior condylar axis (9.3° for both). In conclusion, we found high variability in the frames of reference used for tibial rotation alignment. However, the anterior condylar axis and transverse axis may warrant further tests with the use of navigation. Combining different frames of reference such as the tibial tuberosity axis, anterior condylar axis and transverse axis may reduce the range of errors found in all of these measurements.
Beating the Spin-down Limit on Gravitational Wave Emission from the Vela Pulsar
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; Kim, N.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Landry, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parameswaran, A.; Pardi, S.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Podkaminer, J.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Salit, M.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shihan Weerathunga, T.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Buchner, S.; Hotan, A.; Palfreyman, J.
2011-08-01
We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, 1.9 × 10-24 and 2.2 × 10-24, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of 2.1 × 10-24, with 95% degree of belief. These limits are below the indirect spin-down limit of 3.3 × 10-24 for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of ~10-3. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown.
Pilver, Corey E.; Libby, Daniel J.; Hoff, Rani A.; Potenza, Marc N.
2013-01-01
To examine the longitudinal relationship between past-year problem-gambling severity and incident Axis I psychopathology among older adults (aged 55 to 90), analyses were conducted on data from the National Epidemiologic Study of Alcohol and Related Conditions (NESARC). This nationally-representative population-based survey was conducted in two waves (Wave 1, 2000-2001; and Wave 2, 2004-2005). Past-year problem-gambling severity at Wave 1 and incident Axis I psychopathology at Wave 2 were evaluated with the Alcohol Use Disorder and Associated Disabilities Interview Schedule—Diagnostic and Statistical Manual of Mental Disorders—Fourth Edition. Multivariate logistic regression modeling was conducted on groups categorized into low-frequency gambling/non-gambling (LFG/NG), low-risk gambling (LRG), and at-risk/problem/pathological gambling (ARPG) based on DSM-IV criteria for pathological gambling. Relative to LFG/NG, ARPG at Wave 1 was positively associated with the incidence of generalized anxiety disorder (OR=2.51; p=.011) and any substance use disorder (OR=2.61; p=.0036); LRG was negatively associated with the incidence of hypomania (OR=0.33; p=.017). Models were adjusted for demographic characteristics, psychiatric comorbidity, health behaviors, physical health, and stressful life events assessed at baseline. While gambling may represent a positive activity for some older adults, data suggest that risky/problematic gambling behavior may be associated with the development of psychiatric problems in this population. Older-adult gamblers, as well as their clinicians, friends, and family, should be aware of potential risks associated with gambling, adopt strategies to prevent the onset of secondary disorders, and monitor themselves and others for signs of problems. PMID:23333039
Space-plasma campaign on UCLA's Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Koepke, M. E.; Finnegan, S. M.; Knudsen, D. J.; Vincena, S.
2007-05-01
Knudsen [JGR, 1996] describes a potential role for stationary Alfvén (StA) waves in auroral arcs' frequency dependence. Magnetized plasmas are predicted to support electromagnetic perturbations that are static in a fixed frame if there is uniform background plasma convection. These stationary waves should not be confused with standing waves that oscillate in time with a fixed, spatially varying envelope. Stationary waves have no time variation in the fixed frame. In the drifting frame, there is an apparent time dependence as plasma convects past fixed electromagnetic structures. We describe early results from an experimental campaign to reproduce in the lab the basic conditions necessary for the creation of StA waves, namely quasi-steady-state convection across magnetic field-aligned current channels. We show that an off-axis, fixed channel of electron current (and depleted density) is created in the Large Plasma Device Upgrade (LAPD) at UCLA, using a small, heated, oxide-coated electrode at one plasma-column end and we show that the larger plasma column rotates about its cylindrical axis from a radial electric field imposed by a special termination electrode on the same end. Initial experimentation with plasma-rotation-inducing termination electrodes began in May 2006 in the West Virginia Q Machine, leading to two designs that, in January 2007, were tested in LAPD. The radial profile of azimuthal velocity was consistent with predictions of rigid-body rotation. Current-channel experiments in LAPD, in August 2006, showed that inertial Alfvén waves could be concentrated in an off-axis channel of electron current and depleted plasma density. These experimental results will be presented and discussed. This research is supported by DOE and NSF.
Mock, U; Dieckmann, K; Wolff, U; Knocke, T H; Pötter, R
1999-08-01
Geometrical accuracy in patient positioning can vary substantially during external radiotherapy. This study estimated the set-up accuracy during pelvic irradiation for gynecological malignancies for determination of safety margins (planning target volume, PTV). Based on electronic portal imaging devices (EPID), 25 patients undergoing 4-field pelvic irradiation for gynecological malignancies were analyzed with regard to set-up accuracy during the treatment course. Regularly performed EPID images were used in order to systematically assess the systematic and random component of set-up displacements. Anatomical matching of verification and simulation images was followed by measuring corresponding distances between the central axis and anatomical features. Data analysis of set-up errors referred to the x-, y-,and z-axes. Additionally, cumulative frequencies were evaluated. A total of 50 simulation films and 313 verification images were analyzed. For the anterior-posterior (AP) beam direction mean deviations along the x- and z-axes were 1.5 mm and -1.9 mm, respectively. Moreover, random errors of 4.8 mm (x-axis) and 3.0 mm (z-axis) were determined. Concerning the latero-lateral treatment fields, the systematic errors along the two axes were calculated to 2.9 mm (y-axis) and -2.0 mm (z-axis) and random errors of 3.8 mm and 3.5 mm were found, respectively. The cumulative frequency of misalignments < or =5 mm showed values of 75% (AP fields) and 72% (latero-lateral fields). With regard to cumulative frequencies < or =10 mm quantification revealed values of 97% for both beam directions. During external pelvic irradiation therapy for gynecological malignancies, EPID images on a regular basis revealed acceptable set-up inaccuracies. Safety margins (PTV) of 1 cm appear to be sufficient, accounting for more than 95% of all deviations.
Study of Rayleigh-Love coupling from Spatial Gradient Observation
NASA Astrophysics Data System (ADS)
Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.
2017-12-01
We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.
NASA Astrophysics Data System (ADS)
Osipova, Irina Y.; Chyzh, Igor H.
2001-06-01
The influence of eye jumps on the accuracy of estimation of Zernike coefficients from eye transverse aberration measurements was investigated. By computer modeling the ametropy and astigmatism have been examined. The standard deviation of the wave aberration function was calculated. It was determined that the standard deviation of the wave aberration function achieves the minimum value if the number of scanning points is equal to the number of eye jumps in scanning period. The recommendations for duration of measurement were worked out.
Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves
NASA Technical Reports Server (NTRS)
Eberstein, I. J.; Theon, J. S.
1975-01-01
Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.
Investigation of heavy current discharges with high initial gas density
NASA Astrophysics Data System (ADS)
Budin, A.; Bogomaz, A.; Kolikov, V.; Kuprin, A.; Leontiev, V.; Rutberg, Ph.; Shirokov, N.
1996-05-01
Piezoelectric pressure transducers, with noise immunity and time resolution of 0,5 μs were used to measure pulse pressures of 430 MPa along the axis of an electrical discharge channel. Initial concentration of He was 2,7ṡ1021cm-3, dI/dt=6ṡ1011 A/s, and Imax=560 kA. Shock waves with amplitudes exceeding the pressure along the axis, were detected by a pressure transducer on the wall of the discharge chamber. Typical shock velocities were 2ṡ4 km/s. Average pressure measurements along the discharge axis at different radii were used to estimate the current density distribution along the canal radius. The presence of the shock waves, promoting the additional hydrogen heating in the discharge chamber, has been registered during the discharge in hydrogen for Imax˜1 MA and an initial concentration of 1021cm-3.
Comparisons of seismic and electromagnetic structures of the MELT area
NASA Astrophysics Data System (ADS)
Evans, R. L.; Hirth, G.; Forsyth, D.; Baba, K.; Chave, A.
2003-04-01
Both seismic and electromagnetic (EM) models from the MELT experiment show similar broad scale features in the mantle beneath the Southern EPR. In all EM models, the conductivity in the upper 50-60˜km is considerably higher to the west of the ridge than to the east. Similarly, seismic models of short period Love waves are asymmetric in velocity structure, with slower velocities to the west of the ridge within the upper 60˜km. Body wave data suggest a similar asymmetry, although the depth extent is not as well defined. West of the ridge, both the higher conductivities and lower velocities have been attributed to the presence of a small melt fraction, although the anomalous regions estimated from different techniques do not entirely agree. To the east, there is a rapid increase in resistivity and S-wave velocity, indicating that within 25˜km of the axis the mantle above 70˜km is both dry and melt-free. Further away from the ridge, the boundary between a conductive asthenospheric mantle and a resistive overlying mantle flattens, at a depth around 60-80˜km. Rayleigh wave inversions also show fairly flat velocity contours with a broad minimum centered at 60-80˜km. Both of these features are consistent with a transition from dry to damp mantle. Also away from the ridge, EM data, shear-wave splitting, and Rayleigh waves all require an azimuthally anisotropic mantle consistent with the a-axis of olivine being preferentially oriented horizontally and perpendicular to the ridge. Anisotropy in EM data suggests damp mantle conditions in the 100-200˜km depth range, with enhanced conduction along the a-axis of olivine. Rayleigh waves are most sensitive to shallower structure and require anisotropy in the upper 70˜km. In the uppermost 40˜km, the most conductive and lowest velocity regions are close to the axis but offset 5-10˜km to the west. Some anisotropic inversions recover a vertically conductive feature that could be interpreted as a few percent melt distributed in vertically aligned channels or tubes. However, modeling of seismic data rule out the presence of a vertical melt bearing channel larger than 5˜km wide with a velocity reduction of 0.5˜kms-1 (3-4% melt fraction). This apparent discrepancy may provide clues as to how melt is distributed.
Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology
NASA Astrophysics Data System (ADS)
Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.
2014-08-01
The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.
Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti)more » by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.« less
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Aganin, Alexei
2000-01-01
The transonic nozzle transmission problem and the open rotor noise radiation problem are solved computationally. Both are multiple length scales problems. For efficient and accurate numerical simulation, the multiple-size-mesh multiple-time-step Dispersion-Relation-Preserving scheme is used to calculate the time periodic solution. To ensure an accurate solution, high quality numerical boundary conditions are also needed. For the nozzle problem, a set of nonhomogeneous, outflow boundary conditions are required. The nonhomogeneous boundary conditions not only generate the incoming sound waves but also, at the same time, allow the reflected acoustic waves and entropy waves, if present, to exit the computation domain without reflection. For the open rotor problem, there is an apparent singularity at the axis of rotation. An analytic extension approach is developed to provide a high quality axis boundary treatment.
AxiSEM3D: broadband seismic wavefields in 3-D aspherical Earth models
NASA Astrophysics Data System (ADS)
Leng, K.; Nissen-Meyer, T.; Zad, K. H.; van Driel, M.; Al-Attar, D.
2017-12-01
Seismology is the primary tool for data-informed inference of Earth structure and dynamics. Simulating seismic wave propagation at a global scale is fundamental to seismology, but remains as one of most challenging problems in scientific computing, because of both the multiscale nature of Earth's interior and the observable frequency band of seismic data. We present a novel numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. Our method, named AxiSEM3D, is a hybrid of spectral element method and pseudospectral method. It reduces the azimuthal dimension of wavefields by means of a global Fourier series parameterization, of which the number of terms can be locally adapted to the inherent azimuthal smoothness of the wavefields. AxiSEM3D allows not only for material heterogeneities, such as velocity, density, anisotropy and attenuation, but also for finite undulations on radial discontinuities, both solid-solid and solid-fluid, and thereby a variety of aspherical Earth features such as ellipticity, topography, variable crustal thickness, and core-mantle boundary topography. Such interface undulations are equivalently interpreted as material perturbations of the contiguous media, based on the "particle relabelling transformation". Efficiency comparisons show that AxiSEM3D can be 1 to 3 orders of magnitude faster than conventional 3-D methods, with the speedup increasing with simulation frequency and decreasing with model complexity, but for all realistic structures the speedup remains at least one order of magnitude. The observable frequency range of global seismic data (up to 1 Hz) has been covered for wavefield modelling upon a 3-D Earth model with reasonable computing resources. We show an application of surface wave modelling within a state-of-the-art global crustal model (Crust1.0), with the synthetics compared to real data. The high-performance C++ code is released at github.com/AxiSEM3D/AxiSEM3D.
A Wave Chaotic Study of Quantum Graphs with Microwave Networks
NASA Astrophysics Data System (ADS)
Fu, Ziyuan
Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.
Absolute Scale Quantitative Off-Axis Electron Holography at Atomic Resolution
NASA Astrophysics Data System (ADS)
Winkler, Florian; Barthel, Juri; Tavabi, Amir H.; Borghardt, Sven; Kardynal, Beata E.; Dunin-Borkowski, Rafal E.
2018-04-01
An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe2 flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.
The c-axis charge traveling wave in a coupled system of Josephson junctions
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Hamdipour, M.
2012-05-01
We demonstrate a manifestation of the charge traveling wave along the c axis (TW) in current voltage characteristics of coupled Josephson junctions in high- T c superconductors. The branches related to the TW with different wavelengths are found for the stacks with different number of Josephson junctions at different values of system's parameters. Transitions between the TW branches and the outermost branch are observed. The electric charge in the superconducting layers and charge-charge correlation functions for TW and outermost branches show different behavior with bias current. We propose an experimental testing of the TW branching by microwave irradiation.
Linear hydraulic drive system for a Stirling engine
Walsh, Michael M.
1984-02-21
A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.
Congenital axis dysmorphism in a medieval skeleton : …secunda a vertendo epistropheus….
Travan, Luciana; Saccheri, Paola; Toso, Francesco; Crivellato, Enrico
2013-05-01
We describe here the axis dysmorphism that we observed in the skeletal remains of a human child dug up from a fifteenth century cemetery located in north-eastern Italy. This bone defect is discussed in the light of pertinent literature. We performed macroscopical examination and CT scan analysis of the axis. Axis structure was remarkably asymmetric. Whilst the left half exhibited normal morphology, the right one was smaller than normal, and its lateral articular surface showed horizontal orientation. In addition, the odontoid process appeared leftward deviated and displayed a supplementary articular-like facet situated on the right side of its surface. These findings suggest a diagnosis of unilateral irregular segmentation of atlas and axis, a rare dysmorphism dependent upon disturbances of notochordal development in early embryonic life. Likewise other malformations of the craniovertebral junction, this axis defect may alter the delicate mechanisms of upper neck movements and cause a complex series of clinical symptoms. This is an emblematic case whereby human skeletal remains may provide valuable information on the anatomical defects of craniovertebral junction.
Cubic nonlinearity in shear wave beams with different polarizations
Wochner, Mark S.; Hamilton, Mark F.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.
2008-01-01
A coupled pair of nonlinear parabolic equations is derived for the two components of the particle motion perpendicular to the axis of a shear wave beam in an isotropic elastic medium. The equations account for both quadratic and cubic nonlinearity. The present paper investigates, analytically and numerically, effects of cubic nonlinearity in shear wave beams for several polarizations: linear, elliptical, circular, and azimuthal. Comparisons are made with effects of quadratic nonlinearity in compressional wave beams. PMID:18529167
Experimental and numerical investigations of temporally and spatially periodic modulated wave trains
NASA Astrophysics Data System (ADS)
Houtani, H.; Waseda, T.; Tanizawa, K.
2018-03-01
A number of studies on steep nonlinear waves were conducted experimentally with the temporally periodic and spatially evolving (TPSE) wave trains and numerically with the spatially periodic and temporally evolving (SPTE) ones. The present study revealed that, in the vicinity of their maximum crest height, the wave profiles of TPSE and SPTE modulated wave trains resemble each other. From the investigation of the Akhmediev-breather solution of the nonlinear Schrödinger equation (NLSE), it is revealed that the dispersion relation deviated from the quadratic dependence of frequency on wavenumber and became linearly dependent instead. Accordingly, the wave profiles of TPSE and SPTE breathers agree. The range of this agreement is within the order of one wave group of the maximum crest height and persists during the long-term evolution. The findings extend well beyond the NLSE regime and can be applied to modulated wave trains that are highly nonlinear and broad-banded. This was demonstrated from the numerical wave tank simulations with a fully nonlinear potential flow solver based on the boundary element method, in combination with the nonlinear wave generation method based on the prior simulation with the higher-order spectral model. The numerical wave tank results were confirmed experimentally in a physical wave tank. The findings of this study unravel the fundamental nature of the nonlinear wave evolution. The deviation of the dispersion relation of the modulated wave trains occurs because of the nonlinear phase variation due to quasi-resonant interaction, and consequently, the wave geometry of temporally and spatially periodic modulated wave trains coincides.
Rogue waves and large deviations in deep sea.
Dematteis, Giovanni; Grafke, Tobias; Vanden-Eijnden, Eric
2018-01-30
The appearance of rogue waves in deep sea is investigated by using the modified nonlinear Schrödinger (MNLS) equation in one spatial dimension with random initial conditions that are assumed to be normally distributed, with a spectrum approximating realistic conditions of a unidirectional sea state. It is shown that one can use the incomplete information contained in this spectrum as prior and supplement this information with the MNLS dynamics to reliably estimate the probability distribution of the sea surface elevation far in the tail at later times. Our results indicate that rogue waves occur when the system hits unlikely pockets of wave configurations that trigger large disturbances of the surface height. The rogue wave precursors in these pockets are wave patterns of regular height, but with a very specific shape that is identified explicitly, thereby allowing for early detection. The method proposed here combines Monte Carlo sampling with tools from large deviations theory that reduce the calculation of the most likely rogue wave precursors to an optimization problem that can be solved efficiently. This approach is transferable to other problems in which the system's governing equations contain random initial conditions and/or parameters.
Design Methodology and Experimental Verification of Serpentine/Folded Waveguide TWTs
2016-03-17
FW), oscillation, serpentine, stopband, traveling -wave tube (TWT), vacuum electronics. I. INTRODUCTION DEVELOPMENT of high-power broadband vacuum elec...tron devices (VEDs) beyond Ka-band using conventional coupled-cavity and helix traveling -wave tube (TWT) RF cir- cuit fabrication techniques is...between the two positions is simply ks times the relative distance along the waveguide axis. However, from the beam–wave interaction standpoint, the
Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow
Lacy, J.R.; Sherwood, C.R.
2004-01-01
The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s-1 and currents up to 40 cm s-1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is -0.4 cm s-1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s-1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s-1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s-1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ??? 50 cm s-1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ??? 5 cm s-1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.
NASA Astrophysics Data System (ADS)
Piron, P.; Delacroix, C.; Huby, E.; Mawet, D.; Karlsson, M.; Ruane, G.; Habraken, S.; Absil, O.; Surdej, J.
2015-09-01
The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed.
Can the recovery of lower limb fractures be achieved by use of 3D printing mirror model?
Zhang, Wenxi; Ji, Yueping; Wang, Xinming; Liu, Jie; Li, Dong
2017-11-01
The mirror imaging 3D printing model can be used a as a reference for anatomical reduction in unilateral lower limb fractures. However, the premise of using mirror technology is that the bilateral lower limb bones are similar enough. Because one side had a fracture, it was impossible to compare this directly to the other side. Usually, surgeons think that the bilateral bones are symmetrical and use mirror technology without judging their symmetry. In patients with a unilateral lower limb bone fracture, we measured the long axis and short axis of the three selected transverse sections of the bilateral long bone for comparison to judge the symmetry of the bilateral long bones on CT images. Then, we printed a life-size normal mirror image of the long bone that is similar to the affected side. The model was used as a reference for the anatomical reduction of fractures and preoperative practice. Seventy-eight patients with lower limb bone fracture were included in this study. 24 groups of data were generated according to the same level and same axis. There were significant differences between the short axis of the left and right femoral condyle 5cm from the intercondylar keel (p=0.011), and the short axis of the distal tibia 15cm from the ankle dome (p=0.026). There was no significant difference between the left and right sides in the other 22 groups. Of all of the patients in our research, 3 patients decided to forego the surgical treatment and the operation was performed on the model instead, and the lengths of 2 patients showed deviation in actual operations, preventing anatomical reduction. The remaining 73 patients used the pre-bended plates and screws from preoperative practice in the actual operations, and postoperative X-ray examinations showed that the length of the deviation was within the permissible range. The "Comparison of long axis and short axis of three equidistant transverse sections" method makes it easy to judge the symmetry of the bilateral long bones, and prevents the blindness of preoperative planning using the contralateral mirror model directly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tropical Cyclogenesis in a Tropical Wave Critical Layer: Easterly Waves
NASA Technical Reports Server (NTRS)
Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.
2009-01-01
The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside.
Titiyal, Jeewan S; Kaur, Manpreet; Jose, Cijin P; Falera, Ruchita; Kinkar, Ashutosh; Bageshwar, Lalit Ms
2018-01-01
To compare toric intraocular lens (IOL) alignment assisted by image-guided surgery or manual marking methods and its impact on visual quality. This prospective comparative study enrolled 80 eyes with cataract and astigmatism ≥1.5 D to undergo phacoemulsification with toric IOL alignment by manual marking method using bubble marker (group I, n=40) or Callisto eye and Z align (group II, n=40). Postoperatively, accuracy of alignment and visual quality was assessed with a ray tracing aberrometer. Primary outcome measure was deviation from the target axis of implantation. Secondary outcome measures were visual quality and acuity. Follow-up was performed on postoperative days (PODs) 1 and 30. Deviation from the target axis of implantation was significantly less in group II on PODs 1 and 30 (group I: 5.5°±3.3°, group II: 3.6°±2.6°; p =0.005). Postoperative refractive cylinder was -0.89±0.35 D in group I and -0.64±0.36 D in group II ( p =0.003). Visual acuity was comparable between both the groups. Visual quality measured in terms of Strehl ratio ( p <0.05) and modulation transfer function (MTF) ( p <0.05) was significantly better in the image-guided surgery group. Significant negative correlation was observed between deviation from target axis and visual quality parameters (Strehl ratio and MTF) ( p <0.05). Image-guided surgery allows precise alignment of toric IOL without need for reference marking. It is associated with superior visual quality which correlates with the precision of IOL alignment.
Titiyal, Jeewan S; Kaur, Manpreet; Jose, Cijin P; Falera, Ruchita; Kinkar, Ashutosh; Bageshwar, Lalit MS
2018-01-01
Purpose To compare toric intraocular lens (IOL) alignment assisted by image-guided surgery or manual marking methods and its impact on visual quality. Patients and methods This prospective comparative study enrolled 80 eyes with cataract and astigmatism ≥1.5 D to undergo phacoemulsification with toric IOL alignment by manual marking method using bubble marker (group I, n=40) or Callisto eye and Z align (group II, n=40). Postoperatively, accuracy of alignment and visual quality was assessed with a ray tracing aberrometer. Primary outcome measure was deviation from the target axis of implantation. Secondary outcome measures were visual quality and acuity. Follow-up was performed on postoperative days (PODs) 1 and 30. Results Deviation from the target axis of implantation was significantly less in group II on PODs 1 and 30 (group I: 5.5°±3.3°, group II: 3.6°±2.6°; p=0.005). Postoperative refractive cylinder was −0.89±0.35 D in group I and −0.64±0.36 D in group II (p=0.003). Visual acuity was comparable between both the groups. Visual quality measured in terms of Strehl ratio (p<0.05) and modulation transfer function (MTF) (p<0.05) was significantly better in the image-guided surgery group. Significant negative correlation was observed between deviation from target axis and visual quality parameters (Strehl ratio and MTF) (p<0.05). Conclusion Image-guided surgery allows precise alignment of toric IOL without need for reference marking. It is associated with superior visual quality which correlates with the precision of IOL alignment. PMID:29731603
The gap technique does not rotate the femur parallel to the epicondylar axis.
Matziolis, Georg; Boenicke, Hinrich; Pfiel, Sascha; Wassilew, Georgi; Perka, Carsten
2011-02-01
In the analysis of painful total knee replacements, the surgical epicondylar axis (SEA) has become established as a standard in the diagnosis of femoral component rotation. It remains unclear whether the gap technique widely used to determine femoral rotation, when applied correctly, results in a rotation parallel to the SEA. In this prospective study, 69 patients (69 joints) were included who received a navigated bicondylar surface replacement due to primary arthritis of the knee joint. In 67 cases in which a perfect soft-tissue balancing of the extension gap (<1° asymmetry) was achieved, the flexion gap and the rotation of the femoral component necessary for its symmetry was determined and documented. The femoral component was implanted additionally taking into account the posterior condylar axis and the Whiteside's line. Postoperatively, the rotation of the femoral component to the SEA was determined and this was used to calculate the angle between a femur implanted according to the gap technique and the SEA. If the gap technique had been used consistently, it would have resulted in a deviation of the femoral components by -0.6° ± 2.9° (-7.4°-5.9°) from the SEA. The absolute deviation would have been 2.4° ± 1.8°, with a range between 0.2° and 7.4°. Even if the extension gap is perfectly balanced, the gap technique does not lead to a parallel alignment of the femoral component to the SEA. Since the clinical results of this technique are equivalent to those of the femur first technique in the literature, an evaluation of this deviation as a malalignment must be considered critically.
Ion cyclotron production by a four-wave interaction with a helicon pump.
Sutherland, O; Giles, M; Boswell, R
2005-05-27
Ion cyclotron waves at approximately 0.7 the ion gyrofrequency have been observed experimentally in the large volume helicon reactor WOMBAT. These waves are highly localized along the axis of the device where a 8 cm diameter, 2 m long. Ar II plasma column is produced. Spectral measurements reveal a four-wave interaction where energy is down-converted to the ion cyclotron mode from the helicon pump. The experimental results are explained in terms of a filamentation type instability.
NASA Astrophysics Data System (ADS)
Song, X.; Jordan, T. H.
2016-12-01
Body-wave and normal-mode observations have revealed an inner-core structure that is radially layered, axially anisotropic, and hemispherically asymmetric. Previous theoretical studies have examined the consistency of these features with the elasticity of iron crystals thought to dominate inner-core composition, but a fully consistent model has been elusive. Here we compare the seismic observation with effective-medium models derived from ab initio calculations of the elasticity tensors for hcp-Fe and bcc-Fe. Our estimates are based on Jordan's (GJI, 2015) effective medium theory, which is derived from a self-consistent, second-order Born approximation. The theory provides closed-form expressions for the effective elastic parameters of 3D anisotropic, heterogeneous media in which the local anisotropy is a constant hexagonal stiffness tensor C stochastically oriented about a constant symmetry axis \\hat{s} and the statistics of the small-scale heterogeneities are transversely isotropic in the plane perpendicular to \\hat{s}. The stochastic model is then described by a dimensionless "aspect ratio of the heterogeneity", 0 ≤ η < ∞, and a dimensionless "orientation ratio of the anisotropy", 0 ≤ ξ < ∞. The latter determines the degree to which the axis of C is aligned with \\hat{s}. We compute the loci of models with \\hat{s} oriented along the Earth's rotational axis ( \\hat{s} = north) by varying ξ and η for various ab initio estimates of C. We show that a lot of widely used estimates of C are inconsistent with most published normal-mode models of inner-core anisotropy. In particular, if the P-wave fast axis aligns with the rotational axis, which is required to satisfy the body-wave observations, then these hcp-Fe models predict that the fast polarization of the S waves is in the plane perpendicular to \\hat{s}, which disagrees with most normal-mode models. We have attempted to resolve this discrepancy by examining alternative hcp-Fe models, including radially anisotropic distributions of stochastic anisotropy and heterogeneity (i.e., where \\hat{s} = \\hat{r}), as well as bcc-Fe models. Our calculations constrain the form of C needed to satisfy the seismological inferences.
Ultrasonic imaging system for in-process fabric defect detection
Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.
1997-01-01
An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.
Acoustic reflection log in transversely isotropic formations
NASA Astrophysics Data System (ADS)
Ronquillo Jarillo, G.; Markova, I.; Markov, M.
2018-01-01
We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.
On the large-scale dynamics of rapidly rotating convection zones. [in solar and stellar interiors
NASA Technical Reports Server (NTRS)
Durney, B. R.
1983-01-01
The fact that the values of the eight basic waves present in turbulent flows in the presence of rotation prohibit a tilt of eddy towards the axis of rotation is incorporated into a formalism for rapidly rotating convection zones. Equations for turbulent velocities are defined in a rotating coordinate system, assuming that gravity and grad delta T act in a radial direction. An expression is derived for the lifetime of a basic wave and then for the average velocity vector. A real convective eddy is formulated and the wave vectors are calculated. The velocity amplitude and the stress tensor amplitude are integrated over the eddy domain. Applied to the solar convective zone, it is found that the convective cells are aligned along the axis of rotation at the poles and at the equator, a model that conflicts with nonrotating mixng length theory predictions.
Analysis of the electromagnetic wave resistivity tool in deviated well drilling
NASA Astrophysics Data System (ADS)
Zhang, Yumei; Xu, Lijun; Cao, Zhang
2014-04-01
Electromagnetic wave resistivity (EWR) tools are used to provide real-time measurements of resistivity in the formation around the tool in Logging While Drilling (LWD). In this paper, the acquired resistivity information in the formation is analyzed to extract more information, including dipping angle and azimuth direction of the drill. A finite element (FM) model of EWR tool working in layered earth formations is established. Numerical analysis and FM simulations are employed to analyze the amplitude ratio and phase difference between the voltages measured at the two receivers of the EWR tool in deviated well drilling.
Electromagnetic (EM) Wave Attachment to Laser Plasma Filaments
2009-05-01
this phenomenon over a laboratory scale distance and observed that the channel energy, diameter, and modulated spectrum all remained relatively ...are oriented parallel to one another and insulated from one another to maintain a calculated separation. The TEM waves also represent plane waves...orientation, the electric field will point along the direction of the wire axis. The wire is 0.8 mm copper wire, fixed at both ends and insulated at
Jain, Sunil
2008-01-01
Our objective was to assess and validate low-dose computed tomography (CT) scanogram as a post-operative imaging modality to measure the mechanical axis after navigated total knee replacement. A prospective study was performed to compare intra-operative and post-operative mechanical axis after navigated total knee replacements. All consecutive patients who underwent navigated total knee replacement between May and December 2006 were included. The intra-operative final axis was recorded, and post-operatively a CT scanogram of lower limbs was performed. The mechanical axis was measured and compared against the intra-operative measurement. There were 15 patients ranging in age from 57 to 80 (average 70) years. The average final intra-operative axis was 0.56° varus (4° varus to 1.5° valgus) and post-operative CT scanogram axis was 0.52° varus (3.1° varus to 1.8° valgus). The average deviation from final axes to CT scanogram axes was 0.12° valgus with a correlation coefficient of 0.9. Our study suggests that CT scanogram is an imaging modality with reasonable accuracy for measuring mechanical axis despite significantly low radiation. It also confirms a high level of correlation between intra-operative and post-operative mechanical axis after navigated total knee replacement. PMID:18696064
Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael
2005-03-21
Based on an acoustic assumption (shear wave velocity is zero) and a dispersion relation, we derive an acoustic wave equation for P-waves in tilted transversely isotropic (TTI) media (transversely isotropic media with a tilted symmetry axis). This equation has fewer parameters than an elastic wave equation in TTI media and yields an accurate description of P-wave traveltimes and spreading-related attenuation. Our TTI acoustic wave equation is a fourth-order equation in time and space. We demonstrate that the acoustic approximation allows the presence of shear waves in the solution. The substantial differences in traveltime and amplitude between data created using VTImore » and TTI assumptions is illustrated in examples.« less
Vertical force and wrist deviation angle in a sample of elderly people using walkers.
Leung, Cherng-Yee; Yeh, Po-Chan
2013-02-01
Walkers are frequently used by elderly people with weak lower limbs and limited balance, but the ergonomic relationship between the use of a walker and stress on the upper limbs is relatively unstudied. The current study assessed wrist deviation and vertical force among elderly individuals using a walker for assistance in walking. 60 elderly volunteers (M age = 81.0 yr., SD = 8.8) participated, 30 of whom frequently used a walker, and 30 who had no such prior experience. Data were obtained from four load cells and a twin-axis wrist goniometer during assisted ambulation using the walker. No significant group difference was found in gait cycle. Significant wrist deviation occurred, with ulnar deviation/dorsiflexion of the right hand, which was greater than that of the left. Non-experienced participants had larger dorsiflexion than experienced participants. Experienced participants produced larger vertical force than non-experienced participants. The greaterthe wrist deviation, the greater was the vertical force. The horizontal handles of most marketed walkers cause wrist deviations. This is a concern for users, clinicians, and related industries. Improvements in walker design should be considered.
NASA Astrophysics Data System (ADS)
Radtke, R. J.; Levin, K.
1995-02-01
Experiments on the cuprate superconductors demonstrate that these materials may be viewed as a stack of Josephson junctions along the direction normal to the CuO 2 planes (the c-axis). In this paper, we present a model which describes this intrinsic Josephson coupling in terms of incherent quasiparticle hopping along the c-axis arising from wave-function overlap, impurity-assisted hopping, and boson-assised hopping. We use this model to compute the magnitude and temperature T dependence of the resulting Josephson critical current jc( T) for s- and d-wave superconductors. Contrary to other approaches, d-wave pairing in this model is compatible with an intrinsic Josephson effect at all hole concentrations and leads to jc( T) αT at low T. By parameterizing our theory with c-axis resistivity data from YBa 2Cu 3O 7-δ (YBCO), we estimate jc( T) for optimally doped and underdoped members of this family. jc( T) can be measured either directly or indirectly through microwave penetration depth experiments, and current measurements on Bi 2Sr 2CaCu 2O 8 and La 2- xSr xCuO 4 are found to be consistent with s-wave pairing and the dominance of assisted hopping processes. The situation in YBCO is still unclear, but our estimates suggest that further experiments on this compound would be of great help in elucidating the validity of our model in general and the pairing symmetry in particular.
Quasicrystalline structures and uses thereof
Steinhardt, Paul Joseph; Chaikin, Paul Michael; Man, Weining
2013-08-13
This invention relates generally to devices constructed from quasicrystalline heterostructures. In preferred embodiments, two or more dielectric materials are arranged in a two- or three-dimensional space in a lattice pattern having at least a five-fold symmetry axis and not a six-fold symmetry axis, such that the quasicrystalline heterostructure exhibits an energy band structure in the space, the band structure having corresponding symmetry, which symmetry is forbidden in crystals, and which band structure comprises a complete band gap. The constructed devices are adapted for manipulating, controlling, modulating, trapping, reflecting and otherwise directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating within or through the heterostructure in multiple directions.
Microwave focusing with uniaxially symmetric gradient index metamaterials
NASA Astrophysics Data System (ADS)
Wheeland, Sara; Sternberg, Oren; Perez, Israel; Rockway, John D.
2016-09-01
Previous efforts to create a metamaterial lens in the microwave X band frequency range focused on the development of a device with biaxial symmetry. This allows for focusing solely along the central axis of propagation. For applications involving wave direction or energy diversion, focusing may be required off the central axis. This work explores a metamaterial device with uniaxial symmetry, namely in the direction of propagation. Ray-trace optimization and full-wave finite element simulations contribute to the design of the lens. By changing the placement of the focus, we achieve further control of the focus parameters. While the present work uses coils, the unit cell can consist of any structure or material.
High aperture off-axis parabolic mirror applied in digital holographic microscopy
NASA Astrophysics Data System (ADS)
Kalenkov, Georgy S.; Kalenkov, Sergey G.; Shtanko, Alexander E.
2018-04-01
An optical scheme of recording digital holograms of micro-objects based on high numerical aperture off-axis parabolic mirror forming a high aperture reference wave is suggested. Registration of digital holograms based on the proposed optical scheme is confirmed experimentally. Application of the proposed approach for hyperspectral holograms registration of micro-objects in incoherent light is discussed.
Data Recorded as Juno Entered Magnetosphere
2016-06-30
This chart presents data that the Waves investigation on NASA's Juno spacecraft recorded as the spacecraft crossed the bow shock just outside of Jupiter's magnetosphere on June 24, 2016, while approaching Jupiter. Audio accompanies the animation, with volume and pitch correlated to the amplitude and frequency of the recorded waves. The graph is a frequency-time spectrogram with color coding to indicate wave amplitudes as a function of wave frequency (vertical axis, in hertz) and time (horizontal axis, with a total elapsed time of two hours). During the hour before Juno reached the bow shock, the Waves instrument was detecting mainly plasma oscillations just below 10,000 hertz (10 kilohertz). The frequency of these oscillations is related to the local density of electrons; the data yield an estimate of approximately one electron per cubic centimeter (about 16 per cubic inch) in this region just outside Jupiter's bow shock. The broadband burst of noise marked "Bow Shock" is the region of turbulence where the supersonic solar wind is heated and slowed by encountering the Jovian magnetosphere. The shock is analogous to a sonic boom generated in Earth's atmosphere by a supersonic aircraft. The region after the shock is called the magnetosheath. The vertical bar to the right of the chart indicates the color coding of wave amplitude, in decibels (dB) above the background level detected by the Waves instrument. Each step of 10 decibels marks a tenfold increase in wave power. When Juno collected these data, the distance from the spacecraft to Jupiter was about 5.56 million miles (8.95 million kilometers), indicated on the chart as 128 times the radius of Jupiter. Jupiter's magnetic field is tilted about 10 degrees from the planet's axis of rotation. The note of 22 degrees on the chart indicates that at the time these data were recorded, the spacecraft was 22 degrees north of the magnetic-field equator. The "LT" notation is local time on Jupiter at the longitude of the planet directly below the spacecraft, with a value of 6.2 indicating approximately dawn. http://photojournal.jpl.nasa.gov/catalog/PIA20753
Data Recorded as Juno Crossed Jovian Bow Shock
2016-06-30
This chart presents data that the Waves investigation on NASA's Juno spacecraft recorded as the spacecraft crossed the bow shock just outside of Jupiter's magnetosphere on June 24, 2016, while approaching Jupiter. Audio accompanies the animation, with volume and pitch correlated to the amplitude and frequency of the recorded waves. The graph is a frequency-time spectrogram with color coding to indicate wave amplitudes as a function of wave frequency (vertical axis, in hertz) and time (horizontal axis, with a total elapsed time of two hours). During the hour before Juno reached the bow shock, the Waves instrument was detecting mainly plasma oscillations just below 10,000 hertz (10 kilohertz). The frequency of these oscillations is related to the local density of electrons; the data yield an estimate of approximately one electron per cubic centimeter (about 16 per cubic inch) in this region just outside Jupiter's bow shock. The broadband burst of noise marked "Bow Shock" is the region of turbulence where the supersonic solar wind is heated and slowed by encountering the Jovian magnetosphere. The shock is analogous to a sonic boom generated in Earth's atmosphere by a supersonic aircraft. The region after the shock is called the magnetosheath. The vertical bar to the right of the chart indicates the color coding of wave amplitude, in decibels (dB) above the background level detected by the Waves instrument. Each step of 10 decibels marks a tenfold increase in wave power. When Juno collected these data, the distance from the spacecraft to Jupiter was about 5.56 million miles (8.95 million kilometers), indicated on the chart as 128 times the radius of Jupiter. Jupiter's magnetic field is tilted about 10 degrees from the planet's axis of rotation. The note of 22 degrees on the chart indicates that at the time these data were recorded, the spacecraft was 22 degrees north of the magnetic-field equator. The "LT" notation is local time on Jupiter at the longitude of the planet directly below the spacecraft, with a value of 6.2 indicating approximately dawn. http://photojournal.jpl.nasa.gov/catalog/PIA20753
Electronic Absolute Cartesian Autocollimator
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.
2006-01-01
An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the mirror is slightly tilted. Hence, one can determine the amount and direction of tilt from the coordinates of the target image on the viewing plane.
NASA Astrophysics Data System (ADS)
Jia, Kun; Mei, Deqing; Meng, Jianxin; Yang, Keji
2014-10-01
Ultrasonic manipulation has become an attractive method for surface-sensitive objects in micro-technology. Related phenomena, such as radiation force, multiple scattering, and acoustic streaming, have been widely studied. However, in current studies, the behavior of micro-particles in potential force fields is always analyzed in a quasi-static manner. We developed a dynamic model of a dilute micro-particle in the commonly used two-dimensional ultrasonic manipulation system to provide a systemic and quantitative analysis of the transient properties of particle movement. In this model, the acoustic streaming and hydrodynamic forces, omitted in previous work, were both considered. The trajectory of a spherical silica particle with different initial conditions was derived by numerically solving the established nonlinear differential integral equation system, which was then validated experimentally. The envelope of the experimental data on the x-axis showed good agreement with the theoretical calculation, and the greater influence on the y-axis of the deviation between the actual sound field and the ideal distribution employed in our dynamic model could account for the differences in displacement in that direction. Finally, the influence of particle size on its movement and the effect of acoustic streaming on calculating the hydrodynamic forces for an isolated particle with motion relative to the fluid were analyzed theoretically. It was found that the ultrasonic manipulation system will translate from an under-damped system to an over-damped system with a decrease in particle size and the micro-scale acoustic streaming velocity was negligible when calculating the hydrodynamic forces on the particle in the ultrasonic manipulation system.
Cao, Yuan-Yuan; Su, Yan-Gang; Bai, Jin; Wang, Wei; Wang, Jing-Feng; Qin, Sheng-Mei; Ge, Jun-Bo
2015-01-01
Loss of left ventricular (LV) capture may lead to deterioration of heart failure in patients with cardiac resynchronization therapy (CRT). Recognition of loss of LV capture in time is important in clinical practice. A total of 422 electrocardiograms were acquired and analyzed from 53 CRT patients at 8 different pacing settings (LV only, right ventricle [RV] only, biventricular [BV] pacing with LV preactivation of 60, 40, 20, and 0 milliseconds and RV preactivation of 20 and 40 milliseconds). A modified Ammann algorithm by adding a third step-presence of Q (q, or QS) wave-to the original 2-step Ammann algorithm and a QRS axis shift method were devised to identify the loss of LV capture. The accuracy of modified Ammann algorithm was significantly higher than that of Ammann algorithm (78.9% vs. 69.1%, P < 0.001). The accuracy of the axis shift method was 66.4%, which was significantly lower than the modified Ammann algorithm (P < 0.001) and similar to the original one (P = 0.412). However, in the ECGs with QRS axis shift, 96.8% were correctly classified. LV preactivation or simultaneous BV activation and LV lead positioned in nonposterior or noninferior wall could elevate the accuracies of the modified Ammann algorithm and the QRS axis shift method. The accuracy of the modified Ammann algorithm is greatly improved. The QRS axis shift method can help diagnose LV capture. The LV preactivation, or simultaneous BV activation and LV lead positioned in nonposterior or noninferior wall can increase the diagnostic power of the modified Ammann algorithm and QRS axis shift method. © 2014 Wiley Periodicals, Inc.
Zhang, Dongsheng; Wang, Shiyu; Xiu, Jie
2017-11-01
Elastic wave quality determines the operating performance of traveling wave ultrasonic motor (TWUM). The time-variant circumferential force from the shrink of piezoelectric ceramic is one of the factors that distort the elastic wave. The distorted waveshape deviates from the ideal standard sinusoidal fashion and affects the contact mechanics and driving performance. An analytical dynamic model of ring ultrasonic motor is developed. Based on this model, the piezoelectric parametric effects on the wave distortion and contact mechanics are examined. Multi-scale method is employed to obtain unstable regions and distorted wave response. The unstable region is verified by Floquét theory. Since the waveshape affects the contact mechanism, a contact model involving the distorted waveshape and normal stiffness of the contact layer is established. The contact model is solved by numerical calculation. The results verify that the deformation of the contact layer deviates from sinusoidal waveshape and the pressure distribution is changed, which influences the output characteristics directly. The surface speed within the contact region is averaged such that the rotor speed decreases for lower torque and increases for larger torque. The effects from different parametric strengths, excitation frequencies and pre-pressures on pressure distribution and torque-speed relation are compared. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Borovsky, Joseph E.; Benford, Gregory; Eilek, Jean A.
1988-01-01
A model of the inner portions of astrophysical jets is constructed in which a relativistic electron beam is injected from the central engine into the jet plasma. This beam drives electrostatic plasma wave turbulence, which leads to the collective emission of electromagnetic waves. The emitted waves are beamed in the direction of the jet axis, so that end-on viewing of the jet yields an extremely bright source (BL Lacertae object). The relativistic electron beam may also drive long-wavelength electromagnetic plasma instabilities (firehose and Kelvin-Helmholtz) that jumble the jet magnetic field lines. After a sufficient distance from the core source, these instabilities will cause the beamed emission to point in random directions and the jet emission can then be observed from any direction relative to the jet axis. This combination of effects may lead to the gap turn-on of astrophysical jets. The collective emission model leads to different estimates for energy transport and the interpretation of radio spectra than the conventional incoherent synchrotron theory.
Multi-domain boundary element method for axi-symmetric layered linear acoustic systems
NASA Astrophysics Data System (ADS)
Reiter, Paul; Ziegelwanger, Harald
2017-12-01
Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.
Piezoelectric shear wave resonator and method of making same
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1988-01-01
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Method of making a piezoelectric shear wave resonator
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1987-02-03
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Compression failure of angle-ply laminates
NASA Technical Reports Server (NTRS)
Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.
1991-01-01
The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single parameter, such as a ratio of wave amplitude to wave length, to describe waviness in a laminate would be inaccurate. Throughout, results for AS4/3502, studied previously, are included for comparison. At low off-axis angles, the AS4/3502 material system was found to be less sensitive to layer waviness than IM7/8551-7a. Analytical predictions were also obtained for laminates with waviness in only some of the layers. For this type of waviness, laminate compression strength could also be considered a function of which layers in the laminate were wavy, and where those wavy layers were. Overall, the geometrically nonlinear model correlates well with experimental results.
A Simple Pythagorean Interpretation of E2 = p2 c2 + (mc2)2
NASA Astrophysics Data System (ADS)
Tobar, J. A.; Guillen, C. I.; Vargas, E. L.; Andrianarijaona, V. M.
2015-04-01
We are considering the relationship between the relativistic energy, the momentum, and the rest energy, E2 =p2c2 + (mc2)2 , and using geometrical means to analyze each individual portion in a spatial setting. The aforementioned equation suggests that pc and mc2 could be thought of as the two axis of a plane. According to de Broglie's hypothesis λ = h / p therefore suggesting that the pc-axis is connected to the wave properties of a moving object, and subsequently, the mc2-axis is connected to the particle properties such as its moment of inertia. Consequently, these two axes could represent the particle (matter) and wave properties of the moving object. An overview of possible models and meaningful interpretations, which agree with Dirac's prediction of the electron's magnetic moment, will be presented. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.
Phase derivative method for reconstruction of slightly off-axis digital holograms.
Guo, Cheng-Shan; Wang, Ben-Yi; Sha, Bei; Lu, Yu-Jie; Xu, Ming-Yuan
2014-12-15
A phase derivative (PD) method is proposed for reconstruction of off-axis holograms. In this method, a phase distribution of the tested object wave constrained within 0 to pi radian is firstly worked out by a simple analytical formula; then it is corrected to its right range from -pi to pi according to the sign characteristics of its first-order derivative. A theoretical analysis indicates that this PD method is particularly suitable for reconstruction of slightly off-axis holograms because it only requires the spatial frequency of the reference beam larger than spatial frequency of the tested object wave in principle. In addition, because the PD method belongs to a pure local method with no need of any integral operation or phase shifting algorithm in process of the phase retrieval, it could have some advantages in reducing computer load and memory requirements to the image processing system. Some experimental results are given to demonstrate the feasibility of the method.
Four-wave parametric oscillation in sodium vapor by electromagnetically induced diffraction.
Harada, Ken-ichi; Ogata, Minoru; Mitsunaga, Masaharu
2007-05-01
We have observed a novel type of parametric oscillation in sodium atomic vapor where four off-axis signal waves simultaneously build up under resonant and counterpropagating pump beams with elliptical beam profiles. The four waves, two of them Stokes shifted and the other two anti-Stokes shifted, have similar output powers of up to 10 mW with a conversion efficiency of 30% and are parametrically coupled by electromagnetically induced diffraction.
Extreme Wave Statistics within the Mouth of the Columbia River
2014-12-01
nearshore coastal environment. Because of his guidance, I was able to make the most of this challenging learning experience. I spent countless hours...the current field induces a refractive caustic along the principal current axis. Caustic focusing causes an increase of wave height to its maximum...the largest waves are found upstream of the caustic area (around x/Lo=25 in Figure 6). 10 Figure 6. Transformation of 0.1-Hz swell
Mixing Characteristics of Elliptical Jet Control with Crosswire
NASA Astrophysics Data System (ADS)
Manigandan, S.; Vijayaraja, K.
2018-02-01
The aerodynamic mixing efficiency of elliptical sonic jet flow with the effect of crosswire is studied computationally and experimentally at different range of nozzle pressure ratio with different orientation along the minor axis of the exit. The cross wire of different orientation is found to reduce the strength of the shock wave formation. Due to the presence of crosswire the pitot pressure oscillation is reduced fast, which weakens the shock cell structure. When the cross wire is placed at center position we see high mixing along the major axis. Similarly, when the cross wire is placed at ¼ and ¾ position we see high mixing promotion along minor axis. It also proves, as the position of the cross wire decreased along minor axis there will be increase in the mixing ratio. In addition to that we also found that, jet spread is high in major axis compared to minor axis due to bifurcation of jet along upstream
Shot H3837: Darht's First Dual-Axis Explosive Experiment
NASA Astrophysics Data System (ADS)
Mendez, Jacob; McNeil, Wendy Vogan; Harsh, James; Hull, Lawrence
2011-06-01
Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic HydroTest (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II. Since the days of the Manhattan Project, penetrating radiography with multiple frames from different viewing angles has remained a high-profile goal at the Laboratory. H3837 is merely the beginning of a bright future for two-axis penetrating radiography.
Measuring (subglacial) bedform orientation, length, and longitudinal asymmetry - Method assessment.
Jorge, Marco G; Brennand, Tracy A
2017-01-01
Geospatial analysis software provides a range of tools that can be used to measure landform morphometry. Often, a metric can be computed with different techniques that may give different results. This study is an assessment of 5 different methods for measuring longitudinal, or streamlined, subglacial bedform morphometry: orientation, length and longitudinal asymmetry, all of which require defining a longitudinal axis. The methods use the standard deviational ellipse (not previously applied in this context), the longest straight line fitting inside the bedform footprint (2 approaches), the minimum-size footprint-bounding rectangle, and Euler's approximation. We assess how well these methods replicate morphometric data derived from a manually mapped (visually interpreted) longitudinal axis, which, though subjective, is the most typically used reference. A dataset of 100 subglacial bedforms covering the size and shape range of those in the Puget Lowland, Washington, USA is used. For bedforms with elongation > 5, deviations from the reference values are negligible for all methods but Euler's approximation (length). For bedforms with elongation < 5, most methods had small mean absolute error (MAE) and median absolute deviation (MAD) for all morphometrics and thus can be confidently used to characterize the central tendencies of their distributions. However, some methods are better than others. The least precise methods are the ones based on the longest straight line and Euler's approximation; using these for statistical dispersion analysis is discouraged. Because the standard deviational ellipse method is relatively shape invariant and closely replicates the reference values, it is the recommended method. Speculatively, this study may also apply to negative-relief, and fluvial and aeolian bedforms.
NASA Technical Reports Server (NTRS)
Oran, W. A.; Reiss, D. A.; Berge, L. H.; Parker, H. W.
1979-01-01
The acoustic fields and levitation forces produced along the axis of a single-axis resonance system were measured. The system consisted of a St. Clair generator and a planar reflector. The levitation force was measured for bodies of various sizes and geometries (i.e., spheres, cylinders, and discs). The force was found to be roughly proportional to the volume of the body until the characteristic body radius reaches approximately 2/k (k = wave number). The acoustic pressures along the axis were modeled using Huygens principle and a method of imaging to approximate multiple reflections. The modeled pressures were found to be in reasonable agreement with those measured with a calibrated microphone.
Motwani, Manoj
2017-01-01
Purpose To demonstrate how using the Wavelight Contoura measured astigmatism and axis eliminates corneal astigmatism and creates uniformly shaped corneas. Patients and methods A retrospective analysis was conducted of the first 50 eyes to have bilateral full WaveLight® Contoura LASIK correction of measured astigmatism and axis (vs conventional manifest refraction), using the Layer Yolked Reduction of Astigmatism Protocol in all cases. All patients had astigmatism corrected, and had at least 1 week of follow-up. Accuracy to desired refractive goal was assessed by postoperative refraction, aberration reduction via calculation of polynomials, and postoperative visions were analyzed as a secondary goal. Results The average difference of astigmatic power from manifest to measured was 0.5462D (with a range of 0–1.69D), and the average difference of axis was 14.94° (with a range of 0°–89°). Forty-seven of 50 eyes had a goal of plano, 3 had a monovision goal. Astigmatism was fully eliminated from all but 2 eyes, and 1 eye had regression with astigmatism. Of the eyes with plano as the goal, 80.85% were 20/15 or better, and 100% were 20/20 or better. Polynomial analysis postoperatively showed that at 6.5 mm, the average C3 was reduced by 86.5% and the average C5 by 85.14%. Conclusions Using WaveLight® Contoura measured astigmatism and axis removes higher order aberrations and allows for the creation of a more uniform cornea with accurate removal of astigmatism, and reduction of aberration polynomials. WaveLight® Contoura successfully links the refractive correction layer and aberration repair layer using the Layer Yolked Reduction of Astigmatism Protocol to demonstrate how aberration removal can affect refractive correction. PMID:28553071
Alfven wave refraction by interplanetary inhomogeneities
NASA Technical Reports Server (NTRS)
Daily, W. D.
1973-01-01
Pioneer 6 magnetic data reveals that the propagation direction of Alfven waves in the interplanetary medium is strongly oriented along the ambient field. Magnetic fluctuations of frequencies up to 1/30 sec in the spacecraft frame are shown to satisfy a necessary condition for Alfven wave normal. It appears from this analysis that geometrical hydromagnetics may satisfactorily describe deviation of the wave normal from the background field. The rotational discontinuity is likely also to propagate along the field lines.
Can P wave wavelet analysis predict atrial fibrillation after coronary artery bypass grafting?
Vassilikos, Vassilios; Dakos, George; Chouvarda, Ioanna; Karagounis, Labros; Karvounis, Haralambos; Maglaveras, Nikolaos; Mochlas, Sotirios; Spanos, Panagiotis; Louridas, George
2003-01-01
The purpose of this study was the evaluation of Morlet wavelet analysis of the P wave as a means of predicting the development of atrial fibrillation (AF) in patients who undergo coronary artery bypass grafting (CABG). The P wave was analyzed using the Morlet wavelet in 50 patients who underwent successful CABG. Group A consisted of 17 patients, 12 men and 5 women, of mean age 66.9 +/- 5.9 years, who developed AF postoperatively. Group B consisted of 33 patients, 29 men and 4 women, mean age 62.4 +/- 7.8 years, who remained arrhythmid-free. Using custom-designed software, P wave duration and wavelet parameters expressing the mean and maximum energy of the P wave were calculated from 3-channel digital recordings derived from orthogonal ECG leads (X, Y, and Z), and the vector magnitude (VM) was determined in each of 3 frequency bands (200-160 Hz, 150-100 Hz and 90-50 Hz). Univariate logistic-regression analysis identified a history of hypertension, the mean and maximum energies in all frequency bands along the Z axis, the mean and maximum energies (expressed by the VM) in the 200-160 Hz frequency band, and the mean energy in the 150-100 Hz frequency band along the Y axis as predictors for post-CABG AF. Multivariate analysis identified hypertension, ejection fraction, and the maximum energies in the 90-50 Hz frequency band along the Z and composite-vector axes as independent predictors. This multivariate model had a sensitivity of 91% and a specificity of 65%. We conclude that the Morlet wavelet analysis of the P wave is a very sensitive method of identifying patients who are likely to develop AF after CABG. The occurrence of post-CABG AF can be explained by a different activation pattern along the Z axis.
Measurement of the ω → π+π-π0 Dalitz plot distribution
NASA Astrophysics Data System (ADS)
Adlarson, P.; Augustyniak, W.; Bardan, W.; Bashkanov, M.; Bergmann, F. S.; Berłowski, M.; Bhatt, H.; Bondar, A.; Büscher, M.; Calén, H.; Ciepał, I.; Clement, H.; Czerwiński, E.; Demmich, K.; Engels, R.; Erven, A.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goswami, A.; Grigoryev, K.; Gullström, C.-O.; Heijkenskjöld, L.; Hejny, V.; Hüsken, N.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kemmerling, G.; Khan, F. A.; Khatri, G.; Khoukaz, A.; Khreptak, O.; Kirillov, D. A.; Kistryn, S.; Kleines, H.; Kłos, B.; Krzemień, W.; Kulessa, P.; Kupść, A.; Kuzmin, A.; Lalwani, K.; Lersch, D.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Morsch, H.-P.; Moskal, P.; Ohm, H.; Perez del Rio, E.; Piskunov, N. M.; Prasuhn, D.; Pszczel, D.; Pysz, K.; Pyszniak, A.; Ritman, J.; Roy, A.; Rudy, Z.; Rundel, O.; Sawant, S.; Schadmand, S.; Schätti-Ozerianska, I.; Sefzick, T.; Serdyuk, V.; Shwartz, B.; Sitterberg, K.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Stephan, E.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Trzciński, A.; Varma, R.; Wolke, M.; Wrońska, A.; Wüstner, P.; Yamamoto, A.; Zabierowski, J.; Zieliński, M. J.; Złomańczuk, J.; Żuprański, P.; Żurek, M.; Kubis, B.; Leupold, S.
2017-07-01
Using the production reactions pd →3He ω and pp → ppω, the Dalitz plot distribution for the ω →π+π-π0 decay is studied with the WASA detector at COSY, based on a combined data sample of (4.408 ± 0.042) ×104 events. The Dalitz plot density is parametrised by a product of the P-wave phase space and a polynomial expansion in the normalised polar Dalitz plot variables Z and ϕ. For the first time, a deviation from pure P-wave phase space is observed with a significance of 4.1σ. The deviation is parametrised by a linear term 1 + 2 αZ, with α determined to be + 0.147 ± 0.036, consistent with the expectations of ρ-meson-type final-state interactions of the P-wave pion pairs.
77 FR 58971 - Airworthiness Directives; Eurocopter France (Eurocopter) Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-25
... prompted by flight crew reports of deviations between the displayed attitude on the attitude display screen and the independent electromechanical standby attitude indicator. The proposed actions [[Page 58972... helicopters. EASA advises that a slow drift in the roll axis on the pilot's and co-pilot's attitude display...
78 FR 20234 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... prompted by flight crew reports of deviations between the displayed attitude on the attitude display screen and the independent electromechanical standby attitude indicator. The actions of this AD are intended... helicopters. EASA advises that a slow drift in the roll axis on the pilot's and co-pilot's attitude display...
The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*
NASA Astrophysics Data System (ADS)
Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok
2017-09-01
Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.
Magnetic field experiment on the Freja Satellite
NASA Astrophysics Data System (ADS)
Freja Magnetic Field Experiment Team
1994-11-01
Freja is a Swedish scientific satellite mission to study fine scale auroral processes. Launch was October 6, 1992, piggyback on a Chinese Long March 2C, to the present 600×1750 km, 63° inclination orbit. The JHU/APL provided the Magnetic Field Experiment (MFE), which includes a custom APL-designed Forth, language microprocessor. This approach has led to a truly generic and flexible design with adaptability to differing mission requirements and has resulted in the transfer of significant ground analysis to on-board processing. Special attention has been paid to the analog electronic and digital processing design in an effort to lower system noise levels, verified by inflight data showing unprecedented system noise levels for near-Earth magnetic field measurements, approaching the fluxgate sensor levels. The full dynamic range measurements are of the 3-axis Earth's magnetic field taken at 128 vector samples s-1 and digitized to 16 bit, resolution, primarily used to evaluate currents and the main magnetic field of the Earth. Additional 3-axis ‘AC’ channels are bandpass filtered from 1.5 to 128 Hz to remove the main field spin signal, the range is±650 nT. These vector measurements cover Pc waves to ion gyrofrequency magnetic wave signals up to the oxygen gyrofrequency (˜40 Hz). A separate, seventh channel samples the spin axis sensor with a bandpass filter of 1.5 to 256 Hz, the signal of which is fed to a software FFT. This on-board FFT processing covers the local helium gyrofrequencies (˜160 Hz) and is plotted in the Freja Summary Plots (FSPs) along with disturbance fields. First data were received in the U.S. October 16 from Kiruna, Sweden via the Internet and SPAN e-mail networks, and were from an orbit a few hours earlier over Greenland and Sweden. Data files and data products, e.g., FSPs generated at the Kiruna ground station, are communicated in a similar manner through an automatic mail distribution system in Stockholm to PIs and various users. Distributed management of spacecraft operations by the science team is also achieved by this advanced communications system. An exciting new discovery of the field-aligned current systems is the high frequency wave power or structure associated with the various large-scale currents. The spin axis ‘AC’ data and its standard deviation is a measure of this high-frequency component of the Birkeland current regions. The exact response of these channels and filters as well as the physics behind these wave and/or fine-scale current structures accompanying the large-scale currents is being pursued; nevertheless, the association is clear and the results are used for the MFE Birkeland current monitor calculated in the MFE microprocessor. This monitor then sets a trigger when it is greater than a commandable, preset threshold. This ‘event’ flag can be read by the system unit and used to remotely command all instruments into burst mode data taking and local memory storage. In addition,Freja is equipped with a 400 MHz ‘Low Speed Link’ transmitter which transmits spacecraft hcusekeeping that can be received with a low cost, portable receiver. These housekeeping data include the MFE auroral zone current detector; this space weather information indicates the location and strength of ionospheric current systems that directly impact communications, power systems, long distance telephone lines and near-Earth satellite operations. The JHU/APL MFE is a joint effort with NASA/GSFC and was co-sponsored by the Office of Naval Research and NASA/Headquarters in cooperation with the Swedish National Space Board and the Swedish Space Corporation.
Role of gravity-based information on the orientation and localization of the perceived body midline.
Ceyte, Hadrien; Cian, Corinne; Nougier, Vincent; Olivier, Isabelle; Trousselard, Marion
2007-01-01
The present study focused on the influence of gravity-based information on the orientation and localization of the perceived body midline. The orientation was investigated by the rolling adjustment of a rod on the subjects' Z-axis and the localization by the horizontal adjustment of a visual dot as being straight ahead. Experiment 1 investigated the effect of the dissociation between the Z-axis and the direction of gravity by placing subjects in roll tilt and supine postures. In roll tilt, the perception of the body midline orientation was deviated in the direction of body tilt and the perception of its localization was deviated in the opposite direction. In the supine body orientation, estimates of the Z-axis and straight-ahead remained veridical as when the body was upright. Experiment 2 highlighted the relative importance of the otolithic and tactile information using diffuse pressure stimulation. The estimation of body midline orientation was modified contrarily to the estimation of its localization. Thus, subjects had no absolute representation of their egocentric space. The main hypothesis regarding the dissociation between the orientation and localization of the body midline may be related to a difference in the integration of sensory information. It can be suggested that the horizontal component of the vestibulo-ocular reflex (VOR) contributed to the perceived localization of the body midline, whereas its orientation was mainly influenced by tactile information.
Mustafa, Mahmoud
2012-08-01
We determined whether the gravity effect of radiographic anatomic features on the preoperative urography (IVP) are enough to predict fragments clearance after shock wave lithotripsy (SWL). A Total of 282 patients with mean age 45.8 ± 13.2 years (189 male, 93 female), who underwent SWL due to renal calculi between October 2005 and August 2009 were enrolled. The mean calculi load was 155.72 ± 127.66 mm². The patients were stratified into three groups: patients with pelvis calculi (group 1); patients with upper or middle pole calculi (group 2) and patients with lower pole calculi (group 3). Three angles on the pretreatment IVP were measured: the inner angle between the axis of the lower pole infundibular and ureteropelvic axis (angle I); the inner angle between the lower pole infundibular axis and main axis of pelvis-ureteropelvic (UP) junction point (angle II) and the inner angle between the lower pole infundibular axis and perpendicular line (angle III). Multivariate analysis was used to define the significant predictors of stone clearance. The overall success rate was 85.81%. All angles, sessions number, shock waves number and stone burden were significant predictors of success in patients in group 1. However, in group 2 only angle II and in group 3 angles I and II had significant effect on stone clearance. Radiographic anatomic features have significant role in determining the stone-free rate following satisfactory fragmentation of renal stones with SWL. The measurement of infundibulopelvic angle in different manner helps to predict the stone-free status in patients with renal calculi located not only in lower pole, but also in renal pelvis and upper or middle pole. Gravity effect is not enough to justify the significant influence of the radiographic anatomic features on the stone clearance and fragments retention after SWL.
Bogucki, Artur J
2014-01-01
The knee joint is a bicondylar hinge two-level joint with six degrees of freedom. The location of the functional axis of flexion-extension motion is still a subject of research and discussions. During the swing phase, the femoral condyles do not have direct contact with the tibial articular surfaces and the intra-articular space narrows with increasing weight bearing. The geometry of knee movements is determined by the shape of articular surfaces. A digital recording of the gait of a healthy volunteer was analysed. In the first experimental variant, the subject was wearing a knee orthosis controlling flexion and extension with a hinge-type single-axis joint. In the second variant, the examination involved a hinge-type double-axis orthosis. Statistical analysis involved mathematically calculated values of displacement P. Scatter graphs with a fourth-order polynomial trend line with a confidence interval of 0.95 due to noise were prepared for each experimental variant. In Variant 1, the average displacement was 15.1 mm, the number of tests was 43, standard deviation was 8.761, and the confidence interval was 2.2. The maximum value of displacement was 30.9 mm and the minimum value was 0.7 mm. In Variant 2, the average displacement was 13.4 mm, the number of tests was 44, standard deviation was 7.275, and the confidence interval was 1.8. The maximum value of displacement was 30.2 mm and the minimum value was 3.4 mm. An analysis of moving averages for both experimental variants revealed that displacement trends for both types of orthosis were compatible from the mid-stance to the mid-swing phase. 1. The method employed in the experiment allows for determining the alignment between the axis of the knee joint and that of shin and thigh orthoses. 2. Migration of the single and double-axis orthoses during the gait cycle exceeded 3 cm. 3. During weight bearing, the double-axis orthosis was positioned more correctly. 4. The study results may be helpful in designing new hinge-type knee joints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischoff, A. J., E-mail: alina.bischoff@iom-leipzig.de; Arabi-Hashemi, A.; Ehrhardt, M.
Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe{sub 70}Pd{sub 30} ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis alongmore » the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.« less
Breakthroughs in Low-Profile Leaky-Wave HPM Antennas
2016-06-21
conical horn antenna, as was commonly done in the 1980s) yields a low-gain pattern with a null on the axis. This is inconvenient for both effects testing ...Line Oscillator," IEEE Trans. Plasma Sci., vol. 26, no. 3, pp. 312-319, Jun 1998. Honey , R.C., “A Flush-Mounted Leaky-Wave Antenna with Predictable
Two-screen single-shot electron spectrometer for laser wakefield accelerated electron beams.
Soloviev, A A; Starodubtsev, M V; Burdonov, K F; Kostyukov, I Yu; Nerush, E N; Shaykin, A A; Khazanov, E A
2011-04-01
The laser wakefield acceleration electron beams can essentially deviate from the axis of the system, which distinguishes them greatly from beams of conventional accelerators. In case of energy measurements by means of a permanent-magnet electron spectrometer, the deviation angle can affect accuracy, especially for high energies. A two-screen single-shot electron spectrometer that correctly allows for variations of the angle of entry is considered. The spectrometer design enables enhancing accuracy of measuring narrow electron beams significantly as compared to a one-screen spectrometer with analogous magnetic field, size, and angular acceptance. © 2011 American Institute of Physics
NASA Technical Reports Server (NTRS)
Hersh, A. S.
1979-01-01
The influence of a mean vortical flow on the connection between the standing wave pattern in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane wave sound frequencies. The results show that deviations of the standing wave pattern due to refraction by the mean flow gradients are small.
Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy
Hayami, Satoru; Lin, Shi-Zeng; Batista, Cristian D.
2016-05-12
We clarify the conditions for the emergence of multiple-Q structures out of lattice and easy-axis spin anisotropy in frustrated magnets. By considering magnets whose exchange interaction has multiple global minima in momentum space, we find that both types of anisotropy stabilize triple-Q orderings. Moderate anisotropy leads to a magnetic field-induced skyrmion crystal, which evolves into a bubble crystal for increasing spatial and spin anisotropy. Finally, the bubble crystal exhibits a quasi-continuous (devil’s staircase) temperature dependent ordering wave-vector, characteristic of the competition between frustrated exchange and strong easy-axis anisotropy.
Heilmann, René; Gräfe, Markus; Nolte, Stefan; Szameit, Alexander
2014-01-01
Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light. PMID:24534893
Hurricane genesis: on the breaking African easterly waves and critical layers
NASA Astrophysics Data System (ADS)
Asaadi, Ali; Brunet, Gilbert; Yau, Peter
2015-04-01
This study bring new understanding on the decades-old hurricane genesis problem that starts with westward travelling African easterly waves that can evolve into coherent cyclonic vortices depending on their strength and other nonlinear wave breaking processes. In general, observations indicate that only a small fraction of the African easterly waves that occur in a single hurricane season contribute to tropical cyclogenesis. However, this small fraction includes a large portion of named storms. In addition, a recent study by Dunkerton et al. (2009) has shown that named storms in the Atlantic and eastern Pacific basins are almost all associated with a cyclonic Kelvin "cat's eye" of a tropical easterly wave typical of critical layers, located equatorward of the easterly jet axis. To better understand the dynamics involved in hurricane genesis, the flow characteristics and the physical and dynamical mechanisms by which easterly waves form cat's eyes are investigated with the help of atmospheric reanalyzes and numerical simulations. We perform a climatological study of developing easterly waves covering the 1998-2001 hurricane seasons using ERA-Interim 6-hourly reanalysis data. Composite analyses for all named storms show a monotonic potential vorticity (PV) profile with weak meridional PV gradient and a cyclonic (i.e., south of the easterly jet axis) critical line for time periods of several days preceding the cat's eye formation. In addition, the developing PV anomaly composite shows a statistically significant companion wave-packet of non-developing easterly waves. A barotropic shallow water model is used to study the initial value and forced problems of disturbances on a parabolic jet and realistic profiles associated with weak basic state meridional PV gradients, leading to Kelvin cat's eye formation around the jet axis. The results highlight the synergy of the dynamical mechanisms, including wave breaking and PV redistribution within the nonlinear critical layer characterized by weak PV gradients, and the thermodynamical mechanisms such as convectively generated PV anomalies in the cat's eye formation in tropical cyclogenesis. These findings are consistent with the analytical theory of free and forced disturbances to an easterly parabolic jet (Brunet and Warn, 1990; Brunet and Haynes, 1995; Choboter et al., 2000). 1) Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 5587-5646. 2) Brunet, G., and T. Warn, 1990: Rossby Wave Critical Layers on a Jet. J. Atmos. Sci., 47, 1173-1178. 3) Brunet, and P. H. Haynes, 1995: The Nonlinear Evolution of Disturbances to a Parabolic Jet. J. Atmos. Sci., 52, 464-477. 4) Choboter, P. F., G. Brunet, and S. A. Maslowe, 2000: Forced Disturbances in a Zero Absolute Vorticity Gradient Environment. J. Atmos. Sci., 57, 1406-1419.
Panico, Francesco; Sagliano, Laura; Grossi, Dario; Trojano, Luigi
2016-06-01
The aim of this study is to clarify the specific role of the cerebellum during prism adaptation procedure (PAP), considering its involvement in early prism exposure (i.e., in the recalibration process) and in post-exposure phase (i.e., in the after-effect, related to spatial realignment). For this purpose we interfered with cerebellar activity by means of cathodal transcranial direct current stimulation (tDCS), while young healthy individuals were asked to perform a pointing task on a touch screen before, during and after wearing base-left prism glasses. The distance from the target dot in each trial (in terms of pixels) on horizontal and vertical axes was recorded and served as an index of accuracy. Results on horizontal axis, that was shifted by prism glasses, revealed that participants who received cathodal stimulation showed increased rightward deviation from the actual position of the target while wearing prisms and a larger leftward deviation from the target after prisms removal. Results on vertical axis, in which no shift was induced, revealed a general trend in the two groups to improve accuracy through the different phases of the task, and a trend, more visible in cathodal stimulated participants, to worsen accuracy from the first to the last movements in each phase. Data on horizontal axis allow to confirm that the cerebellum is involved in all stages of PAP, contributing to early strategic recalibration process, as well as to spatial realignment. On vertical axis, the improving performance across the different stages of the task and the worsening accuracy within each task phase can be ascribed, respectively, to a learning process and to the task-related fatigue. Copyright © 2016 Elsevier Inc. All rights reserved.
Excitation and propagation of nonlinear waves in a rotating fluid
NASA Astrophysics Data System (ADS)
Hanazaki, Hideshi
1993-09-01
A numerical study of the nonlinear waves excited in an axisymmetric rotating flow through a circular tube is described. The waves are excited by either an undulation of the tube wall or an obstacle on the axis of the tube. The results are compared with the weakly nonlinear theory (forced KdV equation). The computations are done when the upstream swirling velocity is that of Burgers' vortex type. The flow behaves like the solution of the forced KdV equation, and the upstream advancing of the waves appear even when the flow is critical or slightly supercritical to the fastest inertial wave mode.
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1985-05-20
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1983-10-25
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
Radius of Curvature of Off-Axis Paraboloids
NASA Technical Reports Server (NTRS)
Robinson, Brian; Reardon, Patrick; Hadaway, James; Geary, Joseph; Russell, Kevin (Technical Monitor)
2002-01-01
We present several methods for measuring the vertex radius of curvature of off-axis paraboloidal mirrors. One is based on least-squares fitting of interferometer output, one on comparison of sagittal and tangential radii of curvature, and another on measurement of displacement of the nulled test article from the ideal reference wave. Each method defines radius of curvature differently and, as a consequence, produces its own sort of errors.
NASA Technical Reports Server (NTRS)
Hizanidis, Kyriakos; Vlahos, L.; Polymilis, C.
1989-01-01
The relativistic motion of an ensemble of electrons in an intense monochromatic electromagnetic wave propagating obliquely in a uniform external magnetic field is studied. The problem is formulated from the viewpoint of Hamiltonian theory and the Fokker-Planck-Kolmogorov approach analyzed by Hizanidis (1989), leading to a one-dimensional diffusive acceleration along paths of constant zeroth-order generalized Hamiltonian. For values of the wave amplitude and the propagating angle inside the analytically predicted stochastic region, the numerical results suggest that the diffusion probes proceeds in stages. In the first stage, the electrons are accelerated to relatively high energies by sampling the first few overlapping resonances one by one. During that stage, the ensemble-average square deviation of the variable involved scales quadratically with time. During the second stage, they scale linearly with time. For much longer times, deviation from linear scaling slowly sets in.
Vertical force and wrist deviation angle when using a walker to stand up and sit down.
Leung, Cherng-Yee; Yeh, Po-Chan
2011-08-01
Research investigating walkers suggests that safety and assistance for the elderly with weak lower limbs were important. However, the relationship between the use of a walker and the upper limbs has received little investigation. Standing up and sitting down are important daily activities. Therefore, the aim of this study was to explore wrist deviation and vertical force among elderly individuals using a walker for assistance to stand up and sit down. In total, 64 elderly volunteers (M age = 80.22, SD = 9.36) were enrolled. Data were obtained from four load cells and a twin-axis wrist goniometer. Wrist deviation and vertical force were examined when participants used a walker with horizontal handles to assist in standing up and sitting down. Significant wrist angle deviation occurred with the use of a walker, with dorsiflexion of the right hand greater than that of the left. Males exerted significantly greater vertical force. In the sitting position, greater ulnar deviation was seen among experienced walker users, whereas during standing, experienced users exhibited greater dorsiflexion. The horizontal handles of most marketed walkers may cause user wrist deviations, suggesting researchers should pursue improvements in walker design.
Chen, Xiaomei; Longstaff, Andrew; Fletcher, Simon; Myers, Alan
2014-04-01
This paper presents and evaluates an active dual-sensor autofocusing system that combines an optical vision sensor and a tactile probe for autofocusing on arrays of small holes on freeform surfaces. The system has been tested on a two-axis test rig and then integrated onto a three-axis computer numerical control (CNC) milling machine, where the aim is to rapidly and controllably measure the hole position errors while the part is still on the machine. The principle of operation is for the tactile probe to locate the nominal positions of holes, and the optical vision sensor follows to focus and capture the images of the holes. The images are then processed to provide hole position measurement. In this paper, the autofocusing deviations are analyzed. First, the deviations caused by the geometric errors of the axes on which the dual-sensor unit is deployed are estimated to be 11 μm when deployed on a test rig and 7 μm on the CNC machine tool. Subsequently, the autofocusing deviations caused by the interaction of the tactile probe, surface, and small hole are mathematically analyzed and evaluated. The deviations are a result of the tactile probe radius, the curvatures at the positions where small holes are drilled on the freeform surface, and the effect of the position error of the hole on focusing. An example case study is provided for the measurement of a pattern of small holes on an elliptical cylinder on the two machines. The absolute sum of the autofocusing deviations is 118 μm on the test rig and 144 μm on the machine tool. This is much less than the 500 μm depth of field of the optical microscope. Therefore, the method is capable of capturing a group of clear images of the small holes on this workpiece for either implementation.
miR-181c-BRK1 axis plays a key role in actin cytoskeleton-dependent T cell function.
Lim, Shok Ping; Ioannou, Nikolaos; Ramsay, Alan G; Darling, David; Gäken, Joop; Mufti, Ghulam J
2018-05-01
MicroRNAs are short endogenous noncoding RNAs that play pivotal roles in a diverse range of cellular processes. The miR-181 family is important in T cell development, proliferation, and activation. In this study, we have identified BRK1 as a potential target of miR-181c using a dual selection functional assay and have showed that miR-181c regulates BRK1 by translational inhibition. Given the importance of miR-181 in T cell function and the potential role of BRK1 in the involvement of WAVE2 complex and actin polymerization in T cells, we therefore investigated the influence of miR-181c-BRK1 axis in T cell function. Stimulation of PBMC derived CD3 + T cells resulted in reduced miR-181c expression and up-regulation of BRK1 protein expression, suggesting that miR-181c-BRK1 axis is important in T cell activation. We further showed that overexpression of miR-181c or suppression of BRK1 resulted in inhibition of T cell activation and actin polymerization coupled with defective lamellipodia generation and immunological synapse formation. Additionally, we found that BRK1 silencing led to reduced expressions of other proteins in the WAVE2 complex, suggesting that the impairment of T cell actin dynamics was a result of the instability of the WAVE2 complex following BRK1 depletion. Collectively, we demonstrated that miR-181c reduces BRK1 protein expression level and highlighted the important role of miR-181c-BRK1 axis in T cell activation and actin polymerization-mediated T cell functions. ©2018 Society for Leukocyte Biology.
Matter in the form of toroidal electromagnetic vortices
NASA Astrophysics Data System (ADS)
Hagen, Wilhelm F.
2015-09-01
The creation of charged elementary particles from neutral photons is explained as a conversion process of electromagnetic (EM) energy from linear to circular motion at the speed of light into two localized, toroidal shaped vortices of trapped EM energy that resist change of motion, perceptible as particles with inertia and hence mass. The photon can be represented as a superposition of left and right circular polarized transverse electric fields of opposite polarity originating from a common zero potential axis, the optical axis of the photon. If these components are separated by interaction with a strong field (nucleon) they would curl up into two electromagnetic vortices (EMV) due to longitudinal magnetic field components forming toroids. These vortices are perceptible as opposite charged elementary particles e+/- . These spinning toroids generate extended oscillating fields that interact with stationary field oscillations. The velocity-dependent frequency differences cause beat signals equivalent to matter waves, leading to interference. The extended fields entangled with every particle explain wave particle duality issues. Spin and magnetic moment are the natural outcome of these gyrating particles. As the energy and hence mass of the electron increases with acceleration so does its size shrink proportional to its reduced wavelength. The artificial weak and strong nuclear forces can be easily explained as different manifestations of the intermediate EM forces. The unstable neutron consists of a proton surrounded by a contracted and captured electron. The associated radial EM forces represent the weak nuclear force. The deuteron consists of two axially separated protons held together by a centrally captured electron. The axial EM forces represent the strong nuclear force, providing stability for "neutrons" only within nucleons. The same principles were applied to determine the geometries of force-balanced nuclei. The alpha-particle emerges as a very compact symmetric cuboid that provides a unique building block to assemble the isotopic chart. Exotic neutron- 4 appears viable which may explain dark matter. The recognition that all heavy particles, including the protons, are related to electrons via muons and pions explains the identity of all charges to within 10-36. Greater deviations would overpower gravitation. Gravitation can be traced to EM vacuum fluctuations generated by standing EM waves between interacting particles. On that basis, gravity can be correlated via microscopic quantities to the age of the universe of 13.5 billion years. All forces and particles and potentially dark matter and dark energy are different manifestations of EM energy.
Fabrication and correction of freeform surface based on Zernike polynomials by slow tool servo
NASA Astrophysics Data System (ADS)
Cheng, Yuan-Chieh; Hsu, Ming-Ying; Peng, Wei-Jei; Hsu, Wei-Yao
2017-10-01
Recently, freeform surface widely using to the optical system; because it is have advance of optical image and freedom available to improve the optical performance. For freeform optical fabrication by integrating freeform optical design, precision freeform manufacture, metrology freeform optics and freeform compensate method, to modify the form deviation of surface, due to production process of freeform lens ,compared and provides more flexibilities and better performance. This paper focuses on the fabrication and correction of the free-form surface. In this study, optical freeform surface using multi-axis ultra-precision manufacturing could be upgrading the quality of freeform. It is a machine equipped with a positioning C-axis and has the CXZ machining function which is also called slow tool servo (STS) function. The freeform compensate method of Zernike polynomials results successfully verified; it is correction the form deviation of freeform surface. Finally, the freeform surface are measured experimentally by Ultrahigh Accurate 3D Profilometer (UA3P), compensate the freeform form error with Zernike polynomial fitting to improve the form accuracy of freeform.
Calculation of Source and Strucutral Parameters at Regional and Teleseismic Distances
1987-02-28
Explosions, Elsevier, Amsterdam-Oxford-New York, 440 pages, K 1977. h .- 34 Denham.D., L.G. Alexander, and G . Worotnicki, The stress field near the ...km. Support «.r.i; this conclusion is the existence of short-period siiz-face wave», ^ g waves in events 5, 6, 9, and 13 and Love waves in events 1...for Engineering Applications, New York- Wiley 126 Fig.l Normalized field amplitude as a function of G , the angular displacement from the y-axis. in
NASA Astrophysics Data System (ADS)
Workman, Eli Joseph
We present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher ( 2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves.
NASA Astrophysics Data System (ADS)
Workman, Eli; Lin, Fan-Chi; Koper, Keith D.
2017-01-01
We present a single station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 s the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 s, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher (˜2 per cent) and significantly higher (>20 per cent), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e. Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves and tilt noise.
NASA Astrophysics Data System (ADS)
Doherty, Joshua R.; Dumont, Douglas M.; Trahey, Gregg E.
2011-03-01
The progression of atherosclerotic disease, caused by the formation of plaques within arteries, is a complex process believed to be a function of the localized mechanical properties and hemodynamic loading associated with the arterial wall. It is hypothesized that measurements of vascular stiffness and wall-shear rate (WSR) may provide important information regarding vascular remodeling, endothelial function, and the growth of soft-lipid filled plaques that could help a clinician better diagnose a patient's risk of clinical events such as stroke. To that end, the approach taken in this work was to combine conventional B-mode, Acoustic Radiation Force Impulse (ARFI), Shear Wave Elasticity Imaging (SWEI), and spectral Doppler techniques into a single imaging system capable of simultaneously measuring the tissue displacements and WSR throughout the cardiac cycle and over several heartbeats. Implemented on a conventional scanner, the carotid arteries of human subjects were scanned to demonstrate the initial in vivo feasibility of the method. Two non-invasive ultrasound based imaging methods, SAD-SWEI and SAD-Gated Imaging, were developed that measure ARF-induced on-axis tissue displacements, off-axis transverse wave velocities, and WSR throughout the cardiac cycle. Human carotid artery scans were performed in vivo on 5 healthy subjects. Statistical differences were observed in both on-axis proximal wall displacements and transverse wave velocities during diastole compared to systole.
Ion acoustic wave assisted laser beat wave terahertz generation in a plasma channel
NASA Astrophysics Data System (ADS)
Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav; Garg, Deepak
2018-04-01
Resonant excitation of terahertz (THz) radiation by non-linear mixing of two lasers in the presence of an electrostatic wave is investigated. The electrostatic wave assists in k matching and contributes to non-linear coupling. In this plasma channel, the electron plasma frequency becomes minimum on the axis. The beat frequency ponderomotive force imparts an oscillating velocity to the electrons. In the presence of an ion-acoustic wave, density perturbation due to the ion-acoustic wave couples with the oscillating velocity of the electrons and give rise to non-linear current that gives rise to an ion-acoustic wave frequency assisted THz radiation field. The normalized field amplitude of ion acoustic wave assisted THz varies inversely for ω/ωp . The field amplitude of ion acoustic wave assisted THz decreases as ω/ωp increases.
Chi, Wu-Cheng; Lee, W.H.K.; Aston, J.A.D.; Lin, C.J.; Liu, C.-C.
2011-01-01
We develop a new way to invert 2D translational waveforms using Jaeger's (1969) formula to derive rotational ground motions about one axis and estimate the errors in them using techniques from statistical multivariate analysis. This procedure can be used to derive rotational ground motions and strains using arrayed translational data, thus providing an efficient way to calibrate the performance of rotational sensors. This approach does not require a priori information about the noise level of the translational data and elastic properties of the media. This new procedure also provides estimates of the standard deviations of the derived rotations and strains. In this study, we validated this code using synthetic translational waveforms from a seismic array. The results after the inversion of the synthetics for rotations were almost identical with the results derived using a well-tested inversion procedure by Spudich and Fletcher (2009). This new 2D procedure can be applied three times to obtain the full, three-component rotations. Additional modifications can be implemented to the code in the future to study different features of the rotational ground motions and strains induced by the passage of seismic waves.
NASA Astrophysics Data System (ADS)
Mainprice, David; Le Page, Yvon; Rodgers, John; Jouanna, Paul
2008-10-01
Talc is a hydrous magnesium rich layered silicate that is widely disseminated in the Earth from the seafloor to over 100 km depth, in ultra-high pressure metamorphism of oceanic crust. In this paper we determine the single crystal elastic constants at pressures from 0 to 12 GPa of talc triclinic ( C 1¯) and monoclinic (C2/ c) polytypes using ab initio methods. We find that talc has an extraordinarily high elastic anisotropy at zero pressure that reduces with increasing pressure. The exceptional anisotropy is complemented by a negative Poisson's ratio for many directions in crystal space. Calculations show that talc is not only one of very few common minerals to exhibit auxetic behaviour, but the magnitude of this effect may be the largest reported so far for a mineral. The compression (Vp) and shear (Vs) wave velocity anisotropy is 80% and 85% for the triclinic polytype. At pressures where talc is known be stable in the Earth (up to 5 GPa) the Vp and Vs anisotropy is reduced to about 40% for both velocities, which is still a very high value. Vp is slow parallel to the c-axis and fast perpendicular to it. This remains unchanged with increasing pressure and is observed in both polytypes. The shear wave splitting (difference between fast and slow S-wave velocities) at low pressure has high values in the plane normal to the c-axis, with a maximum near the a*-axis in the triclinic and the b-axis in the monoclinic polytype. The c-axis is the direction of minimum splitting. The pattern of shear wave splitting does not change significantly with pressure. The volume fraction of talc varies between 11 and 41% for hydrated mantle rocks, but the lack of data on the crystallographic preferred orientation (CPO) precludes a detailed analysis of the impact of talc on seismic anisotropy in subduction zones. However, it is highly likely that CPO can easily develop in zones of deformation due to the platy habit of talc crystals. For random aggregates of talc, the isotropic Vp, Vs and Vp/Vs ratio have significantly lower values than those of antigorite and may explain low-velocity regions in the mantle wedge. Vp/Vs ratios are more complex in anisotropic media because there are fast and slow S-waves, resulting in Vp/Vs1 and Vp/Vs2 ratios for every propagation direction, making interpretation difficult in deformed polycrystalline talc with a CPO. Talc on the subduction plate boundary can strongly influence guided wave velocity as CPO would develop in this region of intense shearing. The very low coefficient of friction (< 0.1) of talc above 100 °C could also explain silent earthquakes at shallow depths ( ca 30 km) along the subduction plate boundaries, frequently responsible for tsunami.
Root canal anatomy preservation of WaveOne reciprocating files with or without glide path.
Berutti, Elio; Paolino, Davide Salvatore; Chiandussi, Giorgio; Alovisi, Mario; Cantatore, Giuseppe; Castellucci, Arnaldo; Pasqualini, Damiano
2012-01-01
This study evaluated the influence of glide path on canal curvature and axis modification after instrumentation with WaveOne Primary reciprocating files. Thirty ISO 15, 0.02 taper Endo Training Blocks were used. In group 1, glide path was created with PathFile 1, 2, and 3 at working length, whereas in group 2, glide path was not performed. In both groups, canals were shaped with WaveOne Primary reciprocating files at working length. Preinstrumentation and postinstrumentation digital images were superimposed and processed with Matlab r2010b software to analyze the curvature radius ratio (CRr) and the relative axis error (rAe), representing canal curvature modification. Data were analyzed with 1-way balanced analyses of variance at 2 levels (P < .05). Glide path was found to be extremely significant for both CRr parameter (F = 9.59; df = 1; P = .004) and rAe parameter (F = 13.55; df = 1; P = .001). Canal modifications seem to be significantly reduced when previous glide path is performed by using the new WaveOne nickel-titanium single-file system. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
The X-ray counterpart to the gravitational-wave event GW170817
NASA Astrophysics Data System (ADS)
Troja, E.; Piro, L.; van Eerten, H.; Wollaeger, R. T.; Im, M.; Fox, O. D.; Butler, N. R.; Cenko, S. B.; Sakamoto, T.; Fryer, C. L.; Ricci, R.; Lien, A.; Ryan, R. E.; Korobkin, O.; Lee, S.-K.; Burgess, J. M.; Lee, W. H.; Watson, A. M.; Choi, C.; Covino, S.; D'Avanzo, P.; Fontes, C. J.; González, J. Becerra; Khandrika, H. G.; Kim, J.; Kim, S.-L.; Lee, C.-U.; Lee, H. M.; Kutyrev, A.; Lim, G.; Sánchez-Ramírez, R.; Veilleux, S.; Wieringa, M. H.; Yoon, Y.
2017-11-01
A long-standing paradigm in astrophysics is that collisions—or mergers—of two neutron stars form highly relativistic and collimated outflows (jets) that power γ-ray bursts of short (less than two seconds) duration. The observational support for this model, however, is only indirect. A hitherto outstanding prediction is that gravitational-wave events from such mergers should be associated with γ-ray bursts, and that a majority of these bursts should be seen off-axis, that is, they should point away from Earth. Here we report the discovery observations of the X-ray counterpart associated with the gravitational-wave event GW170817. Although the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow (known as a ‘kilonova’) from freshly synthesized rapid neutron capture (r-process) material in the merger ejecta, observations at X-ray and, later, radio frequencies are consistent with a short γ-ray burst viewed off-axis. Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short γ-ray bursts and gravitational waves from neutron-star mergers, and gives independent confirmation of the collimated nature of the γ-ray-burst emission.
Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Liang; Wang, Kuiru; Yu, Chongxiu; Lu, Chao; Tam, Hwa Yaw; Wai, P K A
2017-05-01
In this Letter, polarization-dependent intermodal four-wave mixing (FWM) is demonstrated experimentally in a birefringent multimode photonic crystal fiber (BM-PCF) designed and fabricated in-house. Femtosecond pump pulses at wavelengths ∼800 nm polarized along one of the principal axes of the BM-PCF are coupled into a normal dispersion region away from the zero-dispersion wavelengths of the fundamental guided mode of the BM-PCF. Anti-Stokes and Stokes waves are generated in the 2nd guided mode at visible and near-infrared wavelengths, respectively. For pump pulses at an average input power of 500 mW polarized along the slow axis, the conversion efficiencies ηas and ηs of the anti-Stokes and Stokes waves generated at wavelengths 579.7 and 1290.4 nm are 19% and 14%, respectively. For pump pulses polarized along the fast axis, the corresponding ηas and ηs at 530.4 and 1627 nm are 23% and 18%, respectively. We also observed that fiber bending and intermodal walk-off have a small effect on the polarization-dependent intermodal FWM-based frequency conversion process.
Finite-amplitude pressure waves in the radial mode of a cylinder
NASA Technical Reports Server (NTRS)
Kubo, I.; Moore, F. K.
1972-01-01
A numerical study of finite-strength, isentropic pressure waves transverse to the axis of a circular cylinder was made for the radial resonant mode. The waves occur in a gas otherwise at rest, filling the cylinder. A method of characteristics was used for the numerical solution. For small but finite amplitudes, calculations indicate the existence of waves of permanent potential form. For larger amplitudes, a shock is indicated to occur. The critical value of the initial amplitude parameter in the power series is found to be 0.06 to 0.08, under various types of initial conditions.
Three-wave electron vortex lattices for measuring nanofields.
Dwyer, C; Boothroyd, C B; Chang, S L Y; Dunin-Borkowski, R E
2015-01-01
It is demonstrated how an electron-optical arrangement consisting of two electron biprisms can be used to generate three-wave vortex lattices with effective lattice spacings between 0.1 and 1 nm. The presence of vortices in these lattices was verified by using a third biprism to perform direct phase measurements via off-axis electron holography. The use of three-wave lattices for nanoscale electromagnetic field measurements via vortex interferometry is discussed, including the accuracy of vortex position measurements and the interpretation of three-wave vortex lattices in the presence of partial spatial coherence. Copyright © 2014 Elsevier B.V. All rights reserved.
Electrocardiographic screening for emphysema: the frontal plane P axis.
Baljepally, R; Spodick, D H
1999-03-01
Because the most characteristic and sensitive electrocardiographic (ECG) correlate of pulmonary emphysema in adults is verticalization of the frontal plane P-wave vector (P axis), we investigated its strength as a lone criterion to screen for obstructive pulmonary disease (OPD) in an adult hospital population. In all, 954 consecutive unselected ECGs were required to yield 100 with P axis > or = +70 degrees (unequivocally negative P in a VL during sinus rhythm) and pulmonary function tests. and 100 with P axis < or = +50 degrees (unequivocally positive P-aVL). Obstructive pulmonary disease by both pulmonary function test and clinical criteria was present in 89 of 100 patients with vertical P axes and 4 of 100 patients without OPD. The high sensitivity (89% for this series) and high specificity (96%) makes vertical P axis a useful screening criterion. Its at-a-glance simplicity makes it "user-friendly."
Comparison of five-axis milling and rapid prototyping for implant surgical templates.
Park, Ji-Man; Yi, Tae-Kyoung; Koak, Jai-Young; Kim, Seong-Kyoon; Park, Eun-Jin; Heo, Seong-Joo
2014-01-01
This study aims to compare and evaluate the accuracy of surgical templates fabricated using coordinate synchronization processing with five-axis milling and design-related processing with rapid prototyping (RP). Master phantoms with 10 embedded gutta-percha cylinders hidden under artificial gingiva were fabricated and imaged using cone beam computed tomography. Vectors of the hidden cylinders were extracted and transferred to those of the planned implants through reverse engineering using virtual planning software. An RP-produced template was fabricated by stereolithography in photopolymer at the RP center according to planned data. Metal sleeves were bonded after holes were bored (group RP). For the milled template, milling coordinates were synchronized using the conversion process for the coordinate synchronization platform located on the model's bottom. Metal bushings were set on holes milled on the five-axis milling machine, on which the model was fixed through the coordinate synchronization plate, and the framework was constructed on the model using orthodontic resin (group CS). A computed tomography image was taken with templates firmly fixed on models using anchor pins (RP) or anchor screws (CS). The accuracy was analyzed via reverse engineering. Differences between the two groups were compared by repeated measures two-factor analysis. From the reverse-engineered image of the template on the experimental model, RP-produced templates showed significantly larger deviations than did milled surgical guides. Maximum deviations of the group RP were 1.58 mm (horizontal), 1.68 mm (vertical), and 8.51 degrees (angular); those of the group CS were 0.68 mm (horizontal), 0.41 mm (vertical), and 3.23 degrees (angular). A comparison of milling and RP template production methods showed that a vector-milled surgical guide had significantly smaller deviations than did an RP-produced template. The accuracy of computer-guided milled surgical templates was within the safety margin of previous studies.
Non-Contact Determination of Antisymmetric Plate Wave Velocity in Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1996-01-01
A 13 mJ NdYAG 1064 nm, 4 ns, laser pulse was employed to produce ultrasonic plate waves in 20 percent porous SiC/SiC composite tensile specimens of three different architectures. An air coupled 0.5 MHz transducer was used to detect and collect the waveforms which contained first antisymmetric plate wave pulses for determining the shear wave velocity (VS). These results were compared to VS values determined on the same specimens with 0.5 MHz ultrasonic transducers with contact coupling. Averages of four noncontact determinations on each of 18 specimens were compared to averages of four contact values. The noncontact VS's fall in the same range as the contact. The standard deviations for the noncontact VS's averaged 2.8 percent. The standard deviations for the contact measurements averaged 2.3 percent, indicating similar reproducibility. Repeated laser pulsing at the same location always lead to deterioration of the ulu-"nic signal. The signal would recover in about 24 hr in air however, indicating that no permanent damage was produced.
Naidenko, S V; Ivanov, E A; Lukarevskiĭ, V S; Hernandez-Blanko, J A; Sorokin, P A; Litvinov, M N; Kotliar, A K; Rozhnov, V V
2011-01-01
A noninvasive evaluation method of hypothalamo-pituitary-adrenals axis (HPA) activity in the Siberian tiger was verified. Comparison of the activity level of HPA in Siberian tigers in the wild and in captivity, and their alterations over the year was carried out. Significant seasonal deviations between activity levels of HPA in tigers in captivity were not found. In the wild, this level was significantly higher, reaching the maximum from November to January, which can be related with an unfavorable influence on tigers in low temperatures and deep snow cover.
Subjective rating scales as a workload
NASA Technical Reports Server (NTRS)
Bird, K. L.
1981-01-01
A multidimensional bipolar-adjective rating scale is employed as a subjective measure of operator workload in the performance of a one-axis tracking task. The rating scale addressed several dimensions of workload, including cognitive, physical, and perceptual task loading as well as fatigue and stress effects. Eight subjects performed a one-axis tracking task (with six levels of difficulty) and rated these tasks on several workload dimensions. Performance measures were tracking error RMS (root-mean square) and the standard deviation of control stick output. Significant relationships were observed between these performance measures and skill required, task complexity, attention level, task difficulty, task demands, and stress level.
Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.
Vinokurov, Nikolay A; Jeong, Young Uk
2013-02-08
We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.
NASA Technical Reports Server (NTRS)
Huang, N. E.; Tung, C.-C.
1977-01-01
The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.
NASA Astrophysics Data System (ADS)
Eddy, C. L.; Ekstrom, G.; Nettles, M.; Gaherty, J. B.
2017-12-01
We present a three-dimensional model of the anisotropic velocity structure of the Pacific lithosphere and asthenosphere. The presence of seismic anisotropy in the oceanic upper mantle provides information about the geometry of flow in the mantle, the nature of the lithosphere-asthenosphere boundary, and the possible presence of partial melt in the asthenosphere. Our dataset consists of fundamental-mode dispersion for Rayleigh and Love waves measured between 25-250 s with paths crossing the Pacific Ocean. We invert the phase anomaly measurements directly for three-dimensional anisotropic velocity structure. Our models are radially anisotropic and include the full set of elastic parameters that describe azimuthal variations in velocity (e.g. Gc, Gs). We investigate the age dependence of seismic velocity and radial anisotropy and find that there are significant deviations from the velocities predicted by a simple oceanic plate cooling model. We observe strong radial anisotropy with vsh > vsv in the asthenosphere of the central Pacific. We investigate the radial anisotropy in the shallow lithosphere, where previous models have reported conflicting results. There is a contrast in both upper-mantle isotropic velocities and radial anisotropy between the Pacific and Nazca plates, across the East Pacific Rise. We also investigate lateral variations in azimuthal anisotropy throughout the Pacific upper mantle and find that there are large areas over which the anisotropy fast axis does not align with absolute plate motion, suggesting the presence of small-scale convection or pressure-driven flow beneath the base of the oceanic plate.
Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.
Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael
2015-11-07
Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8 ± 0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07 ± 0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep structures of the rodent brain.
Electrocardiographic Findings in Brazilian Adults without Heart Disease: ELSA-Brasil.
Pinto, Marcelo Martins; Brant, Luisa C C; Padilha-da-Silva, José Luiz; Foppa, Murilo; Lotufo, Paulo A; Mill, José Geraldo; Vasconcelo-Silva, Paulo R; Almeida, Maria da Conceição C; Barreto, Sandhi Maria; Ribeiro, Antônio Luiz Pinho
2017-11-01
The electrocardiogram (ECG) is widely used in population-based studies. However, there are few studies on electrocardiographic findings in Latin America and in Brazil. The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) comprised 15,105 participants (35-74 years) from six Brazilian capitals. To describe electrocardiographic findings in Brazilian adults without heart disease, stratified by sex, age and race/skin color. Cross-sectional study with baseline data of 11,094 adults (44.5% men) without heart disease from ELSA-Brasil. The ECGs were recorded with the Burdick Atria 6100 machine and stored at the Pyramis System. ECG analysis was automatically performed using the Glasgow University software. A descriptive analysis of heart rate (HR), P, QRS and T waves' duration, PR and QT intervals, and P, R and T axes was performed. After stratification by sex, race/color and age, the groups were compared by the Wilcoxon and Kruskal-Wallis test at a significance level of 5%. Linear regression models were used to evaluate the behavior of electrocardiographic parameters over age. Major electrocardiographic abnormalities defined by the Minnesota code were manually revised. Medians values of the electrocardiographic parameters were different between men and women: HR 63 vs. 66 bpm, PR 164 vs.158 ms, QT corrected 410 vs. 421 ms, QRS duration 92 vs. 86 ms, P-wave duration 112 vs. 108 ms, P-wave axis 54 vs. 57 degrees, R-wave axis 35 vs. 39 degrees, T-wave axis 39 vs. 45 degrees (p < 0.001 for all). The 2nd and the 98th percentiles of each variable were also obtained, and graphs were constructed to illustrate the behavior of the electrocardiographic findings over age of participants stratified by sex and race/skin color. The values for the electrocardiographic measurements herein described can be used as reference for Brazilian adults free of heart disease, stratified by sex. Our results suggest that self-reported race/skin color have no significant influence on electrocardiographic parameters.
Seismic-wave attenuation associated with crustal faults in the New Madrid seismic zone
Hamilton, R.M.; Mooney, W.D.
1990-01-01
The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/ or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.
Gas dynamics in strong centrifugal fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V.
2015-03-10
Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarizedmore » along the rotational axis having the smallest dumping due to the viscosity.« less
Spatial and temporal variations of the ion velocity measured in the Venus ionosphere
NASA Technical Reports Server (NTRS)
Miller, K. L.; Knudsen, W. C.
1987-01-01
Temporal and spatial deviations of ion velocity from the dominant flow of the Venusian ionosphere were detected in data collected from a retarding potential analyzer (RPA) aboard the Pioneer-Venus orbiter spectrometer. The ion velocity measurements were analyzed for the first 3.5 Venus years of the Pioneer-Venus mission, approximately through orbit 780. The deviations of ion velocity from the dominant velocity of the Venusian ionosphere, which generally flows nightward and is almost symmetric about the sun-Venus axis, affect both the ionospheric structure and dynamics. Two examples of departure from steady symmetric flow that were measured by the RPA are discussed.
Tropical cyclogenesis in a tropical wave critical layer: easterly waves
NASA Astrophysics Data System (ADS)
Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.
2009-08-01
The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing gyre and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. The entire sequence is likened to the development of a marsupial infant in its mother's pouch. These ideas are formulated in three new hypotheses describing the flow kinematics and dynamics, moist thermodynamics and wave/vortex interactions comprising the "marsupial paradigm". A survey of 55 named tropical storms in 1998-2001 reveals that actual critical layers sometimes resemble the ideal east-west train of cat's eyes, but are usually less regular, with one or more recirculation regions in the co-moving frame. It is shown that the kinematics of isolated proto-vortices carried by the wave also can be visualized in a frame of reference translating at or near the phase speed of the parent wave. The proper translation speeds for wave and vortex may vary with height owing to vertical shear and wave-vortex interaction. Some implications for entrainment/containment of vorticity and moisture in the cat's eye are discussed from this perspective, based on the observational survey.
Constraints on the Dip of the Anisotropic Symmetry Axis Beneath Japan From Shear Wave Splitting
NASA Astrophysics Data System (ADS)
Long, M. D.; Chevrot, S.; van der Hilst, R.
2001-12-01
Shear wave splitting is widely used as a tool to characterize deformational signatures in the upper mantle. However, we nearly always make the simplifying assumption that the axis of symmetry of the anisotropy is horizontal, which may not always be correct. Due to the nearly vertical incidence angles of the SKS phases typically used in splitting studies, the dip of the symmetry axis is difficult to characterize. However, if phases with varying angles of incidence are used, constraints may be placed on the dip of the symmetry axis. Splitting measurements made on upgoing shear waves with different incidence angles should exhibit discrepancies if the axis of symmetry is not horizontal. Therefore, recordings of SKKS, S, and ScS phases in addition to SKS may be used to constrain the dip of the axis of anisotropic symmetry. Japan is an excellent candidate region to potentially exhibit such discrepancies; deformation associated with the subduction beneath Japan could reasonably be expected to produce a dipping axis of symmetry. In addition, Japan is favorably located with respect to suitable source regions and data from several dense broadband seismic networks are available. We examine data from several high-quality, low-noise stations from the FREESIA network, a network of 62 broadband stations in Japan. We search for good recordings of events in the 0o-60o distance range for ScS, from 40o-80o for S, from 90o-130ofor SKS, and beyond 105o for SKKS. Only deep (>200km) events are used for S and ScS to eliminate contamination from source-side anisotropy. The multichannel method of Chevrot (JGR 2000) is used to determine splitting parameters (φ , δ t) at each station for each phase. Splitting parameters are determined from the azimuthal dependence of the splitting intensity; the method is therefore limited by the azimuthal coverage. Japan has relatively poor azimuthal coverage for SKS and SKKS, and this limits the usefulness of the multichannel method for this dataset. Splitting parameters for SKS and SKKS phases may also be determined using the method of Silver & Chan (JGR 1991). Azimuthal coverage for deep events in the distance ranges associated with S and ScS, however, is quite good and this favorable coverage makes Japan a good place to carry out such a study. We investigate the discrepancies between measured splitting parameters for S, ScS, SKS, and SKKS. We will present preliminary results of the modeling of such discrepancies in terms of a dipping axis and discuss to what extent this can be explained by the presence of a dipping slab.
Scattering of Light and Surface Plasmon Polaritons from Rough Surfaces
2013-06-14
Scattering of an electromagnetic wave from a slightly random dielectric surface: Yoneda peak and Brewster angle in incoherent scattering.” Waves...device applications. Thus, the negative refraction of a surface plasmon polariton was studied in two papers. In the first [1], all- angle negative... angle of incidence, measured counterclockwise from the negative x1 axis, is . The surface plasmon polariton of frequency transmitted through the
Trapped waves on the mid-latitude β-plane
NASA Astrophysics Data System (ADS)
Paldor, Nathan; Sigalov, Andrey
2008-08-01
A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.
Three-dimensional Distribution of Azimuthal and Radial Anisotropy in the Japan Subduction
NASA Astrophysics Data System (ADS)
Ishise, M.; Kawakatsu, H.; Shiomi, K.
2014-12-01
Seismic anisotropy has close relationships with past and present tectonic and dynamic processes. Therefore, detailed description of seismic anisotropy of subduction zones provides important information for our understanding of the subduction system. The most common method of detecting anisotropy is the S-wave splitting measurement. However, conventional S-wave splitting analysis is not an appropriate way to investigate anisotropy in the mantle and slab because the technique has no vertical resolution. Thus, we have improved common traveltime tomography to estimate three-dimensional anisotropic structures of P-wave, assuming that the modeling space is composed of weakly anisotropic medium with a hexagonal symmetry about a horizontal axis (Ishise & Oda, 2005, JGR; Ishise & Oda, 2008, PEPI). Recently, we extended the anisotropic tomography for P-wave radial anisotropy with vertical hexagonal symmetry axis (Ishise & Kawakatsu, 2012 JpGU). In this study, we expand the study area of our previous regional analyses of P-wave azimuthal and radial anisotropic tomography (Ishise & Oda, 2005; Ishise & Kawakatsu, 2012, JpGU; Ishise et al., 2012, SSJ) using Hi-net arrival time data and examine the subduction system around the Japan islands, where two trenches with different strike directions and plate junction are included. Here are some of the remarkable results associated with the PAC slab and mantle structure. (1) N-S-trending fast axis of P-wave anisotropy is dominant in the PAC slab. (2) the mantle wedge shows trench-normal anisotropy across the trench-trench junction. (3) horizontal velocity (PH) tends to be faster than vertical velocity (PV) in the slab. (4) PV tends to be faster than PH in the mantle wedge. The characteristics of the obtained azimuthal and radial anisotropy of the PAC slab and the mantle wedge qualitatively consistent with heterogeneous plate models (e.g., Furumura & Kennet, 2005) and numerical simulations of mantle flow (Morishige & Honda, 2011; 2013). In addition, the azimuthal anisotropy in the PAC slab that we obtained is subparallel to that in the PAC plate before subducting (e.g., Shimamura et al., 1983). Therefore, we suggest that the slab anisotropy is "frozen anisotropy", which is attributed to the episode before subduction, and mantle wedge anisotropy reflects present dynamics.
Magnetic Ordering of Erbium and Uranium NICKEL(2) SILICON(2) by Neutron Scattering
NASA Astrophysics Data System (ADS)
Lin, Hong
The magnetic ordering has been studied in UNi _2Si_2 and erbium single crystals by elastic neutron scattering. Abundant results are given regarding the magnetic structure, magnetic phase transitions, and the effect of a magnetic field on these properties. Three ordered phases are observed in UNi _2Si_2. They have been determined to be an incommensurate longitudinal spin density wave with a magnetic wave vector around q = 0.74c ^* in the high temperature phase, a simple body-centred antiferromagnet in the intermediate temperature phase, and a square wave in the low temperature phase. This square wave can be viewed equivalently as a longitudinal spin density wave with q = 2/3c ^* superimposed on a ferromagnetic component. Hysteresis and sample dependence are observed in the low-temperature phase transition. The two lower temperature phase transitions are both first order. The transition to paramagnetism is second order with a critical exponent beta = 0.35 +/- 0.03. When a magnetic field is applied along the c axis, the intermediate temperature phase is destabilised and disappears above a field of 3.5T. Although there is no new phase induced by the field, there exists a reentrant point where the three ordered phases can coexist. Erbium has three distinct ordered phases: the cone phase at low temperatures, the c-axis modulated (CAM) phase at higher temperatures, and the intermediate phase with moments modulated both along c and perpendicular to c. Within these phases the modulation of the moments may lock in to the lattice. The observed weak harmonics of the wave vector q in the basal plane for the cone phase and the q = 1/4c^* structure in the intermediate phase can be explained by a basal-plane spin slip model. The effect of magnetic field along the c axis on the magnetic structure is to stabilise the cone phase and to destabilise the intermediate phase. A new lock-in structure with q = 1/4c^* in the cone phase is induced by fields above 1.8T. The presence of the field also stabilises the lock-in structure with q = 2/7c^* in both the intermediate and the CAM phases.
Singularities of interference of three waves with different polarization states.
Kurzynowski, Piotr; Woźniak, Władysław A; Zdunek, Marzena; Borwińska, Monika
2012-11-19
We presented the interference setup which can produce interesting two-dimensional patterns in polarization state of the resulting light wave emerging from the setup. The main element of our setup is the Wollaston prism which gives two plane, linearly polarized waves (eigenwaves of both Wollaston's wedges) with linearly changed phase difference between them (along the x-axis). The third wave coming from the second arm of proposed polarization interferometer is linearly or circularly polarized with linearly changed phase difference along the y-axis. The interference of three plane waves with different polarization states (LLL - linear-linear-linear or LLC - linear-linear-circular) and variable change difference produce two-dimensional light polarization and phase distributions with some characteristic points and lines which can be claimed to constitute singularities of different types. The aim of this article is to find all kind of these phase and polarization singularities as well as their classification. We postulated in our theoretical simulations and verified in our experiments different kinds of polarization singularities, depending on which polarization parameter was considered (the azimuth and ellipticity angles or the diagonal and phase angles). We also observed the phase singularities as well as the isolated zero intensity points which resulted from the polarization singularities when the proper analyzer was used at the end of the setup. The classification of all these singularities as well as their relationships were analyzed and described.
Experimental Study on the Axis Line Deflection of Ti6A14V Titanium Alloy in Gun-Drilling Process
NASA Astrophysics Data System (ADS)
Li, Liang; Xue, Hu; Wu, Peng
2018-01-01
Titanium alloy is widely used in aerospace industry, but it is also a typical difficult-to-cut material. During Deep hole drilling of the shaft parts of a certain large aircraft, there are problems of bad surface roughness, chip control and axis deviation, so experiments on gun-drilling of Ti6A14V titanium alloy were carried out to measure the axis line deflection, diameter error and surface integrity, and the reasons of these errors were analyzed. Then, the optimized process parameter was obtained during gun-drilling of Ti6A14V titanium alloy with deep hole diameter of 17mm. Finally, we finished the deep hole drilling of 860mm while the comprehensive error is smaller than 0.2mm and the surface roughness is less than 1.6μm.
Mach wave properties in the presence of source and medium heterogeneity
NASA Astrophysics Data System (ADS)
Vyas, J. C.; Mai, P. M.; Galis, M.; Dunham, Eric M.; Imperatori, W.
2018-06-01
We investigate Mach wave coherence for kinematic supershear ruptures with spatially heterogeneous source parameters, embedded in 3D scattering media. We assess Mach wave coherence considering: 1) source heterogeneities in terms of variations in slip, rise time and rupture speed; 2) small-scale heterogeneities in Earth structure, parameterized from combinations of three correlation lengths and two standard deviations (assuming von Karman power spectral density with fixed Hurst exponent); and 3) joint effects of source and medium heterogeneities. Ground-motion simulations are conducted using a generalized finite-difference method, choosing a parameterization such that the highest resolved frequency is ˜5 Hz. We discover that Mach wave coherence is slightly diminished at near fault distances (< 10 km) due to spatially variable slip and rise time; beyond this distance the Mach wave coherence is more strongly reduced by wavefield scattering due to small-scale heterogeneities in Earth structure. Based on our numerical simulations and theoretical considerations we demonstrate that the standard deviation of medium heterogeneities controls the wavefield scattering, rather than the correlation length. In addition, we find that peak ground accelerations in the case of combined source and medium heterogeneities are consistent with empirical ground motion prediction equations for all distances, suggesting that in nature ground shaking amplitudes for supershear ruptures may not be elevated due to complexities in the rupture process and seismic wave-scattering.
Directed functional connectivity matures with motor learning in a cortical pattern generator.
Day, Nancy F; Terleski, Kyle L; Nykamp, Duane Q; Nick, Teresa A
2013-02-01
Sequential motor skills may be encoded by feedforward networks that consist of groups of neurons that fire in sequence (Abeles 1991; Long et al. 2010). However, there has been no evidence of an anatomic map of activation sequence in motor control circuits, which would be potentially detectable as directed functional connectivity of coactive neuron groups. The proposed pattern generator for birdsong, the HVC (Long and Fee 2008; Vu et al. 1994), contains axons that are preferentially oriented in the rostrocaudal axis (Nottebohm et al. 1982; Stauffer et al. 2012). We used four-tetrode recordings to assess the activity of ensembles of single neurons along the rostrocaudal HVC axis in anesthetized zebra finches. We found an axial, polarized neural network in which sequential activity is directionally organized along the rostrocaudal axis in adult males, who produce a stereotyped song. Principal neurons fired in rostrocaudal order and with interneurons that were rostral to them, suggesting that groups of excitatory neurons fire at the leading edge of travelling waves of inhibition. Consistent with the synchronization of neurons by caudally travelling waves of inhibition, the activity of interneurons was more coherent in the orthogonal mediolateral axis than in the rostrocaudal axis. If directed functional connectivity within the HVC is important for stereotyped, learned song, then it may be lacking in juveniles, which sing a highly variable song. Indeed, we found little evidence for network directionality in juveniles. These data indicate that a functionally directed network within the HVC matures during sensorimotor learning and may underlie vocal patterning.
Directed functional connectivity matures with motor learning in a cortical pattern generator
Day, Nancy F.; Terleski, Kyle L.; Nykamp, Duane Q.
2013-01-01
Sequential motor skills may be encoded by feedforward networks that consist of groups of neurons that fire in sequence (Abeles 1991; Long et al. 2010). However, there has been no evidence of an anatomic map of activation sequence in motor control circuits, which would be potentially detectable as directed functional connectivity of coactive neuron groups. The proposed pattern generator for birdsong, the HVC (Long and Fee 2008; Vu et al. 1994), contains axons that are preferentially oriented in the rostrocaudal axis (Nottebohm et al. 1982; Stauffer et al. 2012). We used four-tetrode recordings to assess the activity of ensembles of single neurons along the rostrocaudal HVC axis in anesthetized zebra finches. We found an axial, polarized neural network in which sequential activity is directionally organized along the rostrocaudal axis in adult males, who produce a stereotyped song. Principal neurons fired in rostrocaudal order and with interneurons that were rostral to them, suggesting that groups of excitatory neurons fire at the leading edge of travelling waves of inhibition. Consistent with the synchronization of neurons by caudally travelling waves of inhibition, the activity of interneurons was more coherent in the orthogonal mediolateral axis than in the rostrocaudal axis. If directed functional connectivity within the HVC is important for stereotyped, learned song, then it may be lacking in juveniles, which sing a highly variable song. Indeed, we found little evidence for network directionality in juveniles. These data indicate that a functionally directed network within the HVC matures during sensorimotor learning and may underlie vocal patterning. PMID:23175804
Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity.
Li, Feilong; Zhao, Youxuan; Cao, Peng; Hu, Ning
2018-07-01
This paper investigates the propagation of Lamb waves in thin plates with quadratic nonlinearity by one-way mixing method using numerical simulations. It is shown that an A 0 -mode wave can be generated by a pair of S 0 and A 0 mode waves only when mixing condition is satisfied, and mixing wave signals are capable of locating the damage zone. Additionally, it is manifested that the acoustic nonlinear parameter increases linearly with quadratic nonlinearity but monotonously with the size of mixing zone. Furthermore, because of frequency deviation, the waveform of the mixing wave changes significantly from a regular diamond shape to toneburst trains. Copyright © 2018 Elsevier B.V. All rights reserved.
Steepened magnetosonic waves in the high beta plasma surrounding Comet Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Smith, E. J.; Thorne, R. M.; Gosling, J. T.; Matsumoto, H.
1986-01-01
Studies of intense hydromagnetic waves at Giacobini-Zinner are extended to investigate the mode and direction of wave propagation. Simultaneous high-resolution measurements of electron density fluctuations demonstrate that long period waves propagate in the magnetosonic mode. Principal axis analyses of the long period waves and accompanying partial rotations show that the sum of the wave phase rotations is 360 deg, indicating that both are parts of the same wave oscillation. The time sequence of the steepened waveforms observed by ICE shows that the waves must propagate towards the Sun with Cph less than Vsw. Observations are consistent with wave generation by resonant ion ring or ion beam instability which predicts right-hand polarized waves propagating in the ion beam (solar) direction. The large amplitudes and small scale sizes of the cometary waves suggest that rapid pitch-angle scattering and energy transfer with energetic ions should occur. Since the waves are highly compressive, first-order Fermi acceleration is forecast.
Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alinejad, H.; Sobhanian, S.; Mahmoodi, J.
2006-01-15
A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equationmore » has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.« less
Theoretical foundations of the chronometric cosmology.
Segal, I E
1976-03-01
The derivation of the redshift (z)-distance (r) relation in the chronometric theory of the Cosmos is amplified. The basic physical quantities are represented by precisely defined self-adjoint operators in global Hilbert spaces. Computations yielding explicit bounds for the deviation of the theoretical prediction from the relation z = tan(2)(r/2R) (where R denotes the radius of the universe), earlier derived employing less formal procedures, are carried out for: (a) a cut-off plane wave in two dimensions; (b) a scalar spherical wave in four dimensions; (c) the same as (b) with appropriate incorporation of the photon spin. Both this deviation and the (quantum) dispersion in redshift are shown to be unobservably small. A parallel classical treatment is possible and leads to similar results.
Volumetric Near-Field Microwave Plasma Generation
NASA Technical Reports Server (NTRS)
Exton, R. J.; Balla, R. Jeffrey; Herring, G. C.; Popovic, S.; Vuskovic, L.
2003-01-01
A periodic series of microwave-induced plasmoids is generated using the outgoing wave from a microwave horn and the reflected wave from a nearby on-axis concave reflector. The plasmoids are spaced at half-wavelength separations according to a standing-wave pattern. The plasmoids are enhanced by an effective focusing in the near field of the horn (Fresnel region) as a result of a diffractive narrowing. Optical imaging, electron density, and rotational temperature measurements characterize the near field plasma region. Volumetric microwave discharges may have application to combustion ignition in scramjet engines.
Ion Isotropy and Ion Resonant Waves in the Solar Wind: Cassini Observations
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.; Gurnett, Donald A.; Hospodarsky, George B.; Kurth, William S.
2001-01-01
Electric fields in the solar wind, in the range of one Hertz, are reported for the first time from a 3-axis stabilized spacecraft. The measurements are made with the Radio and Plasma Wave System (RPWS) experiment on the Cassini spacecraft. Kellogg suggested that such waves could be important in maintaining the near-isotropy of solar wind ions and the validity of MHD for the description of the solar wind. The amplitudes found are larger than those estimated by Kellogg from other measurements, and are due to quasi-electrostatic waves. These amplitudes are quite sufficient to maintain isotropy of the solar wind ions.
Fully vectorial accelerating diffraction-free Helmholtz beams.
Aleahmad, Parinaz; Miri, Mohammad-Ali; Mills, Matthew S; Kaminer, Ido; Segev, Mordechai; Christodoulides, Demetrios N
2012-11-16
We show that new families of diffraction-free nonparaxial accelerating optical beams can be generated by considering the symmetries of the underlying vectorial Helmholtz equation. Both two-dimensional transverse electric and magnetic accelerating wave fronts are possible, capable of moving along elliptic trajectories. Experimental results corroborate these predictions when these waves are launched from either the major or minor axis of the ellipse. In addition, three-dimensional spherical nondiffracting field configurations are presented along with their evolution dynamics. Finally, fully vectorial self-similar accelerating optical wave solutions are obtained via oblate-prolate spheroidal wave functions. In all occasions, these effects are illustrated via pertinent examples.
NASA Astrophysics Data System (ADS)
Tian, Yi; Chen, Mahao; Kong, Jun
2009-02-01
With the online z-axis tube current modulation (OZTCM) technique proposed by this work, full automatic exposure control (AEC) for CT systems could be realized with online feedback not only for angular tube current modulation (TCM) but also for z-axis TCM either. Then the localizer radiograph was not required for TCM any more. OZTCM could be implemented with 2 schemes as attenuation based μ-OZTCM and image noise level based μ-OZTCM. Respectively the maximum attenuation of projection readings and standard deviation of reconstructed images can be used to modulate the tube current level in z-axis adaptively for each half (180 degree) or full (360 degree) rotation. Simulation results showed that OZTCM achieved better noise level than constant tube current scan case by using same total dose in mAs. The OZTCM can provide optimized base tube current level for angular TCM to realize an effective auto exposure control when localizer radiograph is not available or need to be skipped for simplified scan protocol in case of emergency procedure or children scan, etc.
A Nonlinear Calibration Algorithm Based on Harmonic Decomposition for Two-Axis Fluxgate Sensors
Liu, Shibin
2018-01-01
Nonlinearity is a prominent limitation to the calibration performance for two-axis fluxgate sensors. In this paper, a novel nonlinear calibration algorithm taking into account the nonlinearity of errors is proposed. In order to establish the nonlinear calibration model, the combined effort of all time-invariant errors is analyzed in detail, and then harmonic decomposition method is utilized to estimate the compensation coefficients. Meanwhile, the proposed nonlinear calibration algorithm is validated and compared with a classical calibration algorithm by experiments. The experimental results show that, after the nonlinear calibration, the maximum deviation of magnetic field magnitude is decreased from 1302 nT to 30 nT, which is smaller than 81 nT after the classical calibration. Furthermore, for the two-axis fluxgate sensor used as magnetic compass, the maximum error of heading is corrected from 1.86° to 0.07°, which is approximately 11% in contrast with 0.62° after the classical calibration. The results suggest an effective way to improve the calibration performance of two-axis fluxgate sensors. PMID:29789448
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mushtaq, A.; Khan, S. A.; Department of Physics, COMSATS Institute of Information Technology, Islamabad
2007-05-15
The characteristics and stability of ion acoustic solitary wave with transverse perturbations are examined in ultracold quantum magnetospheric plasma consisting of electrons, positrons, and ions. Using the quantum hydrodynamic model, a dispersion relation in the linear regime, and the Kadomtsev-Petviashvili equation in the nonlinear regime are derived. The quantum corrections are studied through quantum statistics and diffraction effects. It is found that compressive solitary wave can propagate in this system. The quantum effects are also studied graphically for both linear and nonlinear profiles of ion acoustic wave. Using energy consideration method, conditions for existence of stable solitary waves are obtained.more » It is found that stable solitary waves depend on quantum corrections, positron concentration, and direction cosine of the wave vector k along the x axis.« less
Wave propagation problem for a micropolar elastic waveguide
NASA Astrophysics Data System (ADS)
Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.
2018-04-01
A propagation problem for coupled harmonic waves of translational displacements and microrotations along the axis of a long cylindrical waveguide is discussed at present study. Microrotations modeling is carried out within the linear micropolar elasticity frameworks. The mathematical model of the linear (or even nonlinear) micropolar elasticity is also expanded to a field theory model by variational least action integral and the least action principle. The governing coupled vector differential equations of the linear micropolar elasticity are given. The translational displacements and microrotations in the harmonic coupled wave are decomposed into potential and vortex parts. Calibrating equations providing simplification of the equations for the wave potentials are proposed. The coupled differential equations are then reduced to uncoupled ones and finally to the Helmholtz wave equations. The wave equations solutions for the translational and microrotational waves potentials are obtained for a high-frequency range.
Preliminary Results of the VLFE Quadrupole Instrumentation From The PARX Sounding Rocket
NASA Astrophysics Data System (ADS)
Reinleitner, L. A.; Holzworth, R. H.; Meadows, A. L.
2003-12-01
The NASA Pulsating Auroral Rocket eXperiment (PARX - March '97 from Poker Flat, AK) was equipped with 4 electric field probes oriented (X and Y) perpendicular to the ambient magnetic field, and one probe (along the Z axis) to obtain the parallel electric field. The rocket also included a three-axis VLF search coil magnetometer. The VLF measurements for both instruments were from 100 Hz - 8 KHz. Additionally, the electric field information was used onboard the rocket to obtain the "quadrupole" electric field, defined to be {(V1+V2) - (V3+V4)}/2d, which shows significant response only to short wavelength waves. This instrumentation clearly shows the long wavelength nature of features tentatively described as auroral hiss, and the shorter wavelength nature of the electrostatic and/or quasi-electrostatic waves.
Circulating heat exchangers for oscillating wave engines and refrigerators
Swift, Gregory W.; Backhaus, Scott N.
2003-10-28
An oscillating-wave engine or refrigerator having a regenerator or a stack in which oscillating flow of a working gas occurs in a direction defined by an axis of a trunk of the engine or refrigerator, incorporates an improved heat exchanger. First and second connections branch from the trunk at locations along the axis in selected proximity to one end of the regenerator or stack, where the trunk extends in two directions from the locations of the connections. A circulating heat exchanger loop is connected to the first and second connections. At least one fluidic diode within the circulating heat exchanger loop produces a superimposed steady flow component and oscillating flow component of the working gas within the circulating heat exchanger loop. A local process fluid is in thermal contact with an outside portion of the circulating heat exchanger loop.
Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G
2012-05-07
Approximate rotational characterization of variational rovibrational wave functions via the rigid rotor decomposition (RRD) protocol is developed for Hamiltonians based on arbitrary sets of internal coordinates and axis embeddings. An efficient and general procedure is given that allows employing the Eckart embedding with arbitrary polyatomic Hamiltonians through a fully numerical approach. RRD tables formed by projecting rotational-vibrational wave functions into products of rigid-rotor basis functions and previously determined vibrational eigenstates yield rigid-rotor labels for rovibrational eigenstates by selecting the largest overlap. Embedding-dependent RRD analyses are performed, up to high energies and rotational excitations, for the H(2) (16)O isotopologue of the water molecule. Irrespective of the embedding chosen, the RRD procedure proves effective in providing unambiguous rotational assignments at low energies and J values. Rotational labeling of rovibrational states of H(2) (16)O proves to be increasingly difficult beyond about 10,000 cm(-1), close to the barrier to linearity of the water molecule. For medium energies and excitations the Eckart embedding yields the largest RRD coefficients, thus providing the largest number of unambiguous rotational labels.
Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.
Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun
2014-01-01
The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method.
Instability evolution of the viscous elliptic liquid jet in the Rayleigh regime
NASA Astrophysics Data System (ADS)
Gu, Shibo; Wang, Lipo; Hung, David L. S.
2017-06-01
For jet flow emanating from noncircular orifices, an unbalanced surface tension force leads to capillary instability, which is independent of influence from the ambient air in the Rayleigh regime. In the present article, the dynamic behavior of incompressible elliptical jets in the Rayleigh regime is investigated. Theoretically, with the consideration of the fluid viscosity, the solution of the Cosserat equation consists of a particular solution and a complementary solution. For the complementary solution the wave number of disturbance modes has two complex conjugate roots, which are responsible for the jet breakup. To match the nonzero particular solution, a spatial wave needs to be introduced, which is independent of external perturbations. Physically, such a spatial wave is interpreted as the axis-switching phenomenon. The predicted features of the axis-switching wavelength and the damping effect from the fluid viscosity have been successfully verified by experimental results. Moreover, the dispersion relations from the present theory suggest that the growth rate of spatial instability is influenced by orifice eccentricity, the Weber number, and the Ohnesorge number.
Instability evolution of the viscous elliptic liquid jet in the Rayleigh regime.
Gu, Shibo; Wang, Lipo; Hung, David L S
2017-06-01
For jet flow emanating from noncircular orifices, an unbalanced surface tension force leads to capillary instability, which is independent of influence from the ambient air in the Rayleigh regime. In the present article, the dynamic behavior of incompressible elliptical jets in the Rayleigh regime is investigated. Theoretically, with the consideration of the fluid viscosity, the solution of the Cosserat equation consists of a particular solution and a complementary solution. For the complementary solution the wave number of disturbance modes has two complex conjugate roots, which are responsible for the jet breakup. To match the nonzero particular solution, a spatial wave needs to be introduced, which is independent of external perturbations. Physically, such a spatial wave is interpreted as the axis-switching phenomenon. The predicted features of the axis-switching wavelength and the damping effect from the fluid viscosity have been successfully verified by experimental results. Moreover, the dispersion relations from the present theory suggest that the growth rate of spatial instability is influenced by orifice eccentricity, the Weber number, and the Ohnesorge number.
Three-Dimensional Mid-Air Acoustic Manipulation by Ultrasonic Phased Arrays
Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun
2014-01-01
The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method. PMID:24849371
The synoptic setting and possible energy sources for mesoscale wave disturbances
NASA Technical Reports Server (NTRS)
Uccellini, Louis W.; Koch, Steven E.
1987-01-01
Published data on 13 cases of mesoscale wave disturbances and their environment were examined to isolate common features for these cases and to determine possible energy sources for the waves. These events are characterized by either a singular wave of depression or wave packets with periods of 1-4 h, horizontal wavelengths of 50-500 km, and surface-pressure perturbation amplitudes of 0.2-7.0 mb. These wave events are shown to be associated with a distinct synoptic pattern (including the existence of a strong inversion in the lower troposphere and the propagation of a jet streak toward a ridge axis in the upper troposphere) while displaying little correlation with the presence of convective storm cells. The observed development of the waves is consistent with the hypothesis that the energy source needed to initiate and sustain the wave disturbances may be related to a geostrophic adjustment process associated with upper-tropospheric jet streaks.
Design of a gait training device for control of pelvic obliquity.
Pietrusinski, Maciej; Severini, Giacomo; Cajigas, Iahn; Mavroidis, Constantinos; Bonato, Paolo
2012-01-01
This paper presents the design and testing of a novel device for the control of pelvic obliquity during gait. The device, called the Robotic Gait Rehabilitation (RGR) Trainer, consists of a single actuator system designed to target secondary gait deviations, such as hip-hiking, affecting the movement of the pelvis. Secondary gait deviations affecting the pelvis are generated in response to primary gait deviations (e.g. limited knee flexion during the swing phase) in stroke survivors and contribute to the overall asymmetrical gait pattern often observed in these patients. The proposed device generates a force field able to affect the obliquity of the pelvis (i.e. the rotation of the pelvis around the anteroposterior axis) by using an impedance controlled single linear actuator acting on a hip orthosis. Tests showed that the RGR Trainer is able to induce changes in pelvic obliquity trajectories (hip-hiking) in healthy subjects. These results suggest that the RGR Trainer is suitable to test the hypothesis that has motivated our efforts toward developing the system, namely that addressing both primary and secondary gait deviations during robotic-assisted gait training may help promote a physiologically-sound gait behavior more effectively than when only primary deviations are addressed.
NASA Astrophysics Data System (ADS)
Curcic, Milan; Chen, Shuyi S.; Özgökmen, Tamay M.
2016-03-01
Hurricane Isaac induced large surface waves and a significant change in upper ocean circulation in the Gulf of Mexico before making landfall at the Louisiana coast on 29 August 2012. Isaac was observed by 194 surface drifters during the Grand Lagrangian Deployment (GLAD). A coupled atmosphere-wave-ocean model was used to forecast hurricane impacts during GLAD. The coupled model and drifter observations provide an unprecedented opportunity to study the impacts of hurricane-induced Stokes drift on ocean surface currents. The Stokes drift induced a cyclonic (anticyclonic) rotational flow on the left (right) side of the hurricane and accounted for up to 20% of the average Lagrangian velocity. In a significant deviation from drifter measurements prior to Isaac, the scale-dependent relative diffusivity is estimated to be 6 times larger during the hurricane, which represents a deviation from Okubo's (1971) canonical results for lateral dispersion in nonhurricane conditions at the ocean surface.
Room Temperature Erbium-Doped Yttrium Vanadate (Er:YVO4) Laser and Amplifier
2016-09-01
perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi -continuous wave regime...laser, amplifier, quasi -continuous wave 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF...distribution unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Laser Experimental Setup and Results 2 3. Laser Amplifier Setup 6 4
Traveling-Wave Tube Cold-Test Circuit Optimization Using CST MICROWAVE STUDIO
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Kory, Carol L.; Wilson, Jeffrey D.; Wintucky, Edwin G.; Dayton, James A., Jr.
2003-01-01
The internal optimizer of CST MICROWAVE STUDIO (MWS) was used along with an application-specific Visual Basic for Applications (VBA) script to develop a method to optimize traveling-wave tube (TWT) cold-test circuit performance. The optimization procedure allows simultaneous optimization of circuit specifications including on-axis interaction impedance, bandwidth or geometric limitations. The application of Microwave Studio to TWT cold-test circuit optimization is described.
Advanced Microwave Ferrite Research (AMFeR): Phase Four
2009-10-15
epitaxial but the easy uniaxial anisotropy axis likely shows some dispersion. Due to inhomogeneity line broadening and two magnon scattering losses, the...below FMR field, there are degenerate spin waves (or magnon ) with the uniform mode (that always exists due to a finite FMR linewidth in reality...wave dispersion curves. developed two magnon scattering processes. On the other hand, below the FMR frequency or above the FMR field, there are no
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinke, Rainer
A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departsmore » from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.« less
Onorbit IMU alignment error budget
NASA Technical Reports Server (NTRS)
Corson, R. W.
1980-01-01
The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.
Flux pinning forces in irradiated a-axis oriented EuBa{sub 2}Cu{sub 3}O{sub 7} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, J. I.; Gonzalez, E. M.; Kwok, W.-K
1999-10-12
{alpha}-axis oriented EuBa{sub 2}Cu{sub 3}O{sub 7} films have been irradiated with high energy heavy ions in different configurations to study the possible pinning role of the artificial defects in this kind of samples. The original pinning limiting mechanism of the samples is not essentially altered what the irradiation is parallel to the CuO{sub 2} planes. However, when it is deviated from this direction, an increase in critical current density and a change in pinning force are observed when the magnetic field is parallel to the columnar defects at values around the matching field.
Two classes of capillary optical fibers: refractive and photonic
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2008-11-01
This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.
Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid.
Mitri, Farid G
2015-10-01
Based on the partial-wave series expansion (PWSE) method in spherical coordinates, a formal analytical solution for the acoustic scattering of a zeroth-order Bessel acoustic beam centered on a rigid fixed (oblate or prolate) spheroid is provided. The unknown scattering coefficients of the spheroid are determined by solving a system of linear equations derived for the Neumann boundary condition. Numerical results for the modulus of the backscattered pressure (θ = π) in the near field and the backscattering form function in the far field for both prolate and oblate spheroids are presented and discussed, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle of the Bessel beam, and the dimensionless frequency. The plots display periodic oscillations (versus the dimensionless frequency) because of the interference of specularly reflected waves in the backscattering direction with circumferential Franz' waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3-D directivity patterns illustrate the near- and far-field axisymmetric scattering. Investigations in underwater acoustics, particle levitation, scattering, and the detection of submerged elongated objects and other related applications utilizing Bessel waves would benefit from the results of the present study.
On the relative intensity of Poisson’s spot
NASA Astrophysics Data System (ADS)
Reisinger, T.; Leufke, P. M.; Gleiter, H.; Hahn, H.
2017-03-01
The Fresnel diffraction phenomenon referred to as Poisson’s spot or spot of Arago has, beside its historical significance, become relevant in a number of fields. Among them are for example fundamental tests of the super-position principle in the transition from quantum to classical physics and the search for extra-solar planets using star shades. Poisson’s spot refers to the positive on-axis wave interference in the shadow of any spherical or circular obstacle. While the spot’s intensity is equal to the undisturbed field in the plane wave picture, its intensity in general depends on a number of factors, namely the size and wavelength of the source, the size and surface corrugation of the diffraction obstacle, and the distances between source, obstacle and detector. The intensity can be calculated by solving the Fresnel-Kirchhoff diffraction integral numerically, which however tends to be computationally expensive. We have therefore devised an analytical model for the on-axis intensity of Poisson’s spot relative to the intensity of the undisturbed wave field and successfully validated it both using a simple light diffraction setup and numerical methods. The model will be useful for optimizing future Poisson-spot matter-wave diffraction experiments and determining under what experimental conditions the spot can be observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S
2015-06-15
Purpose: To quantify the dosimetric variations of misaligned beams for a linear accelerator by using Monte Carlo (MC) simulations. Method and Materials: Misaligned beams of a Varian 21EX Clinac were simulated to estimate the dosimetric effects. All the linac head components for a 6 MV photon beam were implemented in BEAMnrc/EGSnrc system. For incident electron beam parameters, 6 MeV with 0.1 cm full-width-half-max Gaussian beam was used. A phase space file was obtained below the jaw per each misalignment condition of the incident electron beam: (1) The incident electron beams were tilted by 0.5, 1.0 and 1.5 degrees on themore » x-axis from the central axis. (2) The center of the incident electron beam was off-axially moved toward +x-axis by 0.1, 0.2, and 0.3 cm away from the central axis. Lateral profiles for each misaligned beam condition were acquired at dmax = 1.5 cm and 10 cm depth in a rectangular water phantom. Beam flatness and symmetry were calculated by using the lateral profile data. Results: The lateral profiles were found to be skewed opposite to the angle of the incident beam for the tilted beams. For the displaced beams, similar skewed lateral profiles were obtained with small shifts of penumbra on the +x-axis. The variations of beam flatness were 3.89–11.18% and 4.12–42.57% for the tilted beam and the translated beam, respectively. The beam symmetry was separately found to be 2.95 −9.93% and 2.55–38.06% separately. It was found that the percent increase of the flatness and the symmetry values are approximated 2 to 3% per 0.5 degree tilt or per 1 mm displacement. Conclusion: This study quantified the dosimetric effects of misaligned beams using MC simulations. The results would be useful to understand the magnitude of the dosimetric deviations for the misaligned beams.« less
Pagel, Paul S; Dye, Lonnie; Boettcher, Brent T; Freed, Julie K
2018-03-07
Blood flow across the mitral valve during early left ventricular (LV) filling produces a 3-dimensional rotational fluid body, known as a vortex ring, that enhances LV filling efficiency. Diastolic dysfunction is common in elderly patients, but the influence of advanced age on vortex formation is unknown. The authors tested the hypothesis that advanced age is associated with a reduction in LV filling efficiency quantified using vortex formation time (VFT) in octogenarians undergoing coronary artery bypass graft (CABG) surgery. Observational study. Veterans Affairs medical center. After institutional review board approval, octogenarians (n = 7; 82 ± 2 year [mean ± standard deviation]; ejection fraction 56% ± 7%) without valve disease or atrial arrhythmias undergoing CABG were compared with a younger cohort (n = 7; 55 ± 6 year; ejection fraction 57% ± 7%) who were undergoing coronary revascularization. None. All patients were monitored using radial and pulmonary arterial catheters and transesophageal echocardiography. Peak early LV filling (E) and atrial systole (A) blood flow velocities and their corresponding velocity-time integrals were obtained using pulse-wave Doppler echocardiography to determine E/A, atrial filling fraction (β), and E wave deceleration time. Pulse-wave Doppler also was used to measure pulmonary venous blood flow during systole and diastole. Mitral valve diameter (D) was calculated as the average of major and minor axis lengths obtained in the midesophageal LV bicommissural and long-axis transesophageal echocardiography imaging planes, respectively. VFT was calculated as 4 × (1 - β) × SV/(πD 3 ), where SV is the stroke volume measured using thermodilution. Systemic and pulmonary hemodynamics, LV diastolic function, and VFT were determined during steady-state conditions 30 minutes before cardiopulmonary bypass. A delayed relaxation pattern of LV filling (E/A 0.81 ± 0.16 v 1.29 ± 0.19, p = 0.00015; β 0.44 ± 0.05 v 0.35 ± 0.03, p = 0.0008; E wave deceleration time 294 ± 58 v 166 ± 28 ms, p < 0.0001; ratio of peak pulmonary venous systolic and diastolic blood flow velocity 1.42 ± 0.23 v 1.14 ± 0.20, p = 0.0255) was observed in octogenarians compared with younger patients. Mitral valve diameter was similar between groups (2.7 ± 0.2 and 2.6 ± 0.2 cm, respectively, in octogenarians v younger patients, p = 0.299). VFT was reduced in octogenarians compared with younger patients (3.0 ± 0.9 v 4.5 ± 1.2; p = 0.0171). An inverse correlation between age and VFT was shown using linear regression analysis (VFT = -0.0627 × age + 8.24; r 2 = 0.408; p = 0.0139). The results indicate that LV filling efficiency quantified using VFT is reduced in octogenarians compared with younger patients undergoing coronary artery bypass grafting. Published by Elsevier Inc.
Energy Content & Spectral Energy Representation of Wave Propagation in a Granular Chain
NASA Astrophysics Data System (ADS)
Shrivastava, Rohit; Luding, Stefan
2017-04-01
A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. Wave propagation through granular materials is often accompanied by energy attenuation which is quantified by Quality factor and this parameter has often been used to characterize material properties, hence, determining the Quality factor (energy attenuation parameter) can also help in determining the properties of the material [3], studied experimentally in [2]. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder [1]. For obtaining macroscopic/continuum properties, ensemble averaging has been invoked. Instead of analyzing deformation-, velocity- or stress-signals, interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies increases. Brian P. Lawney and Stefan Luding. Mass-disorder effects on the frequency filtering in one-dimensional discrete particle systems. AIP Conference Proceedings, 1542(1), 2013. Ibrahim Guven. Hydraulical and acoustical properties of porous sintered glass bead systems: experiments, theory and simulations (Doctoral dissertation). Rainer Tonn. Comparison of seven methods for the computation of Q. Physics of the Earth and Planetary Interiors, 55(3):259 - 268, 1989. Rohit Kumar Shrivastava and Stefan Luding.: Effect of Disorder on Bulk Sound Wave Speed : A Multiscale Spectral Analysis, Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-83, in review, 2017.
Antiferromagnetic Spin Wave Field-Effect Transistor
Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; ...
2016-04-06
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less
Three-Dimensional Simulation of Traveling-Wave Tube Cold-Test Characteristics Using MAFIA
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Wilson, Jeffrey D.
1995-01-01
The three-dimensional simulation code MAFIA was used to compute the cold-test parameters - frequency-phase dispersion, beam on-axis interaction impedance, and attenuation - for two types of traveling-wave tube (TWT) slow-wave circuits. The potential for this electromagnetic computer modeling code to reduce the time and cost of TWT development is demonstrated by the high degree of accuracy achieved in calculating these parameters. Generalized input files were developed for ferruled coupled-cavity and TunneLadder slow-wave circuits. These files make it easy to model circuits of arbitrary dimensions. The utility of these files was tested by applying each to a specific TWT slow-wave circuit and comparing the results with experimental data. Excellent agreement was obtained.
NASA Technical Reports Server (NTRS)
Maruschek, Joseph W.; Kory, Carol L.; Wilson, Jeffrey D.
1993-01-01
The frequency-phase dispersion and Pierce on-axis interaction impedance of a ferruled, coupled-cavity, traveling-wave tube (TWT), slow-wave circuit were calculated using the three-dimensional simulation code Micro-SOS. The utilization of the code to reduce costly and time-consuming experimental cold tests is demonstrated by the accuracy achieved in calculating these parameters. A generalized input file was developed so that ferruled coupled-cavity TWT slow-wave circuits of arbitrary dimensions could be easily modeled. The practicality of the generalized input file was tested by applying it to the ferruled coupled-cavity slow-wave circuit of the Hughes Aircraft Company model 961HA TWT and by comparing the results with experimental results.
Ogunlade, Oluwadare; Ayoka, Abiodun O; Akomolafe, Rufus O; Akinsomisoye, Olumide S; Irinoye, Adedayo I; Ajao, Adewale; Asafa, Muritala A
2015-09-28
Dextrocardia with situs inversus is a rare congenital disease. In patients with this condition, the heart is presented as a mirror image of itself with its apex pointing to the right. The pulmonary and abdominal anatomies are reversed. Dextrocardia with situs inversus occurs at birth but its diagnosis may be in adulthood. This case advances knowledge by graphically describing the unusual electrocardiographic features of dextrocardia in a young adult. We report a case of a 22-year-old Nigerian man of Yoruba ethnicity who presented himself for preadmission medical test. He had a standard 12-lead electrocardiogram which revealed uncommon features: inversion of P waves in leads I, aVL and aVR; dominantly negative QRS waves in leads I, V1 to V6; reverse R wave progression in chest leads; low voltage in V4 to V6; extreme QRS axis; flattened T waves in V4 to V6 and aVR; and inverted T waves in lead I and aVL. An electrocardiogram diagnosis of dextrocardia was made. The differential diagnosis considered was right ventricular hypertrophy. A cardiovascular examination showed pulse rate of 70 beats per minute, blood pressure of 119/62mmHg, visible cardiac impulse at right precordium, apex beat was located at his fifth right intercostal space mid-clavicular line. A chest X-ray (posterior anterior view) including upper abdomen showed dextrocardia; his aortic arch was located on the right. His stomach bubble was located below his right hemidiaphragm. His trachea was slightly deviated to the left. The findings in his lung fields were not remarkable. Abdominopelvic ultrasonography showed that right-sided intra-abdominal organs (liver, gallbladder) were located on the left while left-sided organs (stomach, spleen) were located on the right. His abdominal aorta was on the right while his inferior vena cava was located on the left. A diagnosis of dextrocardia with situs inversus was made ultrasonographically. A properly interpreted electrocardiogram was useful in suspecting the diagnosis of dextrocardia with situs inversus. So, an analysis of a relatively simple and non-invasive diagnostic tool such as an electrocardiogram allows for suspicion of a cardiovascular anomaly in a setting of scarce diagnostic resources.
Dynamics and stability of relativistic gamma-ray-bursts blast waves
NASA Astrophysics Data System (ADS)
Meliani, Z.; Keppens, R.
2010-09-01
Aims: In gamma-ray-bursts (GRBs), ultra-relativistic blast waves are ejected into the circumburst medium. We analyse in unprecedented detail the deceleration of a self-similar Blandford-McKee blast wave from a Lorentz factor 25 to the nonrelativistic Sedov phase. Our goal is to determine the stability properties of its frontal shock. Methods: We carried out a grid-adaptive relativistic 2D hydro-simulation at extreme resolving power, following the GRB jet during the entire afterglow phase. We investigate the effect of the finite initial jet opening angle on the deceleration of the blast wave, and identify the growth of various instabilities throughout the coasting shock front. Results: We find that during the relativistic phase, the blast wave is subject to pressure-ram pressure instabilities that ripple and fragment the frontal shock. These instabilities manifest themselves in the ultra-relativistic phase alone, remain in full agreement with causality arguments, and decay slowly to finally disappear in the near-Newtonian phase as the shell Lorentz factor drops below 3. From then on, the compression rate decreases to levels predicted to be stable by a linear analysis of the Sedov phase. Our simulations confirm previous findings that the shell also spreads laterally because a rarefaction wave slowly propagates to the jet axis, inducing a clear shell deformation from its initial spherical shape. The blast front becomes meridionally stratified, with decreasing speed from axis to jet edge. In the wings of the jetted flow, Kelvin-Helmholtz instabilities occur, which are of negligible importance from the energetic viewpoint. Conclusions: Relativistic blast waves are subject to hydrodynamical instabilities that can significantly affect their deceleration properties. Future work will quantify their effect on the afterglow light curves.
NASA Astrophysics Data System (ADS)
Kim, Sung-Jin; Cho, Young-Ho; Nam, Hyo-Jin; Bu, Jong Uk
2008-12-01
This paper presents a torsional micromirror detached from PZT actuators (TMD), whose rotational motion is achieved by push bars in the PZT actuators, detached from the micromirror. The push bar mechanism is intended to reduce the bending, tensile and torsional constraints generated by the conventional bending bar mechanism, where the torsional micromirror is attached to the PZT actuators (TMA). We have designed, fabricated and tested the prototypes of TMDs for single-axis and dual-axis rotations, respectively. The single-axis TMD generates a static rotational angle of 6.1° at 16 Vdc, which is six times larger than that of the single-axis TMA, 0.9°. However, the rotational response curve of TMD shows hysteresis and zero offset due to the static friction from the initial contact force between the cover and the push bar in the PZT actuator. We have shown that 63.2% of the hysteresis is reduced by eliminating the initial contact force of the PZT actuator. The dual-axis TMD generates static rotational angles of 5.5° and 4.7° in the x-axis and y-axis, respectively, at 16 Vdc. The measured resonant frequencies of the dual-axis TMD are 2.1 ± 0.1 kHz in the x-axis and 1.7 ± 0.1 kHz in the y-axis. The dual-axis TMD shows stable operation without severe wear for 21.6 million cycles driven by the 16 Vp-p sinusoidal wave signal at room temperature.
Controlled sample orientation and rotation in an acoustic levitator
NASA Technical Reports Server (NTRS)
Barmatz, Martin B. (Inventor); Gaspar, Mark S. (Inventor); Trinh, Eugene H. (Inventor)
1988-01-01
A system is described for use with acoustic levitators, which can prevent rotation of a levitated object or control its orientation and/or rotation. The acoustic field is made nonsymmetrical about the axis of the levitator, to produce an orienting torque that resists sample rotation. In one system, a perturbating reflector is located on one side of the axis of the levitator, at a location near the levitated object. In another system, the main reflector surface towards which incoming acoustic waves are directed is nonsymmetrically curved about the axis of the levitator. The levitated object can be reoriented or rotated in a controlled manner by repositioning the reflector producing the nonsymmetry.
Directional measurement of short ocean waves with stereophotography
NASA Technical Reports Server (NTRS)
Shemdin, Omar H.; Tran, H. Minh; Wu, S. C.
1988-01-01
Stereophotographs of the sea surface, acquired during the Tower Ocean Wave and Radar Dependence experiment are analyzed to yield directional wave height spectra of short surface waves in the 6-80-cm range. The omnidirectional wave height spectra are found to deviate from the k exp -4 distribution, where k is the wave number. The stereo data processing errors are found to be within + or - 5 percent. The omnidirectional spectra yield 514 deg of freedom for 30-cm-long waves. The directional distribution of short waves is processed with a directional resolution of 30 deg, so as to yield 72 deg of freedom for 30-cm-long waves. The directional distributions show peaks that are aligned with the wind and swell directions. It is found that dynamically relevant measurements can be obtained with stereophotography, after removal of the mean surface associated with long waves.
Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling
2013-09-30
Even more problematic are the observed deviations from the constant-flux layer behavior, which the definition of sea drag relies on. Recently...Geophys. Res. Lett., 36, L06607, 4p Babanin, A.V. and V.K. Makin, 2008: Effects of wind trend and gustiness on the sea drag: Lake George study. J. Geophys
Laser Scattering from the Dense Plasma Focus.
plasma focus (DPF) illuminated by a pulse of laser light. Scattering was observable from 10 nanoseconds prior to arrival of the collapse on axis and for an additional 50 nanoseconds. The frequency spectrum is markedly asymmetric about the laser frequency, a feature which is inconsistent with spectral expectations based on thermal particle distributions even if particle drifts or waves excitations are included. A model is postulated which attributes the asymmetry to lateral displacement of scattering region from the axis of the focus. Analysis based on this model yields
Simulations of Seismic Wave Propagation on Mars
Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan; ...
2017-03-23
In this paper, we present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust. For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE against the 2D axisymmetric wave propagation solver AxiSEM at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on raymore » theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars’ northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. Finally, we conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.« less
Simulations of Seismic Wave Propagation on Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan
In this paper, we present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust. For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE against the 2D axisymmetric wave propagation solver AxiSEM at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on raymore » theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars’ northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. Finally, we conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.« less
Direct-to-digital holography reduction of reference hologram noise and fourier space smearing
Voelkl, Edgar
2006-06-27
Systems and methods are described for reduction of reference hologram noise and reduction of Fourier space smearing, especially in the context of direct-to-digital holography (off-axis interferometry). A method of reducing reference hologram noise includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference image waves; and transforming the corresponding plurality of reference image waves into a reduced noise reference image wave. A method of reducing smearing in Fourier space includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference complex image waves; transforming the corresponding plurality of reference image waves into a reduced noise reference complex image wave; recording a hologram of an object; processing the hologram of the object into an object complex image wave; and dividing the complex image wave of the object by the reduced noise reference complex image wave to obtain a reduced smearing object complex image wave.
Pietrzak, Robert H.; Goldstein, Risë B.; Southwick, Steven M.; Grant, Bridget F.
2010-01-01
The present study used data from the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions (n=34,653) to examine lifetime Axis I psychiatric comorbidity of posttraumatic stress disorder (PTSD) in a nationally representative sample of U.S. adults. Lifetime prevalences±standard errors of PTSD and partial PTSD were 6.4%±0.18 and 6.6%±0.18, respectively. Rates of PTSD and partial PTSD were higher among women (8.6%±0.26 and 8.6%±0.26) than men (4.1%±0.19 and 4.5%±0.21). Respondents with both PTSD and partial PTSD most commonly reported unexpected death of someone close, serious illness or injury to someone close, and sexual assault as their worst stressful experiences. PTSD and partial PTSD were associated with elevated lifetime rates of mood, anxiety, and substance use disorders, and suicide attempts. Respondents with partial PTSD generally had intermediate odds of comorbid Axis I disorders and psychosocial impairment relative to trauma controls and full PTSD. PMID:21168991
NASA Astrophysics Data System (ADS)
Sharma, M. D.
2018-07-01
Phenomenon of reflection and refraction is considered at the plane interface between a thermoelastic medium and thermo-poroelastic medium. Both the media are isotropic and behave dissipative to wave propagation. Incident wave in thermo-poroelastic medium is considered inhomogeneous with deviation allowed between the directions of propagation and maximum attenuation. For this incidence, four attenuated waves reflect back in thermo-poroelastic medium and three waves refract to the continuing thermoelastic medium. Each of these reflected/refracted waves is inhomogeneous and propagates with a phase shift. The propagation characteristics (velocity, attenuation, inhomogeneity, phase shift, amplitude, energy) of reflected and refracted waves are calculated as functions of propagation direction and inhomogeneity of the incident wave. Variations in these propagation characteristics with the incident direction are illustrated through a numerical example.
NASA Astrophysics Data System (ADS)
Zaitseva, D. V.; Kallistratova, M. A.; Lyulyukin, V. S.; Kouznetsov, R. D.; Kuznetsov, D. D.
2018-03-01
Variations in the intensity of turbulence during wave activity in the stable atmospheric boundary layer over a homogeneous steppe surface have been analyzed. Eight wave activity episodes recorded with a Doppler sodar in August 2015 at the Tsimlyansk Scientific Station of the Obukhov Institute of Atmospheric Physics have been studied. These episodes include seven trains of Kelvin-Helmholtz waves and one train of buoyancy waves. Variations in the rms deviation of the vertical wind-velocity component, the temperature structure parameter, and vertical heat and momentum fluxes have been estimated for each episode of wave activity. It has been found that Kelvin-Helmholtz waves slightly affect the intensity of turbulence, while buoyancy waves cause the temperature structure parameter and the vertical fluxes to increase by more than an order of magnitude.
Zimmermann, Frauke; Schwenninger, Christoph; Nolten, Ulrich; Firmbach, Franz Peter; Elfring, Robert; Radermacher, Klaus
2012-05-06
Preservation and recovery of the mechanical leg axis as well as good rotational alignment of the prosthesis components and well-balanced ligaments are essential for the longevity of total knee arthroplasty (TKA). In the framework of the OrthoMIT project, the genALIGN system, a new navigated implantation approach based on intra-operative force-torque measurements, has been developed. With this system, optical or magnetic position tracking as well as any fixation of invasive rigid bodies are no longer necessary. For the alignment of the femoral component along the mechanical axis, a sensor-integrated instrument measures the torques resulting from the deviation between the instrument's axis and the mechanical axis under manually applied axial compression load. When both axes are coaxial, the resulting torques equal zero, and the tool axis can be fixed with respect to the bone. For ligament balancing and rotational alignment of the femoral component, the genALIGN system comprises a sensor-integrated tibial trial inlay measuring the amplitude and application points of the forces transferred between femur and tibia. Hereby, the impact of ligament tensions on knee joint loads can be determined over the whole range of motion. First studies with the genALIGN system, including a comparison with an imageless navigation system, show the feasibility of the concept.
A Correlational Study of Scoliosis and Trunk Balance in Adult Patients with Mandibular Deviation
Yang, Yang; Wang, Na; Wang, Wenyong; Ding, Yin; Sun, Shiyao
2013-01-01
Previous studies have confirmed that patients with mandibular deviation often have abnormal morphology of their cervical vertebrae. However, the relationship between mandibular deviation, scoliosis, and trunk balance has not been studied. Currently, mandibular deviation is usually treated as a single pathology, which leads to poor clinical efficiency. We investigated the relationship of spine coronal morphology and trunk balance in adult patients with mandibular deviation, and compared the finding to those in healthy volunteers. 35 adult patients with skeletal mandibular deviation and 10 healthy volunteers underwent anterior X-ray films of the head and posteroanterior X-ray films of the spine. Landmarks and lines were drawn and measured on these films. The axis distance method was used to measure the degree of scoliosis and the balance angle method was used to measure trunk balance. The relationship of mandibular deviation, spine coronal morphology and trunk balance was evaluated with the Pearson correlation method. The spine coronal morphology of patients with mandibular deviation demonstrated an “S” type curve, while a straight line parallel with the gravity line was found in the control group (significant difference, p<0.01). The trunk balance of patients with mandibular deviation was disturbed (imbalance angle >1°), while the control group had a normal trunk balance (imbalance angle <1°). There was a significant difference between the two groups (p<0.01). The degree of scoliosis and shoulder imbalance correlated with the degree of mandibular deviation, and presented a linear trend. The direction of mandibular deviation was the same as that of the lateral bending of thoracolumbar vertebrae, which was opposite to the direction of lateral bending of cervical vertebrae. Our study shows the degree of mandibular deviation has a high correlation with the degree of scoliosis and trunk imbalance, all the three deformities should be clinically evaluated in the management of mandibular deviation. PMID:23555836
Intra-fraction motion of larynx radiotherapy
NASA Astrophysics Data System (ADS)
Durmus, Ismail Faruk; Tas, Bora
2018-02-01
In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.
First Electromagnetic Pulse Associated with a Gravitational-wave Event: Profile, Duration, and Delay
NASA Astrophysics Data System (ADS)
Lin, Da-Bin; Liu, Tong; Lin, Jie; Wang, Xiang-Gao; Gu, Wei-Min; Liang, En-Wei
2018-04-01
We study the first electromagnetic (EM) pulse after the gravitational-wave (GW) chirp signal, focusing on its profile and duration. It is found that the light curve, especially the steep decay (SD) phase, can be very different by adopting different viewing angles θ view of the jet shell. For an on-axis jet with a power-law radiation spectrum, the observed flux in the SD is proportional to {t}obs}-2-β with β being the spectral index and t obs being the observer time. Here, t obs = 0 is set at the time we observe the jet being ejected from the central engine. The SD may become steep by increasing θ view. We also study the bolometric luminosity L from a jet shell with a non-power-law radiation spectrum. For an on-axis jet, L ∝ t obs ‑3 is found in the SD. However, the SD is steeper than L\\propto {t}obs}-3 for radiation from an off-axis jet. The higher value of the θ view is, the steeper SD would be. Then, we suggest that the SD phase can be used to discriminate an off-axis jet from an on-axis jet. The reason for the above behaviors is discussed. In addition, we find that the duration of first EM pulse is close to its peak time, especially for θ view ∼ 20°. This result is consistent with that found in GW 170817/GRB 170817A. Thus, the jet corresponding to the prompt emission of GRB 170817A should be ejected immediately after the merger. Our results also reveal that the duration of the first EM pulse can provide information on the time to search for GWs.
Burghelea, Manuela; Verellen, Dirk; Poels, Kenneth; Gevaert, Thierry; Depuydt, Tom; Tournel, Koen; Hung, Cecilia; Simon, Viorica; Hiraoka, Masahiro; de Ridder, Mark
2015-07-15
The purpose of this study was to define an independent verification method based on on-board orthogonal fluoroscopy to determine the geometric accuracy of synchronized gantry-ring (G/R) rotations during dynamic wave arc (DWA) delivery available on the Vero system. A verification method for DWA was developed to calculate O-ring-gantry (G/R) positional information from ball-bearing positions retrieved from fluoroscopic images of a cubic phantom acquired during DWA delivery. Different noncoplanar trajectories were generated in order to investigate the influence of path complexity on delivery accuracy. The G/R positions detected from the fluoroscopy images (DetPositions) were benchmarked against the G/R angulations retrieved from the control points (CP) of the DWA RT plan and the DWA log files recorded by the treatment console during DWA delivery (LogActed). The G/R rotational accuracy was quantified as the mean absolute deviation ± standard deviation. The maximum G/R absolute deviation was calculated as the maximum 3-dimensional distance between the CP and the closest DetPositions. In the CP versus DetPositions comparison, an overall mean G/R deviation of 0.13°/0.16° ± 0.16°/0.16° was obtained, with a maximum G/R deviation of 0.6°/0.2°. For the LogActed versus DetPositions evaluation, the overall mean deviation was 0.08°/0.15° ± 0.10°/0.10° with a maximum G/R of 0.3°/0.4°. The largest decoupled deviations registered for gantry and ring were 0.6° and 0.4° respectively. No directional dependence was observed between clockwise and counterclockwise rotations. Doubling the dose resulted in a double number of detected points around each CP, and an angular deviation reduction in all cases. An independent geometric quality assurance approach was developed for DWA delivery verification and was successfully applied on diverse trajectories. Results showed that the Vero system is capable of following complex G/R trajectories with maximum deviations during DWA below 0.6°. Copyright © 2015 Elsevier Inc. All rights reserved.
Computational studies on scattering of radio frequency waves by density filaments in fusion plasmas
NASA Astrophysics Data System (ADS)
Ioannidis, Zisis C.; Ram, Abhay K.; Hizanidis, Kyriakos; Tigelis, Ioannis G.
2017-10-01
In modern magnetic fusion devices, such as tokamaks and stellarators, radio frequency (RF) waves are commonly used for plasma heating and current profile control, as well as for certain diagnostics. The frequencies of the RF waves range from ion cyclotron frequency to the electron cyclotron frequency. The RF waves are launched from structures, like waveguides and current straps, placed near the wall in a very low density, tenuous plasma region of a fusion device. The RF electromagnetic fields have to propagate through this scrape-off layer before coupling power to the core of the plasma. The scrape-off layer is characterized by turbulent plasmas fluctuations and by blobs and filaments. The variations in the edge density due to these fluctuations and filaments can affect the propagation characteristics of the RF waves—changes in density leading to regions with differing plasma permittivity. Analytical full-wave theories have shown that scattering by blobs and filaments can alter the RF power flow into the core of the plasma in a variety of ways, such as through reflection, refraction, diffraction, and shadowing [see, for example, Ram and Hizanidis, Phys. Plasmas 23, 022504 (2016), and references therein]. There are changes in the wave vectors and the distribution of power-scattering leading to coupling of the incident RF wave to other plasma waves, side-scattering, surface waves, and fragmentation of the Poynting flux in the direction towards the core. However, these theoretical models are somewhat idealized. In particular, it is assumed that there is step-function discontinuity in the density between the plasma inside the filament and the background plasma. In this paper, results from numerical simulations of RF scattering by filaments using a commercial full-wave code are described. The filaments are taken to be cylindrical with the axis of the cylinder aligned along the direction of the ambient magnetic field. The plasma inside and outside the filament is assumed to be cold. There are three primary objectives of these studies. The first objective is to validate the numerical simulations by comparing with the analytical results for the same plasma description—a step-function discontinuity in density. A detailed comparison of the Poynting flux shows that numerical simulations lead to the same results as those from the theoretical model. The second objective is to extend the simulations to take into account a smooth transition in density from the background plasma to the interior of the filament. The ensuing comparison shows that the deviations from the results of the theoretical model are quite small. The third objective is to consider the scattering process for situations well beyond a reasonable theoretical analysis. This includes scattering off multiple filaments with different densities and sizes. Simulations for these complex arrangements of filaments show that, in spite of the obvious limitations, the essential physics of RF scattering is captured by the analytical theory for a single filament.
NASA Astrophysics Data System (ADS)
Pushin, Dmitry
Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.
Sciarra, Luigi; Golia, Paolo; Palamà, Zefferino; Scarà, Antonio; De Ruvo, Ermenegildo; Borrelli, Alessio; Martino, Anna Maria; Minati, Monia; Fagagnini, Alessandro; Tota, Claudia; De Luca, Lucia; Grieco, Domenico; Delise, Pietro; Calò, Leonardo
Left bundle branch block (LBBB) and left axis deviation (LAD) patients may have poor response to resynchronization therapy (CRT). We sought to assess if LBBB and LAD patients show a specific pattern of mechanical asynchrony. CRT candidates with non-ischemic cardiomyopathy and LBBB were categorized as having normal QRS axis (within -30° and +90°) or LAD (within -30° and -90°). Patients underwent tissue Doppler imaging (TDI) to measure time interval between onset of QRS complex and peak systolic velocity in ejection period (Q-peak) at basal segments of septal, inferior, lateral and anterior walls, as expression of local timing of mechanical activation. Thirty patients (mean age 70.6years; 19 males) were included. Mean left ventricular ejection fraction was 0.28±0.06. Mean QRS duration was 172.5±13.9ms. Fifteen patients showed LBBB with LAD (QRS duration 173±14; EF 0.27±0.06). The other 15 patients had LBBB with a normal QRS axis (QRS duration 172±14; EF 0.29±0.05). Among patients with LAD, Q-peak interval was significantly longer at the anterior wall in comparison to each other walls (septal 201±46ms, inferior 242±58ms, lateral 267±45ms, anterior 302±50ms; p<0.0001). Conversely, in patients without LAD Q-peak interval was longer at lateral wall, when compared to each other (septal 228±65ms, inferior 250±64ms, lateral 328±98ms, anterior 291±86ms; p<0.0001). Patients with heart failure, presenting LBBB and LAD, show a specific pattern of ventricular asynchrony, with latest activation at anterior wall. This finding could affect target vessel selection during CRT procedures in these patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Theoretical investigation of Lamb wave characteristics in AlN/3C-SiC composite membranes
NASA Astrophysics Data System (ADS)
Lin, Chih-Ming; Chen, Yung-Yu; Pisano, Albert P.
2010-11-01
Cubic silicon carbide (3C-SiC) layer can provide advantages of high frequency and high quality factor for Lamb wave devices due to the superior properties of high acoustic velocity and low acoustic loss. In this study, Lamb wave propagation characteristics in composite membranes consisting of a c-axis oriented aluminum nitride (AlN) film and an epitaxial 3C-SiC (100) layer are investigated by theoretical calculation. The lowest symmetric mode Lamb wave propagating along the [011] direction exhibits a phase velocity higher than 10 000 m/s and an electromechanical coupling coefficient above 2% in the AlN/3C-SiC multilayered membranes.
Correlation of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor
NASA Technical Reports Server (NTRS)
Vary, A.; Lark, R. F.
1978-01-01
An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A stress wave factor was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), 0 deg + or - 45 deg/0 deg symmetrical, and + or - 45 deg] symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.
Babinet's principle in the Fresnel regime studied using ultrasound
NASA Astrophysics Data System (ADS)
Hitachi, Akira; Takata, Momo
2010-07-01
The diffraction of ultrasound by a circular disk and an aperture of the same size has been investigated as a demonstration of Babinet's principle in the Fresnel regime. The amplitude and the phase of the diffracted ultrasonic waves are measured and a graphical treatment of the results is performed by drawing vectors in the complex plane. The results verify Babinet's principle. It is also found that the incident wave is π /2 behind the phase of the wave passing through on the central axis of a circular aperture. Because both waves travel the same path and the same distance, they should be in phase. This paradox has previously been regarded as a defect of Fresnel's theory.
Post-Kerr black hole spectroscopy
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Pappas, George; Silva, Hector O.; Berti, Emanuele
2017-09-01
One of the central goals of the newborn field of gravitational wave astronomy is to test gravity in the highly nonlinear, strong field regime characterizing the spacetime of black holes. In particular, "black hole spectroscopy" (the observation and identification of black hole quasinormal mode frequencies in the gravitational wave signal) is expected to become one of the main tools for probing the structure and dynamics of Kerr black holes. In this paper we take a significant step toward that goal by constructing a "post-Kerr" quasinormal mode formalism. The formalism incorporates a parametrized but general perturbative deviation from the Kerr metric and exploits the well-established connection between the properties of the spacetime's circular null geodesics and the fundamental quasinormal mode to provide approximate, eikonal limit formulas for the modes' complex frequencies. The resulting algebraic toolkit can be used in waveform templates for ringing black holes with the purpose of measuring deviations from the Kerr metric. As a first illustrative application of our framework, we consider the Johannsen-Psaltis deformed Kerr metric and compute the resulting deviation in the quasinormal mode frequency relative to the known Kerr result.
The Deterministic Mine Burial Prediction System
2009-01-12
or below the water-line, initial linear and angular velocities, and fall angle relative to the mine’s axis of symmetry. Other input data needed...c. Run_DMBP.m: start-up MATLAB script for the program 2. C:\\DMBP\\DMBP_src: This directory contains source code, geotechnical databases, and...approved for public release). b. \\Impact_35: The IMPACT35 model c. \\MakeTPARfiles: scripts for creating wave height and wave period input data from
2010-01-01
TERMS MEMS , acoustic wave devices, acoustic wave sensors Qing-Ming Wang University of Pittsburgh 123 University Place University Club Pittsburgh, PA...resonators,” Proc. SPIE Vol. 6223, 62230I, Micro ( MEMS ) and Nanotechnologies for Space Applications; Thomas George, Zhong-Yang Cheng; Eds. (May...microelectromechanical resonators has been recognized as a technological challenge in the current microelectronics and MEMS development. The
NASA Technical Reports Server (NTRS)
Toncich, S. S.; Collin, R. E.; Bhasin, K. B.
1993-01-01
A technique for a full wave characterization of microstrip open end discontinuities fabricated on uniaxial anisotropic substrates using potential theory is presented. The substrate to be analyzed is enclosed in a cutoff waveguide, with the anisotropic axis aligned perpendicular to the air-dielectric interface. A full description of the sources on the microstrip line is included with edge conditions built in. Extention to other discontinuities is discussed.
NASA Astrophysics Data System (ADS)
Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.
2008-01-01
We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.
Surface acoustic wave micromotor with arbitrary axis rotational capability
NASA Astrophysics Data System (ADS)
Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.
2011-11-01
A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.
Taking an electron-magnon duality shortcut from electron to magnon transport
NASA Astrophysics Data System (ADS)
Mook, Alexander; Göbel, Börge; Henk, Jürgen; Mertig, Ingrid
2018-04-01
The quasiparticles in insulating magnets are the charge-neutral magnons, whose magnetic moments couple to electromagnetic fields. For collinear easy-axis magnets, this coupling can be mapped elegantly onto the scenario of charged particles in electromagnetic fields. From this mapping we obtain equations of motion for magnon wave packets equal to those of electron wave packets in metals. Thus, well-established electronic transport phenomena can be carried over to magnons: this duality shortcut facilitates the discussion of magnon transport. We identify the magnon versions of normal and anomalous Hall, Nernst, Ettingshausen, and Righi-Leduc effects. They are discussed for selected types of easy-axis magnets: ferromagnets, antiferromagnets, and ferrimagnets. Besides a magnon Wiedemann-Franz law and the magnon counterpart of the negative magnetoresistance of electrons in Weyl semimetals, we predict that certain low-symmetry ferrimagnets exhibit a nonlinear version of the anomalous magnon Hall-effect family.
Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator
NASA Astrophysics Data System (ADS)
Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David
2015-11-01
We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.
Resonant surface acoustic wave chemical detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.
Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acousticmore » cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.« less
Helicon wave coupling in KSTAR plasmas for off-axis current drive in high electron pressure plasmas
NASA Astrophysics Data System (ADS)
Wang, S. J.; Wi, H. H.; Kim, H. J.; Kim, J.; Jeong, J. H.; Kwak, J. G.
2017-04-01
A helicon wave current drive is proposed as an efficient off-axis current drive in the high electron β plasmas that are expected in fusion reactors. A high frequency helicon wave coupling was analyzed using the surface impedance at a plasma boundary. A slow wave coupling, which may compete with the helicon wave coupling at a frequency of 500 MHz, is estimated to be lower than the fast wave coupling by an order of magnitude in the KSTAR edge plasma density and in practical Faraday shield misalignment with the magnetic pitch. A traveling wave antenna, which is a two port combline antenna, was analyzed using a simplified lumped element model. The results show that the traveling wave antenna provides load resiliency because of its insensitivity to loading resistance, provided that the loading resistance at a radiating element is limited within a practical range. The combline antenna is attractive because it does not require a matching system and exhibits a high selectivity of parallel refractive index. Based on the analysis, a seven element combline antenna was fabricated and installed at an off-mid-plane offset of 30 cm from the mid-plane in KSTAR. The low power RF characteristics measured during several plasma discharges showed no evidence of slow wave coupling. This is consistent with the expectation made through the surface impedance analysis which predicted low slow wave coupling. The wave coupling to the plasma is easily controlled by a radial outer-gap control and gas puffing. No plasma confinement degradation was observed during the radial outer-gap control of up to 3 cm in H-mode discharges. In a ELMy plasmas, only a small reflection peak was observed during a very short portion of the ELM bursting period. If the number of radiating elements is increased for high power operation, then complete load resiliency can be expected. A very large coupling can be problematic for maintaining a parallel refractive index, although this issue can be mitigated by increasing the number of elements.
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Herrmann, Kimberly A.; Kory, Carol L.; Wilson, Jeffrey D.; Cross, Andrew W.; Santana , Samuel
2003-01-01
The electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS) was used to compute the cold-test parameters - frequency-phase dispersion, on-axis impedance, and attenuation - for a traveling-wave tube (TWT) slow-wave circuit. The results were compared to experimental data, as well as to results from MAFIA, another three-dimensional simulation code from CST currently used at the NASA Glenn Research Center (GRC). The strong agreement between cold-test parameters simulated with MWS and those measured experimentally demonstrates the potential of this code to reduce the time and cost of TWT development.
Love-to-Rayleigh Conversions and Seismic Anisotropy in Cascadia
NASA Astrophysics Data System (ADS)
Rieger, Duayne Matthew
Seismic anisotropy is often attributed to the development of lattice-preferred orientation (LPO) of olivine crystals in peridotite, induced by the dislocation creep component of mantle deformation (Karato et al., 2008; Ribe, 1992). Mantle-flow-induced seismic anisotropy is often modeled in the simple form of hexagonal symmetry, where the anisotropic volume is uniaxially fast or slow. This relationship between seismic anisotropy and mantle deformation allows for the mapping of mantle dynamics using measurements of seismic anisotropy. Presently, methods of measuring seismic anisotropy in Earth's mantle include shear-wave splitting and surface-wave tomography. These methods are tuned to seismically fast axes laying in the horizontal or surface-tangent plane and are limited in discerning clipping seismic fast axes. This is a shortcoming. It is reasonable to suspect the presence of dipping seismic fast axes induced by mantle flow in several tectonic regimes such as subduction zones. The slab rollback model of the subduction zone system has been argued to exhibit trench-parallel subslab anisotropy due to the lateral evacuation of the subslab mantle material (Hall et al., 2000; Russo and Silver, 1994). This model has been emboldened by the dominance of trench-parallel shear-wave-splitting measurements in the subslab mantle of global subduction zones. This model has significant geodynamic implications, requiring viscous decoupling between the subslab mantle and the sub-ducting slab. The Cascadian subduction zone is of particular scientific interest. While experiencing slab rollback (Zandt and Humphreys, 2008), trench-perpendicular shear-wave-splitting measurements are observed in the subslab mantle of Cascadia (Currie et al., 2004; Eakin et al., 2010; Long and Silver, 2008; 2009). This suggests either viscous coupling resulting in slab-entrained flow or the presence of an alternate relationship between finite strain in the mantle and seismic anisotropy. The ability to discern a clipping anisotropic axis would help gain insight into the mantle dynamics of regions such as Cascadia. Lateral gradients of seismic anisotropy in Earth's upper mantle induce coupling among Earth's spheroidal and toroidal normal modes. This coupling can manifest as observable surface-wave polarization anomalies resulting from Love to Rayleigh wave conversions. These Love to Rayleigh conversions are known in the literature as Quasi-Love (QL) waves (Park and Yu, 1992) and are sensitive to both the strike and the dip of an anisotropic symmetry axis. In this dissertation I investigate the phenomenology of QL surface-wave scattering, including its sensitivity to the type and orientation of seismic anisotropy. I then apply my findings to observations of QL wave scattering in Cascada in order to further constrain subslab mantle anisotropy in the region. First, I make initial observations and confirm the presence of QL scattering in Cascada and the western U.S. using data recorded on USArray. I then move on to develop an algorithm to model efficiently QL wave scattering in the presence of 3-dimensional anisotropic structure. Using this forward-modeling algorithm, I investigate the dependence of QL wave scattering on the type and orientation of seismic Anisotropy. I find that P and S anisotropies exhibit independent effects on scattering. Scattering due to S anisotropy is stronger than that due to P anisotropy for all orientations and dominates in the observed scattering pattern. Both the phase and amplitude of the QL wave is dependent on the orientation (strike and dip) of the symmetry axis relative to the incident propagation azimuth of the source-receiver great-circle path. Due to this, the orientation of the anisotropic symmetry axis provides a distinct signature which is observable in the variation of QL wave scattering with wave-propagation azimuth. Finally, using data recorded on USArray, I observe the variation in QL wave scattering with propagation azimuth. I then attempt to forward-model the observed behavior using the algorithm developed earlier. The best-fitting model suggests coherent trench-perpendicular mantle anisotropy with an eastward dip in the sublsab mantle of the Cascadian subduction zone. The resulting anisotropic model adds confidence to the entrained subslab mantle-flow model for Cascadia and further refutes the 3-D return-flow model associated with slab rollback.
The ISEE-1 and ISEE-2 plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Scarf, F. L.; Fredricks, R. W.; Smith, E. J.
1978-01-01
The ISEE-1 and ISEE-2 plasma wave experiments are designed to provide basic information on wave-particle interactions in the earth's magnetosphere and in the solar wind. The ISEE-1 plasma wave instrument uses three electric dipole antennas with lengths of 215, 73.5 and 0.61 m for electric field measurements, and a triaxial search coil antenna for magnetic field measurements. The ISEE-2 instrument uses two electric dipole antennas with lengths of 30 and 0.61 m for electric field measurements and a single-axis search coil antenna for magnetic field measurements. The primary scientific objectives of the experiments are described, including the resolution of space-time relationships of plasma wave phenomena and VLBI studies. The instrumentation is described, with emphasis on the antennas and the electronics.
NASA Astrophysics Data System (ADS)
Gusakov, E. Z.; Popov, A. Yu.; Saveliev, A. N.
2018-06-01
We analyze the saturation of the low-threshold absolute parametric decay instability of an extraordinary pump wave leading to the excitation of two upper hybrid (UH) waves, only one of which is trapped in the vicinity of a local maximum of the plasma density profile. The pump depletion and the secondary decay of the localized daughter UH wave are treated as the most likely moderators of a primary two-plasmon decay instability. The reduced equations describing the nonlinear saturation phenomena are derived. The general analytical consideration is accompanied by the numerical analysis performed under the experimental conditions typical of the off-axis X2-mode ECRH experiments at TEXTOR. The possibility of substantial (up to 20%) anomalous absorption of the pump wave is predicted.
Superconducting and normal-state properties of the layered boride OsB2
NASA Astrophysics Data System (ADS)
Singh, Yogesh; Niazi, A.; Vannette, M. D.; Prozorov, R.; Johnston, D. C.
2007-12-01
OsB2 crystallizes in an orthorhombic structure (Pmmn) which contains alternate boron and osmium layers stacked along the c axis. The boron layers consist of puckered hexagons as opposed to the flat graphite-like boron layers in MgB2 . OsB2 is reported to become superconducting below 2.1K . We report results of the dynamic and static magnetic susceptibilities, electrical resistivity, Hall effect, heat capacity, and penetration depth measurements on arc-melted polycrystalline samples of OsB2 to characterize its superconducting and normal-state properties. These measurements confirmed that OsB2 becomes a bulk superconductor below Tc=2.1K . Our results indicate that OsB2 is a moderate-coupling type-II superconductor with an electron-phonon coupling constant λep≈0.4-0.5 , a small Ginzburg-Landau parameter κ˜1-2 , and an upper critical magnetic field Hc2(0.5K)˜420Oe for an unannealed sample and Hc2(1K)˜330Oe for an annealed sample. The temperature dependence of the superfluid density ns(T) for the unannealed sample is consistent with an s -wave superconductor with a slightly enhanced zero temperature gap Δ(0)=1.9kBTc and a zero temperature London penetration depth λ(0)=0.38(2)μm . The ns(T) data for the annealed sample show deviations from the predictions of the single-band s -wave BCS model. The magnetic, transport, and thermal properties in the normal state of isostructural and isoelectronic RuB2 , which is reported to become superconducting below 1.6K , are also reported.
Lane, Conor M; Bos, J Martijn; Rohatgi, Ram K; Ackerman, Michael J
2018-04-30
Little is known about the spectrum and prevalence of ECG features beyond the length and morphology of repolarization in patients with congenital long QT syndrome (LQTS). To characterize the full ECG phenotype of LQTS patients and evaluate differences by age and LQTS genotype. Retrospective review of 943 patients with LQTS (57% female, median age 25 years; IQR 9 - 34 years) was performed. Comprehensive analysis of their initial evaluation ECG was performed using definitions outlined in Heart Rhythm Society guidelines. Bradycardia was common (n=320; 34%), regardless of beta-blocker use. Left axis deviation (n=33, 3.5%) and bundle branch block (n=5, 0.5%) were uncommon. T-wave inversion (TWI) involving leads V1 and V3 was more common in LQT2 compared to LQT1 or LQT3 [OR for V1: 2.67 (95% CI 1.8 - 3.9) and OR for V3: 1.76 (95% CI 1.2 - 2.6)], while TWI in lead III and aVF was most common in LQT3 [OR for III: 2.38 (95% CI 1.4 - 4.2) and OR for aVF: 3.14 (95% CI 1.6 - 6.4)]. Notched T-waves were most apparent at younger ages (48% in patients between ages 4-10 compared to 12% in over 40s, p <0.0001). Beyond the QT interval and bradycardia, ECG abnormalities are uncommon in LQTS patients and patients almost never have concomitant bundle branch block. Notably, 19% of LQTS patients overall and 27% of LQT2 patients exhibit anterior TWI that would satisfy a diagnostic criterion for arrhythmogenic right ventricular cardiomyopathy creating the potential for diagnostic miscues. Copyright © 2018. Published by Elsevier Inc.
Zorzi, Alessandro; Calore, Chiara; Vio, Riccardo; Pelliccia, Antonio; Corrado, Domenico
2018-05-01
Interpretation of the athlete's ECG is based on differentiation between benign ECG changes and potentially pathological abnormalities. The aim of the study was to compare the 2010 European Society of Cardiology (ESC) and the 2017 International criteria for differential diagnosis between hypertrophic cardiomyopathy (HCM) and athlete's heart. The study populations included 200 patients with HCM and 563 athletes grouped as follows: 'group 1', including normal ECG and isolated increase of QRS voltages, which are considered non-pathologic according to ESC and International criteria; 'group 2', including left atrial enlargement or left axis deviation in isolation and Q-waves with an amplitude ≥4 mm but <25% of the ensuing R-wave and a duration <0.04 s which are considered pathologic according to the ESC but not according to the International criteria; and 'group 3', including abnormalities which are considered pathologic according to ESC and International criteria. Overall, the 2010 ESC criteria showed a sensitivity of 95.5% and a specificity of 86.9%. Considering group 2 ECG changes as normal according to the International criteria led to a statistically significant (p<0.001) increase of specificity to 95.9%, associated with a non-significant (p=0.47) reduction of sensitivity to 93%. Among patients with HCM, there was a significant increase of maximal left ventricular wall thickness from group 1 to 3 (p=0.02). The use of 2017 International criteria is associated with a substantial increase in specificity and a marginal decrease in sensitivity for differential diagnosis between HCM and athlete's heart. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Electrocardiography in people living at high altitude of Nepal
Aryal, Nirmal; Weatherall, Mark; Bhatta, Yadav Kumar Deo; Mann, Stewart
2017-01-01
Objective The main objective of this study was to estimate the prevalence of coronary heart disease (CHD) of high-altitude populations in Nepal determined by an ECG recordings and a medical history. Methods We carried out a cross-sectional survey of cardiovascular disease and risk factors among people living at four different altitude levels, all above 2800 m, in the Mustang and Humla districts of Nepal. 12-lead ECGs were recorded on 485 participants. ECG recordings were categorised as definitely abnormal, borderline or normal. Results No participant had Q waves to suggest past Q-wave infarction. Overall, 5.6% (95% CI 3.7 to 8.0) of participants gave a self-report of CHD. The prevalence of abnormal (or borderline abnormal) ECG was 19.6% (95% CI 16.1 to 23.4). The main abnormalities were: right axis deviation in 5.4% (95% CI 3.5 to 7.7) and left ventricular hypertrophy by voltage criteria in 3.5% (95% CI 2.0 to 5.5). ECG abnormalities were mainly on the left side of the heart for Mustang participants (Tibetan origin) and on the right side for Humla participants (Indo-Aryans). There was a moderate association between the probability of abnormal (or borderline abnormal) ECG and altitude when adjusted for potential confounding variables in a multivariate logistic model; with an OR for association per 1000 m elevation of altitude of 2.83 (95% CI 1.07 to 7.45), p=0.03. Conclusions Electrocardiographic evidence suggests that although high-altitude populations do not have a high prevalence of CHD, abnormal ECG findings increase by altitude and risk pattern varies by ethnicity. PMID:28243317
Concrete induced cardiac contusion.
Curzen, N.; Brett, S.; Fox, K.
1997-01-01
A previously fit 22 year old man was struck in the chest by a concrete block dropped through the windscreen of his car while he was driving on the motorway. He suffered extensive chest wall trauma and lung contusion, which subsequently precipitated acute respiratory distress. On admission ECG showed right bundle branch block and left axis deviation. Three days later QRS duration was normal but there was anterior ST segment elevation and subsequent T wave change. There was a large rise in creatine kinase, and echocardiography revealed septal and apical hyokinesis as well as a mobile mass attached to the left side of the interventricular septum, which had the echogenic texture of myocardium. The patient had fixed perfusion defects in the areas of hypokinesis on thallium scanning but the coronary arteries were unobstructed at angiography. He was treated with warfarin in the short term and an angiotensin converting enzyme inhibitor in the longer term and has made an asymptomatic recovery. Outpatient echocardiography two months after the injury demonstrated some recovery in overall left ventricular systolic function and no evidence of the intracardiac mass. This case illustrates some of the typical features of non-fatal cardiac contusion associated with non-penetrating cardiac trauma, and was complicated by partial thickness avulsion of a strip of the myocardium in the interventricular septum. Images PMID:9391297
Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine
2013-09-01
Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.
Yang, Shuai; Liu, Ying
2018-08-01
Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.
μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.
Yamaguchi, Eiichiro; Smith, Bradford J; Gaver, Donald P
2009-08-01
Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.
Measuring Diameters Of Large Vessels
NASA Technical Reports Server (NTRS)
Currie, James R.; Kissel, Ralph R.; Oliver, Charles E.; Smith, Earnest C.; Redmon, John W., Sr.; Wallace, Charles C.; Swanson, Charles P.
1990-01-01
Computerized apparatus produces accurate results quickly. Apparatus measures diameter of tank or other large cylindrical vessel, without prior knowledge of exact location of cylindrical axis. Produces plot of inner circumference, estimate of true center of vessel, data on radius, diameter of best-fit circle, and negative and positive deviations of radius from circle at closely spaced points on circumference. Eliminates need for time-consuming and error-prone manual measurements.
Hatzichristodoulou, Georgios; Meisner, Christoph; Gschwend, Jürgen E; Stenzl, Arnulf; Lahme, Sven
2013-11-01
Extracorporeal shock wave therapy (ESWT) for treatment of Peyronie's disease (PD) is controversial. To study the efficacy of ESWT by a placebo-controlled, randomized trial. Patients with PD (n=102) were randomly assigned (n=51) to each group (ESWT or placebo). All patients were given 6 weekly treatments. Patients in the ESWT-group received 2,000 shock waves per session, using the Piezoson 100 lithotripter (Richard Wolf, Knittlingen, Germany). Patients in the placebo-group were treated with interposition of a plastic membrane, which prevented any transmission of shock waves. Primary end point was decrease of pain between baseline and after 4 weeks follow-up. Secondary end points were changes in deviation, plaque size, and sexual function. Pain was assessed by a visual analog scale. Deviation was measured by a goniometer after artificial erection using Alprostadil (Viridal®, Schwarz Pharma, Monheim, Germany). Plaque size was measured with a ruler and sexual function assessed by a scale regarding the ability to perform sexual intercourse. Overall, only 45 patients experienced pain at baseline. In the subgroup analysis of these patients, pain decreased in 17/20 (85.0%) patients in the ESWT group and 12/25 (48.0%) patients in the placebo group (P=0.013, relative risk [RR]=0.29, 95% confidence interval: 0.09-0.87). Penile deviation was not reduced by ESWT (P=0.66) but worsened in 20/50 (40%) and 12/49 (24.5%) patients of the ESWT and placebo-group, respectively (P=0.133). Plaque size reduction was not different between the two groups (P=0.33). Additional, plaque size increased in five patients (10.9%) of the ESWT group only. An improvement in sexual function could not be verified (P=0.126, RR=0.46). Despite some potential benefit of ESWT in regard to pain reduction, it should be emphasized that pain usually resolves spontaneously with time. Given this and the fact that deviation may worsen with ESWT, this treatment cannot be recommended. © 2013 International Society for Sexual Medicine.
Experimental Study of Structure of Low Density Jet Impinging on Tilt Plate by LIF and PSP
NASA Astrophysics Data System (ADS)
Fujimoto, Tetsuo; Sato, Kimihiko; Naniwa, Shuji; Inoue, Tomoyuki; Nakashima, Kouji
2000-07-01
The structure of low density jets impinging on a tilt plate is studied by hybrid use of LIF and PSP. The jet through an orifice flows into low pressure chamber of 0.12 Torr and impinges on to the tilt plate with angle from jet axis 45 or 60 or 90. A horizontal plane including the jet axis is visualized by LIF of seeded Iodine molecule, scanning a laser beam along the jet axis. On the other hand, the pressure distribution on the tilt plate is visualized by PSP. In comparing the results of the two methods, the shock wave system is analyzed. Deformation of the Mach disk and the barrel shock are confirmed.
Study on imaging spectrometer with smile and keystone eliminated
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Yu, Kun; Zhang, Jun
2017-03-01
The formulas of image height in two-dimensional field about Gaussian and tilted imaging system of grating-based imaging spectrometer instrument (GISI) are deduced firstly, and the determined expressions of smile and keystone of GISI are obtained. It is proposed to correct the smile with off-axis lens, and the elimination effect of the smile is studied by means of spatial ray tracing. By controlling the degree of off-axis and the distribution of focal power of the off-axis lens, the long-wave infrared imaging spectrometer with well-eliminated smile and keystone is designed. The maximum of smile and keystone at working wavelengths in all fields of view are less than 8.57 μm and 13.33 μm, respectively.
Mode-coupling and wave-particle interactions for unstable ion-acoustic waves.
NASA Technical Reports Server (NTRS)
Martin, P.; Fried, B. D.
1972-01-01
A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasilinear and mode-coupling effects are treated in a self-consistent manner. Steady-state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through terms of second order in the wave amplitude, but without the usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion-acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasilinear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.
Mode coupling and wave particle interactions for unstable ion acoustic waves
NASA Technical Reports Server (NTRS)
Martin, P.; Fried, B. D.
1972-01-01
A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasi-linear and mode coupling effects are treated in a self-consistent manner. Steady state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through second order terms in the wave amplitude, but without usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasi-linear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found, even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.
Stiffness Corrections for the Vibration Frequency of a Stretched Wire
ERIC Educational Resources Information Center
Hornung, H. G.; Durie, M. J.
1977-01-01
Discusses the need of introducing corrections due to wire stiffness arising from end constraints and wire axis distribution curvature in the measurement of ac electrical frequency by exciting transverse standing waves in a stretched steel wire. (SL)
Size and Location of Defects at the Coupling Interface Affect Lithotripter Performance
Li, Guangyan; Williams, James C.; Pishchalnikov, Yuri A.; Liu, Ziyue; McAteer, James A.
2012-01-01
OBJECTIVE To determine how the size and location of coupling defects caught between the therapy head of a lithotripter and the skin of a surrogate patient (acoustic window of a test chamber) affect the features of shock waves responsible for stone breakage. METHODS Model defects were placed in the coupling gel between the therapy head of a Dornier Compact-S electromagnetic lithotripter and the Mylar window of a water-filled coupling test system. A fiber-optic hydrophone was used to measure acoustic pressures and map the lateral dimensions of the focal zone of the lithotripter. The effect of coupling conditions on stone breakage was assessed using Gypsum model stones. RESULTS Stone breakage decreased in proportion to the area of the coupling defect; a centrally located defect blocking only 18% of the transmission area reduced stone breakage by an average of almost 30%. The effect on stone breakage was greater for defects located on-axis and decreased as the defect was moved laterally; an 18% defect located near the periphery of the coupling window (2.0 cm off-axis) reduced stone breakage by only ~15% compared to when coupling was completely unobstructed. Defects centered within the coupling window acted to narrow the focal width of the lithotripter; an 8.2% defect reduced the focal width ~30% compared to no obstruction (4.4 mm versus 6.5 mm). Coupling defects located slightly off center disrupted the symmetry of the acoustic field; an 18% defect positioned 1.0 cm off-axis shifted the focus of maximum positive pressure ~1.0 mm laterally. Defects on and off-axis imposed a significant reduction in the energy density of shock waves across the focal zone. CONCLUSIONS In addition to blocking the transmission of shock wave energy, coupling defects also disrupt the properties of shock waves that play a role in stone breakage, including the focal width of the lithotripter and the symmetry of the acoustic field; the effect is dependent on the size and location of defects, with defects near the center of the coupling window having the greatest effect. These data emphasize the importance of eliminating air pockets from the coupling interface, particularly defects located near the center of the coupling window. PMID:22938566
Torsional deformity of apical vertebra in adolescent idiopathic scoliosis.
Kotwicki, Tomasz; Napiontek, Marek
2002-01-01
CT scans of structural thoracic idiopathic scoliosis were reviewed in nine patients admitted to our department for scoliosis surgery. The apical vertebra scans were chosen and the following parameters were evaluated: 1) alpha angle formed by the axis of vertebra and the axis of spinous process 2) beta concave and beta convex angle between the spinous process and the left and right transverse process, respectively, 3) gamma concave and gamma convex angle between the axis of vertebra and the left and right transverse process, respectively, 4) the rotation angle to the sagittal plane. The constant deviation of the spinous process towards the convex side of the curve was observed. The vertebral body itself was distorted towards the concavity of the curve. The angle between the spinous process and the transverse process was smaller on the convex side of the curve. The torsional, intravertebral deformity of the apical vertebra was a factor acting in the direction opposite to the rotation, in the sense to reduce the deformity of the spine in idiopathic scoliosis.
Direct generation of linearly polarized single photons with a deterministic axis in quantum dots
NASA Astrophysics Data System (ADS)
Wang, Tong; Puchtler, Tim J.; Patra, Saroj K.; Zhu, Tongtong; Ali, Muhammad; Badcock, Tom J.; Ding, Tao; Oliver, Rachel A.; Schulz, Stefan; Taylor, Robert A.
2017-07-01
We report the direct generation of linearly polarized single photons with a deterministic polarization axis in self-assembled quantum dots (QDs), achieved by the use of non-polar InGaN without complex device geometry engineering. Here, we present a comprehensive investigation of the polarization properties of these QDs and their origin with statistically significant experimental data and rigorous k·p modeling. The experimental study of 180 individual QDs allows us to compute an average polarization degree of 0.90, with a standard deviation of only 0.08. When coupled with theoretical insights, we show that these QDs are highly insensitive to size differences, shape anisotropies, and material content variations. Furthermore, 91% of the studied QDs exhibit a polarization axis along the crystal [1-100] axis, with the other 9% polarized orthogonal to this direction. These features give non-polar InGaN QDs unique advantages in polarization control over other materials, such as conventional polar nitride, InAs, or CdSe QDs. Hence, the ability to generate single photons with polarization control makes non-polar InGaN QDs highly attractive for quantum cryptography protocols.
Transverse low frequency wave in a two fluid solar wind. M.S. Thesis
NASA Technical Reports Server (NTRS)
Solodyna, G. V.
1973-01-01
Investigation is made of the properties of low frequency transverse waves in a two-fluid solar wind having a radial magnetic field and radial streaming velocity. In order to examine what effects this streaming medium has on the waves, linearly polarized waves are decomposed into left and right circularly polarized waves. Computation is made of analytic expressions valid to first order for the radial amplitude and phase dependence of these constituent waves. It is shown that after travelling a given distance r, these waves have different amplitudes and phases. The former result causes their superposition to become elliptical rather than linear. The latter causes the axis of the ellipse of polarization to rotate through a well-defined angle. Analytic expressions are obtained for the eccentricity of the ellipse and for the angle of rotation. In analogy with regular Faraday rotation, in which the plane of polarization of a linear polarized wave rotates, the effect is denoted as generalized Faraday rotation.
NASA Astrophysics Data System (ADS)
Xu, Xianfeng; Cai, Luzhong; Li, Dailin; Mao, Jieying
2010-04-01
In phase-shifting interferometry (PSI) the reference wave is usually supposed to be an on-axis plane wave. But in practice a slight tilt of reference wave often occurs, and this tilt will introduce unexpected errors of the reconstructed object wave-front. Usually the least-square method with iterations, which is time consuming, is employed to analyze the phase errors caused by the tilt of reference wave. Here a simple effective algorithm is suggested to detect and then correct this kind of errors. In this method, only some simple mathematic operation is used, avoiding using least-square equations as needed in most methods reported before. It can be used for generalized phase-shifting interferometry with two or more frames for both smooth and diffusing objects, and the excellent performance has been verified by computer simulations. The numerical simulations show that the wave reconstruction errors can be reduced by 2 orders of magnitude.
Waveguide effect under 'antiguiding' conditions in graded anisotropic media.
Kozlov, A V; Mozhaev, V G; Zyryanova, A V
2010-02-24
A new wave confinement effect is predicted in graded crystals with a concave slowness surface under conditions of growth of the phase velocity with decreasing distance from the waveguide axis. This finding overturns the common notion about the guiding and 'antiguiding' profiles of wave velocity in inhomogeneous media. The waveguide effect found is elucidated by means of ray analysis and particular exact wave solutions. The exact solution obtained for localized flexural waves in thin plates of graded cubic and tetragonal crystals confirms the predicted effect. Since this solution is substantially different with respect to the existence conditions from all others yet reported, and it cannot be deduced from the previously known results, the predicted waves can be classified as a new type of waveguide mode in graded anisotropic media. Although the concrete calculations are given in the article for acoustic waves, its general predictions are expected to be valid for waves of various natures, including spin, plasma, and optical waves.
Electrocardiographic Findings in Brazilian Adults without Heart Disease: ELSA-Brasil
Pinto Filho, Marcelo Martins; Brant, Luisa C. C.; Padilha-da-Silva, José Luiz; Foppa, Murilo; Lotufo, Paulo A.; Mill, José Geraldo; Vasconcelo-Silva, Paulo R.; Almeida, Maria da Conceição C.; Barreto, Sandhi Maria; Ribeiro, Antônio Luiz Pinho
2017-01-01
Background The electrocardiogram (ECG) is widely used in population-based studies. However, there are few studies on electrocardiographic findings in Latin America and in Brazil. The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) comprised 15,105 participants (35-74 years) from six Brazilian capitals. Objectives To describe electrocardiographic findings in Brazilian adults without heart disease, stratified by sex, age and race/skin color. Methods Cross-sectional study with baseline data of 11,094 adults (44.5% men) without heart disease from ELSA-Brasil. The ECGs were recorded with the Burdick Atria 6100 machine and stored at the Pyramis System. ECG analysis was automatically performed using the Glasgow University software. A descriptive analysis of heart rate (HR), P, QRS and T waves’ duration, PR and QT intervals, and P, R and T axes was performed. After stratification by sex, race/color and age, the groups were compared by the Wilcoxon and Kruskal-Wallis test at a significance level of 5%. Linear regression models were used to evaluate the behavior of electrocardiographic parameters over age. Major electrocardiographic abnormalities defined by the Minnesota code were manually revised. Results Medians values of the electrocardiographic parameters were different between men and women: HR 63 vs. 66 bpm, PR 164 vs.158 ms, QT corrected 410 vs. 421 ms, QRS duration 92 vs. 86 ms, P-wave duration 112 vs. 108 ms, P-wave axis 54 vs. 57 degrees, R-wave axis 35 vs. 39 degrees, T-wave axis 39 vs. 45 degrees (p < 0.001 for all). The 2nd and the 98th percentiles of each variable were also obtained, and graphs were constructed to illustrate the behavior of the electrocardiographic findings over age of participants stratified by sex and race/skin color. Conclusions The values for the electrocardiographic measurements herein described can be used as reference for Brazilian adults free of heart disease, stratified by sex. Our results suggest that self-reported race/skin color have no significant influence on electrocardiographic parameters. PMID:28977056
Conical refraction of elastic waves in absorbing crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshits, V. I., E-mail: alshits@ns.crys.ras.ru; Lyubimov, V. N.
2011-10-15
The absorption-induced acoustic-axis splitting in a viscoelastic crystal with an arbitrary anisotropy is considered. It is shown that after 'switching on' absorption, the linear vector polarization field in the vicinity of the initial degeneracy point having an orientation singularity with the Poincare index n = {+-}1/2, transforms to a planar distribution of ellipses with two singularities n = {+-}1/4 corresponding to new axes. The local geometry of the slowness surface of elastic waves is studied in the vicinity of new degeneracy points and a self-intersection line connecting them. The absorption-induced transformation of the classical picture of conical refraction is studied.more » The ellipticity of waves at the edge of the self-intersection wedge in a narrow interval of propagation directions drastically changes from circular at the wedge ends to linear in the middle of the wedge. For the wave normal directed to an arbitrary point of this wedge, during movement of the displacement vector over the corresponding polarization ellipse, the wave ray velocity s runs over the same cone describing refraction in a crystal without absorption. In this case, the end of the vector moves along a universal ellipse whose plane is orthogonal to the acoustic axis for zero absorption. The areal velocity of this movement differs from the angular velocity of the displacement vector on the polarization ellipse only by a constant factor, being delayed by {pi}/2 in phase. When the wave normal is localized at the edge of the wedge in its central region, the movement of vector s along the universal ellipse becomes drastically nonuniform and the refraction transforms from conical to wedge-like.« less
Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2015-12-01
Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.
Rayleigh Wave Tomography of Mid-Continent Rift (MCR) using Earthquake and Ambient Noise Data
NASA Astrophysics Data System (ADS)
Aleqabi, G. I.; Wiens, D.; Wysession, M. E.; Shen, W.; van der Lee, S.; Revenaugh, J.; Frederiksen, A. W.; Darbyshire, F. A.; Stein, S. A.; Jurdy, D. M.; Wolin, E.; Bollmann, T. A.
2015-12-01
The structure of the North American Mid-Continent Rift Zone (MCRZ) is examined using Rayleigh waves from teleseismic earthquakes and ambient seismic noise recorded by the Superior Province Rifting EarthScope Experiment (SPREE). Eighty-four broadband seismometers were deployed during 2011-2013 in Minnesota and Wisconsin, USA, and Ontario, CA, along three lines; two across the rift axis and the third along the rift axis. These stations, together with the EarthScope Transportable Array, provided excellent coverage of the MCRZ. The 1.1 Ga Mesoproterozoic failed rift consists of two arms, buried under post-rifting sedimentary formations that meet at Lake Superior. We compare two array-based tomography methods using teleseismic fundamental mode Rayleigh waves phase and amplitude measurements: the two-plane wave method (TPWM, Forsyth, 1998) and the automated surface wave phase velocity measuring system (ASWMS, Jin and Gaherty, 2015). Both array methods and the ambient noise method give relatively similar results showing low velocity zones extending along the MCRZ arms. The teleseismic Rayleigh wave results from 18 - 180 s period are combined with short period phase velocity results (period 8-30 s) obtained from ambient noise by cross correlation. Phase velocities from the methods are very similar at periods of 18-30 where results overlap; in this period range we use the average of the noise and teleseismic results. Finally the combined phase velocity curve is inverted using a Monte-Carlo inversion method at each geographic point in the model. The results show low velocities at shallow depths (5-10 km) that are the result of very deep sedimentary fill within the MCRZ. Deeper-seated low velocity regions may correspond to mafic underplating of the rift zone.
Multiple Launch Rocket System (MLRS) Fuze.
1982-06-18
8217This is to be expected, since the probes are near the axis of symmetry 08 (where the bow shock wave is most nearly normal) and, being Pitot probes ...that simulated altitudes from 15.2 Km to 21 Km. The fuze ogive was instrumented with both static and pitot pressure probes , from which the pressure data...insights into the flow. Because the bow shock wave is curved, the static-pressure on the-- .urface should decrease from avalue__ of the stagnation pressure
1991-09-01
nickel zinc ferrite films and (2) sputtering of barium hexaferrites with C-axis oriented normally to the film plane. The SSP tech- nique potential for...M-Wave, Components, Ferrites, Films , Yig, Nickel, Zinc , Hexagonal, R96E Measurements, Frequency, Magnetic, Barium Ferrite 17. SECURITY CLASSIFICATION...techniques to integrate millimeter-wave ferrite devices with GaAs VI&Cs. APPROACH Our approach was to deposit ferrite thin films on GaAs sub- strates in a
USSR and Eastern Europe Scientific Abstracts- Physics - Number 45
1978-10-02
compound, a function of the angle between the electrical vector of the ’ light wave and the optical c-axis of the crystal. Heterodiodes have first...of naturally radioactive U, Th and K in a 1-liter sample. USSR A VECTOR MESON IN A QUANTUM ELECTROMAGNETIC FIELD Moscow TEORETICHESKAYA I...arbitrary spin in a classical plane electromagnetic field are used to find the exact wave function of a vector meson in the quantum field of a linearly
URu2Si2 under intense magnetic fields: From hidden order to spin-density wave
NASA Astrophysics Data System (ADS)
Knafo, W.; Aoki, D.; Scheerer, G. W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Regnault, L.-P.; Flouquet, J.
2018-05-01
A review of recent state-of-the-art pulsed field experiments performed on URu2Si2 under a magnetic field applied along its easy magnetic axis c is given. Resistivity, magnetization, magnetic susceptibility, Shubnikov-de Haas, and neutron diffraction experiments are presented, permitting to emphasize the relationship between Fermi surface reconstructions, the destruction of the hidden-order and the appearance of a spin-density wave state in a high magnetic field.
Experiments on Helicon Excitation and Off-Axis Current Drive on DIII-D: Status and Plans
NASA Astrophysics Data System (ADS)
Pinsker, R. I.; Prater, R.; Moeller, C. P.; Degrassie, J. S.; Tooker, J. F.; Anderson, J. P.; Torreblanca, H.; Hansink, M.; Nagy, A.; Porkolab, M.
2015-11-01
Fast waves in the LHRF, also called ``whistlers'' or ``helicons,'' will be studied in experiments on the DIII-D tokamak beginning in autumn 2015. In the first stage, a 12-element traveling wave antenna (``comb-line'') is installed in the DIII-D vessel for operation at very low power (~ 0.1 kW) at 476 MHz, with a well-defined launched n| | spectrum peaked at 3.0. The goals of the low-power experiment include: (1) determining the efficiency with which the desired fast waves can be excited under a variety of plasma conditions in discharges relevant to the subsequent high-power current drive experiments and (2) proving that the radial and poloidal location at which the antenna will be mounted does not cause deleterious effects in the DIII-D discharges with high neutral beam power, and that the antenna is not damaged by fast ion losses, etc. Plans for 1 MW-level experiments with a single klystron beginning in FY17 are discussed. In addition to demonstrating off-axis current drive at an efficiency of ~ 60 kA/MW in high-performance plasmas, these experiments will explore non-linear aspects of wave excitation, propagation and absorption such as ponderomotive effects and parametric decay instabilities. Supported by US DOE DE-FC02-04ER54698, DE-AC02-09CH11466 and DE-FG02-94ER54084.
Canal shaping with WaveOne Primary reciprocating files and ProTaper system: a comparative study.
Berutti, Elio; Chiandussi, Giorgio; Paolino, Davide Salvatore; Scotti, Nicola; Cantatore, Giuseppe; Castellucci, Arnaldo; Pasqualini, Damiano
2012-04-01
This study compared the canal curvature and axis modification after instrumentation with WaveOne Primary reciprocating files (Dentsply Maillefer, Ballaigues, Switzerland) and nickel-titanium (NiTi) rotary ProTaper (Dentsply Maillefer). Thirty ISO 15, 0.02 taper, Endo Training Blocks (Dentsply Maillefer) were used. In all specimens, the glide path was achieved with PathFile 1, 2, and 3 (Dentsply Maillefer) at the working length (WL). Specimens were then assigned to 1 of 2 groups for shaping: specimens in group 1 were shaped with ProTaper S1-S2-F1-F2 at the WL and specimens in group 2 were shaped with WaveOne Primary reciprocating files at the WL. Pre- and postinstrumentation digital images were superimposed and processed with Matlab r2010b (The MathWorks Inc, Natick, MA) software to analyze the curvature-radius ratio (CRr) and the relative axis error (rAe), representing canal curvature modification. Data were analyzed with one-way balanced analyses of variance at 2 levels (P < .05). The instrument factor was extremely significant for both the CRr parameter (F(1) = 9.59, P = .004) and the rAe parameter (F(1) = 13.55, P = .001). Canal modifications are reduced when the new WaveOne NiTi single-file system is used. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.
Mitri, Farid G
2015-10-01
Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.
Lee, Wonjae; Lee, Yoonje; Kim, Changsun; Choi, Hyuk Joong; Kang, Bossng; Lim, Tae Ho; Oh, Jaehoon; Kang, Hyunggoo; Shin, Junghun
2017-01-01
Objective We aimed to describe electrocardiographic (ECG) findings in spontaneous pneumothorax patients before and after closed thoracostomy. Methods This is a retrospective study which included patients with spontaneous pneumothorax who presented to an emergency department of a tertiary urban hospital from February 2005 to March 2015. The primary outcome was a difference in ECG findings between before and after closed thoracostomy. We specifically investigated the following ECG elements: PR, QRS, QTc, axis, ST segments, and R waves in each lead. The secondary outcomes were change in ST segment in any lead and change in axis after closed thoracostomy. Results There were two ECG elements which showed statistically significant difference after thoracostomy. With right pneumothorax volume of greater than 80%, QTc and the R waves in aVF and V5 significantly changed after thoracostomy. With left pneumothorax volume between 31% and 80%, the ST segment in V2 and the R wave in V1 significantly changed after thoracostomy. However, majority of ECG elements did not show statistically significant alteration after thoracostomy. Conclusion We found only minor changes in ECG after closed thoracostomy in spontaneous pneumothorax patients. PMID:28435901
Nonlinear extraordinary wave in dense plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.
2013-10-15
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. Themore » possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.« less
Dynamics of wave packets in two-dimensional random systems with anisotropic disorder.
Samelsohn, Gregory; Gruzdev, Eugene
2008-09-01
A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain "lucky shots" associated with the long-living resonant modes localized inside the sample.
Alternative stable qP wave equations in TTI media with their applications for reverse time migration
NASA Astrophysics Data System (ADS)
Zhou, Yang; Wang, Huazhong; Liu, Wenqing
2015-10-01
Numerical instabilities may arise if the spatial variation of symmetry axis is handled improperly when implementing P-wave modeling and reverse time migration in heterogeneous tilted transversely isotropic (TTI) media, especially in the cases where fast changes exist in TTI symmetry axis’ directions. Based on the pseudo-acoustic approximation to anisotropic elastic wave equations in Cartesian coordinates, alternative second order qP (quasi-P) wave equations in TTI media are derived in this paper. Compared with conventional stable qP wave equations, the proposed equations written in stress components contain only spatial derivatives of wavefield variables (stress components) and are free from spatial derivatives involving media parameters. These lead to an easy and efficient implementation for stable P-wave modeling and imaging. Numerical experiments demonstrate the stability and computational efficiency of the presented equations in complex TTI media.
Dynamics of wave packets in two-dimensional random systems with anisotropic disorder
NASA Astrophysics Data System (ADS)
Samelsohn, Gregory; Gruzdev, Eugene
2008-09-01
A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain “lucky shots” associated with the long-living resonant modes localized inside the sample.
NASA Technical Reports Server (NTRS)
Wiggins, R. A.
1972-01-01
The discrete general linear inverse problem reduces to a set of m equations in n unknowns. There is generally no unique solution, but we can find k linear combinations of parameters for which restraints are determined. The parameter combinations are given by the eigenvectors of the coefficient matrix. The number k is determined by the ratio of the standard deviations of the observations to the allowable standard deviations in the resulting solution. Various linear combinations of the eigenvectors can be used to determine parameter resolution and information distribution among the observations. Thus we can determine where information comes from among the observations and exactly how it constraints the set of possible models. The application of such analyses to surface-wave and free-oscillation observations indicates that (1) phase, group, and amplitude observations for any particular mode provide basically the same type of information about the model; (2) observations of overtones can enhance the resolution considerably; and (3) the degree of resolution has generally been overestimated for many model determinations made from surface waves.
Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young
2017-08-30
Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.
Gollob, Stephan; Kocur, Georg Karl; Schumacher, Thomas; Mhamdi, Lassaad; Vogel, Thomas
2017-02-01
In acoustic emission analysis, common source location algorithms assume, independently of the nature of the propagation medium, a straight (shortest) wave path between the source and the sensors. For heterogeneous media such as concrete, the wave travels in complex paths due to the interaction with the dissimilar material contents and with the possible geometrical and material irregularities present in these media. For instance, cracks and large air voids present in concrete influence significantly the way the wave travels, by causing wave path deviations. Neglecting these deviations by assuming straight paths can introduce significant errors to the source location results. In this paper, a novel source localization method called FastWay is proposed. It accounts, contrary to most available shortest path-based methods, for the different effects of material discontinuities (cracks and voids). FastWay, based on a heterogeneous velocity model, uses the fastest rather than the shortest travel paths between the source and each sensor. The method was evaluated both numerically and experimentally and the results from both evaluation tests show that, in general, FastWay was able to locate sources of acoustic emissions more accurately and reliably than the traditional source localization methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9 deg 30 min N
NASA Astrophysics Data System (ADS)
Toomey, Douglas R.; Solomon, Sean C.; Purdy, G. M.
1994-12-01
Compressional wave travel times from a seismic tomography experiment at 9 deg 30 min N on the East Pacific Rise are analyzed by a new tomographic method to determine the three-dimensional seismic velocity structure of the upper 2.5 km of oceanic crust within a 20 x 18 km area centered on the rise axis. The data comprise the travel times and associated uncertainties of 1459 compressional waves that have propagated above the axial magma chamber. A careful analysis of source and receiver parameters, in conjunction with an automated method of picking P wave onsets and assigning uncertainties, constrains the prior uncertainty in the data to 5 to 20 ms. The new tomographic method employs graph theory to estimate ray paths and travel times through strongly heterogeneous and densely parameterized seismic velocity models. The nonlinear inverse method uses a jumping strategy to minimize a functional that includes the penalty function, horizontal and vertical smoothing constraints, and prior model assumptions; all constraints applied to model perturbations are normalized to remove bias. We use the tomographic method to reject the null hypothesis that the axial seismic structure is two-dimensional. Three-dimensional models reveal a seismic structure that correlates well with cross- and along-axis variations in seafloor morphology, the location of the axial summit caldera, and the distribution of seafloor hydrothermal activity. The along-axis segmentation of the seismic structure above the axial magma chamber is consistent with the hypothesis that mantle-derived melt is preferentially injected midway along a locally linear segment of the rise and that the architecture of the crustal section is characterized by an en echelon series of elongate axial volcanoes approximately 10 km in length. The seismic data are compatible with a 300- to 500-m-thick thermal anomaly above a midcrustal melt lens; such an interpretation suggests that hydrothermal fluids may not have penetrated this region in the last 10(exp 3) years. Asymmetries in the seismic structure across the rise support the inferences that the thickness of seismic layer 2 and the average midcrustal temperature increase to the west of the rise axis. These anomalies may be the result of off-axis magmatism; alternatively, the asymmetric thermal anomaly may be the consequence of differences in the depth extent of hydrothermal cooling.
Diffraction of Harmonic Flexural Waves in a Cracked Elastic Plate Carrying Electrical Current
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Hasanyan, Davresh; Librescu, iviu; Qin, Zhanming
2005-01-01
The scattering effect of harmonic flexural waves at a through crack in an elastic plate carrying electrical current is investigated. In this context, the Kirchhoffean bending plate theory is extended as to include magnetoelastic interactions. An incident wave giving rise to bending moments symmetric about the longitudinal z-axis of the crack is applied. Fourier transform technique reduces the problem to dual integral equations, which are then cast to a system of two singular integral equations. Efficient numerical computation is implemented to get the bending moment intensity factor for arbitrary frequency of the incident wave and of arbitrary electrical current intensity. The asymptotic behaviour of the bending moment intensity factor is analysed and parametric studies are conducted.
Size and location of defects at the coupling interface affect lithotripter performance.
Li, Guangyan; Williams, James C; Pishchalnikov, Yuri A; Liu, Ziyue; McAteer, James A
2012-12-01
Study Type--Therapy (case series) Level of Evidence 4. What's known on the subject? and What does the study add? In shock wave lithotripsy air pockets tend to get caught between the therapy head of the lithotripter and the skin of the patient. Defects at the coupling interface hinder the transmission of shock wave energy into the body, reducing the effectiveness of treatment. This in vitro study shows that ineffective coupling not only blocks the transmission of acoustic pulses but also alters the properties of shock waves involved in the mechanisms of stone breakage, with the effect dependent on the size and location of defects at the coupling interface. • To determine how the size and location of coupling defects caught between the therapy head of a lithotripter and the skin of a surrogate patient (i.e. the acoustic window of a test chamber) affect the features of shock waves responsible for stone breakage. • Model defects were placed in the coupling gel between the therapy head of a Dornier Compact-S electromagnetic lithotripter (Dornier MedTech, Kennesaw, GA, USA) and the Mylar (biaxially oriented polyethylene terephthalate) (DuPont Teijin Films, Chester, VA, USA) window of a water-filled coupling test system. • A fibre-optic probe hydrophone was used to measure acoustic pressures and map the lateral dimensions of the focal zone of the lithotripter. • The effect of coupling conditions on stone breakage was assessed using gypsum model stones. • Stone breakage decreased in proportion to the area of the coupling defect; a centrally located defect blocking only 18% of the transmission area reduced stone breakage by an average of almost 30%. • The effect on stone breakage was greater for defects located on-axis and decreased as the defect was moved laterally; an 18% defect located near the periphery of the coupling window (2.0 cm off-axis) reduced stone breakage by only ~15% compared to when coupling was completely unobstructed. • Defects centred within the coupling window acted to narrow the focal width of the lithotripter; an 8.2% defect reduced the focal width ~30% compared to no obstruction (4.4 mm vs 6.5 mm). • Coupling defects located slightly off centre disrupted the symmetry of the acoustic field; an 18% defect positioned 1.0 cm off-axis shifted the focus of maximum positive pressure ~1.0 mm laterally. • Defects on and off-axis imposed a significant reduction in the energy density of shock waves across the focal zone. • In addition to blocking the transmission of shock-wave energy, coupling defects also disrupt the properties of shock waves that play a role in stone breakage, including the focal width of the lithotripter and the symmetry of the acoustic field • The effect is dependent on the size and location of defects, with defects near the centre of the coupling window having the greatest effect. • These data emphasize the importance of eliminating air pockets from the coupling interface, particularly defects located near the centre of the coupling window. © 2012 BJU INTERNATIONAL.
NASA Astrophysics Data System (ADS)
Wang, Tao; Song, Xiaodong; Xia, Han H.
2015-03-01
The Earth's solid inner core exhibits strong anisotropy, with wave velocity dependent on the direction of propagation due to the preferential alignment of iron crystals. Variations in the anisotropic structure, laterally and with depth, provide markers for measuring inner-core rotation and offer clues into the formation and dynamics of the inner core. Previous anisotropy models of the inner core have assumed a cylindrical anisotropy in which the symmetry axis is parallel to the Earth's spin axis. An inner part of the inner core with a distinct form of anisotropy has been suggested, but there is considerable uncertainty regarding its existence and characteristics. Here we analyse the autocorrelation of earthquake coda measured by global broadband seismic arrays between 1992 and 2012, and find that the differential travel times of two types of core-penetrating waves vary at low latitudes by up to 10 s. Our findings are consistent with seismic anisotropy in the innermost inner core that has a fast axis near the equatorial plane through Central America and Southeast Asia, in contrast to the north-south alignment of anisotropy in the outer inner core. The different orientations and forms of anisotropy may represent a shift in the evolution of the inner core.
NASA Technical Reports Server (NTRS)
Rind, D.; Suozzo, R.; Balachandran, N. K.
1988-01-01
The variability which arises in the GISS Global Climate-Middle Atmosphere Model on two time scales is reviewed: interannual standard deviations, derived from the five-year control run, and intraseasonal variability as exemplified by statospheric warnings. The model's extratropical variability for both mean fields and eddy statistics appears reasonable when compared with observations, while the tropical wind variability near the stratopause may be excessive possibly, due to inertial oscillations. Both wave 1 and wave 2 warmings develop, with connections to tropospheric forcing. Variability on both time scales results from a complex set of interactions among planetary waves, the mean circulation, and gravity wave drag. Specific examples of these interactions are presented, which imply that variability in gravity wave forcing and drag may be an important component of the variability of the middle atmosphere.
Jiu-Sheng, Li; Ze-Jiang, Zhao; Jian-Quan, Yao
2017-11-27
In order to extend to 3-bit encoding, we propose notched-wheel structures as polarization insensitive coding metasurfaces to control terahertz wave reflection and suppress backward scattering. By using a coding sequence of "00110011…" along x-axis direction and 16 × 16 random coding sequence, we investigate the polarization insensitive properties of the coding metasurfaces. By designing the coding sequences of the basic coding elements, the terahertz wave reflection can be flexibly manipulated. Additionally, radar cross section (RCS) reduction in the backward direction is less than -10dB in a wide band. The present approach can offer application for novel terahertz manipulation devices.
Method of reducing multipole content in a conductor assembly during manufacture
Meinke, Rainer [Melbourne, FL
2011-08-09
A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.
Development of a benchmark factor to detect wrinkles in bending parts
NASA Astrophysics Data System (ADS)
Engel, Bernd; Zehner, Bernd-Uwe; Mathes, Christian; Kuhnhen, Christopher
2013-12-01
The rotary draw bending process finds special use in the bending of parts with small bending radii. Due to the support of the forming zone during the bending process, semi-finished products with small wall thicknesses can be bent. One typical quality characteristic is the emergence of corrugations and wrinkles at the inside arc. Presently, the standard for the evaluation of wrinkles is insufficient. The wrinkles' distribution along the longitudinal axis of the tube results in an average value [1]. An evaluation of the wrinkles is not carried out. Due to the lack of an adequate basis of assessment, coordination problems between customers and suppliers occur. They result from an imprecision caused by the lack of quantitative evaluability of the geometric deviations at the inside arc. The benchmark factor for the inside arc presented in this article is an approach to holistically evaluate the geometric deviations at the inside arc. The classification of geometric deviations is carried out according to the area of the geometric characteristics and the respective flank angles.
Method of reducing multipole content in a conductor assembly during manufacture
Meinke, Rainer
2013-08-20
A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.
Thin Disk Accretion in the Magnetically-Arrested State
NASA Astrophysics Data System (ADS)
Avara, Mark J.; McKinney, Jonathan; Reynolds, Christopher S.
2016-01-01
Shakura-Sunyaev thin disk theory is fundamental to black hole astrophysics. Though applications of the theory are wide-spread and powerful tools for explaining observations, such as Soltan's argument using quasar power, broadened iron line measurements, continuum fitting, and recently reverberation mapping, a significant large-scale magnetic field causes substantial deviations from standard thin disk behavior. We have used fully 3D general relativistic MHD simulations with cooling to explore the thin (H/R~0.1) magnetically arrested disk (MAD) state and quantify these deviations. This work demonstrates that accumulation of large-scale magnetic flux into the MAD state is possible, and then extends prior numerical studies of thicker disks, allowing us to measure how jet power scales with the disk state, providing a natural explanation of phenomena like jet quenching in the high-soft state of X-ray binaries. We have also simulated thin MAD disks with a misaligned black hole spin axis in order to understand further deviations from thin disk theory that may significantly affect observations.
Image characterization metrics for muon tomography
NASA Astrophysics Data System (ADS)
Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt
2014-05-01
Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.
Choi, Eui-Sung; Park, Sang-Jun
2015-06-01
To investigate the incidence of root tears of the posterior horn of the medial meniscus in total knee replacement arthroplasty for knee osteoarthritis and retrospectively analyze clinical results and factors associated with root tears. There were 197 knees of 140 enrolled patients who had undergone total knee replacement arthroplasty between September 2010 and May 2014. The presence of a root tear of the posterior horn of the medial meniscus was confirmed in all patients. Statistical analysis was performed to investigate the correlation between root tears and the possible factors of meniscal tears including gender, age, severity of symptoms (visual analogue scale [VAS] score and medial joint line tenderness), grade of osteoarthritis (Kellgren-Lawrence grading scale), body mass index (BMI), varus deformity, and mechanical axis deviation. Meniscal tears were observed in 154 knees (78.17%). The root tear had correlation with the severity of osteoarthritis (p<0.05), varus deformity (p<0.05), mechanical axis deviation (p<0.05), and BMI (p<0.05). Factors considered to represent the severity of osteoarthritis were found to be associated with root tears of the medial meniscus posterior horn. Increased BMI seemed to be associated with the increased incidence of root tears of the medial meniscus posterior horn.
NASA Astrophysics Data System (ADS)
Liu, Zhilong; Wang, Biao; Tong, Weichao
2015-08-01
This paper designs a solar automatic tracking wireless charging system based on the four quadrant photoelectric sensor. The system track the sun's rays automatically in real time to received the maximum energy and wireless charging to the load through electromagnetic coupling. Four quadrant photoelectric sensor responsive to the solar spectrum, the system could get the current azimuth and elevation angle of the light by calculating the solar energy incident on the sensor profile. System driver the solar panels by the biaxial movement mechanism to rotate and tilt movement until the battery plate and light perpendicular to each other. Maximize the use of solar energy, and does not require external power supply to achieve energy self-sufficiency. Solar energy can be collected for portable devices and load wireless charging by close electromagnetic field coupling. Experimental data show that: Four quadrant photoelectric sensor more sensitive to light angle measurement. when track positioning solar light, Azimuth deviation is less than 0.8°, Elevation angle deviation is less than 0.6°. Use efficiency of a conventional solar cell is only 10% -20%.The system uses a Four quadrant dual-axis tracking to raise the utilization rate of 25% -35%.Wireless charging electromagnetic coupling efficiency reached 60%.
Polarization/Spatial Combining of Laser-Diode Pump Beams
NASA Technical Reports Server (NTRS)
Gelsinger, Paul; Liu, Duncan
2008-01-01
A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.
Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors
NASA Astrophysics Data System (ADS)
Meng, Chong; Zhang, Xiaonan; Tang, Suet To; Yang, Min; Yang, Zhiyu
2017-03-01
We report the experimental realization of acoustic coherent perfect absorption (CPA) of four symmetric scatterers of very different structures. The only conditions necessary for these scatterers to exhibit CPA are that both the reflection and transmission amplitudes of the scatterers are 0.5 under one incident wave, and there are two collinear and counter-propagating incident waves with appropriate relative amplitude and phase. Nearly 1000 times in the modulation of output power has been demonstrated by changing the relative phase of the incident waves over 180°. We further demonstrate that these scatterers could potentially be sensitive devices to detect the small differences between two nearly equal incident waves. A 27% change in the strength of the scattering wave has been demonstrated for every degree of phase deviation from the optimum condition between the incident waves.
Broadband millimeter-wave GaAs transmitters and receivers using planar bow-tie antennas
NASA Technical Reports Server (NTRS)
Konishi, Y.; Kamegawa, M.; Case, M.; Yu, R.; Rodwell, M. J. W.; York, R. A.; Rutledge, D. B.
1992-01-01
We report broadband monolithic transmitters and receivers IC's for mm-wave electromagnetic measurements. The IC's use nonlinear transmission lines (NLTL) and sampling circuits as picosecond pulse generators and detectors. The pulses are radiated and received by planar monolithic bow-tie antennas, collimated with silicon substrate lenses and off-axis parabolic reflectors. Through Fourier transformation of the received pulse, 30-250 GHz free space gain-frequency measurements are demonstrated with an accuracy approximately = 0.17 dB, RMS.
1984-05-01
decrease in millimeter wave dielectric losses at low temperatures now makes it imperitive to examine the value of dn/dE from liquid nitrogen up to and...and dielectric losses, with both / decreasing at low temperatures down to 77K for the electric field parallel to the polar axis. The observed changes in...xSrxK -vNa Nb501 5 Crystals at RF and Millimeter Wave Frqutncies ................................. 30 APPENDIX 2 Low and High Frequency Dielectric
1991-08-01
parameters is an essential prerequisite when attempting to predict the performance of ASW sensors or weapon systems. Since a greater portion of the acoustic...operations at sea. Bad weather can result in a sever -’ ’ radation in the performance level of most sensor and weapon systems, axi- ...at of the...MS. February 9 to 11. 1983. Kibblewhite, A.C. 1985. Wave-wave interactions. microseisms, and infra - sonic ambient noise in the ocean. Journal of the
A permanent magnet tubular linear generator for wave energy conversion
NASA Astrophysics Data System (ADS)
Yu, Haitao; Liu, Chunyuan; Yuan, Bang; Hu, Minqiang; Huang, Lei; Zhou, Shigui
2012-04-01
A novel three-phase permanent magnet tubular linear generator (PMTLG) with Halbach array is proposed for the sea wave energy conversion. Non-linear axi-symmetrical finite element method (FEM) is implemented to calculate the magnetic fields along air-gap for different Halbach arrays of PMTLGs. The PMTLG characteristics are analyzed and the simulation results are validated by the experiment. An assistant tooth is implemented to greatly minimize the end and cogging effects which cause the oscillatory detent force.
Large Blast and Thermal Simulator Reflected Wave Eliminator Study
1990-03-01
it delays the passage of this wave through the test section until after the test is complete. The required length of extra duct depends on the strength...tube axis, which acts like an additional contraction effect since Se = Sj/[Cqsin(aj)]. Tii extra area is illustrated best by plotting (Se-Ae)/Ac versus...34Simulation de Choc et de Soaffie. Comimpensateur d’Ondes de Detente de Bouche pour tube a Choc de 2400 mm de diametre de Veine. Description, Compte- Renda
On the theory of self-focusing of powerful wave beams in nonhomogeneous media
NASA Technical Reports Server (NTRS)
Yerokhin, N. S.; Fadeyev, A. P.
1983-01-01
The stationary self-focusing of the Gauss wave beam is considered in a nonhomogeneous medium in the case of local nonlinearity. Equations of the aberrationless approximation for the beam width, the field on the beam axis and the refraction factor are integrated on a computer. Self-focusing in dependence of the nonlinearity level and initial divergence, the dissipation, the length of nonhomogeneity of the dielectric permittivity nondisturbed by a beam, and the diffraction parameter are investigated.
Superenergy flux of Einstein-Rosen waves
NASA Astrophysics Data System (ADS)
Domínguez, P. J.; Gallegos, A.; Macías-Díaz, J. E.; Vargas-Rodríguez, H.
In this work, we consider the propagation speed of the superenergy flux associated to the Einstein-Rosen cylindrical waves propagating in vacuum and over the background of the gravitational field of an infinitely long mass line distribution. The velocity of the flux is determined considering the reference frame in which the super-Poynting vector vanishes. This reference frame is then considered as comoving with the flux. The explicit expressions for the velocities are given with respect to a reference frame at rest with the symmetry axis.
Thermoluminescent dosimeters (TLD) quality assurance network in the Czech Republic.
Kroutilķková, Daniela; Novotný, Josef; Judas, Libor
2003-02-01
The Czech thermoluminescent dosimeters (TLD) quality assurance network was established in 1997. Its aim is to pursue a regular independent quality audit in Czech radiotherapy centres and to support state supervision. The audit is realised via mailed TL dosimetry. The TLD system consists of encapsulated LiF:Mg,Ti powder (type MT-N) read with Harshaw manual reader model 4000. Basic mode of the TLD audit covers measurements under reference conditions, specifically beam calibration checks for all clinically used photon and electron beams. Advanced mode consists of measurements under both reference and non-reference conditions using a solid multipurpose phantom ('Leuven phantom') for photon beams. The radiotherapy centres are instructed to deliver to the TLD on central beam axis absorbed dose of 2 Gy calculated with their treatment planning system for a particular treatment set-up. The TLD measured doses are compared with the calculated ones. Deviations of +/-3% are considered acceptable for both basic and advanced mode of the audit. There are 34 radiotherapy centres in the Czech Republic. They undergo the basic mode of the TLD audit regularly every 2 years. If a centre shows a deviation outside the acceptance level, it is audited more often. Presently, most of the checked beams comply with the acceptance level. The advanced TLD audit has been implemented as a pilot study for the present. The results were mostly within the acceptance limit for the measurements on-axis, whereas for off-axis points they fell beyond the limit more frequently, especially for set-ups with inhomogeneities, oblique incidence and wedges. The results prove the importance of the national TLD quality assurance network. It has contributed to the improvement of clinical dosimetry in the Czech Republic. In addition, it helps the regulatory authority to monitor effectively and regularly radiotherapy centres.
Song, Han-Sol; Choi, Sung-Hwan; Cha, Jung-Yul; Lee, Kee-Joon; Yu, Hyung-Seog
2017-07-01
To evaluate transverse skeletal and dental changes, including those in the buccolingual dental axis, between patients with skeletal Class III malocclusion and facial asymmetry after bilateral intraoral vertical ramus osteotomy with and without presurgical orthodontic treatment. This retrospective study included 29 patients with skeletal Class III malocclusion and facial asymmetry including menton deviation > 4 mm from the midsagittal plane. To evaluate changes in transverse skeletal and dental variables (i.e., buccolingual inclination of the upper and lower canines and first molars), the data for 16 patients who underwent conventional orthognathic surgery (CS) were compared with those for 13 patients who underwent preorthodontic orthognathic surgery (POGS), using three-dimensional computed tomography at initial examination, 1 month before surgery, and at 7 days and 1 year after surgery. The 1-year postsurgical examination revealed no significant changes in the postoperative transverse dental axis in the CS group. In the POGS group, the upper first molar inclined lingually on both sides (deviated side, -1.8° ± 2.8°, p = 0.044; nondeviated side, -3.7° ± 3.3°, p = 0.001) and the lower canine inclined lingually on the nondeviated side (4.0° ± 5.4°, p = 0.022) during postsurgical orthodontic treatment. There were no significant differences in the skeletal and dental variables between the two groups at 1 year after surgery. POGS may be a clinically acceptable alternative to CS as a treatment to achieve stable transverse axes of the dentition in both arches in patients with skeletal Class III malocclusion and facial asymmetry.
Jahng, Seungmin; Trull, Timothy J.; Wood, Phillip K.; Tragesser, Sarah L.; Tomko, Rachel; Grant, Julia D.; Bucholz, Kathleen K.; Sher, Kenneth J.
2014-01-01
Clinical and population-based samples show high comorbidity between Substance Use Disorders (SUDs) and Axis II Personality Disorders (PDs). However, Axis II disorders are frequently comorbid with each other, and existing research has generally failed to distinguish the extent to which SUD/PD comorbidity is general or specific with respect to both specific types of PDs and specific types of SUDs. We sought to determine whether ostensibly specific comorbid substance dependence-Axis II diagnoses (e.g., alcohol use dependence and borderline personality disorder) are reflective of more pervasive or general personality pathology or whether the comorbidity is specific to individual PDs. Face-to-face interview data from Wave 1 and Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions were analyzed. Participants included 34,653 adults living in households in the United States. We used hierarchical factor models to statistically partition general and specific personality disorder dimensions while simultaneously testing for specific PD-substance dependence relations. Results indicated that substance dependence-Axis II comorbidity is characterized by general (pervasive) pathology and by Cluster B PD pathology over and above the relationship to the general PD factor. Further, these relations between PD factors and substance dependence diagnoses appeared to largely account for the comorbidity among substance dependence diagnoses in the younger but not older participants. Our findings suggest that a failure to consider the general PD factor, which we interpret as reflecting interpersonal dysfunction, can lead to potential mischaracterizations of the nature of certain PD and SUD comorbidities. PMID:21604829
Sparsity based terahertz reflective off-axis digital holography
NASA Astrophysics Data System (ADS)
Wan, Min; Muniraj, Inbarasan; Malallah, Ra'ed; Zhao, Liang; Ryle, James P.; Rong, Lu; Healy, John J.; Wang, Dayong; Sheridan, John T.
2017-05-01
Terahertz radiation lies between the microwave and infrared regions in the electromagnetic spectrum. Emitted frequencies range from 0.1 to 10 THz with corresponding wavelengths ranging from 30 μm to 3 mm. In this paper, a continuous-wave Terahertz off-axis digital holographic system is described. A Gaussian fitting method and image normalisation techniques were employed on the recorded hologram to improve the image resolution. A synthesised contrast enhanced hologram is then digitally constructed. Numerical reconstruction is achieved using the angular spectrum method of the filtered off-axis hologram. A sparsity based compression technique is introduced before numerical data reconstruction in order to reduce the dataset required for hologram reconstruction. Results prove that a tiny amount of sparse dataset is sufficient in order to reconstruct the hologram with good image quality.
Electrostatic ion-cyclotron waves in a nonuniform magnetic field
NASA Technical Reports Server (NTRS)
Cartier, S. L.; Dangelo, N.; Merlino, R. L.
1985-01-01
The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.
Stochastic model of temporal changes of wind spectra in the free atmosphere
NASA Technical Reports Server (NTRS)
Huang, Y. H.
1974-01-01
Data for wind profile spectra changes with respect to time from Cape Kennedy, Florida for the time period from 28 November 1964 to 11 May 1967 have been analyzed. A universal statistical distribution of the spectral change which encompasses all vertical wave numbers, wind speed categories, and elapsed time has been developed for the standard deviation of the time changes of detailed wind profile spectra as a function of wave number.
Event-related brain potentials - Comparison between children and adults
NASA Technical Reports Server (NTRS)
Courchesne, E.
1977-01-01
The reported investigation shows that nontarget stimuli which are infrequently presented and deviate from the background elicit Nc and Pc waves in children. The same stimuli elicit P3 waves in adults. The scalp distribution of P3 waves in adults appears to vary with the ease of stimulus recognition or the degree of stimulus novelty. However, the Nc and Pc distributions in children do not seem to vary with these factors. The differences between children and adults in event-related potentials suggest corresponding differences in the mode of processing employed by each when rare, deviant stimuli are encountered
Hysteresis and precession of a swirling jet normal to a wall.
Shtern, V; Mi, J
2004-01-01
Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest. Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale mixing and reduces emissions of NOx. To explore the mechanisms of these phenomena, we address conically similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is developed where the flow is singularity free on the axis. New analytical and numerical solutions of the Navier-Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex normal to a rigid plane-a model of a tornado and of a swirling jet issuing from a nozzle in a combustor. Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance waves propagate downstream and long waves propagate upstream. This helical instability causes bending of the vortex axis and its precession-the effects observed in technological flows and in tornadoes.
Roberts, Amanda; Landon, Jason; Sharman, Stephen; Hakes, Jahn; Suomi, Aino; Cowlishaw, Sean
2018-01-01
Links between intimate partner violence (IPV) and gambling problems are under researched in general population samples. Understanding these relationships will allow for improved identification and intervention. We investigated these relationships and sought to determine whether links were attenuated by axis I and II disorders. This study examined data from waves 1 and 2 (N = 25,631) of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC); a nationally representative survey of U.S. adults. Gambling symptoms and other psychiatric disorders were measured at wave 1 by the Alcohol Use Disorder and Associated Disability Interview Schedule-DSM-IV Version (AUDADIS-IV). Physical IPV victimization and perpetration in the last 12 months were assessed 3 years later at wave 2 using items from the Conflict Tactics Scale-R. Binary logistic regression models were used to examine associations separately for males and females. Problem gambling was associated with increased odds of both IPV perpetration for males (OR = 2.62, 95%CI = 1.22-5.60) and females (OR = 2.87, 95%CI = 1.29-6.42), and with IPV victimization for females only (OR = 2.97, 95%CI = 1.31-6.74). Results were attenuated with inclusion of axis I and axis II disorders; links between gambling and IPV were weaker than those involving other mental health conditions. There are prospective associations with gambling problems and physical IPV which have implications for identification, spontaneous disclosure, and treatment seeking. The links between gambling problems and violence are complex and should not be considered independently of co-occurring mental health and substance use disorders. (Am J Addict 2018;27:7-14). © 2017 American Academy of Addiction Psychiatry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Zhenming; Guo Zhenqi; Li Jianguo
2004-12-15
A new method for the evaluation of the quality of an Ohno continuous cast (OCC) Cu single crystal by X-ray diffraction (XRD) butterfly pattern was brought forward. Experimental results show that the growth direction of single crystal Cu is inclined from both sides of the single crystal Cu rod to the axis and is axially symmetric. The degree of deviation from the [100] orientation from the crystal axis is less than 5 deg. with a casting speed 10-40 mm/min. The orientation of single crystal Cu does not have a fixed direction but is in a regular range. Moreover, the orientationmore » of stray grains in the single crystal Cu is random from continuous casting.« less
The use of two-axis high precision inclination sensors in determining headframe deflection
NASA Astrophysics Data System (ADS)
Jaśkowski, Wojciech; Jabłoński, Mateusz; Ulmaniec, Małgorzata; Paraszczuk, Krzysztof
2018-04-01
Reliability of transport equipment in the shaft depends, among other things, on the accuracy of the vertical foundation of the headframe together with elements of the hoisting equipment over the shaft. Any deviations beyond the installation and movement tolerances may cause incorrect or even dangerous operation of the hoisting equipment in the shaft. Therefore the headframe is subjected to periodic inventory measurements, which prevent the movement in the shaft and the smooth operation of the whole underground mine. The Wieliczka Salt Mine developed a project for the installation of precision Nivel 220 two-axis inclinometers on Kinga and Daniłowicz headframes. The paper summarizes the initial conclusions resulting from the first year of the system operation and indicates the directions of its development.
NASA Astrophysics Data System (ADS)
Makov, Y. N.; Espinosa, V.; Sánchez-Morcillo, V. J.; Ramis, J.; Cruañes, J.; Camarena, F.
2006-05-01
On the basis of theoretical concepts, an accurate and complete experimental and numerical examination of the on-axis distribution and the corresponding temporal profiles for low-Fresnel-number focused ultrasound beams under increasing transducer input voltage has been performed. For a real focusing transducer with sufficiently small Fresnel number, a strong initial (linear) shift of the main on-axis pressure maximum from geometrical focal point towards the transducer, and its following displacement towards the focal point and backward motion as the driving transducer voltage increase until highly nonlinear regimes were fixed. The simultaneous monitoring of the temporal waveform modifications determines the real roles and interplay between different nonlinear effects (refraction and attenuation) in the observed dynamics of on-axis pressure maximum. The experimental results are in good agreement with numerical solutions of KZK equation, confirming that the observed dynamic shift of the maximum pressure point is related only to the interplay between diffraction, dissipation and nonlinearity of the acoustic wave.
F, Hyodo; S, Subramanian; N, Devasahayam; R, Murugesan; K, Matsumoto; JB, Mitchell; MC, Krishna
2008-01-01
Time-domain (TD) electron paramagnetic resonance (EPR) imaging at 300 MHz for in vivo applications requires resonators with recovery times less than 1 microsecond after pulsed excitation to reliably capture the rapidly decaying free induction decay (FID). In this study, we tested the suitability of the Litz foil coil resonator (LCR), commonly used in MRI, for in vivo EPR/EPRI applications in the TD mode and compared with parallel coil resonator (PCR). In TD mode, the sensitivity of LCR was lower than that of the PCR. However, in continuous wave (CW) mode, the LCR showed better sensitivity. The RF homogeneity was similar in both the resonators. The axis of the RF magnetic field is transverse to the cylindrical axis of the LCR, making the resonator and the magnet co-axial. Therefore, the loading of animals, and placing of the anesthesia nose cone and temperature monitors was more convenient in the LCR compared to the PCR whose axis is perpendicular to the magnet axis. PMID:18042414
Calibration of z-axis linearity for arbitrary optical topography measuring instruments
NASA Astrophysics Data System (ADS)
Eifler, Matthias; Seewig, Jörg; Hering, Julian; von Freymann, Georg
2015-05-01
The calibration of the height axis of optical topography measurement instruments is essential for reliable topography measurements. A state of the art technology for the calibration of the linearity and amplification of the z-axis is the use of step height artefacts. However, a proper calibration requires numerous step heights at different positions within the measurement range. The procedure is extensive and uses artificial surface structures that are not related to real measurement tasks. Concerning these limitations, approaches should to be developed that work for arbitrary topography measurement devices and require little effort. Hence, we propose calibration artefacts which are based on the 3D-Abbott-Curve and image desired surface characteristics. Further, real geometric structures are used as an initial point of the calibration artefact. Based on these considerations, an algorithm is introduced which transforms an arbitrary measured surface into a measurement artefact for the z-axis linearity. The method works both for profiles and topographies. For considering effects of manufacturing, measuring, and evaluation an iterative approach is chosen. The mathematical impact of these processes can be calculated with morphological signal processing. The artefact is manufactured with 3D laser lithography and characterized with different optical measurement devices. An introduced calibration routine can calibrate the entire z-axis-range within one measurement and minimizes the required effort. With the results it is possible to locate potential linearity deviations and to adjust the z-axis. Results of different optical measurement principles are compared in order to evaluate the capabilities of the new artefact.
Design of polarization insensitive filters with micro- and nano-grating structures
NASA Astrophysics Data System (ADS)
Wang, Wen-liang; Rong, Xiao-hong
2014-03-01
For isotropic dielectric thin films, polarization effect is an inherent characteristic. As it will make the performance of optical-electric system go to bad, such polarization-dependent properties are often intolerable and should be eliminated in many applications. In this paper, based on a micro- and nano-optical structure whose period consists of four parts, a polarization insensitive filter is obtained by combining rigorous wave theory and multi-objective immune optimization algorithm. Its working wavelength is 1315 nm which is often used in laser systems. The results of our design show that TE and TM polarized waves have reflectivities of 0.482 and 0.485, respectively at designed wavelength of 1315 nm. And it denotes that two values are both close to the design values, their difference is only 0.003, and polarization deviation is also very little. Therefore, the designed filter can eliminate the effect of polarization deviation very well at 1315 nm wavelength.
Slow wave structures using twisted waveguides for charged particle applications
Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.
2012-12-11
A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.
Asymptotics for Large Time of Global Solutions to the Generalized Kadomtsev-Petviashvili Equation
NASA Astrophysics Data System (ADS)
Hayashi, Nakao; Naumkin, Pavel I.; Saut, Jean-Claude
We study the large time asymptotic behavior of solutions to the generalized Kadomtsev-Petviashvili (KP) equations
Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prozorov, Tanya; Almeida, Trevor P.; Kovacs, Andras
Here, the mapping of electrostatic potentials and magnetic fields in liquids using electron holography has been considered to be unrealistic. Here, we show that hydrated cells of Magnetospirillum magneticum strain AMB-1 and assemblies of magnetic nanoparticles can be studied using off-axis electron holography in a fluid cell specimen holder within the transmission electron microscope. Considering that the holographic object and reference wave both pass through liquid, the recorded electron holograms show sufficient interference fringe contrast to permit reconstruction of the phase shift of the electron wave and mapping of the magnetic induction from bacterial magnetite nanocrystals. We assess the challengesmore » of performing in situ magnetization reversal experiments using a fluid cell specimen holder, discuss approaches for improving spatial resolution and specimen stability, and outline future perspectives for studying scientific phenomena, ranging from interparticle interactions in liquids and electrical double layers at solid–liquid interfaces to biomineralization and the mapping of electrostatic potentials associated with protein aggregation and folding.« less
Berczynski, Pawel; Bliokh, Konstantin Yu; Kravtsov, Yuri A; Stateczny, Andrzej
2006-06-01
We present an ab initio account of the paraxial complex geometrical optics (CGO) in application to scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of the Riccati type. This substantially simplifies the description of Gaussian beam diffraction as compared with full-wave or parabolic (quasi-optics) equations. For a Gaussian beam propagating in a homogeneous medium or along the symmetry axis in a lenslike medium, the CGO equations possess analytical solutions; otherwise, they can be readily solved numerically. As a nontrivial example we consider Gaussian beam propagation and diffraction along a helical ray in an axially symmetric waveguide medium. It is shown that the major axis of the beam's elliptical cross section grows unboundedly; it is oriented predominantly in the azimuthal (binormal) direction and does not obey the parallel-transport law.
Bittner, B.J.
1958-05-20
A high-frequency directional antenna of the 360 d scaring type is described. The antenna has for its desirable features the reduction in both size and complexity of the mechanism for rotating the antenna through its scanning movement. These advantages result from the rotation of only the driven element, the reflector remaining stationary. The particular antenna structure comprises a refiector formed by a plurality of metallic slats arranged in the configuration of an annular cage having the shape of a zone of revolution. The slats are parallel to each other and are disposed at an angle of 45 d to the axis of the cage. A directional radiator is disposed inside the cage at an angle of 45 d to the axis of the cage in the same direction as the reflecting slats which it faces. As the radiator is rotated, the electromagnetic wave is reflected from the slats facing the radiator and thereafter passes through the cage on the opposite side, since these slats are not parallel with the E vector of the wave.
Technical overview of the millimeter-wave imaging reflectometer on the DIII-D tokamak (invited)
Muscatello, Christopher M.; Domier, Calvin W.; Hu, Xing; ...
2014-07-22
The two-dimensional mm-wave imaging reflectometer (MIR) on DIII-D is a multi-faceted device for diagnosing electron density fluctuations in fusion plasmas. Its multi-channel, multi-frequency capabilities and high sensitivity permit visualization and quantitative diagnosis of density perturbations, including correlation length, wavenumber, mode propagation velocity, and dispersion. The two-dimensional capabilities of MIR are made possible with twelve vertically separated sightlines and four-frequency operation (corresponding to four radial channels). The 48-channel DIII-D MIR system has a tunable source that can be stepped in 500 µs increments over a range of 56 to 74 GHz. An innovative optical design keeps both on-axis and off-axis channelsmore » focused at the cutoff surface, permitting imaging over an extended poloidal region. As a result, the integrity of the MIR optical design is confirmed by comparing Gaussian beam calculations to laboratory measurements of the transmitter beam pattern and receiver antenna patterns.« less
Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid
Prozorov, Tanya; Almeida, Trevor P.; Kovacs, Andras; ...
2017-10-02
Here, the mapping of electrostatic potentials and magnetic fields in liquids using electron holography has been considered to be unrealistic. Here, we show that hydrated cells of Magnetospirillum magneticum strain AMB-1 and assemblies of magnetic nanoparticles can be studied using off-axis electron holography in a fluid cell specimen holder within the transmission electron microscope. Considering that the holographic object and reference wave both pass through liquid, the recorded electron holograms show sufficient interference fringe contrast to permit reconstruction of the phase shift of the electron wave and mapping of the magnetic induction from bacterial magnetite nanocrystals. We assess the challengesmore » of performing in situ magnetization reversal experiments using a fluid cell specimen holder, discuss approaches for improving spatial resolution and specimen stability, and outline future perspectives for studying scientific phenomena, ranging from interparticle interactions in liquids and electrical double layers at solid–liquid interfaces to biomineralization and the mapping of electrostatic potentials associated with protein aggregation and folding.« less
NASA Astrophysics Data System (ADS)
Lin-Liu, Y. R.; Chan, V. S.; Luce, T. C.; Prater, R.
1998-11-01
Owing to relativistic mass shift in the cyclotron resonance condition, a simple and accurate interpolation formula for estimating the current drive efficiency, such as those(S.C. Chiu et al.), Nucl. Fusion 29, 2175 (1989).^,(D.A. Ehst and C.F.F. Karney, Nucl. Fusion 31), 1933 (1991). commonly used in FWCD, is not available in the case of ECCD. In this work, we model ECCD using the adjoint techniques. A semi-analytic adjoint function appropriate for general tokamak geometry is obtained using Fisch's relativistic collision model. Predictions of off-axis ECCD qualitatively and semi-quantitatively agrees with those of Cohen,(R.H. Cohen, Phys. Fluids 30), 2442 (1987). currently implemented in the raytracing code TORAY. The dependences of the current drive efficiency on the wave launch configuration and the plasma parameters will be presented. Strong absorption of the wave away from the resonance layer is shown to be an important factor in optimizing the off-axis ECCD for application to advanced tokamak operations.
Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.
1987-04-20
Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.
Nonlinear wave interaction in a plasma column
NASA Technical Reports Server (NTRS)
Larsen, J.
1972-01-01
Two particular cases of nonlinear wave interaction in a plasma column were investigated. The frequencies of the waves were on the order of magnitude of the electron plasma frequency, and ion motion was neglected. The nonlinear coupling of slow waves on a plasma column was studied by means of cold plasma theory, and the case of a plasma column surrounded by an infinite dielectric in the absence of a magnetic field was also examined. Nonlinear scattering from a plasma column in an electromagnetic field having it's magnetic field parallel to the axis of the column was investigated. Some experimental results on mode conversion in the presence of loss are presented along with some observations of nonlinear scattering, The effect of the earth's magnetic field and of discharge symmetry on the radiation pattern are discussed.
A Cryogenic Half-Wave Plate Module to Measure Polarization at Multiple FIR Passbands
NASA Technical Reports Server (NTRS)
Rennick, Timothy S.; Vaillancourt, John E.; Hildebrand, Roger H.; Heimsath, Stephen J.
2002-01-01
One of the key components in a far-infrared polarimeter that is being designed at the University of Chicago is a locally-powered half-wave plate module. This compact, lightweight, and reliable module will operate at cryogenic temperatures, rotating a half-wave plate about its axis within the optical path. By doing so, polarization measurements can be made. Further, by utilizing multiple half-wave plate modules within the polarimeter, multiple wavelengths or passbands can be studied. In this paper, we describe the design and performance of a relatively inexpensive prototype module that was assembled and tested successfully, outline the difficulties that had to be overcome, and recommend improvements to future modules. This effort now lays some of the groundwork for a next-generation polarimeter for far-infrared astronomy.
Irreversible transport in the stratosphere by internal waves of short vertical wavelength
NASA Technical Reports Server (NTRS)
Danielsen, Edwin F.; Hipskind, R. S.; Starr, Walter L.; Vedder, James F.; Gaines, Steven E.; Kley, Dieter; Kelley, Ken K.
1991-01-01
Measurements performed during stratospheric flights of the U-2 aircraft confirm that cross-jet transport is dominated by waves, not by large-scale circulations. Monotonic gradients of trace constituents normal to the jet axis, with upper stratospheric tracers increasing poleward and tropospheric tracers increasing equatorward, are augmented by large-scale confluence as the jet intensifies during cyclogenesis. These gradients are rotated, intensified, and significantly increased in areas as their mixing ratio surfaces are folded by the differential transport of a very low frequency transverse wave. The quasi-horizontal transport produces a laminar structure with stable layers rich in upper stratospheric tracers alternating vertically with less stable layers rich in tropospheric tracers. The transport proceeds toward irreversibility at higher frequency, shear-gravity waves extend the folding to smaller horizontal scales.
Ruschel, Jörg; Palme, Rupert; Holsboer, Florian; Kimura, Mayumi; Landgraf, Rainer
2009-01-01
Background Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called ‘stress reactivity’ (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors. Methodology/Principle Findings In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice. Conclusion/Significance Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD. PMID:19177162
NASA Astrophysics Data System (ADS)
Kotov, V. M.; Averin, S. V.; Shkerdin, G. N.
2010-12-01
A method is proposed to measure the scattering angle of optical radiation, the method employing two Bragg diffraction processes in which divergent optical radiation propagates close to the optical axis of a uniaxial crystal, while the acoustic wave — orthogonally to this axis. The method does not require additional angular tuning of the acousto-optic cell. We suggest using a mask to measure the light divergence that is larger than the angle of Bragg scattering. The method can be used to measure the size of the polished glass plate inhomogeneities.
Waves and rays in plano-concave laser cavities: I. Geometric modes in the paraxial approximation
NASA Astrophysics Data System (ADS)
Barré, N.; Romanelli, M.; Lebental, M.; Brunel, M.
2017-05-01
Eigenmodes of laser cavities are studied theoretically and experimentally in two companion papers, with the aim of making connections between undulatory and geometric properties of light. In this first paper, we focus on macroscopic open-cavity lasers with localized gain. The model is based on the wave equation in the paraxial approximation; experiments are conducted with a simple diode-pumped Nd:YAG laser with a variable cavity length. After recalling fundamentals of laser beam optics, we consider plano-concave cavities with on-axis or off-axis pumping, with emphasis put on degenerate cavity lengths, where modes of different order resonate at the same frequency, and combine to form surprising transverse beam profiles. Degeneracy leads to the oscillation of so-called geometric modes whose properties can be understood, to a certain extent, also within a ray optics picture. We first provide a heuristic description of these modes, based on geometric reasoning, and then show more rigorously how to derive them analytically by building wave superpositions, within the framework of paraxial wave optics. The numerical methods, based on the Fox-Li approach, are described in detail. The experimental setup, including the imaging system, is also detailed and relatively simple to reproduce. The aim is to facilitate implementation of both the numerics and of the experiments, and to show that one can have access not only to the common higher-order modes but also to more exotic patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org
2015-11-14
Using the partial-wave series expansion method in cylindrical coordinates, a formal analytical solution for the acoustical scattering of a 2D cylindrical quasi-Gaussian beam with an arbitrary angle of incidence θ{sub i}, focused on a rigid elliptical cylinder in a non-viscous fluid, is developed. The cylindrical focused beam expression is an exact solution of the Helmholtz equation. The scattering coefficients for the elliptical cylinder are determined by forcing the expression of the total (incident + scattered) field to satisfy the Neumann boundary condition for a rigid immovable surface, and performing the product of matrices involving an inversion procedure. Computations for the matrices elementsmore » require a single numerical integration procedure for each partial-wave mode. Numerical results are performed with particular emphasis on the focusing properties of the incident beam and its angle of incidence with respect to the major axis a of the ellipse as well as the aspect ratio a/b where b is the minor axis (assuming a > b). The method is validated and verified against previous results obtained via the T-matrix for plane waves. The present analysis is the first to consider an acoustical beam on an elliptic cylinder of variable cross-section as opposed to plane waves of infinite extent. Other 2D non-spherical and Chebyshev surfaces are mentioned that may be examined throughout this analytical formalism assuming a small deformation parameter ε.« less
NASA Astrophysics Data System (ADS)
Yamaoka, Yoshihisa; Kimura, Yuka; Harada, Yoshinori; Takamatsu, Tetsuro; Takahashi, Eiji
2018-02-01
Conventional one-photon photoacoustic microscopy (PAM) utilizes high-frequency components of generated photoacoustic waves to improve the depth resolution. However, to obtain optically-high resolution in PAM in the depth direction, the use of high-frequency ultrasonic waves is to be avoided. It is because that the propagation distance is shortened as the frequency of ultrasonic waves becomes high. To overcome this drawback, we have proposed and developed two-photon photoacoustic microscopy (TP-PAM). Two-photon absorption occurs only at the focus point. TPPAM does not need to use the high-frequency components of photoacoustic waves. Thus, TP-PAM can improve the penetration depth while preserving the spatial resolution. However, the image acquisition time of TP-PAM is longer than that of conventional PAM, because TP-PAM needs to scan the laser spot both in the depth and transverse directions to obtain cross-sectional images. In this paper, we have introduced a focus-tunable electrically-controlled liquid lens in TP-PAM. Instead of a mechanical stepping-motor stage, we employed electrically-controlled liquid lens so that the depth of the focus spot can be quickly changed. In our system, the imaging speed of TP-PAM using the liquid lens and one-axis stepping-motor stage was 10 times faster than that using a two-axis stepping-motor stage only. TP-PAM with focus-scanning head consisting of the liquid lens and stepping-motor stage will be a promising method to investigate the inside of living tissues.
Focused terahertz waves generated by a phase velocity gradient in a parallel-plate waveguide.
McKinney, Robert W; Monnai, Yasuaki; Mendis, Rajind; Mittleman, Daniel
2015-10-19
We demonstrate the focusing of a free-space THz beam emerging from a leaky parallel-plate waveguide (PPWG). Focusing is accomplished by grading the launch angle of the leaky wave using a PPWG with gradient plate separation. Inside the PPWG, the phase velocity of the guided TE1 mode exceeds the vacuum light speed, allowing the wave to leak into free space from a slit cut along the top plate. Since the leaky wave angle changes as the plate separation decreases, the beam divergence can be controlled by grading the plate separation along the propagation axis. We experimentally demonstrate focusing of the leaky wave at a selected location at frequencies of 100 GHz and 170 GHz, and compare our measurements with numerical simulations. The proposed concept can be valuable for implementing a flat and wide-aperture beam-former for THz communications systems.
Mitri, F G
2009-04-01
The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.
NASA Astrophysics Data System (ADS)
Phillips, Michael G.
Human exposure to blast waves, including blast-induced traumatic brain injury, is a developing field in medical research. Experiments with explosives have many disadvantages including safety, cost, and required area for trials. Shock tubes provide an alternative method to produce free field blast wave profiles. A compressed nitrogen shock tube experiment instrumented with static and reflective pressure taps is modeled using a numerical simulation. The geometry of the numerical model is simplified and blast wave characteristics are derived based upon static and pressure profiles. The pressure profiles are analyzed along the shock tube centerline and radially away from the tube axis. The blast wave parameters found from the pressure profiles provide guidelines for spatial location of a specimen. The location could be based on multiple parameters and provides a distribution of anticipated pressure profiles experience by the specimen.
The influence of surface waves on tidal turbine performance characteristics
NASA Astrophysics Data System (ADS)
Van Benthem, M.; Luznik, L.; Flack, K.; Lust, E.
2012-12-01
Performance characteristics are presented for a 1/25th scale horizontal axis marine current turbine operating in calm conditions and in the presence of intermediate and deep water waves. The two-bladed turbine has radius of 0.4 m and a maximum blade pitch of 17°. The hydrofoil is a NACA63-618 which was selected to be Reynolds number independent in the operational range (ReC = 2 - 4 x 105). The experiments were performed in the 116 m towing tank at the United States Naval Academy at two depths 0.8D and 1.6D measured from the blade tip to the mean free surface. The performance characteristics without waves match expected results from blade-element-momentum theory. Results show that the average power coefficient is unaffected by the presence of waves, however, the phase averaged results indicate significant variation with wave phase.
Turbulent premixed combustion in V-shaped flames: Characteristics of flame front
NASA Astrophysics Data System (ADS)
Kheirkhah, S.; Gülder, Ö. L.
2013-05-01
Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.