Wave Breaking Dissipation in Fetch-Limited Seas
NASA Astrophysics Data System (ADS)
Schwendeman, M.; Thomson, J. M.; Gemmrich, J.
2012-12-01
Breaking waves on the ocean surface control wave growth and enhance air-sea interaction, yet field measurements of breaking are limited. A promising technique for field measurements of wave breaking uses the breaking crest length distribution Λ(c), introduced by Phillips (1985). However, calculating dynamic quantities from Λ(c) requires knowledge of the breaking strength parameter, b. Estimates of a b have varied over many orders of magnitude, and recent studies have attempted to model b in terms of sea state, such as wave steepness or saturation. We present comprehensive observations of breaking in fetch-limited conditions from Juan de Fuca Strait, WA. The wave evolution along fetch is explained by an observed energy budget using the radiative transfer equation (RTE), and the evolution is consistent with existing empirical fetch laws. Estimates of Λ(c) increase along fetch and are consistent with directly measured breaking rates. Using novel in situ measures of dissipation, as well as a residual term from the RTE budget, we obtain robust estimates of the wave breaking strength b. Results suggest that b decreases with wave steepness and saturation, in contrast with recent laboratory results (Drazen et al, 2008). This trend is discussed in terms of the fetch evolution and associated broadening of the equilibrium range in the wave spectra.Map of drifter tracks colored by wave height for two days in Juan de Fuca Strait, WA.
Probability function of breaking-limited surface elevation. [wind generated waves of ocean
NASA Technical Reports Server (NTRS)
Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.
1989-01-01
The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.
Water level effects on breaking wave setup for Pacific Island fringing reefs
NASA Astrophysics Data System (ADS)
Becker, J. M.; Merrifield, M. A.; Ford, M.
2014-02-01
The effects of water level variations on breaking wave setup over fringing reefs are assessed using field measurements obtained at three study sites in the Republic of the Marshall Islands and the Mariana Islands in the western tropical Pacific Ocean. At each site, reef flat setup varies over the tidal range with weaker setup at high tide and stronger setup at low tide for a given incident wave height. The observed water level dependence is interpreted in the context of radiation stress gradients specified by an idealized point break model generalized for nonnormally incident waves. The tidally varying setup is due in part to depth-limited wave heights on the reef flat, as anticipated from previous reef studies, but also to tidally dependent breaking on the reef face. The tidal dependence of the breaking is interpreted in the context of the point break model in terms of a tidally varying wave height to water depth ratio at breaking. Implications for predictions of wave-driven setup at reef-fringed island shorelines are discussed.
Effect of current on spectrum of breaking waves in water of finite depth
NASA Technical Reports Server (NTRS)
Tung, C. C.; Huang, N. E.
1987-01-01
This paper presents an approximate method to compute the mean value, the mean square value and the spectrum of waves in water of finite depth taking into account the effect of wave breaking with or without the presence of current. It is assumed that there exists a linear and Gaussian ideal wave train whose spectrum is first obtained using the wave energy flux balance equation without considering wave breaking. The Miche wave breaking criterion for waves in finite water depth is used to limit the wave elevation and establish an expression for the breaking wave elevation in terms of the elevation and its second time derivative of the ideal waves. Simple expressions for the mean value, the mean square value and the spectrum are obtained. These results are applied to the case in which a deep water unidirectional wave train, propagating normally towards a straight shoreline over gently varying sea bottom of parallel and straight contours, encounters an adverse steady current whose velocity is assumed to be uniformly distributed with depth. Numerical results are obtained and presented in graphical form.
Remote Sensing Characterization of Two-dimensional Wave Forcing in the Surf Zone
NASA Astrophysics Data System (ADS)
Carini, R. J.; Chickadel, C. C.; Jessup, A. T.
2016-02-01
In the surf zone, breaking waves drive longshore currents, transport sediment, shape bathymetry, and enhance air-sea gas and particle exchange. Furthermore, wave group forcing influences the generation and duration of rip currents. Wave breaking exhibits large gradients in space and time, making it challenging to measure in situ. Remote sensing technologies, specifically thermal infrared (IR) imagery, can provide detailed spatial and temporal measurements of wave breaking at the water surface. We construct two-dimensional maps of active wave breaking from IR imagery collected during the Surf Zone Optics Experiment in September 2010 at the US Army Corps of Engineers' Field Research Facility in Duck, NC. For each breaker identified in the camera's field of view, the crest-perpendicular length of the aerated breaking region (roller length) and wave direction are estimated and used to compute the wave energy dissipation rate. The resultant dissipation rate maps are analyzed over different time scales: peak wave period, infragravity wave period, and tidal wave period. For each time scale, spatial maps of wave breaking are used to characterize wave forcing in the surf zone for a variety of wave conditions. The following phenomena are examined: (1) wave dissipation rates over the bar (location of most intense breaking) have increased variance in infragravity wave frequencies, which are different from the peak frequency of the incoming wave field and different from the wave forcing variability at the shoreline, and (2) wave forcing has a wider spatial distribution during low tide than during high tide due to depth-limited breaking over the barred bathymetry. Future work will investigate the response of the variability in wave setup, longshore currents and rip currents, to the variability in wave forcing in the surf zone.
Short-crested waves in the surf zone
NASA Astrophysics Data System (ADS)
Wei, Zhangping; Dalrymple, Robert A.; Xu, Munan; Garnier, Roland; Derakhti, Morteza
2017-05-01
This study investigates short-crested waves in the surf zone by using the mesh-free Smoothed Particle Hydrodynamics model, GPUSPH. The short-crested waves are created by generating intersecting wave trains in a numerical wave basin with a beach. We first validate the numerical model for short-crested waves by comparison with large-scale laboratory measurements. Then short-crested wave breaking over a planar beach is studied comprehensively. We observe rip currents as discussed in Dalrymple (1975) and undertow created by synchronous intersecting waves. The wave breaking of the short-crested wavefield created by the nonlinear superposition of intersecting waves and wave-current interaction result in the formation of isolated breakers at the ends of breaking wave crests. Wave amplitude diffraction at these isolated breakers gives rise to an increase in the alongshore wave number in the inner surf zone. Moreover, 3-D vortices and multiple circulation cells with a rotation frequency much lower than the incident wave frequency are observed across the outer surf zone to the beach. Finally, we investigate vertical vorticity generation under short-crested wave breaking and find that breaking of short-crested waves generates vorticity as pointed out by Peregrine (1998). Vorticity generation is not only observed under short-crested waves with a limited number of wave components but also under directional wave spectra.
NASA Astrophysics Data System (ADS)
Seiffert, Betsy R.; Ducrozet, Guillaume
2018-01-01
We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation successfully for a wide range of breaking conditions. The model is also able to successfully calculate the transfer of energy between frequencies due to wave focusing and wave breaking. This study is limited to unidirectional waves but provides a valuable basis for future application of the wave-breaking model to a multidirectional wave field. By including parameters for removing energy due to wave-breaking into a nonlinear potential flow solver, the risk of developing numerical instabilities due to an overturning wave is decreased, thereby increasing the application range of the model, including calculating more extreme sea states. A computationally efficient and accurate model for the generation of a nonlinear random wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures, and in the study of open ocean wave generation and propagation in a realistic environment.
NASA Astrophysics Data System (ADS)
Seiffert, Betsy R.; Ducrozet, Guillaume; Bonnefoy, Félicien
2017-11-01
This study investigates a wave-breaking onset criteria to be implemented in the non-linear potential flow solver HOS-NWT. The model is a computationally efficient, open source code, which solves for the free surface in a numerical wave tank using the High-Order Spectral (HOS) method. The goal of this study is to determine the best method to identify the onset of random single and multiple breaking waves over a large domain at the exact time they occur. To identify breaking waves, a breaking onset criteria based on the ratio of local energy flux velocity to the local crest velocity, introduced by Barthelemy et al. (2017) is selected. The breaking parameter is uniquely applied in the numerical model in that calculations of the breaking onset criteria ratio are not made only at the location of the wave crest, but at every point in the domain and at every time step. This allows the model to calculate the onset of a breaking wave the moment it happens, and without knowing anything about the wave a priori. The application of the breaking criteria at every point in the domain and at every time step requires the phase velocity to be calculated instantaneously everywhere in the domain and at every time step. This is achieved by calculating the instantaneous phase velocity using the Hilbert transform and dispersion relation. A comparison between more traditional crest-tracking techniques shows the calculation of phase velocity using Hilbert transform at the location of the breaking wave crest provides a good approximation of crest velocity. The ability of the selected wave breaking criteria to predict single and multiple breaking events in two dimensions is validated by a series of large-scale experiments. Breaking waves are generated by energy focusing and modulational instability methods, with a wide range of primary frequencies. Steep irregular waves which lead to breaking waves, and irregular waves with an energy focusing wave superimposed are also generated. This set of waves provides a wide range of breaking-wave strengths, types and scales for validation of the model. A comparison of calculations made using HOS-NWT with experimental measurements show that the model is successful at predicting the occurrence of wave breaking, as well as accurately calculating breaking onset time and location. Although the current study is limited to a unidirectional wave field, the success of the wave-breaking model presented provides the basis for application of the model in a multidirectional wave field. By including wave breaking onset with the addition of an appropriate energy dissipation model into HOS-NWT, we can increase the application range of the model, as well as decrease the occurrence of numerical instabilities that are associated with breaking waves in a potential flow solver. An accurate description of the wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures and the general physics of ocean waves, for example.
Criteria for Evaluating Coastal Flood-Protection Structures
1989-12-01
Hotta, S., and Marui , N. 1976. "Local Scour and Current Around a Porous Breakwater," Chapter 93, Proceedings, 15th Coastal Engineering Conference, 11- 17...breaking waves consistent with FEMA depth-limited breaking wave approach to design. 7. Hotta and Marui (1976) testing permeable and impermeable shore
NASA Astrophysics Data System (ADS)
Zacharegkas, Georgios; Isliker, Heinz; Vlahos, Loukas
2016-11-01
The limitation of the Quasilinear Theory (QLT) to describe the diffusion of electrons and ions in velocity space when interacting with a spectrum of large amplitude electrostatic Langmuir, Upper and Lower hybrid waves, is analyzed. We analytically and numerically estimate the threshold for the amplitude of the waves above which the QLT breaks down, using a test particle code. The evolution of the velocity distribution, the velocity-space diffusion coefficients, the driven current, and the heating of the particles are investigated, for the interaction with small and large amplitude electrostatic waves, that is, in both regimes, where QLT is valid and where it clearly breaks down.
Nearshore bars and the break-point hypothesis
Sallenger, A.H.; Howd, P.A.
1989-01-01
The set of hypotheses calling for bar formation at the break point was tested with field data. During two different experiments, waves were measured across the surf zone coincident with the development of a nearshore bar. We use a criterion, based on the wave height to depth ratio, to determine the offshore limit of the inner surf zone. During the first experiment, the bar became better developed and migrated offshore while remaining well within the inner surf zone. During the second experiment, the surf zone was narrower and we cannot rule out the possibility of break point processes contributing to bar development. We conclude that bars are not necessarily coupled with the break point and can become better developed and migrate offshore while being in the inner surf zone landward from initial wave breaking in the outer surf zone. ?? 1989.
Breaking Gravity Waves Over Large-Scale Topography
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Shapiro, M. A.
2002-12-01
The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.
Large-scale Vortex Generation and Evolution in Short-crested Isolated Wave Breaking
NASA Astrophysics Data System (ADS)
Derakhti, M.; Kirby, J. T., Jr.
2016-12-01
Peregrine (1999), in discussing the effect of localization of wave energy dissipation as a generation mechanism for vorticity at the scale of individual waves, spurred a wave of study of vorticity dynamics and mixing processes in the wave-driven ocean. In deep water, the limited depth of penetration of breaking effects leads to the conceptual forcing of a "smoke-ring" resulting from the localized cross-section of impulsive forcing (Pizzo and Melville, 2013). In shallow water, depth limitations favor the generation of a quasi-two-dimensional field of vertical vortex structures, with a resulting inverse cascade of energy to low wavenumbers and the evolution of flows such as transient rip currents (Johnson and Pattiaratchi, 2006). In this study, we are examining a more detailed picture of the vorticity field evolving during a localized breaking event, with particular interest in the span from deep water to shallow water, with special attention to the transition from weak to strong bottom control. Using an LES/VOF model (Derakhti and Kirby, 2014), we examine the evolution of coherent vortex structures whose initial scales are determined by the width of the breaking region, and are much larger than the locally-controlled reverse horseshoe structures seen in typical studies of along-crest uniform breaking. We study the persistence of three-dimensionality of these structures and their contribution to the development of depth-integrated vertical vorticity, and comment on the suitability of 2D or quasi-3D models to represent nearshore flow fields.
NASA Astrophysics Data System (ADS)
Dong, Li-Ming; Ni, Chen-Yin; Shen, Zhong-Hua; Ni, Xiao-Wu
2011-09-01
Most of the factors limiting the extensive application of laser-based ultrasonic for nondestructive evaluation of surface breaking crack are its poor sensitivity, low efficiency relative to conventional contact ultrasonic methods and limit on the dimension of the cracks. For this reason, a new technique that multiplepulse narrow-band ultrasound generated by laser arrays has been proposed. It is found that crack detection dependent on spectrum of narrow-band ultrasound generated by laser arrays can be operated with low amplitude requirements. In this paper, the narrow-band ultrasound generated by pulse laser arrays interacting with surface breaking cracks has been simulated in detail by the finite element method (FEM) according to the thermoelastic theory. The pulsed array lasers were assumed to be transient heat source, and the surface acoustic wave (SAW) which propagating on the top of the plate was computed based on thermoelastic theory. Then the frequency spectrums of both reflected waves by crack and transmission ones through crack were compared with the direct waves. Results demonstrate that multiple-frequency components of the narrow-band ultrasound were varied with change of the depth of surface breaking cracks significantly, which provides the possibility for precise evaluation of surface breaking cracks.
Impacts of wave-induced circulation in the surf zone on wave setup
NASA Astrophysics Data System (ADS)
Guérin, Thomas; Bertin, Xavier; Coulombier, Thibault; de Bakker, Anouk
2018-03-01
Wave setup corresponds to the increase in mean water level along the coast associated with the breaking of short-waves and is of key importance for coastal dynamics, as it contributes to storm surges and the generation of undertows. Although overall well explained by the divergence of the momentum flux associated with short waves in the surf zone, several studies reported substantial underestimations along the coastline. This paper investigates the impacts of the wave-induced circulation that takes place in the surf zone on wave setup, based on the analysis of 3D modelling results. A 3D phase-averaged modelling system using a vortex force formalism is applied to hindcast an unpublished field experiment, carried out at a dissipative beach under moderate to very energetic wave conditions (Hm 0 = 6m at breaking and Tp = 22s). When using an adaptive wave breaking parameterisation based on the beach slope, model predictions for water levels, short waves and undertows improved by about 30%, with errors reducing to 0.10 m, 0.10 m and 0.09 m/s, respectively. The analysis of model results suggests a very limited impact of the vertical circulation on wave setup at this dissipative beach. When extending this analysis to idealized simulations for different beach slopes ranging from 0.01 to 0.05, it shows that the contribution of the vertical circulation (horizontal and vertical advection and vertical viscosity terms) becomes more and more relevant as the beach slope increases. In contrast, for a given beach slope, the wave height at the breaking point has a limited impact on the relative contribution of the vertical circulation on the wave setup. For a slope of 0.05, the contribution of the terms associated with the vertical circulation accounts for up to 17% (i.e. a 20% increase) of the total setup at the shoreline, which provides a new explanation for the underestimations reported in previously published studies.
NASA Technical Reports Server (NTRS)
Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.
1983-01-01
Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.
Supercontinuum generation in silicon waveguides relying on wave-breaking.
Castelló-Lurbe, David; Silvestre, Enrique
2015-10-05
Four-wave-mixing processes enabled during optical wave-breaking (OWB) are exploited in this paper for supercontinuum generation. Unlike conventional approaches based on OWB, phase-matching is achieved here for these nonlinear interactions, and, consequently, new frequency production becomes more efficient. We take advantage of this kind of pulse propagation to obtain numerically a coherent octave-spanning mid-infrared supercontinuum generation in a silicon waveguide pumping at telecom wavelengths in the normal dispersion regime. This scheme shows a feasible path to overcome limits imposed by two-photon absorption on spectral broadening in silicon waveguides.
NASA Astrophysics Data System (ADS)
Lin, Shangfei; Sheng, Jinyu
2017-12-01
Depth-induced wave breaking is the primary dissipation mechanism for ocean surface waves in shallow waters. Different parametrizations were developed for parameterizing depth-induced wave breaking process in ocean surface wave models. The performance of six commonly-used parameterizations in simulating significant wave heights (SWHs) is assessed in this study. The main differences between these six parameterizations are representations of the breaker index and the fraction of breaking waves. Laboratory and field observations consisting of 882 cases from 14 sources of published observational data are used in the assessment. We demonstrate that the six parameterizations have reasonable performance in parameterizing depth-induced wave breaking in shallow waters, but with their own limitations and drawbacks. The widely-used parameterization suggested by Battjes and Janssen (1978, BJ78) has a drawback of underpredicting the SWHs in the locally-generated wave conditions and overpredicting in the remotely-generated wave conditions over flat bottoms. The drawback of BJ78 was addressed by a parameterization suggested by Salmon et al. (2015, SA15). But SA15 had relatively larger errors in SWHs over sloping bottoms than BJ78. We follow SA15 and propose a new parameterization with a dependence of the breaker index on the normalized water depth in deep waters similar to SA15. In shallow waters, the breaker index of the new parameterization has a nonlinear dependence on the local bottom slope rather than the linear dependence used in SA15. Overall, this new parameterization has the best performance with an average scatter index of ∼8.2% in comparison with the three best performing existing parameterizations with the average scatter index between 9.2% and 13.6%.
Simplified method for the calculation of irregular waves in the coastal zone
NASA Astrophysics Data System (ADS)
Leont'ev, I. O.
2011-04-01
A method applicable for the estimation of the wave parameters along a set bottom profile is suggested. It takes into account the principal processes having an influence on the waves in the coastal zone: the transformation, refraction, bottom friction, and breaking. The ability to use a constant mean value of the friction coefficient under conditions of sandy shores is implied. The wave breaking is interpreted from the viewpoint of the concept of the limiting wave height at a given depth. The mean and root-mean-square wave heights are determined by the height distribution function, which transforms under the effect of the breaking. The verification of the method on the basis of the natural data shows that the calculation results reproduce the observed variations of the wave heights in a wide range of conditions, including profiles with underwater bars. The deviations from the calculated values mostly do not exceed 25%, and the mean square error is 11%. The method does not require a preliminary setting and can be implemented in the form of a relatively simple calculator accessible even for an inexperienced user.
Observations of Surfzone Albedo
NASA Astrophysics Data System (ADS)
Sinnett, G.; Feddersen, F.
2014-12-01
The surfzone environment (where waves break) contains several unique and previously unconsidered processes that affect the heat budget. Entering short-wave radiation is a dominant term in both shelf and surfzone heat budgets. In contrast to the shelf, however, depth limited wave breaking in the surfzone generates spray, whitewater and suspended sediments, elevating the surface albedo (ratio of reflected to incident short-wave radiation). Elevated albedo reduces the level of solar short-wave radiation entering the water, potentially resulting in less heating. Additionally, surfzone water quality is often impacted by fecal bacteria contamination. As bacteria mortality is related to short-wave solar radiation, elevated surfzone albedo could reduce pathogen mortality, impacting human health. Albedo in the open ocean has been frequently studied and parameterizations often consider solar zenith angle, wind speed and ocean chlorophyll concentration, producing albedo values typically near 0.06. However, surfzone albedo observations have been extremely sparse, yet show depth limited wave breaking may increase the albedo by nearly a factor of 10 up to 0.5. Here, we present findings from a field study at the Scripps Institution of Oceanography pier to observe the affect of waves on surfzone albedo. Concurrent measurements were taken with a four-way radiometer (to measure both downwelling and upwelling short-wave and long wave radiation) mounted above the surfzone. A co-located GoPro camera was used to relate visual aspects of the surfzone to measured reflectance, and wave height and period were observed with a bottom mounted pressure sensor in 5 m water depth just outside the surfzone. Wind speed and direction were observed on the pier 10 m above the water surface. Here, we will examine the surfzone albedo dependence on surfzone parameters, such as wave height.
Stereo Refractive Imaging of Breaking Free-Surface Waves in the Surf Zone
NASA Astrophysics Data System (ADS)
Mandel, Tracy; Weitzman, Joel; Koseff, Jeffrey; Environmental Fluid Mechanics Laboratory Team
2014-11-01
Ocean waves drive the evolution of coastlines across the globe. Wave breaking suspends sediments, while wave run-up, run-down, and the undertow transport this sediment across the shore. Complex bathymetric features and natural biotic communities can influence all of these dynamics, and provide protection against erosion and flooding. However, our knowledge of the exact mechanisms by which this occurs, and how they can be modeled and parameterized, is limited. We have conducted a series of controlled laboratory experiments with the goal of elucidating these details. These have focused on quantifying the spatially-varying characteristics of breaking waves and developing more accurate techniques for measuring and predicting wave setup, setdown, and run-up. Using dynamic refraction stereo imaging, data on free-surface slope and height can be obtained over an entire plane. Wave evolution is thus obtained with high spatial precision. These surface features are compared with measures of instantaneous turbulence and mean currents within the water column. We then use this newly-developed ability to resolve three-dimensional surface features over a canopy of seagrass mimics, in order to validate theoretical formulations of wave-vegetation interactions in the surf zone.
Small-Scale Dynamical Structures Using OH Airglow From Astronomical Observations
NASA Astrophysics Data System (ADS)
Franzen, C.; Espy, P. J.; Hibbins, R. E.; Djupvik, A. A.
2017-12-01
Remote sensing of perturbations in the hydroxyl (OH) Meinel airglow has often been used to observe gravity, tidal and planetary waves travelling through the 80-90 km region. While large scale (>1 km) gravity waves and the winds caused by their breaking are widely documented, information on the highest frequency waves and instabilities occurring during the breaking process is often limited by the temporal and spatial resolution of the available observations. In an effort to better quantify the full range of wave scales present near the mesopause, we present a series of observations of the OH Meinel (9,7) transition that were executed with the Nordic Optical Telescope on La Palma (18°W, 29°N). These measurements have a 24 s repetition rate and horizontal spatial resolutions at 87 km as small as 10 cm, allowing us to quantify the transition in the mesospheric wave domains as the gravity waves break. Temporal scales from hours to minutes, as well as sub-100 m coherent structures in the OH airglow have been observed and will be presented.
Temporal characterization of the wave-breaking flash in a laser plasma accelerator
NASA Astrophysics Data System (ADS)
Miao, Bo; Feder, Linus; Goers, Andrew; Hine, George; Salehi, Fatholah; Wahlstrand, Jared; Woodbury, Daniel; Milchberg, Howard
2017-10-01
Wave-breaking injection of electrons into a relativistic plasma wake generated in near-critical density plasma by sub-terawatt laser pulses generates an intense ( 1 μJ) and ultra-broadband (Δλ 300 nm) radiation flash. In this work we demonstrate the spectral coherence of this radiation and measure its temporal width using single-shot supercontinuum spectral interferometry (SSSI). The measured temporal width is limited by measurement resolution to 50 fs. Spectral coherence is corroborated by PIC simulations which show that the spatial extent of the acceleration trajectory at the trapping region is small compared to the radiation center wavelength. To our knowledge, this is the first temporal and coherence characterization of wave-breaking radiation. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.
Modelling wave-induced sea ice break-up in the marginal ice zone
NASA Astrophysics Data System (ADS)
Montiel, F.; Squire, V. A.
2017-10-01
A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.
Modelling wave-induced sea ice break-up in the marginal ice zone
Squire, V. A.
2017-01-01
A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ. PMID:29118659
Modelling wave-induced sea ice break-up in the marginal ice zone.
Montiel, F; Squire, V A
2017-10-01
A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.
Raman amplification in the coherent wave-breaking regime.
Farmer, J P; Pukhov, A
2015-12-01
In regimes far beyond the wave-breaking threshold of Raman amplification, we show that significant amplification can occur after the onset of wave breaking, before phase mixing destroys the coherent coupling between pump, probe, and plasma wave. Amplification in this regime is therefore a transient effect, with the higher-efficiency "coherent wave-breaking" (CWB) regime accessed by using a short, intense probe. Parameter scans illustrate the marked difference in behavior between below wave breaking, in which the energy-transfer efficiency is high but total energy transfer is low, wave breaking, in which efficiency is low, and CWB, in which moderate efficiencies allow the highest total energy transfer.
Hand-Held Calculator Algorithms for Coastal Engineering.
1982-01-01
and water depth at the structure toe, ds. The development of the equation is derived on the solution sheet included with program 104R. Algorithm uses...Limited Design Breaking Wave Height at Structure (AOS logic)... .... ....... ......... .54 6. 105R Wave Transmission - Fuchs’ Equation (RPN logic...58 105A Wave Transmission - Fuchs’ Equation (AOS logic). . . . 61 APPENDIX BLANK PROGRAM FORMS ........ ....................... ... 67 4
Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D
2009-05-01
Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude oil under regular non-breaking and irregular breaking wave conditions. This wave tank facility was designed for operation in a flow-through mode to simulate both wave- and current-driven hydrodynamic conditions. We report here an evaluation of the effectiveness of chemical dispersants (Corexit EC9500A and SPC 1000) on two crude oils (Medium South American [MESA] and Alaska North Slope [ANS]) under two different wave conditions (regular non-breaking and plunging breaking waves) in this wave tank. The dispersant effectiveness was assessed by measuring the water column oil concentration and dispersed oil droplet size distribution. In the absence of dispersants, nearly 8-19% of the test crude oils were dispersed and diluted under regular wave and breaking wave conditions. In the presence of dispersants, about 21-36% of the crude oils were dispersed and diluted under regular waves, and 42-62% under breaking waves. Consistently, physical dispersion under regular waves produced large oil droplets (volumetric mean diameter or VMD > or = 300 microm), whereas chemical dispersion under breaking waves created small droplets (VMD < or = 50 microm). The data can provide useful information for developing better operational guidelines for dispersant use and improved predictive models on dispersant effectiveness in the field.
Wave setup over a Pacific Island fringing reef
NASA Astrophysics Data System (ADS)
Vetter, O.; Becker, J. M.; Merrifield, M. A.; Pequignet, A.-C.; Aucan, J.; Boc, S. J.; Pollock, C. E.
2010-12-01
Measurements obtained across a shore-attached, fringing reef on the southeast coast of the island of Guam are examined to determine the relationship between incident waves and wave-driven setup during storm and nonstorm conditions. Wave setup on the reef flat correlates well (r > 0.95) and scales near the shore as approximately 35% of the incident root mean square wave height in 8 m water depth. Waves generated by tropical storm Man-Yi result in a 1.3 m setup during the peak of the storm. Predictions based on traditional setup theory (steady state, inviscid cross-shore momentum and depth-limited wave breaking) and an idealized model of localized wave breaking at the fore reef are in agreement with the observations. The reef flat setup is used to estimate a similarity parameter at breaking that is in agreement with observations from a steeply sloping sandy beach. A weak (˜10%) increase in setup is observed across the reef flat during wave events. The inclusion of bottom stress in the cross-shore momentum balance may account for a portion of this signal, but this assessment is inconclusive as the reef flat currents in some cases are in the wrong direction to account for the increase. An independent check of fringing reef setup dynamics is carried out for measurements at the neighboring island of Saipan with good agreement.
Breaking Waves on the Ocean Surface
NASA Astrophysics Data System (ADS)
Schwendeman, Michael S.
In the open ocean, breaking waves are a critical mechanism for the transfer of energy, momentum, and mass between the atmosphere and the ocean. Despite much study, fundamental questions about wave breaking, such as what determines whether a wave will break, remain unresolved. Measurements of oceanic breakers, or "whitecaps," are often used to validate the hypotheses derived in simplified theoretical, numerical, or experimental studies. Real-world measurements are also used to improve the parameterizations of wave-breaking in large global models, such as those forecasting climate change. Here, measurements of whitecaps are presented using ship-based cameras, from two experiments in the North Pacific Ocean. First, a method for georectifying the camera imagery is described using the distant horizon, without additional instrumentation. Over the course of the experiment, this algorithm correctly identifies the horizon in 92% of images in which it is visible. In such cases, the calculation of camera pitch and roll is accurate to within 1 degree. The main sources of error in the final georectification are from mislabeled horizons due to clouds, rain, or poor lighting, and from vertical "heave" motions of the camera, which cannot be calculated with the horizon method. This method is used for correcting the imagery from the first experiment, and synchronizing the imagery from the second experiment to an onboard inertial motion package. Next, measurements of the whitecap coverage, W, are shown from both experiments. Although W is often used in models to represent whitecapping, large uncertainty remains in the existing parameterizations. The data show good agreement with recent measurements using the wind speed. Although wave steepness and dissipation are hypothesized to be more robust predictors of W, this is shown to not always be the case. Wave steepness shows comparable success to the wind parameterizations only when using a mean-square slope variable calculated over the equilibrium range waves and normalizing by the wave directional spread. Meanwhile, correlation of W with turbulent dissipation measurements is significantly worse, which may be due to uncertainty in the measurements or bias related to micro-breaking waves. Finally, phase-resolved, three-dimensional, measurements of the whitecaps were made from a new ship-based stereo video system. Comparison with concurrent buoy measurements indicate that the stereo data accurately reproduces the wave statistics, including the frequency spectra. The whitecaps are characterized by transient and spatially localized regions of extreme surface gradients, rather than large crest-to-trough steepnesses. It was found that whitecaps were around 10 times more likely to have extreme slopes, and 50% of the observed extreme surface slopes were in the vicinity of the breaking waves. The maximum whitecap slopes show good agreement with the Stokes 120 degree limiting crest geometry, and the whitecap crest loses much of its maximum steepness shortly after the onset of breaking. The whitecap phase speeds are consistently less than the linear or weakly nonlinear predicted phase speed, which indicate the effect of narrow-band wave groups, despite the broad-band wave spectra.
NASA Astrophysics Data System (ADS)
Leckler, F.; Hanafin, J. A.; Ardhuin, F.; Filipot, J.; Anguelova, M. D.; Moat, B. I.; Yelland, M.; Prytherch, J.
2012-12-01
Whitecaps are the main sink of wave energy. Although the exact processes are still unknown, it is clear that they play a significant role in momentum exchange between atmosphere and ocean, and also influence gas and aerosol exchange. Recently, modeling of whitecap properties was implemented in the spectral wave model WAVEWATCH-III ®. This modeling takes place in the context of the Oceanflux-Greenhouse Gas project, to provide a climatology of breaking waves for gas transfer studies. We present here a validation study for two different wave breaking parameterizations implemented in the spectral wave model WAVEWATCH-III ®. The model parameterizations use different approaches related to the steepness of the carrying waves to estimate breaking wave probabilities. That of Ardhuin et al. (2010) is based on the hypothesis that breaking probabilities become significant when the saturation spectrum exceeds a threshold, and includes a modification to allow for greater breaking in the mean wave direction, to agree with observations. It also includes suppression of shorter waves by longer breaking waves. In the second, (Filipot and Ardhuin, 2012) breaking probabilities are defined at different scales using wave steepness, then the breaking wave height distribution is integrated over all scales. We also propose an adaptation of the latter to make it self-consistent. The breaking probabilities parameterized by Filipot and Ardhuin (2012) are much larger for dominant waves than those from the other parameterization, and show better agreement with modeled statistics of breaking crest lengths measured during the FAIRS experiment. This stronger breaking also has an impact on the shorter waves due to the parameterization of short wave damping associated with large breakers, and results in a different distribution of the breaking crest lengths. Converted to whitecap coverage using Reul and Chapron (2003), both parameterizations agree reasonably well with commonly-used empirical fits of whitecap coverage against wind speed (Monahan and Woolf, 1989) and with the global whitecap coverage of Anguelova and Webster (2006), derived from space-borne radiometry. This is mainly due to the fact that the breaking of larger waves in the parametrization by Filipot and Ardhuin (2012) is compensated for by the intense breaking of smaller waves in that of Ardhuin et al. (2010). Comparison with in situ data collected during research ship cruises in the North and South Atlantic (SEASAW, DOGEE and WAGES), and the Norwegian Sea (HiWASE) between 2006 and 2011 also shows good agreement. However, as large scale breakers produce a thicker foam layer, modeled mean foam thickness clearly depends on the scale of the breakers. Foam thickness is thus a more interesting parameter for calibrating and validating breaking wave parameterizations, as the differences in scale can be determined. With this in mind, we present the initial results of validation using an estimation of mean foam thickness using multiple radiometric bands from satellites SMOS and AMSR-E.
Silinski, Alexandra; Heuner, Maike; Schoelynck, Jonas; Puijalon, Sara; Schröder, Uwe; Fuchs, Elmar; Troch, Peter; Bouma, Tjeerd J; Meire, Patrick; Temmerman, Stijn
2015-01-01
Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival.
Schoelynck, Jonas; Puijalon, Sara; Schröder, Uwe; Fuchs, Elmar; Troch, Peter; Bouma, Tjeerd J.; Meire, Patrick; Temmerman, Stijn
2015-01-01
Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival. PMID:25799017
Improving Short Wave Breaking Behavior In Surfbeat Models
NASA Astrophysics Data System (ADS)
Roelvink, J.; Daly, C.; Vandongeren, A. R.; van Thiel de Vries, J.; McCall, R.
2009-12-01
In present surfzone modeling three approaches are widely applied: short-wave resolving models, ‘surfbeat’ models, which resolve wave energy modulations on the time-scale of wave groups and their associated infragravity waves, and wave averaged models. In all three approaches, wave breaking is a process that is highly schematized and governed by several empirical coefficients. In this presentation we will focus on the breaking process in ‘surfbeat’ models, such as XBeach (Roelvink et al, 2009). These models need to describe the short wave dissipation by breaking as a function of the slowly-varying short wave energy or wave height. The model usually applied is that by Roelvink (1993), which combines a probability that waves are breaking as function of wave heigth over water depth ratio H/h with a bore-type dissipation formulation similar to that by Battjes and Janssen (1978). A drawback of such a formulation is that there is no ‘memory’ in the breaking process, and the amount of breaking instantly varies with the water depth (though the wave height itself does have a memory). For cases with bichromatic waves, or for long-period swell, this does not reflect reality enough: waves that start breaking do not instantly stop breaking once the water depth increases, but continue until some lower threshold is reached. This concept was captured in Dally’s (1992) wave-by-wave approach, where individual waves are tracked in a probabilistic setting. We have now implemented a similar formulation in XBeach, where the property that waves are breaking is tracked; it is switched on when H/h exceeds a first criterion; this property is propagated using an advection equation and when H/h gets below a second criterion breaking is switched off. This formulation can do two things the previous one can’t: maintain groupiness inside the surf zone and have a maximum of wave breaking in the trough after a steep bar, as was observed for instance in Arcilla et al’s (1994) test 1C. Obviously this has important consequences for the forcing of both long waves and mean currents. In our presentation we will show results of comparisons of both formulations. References. Arcilla, A.S., Roelvink, J.A., O'Connor, B.A. Reniers, A., and Jimenez. J.A. The Delta Flume '93 Experiment. Coastal Dynamics '94. Arcilla, Stive and Kraus (eds), ASCE, New York, pp. 488-502. Battjes, J.A. and J.P.F.M. Janssen, (1978), Energy loss and set-up due to breaking in random waves, Proc. 16th Int. Coastal Eng. Conf., Hamburg, vol. 1: 569-587. Dally, W.R. (1992) Random breaking waves: Field verification of a wave-by-wave algorithm for engineering application. Coastal Engineering, Volume 16, Issue 4, March 1992, Pages 369-397. Roelvink, Dano, Ad Reniers, Ap van Dongeren, Jaap van Thiel de Vries, Robert McCall, Jamie Lescinski. Modelling storm impacts on beaches, dunes and barrier islands, Coast. Eng. (2009), doi:10.1016/j.coastaleng.2009.08.006 Roelvink, J.A. Dissipation in random wave groups incident on a beach. Coastal Eng., 19 (1993) pp. 127-150.
NASA Astrophysics Data System (ADS)
Imperiale, Alexandre; Chatillon, Sylvain; Darmon, Michel; Leymarie, Nicolas; Demaldent, Edouard
2018-04-01
The high frequency models gathered in the CIVA software allow fast computations and provide satisfactory quantitative predictions in a wide range of situations. However, the domain of validity of these models is limited since they do not accurately predict the ultrasound response in configurations involving subwavelength complex phenomena. In addition, when modelling backwall breaking defects inspection, an important challenge remains to capture the propagation of the creeping waves that are generated at the critical angle. Hybrid models combining numerical and asymptotic methods have already been shown to be an effective strategy to overcome these limitations in 2D [1]. However, 3D simulations remain a crucial issue for industrial applications because of the computational cost of the numerical solver. A dedicated three dimensional high order finite element model combined with a domain decomposition method has been recently proposed to tackle 3D limitations [2]. In this communication, we will focus on the specific case of planar backwall breaking defects, with an adapted coupling strategy in order to efficiently model the propagation of creeping waves. Numerical and experimental validations will be proposed on various configurations.
Wind growth and wave breaking in higher-order spectral phase resolved wave models
NASA Astrophysics Data System (ADS)
Leighton, R.; Walker, D. T.
2016-02-01
Wind growth and wave breaking are a integral parts of the wave evolution. Higher-OrderSpectral models (HoS) describing the non-linear evolution require empirical models for these effects. In particular, the assimilation of phase-resolved remotesensing data will require the prediction and modeling of wave breaking events.The HoS formulation used in this effort is based on fully nonlinear model of O. Nwogu (2009). The model for wave growth due to wind is based on the early normal and tangential stress model of Munk (1947). The model for wave breaking contains two parts. The first part initiates the breaking events based on the local wave geometry and the second part is a model for the pressure field, which acting against the surface normal velocity extracts energy from the wave. The models are tuned to balance the wind energy input with the breaking wave losses and to be similarfield observations of breaking wave coverage. The initial wave field, based on a Pierson-Moskowitz spectrum for 10 meter wind speed of 5-15 m/s, defined over a region of up to approximate 2.5 km on a side with the simulation running for several hundreds of peak wave periods. Results will be presented describing the evolution of the wave field.Sponsored by Office of Naval Research, Code 322
Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing
NASA Technical Reports Server (NTRS)
Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.
1996-01-01
An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.
Convective wave breaking in the KdV equation
NASA Astrophysics Data System (ADS)
Brun, Mats K.; Kalisch, Henrik
2018-03-01
The KdV equation is a model equation for waves at the surface of an inviscid incompressible fluid, and it is well known that the equation describes the evolution of unidirectional waves of small amplitude and long wavelength fairly accurately if the waves fall into the Boussinesq regime. The KdV equation allows a balance of nonlinear steepening effects and dispersive spreading which leads to the formation of steady wave profiles in the form of solitary waves and cnoidal waves. While these wave profiles are solutions of the KdV equation for any amplitude, it is shown here that there for both the solitary and the cnoidal waves, there are critical amplitudes for which the horizontal component of the particle velocity matches the phase velocity of the wave. Solitary or cnoidal solutions of the KdV equation which surpass these amplitudes feature incipient wave breaking as the particle velocity exceeds the phase velocity near the crest of the wave, and the model breaks down due to violation of the kinematic surface boundary condition. The condition for breaking can be conveniently formulated as a convective breaking criterion based on the local Froude number at the wave crest. This breaking criterion can also be applied to time-dependent situations, and one case of interest is the development of an undular bore created by an influx at a lateral boundary. It is shown that this boundary forcing leads to wave breaking in the leading wave behind the bore if a certain threshold is surpassed.
Experimental study on the bed shear stress under breaking waves
NASA Astrophysics Data System (ADS)
Hao, Si-yu; Xia, Yun-feng; Xu, Hua
2017-06-01
The object of present study is to investigate the bed shear stress on a slope under regular breaking waves by a novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor. The sensors were calibrated before application, and then a wave flume experiment was conducted to study the bed shear stress for the case of regular waves spilling and plunging on a 1:15 smooth PVC slope. The experiment shows that the sensor is feasible for the measurement of the bed shear stress under breaking waves. For regular incident waves, the bed shear stress is mainly periodic in both outside and inside the breaking point. The fluctuations of the bed shear stress increase significantly after waves breaking due to the turbulence and vortexes generated by breaking waves. For plunging breaker, the extreme value of the mean maximum bed shear stress appears after the plunging point, and the more violent the wave breaks, the more dramatic increase of the maximum bed shear stress will occur. For spilling breaker, the increase of the maximum bed shear stress along the slope is gradual compared with the plunging breaker. At last, an empirical equation about the relationship between the maximum bed shear stress and the surf similarity parameter is given, which can be used to estimate the maximum bed shear stress under breaking waves in practice.
Parameterization of planetary wave breaking in the middle atmosphere
NASA Technical Reports Server (NTRS)
Garcia, Rolando R.
1991-01-01
A parameterization of planetary wave breaking in the middle atmosphere has been developed and tested in a numerical model which includes governing equations for a single wave and the zonal-mean state. The parameterization is based on the assumption that wave breaking represents a steady-state equilibrium between the flux of wave activity and its dissipation by nonlinear processes, and that the latter can be represented as linear damping of the primary wave. With this and the additional assumption that the effect of breaking is to prevent further amplitude growth, the required dissipation rate is readily obtained from the steady-state equation for wave activity; diffusivity coefficients then follow from the dissipation rate. The assumptions made in the derivation are equivalent to those commonly used in parameterizations for gravity wave breaking, but the formulation in terms of wave activity helps highlight the central role of the wave group velocity in determining the dissipation rate. Comparison of model results with nonlinear calculations of wave breaking and with diagnostic determinations of stratospheric diffusion coefficients reveals remarkably good agreement, and suggests that the parameterization could be useful for simulating inexpensively, but realistically, the effects of planetary wave transport.
Turbulence and wave breaking effects on air-water gas exchange
Boettcher; Fineberg; Lathrop
2000-08-28
We present an experimental characterization of the effects of turbulence and breaking gravity waves on air-water gas exchange in standing waves. We identify two regimes that govern aeration rates: turbulent transport when no wave breaking occurs and bubble dominated transport when wave breaking occurs. In both regimes, we correlate the qualitative changes in the aeration rate with corresponding changes in the wave dynamics. In the latter regime, the strongly enhanced aeration rate is correlated with measured acoustic emissions, indicating that bubble creation and dynamics dominate air-water exchange.
A numerical model of gravity wave breaking and stress in the mesosphere
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.; Strobel, D. F.; Apruzese, J. P.
1983-01-01
The goal of the study is to calculate numerically the deceleration and heating caused by breaking gravity waves. The effect of the radiative dissipation of the wave is included as vertical-wavelength-dependent Newtonian cooling. The parameterization for zonal deceleration is extended by breaking gravity waves (Lindzen, 1981) to include the turbulent diffusion of heat and momentum. After describing the numerical model, the numerical results are presented and compared with the parameterizations in a noninteractive model of the mean zonal wind. Attention is then given to the transport of constituents by gravity waves and the attendant turbulent zone. It is noted that if gravity wave breaking were not an intermittent process, gravity wave stresses would produce an adiabatic mesosphere with a zonal mean velocity close to the phase speed of the breaking wave.
On the upper ocean turbulent dissipation rate due to microscale breakers and small whitecaps
NASA Astrophysics Data System (ADS)
Banner, Michael L.; Morison, Russel P.
2018-06-01
In ocean wave modelling, accurately computing the evolution of the wind-wave spectrum depends on the source terms and the spectral bandwidth used. The wave dissipation rate source term which spectrally quantifies wave breaking and other dissipative processes remains poorly understood, including the spectral bandwidth needed to capture the essential model physics. The observational study of Sutherland and Melville (2015a) investigated the relative dissipation rate contributions of breaking waves, from large-scale whitecaps to microbreakers. They concluded that a large fraction of wave energy was dissipated by microbreakers. However, in strong contrast with their findings, our analysis of their data and other recent data sets shows that for young seas, microbreakers and small whitecaps contribute only a small fraction of the total breaking wave dissipation rate. For older seas, we find microbreakers and small whitecaps contribute a large fraction of the breaking wave dissipation rate, but this is only a small fraction of the total dissipation rate, which is now dominated by non-breaking contributions. Hence, for all the wave age conditions observed, microbreakers make an insignificant contribution to the total wave dissipation rate in the wave boundary layer. We tested the sensitivity of the results to the SM15a whitecap analysis methodology by transforming the SM15a breaking data using our breaking crest processing methodology. This resulted in the small-scale breaking waves making an even smaller contribution to the total wave dissipation rate, and so the result is independent of the breaker processing methodology. Comparison with other near-surface total TKE dissipation rate observations also support this conclusion. These contributions to the spectral dissipation rate in ocean wave models are small and need not be explicitly resolved.
Numerical modelling of wind effects on breaking waves in the surf zone
NASA Astrophysics Data System (ADS)
Xie, Zhihua
2017-10-01
Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.
Effects of surface wave breaking on the oceanic boundary layer
NASA Astrophysics Data System (ADS)
He, Hailun; Chen, Dake
2011-04-01
Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General Ocean Turbulence Model, GOTM) to investigate the effects of wave breaking on the oceanic boundary layer on diurnal to seasonal time scales. First a set of idealized experiments are carried out to demonstrate the basic physics and the necessity to include wave breaking. Then the model is applied to simulating observations at the northern North Sea and the Ocean Weather Station Papa, which shows that properly accounting for wave breaking effects can improve model performance and help it to successfully capture the observed upper ocean variability.
Mapping wave breaking and residual foam using infrared remote sensing
NASA Astrophysics Data System (ADS)
Carini, R. J.; Jessup, A. T.; Chickadel, C.
2012-12-01
Quantifying wave breaking in the surfzone is important for the advancement of models that seek to accurately predict energy dissipation, near-shore circulation, wave-current interactions, and air-sea gas transfer. Electro-optical remote sensing has been used to try to identify breaking waves. However, the residual foam, left over after the wave has broken, is indistinguishable from active foam in the visible band, which makes identification of active breaking difficult. Here, we explore infrared remote sensing of breaking waves at near-grazing incidence angles to differentiate between active and residual foam in the surfzone. Measurements were made at two field sites: Duck, NC, in September 2010 (Surf Zone Optics) and New River Inlet, NC, in May 2012 (RIVET). At both sites, multiple IR cameras were mounted to a tower onshore, viewing the surfzone at near-grazing incidence angles. For near-grazing incidence angles, small changes in viewing angle, such as those produced by the slope of a wave face, cause large modulations of the infrared signal. Therefore, the passage of waves can be seen in IR imagery. Wave breaking, however, is identified by the resulting foam. Foam has a higher emissivity than undisturbed water and thus appears warmer in an IR image. Residual foam cools quickly [Marmorino and Smith, 2005], thereby making its signal distinct from that of foam produced during active wave breaking. We will use these properties to develop a technique to produce spatial and temporal maps of active breaking and residual foam. These products can then be used to validate current models of surfzone bubbles and foam coverage. From the maps, we can also estimate energy dissipation due to wave breaking in the surfzone and compare this to estimates made with in situ data.; Infrared image of the surfzone at Duck, NC. Examples of actively breaking foam and cool residual foam are labeled.
A unified spectral,parameterization for wave breaking: from the deep ocean to the surf zone
NASA Astrophysics Data System (ADS)
Filipot, J.
2010-12-01
A new wave-breaking dissipation parameterization designed for spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is fi[|#12#|]rst calculated in the physical space before being distributed over the relevant spectral components. This parameterization allows a seamless numerical model from the deep ocean into the surf zone. This transition from deep to shallow water is made possible by a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth.The parameterization is further tested in the WAVEWATCH III TM code, from the global ocean to the beach scale. Model errors are smaller than with most specialized deep or shallow water parameterizations.
NASA Astrophysics Data System (ADS)
Bartolo, Nicola; Orlando, Giorgio
2017-07-01
Considering high-energy modifications of Einstein gravity during inflation is an interesting issue. We can constrain the strength of the new gravitational terms through observations of inflationary imprints in the actual universe. In this paper we analyze the effects on slow-roll models due to a Chern-Simons term coupled to the inflaton field through a generic coupling function f(phi). A well known result is the polarization of primordial gravitational waves (PGW) into left and right eigenstates, as a consequence of parity breaking. In such a scenario the modifications to the power spectrum of PGW are suppressed under the conditions that allow to avoid the production of ghost gravitons at a certain energy scale, the so-called Chern-Simons mass MCS. In general it has been recently pointed out that there is very little hope to efficiently constrain chirality of PGW on the basis solely of two-point statistics from future CMB data, even in the most optimistic cases. Thus we search if significant parity breaking signatures can arise at least in the bispectrum statistics. We find that the tensor-tensor-scalar bispectra langle γ γ ζ rangle for each polarization state are the only ones that are not suppressed. Their amplitude, setting the level of parity breaking during inflation, is proportional to the second derivative of the coupling function f(phi) and they turn out to be maximum in the squeezed limit. We comment on the squeezed-limit consistency relation arising in the case of chiral gravitational waves, and on possible observables to constrain these signatures.
Retrograde accretion of a Caribbean fringing reef controlled by hurricanes and sea-level rise
NASA Astrophysics Data System (ADS)
Blanchon, Paul; Richards, Simon; Bernal, Juan Pablo; Cerdeira-Estrada, Sergio; Ibarra, M. Socrates; Corona-Martínez, Liliana; Martell-Dubois, Raúl
2017-10-01
Predicting the impact of sea-level (SL) rise on coral reefs requires reliable models of reef accretion. Most assume that accretion results from vertical growth of coralgal framework, but recent studies show that reefs exposed to hurricanes consist of layers of coral gravel rather than in-place corals. New models are therefore needed to account for hurricane impact on reef accretion over geological timescales. To investigate this geological impact, we report the configuration and development of a 4-km-long fringing reef at Punta Maroma along the northeast Yucatan Peninsula. Satellite-derived bathymetry shows the crest is set-back a uniform distance of 315 ±15 m from a mid-shelf slope break, and the reef-front decreases 50% in width and depth along its length. A 12-core drill transect constrained by multiple 230Th ages shows the reef is composed of an 2-m thick layer of coral clasts that has retrograded 100 m over its back-reef during the last 5.5 ka. These findings are consistent with a hurricane-control model of reef development where large waves trip and break over the mid-shelf slope break, triggering rapid energy dissipation and thus limiting how far upslope individual waves can fragment corals and redistribute clasts. As SL rises and water depth increases, energy dissipation during wave-breaking is reduced, extending the clast-transport limit, thus leading to reef retrogradation. This hurricane model may be applicable to a large sub-set of fringing reefs in the tropical Western-Atlantic necessitating a reappraisal of their accretion rates and response to future SL rise.
Remote Sensing Characteristics of Wave Breaking Rollers
NASA Astrophysics Data System (ADS)
Haller, M. C.; Catalan, P.
2006-12-01
The wave roller has a primary influence on the balances of mass and momentum in the surf zone (e.g. Svendsen, 1984; Dally and Brown, 1995; Ruessink et al., 2001). In addition, the roller area and its angle of inclination on the wave front are important quantities governing the dissipation rates in breaking waves (e.g Madsen et al., 1997). Yet, there have been very few measurements published of individual breaking wave roller geometries in shallow water. A number of investigators have focused on observations of the initial jet-like motion at the onset of breaking before the establishment of the wave roller (e.g. Basco, 1985; Jansen, 1986), while Govender et al. (2002) provide observations of wave roller vertical cross-sections and angles of inclination for a pair of laboratory wave conditions. Nonetheless, presently very little is known about the growth, evolution, and decay of this aerated region of white water as it propagates through the surf zone; mostly due to the inherent difficulties in making the relevant observations. The present work is focused on analyzing observations of the time and space scales of individual shallow water breaking wave rollers as derived from remote sensing systems. Using a high-resolution video system in a large-scale laboratory facility, we have obtained detailed measurements of the growth and evolution of the wave breaking roller. In addition, by synchronizing the remote video with in-situ wave gages, we are able to directly relate the video intensity signal to the underlying wave shape. Results indicate that the horizontal length scale of breaking wave rollers differs significantly from the previous observations of Duncan (1981), which has been a traditional basis for roller model parameterizations. The overall approach to the video analysis is new in the sense that we concentrate on individual breaking waves, as opposed to the more commonly used time-exposure technique. In addition, a new parameter of interest, denoted Imax, is introduced based on the envelope of the intensity signal. The parameter is shown to be much less sensitive to trailing wave breaking foam, which typically corrupts time-exposure data. In the present work this parameter is shown to provide high-resolution information regarding the onset of wave breaking and the spatial evolution of the wave roller. Ongoing work will attempt to relate the shoreward transformation of the intensity maximum and the geometric characteristics of the wave roller to the spatial distribution of wave breaking dissipation. Finally, we will compare wave breaking characteristics as imaged by two separate remote sensors. Synoptic images from both video and microwave radar remote sensors were obtained in September of 2005 at Duck, NC. This combination of the two observing systems will allow direct quantitative comparisons between the two imaging mechanisms and lead to a better understanding of the strengths and weaknesses of both for nearshore research and observational remote sensing.
Refined Source Terms in Wave Watch 3 with Wave Breaking and Sea Spray Forecasts
2016-08-05
Farmer at IOS Canada involved a novel scale analysis of breaking waves. This was motivated by the results of the model study of wave breaking onset by...timely development that needs careful examination. 4.11 Highlights of the SPANDEX study SPANDEX, the Spray Production and Dynamics Experiment, is...speed alone. To accomplish this goal, a parallel laboratory study (SPANDEX II) was undertaken to parameterize sea spray flux dependences on breaking
NASA Astrophysics Data System (ADS)
Fisher, A. W.; Sanford, L. P.; Scully, M. E.; Suttles, S. E.
2016-02-01
Enhancement of wind-driven mixing by Langmuir turbulence (LT) may have important implications for exchanges of mass and momentum in estuarine and coastal waters, but the transient nature of LT and observational constraints make quantifying its impact on vertical exchange difficult. Recent studies have shown that wind events can be of first order importance to circulation and mixing in estuaries, prompting this investigation into the ability of second-moment turbulence closure schemes to model wind-wave enhanced mixing in an estuarine environment. An instrumented turbulence tower was deployed in middle reaches of Chesapeake Bay in 2013 and collected observations of coherent structures consistent with LT that occurred under regions of breaking waves. Wave and turbulence measurements collected from a vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of TKE, dissipation, turbulent length scale, and the surface wave field. Direct measurements of air-sea momentum and sensible heat fluxes were collected by a co-located ultrasonic anemometer deployed 3m above the water surface. Analyses of the data indicate that the combined presence of breaking waves and LT significantly influences air-sea momentum transfer, enhancing vertical mixing and acting to align stress in the surface mixed layer in the direction of Lagrangian shear. Here these observations are compared to the predictions of commonly used second-moment turbulence closures schemes, modified to account for the influence of wave breaking and LT. LT parameterizations are evaluated under neutrally stratified conditions and buoyancy damping parameterizations are evaluated under stably stratified conditions. We compare predicted turbulent quantities to observations for a variety of wind, wave, and stratification conditions. The effects of fetch-limited wave growth, surface buoyancy flux, and tidal distortion on wave mixing parameterizations will also be discussed.
On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Martel, G.; Chédot, C.; Réglier, V.; Hideur, A.; Ortaç, B.; Grelu, Ph.
2007-02-01
On the basis of numerical simulations, we explain the formation of the stable bound soliton pairs that were experimentally reported in a high-power mode-locked ytterbium fiber laser [Opt. Express 14, 6075 (2006)], in a regime where wave-breaking-free operation is expected. A fully vectorial model allows one to rigorously reproduce the nonmonotonic nature for the nonlinear polarization effect that generally limits the power scalability of a single-pulse self-similar regime. Simulations show that a self-similar regime is not fully obtained, although positive linear chirps and parabolic spectra are always reported. As a consequence, nonvanishing pulse tails allow distant stable binding of highly-chirped pulses.
A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone
NASA Astrophysics Data System (ADS)
Filipot, J.-F.; Ardhuin, F.
2012-11-01
A new wave-breaking dissipation parameterization designed for phase-averaged spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is first explicitly calculated in physical space before being distributed over the relevant spectral components. The transition from deep to shallow water is made possible by using a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth. This parameterization is implemented in the WAVEWATCH III modeling framework, which is applied to a wide range of conditions and scales, from the global ocean to the beach scale. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Model errors are comparable to those of other specialized deep or shallow water parameterizations. This work shows that it is possible to have a seamless parameterization from the deep ocean to the surf zone.
Laboratory Investigation of Wave Breaking. Part 2. Deep Water Waves
1975-06-01
respectively, phase velocity is given implicitly by: C3 = [ + (f )2] ( Levi - Civita , 1925) (2a)C3 CS = F (1 + (c_-_)2 + (fH)4 (Beach Erosion Board, 1941...In view of the above, one is led to wonder why almost all wave- 4 oriented research within the past two decades has been directed towards wave growth...mechanisms, as opposed to wave breaking. There seem to be ’’ at least two reasors. Wave breaking--aidefined by turbulent energy loss- -is a non
Gravitational waves from dark first order phase transitions and dark photons
NASA Astrophysics Data System (ADS)
Addazi, Andrea; Marcianò, Antonino
2018-01-01
Cold Dark Matter particles may interact with ordinary particles through a dark photon, which acquires a mass thanks to a spontaneous symmetry breaking mechanism. We discuss a dark photon model in which the scalar singlet associated to the spontaneous symmetry breaking has an effective potential that induces a first order phase transition in the early Universe. Such a scenario provides a rich phenomenology for electron-positron colliders and gravitational waves interferometers, and may be tested in several different channels. The hidden first order phase transition implies the emission of gravitational waves signals, which may constrain the dark photon’s space of parameters. Compared limits from electron-positron colliders, astrophysics, cosmology and future gravitational waves interferometers such as eLISA, U-DECIGO and BBO are discussed. This highly motivates a cross-checking strategy of data arising from experiments dedicated to gravitational waves, meson factories, the International Linear Collider (ILC), the Circular Electron Positron Collider (CEPC) and other underground direct detection experiments of cold dark matter candidates. Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartolo, Nicola; Orlando, Giorgio, E-mail: nicola.bartolo@pd.infn.it, E-mail: giorgio.orlando@phd.unipd.it
Considering high-energy modifications of Einstein gravity during inflation is an interesting issue. We can constrain the strength of the new gravitational terms through observations of inflationary imprints in the actual universe. In this paper we analyze the effects on slow-roll models due to a Chern-Simons term coupled to the inflaton field through a generic coupling function f (φ). A well known result is the polarization of primordial gravitational waves (PGW) into left and right eigenstates, as a consequence of parity breaking. In such a scenario the modifications to the power spectrum of PGW are suppressed under the conditions that allowmore » to avoid the production of ghost gravitons at a certain energy scale, the so-called Chern-Simons mass M {sub CS}. In general it has been recently pointed out that there is very little hope to efficiently constrain chirality of PGW on the basis solely of two-point statistics from future CMB data, even in the most optimistic cases. Thus we search if significant parity breaking signatures can arise at least in the bispectrum statistics. We find that the tensor-tensor-scalar bispectra ( γ γ ζ ) for each polarization state are the only ones that are not suppressed. Their amplitude, setting the level of parity breaking during inflation, is proportional to the second derivative of the coupling function f (φ) and they turn out to be maximum in the squeezed limit. We comment on the squeezed-limit consistency relation arising in the case of chiral gravitational waves, and on possible observables to constrain these signatures.« less
NASA Astrophysics Data System (ADS)
Erinin, Martin; Wang, Dan; Towle, David; Liu, Xinan; Duncan, James
2017-11-01
In this study, the production of droplets by two mechanically generated breaking water waves is investigated in a wave tank. A strong plunging breaker and weak spilling breaker are generated repeatedly with a programmable wave maker by using two dispersively focused wave packets with the same wave maker motion profile shape (average frequency 1.15 Hz) and two overall amplitude factors. The profile histories of the breaking wave crests along the center plane of the tank are measured using cinematic laser-induced fluorescence. The droplets are measured using a high speed (650 Hz) cinematic digital in-line holographic system positioned at various locations along a horizontal plane that is 1 cm above the maximum wave crest height. The measurement plane covers the entire region in the tank where the wave breaks. The holographic system is used to obtain the droplet diameters (d, for d >100 microns) and the three components of the droplet velocities. From these measurements and counting only the droplets that are moving up, the spatio-temporal distribution of droplet generation by the two breaking waves is obtained. The main features of the droplet generation are correlated with the features and phases of the breaking process. The support of the National Science Foundation under Grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.
2012-09-30
Lagrangian methods for free - surface turbulence and wave simulation . In the far field, coupled wind and wave simulations are used to obtain wind...to conserve the mass precisely. When the wave breaks, the flow at the free surface may become very violent, air and water may be highly mixed...fluids free - surface flows that can be used to study the fundamental physics of wave breaking. The research will improve the understanding of air-sea
Current-induced instability of domain walls in cylindrical nanowires
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Zhang, Zhaoyang; Pepper, Ryan A.; Mu, Congpu; Zhou, Yan; Fangohr, Hans
2018-01-01
We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW, Gaussian wave packets (spin waves) will be generated when the charge current is suddenly applied to the system. This effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper velocity limit for DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple DWs since the instability of Gaussian wave packets will break the structure of multiple DWs.
-> Air entrainment and bubble statistics in three-dimensional breaking waves
NASA Astrophysics Data System (ADS)
Deike, L.; Popinet, S.; Melville, W. K.
2016-02-01
Wave breaking in the ocean is of fundamental importance for quantifying wave dissipation and air-sea interaction, including gas and momentum exchange, and for improving air-sea flux parametrizations for weather and climate models. Here we investigate air entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase air-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution is found to follow a power law of the radius, r-10/3 and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stage. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.
Long-time Dynamics of Stochastic Wave Breaking
NASA Astrophysics Data System (ADS)
Restrepo, J. M.; Ramirez, J. M.; Deike, L.; Melville, K.
2017-12-01
A stochastic parametrization is proposed for the dynamics of wave breaking of progressive water waves. The model is shown to agree with transport estimates, derived from the Lagrangian path of fluid parcels. These trajectories are obtained numerically and are shown to agree well with theory in the non-breaking regime. Of special interest is the impact of wave breaking on transport, momentum exchanges and energy dissipation, as well as dispersion of trajectories. The proposed model, ensemble averaged to larger time scales, is compared to ensemble averages of the numerically generated parcel dynamics, and is then used to capture energy dissipation and path dispersion.
Large-wave simulation of spilling breaking and undertow current over constant slope beach
NASA Astrophysics Data System (ADS)
Dimas, Athanassios; Kolokythas, Gerasimos; Dimakopoulos, Aggelos
2011-11-01
The three-dimensional, free-surface flow, developing by the propagation of nonlinear breaking waves over a constant slope bed, is numerically simulated. The main objective is to investigate the effect of spilling breaking on the characteristics of the induced undertow current by performing large-wave simulations (LWS) based on the numerical solution of the Navier-Stokes equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. In the present study, the case of incoming waves with wavelength to inflow depth ratio λ/ d ~ 6.6 and wave steepness H/ λ ~0.025, over bed of slope tan β = 1/35, is investigated. The LWS predicts satisfactorily breaking parameters - height and depth - and wave dissipation in the surf zone, in comparison to experimental data. In the corresponding LES, breaking height and depth are smaller and wave dissipation in the surf zone is weaker. For the undertow current, it is found that it is induced by the breaking process at the free surface, while its strength is controlled by the bed shear stress. Finally, the amplitude of the bed shear stress increases substantially in the breaking zone, becoming up to six times larger than the respective amplitude at the outer region.
NASA Astrophysics Data System (ADS)
Zou, Li; Tian, Shou-Fu; Feng, Lian-Li
2017-12-01
In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.
Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea
2011-01-01
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).
Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea
2011-01-01
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838
Electrogram fractionation in murine HL-1 atrial monolayer model.
Umapathy, Karthikeyan; Masse, Stephane; Kolodziejska, Karolina; Veenhuyzen, George D; Chauhan, Vijay S; Husain, Mansoor; Farid, Talha; Downar, Eugene; Sevaptsidis, Elias; Nanthakumar, Kumaraswamy
2008-07-01
Complex fractionated atrial electrograms have been suggested as important targets for catheter ablation of atrial fibrillation. The etiology and the mechanism of these signals have not been completely elucidated because of limitations of interpretation of these signals in relation to simultaneously acquired signals in the neighboring atrial tissue. This study sought to study the origin of electrogram fractionation under the conditions of rotor formation and wave fragmentation, using atrial monolayer preparations. We performed optical mapping of 45 atrial monolayer preparations using a complementary metal oxide semiconductor (CMOS) Brainvision Ultima camera system (SciMedia-Brainvision, Tokyo, Japan). We observed stable rotors in 32 of the 45 recordings. The derived bipolar electrograms did not show complex fractionation at the core of the rotor in any of the 32 recordings. We were also able to show that 2 bipolar electrodes placed adjacent to the core of a stable rotor in a zone where there is no wave break will record electrical activity for the majority of the rotor's cycle length. In 13 of the 45 recordings, wave break or wave collision events were present. Of these, 8 of 13 recordings showed complex fractionation. In 19 of the 27, simulation of meandering rotors also showed complex fractionation. Complex fractionated electrograms can be recorded at sites of migrating rotors and wave break. No fractionation occurs at the core of a stable rotor. Electrograms that span the rotor cycle length and alternate between 2 bipoles that straddle the core can identify site of a stable rotor.
Numerical Simulation of a Seaway with Breaking
NASA Astrophysics Data System (ADS)
Dommermuth, Douglas; O'Shea, Thomas; Brucker, Kyle; Wyatt, Donald
2012-11-01
The focus of this presentation is to describe the recent efforts to simulate a fully non-linear seaway with breaking by using a high-order spectral (HOS) solution of the free-surface boundary value problem to drive a three-dimensional Volume of Fluid (VOF) solution. Historically, the two main types of simulations to simulate free-surface flows are the boundary integral equations method (BIEM) and high-order spectral (HOS) methods. BIEM calculations fail at the point at which the surface impacts upon itself, if not sooner, and HOS methods can only simulate a single valued free-surface. Both also employ a single-phase approximation in which the effects of the air on the water are neglected. Due to these limitations they are unable to simulate breaking waves and air entrainment. The Volume of Fluid (VOF) method on the other hand is suitable for modeling breaking waves and air entrainment. However it is computationally intractable to generate a realistic non-linear sea-state. Here, we use the HOS solution to quickly drive, or nudge, the VOF solution into a non-linear state. The computational strategies, mathematical formulation, and numerical implementation will be discussed. The results of the VOF simulation of a seaway with breaking will also be presented, and compared to the single phase, single valued HOS results.
An Experimental Study of Droplets Produced by a Plunging Breakers
NASA Astrophysics Data System (ADS)
Erinin, Martin; Wang, Dan; Towle, David; Liu, Xinan; Duncan, James
2016-11-01
In this study, the production of droplets by a mechanically generated plunging breaking water wave is investigated in a wave tank. The breaker, with an amplitude of 0.070 m, is generated repeatedly with a programmable wave maker by using a dispersively focused wave packet (average frequency 1.15 Hz). The profile histories of the breaking wave crests along the center plane of the tank are measured using cinematic laser-induced fluorescence. The droplets are measured using a cinematic digital in-line holographic system positioned at 30 locations along a horizontal plane that is 1 cm above the maximum wave crest height. This measurement plane covers the entire region in the tank where the wave breaks. The holographic system is used to obtain the droplet diameters (d, for d >100 microns) and the three components of the droplet velocities. From these measurements and counting only the droplets that are moving up, the spatio-temporal distribution of droplet generation by the breaking wave is obtained. The main features of the droplet generation are correlated with the features and phases of the breaking process. The support of the National Science Foundation under Grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.
Dependence of Wave-Breaking Statistics on Wind Stress and Wave Development
NASA Technical Reports Server (NTRS)
Katsaros, Kristina B.; Atakturk, Serhad S.
1992-01-01
Incidence of wave breaking for pure wind driven waves has been studied on Lake Washington at wind speeds up to 8 m/s. Video recordings were employed to identify and categorize the breaking events in terms of micro-scale, spilling and plunging breakers. These events were correlated with the magnitude of the wave spectrum measured with a resistance wire wave gauge and band pass filtered between 6 and 10 Hz. An equivalent percentage of breaking crests were found for spilling and plunging events. Wave forcing as measured by wind stress (or friction velocity, u(sub *), squared) and by inverse wave age, u(sub *)/Cp where Cp is the phase velocity of the waves at the peak of the frequency spectrum, were found to be good prerictors of percentage of breaking crests. When combined in a two parameter regression, those two variables gave small standard deviation and had a high correlation coefficient (66 percent). The combination of u(sub *)(exp 2) and u(sub *)/Cp can be understood in physical terms. Furthermore, for the larger values of u(sub *)(exp 2) the dependence of wave braking and wave age was stronger than at the low end of the values u(sub *)(exp 2) and u(sub *)/Cp. Thus, both the level of wave development as determined by inverse wave age, which we may term relative wind effectiveness for wave forcing and the wind forcing on the water surface determine the incidence of wave breaking. Substituting U(sub 10)(sup 3.75) (which is the dependence of whitecap cover found by Monahan and coworkers) an equivalent correlation was found to the prediction by u(sub *)(exp 2). Slightly better standard deviation value and higher correlation coefficient were found by using a Reynolds number as predictor. A two-parameter regression involving u(sub *)(exp 2) and a Reynold's number proposed by Toba and his colleagues which relates u(sub *)(exp 2) and peak wave frequency, improves the correlation even more but is less easy to interpret in physical terms. The equivalent percentage of breaking crests obtained in our previous study was reported at 8.6 percent for a short record obtained at U(sub 10N) of about 6 m/s. Typical values in the current study for similar conditions are 6 percent, which is consistent with the previous study in view of the scatter. In that study we did not have a video recording system, so the observed breaking may include more of the micro-scaic breaking events, and the value, 8.6 percent, is well within the range of highly probable sampling variability.
Nearshore Current Model Workshop Summary.
1983-09-01
dissipation , and wave-current interaction. b. Incorporation into models of wave-breaking. c. Parameterization of turbulence in models. d. Incorporation...into models of surf zone energy dissipation . e. Methods to specify waves and currents on the boundaries of the grid. f. Incorporation into models of...also recommended. Improvements should include nonlinear and irregular wave effects and improved models of wave-breaking and wave energy dissipation in
Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D
2008-05-01
Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditions closer to the natural environment, including transport and dilution effects. To achieve this goal, Fisheries and Oceans Canada and the US Environmental Protection Agency (EPA) designed and constructed a wave tank system to study chemical dispersant effectiveness under controlled mixing energy conditions (regular non-breaking, spilling breaking, and plunging breaking waves). Quantification of oil dispersant effectiveness was based on observed changes in dispersed oil concentrations and oil-droplet size distribution. The study results quantitatively demonstrated that total dispersed oil concentration and breakup kinetics of oil droplets in the water column were strongly dependent on the presence of chemical dispersants and the influence of breaking waves. These data on the effectiveness of dispersants as a function of sea state will have significant implications in the drafting of future operational guidelines for dispersant use at sea.
Goofy vs. Regular: Laterality effects in surfing.
Furley, Philip; Dörr, Jannik; Loffing, Florian
2018-02-01
The aim of the present study was to test if lateral preferences of surfers are associated with behaviour and performance depending on the direction of a breaking wave. We hypothesized that wave direction and surf stance interact in creating favourable or debilitative performance demands as surfers are either facing the wave (frontside) or the wave is breaking in the back of the surfers (backside). Study 1 was an online survey collecting self-report data of recreational surfers (n = 394). In Study 2, we analysed all wave scores (n = 2,552) and laterality of professional surfers during the season of 2014. Study 1 demonstrated that recreational surfers preferred surfing frontside and described themselves as more skilful when surfing frontside as this is facilitative for picking up visual information. Study 2 did not provide clear evidence that professional surfers on average scored higher during contests when surfing frontside, but when professional surfers had a choice of surfing frontside vs. backside, they were more likely to surf frontside. We discuss the diverging findings between Study 1 and Study 2 from the "circumvention-of-limits" argumentation within the expertise literature as professional surfers most likely have acquired skills allowing them to compensate for debilitative individual and environmental circumstances.
Numerical Simulations of Upstream Propagating Solitary Waves and Wave Breaking In A Stratified Fjord
NASA Astrophysics Data System (ADS)
Stastna, M.; Peltier, W. R.
In this talk we will discuss ongoing numerical modeling of the flow of a stratified fluid over large scale topography motivated by observations in Knight Inlet, a fjord in British Columbia, Canada. After briefly surveying the work done on the topic in the past we will discuss our latest set of simulations in which we have observed the gener- ation and breaking of three different types of nonlinear internal waves in the lee of the sill topography. The first type of wave observed is a large lee wave in the weakly strat- ified main portion of the water column, The second is an upward propagating internal wave forced by topography that breaks in the strong, near-surface pycnocline. The third is a train of upstream propagating solitary waves that, in certain circumstances, form as breaking waves consisting of a nearly solitary wave envelope and a highly unsteady core near the surface. Time premitting, we will comment on the implications of these results for our long term goal of quantifying tidally driven mixing in Knight Inlet.
Classification of regimes of internal solitary waves transformation over a shelf-slope topography
NASA Astrophysics Data System (ADS)
Terletska, Kateryna; Maderich, Vladimir; Talipova, Tatiana; Brovchenko, Igor; Jung, Kyung Tae
2015-04-01
The internal waves shoal and dissipate as they cross abrupt changes of the topography in the coastal ocean, estuaries and in the enclosed water bodies. They can form near the coast internal bores propagating into the shallows and re-suspend seabed pollutants that may have serious ecological consequences. Internal solitary waves (ISW) with trapped core can transport masses of water and marine organisms for some distance. The transport of cold, low-oxygen waters results in nutrient pumping. These facts require development of classification of regimes of the ISWs transformation over a shelf-slope topography to recognize 'hot spots' of wave energy dissipation on the continental shelf. A new classification of regimes of internal solitary wave interaction with the shelf-slope topography in the framework of two-layer fluid is proposed. We introduce a new three-dimensional diagram based on parameters α ,β , γ. Here α is the nondimensional wave amplitude normalized on the thermocline thickness α = ain/h1 (α > 0), β is the blocking parameter introduced in (Talipova et al., 2013) that is the ratio of the height of the bottom layer on the the shelf step h2+ to the incident wave amplitude ain, β = h2+/ain (β > -3), and γ is the parameter inverse to the slope inclination (γ > 0.01). Two mechanisms are important during wave shoaling: (i) wave breaking resulting in mixing and (ii) changing of the polarity of the initial wave of depression on the slope. Range of the parameters at which wave breaking occurs can be defined using the criteria, obtained empirically (Vlasenko and Hutter, 2002). In the three-dimensional diagram this criteria is represented by the surface f1(β,γ) = 0 that separates the region of parameters where breaking takes place from the region without breaking. The polarity change surface f2(α,β) = 0 is obtained from the condition of equality of the depth of upper layer h1 to the depth of the lower layer h2. In the two-layer stratification waves of depression may be converted to wave of elevation at the 'turning point' (h2 = h1) as they propagate from deep water onto a shallow shelf. Thus intersecting surfaces f1 and f2 divide three-dimensional diagram into four zones. Zone I located above two surfaces and corresponds to the non breaking regime. Zone II lies above 'breaking' surfaces but below the surface of changing polarity and corresponds to regime of changing polarity without breaking. Zone III lies above surface of changing polarity but below 'breaking' surfaces and corresponds to regime of wave breaking without changing polarity. Zone IV that located below two surfaces and corresponds to the regime of wave breaking with changing polarity. Regimes predicted by diagram agree with results of numerical modelling, laboratory and observation data. Based on the proposed diagram the regions in α, β, γ space with a high energy dissipation of ISW passed over the shelf-slope topography are distinguished. References Talipova T., Terletska K., Maderich V, Brovchenko I., Jung K.T., Pelinovsky E. and Grimshaw R. 2013. Internal solitary wave transformation over the bottom step: loss of energy. Phys. Fluids, 25, 032110 Vlasenko V., Hutter K. 2002. Numerical Experiments on the Breaking of Solitary Internal Waves over a Slope-Shelf Topography. J. Phys. Oceanogr., 32 (6), 1779-1793
Application of a planetary wave breaking parameterization to stratospheric circulation statistics
NASA Technical Reports Server (NTRS)
Randel, William J.; Garcia, Rolando R.
1994-01-01
The planetary wave parameterization scheme developed recently by Garcia is applied to statospheric circulation statistics derived from 12 years of National Meteorological Center operational stratospheric analyses. From the data a planetary wave breaking criterion (based on the ratio of the eddy to zonal mean meridional potential vorticity (PV) gradients), a wave damping rate, and a meridional diffusion coefficient are calculated. The equatorward flank of the polar night jet during winter is identified as a wave breaking region from the observed PV gradients; the region moves poleward with season, covering all high latitudes in spring. Derived damping rates maximize in the subtropical upper stratosphere (the 'surf zone'), with damping time scales of 3-4 days. Maximum diffusion coefficients follow the spatial patterns of the wave breaking criterion, with magnitudes comparable to prior published estimates. Overall, the observed results agree well with the parameterized calculations of Garcia.
Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, L.-W.; Chang, M.-C.; Tseng, Y.-P.
2009-12-11
The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation tomore » the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.« less
Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave
NASA Astrophysics Data System (ADS)
Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin
2009-12-01
The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.
NASA Astrophysics Data System (ADS)
Saprykina, Yana; Divinskii, Boris
2013-04-01
An infragravity waves are long waves with periods of 20 - 300 s. Most essential influence of infragarvity waves on dynamic processes is in a coastal zone, where its energy can exceed the energy of wind waves. From practical point of view, the infragravity waves are important, firstly, due to their influence on sand transport processes in a coastal zone. For example, interacting with group structure of wind waves the infragravity waves can define position of underwater bars on sandy coast. Secondly, they are responsible on formation of long waves in harbors. Main source of infragravity waves is wave group structure defined by sub-nonlinear interactions of wind waves (Longuet-Higgins, Stewart, 1962). These infragravity waves are bound with groups of wind waves and propagate with wave group velocity. Another type of infragravity waves are formed in a surf zone as a result of migration a wave breaking point (Symonds, et al., 1982). What from described above mechanisms of formation of infragravity waves prevails, till now it is unknown. It is also unknown how energy of infragravity waves depends on energy of input wind waves and how it changes during nonlinear wave transformation in coastal zone. In our work on the basis of the analysis of data of field experiment and numerical simulation a contribution of infragravity waves in total wave energy in depending on integral characteristics of an irregular wave field in the conditions of a real bathymetry was investigated. For analysis the data of field experiment "Shkorpilovtsy-2007" (Black sea) and data of numerical modeling of Boussinesq type equation with extended dispersion characteristics (Madsen et al., 1997) were used. It was revealed that infragravity waves in a coastal zone are defined mainly by local group structure of waves, which permanently changes due to nonlinearity, shoaling and breaking processes. Free infragravity waves appearing after wave breaking exist together with bound infragravity waves. There are no clear total dependences of energy of infrragravity waves from energy of wind waves and mean period of infragravity waves from mean period of wind waves. But significant wave height of infragravity waves depends on relative water depth (wave height of wind waves divided on water depth). There are different types of this dependence for breaking and non-breaking waves. The influence of peak period, significant wave height and directional spreading of initial wave spectrum on these dependences are discussed. The peculiarities of spectra of infragravity waves for non-breaking, breaking and multibreaking wind waves are shown. This work is supported by the RFBR, project 12-05-00965. References: Longuet-Higgins, M. S., R. W. Stewart, 1962. Radiation stress and mass transport in gravity waves, with an application to surf beats. J. Fluid Mech., 13, pp. 481-504. Symonds G., D.A. Huntley, A.J. Bowen, 1982. Two dimensional surf beat: long wave generation by a time-varying breakpoint. J. of Geoph. Res., 87(C), pp.492-498. Madsen P.A., Sorensen O.R., Shaffer H.A. 1997. Surf zone dynamics simulated by a Boussinesq type model. Coastal Engineering, 32, p. 255-287.
Numerical study of wind over breaking waves and generation of spume droplets
NASA Astrophysics Data System (ADS)
Yang, Zixuan; Tang, Shuai; Dong, Yu-Hong; Shen, Lian
2017-11-01
We present direct numerical simulation (DNS) results on wind over breaking waves. The air and water are simulated as a coherent system. The air-water interface is captured using a coupled level-set and volume-of-fluid method. The initial condition for the simulation is fully-developed wind turbulence over strongly-forced steep waves. Because wave breaking is an unsteady process, we use ensemble averaging of a large number of runs to obtain turbulence statistics. The generation and transport of spume droplets during wave breaking is also simulated. The trajectories of sea spray droplets are tracked using a Lagrangian particle tracking method. The generation of droplets is captured using a kinematic criterion based on the relative velocity of fluid particles of water with respect to the wave phase speed. From the simulation, we observe that the wave plunging generates a large vortex in air, which makes an important contribution to the suspension of sea spray droplets.
USDA-ARS?s Scientific Manuscript database
This paper presents a depth-averaged two-dimensional shallow water model for simulating long waves in vegetated water bodies under breaking and non-breaking conditions. The effects of rigid vegetation are modelled in the form of drag and inertia forces as sink terms in the momentum equations. The dr...
Large-scale laboratory study of breaking wave hydrodynamics over a fixed bar
NASA Astrophysics Data System (ADS)
van der A, Dominic A.; van der Zanden, Joep; O'Donoghue, Tom; Hurther, David; Cáceres, Iván.; McLelland, Stuart J.; Ribberink, Jan S.
2017-04-01
A large-scale wave flume experiment has been carried out involving a T = 4 s regular wave with H = 0.85 m wave height plunging over a fixed barred beach profile. Velocity profiles were measured at 12 locations along the breaker bar using LDA and ADV. A strong undertow is generated reaching magnitudes of 0.8 m/s on the shoreward side of the breaker bar. A circulation pattern occurs between the breaking area and the inner surf zone. Time-averaged turbulent kinetic energy (TKE) is largest in the breaking area on the shoreward side of the bar where the plunging jet penetrates the water column. At this location, and on the bar crest, TKE generated at the water surface in the breaking process reaches the bottom boundary layer. In the breaking area, TKE does not reduce to zero within a wave cycle which leads to a high level of "residual" turbulence and therefore lower temporal variation in TKE compared to previous studies of breaking waves on plane beach slopes. It is argued that this residual turbulence results from the breaker bar-trough geometry, which enables larger length scales and time scales of breaking-generated vortices and which enhances turbulence production within the water column compared to plane beaches. Transport of TKE is dominated by the undertow-related flux, whereas the wave-related and turbulent fluxes are approximately an order of magnitude smaller. Turbulence production and dissipation are largest in the breaker zone and of similar magnitude, but in the shoaling zone and inner surf zone production is negligible and dissipation dominates.
NASA Astrophysics Data System (ADS)
Herman, Agnieszka
2017-11-01
In this paper, a coupled sea ice-wave model is developed and used to analyze wave-induced stress and breaking in sea ice for a range of wave and ice conditions. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid grains
floating on the water surface that can be connected to their neighbors by elastic joints. The joints may break if instantaneous stresses acting on them exceed their strength. The wave module is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two modules are coupled with proper boundary conditions for pressure and velocity, exchanged at every wave model time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.
Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude ...
Investigation of the relationship between hurricane waves and extreme runup
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Stockdon, H. F.
2006-12-01
In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.
Near-Bed Turbulent Kinetic Energy Budget Under a Large-Scale Plunging Breaking Wave Over a Fixed Bar
NASA Astrophysics Data System (ADS)
van der Zanden, Joep; van der A, Dominic A.; Cáceres, Iván.; Hurther, David; McLelland, Stuart J.; Ribberink, Jan S.; O'Donoghue, Tom
2018-02-01
Hydrodynamics under regular plunging breaking waves over a fixed breaker bar were studied in a large-scale wave flume. A previous paper reported on the outer flow hydrodynamics; the present paper focuses on the turbulence dynamics near the bed (up to 0.10 m from the bed). Velocities were measured with high spatial and temporal resolution using a two component laser Doppler anemometer. The results show that even at close distance from the bed (1 mm), the turbulent kinetic energy (TKE) increases by a factor five between the shoaling, and breaking regions because of invasion of wave breaking turbulence. The sign and phase behavior of the time-dependent Reynolds shear stresses at elevations up to approximately 0.02 m from the bed (roughly twice the elevation of the boundary layer overshoot) are mainly controlled by local bed-shear-generated turbulence, but at higher elevations Reynolds stresses are controlled by wave breaking turbulence. The measurements are subsequently analyzed to investigate the TKE budget at wave-averaged and intrawave time scales. Horizontal and vertical turbulence advection, production, and dissipation are the major terms. A two-dimensional wave-averaged circulation drives advection of wave breaking turbulence through the near-bed layer, resulting in a net downward influx in the bar trough region, followed by seaward advection along the bar's shoreward slope, and an upward outflux above the bar crest. The strongly nonuniform flow across the bar combined with the presence of anisotropic turbulence enhances turbulent production rates near the bed.
NASA Astrophysics Data System (ADS)
Zhou, Zheyu; Sangermano, Jacob; Hsu, Tian-Jian; Ting, Francis C. K.
2014-10-01
To better understand the effect of wave-breaking-induced turbulence on the bed, we report a 3-D large-eddy simulation (LES) study of a breaking solitary wave in spilling condition. Using a turbulence-resolving approach, we study the generation and the fate of wave-breaking-induced turbulent coherent structures, commonly known as obliquely descending eddies (ODEs). Specifically, we focus on how these eddies may impinge onto bed. The numerical model is implemented using an open-source CFD library of solvers, called OpenFOAM, where the incompressible 3-D filtered Navier-Stokes equations for the water and the air phases are solved with a finite volume scheme. The evolution of the water-air interfaces is approximated with a volume of fluid method. Using the dynamic Smagorinsky closure, the numerical model has been validated with wave flume experiments of solitary wave breaking over a 1/50 sloping beach. Simulation results show that during the initial overturning of the breaking wave, 2-D horizontal rollers are generated, accelerated, and further evolve into a couple of 3-D hairpin vortices. Some of these vortices are sufficiently intense to impinge onto the bed. These hairpin vortices possess counter-rotating and downburst features, which are key characteristics of ODEs observed by earlier laboratory studies using Particle Image Velocimetry. Model results also suggest that those ODEs that impinge onto bed can induce strong near-bed turbulence and bottom stress. The intensity and locations of these near-bed turbulent events could not be parameterized by near-surface (or depth integrated) turbulence unless in very shallow depth.
Scaling depth-induced wave-breaking in two-dimensional spectral wave models
NASA Astrophysics Data System (ADS)
Salmon, J. E.; Holthuijsen, L. H.; Zijlema, M.; van Vledder, G. Ph.; Pietrzak, J. D.
2015-03-01
Wave breaking in shallow water is still poorly understood and needs to be better parameterized in 2D spectral wave models. Significant wave heights over horizontal bathymetries are typically under-predicted in locally generated wave conditions and over-predicted in non-locally generated conditions. A joint scaling dependent on both local bottom slope and normalized wave number is presented and is shown to resolve these issues. Compared to the 12 wave breaking parameterizations considered in this study, this joint scaling demonstrates significant improvements, up to ∼50% error reduction, over 1D horizontal bathymetries for both locally and non-locally generated waves. In order to account for the inherent differences between uni-directional (1D) and directionally spread (2D) wave conditions, an extension of the wave breaking dissipation models is presented. By including the effects of wave directionality, rms-errors for the significant wave height are reduced for the best performing parameterizations in conditions with strong directional spreading. With this extension, our joint scaling improves modeling skill for significant wave heights over a verification data set of 11 different 1D laboratory bathymetries, 3 shallow lakes and 4 coastal sites. The corresponding averaged normalized rms-error for significant wave height in the 2D cases varied between 8% and 27%. In comparison, using the default setting with a constant scaling, as used in most presently operating 2D spectral wave models, gave equivalent errors between 15% and 38%.
NASA Astrophysics Data System (ADS)
Kaplan, Michael L.; Tilley, Jeffrey S.; Hatchett, Benjamin J.; Smith, Craig M.; Walston, Joshua M.; Shourd, Kacie N.; Lewis, John M.
2017-10-01
On 27 September 2010 the Los Angeles Civic Center reached its all-time record maximum temperature of 45°C before 1330 local daylight time with several other regional stations observing all-time record breaking heat early in that afternoon. This record event is associated with a general circulation pattern predisposed to hemispheric wave breaking. Three days before the event, wave breaking organizes complex terrain- and coastal-induced processes that lead to isentropic surface folding into the Los Angeles Basin. The first wave break occurs over the western two thirds of North America leading to trough elongation across the southwestern U.S. Collocated with this trough is an isentropic potential vorticity filament that is the locus of a thermally indirect circulation central to warming and associated thickness increases and ridging westward across the Great Basin. In response to this circulation, two subsynoptic wave breaks are triggered along the Pacific coast. The isentropic potential vorticity filament is coupled to the breaking waves and the interaction produces a subsynoptic low-pressure center and a deep vortex aloft over the southeastern California desert. This coupling leads to advection of an elevated mixed layer over Point Conception the night before the record-breaking heat that creates a coastally trapped low-pressure area southwest of Los Angeles. The two low-pressure centers create a low-level pressure gradient and east-southeasterly jet directed offshore over the Los Angeles Basin by sunrise on 27 September. This allows the advection of low-level warm air from the inland terrain toward the coastally trapped disturbance and descending circulation resulting in record heating.
NASA Astrophysics Data System (ADS)
Santucci, F.; Santini, P. M.
2016-10-01
We study the generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation in n+1 dimensions and with nonlinearity of degree m+1, a model equation describing the propagation of weakly nonlinear, quasi one-dimensional waves in the absence of dispersion and dissipation, and arising in several physical contexts, like acoustics, plasma physics, hydrodynamics and nonlinear optics. In 2 + 1 dimensions and with quadratic nonlinearity, this equation is integrable through a novel inverse scattering transform, and it has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. In higher dimensions and with higher nonlinearity, the generalized dKP equations are not integrable, but their invariance under motions on the paraboloid allows one to construct in this paper a family of exact solutions describing waves constant on their paraboloidal wave front and breaking simultaneously in all points of it, developing after breaking either multivaluedness or single-valued discontinuous profiles (shocks). Then such exact solutions are used to build the longtime behavior of the solutions of the Cauchy problem, for small and localized initial data, showing that wave breaking of small initial data takes place in the longtime regime if and only if m(n-1)≤slant 2. Lastly, the analytic aspects of such wave breaking are investigated in detail in terms of the small initial data, in both cases in which the solution becomes multivalued after breaking or it develops a shock. These results, contained in the 2012 master’s thesis of one of the authors (FS) [1], generalize those obtained in [2] for the dKP equation in n+1 dimensions with quadratic nonlinearity, and are obtained following the same strategy.
Nearshore Tsunami Inundation Model Validation: Toward Sediment Transport Applications
Apotsos, Alex; Buckley, Mark; Gelfenbaum, Guy; Jaffe, Bruce; Vatvani, Deepak
2011-01-01
Model predictions from a numerical model, Delft3D, based on the nonlinear shallow water equations are compared with analytical results and laboratory observations from seven tsunami-like benchmark experiments, and with field observations from the 26 December 2004 Indian Ocean tsunami. The model accurately predicts the magnitude and timing of the measured water levels and flow velocities, as well as the magnitude of the maximum inundation distance and run-up, for both breaking and non-breaking waves. The shock-capturing numerical scheme employed describes well the total decrease in wave height due to breaking, but does not reproduce the observed shoaling near the break point. The maximum water levels observed onshore near Kuala Meurisi, Sumatra, following the 26 December 2004 tsunami are well predicted given the uncertainty in the model setup. The good agreement between the model predictions and the analytical results and observations demonstrates that the numerical solution and wetting and drying methods employed are appropriate for modeling tsunami inundation for breaking and non-breaking long waves. Extension of the model to include sediment transport may be appropriate for long, non-breaking tsunami waves. Using available sediment transport formulations, the sediment deposit thickness at Kuala Meurisi is predicted generally within a factor of 2.
A high-performance wave guide cryogenic thermal break
NASA Astrophysics Data System (ADS)
Melhuish, S. J.; McCulloch, M. A.; Piccirillo, L.; Stott, C.
2016-10-01
We describe a high-performance wave guide cryogenic thermal break. This has been constructed both for Ka band, using WR28 wave guide, and Q band, using WR22 wave guide. The mechanical structure consists of a hexapod (Stewart platform) made from pultruded carbon fibre tubing. We present a tentative examination of the cryogenic Young's modulus of this material. The thermal conductivity is measured at temperatures above the range explored by Runyan and Jones, resulting in predicted conductive loads through our thermal breaks of 3.7 mW to 3 K and 17 μK to 1 K.
Proceedings, Nonlinear Water Waves Workshop Held at the University of Bristol on October 22-25, 1991
1991-01-01
far as I understand, you have studied the case of one -dimensional spectrum of waves. I think that taking into account non- one -dimensional triplets...2b Evolving shoi waves (T- 1.0s). 13 components even became larger than that of the primary wave itself. The short waves (ff= 1.0 Hz), on the...breaking waves. This allows one to study statistics of breaking waves as rare events of high level excursion by a (three-dimensional) field of the wave
Observations and estimates of wave-driven water level extremes at the Marshall Islands
NASA Astrophysics Data System (ADS)
Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.
2014-10-01
Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.
Multiple focused EMAT designs for improved surface breaking defect characterization
NASA Astrophysics Data System (ADS)
Thring, C. B.; Fan, Y.; Edwards, R. S.
2017-02-01
Ultrasonic Rayleigh waves can be employed for the detection of surface breaking defects such as rolling contact fatigue and stress corrosion cracking. Electromagnetic Acoustic Transducers (EMATs) are well suited to this technique as they can directly generate Rayleigh waves within the sample without the requirement for wedges, and they are robust and inexpensive compared to laser ultrasonics. Three different EMAT coil types have been developed, and these are compared to assess their ability to detect and characterize small (down to 0.5 mm depth, 1 mm diameter) surface breaking defects in aluminium. These designs are: a pair of linear meander coils used in a pseudo-pulse-echo mode, a pair of focused meander coils also used in pseudo-pulse-echo mode, and a pair of focused racetrack coils used in pitch-catch mode. The linear meander coils are able to detect most of the defects tested, but have a much lower signal to noise ratio and give limited sizing information. The focused meander coils and the focused racetrack coils can detect all defects tested, but have the advantage that they can also characterize the defect sizes on the sample surface, and have a stronger sensitivity at their focal point. Measurements using all three EMAT designs are presented and compared for high resolution imaging of surface-breaking defects.
Study on ambient noise generated from breaking waves simulated by a wave maker in a tank
NASA Astrophysics Data System (ADS)
Wei, Ruey-Chang; Chan, Hsiang-Chih
2002-11-01
This paper studies ambient noise in the surf zone that was simulated by a piston-type wave maker in a tank. The experiment analyzed the bubbles of a breaking wave by using a hydrophone to receive the acoustic signal, and the images of bubbles were recorded by a digital video camera to observe the distribution of the bubbles. The slope of the simulated seabed is 1:5, and the dimensions of the water tank are 35 m x1 m x1.2 m. The studied parameters of ambient noise generated by breaking wave bubbles were wave height, period, and water depth. Short-time Fourier transform was applied to obtain the acoustic spectrum of bubbles, MATLAB programs were used to calculate mean sound pressure level, and determine the number of bubbles. Bubbles with resonant frequency from 0.5 to 10 kHz were studied, counted from peaks in the spectrum. The number of bubbles generated by breaking waves could be estimated by the bubbles energy distributions. The sound pressure level of ambient noise was highly related to the wave height and period, with correlation coefficient 0.7.
Turbulence Scaling Comparisons in the Ocean Surface Boundary Layer
NASA Astrophysics Data System (ADS)
Esters, L.; Breivik, Ø.; Landwehr, S.; ten Doeschate, A.; Sutherland, G.; Christensen, K. H.; Bidlot, J.-R.; Ward, B.
2018-03-01
Direct observations of the dissipation rate of turbulent kinetic energy, ɛ, under open ocean conditions are limited. Consequently, our understanding of what chiefly controls dissipation in the open ocean, and its functional form with depth, is poorly constrained. In this study, we report direct open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during five different cruises in the Atlantic Ocean. We then combine these data with ocean-atmosphere flux measurements and wave information in order to evaluate existing turbulence scaling theories under a diverse set of open ocean conditions. Our results do not support the presence of a "breaking" or a "transition layer," which has been previously suggested. Instead, ɛ decays as |z|-1.29 over the depth interval, which was previously defined as "transition layer," and as |z|-1.15 over the mixing layer. This depth dependency does not significantly vary between nonbreaking or breaking wave conditions. A scaling relationship based on the friction velocity, the wave age, and the significant wave height describes the observations best for daytime conditions. For conditions during which convection is important, it is necessary to take buoyancy forcing into account.
Assessment of Reinforced Concrete Surface Breaking Crack Using Rayleigh Wave Measurement.
Lee, Foo Wei; Chai, Hwa Kian; Lim, Kok Sing
2016-03-05
An improved single sided Rayleigh wave (R-wave) measurement was suggested to characterize surface breaking crack in steel reinforced concrete structures. Numerical simulations were performed to clarify the behavior of R-waves interacting with surface breaking crack with different depths and degrees of inclinations. Through analysis of simulation results, correlations between R-wave parameters of interest and crack characteristics (depth and degree of inclination) were obtained, which were then validated by experimental measurement of concrete specimens instigated with vertical and inclined artificial cracks of different depths. Wave parameters including velocity and amplitude attenuation for each case were studied. The correlations allowed us to estimate the depth and inclination of cracks measured experimentally with acceptable discrepancies, particularly for cracks which are relatively shallow and when the crack depth is smaller than the wavelength.
Swash saturation: an assessment of available models
NASA Astrophysics Data System (ADS)
Hughes, Michael G.; Baldock, Tom E.; Aagaard, Troels
2018-06-01
An extensive previously published (Hughes et al. Mar Geol 355, 88-97, 2014) field data set representing the full range of micro-tidal beach states (reflective, intermediate and dissipative) is used to investigate swash saturation. Two models that predict the behavior of saturated swash are tested: one driven by standing waves and the other driven by bores. Despite being based on entirely different premises, they predict similar trends in the limiting (saturated) swash height with respect to dependency on frequency and beach gradient. For a given frequency and beach gradient, however, the bore-driven model predicts a larger saturated swash height by a factor 2.5. Both models broadly predict the general behavior of swash saturation evident in the data, but neither model is accurate in detail. While swash saturation in the short-wave frequency band is common on some beach types, it does not always occur across all beach types. Further work is required on wave reflection/breaking and the role of wave-wave and wave-swash interactions to determine limiting swash heights on natural beaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, G.; Spatschek, K. H.
Ultra-intense and ultra-short laser pulses may be generated up to the exawatt-zetawatt regime due to parametric processes in plasmas. The minimization of unwanted plasma processes leads to operational limits which are discussed here with respect to filamentation. Transverse filamentation, which originally was derived for plane waves, is being investigated for seed pulse propagation in the so called π-pulse limit. A three-dimensional (3D) three-wave-interaction model is the basis of the present investigation. To demonstrate the applicability of the three-wave-interaction model, the 1D pulse forms are compared with those obtained from 1D particle in cell and Vlasov simulations. Although wave-breaking may occur,more » the kinetic simulations show that the leading pumped pulse develops a form similar to that obtained from the three-wave-interaction model. In the main part, 2D and 3D filamentation processes of (localized) pulses are investigated with the three-wave-interaction model. It is shown that the leading pulse front can stay filamentation-free, whereas the rear parts show transverse modulations.« less
Air Entrainment in Steady Breaking Waves
NASA Astrophysics Data System (ADS)
Li, C. Y.; Duncan, J. H.; Wenz, A.; Full, O. E.
1997-11-01
Air entrainment due to steady breaking waves generated by fully submerged hydrofoils moving at constant speed and angle of attack is investigated experimentally. Three hydrofoils with the same shape (NACA 0012) but different chords (15, 20 and 30 cm) are used with Froude scaled operating conditions to generate the breaking waves. In this way, the effect of scale due to the combined influence of surface tension and viscosity on the bubble entrainment process is investigated. The bubbles are measured from plan-view and side-view 35-mm photographs of the wake. It is found that the number and average size of the bubbles increases dramatically with scale. High-speed movies of the turbulent breaking region that rides on the forward face of the wave are also used to observe bubble entrainment events. It is found that the bubbles are entrained periodically when the leading edge of the breaking region rushes forward and plunges over a pocket of air. This plunging process appears to become more frequent and more violent as the scale of the breaker increases.
Internal Gravity Waves: Generation and Breaking Mechanisms by Laboratory Experiments
NASA Astrophysics Data System (ADS)
la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico
2016-04-01
Internal gravity waves (IGWs), occurring within estuaries and the coastal oceans, are manifest as large amplitude undulations of the pycnocline. IGWs propagating horizontally in a two layer stratified fluid are studied. The breaking of an IGW of depression shoaling upon a uniformly sloping boundary is investigated experimentally. Breaking dynamics beneath the shoaling waves causes both mixing and wave-induced near-bottom vortices suspending and redistributing the bed material. Laboratory experiments are conducted in a Perspex tank through the standard lock-release method, following the technique described in Sutherland et al. (2013). Each experiment is analysed and the instantaneous pycnocline position is measured, in order to obtain both geometric and kinematic features of the IGW: amplitude, wavelength and celerity. IGWs main features depend on the geometrical parameters that define the initial experimental setting: the density difference between the layers, the total depth, the layers depth ratio, the aspect ratio, and the displacement between the pycnoclines. Relations between IGWs geometric and kinematic features and the initial setting parameters are analysed. The approach of the IGWs toward a uniform slope is investigated in the present experiments. Depending on wave and slope characteristics, different breaking and mixing processes are observed. Sediments are sprinkled on the slope to visualize boundary layer separation in order to analyze the suspension e redistribution mechanisms due to the wave breaking.
Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan.
Roeber, Volker; Bricker, Jeremy D
2015-08-06
Storm surges cause coastal inundation due to setup of the water surface resulting from atmospheric pressure, surface winds and breaking waves. Here we show that during Typhoon Haiyan, the setup generated by breaking waves near the fringing-reef-protected town of Hernani, the Philippines, oscillated with the incidence of large and small wave groups, and steepened into a tsunami-like wave that caused extensive damage and casualties. Though fringing reefs usually protect coastal communities from moderate storms, they can exacerbate flooding during strong events with energetic waves. Typical for reef-type bathymetries, a very short wave-breaking zone over the steep reef face facilitates the freeing of infragravity-period fluctuations (surf beat) with little energy loss. Since coastal flood planning relies on phase-averaged wave modelling, infragravity surges are not being accounted for. This highlights the necessity for a policy change and the adoption of phase-resolving wave models for hazard assessment in regions with fringing reefs.
Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan
Roeber, Volker; Bricker, Jeremy D.
2015-01-01
Storm surges cause coastal inundation due to setup of the water surface resulting from atmospheric pressure, surface winds and breaking waves. Here we show that during Typhoon Haiyan, the setup generated by breaking waves near the fringing-reef-protected town of Hernani, the Philippines, oscillated with the incidence of large and small wave groups, and steepened into a tsunami-like wave that caused extensive damage and casualties. Though fringing reefs usually protect coastal communities from moderate storms, they can exacerbate flooding during strong events with energetic waves. Typical for reef-type bathymetries, a very short wave-breaking zone over the steep reef face facilitates the freeing of infragravity-period fluctuations (surf beat) with little energy loss. Since coastal flood planning relies on phase-averaged wave modelling, infragravity surges are not being accounted for. This highlights the necessity for a policy change and the adoption of phase-resolving wave models for hazard assessment in regions with fringing reefs. PMID:26245839
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Jongchul; Litvinenko, Yuri E.
The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical resultsmore » suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D{sub 2} and H α lines.« less
NASA Astrophysics Data System (ADS)
Khait, A.; Shemer, L.
2018-05-01
The evolution of unidirectional wave trains containing a wave that gradually becomes steep is evaluated experimentally and numerically using the Boundary Element Method (BEM). The boundary conditions for the nonlinear numerical simulations corresponded to the actual movements of the wavemaker paddle as recorded in the physical experiments, allowing direct comparison between the measured in experiments' characteristics of the wave train and the numerical predictions. The high level of qualitative and quantitative agreement between the measurements and simulations validated the kinematic criterion for the inception of breaking and the location of the spilling breaker, on the basis of the BEM computations and associated experiments. The breaking inception is associated with the fluid particle at the crest of the steep wave that has been accelerated to match and surpass the crest velocity. The previously observed significant slow-down of the crest while approaching breaking is verified numerically; both narrow-/broad-banded wave trains are considered. Finally, the relative importance of linear and nonlinear contributions is analyzed.
NASA Astrophysics Data System (ADS)
McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.
2004-12-01
Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some preliminary solutions using it. McWilliams, J.C., J.M. Restrepo, & E.M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 511, 135-178. Sullivan, P.P., J.C. McWilliams, & W.K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. J. Fluid Mech. 507, 143-174.
Orbitally limited pair-density-wave phase of multilayer superconductors
NASA Astrophysics Data System (ADS)
Möckli, David; Yanase, Youichi; Sigrist, Manfred
2018-04-01
We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .
Dynamical Influence and Operational Impacts of an Extreme Mediterranean Cold Surge
2013-06-01
over 45 cm of snowfall in Souda Bay, Crete, which significantly impacted operations at Naval Support Activity Souda Bay. The extratropical wave...cold surge event and its dependence on the upstream synoptic scale events. 14. SUBJECT TERMS Extratropical Cyclone, Souda Bay...Activity Souda Bay. The extratropical wave associated with the cold surge could be classified as a classic life-cycle 1 wave break. The wave-breaking
NASA Technical Reports Server (NTRS)
Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.
2003-01-01
The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In the tropics, only with the AD parameterization can the model produce realistic semiannual oscillations.
Nonlinear interaction and wave breaking with a submerged porous structure
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Min; Sau, Amalendu; Hwang, Robert R.; Yang, W. C.
2016-12-01
Numerical simulations are performed to investigate interactive velocity, streamline, turbulent kinetic energy, and vorticity perturbations in the near-field of a submerged offshore porous triangular structure, as Stokes waves of different heights pass through. The wave-structure interaction and free-surface breaking for the investigated flow situations are established based on solutions of 2D Reynolds Averaged Navier-Stokes equations in a Cartesian grid in combination with K-ɛ turbulent closure and the volume of fluid methodology. The accuracy and stability of the adopted model are ascertained by extensive comparisons of computed data with the existing experimental and theoretical findings and through efficient predictions of the internal physical kinetics. Simulations unfold "clockwise" and "anticlockwise" rotation of fluid below the trough and the crest of the viscous waves, and the penetrated wave energy creates systematic flow perturbation in the porous body. The interfacial growths of the turbulent kinetic energy and the vorticity appear phenomenal, around the apex of the immersed structure, and enhanced significantly following wave breaking. Different values of porosity parameter and two non-porous cases have been examined in combination with varied incident wave height to reveal/analyze the nonlinear flow behavior in regard to local spectral amplification and phase-plane signatures. The evolution of leading harmonics of the undulating free-surface and the vertical velocity exhibits dominating roles of the first and the second modes in inducing the nonlinearity in the post-breaking near-field that penetrates well below the surface layer. The study further suggests the existence of a critical porosity that can substantially enhance the wave-shoaling and interface breaking.
An Eulerian two-phase flow model for sediment transport under realistic surface waves
NASA Astrophysics Data System (ADS)
Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.
2017-12-01
Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
Physical measurements of breaking wave impact on a floating wave energy converter
NASA Astrophysics Data System (ADS)
Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison
2013-04-01
Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.
Analysis of bubble plume spacing produced by regular breaking waves
NASA Astrophysics Data System (ADS)
Phaksopa, J.; Haller, M. C.
2012-12-01
The breaking wave process in the ocean is a significant mechanism for energy dissipation, splash, and entrainment of air. The relationship between breaking waves and bubble plume characteristics is still a mystery because of the complexity of the breaking wave mechanism. This study takes a unique approach to quantitatively analyze bubble plumes produced by regular breaking waves. Various previous studies have investigated the formation and the characteristics of bubble plumes using either field observations, laboratory experiments, or numerical modeling However, in most observational work the plume characteristics have been studied from the underneath the water surface. In addition, though numerical simulations are able to include much of the important physics, the computational costs are high and bubble plume events are only simulated for short times. Hence, bubble plume evolution and generation throughout the surf zone is not yet computationally feasible. In the present work we take a unique approach to analyzing bubble plumes. These data may be of use for model/data comparisons as numerical simulations become more tractable. The remotely sensed video data from freshwater breaking waves in the OSU Large Wave Flume (Catalan and Haller, 2008) are analyzed. The data set contains six different regular wave conditions and the video intensity data are used to estimate the spacing of plume events (wavenumber spectrum), to calculate the spectral width (i.e. the range of plume spacing), and to relate these with the wave conditions. The video intensity data capture the evolution of the wave passage over a fixed bed arranged in a bar-trough morphology. Bright regions represent the moving path or trajectory coincident with bubble plume of each wave. It also shows the bubble foam were generated and released from wave crest shown in the form of bubble tails with almost regular spacing for each wave. The bubble tails show that most bubbles did not move along with wave. For the estimation of wavenumber spectrum, the density is high at low wavenumber and it decreases toward high wavenumber. The average spectrum bandwidth was estimated and represented as the bubble event spacing for each run. It is found that its magnitude varies with wave conditions range from 8.81 - 11.82 and is related to the waveheight. Additionally, the calculated wavenumbers from power density function vary in the range of 0.80 - 1.58 meters-1. It is found that the bubble wavenumbers are mostly higher than the wavenumbers calculated from the linear wave theory between 0.2L-0.7L. In other words, the bubble plume length does not exceed the progressive wavelength.
Rapid Assessment of Wave Height Transformation through a Tidal Inlet via Radar Remote Sensing
NASA Astrophysics Data System (ADS)
Díaz Méndez, G.; Haller, M. C.; Raubenheimer, B.; Elgar, S.; Honegger, D.
2014-12-01
Radar has the potential to enable temporally and spatially dense, continuous monitoring of waves and currents in nearshore environments. If quantitative relationships between the remote sensing signals and the hydrodynamic parameters of interest can be found, remote sensing techniques can mitigate the challenges of continuous in situ sampling and possibly enable a better understanding of wave transformation in areas with strongly inhomogeneous along and across-shore bathymetry, currents, and dissipation. As part of the DARLA experiment (New River Inlet, NC), the accuracy of a rapid assessment of wave height transformation via radar remote sensing is tested. Wave breaking events are identified in the radar image time series (Catalán et al. 2011). Once the total number of breaking waves (per radar collection) is mapped throughout the imaging domain, radar-derived bathymetry and wave frequency are used to compute wave breaking dissipation (Janssen and Battjes 2007). Given the wave breaking dissipation, the wave height transformation is calculated by finding an inverse solution to the 1D cross-shore energy flux equation (including the effect of refraction). The predicted wave height transformation is consistent (correlation R > 0.9 and rmse as low as 0.1 m) with the transformation observed with in situ sensors in an area of complex morphology and strong (> 1 m/s) tidal currents over a nine-day period. The wave forcing (i.e., radiation stress gradients) determined from the remote sensing methodology will be compared with values estimated with in situ sensors. Funded by ONR and ASD(R&E)
NASA Astrophysics Data System (ADS)
Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall
2004-05-01
We devise a stochastic model for the effects of breaking waves and fit its distribution functions to laboratory and field data. This is used to represent the space time structure of momentum and energy forcing of the oceanic boundary layer in turbulence-resolving simulations. The aptness of this breaker model is evaluated in a direct numerical simulation (DNS) of an otherwise quiescent fluid driven by an isolated breaking wave, and the results are in good agreement with laboratory measurements. The breaker model faithfully reproduces the bulk features of a breaking event: the mean kinetic energy decays at a rate approaching t(-1) , and a long-lived vortex (eddy) is generated close to the water surface. The long lifetime of this vortex (more than 50 wave periods) makes it effective in energizing the surface region of oceanic boundary layers. Next, a comparison of several different DNS of idealized oceanic boundary layers driven by different surface forcing (i.e. constant current (as in Couette flow), constant stress, or a mixture of constant stress plus stochastic breakers) elucidates the importance of intermittent stress transmission to the underlying currents. A small amount of active breaking, about 1.6% of the total water surface area at any instant in time, significantly alters the instantaneous flow patterns as well as the ensemble statistics. Near the water surface a vigorous downwelling upwelling pattern develops at the head and tail of each three-dimensional breaker. This enhances the vertical velocity variance and generates both negative- and positive-signed vertical momentum flux. Analysis of the mean velocity and scalar profiles shows that breaking effectively increases the surface roughness z_o by more than a factor of 30; for our simulations z_o/lambda {≈} 0.04 to 0.06, where lambda is the wavelength of the breaking wave. Compared to a flow driven by a constant current, the extra mixing from breakers increases the mean eddy viscosity by more than a factor of 10 near the water surface. Breaking waves alter the usual balance of production and dissipation in the turbulent kinetic energy (TKE) budget; turbulent and pressure transports and breaker work are important sources and sinks in the budget. We also show that turbulent boundary layers driven by constant current and constant stress (i.e. with no breaking) differ in fundamental ways. The additional freedom provided by a constant-stress boundary condition permits finite velocity variances at the water surface, so that flows driven by constant stress mimic flows with weakly and statistically homogeneous breaking waves.
Dense Gravity Currents with Breaking Internal Waves
NASA Astrophysics Data System (ADS)
Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey
2017-11-01
Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.
Gas transfer under high wind and its dependence on wave breaking and sea state
NASA Astrophysics Data System (ADS)
Brumer, Sophia; Zappa, Christopher; Fairall, Christopher; Blomquist, Byron; Brooks, Ian; Yang, Mingxi
2016-04-01
Quantifying greenhouse gas fluxes on regional and global scales relies on parameterizations of the gas transfer velocity K. To first order, K is dictated by wind speed (U) and is typically parameterized as a non-linear functions of U. There is however a large spread in K predicted by the traditional parameterizations at high wind speed. This is because a large variety of environmental forcing and processes (Wind, Currents, Rain, Waves, Breaking, Surfactants, Fetch) actually influence K and wind speed alone cannot capture the variability of air-water gas exchange. At high wind speed especially, breaking waves become a key factor to take into account when estimating gas fluxes. The High Wind Gas exchange Study (HiWinGS) presents the unique opportunity to gain new insights on this poorly understood aspects of air-sea interaction under high winds. The HiWinGS cruise took place in the North Atlantic during October and November 2013. Wind speeds exceeded 15 m s-1 25% of the time, including 48 hrs with U10 > 20 m s-1. Continuous measurements of turbulent fluxes of heat, momentum, and gas (CO2, DMS, acetone and methanol) were taken from the bow of the R/V Knorr. The wave field was sampled by a wave rider buoy and breaking events were tracked in visible imagery was acquired from the port and starboard side of the flying bridge during daylight hours at 20Hz. Taking advantage of the range of physical forcing and wave conditions sampled during HiWinGS, we test existing parameterizations and explore ways of better constraining K based on whitecap coverage, sea state and breaking statistics contrasting pure windseas to swell dominated periods. We distinguish between windseas and swell based on a separation algorithm applied to directional wave spectra for mixed seas, system alignment is considered when interpreting results. The four gases sampled during HiWinGS ranged from being mostly waterside controlled to almost entirely airside controlled. While bubble-mediated transfer appears to be small for moderately soluble gases like DMS, the importance of wave breaking turbulence transport has yet to be determined for all gases regardless of their solubility. This will be addressed by correlating measured K to estimates of active whitecap fraction (WA) and turbulent kinetic energy dissipation rate (ɛ). WA and ɛ are estimated from moments of the breaking crest length distribution derived from the imagery, focusing on young seas, when it is likely that large-scale breaking waves (i.e., whitecapping) will dominate the ɛ.
Vortex-induced suspension of sediment in the surf zone
NASA Astrophysics Data System (ADS)
Otsuka, Junichi; Saruwatari, Ayumi; Watanabe, Yasunori
2017-12-01
A major mechanism of sediment suspension by organized vortices produced under violent breaking waves in the surf zone was identified through physical and computational experiments. Counter-rotating flows within obliquely descending eddies produced between adjacent primary roller vortices induce transverse convergent near-bed flows, driving bed load transport to form regular patterns of transverse depositions. The deposited sediment is then rapidly ejected by upward carrier flows induced between the vortices. This mechanism of vortex-induced suspension is supported by experimental evidence that coherent sediment clouds are ejected where the obliquely descending eddies reach the sea bed after the breaking wave front has passed. In addition to the effects of settling and turbulent diffusion caused by breaking waves, the effect of the vortex-induced flows was incorporated into a suspension model on the basis of vorticity dynamics and parametric characteristics of transverse flows in breaking waves. The model proposed here reasonably predicts an exponential attenuation of the measured sediment concentration due to violent plunging waves and significantly improves the underprediction of the concentration produced by previous models.
Rip currents and alongshore flows in single channels dredged in the surf zone
NASA Astrophysics Data System (ADS)
Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh
2017-05-01
To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.
Rip currents and alongshore flows in single channels dredged in the surf zone
Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh
2017-01-01
To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.
2010-09-30
simulating violent free - surface flows , and show the importance of wave breaking in energy transport...using Eulerian simulation . 3 IMPACT/APPLICATION This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that...several Eulerian and Lagrangian methods for free - surface turbulence and wave simulation . The WIND–SNOW is used to simulate 1 Report
NASA Astrophysics Data System (ADS)
Chae, Jongchul; Litvinenko, Yuri E.
2017-08-01
The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na I D2 and Hα lines.
Ocean wave generation by collapsing ice shelves
NASA Astrophysics Data System (ADS)
Macayeal, D. R.; Bassis, J. N.; Okal, E. A.; Aster, R. C.; Cathles, L. M.
2008-12-01
The 28-29 February, 2008, break-up of the Wilkins Ice Shelf, Antarctica, exemplifies the now-familiar, yet largely unexplained pattern of explosive ice-shelf break-up. While environmental warming is a likely ultimate cause of explosive break-up, several key aspects of their short-term behavior need to be explained: (1) The abrupt, near-simultaneous onset of iceberg calving across long spans of the ice front margin; (2) High outward drift velocity (about 0.3 m/s) of a leading phalanx of tabular icebergs that originate from the seaward edge of the intact ice shelf prior to break-up; (3) Rapid coverage of the ocean surface in the wake of this leading phalanx by small, capsized and dismembered tabular icebergs; (4) Extremely large gravitational potential energy release rates, e.g., up to 3 × 1010 W; (5) Lack of proximal iceberg-calving triggers that control the timing of break-up onset and that maintain the high break-up calving rates through to the conclusion of the event. Motivated by seismic records obtained from icebergs and the Ross Ice Shelf that show hundreds of micro- tsunamis emanating from near the ice shelf front, we re-examine the basic dynamic features of ice- shelf/ocean-wave interaction and, in particular, examine the possibility that collapsing ice shelves themselves are a source of waves that stimulate the disintegration process. We propose that ice-shelf generated surface-gravity waves associated with initial calving at an arbitrary seed location produce stress perturbations capable of triggering the onset of calving on the entire ice front. Waves generated by parting detachment rifts, iceberg capsize and break-up act next to stimulate an inverted submarine landslide (ice- slide) process, where gravitational potential energy released by upward movement of buoyant ice is radiated as surface gravity waves in the wake of the advancing phalanx of tabular icebergs. We conclude by describing how field research and remote sensing can be used to test the various conjectures about ice- shelf/wave interaction that appear to be at play during ice-shelf disintegration.
Quantifying Wave Breaking Shape and Type in the Surf-Zone Using LiDAR
NASA Astrophysics Data System (ADS)
Albright, A.; Brodie, K. L.; Hartzell, P. J.; Glennie, C. L.
2017-12-01
Waves change shape as they shoal and break across the surf-zone, ultimately dissipating and transferring their energy into turbulence by either spilling or plunging. This injection of turbulence and changes in wave shape can affect the direction of sediment transport at the seafloor, and ultimately lead to morphological evolution. Typical methods for collecting wave data in the surf-zone include in-situ pressure gauges, velocimeters, ultrasonic sensors, and video imagery. Drawbacks to these data collection methods are low spatial resolution of point measurements, reliance on linear theory to calculate sea-surface elevations, and intensive computations required to extract wave properties from stereo 2D imagery. As a result, few field measurements of the shapes of plunging and/or spilling breakers exist, and existing knowledge is confined to results of laboratory studies. We therefore examine the use of a multi-beam scanning Light Detection and Ranging (LiDAR) remote sensing instrument with the goal of classifying the breaking type of propagating waves in the surf-zone and quantitatively determining wave morphometric properties. Data were collected with a Velodyne HDL-32E LiDAR scanner (360° vertical field of view) mounted on an arm of the Coastal Research Amphibious Buggy (CRAB) at the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. Processed laser scan data are used to visualize the lifecycle of a wave (shoaling, breaking, broken) and identify wave types (spilling, plunging, non-breaking) as they pass beneath the scanner. For each rotation of the LiDAR scanner, the point cloud data are filtered, smoothed, and detrended in order to identify individual waves and measure their properties, such as speed, height, period, upward/downward slope, asymmetry, and skewness. The 3D nature of point cloud data is advantageous for research, because it enables viewing from any angle. In our analysis, plan views are used to separate individual waves, and cross-shore profiles are used to extract wave properties. Combined with accurate georeferencing information, LiDAR has the potential to be a powerful remote sensing tool for coastal monitoring systems and the study of nearshore processes.
Scaling properties of conduction velocity in heterogeneous excitable media
NASA Astrophysics Data System (ADS)
Shajahan, T. K.; Borek, Bartłomiej; Shrier, Alvin; Glass, Leon
2011-10-01
Waves of excitation through excitable media, such as cardiac tissue, can propagate as plane waves or break up to form reentrant spiral waves. In diseased hearts reentrant waves can be associated with fatal cardiac arrhythmias. In this paper we investigate the conditions that lead to wave break, reentry, and propagation failure in mathematical models of heterogeneous excitable media. Two types of heterogeneities are considered: sinks are regions in space in which the voltage is fixed at its rest value, and breaks are nonconducting regions with no-flux boundary conditions. We find that randomly distributed heterogeneities in the medium have a decremental effect on the velocity, and above a critical density of such heterogeneities the conduction fails. Using numerical and analytical methods we derive the general relationship among the conduction velocity, density of heterogeneities, diffusion coefficient, and the rise time of the excitation in both two and three dimensions. This work helps us understand the factors leading to reduced propagation velocity and the formation of spiral waves in heterogeneous excitable media.
Factorization breaking of A d T for polarized deuteron targets in a relativistic framework
Jeschonnek, Sabine; Van Orden, J. W.
2017-04-17
We discuss the possible factorization of the tensor asymmetrymore » $$A^T_d$$ measured for polarized deuteron targets within a relativistic framework. We define a reduced asymmetry and find that factorization holds only in plane wave impulse approximation and if $p$-waves are neglected. Our numerical results show a strong factorization breaking once final state interactions are included. We also compare the $d$-wave content of the wave functions with the size of the factored, reduced asymmetry and find that there is no systematic relationship of this quantity to the d-wave probability of the various wave functions.« less
Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditio...
NASA Astrophysics Data System (ADS)
Meza Conde, Eustorgio
The Hybrid Wave Model (HWM) is a deterministic nonlinear wave model developed for the computation of wave properties in the vicinity of ocean wave measurements. The HWM employs both Mode-Coupling and Phase Modulation Methods to model the wave-wave interactions in an ocean wave field. Different from other nonlinear wave models, the HWM decouples the nonlinear wave interactions from ocean wave field measurements and decomposes the wave field into a set of free-wave components. In this dissertation the HWM is applied to the prediction of wave elevation from pressure measurements and to the quantification of energy during breaking of long-crested irregular surface waves. 1.A transient wave train was formed in a two-dimensional wave flume by sequentially generating a series of waves from high to low frequencies that superposed at a downstream location. The predicted wave elevation using the HWM based on the pressure measurement of a very steep transient wave train is in excellent agreement with the corresponding elevation measurement, while that using Linear Wave Theory (LWT) has relatively large discrepancies. Furthermore, the predicted elevation using the HWM is not sensitive to the choice of the cutoff frequency, while that using LWT is very sensitive. 2.Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using the same superposition technique. Surface elevation measurements of each transient wave train were made at locations before and after breaking. Applying the HWM nonlinear deterministic decomposition to the measured elevation, the free-wave components comprising the transient wave train were derived. By comparing the free-wave spectra before and after breaking it is found that energy loss was almost exclusively from wave components at frequencies higher than the spectral peak frequency. Even though the wave components near the peak frequency are the largest, they do not significantly gain or lose energy after breaking. It was also observed that wave components of frequencies significantly below or near the peak frequency gain a small portion of energy lost by the high-frequency waves. These findings may have important implications to the ocean wave energy budget.
The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Wenbo, E-mail: Wenbo.Tang@asu.edu; Mahalov, Alex, E-mail: Alex.Mahalov@asu.edu
2014-04-15
We present a three-dimensional numerical study for the E and lower F region ionosphere coupled with the neutral atmosphere dynamics. This model is developed based on a previous ionospheric model that examines the transport patterns of plasma density given a prescribed neutral atmospheric flow. Inclusion of neutral dynamics in the model allows us to examine the charge-neutral interactions over the full evolution cycle of an inertial gravity wave when the background flow spins up from rest, saturates and eventually breaks. Using Lagrangian analyses, we show the mixing patterns of the ionospheric responses and the formation of ionospheric layers. The correspondingmore » plasma density in this flow develops complex wave structures and small-scale patches during the gravity wave breaking event.« less
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Levin, D. S.; Skobelev, S. A.
2018-04-01
We consider Raman compression of laser pulses in a plasma under the conditions of an experiment planned at the Institute of Applied Physics of the Russian Academy of Sciences on the PEARL laser facility. The analysis is based on the equations describing, among other things, the effect of plasma dispersion and relativistic nonlinearity, as well as the dynamics of the field near the plasma wave breaking threshold. It is shown that the main limiting factors are excessive frequency modulation of the pump pulse and a too low plasma density in which the plasma wave breaking can occur. To reduce the negative influence of these effects, we suggest using an intense and short (on the order of the plasma period) seed laser pulse. Numerical simulation shows the possibility of a hundredfold increase in the intensity of the compressed pulse in comparison with the intensity of the pump pulse at a length of uniform plasma of 2 cm.
Willey, Carson L; Simonetti, Francesco
2016-06-01
Mapping the speed of mechanical waves traveling inside a medium is a topic of great interest across many fields from geoscience to medical diagnostics. Much work has been done to characterize the fidelity with which the geometrical features of the medium can be reconstructed and multiple resolution criteria have been proposed depending on the wave-matter interaction model used to decode the wave speed map from scattering measurements. However, these criteria do not define the accuracy with which the wave speed values can be reconstructed. Using two-dimensional simulations, it is shown that the first-arrival traveltime predicted by ray theory can be an accurate representation of the arrival of a pulse first break even in the presence of diffraction and other phenomena that are not accounted for by ray theory. As a result, ray-based tomographic inversions can yield accurate wave speed estimations also when the size of a sound speed anomaly is smaller than the resolution length of the inversion method provided that traveltimes are estimated from the signal first break. This increased sensitivity however renders the inversion more susceptible to noise since the amplitude of the signal around the first break is typically low especially when three-dimensional anomalies are considered.
Wave breaking induced surface wakes and jets observed during a bora event
NASA Astrophysics Data System (ADS)
Jiang, Qingfang; Doyle, James D.
2005-09-01
An observational and modeling study of a bora event that occurred during the field phase of the Mesoscale Alpine Programme is presented. Research aircraft in-situ measurements and airborne remote-sensing observations indicate the presence of strong low-level wave breaking and alternating surface wakes and jets along the Croatian coastline over the Adriatic Sea. The observed features are well captured by a high-resolution COAMPS simulation. Analysis of the observations and modeling results indicate that the long-extending wakes above the boundary layer are induced by dissipation associated with the low-level wave breaking, which locally tends to accelerate the boundary layer flow beneath the breaking. Farther downstream of the high peaks, a hydraulic jump occurs in the boundary layer, which creates surface wakes. Downstream of lower-terrain (passes), the boundary layer flow stays strong, resembling supercritical flow.
Remote sensing signatures of oceanic whitecap at different wavelengths
NASA Astrophysics Data System (ADS)
Anguelova, M. D.; Dowgiallo, D. J.; Smith, G. B.; Means, S. L.; Savelyev, I.; Frick, G. M.; Snow, C. M.; Schindall, J. A.; Bobak, J. P.
2012-12-01
Oceanic whitecaps are the most direct surface expression of breaking wind waves in the ocean. Whitecap fraction quantifies the breaking events and is thus a suitable forcing variable for parameterizing and predicting various air-sea interaction processes. To this end, we have compiled a database of whitecap fraction W from satellites-borne microwave radiometric observations. These observations provide the total W including foam generated during active breaking of wind-driven waves and residual foam left behind by these breaking waves. However, the whitecap fraction associated with the actively breaking waves WA is needed for dynamic air-sea processes in the upper ocean such as turbulent mixing, gas exchange, ocean ambient noise, and spray-mediated intensification of tropical storms. To parameterize such processes, a database of WA separate from W is needed. We pursue this separation of WA from W by combining the Phillips concept of breaking wave statistics which connects WA with the energy dissipation rate of breaking waves and parametric estimates of energy dissipation from wave spectra measured from buoys. We seek additional physical understanding of, and experimental support for, this separation with a multi-instrumental field campaign. The instrumentation deployed includes a suite of sensors recording the whitecaps and breaking waves on the surface over wide range of the electromagnetic spectrum: visible (video cameras), infrared (IR camera), and microwave (radiometers at two frequencies, 10 GHz and 37 GHz). An acoustic array with three nested-aperture array at frequencies up to 2.4 kHz and aerosol/particle counter provide data for the bubbles generated beneath and sea spray produced above the whitecaps. We also deployed a transmitter horn to collect data useful to asses Radio Frequency Interference (RFI), which affects the collection and accuracy of satellite-based data. Various auxiliary data such as wind speed, air temperature, humidity, wave field, and water temperature profile characterize the experimental conditions. The goal of this field campaign is to provide experimental data for determining WA and W independently from the Phillips concept for energy dissipation. In these measurements, we rely on the good separation between WA and W in the IR region of the electromagnetic spectrum. We use the IR data to identify a separation criterion which then can be applied to time series of microwave and acoustic data. Obtaining WA via this separation criterion and comparing the results with those from the Phillips concept, we will have additional possibility to constrain WA obtained using energy dissipation. The measurements are made in April-May, 2012, on the Floating Instrument Platform (FLIP) drifting along the coast of California from Monterey Bay south toward Point Conception. We describe the experiment, characterize the study site, and present first data collected during this campaign.
NASA Astrophysics Data System (ADS)
Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan
2014-10-01
A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.
Observations of coarse sediment movements on the mixed beach of the Elwha Delta, Washington
Miller, I.M.; Warrick, J.A.; Morgan, C.
2011-01-01
Mixed beaches, with poorly sorted grains of multiple sizes, are a common and globally distributed shoreline type. Despite this, rates and mechanisms of sediment transport on mixed beaches are poorly understood. A series of tracer deployments using native clasts implanted with Radio Frequency Identifier (RFID) tags was used to develop a better understanding of sediment transport directions and magnitudes on the mixed grain-size beach of the Elwha River delta. Using tracer samples selected to match the distribution of the coarse fraction on the beach we find that all grain sizes, up to large cobbles (128-256 mm), were mobile under most measured wave conditions and move in relationship to the direction of the alongshore component of wave energy as estimated by incident breaking wave angles. In locations where the breaking wave is normal to the shoreline we find that tracers move in both alongshore directions with approximately equal frequency. In locations where breaking waves are oblique to the shoreline we find that alongshore transport is more unidirectional and tracers can approach average velocities of 100. m/day under winter wave conditions. We use the tracer cloud to estimate the beach active width, the mobile layer depth and sediment velocity. Our results suggest that, while sediment velocity increases under increased incident wave angles, the active layer depth and width decrease, reducing sediment flux at the site with the more oblique breaking waves. This result is contrary to what is suggested by traditional wave energy transport models of alongshore sediment transport. ?? 2011 Elsevier B.V.
Atmospheric Transport and Mixing linked to Rossby Wave Breaking in GFDL Dynamical Core
NASA Astrophysics Data System (ADS)
Liu, C.; Barnes, E. A.
2015-12-01
Atmospheric transport and mixing plays an important role in the global energy balance and the distribution of health-related chemical constituents. Previous studies suggest a close linkage between large-scale transport and Rossby wave breaking (RWB). In this work, we use the GFDL spectral dynamical core to investigate this relationship and study the response of RWB-related transport in different climate scenarios. In a standard control run, we quantify the contribution of RWB to the total transport and mixing of an idealized tracer. In addition, we divide the contribution further into the two types of RWB - anticyclonic wave breaking (AWB) and cyclonic wave breaking (CWB) -- and contrast their efficiency at transport and mixing. Our results are compared to a previous study in which the transport ability of the two types of RWB is studied for individual baroclinic wave life-cycles. In a series of sensitivity runs, we study the response of RWB-related transport and mixing to various states of the jet streams. The responses of the mean strength, frequency, and the efficiency of RWB-related transport are documented and the implications for the transport and mixing in a warmer climate are discussed.
NASA Astrophysics Data System (ADS)
Fisher, A. W.; Sanford, L. P.; Scully, M. E.
2016-12-01
Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer transitions to a turbulent log layer. The influences of fetch-limited wind waves, density stratification, and surface buoyancy fluxes will also be discussed.
Limiting majoron self-interactions from gravitational wave experiments
NASA Astrophysics Data System (ADS)
Addazi, Andrea; Marcianò, Antonino
2018-01-01
We show how majoron models may be tested/limited in gravitational wave experiments. In particular, the majoron self-interaction potential may induce a first order phase transition, producing gravitational waves from bubble collisions. We dub such a new scenario the violent majoron model, because it would be associated with a violent phase transition in the early Universe. Sphaleron constraints can be avoided if the global U{(1)}B-L is broken at scales lower than the electroweak scale, provided that the B-L spontaneously breaking scale is lower than 10 TeV in order to satisfy the cosmological mass density bound. The possibility of a sub-electroweak phase transition is practically unconstrained by cosmological bounds and it may be detected within the sensitivity of the next generation of gravitational wave experiments: eLISA, DECIGO and BBO. We also comment on its possible detection in the next generation of electron-positron colliders, where majoron production can be observed from the Higgs portals in missing transverse energy channels. Supported by the Shanghai Municipality, through the grant No. KBH1512299, and by Fudan University, through the grant No. JJH1512105
2014-01-01
Fringing reefs play an important role in protecting the coastal area by inducing wave breaking and wave energy dissipation. However, modeling of wave transformation and energy dissipation on this topography is still difficult due to the unique structure. In the present study, two-dimensional laboratory experiments were conducted to investigate the cross-shore variations of wave transformation, setup, and breaking phenomena over an idealized fringing reef with the 1/40 reef slope and to verify the Boussinesq model under monochromatic wave conditions. One-layer and two-layer model configurations of the Boussinesq model were used to figure out the model capability. Both models predicted well (r 2 > 0.8) the cross-shore variation of the wave heights, crests, troughs, and setups when the nonlinearity is not too high (A 0/h 0 < 0.07 in this study). However, as the wave nonlinearity and steepness increase, the one-layer model showed problems in prediction and stability due to the error on the vertical profile of fluid velocity. The results in this study revealed that one-layer model is not suitable in the highly nonlinear wave condition over a fringing reef bathymetry. This data set can contribute to the numerical model verification. PMID:25276853
Lee, Jong-In; Shin, Sungwon; Kim, Young-Taek
2014-01-01
Fringing reefs play an important role in protecting the coastal area by inducing wave breaking and wave energy dissipation. However, modeling of wave transformation and energy dissipation on this topography is still difficult due to the unique structure. In the present study, two-dimensional laboratory experiments were conducted to investigate the cross-shore variations of wave transformation, setup, and breaking phenomena over an idealized fringing reef with the 1/40 reef slope and to verify the Boussinesq model under monochromatic wave conditions. One-layer and two-layer model configurations of the Boussinesq model were used to figure out the model capability. Both models predicted well (r (2) > 0.8) the cross-shore variation of the wave heights, crests, troughs, and setups when the nonlinearity is not too high (A 0/h 0 < 0.07 in this study). However, as the wave nonlinearity and steepness increase, the one-layer model showed problems in prediction and stability due to the error on the vertical profile of fluid velocity. The results in this study revealed that one-layer model is not suitable in the highly nonlinear wave condition over a fringing reef bathymetry. This data set can contribute to the numerical model verification.
3D DNS and LES of Breaking Inertia-Gravity Waves
NASA Astrophysics Data System (ADS)
Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.
2012-04-01
As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.
Saturation amplitude of the f-mode instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastaun, Wolfgang; Willburger, Beatrix; Kokkotas, Kostas D.
2010-11-15
We investigate strong nonlinear damping effects which occur during high amplitude oscillations of neutron stars, and the gravitational waves they produce. For this, we use a general relativistic nonlinear hydrodynamics code in conjunction with a fixed spacetime (Cowling approximation) and a polytropic equation of state (EOS). Gravitational waves are estimated using the quadrupole formula. Our main interest are l=m=2 f modes subject to the CFS (Chandrasekhar, Friedman, Schutz) instability, but we also investigate axisymmetric and quasiradial modes. We study various models to determine the influence of rotation rate and EOS. We find that axisymmetric oscillations at high amplitudes are predominantlymore » damped by shock formation, while the nonaxisymmetric f modes are mainly damped by wave breaking and, for rapidly rotating models, coupling to nonaxisymmetric inertial modes. From the observed nonlinear damping, we derive upper limits for the saturation amplitude of CFS-unstable f modes. Finally, we estimate that the corresponding gravitational waves for an oscillation amplitude at the upper limit should be detectable with the advanced LIGO (Laser Interferometer Gravitational Wave Observatory) and VIRGO interferometers at distances above 10 Mpc. This strongly depends on the stellar model, in particular, on the mode frequency.« less
NASA Astrophysics Data System (ADS)
Mulligan, R. P.; Gomes, E.; McNinch, J.; Brodie, K. L.
2016-02-01
Numerical modelling of the nearshore zone can be computationally intensive due to the complexity of wave breaking, and the need for high temporal and spatial resolution. In this study we apply the SWASH non-hydrostatic wave-flow model that phase-resolves the free surface and fluid motions in the water column at high resolution. The model is forced using observed directional energy spectra, and results are compared to wave observations during moderate storm events. Observations are collected outside the surf zone using acoustic wave and currents sensors, and inside the surf zone over a 100 m transect using high-resolution LIDAR measurements of the sea surface from a sensor mounted on a tower on the beach dune at the Field Research Facility in Duck, NC. The model is applied to four cases with different wave conditions and bathymetry, and used to predict the spatial variability in wave breaking, and correlation between energy dissipation and morphologic features. Model results compare well with observations of spectral evolution outside the surf zone, and with the remotely sensed observations of wave transformation inside the surf zone. The results indicate the importance of nearshore bars, rip-channels, and larger features (major scour depression under the pier following large waves from Hurricane Irene) on the location of wave breaking and alongshore variability in wave energy dissipation.
NASA Astrophysics Data System (ADS)
Hossen, Md. Belal; Roshid, Harun-Or; Ali, M. Zulfikar
2018-05-01
Under inquisition in this paper is a (2 + 1)-dimensional Breaking Soliton equation, which can describe various nonlinear scenarios in fluid dynamics. Using the Bell polynomials, some proficient auxiliary functions are offered to apparently construct its bilinear form and corresponding soliton solutions which are different from the previous literatures. Moreover, a direct method is used to construct its rogue wave and solitary wave solutions using particular auxiliary function with the assist of bilinear formalism. Finally, the interactions between solitary waves and rogue waves are offered with a complete derivation. These results enhance the variety of the dynamics of higher dimensional nonlinear wave fields related to mathematical physics and engineering.
Breaking Kelvin-Helmholtz waves and cloud-top entrainment as revealed by K-band Doppler radar
NASA Technical Reports Server (NTRS)
Martner, Brooks E.; Ralph, F. Martin
1993-01-01
Radars have occasionally detected breaking Kelvin-Helmholtz (KH) waves under clear-air conditions in the atmospheric boundary layer and in the free troposphere. However, very few direct measurements of such waves within clouds have previously been reported and those have not clearly documented wave breaking. In this article, we present some of the most detailed and striking radar observations to date of breaking KH waves within clouds and at cloud top and discuss their relevance to the issue of cloud-top entrainment, which is believed to be important in convective and stratiform clouds. Aircraft observations reported by Stith suggest that vortex-like circulations near cloud top are an entrainment mechanism in cumuliform clouds. Laboratory and modeling studies have examined possibility that KH instability may be responsible for mixing at cloud top, but direct observations have not yet been presented. Preliminary analyses shown here may help fill this gap. The data presented in this paper were obtained during two field projects in 1991 that included observations from the NOAA Wave Propagation Laboratory's K-band Doppler radar (wavelength = 8.7 mm) and special rawinsonde ascents. The sensitivity (-30 dBZ at 10 km range), fine spatial resolution (375-m pulse length and 0.5 degrees beamwidth), velocity measurement precision (5-10 cm s-1), scanning capability, and relative immunity to ground clutter make it sensitive to non-precipitating and weakly precipitating clouds, and make it an excellent instrument to study gravity waves in clouds. In particular, the narrow beam width and short pulse length create scattering volumes that are cylinders 37.5 m long and 45 m (90 m) in diameter at 5 km (10 km) range. These characteristics allow the radar to resolve the detailed structure in breaking KH waves such as have been seen in photographic cloud images.
Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane
2012-01-01
Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).
Modeling of Wave Spectrum and Wave Breaking Statistics Based on Balance Equation
NASA Astrophysics Data System (ADS)
Irisov, V.
2012-12-01
Surface roughness and foam coverage are the parameters determining microwave emissivity of sea surface in a wide range of wind. Existing empirical wave spectra are not associated with wave breaking statistics although physically they are closely related. We propose a model of sea surface based on the balance of three terms: wind input, dissipation, and nonlinear wave-wave interaction. It provides an insight on wave generation, interaction, and dissipation - very important parameters for understanding of wave development under changing oceanic and atmospheric conditions. The wind input term is the best known among all three. For our analysis we assume a wind input term as it was proposed by Plant [1982] and consider modification necessary to do to account for proper interaction of long fast waves with wind. For long gravity waves (longer than 15-30 cm) the dissipation term can be related to the wave breaking with whitecaps, as it was shown by Kudryavtsev et al. [2003], so we assume the cubic dependence of dissipation term on wind. It implies certain limitations on the spectrum shape. The most difficult is to estimate the term describing nonlinear wave-wave interaction. Hasselmann [1962] and Zakharov [1999] developed theory of 4-wave interaction, but the resulting equation requires at least 3-fold integration over wavenumbers at each time step of integration of balance equation, which makes it difficult for direct numerical modeling. It is desirable to use an approximation of wave-wave interaction term, which preserves wave action, energy, and momentum, and can be easily estimated during time integration of balance equation. Zakharov and Pushkarev [1999] proposed the diffusion approximation of the wave interaction term and showed that it can be used for estimate of wave spectrum. We believe their assumption that wave-wave interaction is the dominant factor in forming the wave spectrum does not agree with the observations made by Hwang and Sletten [2008]. Finally we consider modifications of the model equation, which can be done to describe gravity-capillary and capillary waves. An obvious correction is to add viscous dissipation. A little less obvious is a transition from 4-wave to 3-wave interaction. The model allows one to include easily generation of parasitic capillary waves as it was proposed by Kudryavtsev et al. [2003]. A modification of dissipation term can explain an "overshoot" phenomenon observed in JONSWAP spectrum. These examples demonstrate that the proposed model is quite flexible and can be used to account for various physical phenomena. The resulting balance equation is easy to integrate using a personal computer and necessity of its numerical solution is paid by the model flexibility and better physical background compared with empirical spectra. References Hasselmann, K., J. Fluid Mech., 12, pp.481-500, 1962. Hwang, P., and M. Sletten, J. Geophys. Res., 113, doi:10.1029/2007JC004277, 2008. Kudryavtsev, V., et al., J. Geophys. Res., 108 (C3), doi:10.1029/2001JC001003, 2003. Plant, W. J., J. Geophys. Res., vol. 87, pp. 1961-1967, 1982. Zakharov, V., and A. Pushkarev, Nonlinear Processes in Geophysics, 6, pp.1-10, 1999. Zakharov, V., Eur. J. Mech. B/Fluids, 18, pp.327-344, 1999.
Observation of 1-D time dependent non-propagating laser plasma structures using fluid and PIC codes
NASA Astrophysics Data System (ADS)
Verma, Deepa; Bera, Ratan Kumar; Kumar, Atul; Patel, Bhavesh; Das, Amita
2017-12-01
The manuscript reports the observation of time dependent localized and non-propagating structures in the coupled laser plasma system through 1-D fluid and Particle-In-Cell (PIC) simulations. It is reported that such structures form spontaneously as a result of collision amongst certain exact solitonic solutions. They are seen to survive as coherent entities for a long time up to several hundreds of plasma periods. Furthermore, it is shown that such time dependence can also be artificially recreated by significantly disturbing the delicate balance between the radiation and the density fields required for the exact non-propagating solution obtained by Esirkepov et al., JETP 68(1), 36-41 (1998). The ensuing time evolution is an interesting interplay between kinetic and field energies of the system. The electrostatic plasma oscillations are coupled with oscillations in the electromagnetic field. The inhomogeneity of the background and the relativistic nature, however, invariably produces large amplitude density perturbations leading to its wave breaking. In the fluid simulations, the signature of wave breaking can be discerned by a drop in the total energy which evidently gets lost to the grid. The PIC simulations are observed to closely follow the fluid simulations till the point of wave breaking. However, the total energy in the case of PIC simulations is seen to remain conserved throughout the simulations. At the wave breaking, the particles are observed to acquire thermal kinetic energy in the case of PIC. Interestingly, even after wave breaking, compact coherent structures with trapped radiation inside high-density peaks continue to exist both in PIC and fluid simulations. Although the time evolution does not exactly match in the two simulations as it does prior to the process of wave breaking, the time-dependent features exhibited by the remnant structures are characteristically similar.
Carniel, S.; Warner, J.C.; Chiggiato, J.; Sclavo, M.
2009-01-01
An accurate numerical prediction of the oceanic upper layer velocity is a demanding requirement for many applications at sea and is a function of several near-surface processes that need to be incorporated in a numerical model. Among them, we assess the effects of vertical resolution, different vertical mixing parameterization (the so-called Generic Length Scale -GLS- set of k-??, k-??, gen, and the Mellor-Yamada), and surface roughness values on turbulent kinetic energy (k) injection from breaking waves. First, we modified the GLS turbulence closure formulation in the Regional Ocean Modeling System (ROMS) to incorporate the surface flux of turbulent kinetic energy due to wave breaking. Then, we applied the model to idealized test cases, exploring the sensitivity to the above mentioned factors. Last, the model was applied to a realistic situation in the Adriatic Sea driven by numerical meteorological forcings and river discharges. In this case, numerical drifters were released during an intense episode of Bora winds that occurred in mid-February 2003, and their trajectories compared to the displacement of satellite-tracked drifters deployed during the ADRIA02-03 sea-truth campaign. Results indicted that the inclusion of the wave breaking process helps improve the accuracy of the numerical simulations, subject to an increase in the typical value of the surface roughness z0. Specifically, the best performance was obtained using ??CH = 56,000 in the Charnok formula, the wave breaking parameterization activated, k-?? as the turbulence closure model. With these options, the relative error with respect to the average distance of the drifter was about 25% (5.5 km/day). The most sensitive factors in the model were found to be the value of ??CH enhanced with respect to a standard value, followed by the adoption of wave breaking parameterization and the particular turbulence closure model selected. ?? 2009 Elsevier Ltd.
Hydrodynamic modeling of tsunamis from the Currituck landslide
Geist, E.L.; Lynett, P.J.; Chaytor, J.D.
2009-01-01
Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40-50??km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.
The Fate and Impact of Internal Waves in Nearshore Ecosystems
NASA Astrophysics Data System (ADS)
Woodson, C. B.
2018-01-01
Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.
The Fate and Impact of Internal Waves in Nearshore Ecosystems.
Woodson, C B
2018-01-03
Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.
A model study of sediment transport across the shelf break
NASA Astrophysics Data System (ADS)
Marchal, Olivier
2017-04-01
A variety of dynamical processes can contribute to the transport of material (e.g., particulate matter) across the shelf break - the region separating the continental shelf from the continental slope. Among these processes are (i) the reflection of internal waves on the outer shelf and upper slope, and (ii) the instability of hydrographic fronts, roughly aligned with isobaths, that are often present at the shelf break. On the one hand, internal waves reflecting on a sloping boundary can produce bottom shear stresses that are large enough to resuspend non-cohesive sediments into the water column. On the other hand, eddies shed from unstable shelf break fronts can incorporate into their core particle-rich waters from the outer shelf and upper slope, and transport these waters offshore. Here we present numerical experiments with a three-dimensional numerical model of ocean circulation and sediment transport, which illustrate the joint effect of internal waves and eddies on sediment transport across the shelf break. The model is based on the primitive equations and terrain-following coordinates. The model domain is square and idealized, comprising a flat continental shelf, a constant continental slope, and a flat abyssal basin. The model grid has O(1 km) horizontal resolution, so that (sub)mesoscale eddies observed in the vicinity of shelf breaks, such as south of New England, can be represented in detail. Internal waves are excited through the specification of a periodic variation in the across-slope component of velocity at the offshore boundary of the domain, and eddies are generated from the baroclinic instability of a shelf break jet that is initially in strict thermal wind balance. Numerical experiments are conducted that are characterized by (i) different slopes of internal wave characteristics relative to the continental slope, representing sub-critical, critical, and super-critical regimes, and (ii) different values for the dimensionless ratios that emerge from the linear stability analysis of shelf break fronts. Emphasis is placed on the physical conditions that are conducive to the formation and maintenance of bottom and intermediate nepheloid layers - the particle-rich layers that are often observed near oceanic margins in the traces of optical instruments.
Patrick, Megan E.; Lewis, Melissa A.; Lee, Christine M.; Maggs, Jennifer L.
2012-01-01
Motives surrounding alcohol use behavior are important for understanding college student drinking. However, no previous research has addressed how motives for and against drinking during specific events associated with high-risk drinking, such as Spring Break, may differ from motives for and against drinking during the regular semester. Further, we examine the extent to which semester and Spring Break motives are associated with alcohol use, protective behavioral strategies (PBS), and consequences. Participants were college students (N = 261; 55% women) who provided data both immediately prior to (Wave 1) and after (Wave 2) Spring Break. Fun/Social motives for drinking were greater for Spring Break, and Driving motives against drinking were lower for Spring Break, compared to semester drinking. Relax and Image motives for drinking and Physical/Behavioral motives for not drinking during Spring Break did not differ from semester motives. Spring Break motives for and against drinking were associated with total drinks, maximum drinks, PBS, and experienced negative consequences during Spring Break. Students’ specific motives regarding drinking during Spring Break predict high-risk drinking and may be utilized in creating salient event-specific interventions. PMID:23384451
Wave groupiness variations in the nearshore
List, J.H.
1991-01-01
This paper proposes a new definition of the groupiness factor, GF, based on the envelope of the incident-wave time series. It is shown that an envelope-based GF has several important advantages over the SIWEH-based groupiness factor, including objective criteria for determining the accuracy of the envelope function and well-defined numerical limits. Using this new GF, the variability of incident wave groupiness in the field is examined both temporally, in unbroken waves at a fixed location, and spatially, in a cross-shore array through the surf zone. Contrary to previous studies using the SIWEH-based GF, results suggest that incident wave groupiness may not be an independent parameter in unbroken waves; through a wide range of spectral shapes, from swell to storm waves, the groupiness did not vary significantly. As expected, the groupiness decreases rapidly as waves break through the surf zone, although significant wave height variability persists even through a saturated surf zone. The source of this inner surf zone groupiness is not identified; however, this observation implies that models of long wave generation must account for nonsteady radiation stress gradients landward of some narrow zone near the mean breakpoint. ?? 1991.
1990-06-01
interaction and wave breaking. The ocean surface can be modelled as a two-scale or composite surface - 21 - made up of short wind-generated ripples... composite or two-scale rough surface (Barrick and Peake, 1968). For radar wavelengths on the order of a few centimeters, the resonant scatterers are...short wind ripples which ride on top of long gravity waves, and a - 46 - composite model is used to describe the two-scale nature of the sea surface
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Sheng, Jinyu; Hannah, Charles
2017-08-01
This study presents applications of a two-way coupled wave-circulation modelling system over coastal waters, with a special emphasis of performance assessments of two different methods for nonlinear feedback of ocean surface gravity waves on three-dimensional (3D) ocean currents. These two methods are the vortex force (VF) formulation suggested by Bennis et al. (2011) and the latest version of radiation stress (RS) formulation suggested by Mellor (2015). The coupled modelling system is first applied to two idealized test cases of surf-zone scales to validate implementations of these two methods in the coupled wave-circulation system. Model results show that the latest version of RS has difficulties in producing the undertow over the surf zone. The coupled system is then applied to Lunenburg Bay (LB) of Nova Scotia during Hurricane Juan in 2003. The coupled system using both the VF and RS formulations generates much stronger and more realistic 3D circulation in the Bay during Hurricane Juan than the circulation-only model, demonstrating the importance of surface wave forces to the 3D ocean circulation over coastal waters. However, the RS formulation generates some weak unphysical currents outside the wave breaking zone due to a less reasonable representation for the vertical distribution of the RS gradients over a slopping bottom. These weak unphysical currents are significantly magnified in a two-way coupled system when interacting with large surface waves, degrading the model performance in simulating currents at one observation site. Our results demonstrate that the VF formulation with an appropriate parameterization of wave breaking effects is able to produce reasonable results for applications over coastal waters during extreme weather events. The RS formulation requires a complex wave theory rather than the linear wave theory for the approximation of a vertical RS term to improve its performance under both breaking and non-breaking wave conditions.
NASA Astrophysics Data System (ADS)
Froude, Melanie; Alexander, Jan; Cole, Paul; Barclay, Jenni
2014-05-01
On 13-14 October 2012, Tropical Storm Rafael triggered sediment-laden flash floods in the Belham Valley on Montserrat, West Indies. Rainfall was continuous for ~38 hours and intensity peaked at 48 mm/hr. Flow was strongly unsteady, turbulent with sediment concentrations varying up to hyperconcentrated. Time-lapse images captured at >1 frame per second by remote camera overlooking a surveyed valley section show the development of trains of water surface waves at multiple channel locations during different flow stages. Waves grew and diminished in height and remained stationary or migrated upstream. Trains of waves persisted for <5 minutes, until a single wave broke, sometimes initiating the breaking of adjacent waves within the train. Channel-wide surges (bores) propagating downstream with distinct turbulent flow fronts, were observed at irregular intervals during and up to 7 hours after peak stage. These bores are mechanically similar to breaking front tidal bores and arid flood bores, and resulted in a sudden increase in flow depth and velocity. When a bore front came into close proximity (within ~10 m) upstream of a train of water surface waves, the waves appeared to break simultaneously generating a localised surge of water upstream, that was covered by the bore travelling downstream. Those trains in which waves did not break during the passage of a bore temporarily reduced in height. In both cases, water surface waves reformed immediately after the surge in the same location. Deposits from the event, were examined in <4 m deep trenches ~0.5 km downstream of the remote camera. These contained laterally extensive lenticular and sheet-like units comprised of varying admixtures of sand and gravel that are attributed to antidunes, and associated transitions from upper-stage-plane-beds. Some of the structures are organised within concave upward sequences which contain downflow shifts between foreset and backset laminae; interpreted as trough fills from chute-and-pools or water surface wave breaking. At least 90% of the deposit is interpreted upper flow regime origin. The sequence, geometry and lamina-scale texture of the sedimentary structures will be discussed with reference to remote camera images of rapidly varying, unsteady and pulsatory flow behaviour.
ERIC Educational Resources Information Center
Aguilar, Isaac-Cesar; Kagan, David
2013-01-01
The sight of a broken bat in Major League Baseball can produce anything from a humorous dribbler in the infield to a frightening pointed projectile headed for the stands. Bats usually break at the weakest point, typically in the handle. Breaking happens because the wood gets bent beyond the breaking point due to the wave sent down the bat created…
Thermodynamic properties of Dynes superconductors
NASA Astrophysics Data System (ADS)
Herman, František; Hlubina, Richard
2018-01-01
The tunneling density of states in dirty s -wave superconductors is often well described by the phenomenological Dynes formula. Recently we have shown that this formula can be derived, within the coherent potential approximation, for superconductors with simultaneously present pair-conserving and pair-breaking impurity scattering. Here we demonstrate that the theory of such so-called Dynes superconductors is thermodynamically consistent. We calculate the specific heat and critical field of the Dynes superconductors, and we show that their gap parameter, specific heat, critical field, and penetration depth exhibit power-law scaling with temperature in the low-temperature limit. We also show that in the vicinity of a coupling-constant-controlled superconductor to normal metal transition, the Homes law is replaced by a different, pair-breaking-dominated scaling law.
Orbitally shaken shallow fluid layers. I. Regime classification
NASA Astrophysics Data System (ADS)
Alpresa, Paola; Sherwin, Spencer; Weinberg, Peter; van Reeuwijk, Maarten
2018-03-01
Orbital shakers are simple devices that provide mixing, aeration, and shear stress at multiple scales and high throughput. For this reason, they are extensively used in a wide range of applications from protein production to bacterial biofilms and endothelial cell experiments. This study focuses on the behaviour of orbitally shaken shallow fluid layers in cylindrical containers. In order to investigate the behaviour over a wide range of different conditions, a significant number of numerical simulations are carried out under different configuration parameters. We demonstrate that potential theory—despite the relatively low Reynolds number of the system—describes the free-surface amplitude well and the velocity field reasonably well, except when the forcing frequency is close to a natural frequency and resonance occurs. By classifying the simulations into non-breaking, breaking, and breaking with part of the bottom uncovered, it is shown that the onset of wave breaking is well described by Δh/(2R) = 0.7Γ, where Δh is the free-surface amplitude, R is the container radius, and Γ is the container aspect ratio; Δh can be well approximated using the potential theory. This result is in agreement with standard wave breaking theories although the significant inertial forcing causes wave breaking at lower amplitudes.
Gravitational wave from dark sector with dark pion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsumura, Koji; Yamada, Masatoshi; Yamaguchi, Yuya, E-mail: ko2@gauge.scphys.kyoto-u.ac.jp, E-mail: m.yamada@thphys.uni-heidelberg.de, E-mail: yy@particle.sci.hokudai.ac.jp
In this work, we investigate the spectra of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion (π) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the 2π → 2 SM process. For a SIMP scenario, we investigate the 3π → 2π annihilation process of the dark pion as a SIMP using chiralmore » perturbation theory. We find that in the WIMP scenario the gravitational wave background spectra can be observed by future space gravitational wave antennas. On the other hand, when the dark pion is the SIMP dark matter with the constraints for the chiral perturbative limit and pion-pion scattering cross section, the chiral phase transition becomes crossover and then the gravitational waves are not produced.« less
Internal waves and rectification in a linearly stratified fluid
NASA Astrophysics Data System (ADS)
Pérenne, Nicolas; Renouard, Dominique P.
Laboratory experiments were performed in a 13-m diameter rotating tank equipped with a continuous shelf break geometry and a central piston-like plunger. The fluid density was linearly stratified. The amplitude and period of the plunger, the rotation rate of the platform and the stratification are the parameters of the problem. The density fluctuations at six stations above and at mid-depth of the slope, along with dye visualization of the flow, were recorded. A limited set of experiments showed that a barotropic periodical forcing generated a first mode baroclinic wave which initially appears at the slope and propagates offshore. The likely presence of internal energy rays either slightly above, or immediately along the slope, is in agreement with previous analytical, laboratory and selected oceanic observations. In the former case, the stratification was such that the slope flow at mid-depth was supercritical while in the latter case, slope flow at mid-depth was critical. Rotation tended to decrease the amplitude of the generated internal wave. Also, non-linear processes were likely to act upon these waves for their normalized amplitude tended to decrease as the forcing increased (for similar forcing period, rotation rate and stratification). After the internal wave reflected from the plunger reaches the slope, there is a complex non-stationary regime with an occurrence of internal wave breaking in the vicinity of the slope. Thus there was an appearance of localized patches of turbulence and mixing. These events appeared both in dye visualization and in density fluctuations records. The subsequent mixing, or else the combined effect of topographical rectification and mixing, led to the appearance of a distinct Lagrangian transport, localized in the first few centimeters above the slope and oriented so as to leave the shallow waters on the right of its displacement.
Fully three-dimensional direct numerical simulation of a plunging breaker
NASA Astrophysics Data System (ADS)
Lubin, Pierre; Vincent, Stéphane; Caltagirone, Jean-Paul; Abadie, Stéphane
2003-07-01
The scope of this paper is to show the results obtained for simulating three-dimensional breaking waves by solving the Navier-Stokes equations in air and water. The interface tracking is achieved by a Lax-Wendroff TVD scheme (Total Variation Diminishing), which is able to handle interface reconnections. We first present the equations and the numerical methods used in this work. We then proceed to the study of a three-dimensional plunging breaking wave, using initial conditions corresponding to unstable periodic sinusoidal waves of large amplitudes. We compare the results obtained for two simulations, a longshore depth perturbation has been introduced in the solution of the flow equations in order to see the transition from a two-dimensional velocity field to a fully three-dimensional one after plunging. Breaking processes including overturning, splash-up and breaking induced vortex-like motion beneath the surface are presented and discussed. To cite this article: P. Lubin et al., C. R. Mecanique 331 (2003).
NASA Astrophysics Data System (ADS)
Eckermann, S. D.; Broutman, D.; Ma, J.; Doyle, J. D.; Pautet, P. D.; Taylor, M. J.; Bossert, K.; Williams, B. P.; Fritts, D. C.; Smith, R. B.; Kuhl, D.; Hoppel, K.; McCormack, J. P.; Ruston, B. C.; Baker, N. L.; Viner, K.; Whitcomb, T.; Hogan, T. F.; Peng, M.
2016-12-01
The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was an international aircraft-based field program to observe and study the end-to-end dynamics of atmospheric gravity waves from 0-100 km altitude and the effects on atmospheric circulations. On 14 July 2014, aircraft remote-sensing instruments detected large-amplitude gravity-wave oscillations within mesospheric airglow and sodium layers downstream of the Auckland Islands, located 1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event from the surface to the mesosphere. At 0700 UTC when first observations were made, surface flow across the islands' terrain generated linear three-dimensional wavefields that propagated rapidly to ˜78 km altitude, where intense breaking occurred in a narrow layer beneath a zero-wind region at ˜83 km altitude. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wavefields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wavefields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward mean-flow accelerations of ˜350 m s-1 hour-1 and dynamical heating rates of ˜8 K hour-1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter. We also study deep orographic gravity waves from islands during DEEPWAVE more widely using observations from the Atmospheric Infrared Sounder (AIRS) and high-resolution high-altitude numerical weather prediction models.
Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking
NASA Technical Reports Server (NTRS)
Resch, F.; Avellan, F.
1982-01-01
The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.
Generation of Wind Waves in the Persian Gulf: A Numerical Investigation
NASA Astrophysics Data System (ADS)
Liao, Y.; Kaihatu, J. M.
2010-12-01
The Persian Gulf is a long shallow basin located between the Arabian Peninsula and Iran. Wind-wave generation processes in the region are often affected by the shamal, a strong wind caused by the passage of cold fronts over the mountains of Turkey and Kurdistan. This can set up sudden energetic wind seas, hampering marine traffic. It is not immediately clear whether present wind-wave models can predict this intense, short-term growth and evolution under these conditions. Furthermore, few wave measurements or models studies have been performed in this area. In advance of a wind-wave generation experiment to be conducted off the Qatar coast, we performed a climatological study of the wind wave environment in the Persian Gulf. Using the SWAN wave model as a baseline of the state of the art, five years (2004-2008)of wind field model hindcasts from COAMPS are used as forcing.To investigate the sensitivity of the results to bathymetry, the climatological analysis was run twice more, with refraction or wave breaking deactivated, in turn. The results do not show significant differences with and without refraction, which implies the wind-wave process in Persian Gulf is less dominated by the variation of bathymetry. However the results show that a large amount of wave is dissipated by wave breaking. Wide, flat and shallow bathymetry in Persian Gulf results in a long-fetch scenario, particularly for waves arriving from the northwest. It implies that long period wind-generated waves can be fully generated in this region. Wave height is therefore fully grown by the long-fetch condition, so as to lead in higher possibility of wave breaking and energy dissipation.
Self-compression of spatially limited laser pulses in a system of coupled light-guides
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.
2018-04-01
The self-action features of wave packets propagating in a 2D system of equidistantly arranged fibers are studied analytically and numerically on the basis of the discrete nonlinear Schrödinger equation. Self-consistent equations for the characteristic scales of a Gaussian wave packet are derived on the basis of the variational approach, which are proved numerically for powers P < 10 P_cr , slightly exceeding the critical one for self-focusing. At higher powers, the wave beams become filamented, and their amplitude is limited due to the nonlinear breaking of the interaction between neighboring light-guides. This makes it impossible to collect a powerful wave beam in a single light-guide. Variational analysis shows the possibility of the adiabatic self-compression of soliton-like laser pulses in the process of 3D self-focusing on the central light-guide. However, further increase of the field amplitude during self-compression leads to the development of longitudinal modulation instability and the formation of a set of light bullets in the central fiber. In the regime of hollow wave beams, filamentation instability becomes predominant. As a result, it becomes possible to form a set of light bullets in optical fibers located on the ring.
Ten reasons why a thermalized system cannot be described by a many-particle wave function
NASA Astrophysics Data System (ADS)
Drossel, Barbara
2017-05-01
It is widely believed that the underlying reality behind statistical mechanics is a deterministic and unitary time evolution of a many-particle wave function, even though this is in conflict with the irreversible, stochastic nature of statistical mechanics. The usual attempts to resolve this conflict for instance by appealing to decoherence or eigenstate thermalization are riddled with problems. This paper considers theoretical physics of thermalized systems as it is done in practice and shows that all approaches to thermalized systems presuppose in some form limits to linear superposition and deterministic time evolution. These considerations include, among others, the classical limit, extensivity, the concepts of entropy and equilibrium, and symmetry breaking in phase transitions and quantum measurement. As a conclusion, the paper suggests that the irreversibility and stochasticity of statistical mechanics should be taken as a real property of nature. It follows that a gas of a macroscopic number N of atoms in thermal equilibrium is best represented by a collection of N wave packets of a size of the order of the thermal de Broglie wave length, which behave quantum mechanically below this scale but classically sufficiently far beyond this scale. In particular, these wave packets must localize again after scattering events, which requires stochasticity and indicates a connection to the measurement process.
NASA Technical Reports Server (NTRS)
Garcia, R. R.
1986-01-01
The influence of breaking gravity waves on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves. It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the zonal wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.
Influence of internal waves on the dispersion and transport of inclined gravity currents
NASA Astrophysics Data System (ADS)
Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.
2016-02-01
Brine discharge from desalination facilities presents environmental risks, particularly to benthic organisms. High concentrations of salt and chemical additives, which can be toxic to local ecosystems, are typically mitigated by dilution close to the source. Our laboratory experiments investigate how breaking internal tides can help to dilute gravity currents caused by desalination effluents and direct them away from the benthic layer. In laboratory experiments, internal waves at the pycnocline of an ambient stratification were directed towards a sloping shelf, down which ran a gravity current. The breaking internal waves were seen to increase the proportion of the fluid from the gravity current diverted away from the slope into an intrusion along the pycnocline. In a parametric study, increasing the amplitude of the internal wave was seen to increase the amount of dense fluid in the pycnocline intrusion. The amplitude required to divert the gravity current into the intrusion compares well with an analytical theory that equates the incident energy in the internal wave to the potential energy required to dilute the gravity current. These experimental results suggest that sites of breaking internal waves may be good sites for effluent disposal. Effluent diverted into the intrusion avoids the ecologically sensitive benthic layer.
Transfer and dissipation of energy during wave group propagation on a gentle beach slope
NASA Astrophysics Data System (ADS)
Padilla, Enrique M.; Alsina, José M.
2017-08-01
The propagation of bichromatic wave groups over a constant 1:100 beach slope and the influence of the group modulation is presented. The modulation is controlled by varying the group frequency, fg, which is shown to remarkably affect the energy transfer to high and low frequency components. The growth of the high frequency (hf) wave skewness increases when fg decreases. This is explained by nonlinear coupling between the primary frequencies, which results in a larger growth of hf components as fg decreases, causing the hf waves to break earlier. Due to high spatial resolution, wave tracking has provided an accurate measurement of the varying breakpoint. These breaking locations are very well described (R2>0.91) by the wave-height to effective-depth ratio (γ). However, for any given Iribarren number, this γ is shown to increase with fg. Therefore, a modified Iribarren number is proposed to include the grouping structure, leading to a considerable improvement in reproducing the measured γ-values. Within the surf zone, the behavior of the Incident Long Wave also depends on the group modulation. For low fg conditions, the lf wave decays only slightly by transferring energy back to the hf wave components. However, for high fg wave conditions, strong dissipation of low frequency (lf) components occurs close to the shoreline associated with lf wave breaking. This mechanism is explained by the growth of the lf wave height, induced partly by the self-self interaction of fg, and partly by the nonlinear coupling between the primary frequencies and fg.
Phase-breaking effect on polaron transport in organic conjugated polymers
Meng, Ruixuan; Yin, Sun; Zheng, Yujun; ...
2017-06-15
Despite intense investigations and many accepted viewpoints on theory and experiment, the coherent and incoherent carrier transport in organic semiconductors remains an unsettled topic due to the strong electron-phonon coupling. Based on the tight-binding Su-Schrieffer-Heeger (SSH) model combined with a non-adiabatic dynamics method, we study the effect of phase-breaking on polaron transport by introducing a group of phase-breaking factors into π-electron wave-functions in organic conjugated polymers. Two approaches are applied: the modification of the transfer integral and the phase-breaking addition to the wave-function. Within the former, it is found that a single site phase-breaking can trap a polaron. However, withmore » a larger regular phase-breaking a polaron becomes more delocalized and lighter. Additionally, a group of disordered phase-breaking factors can make the polaron disperse in transport process. Within the latter approach, we show that the phase-breaking can render the delocalized state in valence band discrete and the state in the gap more localized. Consequently, the phase-breaking frequency and intensity can reduce the stability of a polaron. Furthermore, the phase-breaking in organic systems is the main factor that degrades the coherent transport and destroys the carrier stability.« less
Phase-breaking effect on polaron transport in organic conjugated polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ruixuan; Yin, Sun; Zheng, Yujun
Despite intense investigations and many accepted viewpoints on theory and experiment, the coherent and incoherent carrier transport in organic semiconductors remains an unsettled topic due to the strong electron-phonon coupling. Based on the tight-binding Su-Schrieffer-Heeger (SSH) model combined with a non-adiabatic dynamics method, we study the effect of phase-breaking on polaron transport by introducing a group of phase-breaking factors into π-electron wave-functions in organic conjugated polymers. Two approaches are applied: the modification of the transfer integral and the phase-breaking addition to the wave-function. Within the former, it is found that a single site phase-breaking can trap a polaron. However, withmore » a larger regular phase-breaking a polaron becomes more delocalized and lighter. Additionally, a group of disordered phase-breaking factors can make the polaron disperse in transport process. Within the latter approach, we show that the phase-breaking can render the delocalized state in valence band discrete and the state in the gap more localized. Consequently, the phase-breaking frequency and intensity can reduce the stability of a polaron. Furthermore, the phase-breaking in organic systems is the main factor that degrades the coherent transport and destroys the carrier stability.« less
Acoustic nonreciprocity in Coriolis mean flow systems.
Naghdi, Masoud; Farzbod, Farhad
2018-01-01
One way to break acoustic reciprocity is to have a moving wave propagation medium. If the acoustic wave vector and the moving fluid velocity are collinear, the wave vector shift caused by the fluid flow can be used to break. In this paper, an alternative approach is investigated in which the fluid velocity enters the differential equation of the system as a cross product term with the wave vector. A circular field where the fluid velocity increases radially has a Coriolis acceleration term. In such a system, the acoustic wave enters from the central wall and exits from the perimeter wall. In this paper, the differential equation is solved numerically and the effect of fluid velocity on the nonreciprocity factor is examined.
NASA Astrophysics Data System (ADS)
Cienfuegos, R.; Duarte, L.; Hernandez, E.
2008-12-01
Charasteristic frequencies of gravity waves generated by wind and propagating towards the coast are usually comprised between 0.05Hz and 1Hz. Nevertheless, lower frequecy waves, in the range of 0.001Hz and 0.05Hz, have been observed in the nearshore zone. Those long waves, termed as infragravity waves, are generated by complex nonlinear mechanisms affecting the propagation of irregular waves up to the coast. The groupiness of an incident random wave field may be responsible for producing a slow modulation of the mean water surface thus generating bound long waves travelling at the group speed. Similarly, a quasi- periodic oscillation of the break-point location, will be accompained by a slow modulation of set-up/set-down in the surf zone and generation and release of long waves. If the primary structure of the carrying incident gravity waves is destroyed (e.g. by breaking), forced long waves can be freely released and even reflected at the coast. Infragravity waves can affect port operation through resonating conditions, or strongly affect sediment transport and beach morphodynamics. In the present study we investigate infragravity wave generation mechanisms both, from experiments and numerical computations. Measurements were conducted at the 70-meter long wave tank, located at the Instituto Nacional de Hidraulica (Chile), prepared with a beach of very mild slope of 1/80 in order to produce large surf zone extensions. A random JONSWAP type wave field (h0=0.52m, fp=0.25Hz, Hmo=0.17m) was generated by a piston wave-maker and measurements of the free surface displacements were performed all over its length at high spatial resolution (0.2m to 1m). Velocity profiles were also measured at four verticals inside the surf zone using an ADV. Correlation maps of wave group envelopes and infragravity waves are computed in order to identify long wave generation and dynamics in the experimental set-up. It appears that both mechanisms (groupiness and break-point oscillation) are clearly present in this experiment while spectral analysis evidences the reorganization of energy density from the original narrow spectrum into the infragravity band. This experiment provides an opportunity to test numerical models that would in principle be able to reproduce infragravity wave generation and dynamics. We compare numerical results (free surface and velocities) produced by a fully nonlinear Boussinesq model including breaking and runup to the experimental data and show that the complex infragravity wave dynamics is adequately reproduced by the model.
NASA Astrophysics Data System (ADS)
Newberger, P. A.; Allen, J. S.
2007-08-01
A three-dimensional primitive-equation model for application to the nearshore surf zone has been developed. This model, an extension of the Princeton Ocean Model (POM), predicts the wave-averaged circulation forced by breaking waves. All of the features of the original POM are retained in the extended model so that applications can be made to regions where breaking waves, stratification, rotation, and wind stress make significant contributions to the flow behavior. In this study we examine the effects of breaking waves and wind stress. The nearshore POM circulation model is embedded within the NearCom community model and is coupled with a wave model. This combined modeling system is applied to the nearshore surf zone off Duck, North Carolina, during the DUCK94 field experiment of October 1994. Model results are compared to observations from this experiment, and the effects of parameter choices are examined. A process study examining the effects of tidal depth variation on depth-dependent wave-averaged currents is carried out. With identical offshore wave conditions and model parameters, the strength and spatial structure of the undertow and of the alongshore current vary systematically with water depth. Some three-dimensional solutions show the development of shear instabilities of the alongshore current. Inclusion of wave-current interactions makes an appreciable difference in the characteristics of the instability.
Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator.
Del Bino, Leonardo; Silver, Jonathan M; Stebbings, Sarah L; Del'Haye, Pascal
2017-02-21
Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors.
Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator
Del Bino, Leonardo; Silver, Jonathan M.; Stebbings, Sarah L.; Del'Haye, Pascal
2017-01-01
Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors. PMID:28220865
The Newton constant and gravitational waves in some vector field adjusting mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santillán, Osvaldo P.; Scornavacche, Marina, E-mail: firenzecita@hotmail.com, E-mail: marina.scorna@hotmail.com
At the present, there exist some Lorentz breaking scenarios which explain the smallness of the cosmological constant at the present era [1]–[2]. An important aspect to analyze is the propagation of gravitational waves and the screening or enhancement of the Newton constant G {sub N} in these models. The problem is that the Lorentz symmetry breaking terms may induce an unacceptable value of the Newton constant G {sub N} or introduce longitudinal modes in the gravitational wave propagation. Furthermore this breaking may spoil the standard dispersion relation ω= ck . In [3] the authors have presented a model suggesting thatmore » the behavior of the gravitational constant is correct for asymptotic times. In the present work, an explicit checking is made and we finally agree with these claims. Furthermore, it is suggested that the gravitational waves are also well behaved for large times. In the process, some new models with the same behavior are obtained, thus enlarging the list of possible adjustment mechanisms.« less
The formation and fate of internal waves in the South China Sea
NASA Astrophysics Data System (ADS)
Alford, Matthew H.; Peacock, Thomas; MacKinnon, Jennifer A.; Nash, Jonathan D.; Buijsman, Maarten C.; Centuroni, Luca R.; Chao, Shenn-Yu; Chang, Ming-Huei; Farmer, David M.; Fringer, Oliver B.; Fu, Ke-Hsien; Gallacher, Patrick C.; Graber, Hans C.; Helfrich, Karl R.; Jachec, Steven M.; Jackson, Christopher R.; Klymak, Jody M.; Ko, Dong S.; Jan, Sen; Johnston, T. M. Shaun; Legg, Sonya; Lee, I.-Huan; Lien, Ren-Chieh; Mercier, Matthieu J.; Moum, James N.; Musgrave, Ruth; Park, Jae-Hun; Pickering, Andrew I.; Pinkel, Robert; Rainville, Luc; Ramp, Steven R.; Rudnick, Daniel L.; Sarkar, Sutanu; Scotti, Alberto; Simmons, Harper L.; St Laurent, Louis C.; Venayagamoorthy, Subhas K.; Wang, Yu-Huai; Wang, Joe; Yang, Yiing J.; Paluszkiewicz, Theresa; (David) Tang, Tswen-Yung
2015-05-01
Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.
The formation and fate of internal waves in the South China Sea.
Alford, Matthew H; Peacock, Thomas; MacKinnon, Jennifer A; Nash, Jonathan D; Buijsman, Maarten C; Centurioni, Luca R; Centuroni, Luca R; Chao, Shenn-Yu; Chang, Ming-Huei; Farmer, David M; Fringer, Oliver B; Fu, Ke-Hsien; Gallacher, Patrick C; Graber, Hans C; Helfrich, Karl R; Jachec, Steven M; Jackson, Christopher R; Klymak, Jody M; Ko, Dong S; Jan, Sen; Johnston, T M Shaun; Legg, Sonya; Lee, I-Huan; Lien, Ren-Chieh; Mercier, Matthieu J; Moum, James N; Musgrave, Ruth; Park, Jae-Hun; Pickering, Andrew I; Pinkel, Robert; Rainville, Luc; Ramp, Steven R; Rudnick, Daniel L; Sarkar, Sutanu; Scotti, Alberto; Simmons, Harper L; St Laurent, Louis C; Venayagamoorthy, Subhas K; Wang, Yu-Huai; Wang, Joe; Yang, Yiing J; Paluszkiewicz, Theresa; Tang, Tswen-Yung David
2015-05-07
Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.
NASA Astrophysics Data System (ADS)
Heale, C. J.; Bossert, K.; Snively, J. B.; Fritts, D. C.; Pautet, P.-D.; Taylor, M. J.
2017-01-01
A 2-D nonlinear compressible model is used to simulate a large-amplitude, multiscale mountain wave event over Mount Cook, NZ, observed as part of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign and to investigate its observable signatures in the hydroxyl (OH) layer. The campaign observed the presence of a λx=200 km mountain wave as part of the 22nd research flight with amplitudes of >20 K in the upper stratosphere that decayed rapidly at airglow heights. Advanced Mesospheric Temperature Mapper (AMTM) showed the presence of small-scale (25-28 km) waves within the warm phase of the large mountain wave. The simulation results show rapid breaking above 70 km altitude, with the preferential formation of almost-stationary vortical instabilities within the warm phase front of the mountain wave. An OH airglow model is used to identify the presence of small-scale wave-like structures generated in situ by the breaking of the mountain wave that are consistent with those seen in the observations. While it is easy to interpret these feature as waves in OH airglow data, a considerable fraction of the features are in fact instabilities and vortex structures. Simulations suggest that a combination of a large westward perturbation velocity and shear, in combination with strong perturbation temperature gradients, causes both dynamic and convective instability conditions to be met particularly where the wave wind is maximized and the temperature gradient is simultaneously minimized. This leads to the inevitable breaking and subsequent generation of smaller-scale waves and instabilities which appear most prominent within the warm phase front of the mountain wave.
Breaking phase focused wave group loads on offshore wind turbine monopiles
NASA Astrophysics Data System (ADS)
Ghadirian, A.; Bredmose, H.; Dixen, M.
2016-09-01
The current method for calculating extreme wave loads on offshore wind turbine structures is based on engineering models for non-breaking regular waves. The present article has the aim of validating previously developed models at DTU, namely the OceanWave3D potential flow wave model and a coupled OceanWave3D-OpenFOAM solver, against measurements of focused wave group impacts on a monopile. The focused 2D and 3D wave groups are reproduced and the free surface elevation and the in-line forces are compared to the experimental results. In addition, the pressure distribution on the monopile is examined at the time of maximum force and discussed in terms of shape and magnitude. Relative pressure time series are also compared between the simulations and experiments and detailed pressure fields for a 2D and 3D impact are discussed in terms of impact type. In general a good match for free surface elevation, in-line force and wave-induced pressures is found.
Synoptic Formation of Double Tropopauses
NASA Astrophysics Data System (ADS)
Liu, Chengji; Barnes, Elizabeth
2018-01-01
Double tropopauses are ubiquitous in the midlatitude winter hemisphere and represent the vertical stacking of two stable tropopause layers separated by a less stable layer. By analyzing COSMIC GPS data, reanalysis, and eddy life cycle simulations, we demonstrate that they often occur during Rossby wave breaking and act to increase the stratosphere-to-troposphere exchange of mass. We further investigate the adiabatic formation of double tropopauses and propose two mechanisms by which they can occur. The first mechanism operates at the tropopause break in the subtropics where the higher tropical tropopause sits on one side of the break and the lower extratropical tropopause sits on the other. The double tropopauses are then formed by differential meridional advection of the higher and lower tropopauses on the two sides of the tropopause break. We show that anticyclonic wave breaking can form double tropopauses mainly by providing stronger poleward advection of the higher tropopause in its poleward lobe. Cyclonic wave breaking mainly forms double tropopauses by providing stronger equatorward advection of the lower tropopause in its equatorward lobe. We demonstrate in the COSMIC GPS data and reanalysis that about half of the double tropopauses in the Northern Hemisphere winter can be directly attributed to such differential advection. For the second mechanism, adiabatic destabilization of the air above the tropopause contributes to the formation of a double tropopause. In this case, a tropopause inversion layer is necessary for this destabilization to result in a double tropopause.
A Microscopic View of Oil Slick Break-Up and Emulsion Formation in Breaking Waves
NASA Astrophysics Data System (ADS)
Law, J.; Shahrokhi, H.; Shaw, J. M.
1996-11-01
The hydrodynamic behaviour of oil spills in breaking waves determines the appropriateness and effectiveness of remedial measures during clean-up operations. Oil slicks either disperse as fine drops or form water in oil emulsions when exposed to breaking waves. However, there is little agreement with respect to the controlling variables or mechanisms for emulsification or dispersion and predictions are unreliable. For example, predicted energy dissipation rates in breaking waves are too low to account for the drop sizes encountered experimentally[1]. In this paper, we assess the impact of hydrodynamics and physical properties on the formation of dispersions or emulsions. The maximum stable drop size for dispersions arising from oil slicks and water in oil emulsions are shown to be controlled by Raleigh-Taylor instability or the prevalent local shear stress. Data from four experimental studies[2-5], with a broad range of physical properties were fitted quantitatively. As high shear events are intermittent, stable water in oil emulsions can be formed by dispersion inversion near the water air interface or by water entrained by gas bubbles passing through oil slicks. 1) Li & Garrett, 19th AMOP, Calgary AB, 1, 185-198 (1996). 2) Lin et al., Report CG-D-54-78, U.S. Coast Guard, Washington D.C. (1978). 3) Buist, MASc Thesis, University of Toronto (1979). 4) Wallace et al., 9th AMOP, Edmonton AB, 2, 421-429, June 10-12 (1986). 5) Ross Environmental Research Ltd., Ottawa ON, Report EE-96, (1987).
Detecting Lorentz Violations with Gravitational Waves From Black Hole Binaries
NASA Astrophysics Data System (ADS)
Sotiriou, Thomas P.
2018-01-01
Gravitational wave observations have been used to test Lorentz symmetry by looking for dispersive effects that are caused by higher order corrections to the dispersion relation. In this Letter I argue on general grounds that, when such corrections are present, there will also be a scalar excitation. Hence, a smoking-gun observation of Lorentz symmetry breaking would be the direct detection of scalar waves that travel at a speed other than the speed of the standard gravitational wave polarizations or the speed of light. Interestingly, in known Lorentz-breaking gravity theories the difference between the speeds of scalar and tensor waves is virtually unconstrained, whereas the difference between the latter and the speed of light is already severely constrained by the coincident detection of gravitational waves and gamma rays from a binary neutron star merger.
Non-Hydrostatic Modelling of Waves and Currents over Subtle Bathymetric Features
NASA Astrophysics Data System (ADS)
Gomes, E.; Mulligan, R. P.; McNinch, J.
2014-12-01
Localized areas with high rates of shoreline erosion on beaches, referred to as erosional hotspots, can occur near clusters of relict shore-oblique sandbars. Wave transformation and wave-driven currents over these morphological features could provide an understanding of the hydrodynamic-morphologic coupling mechanism that connects them to the occurrence of erosional hotspots. To investigate this, we use the non-hydrostatic SWASH model that phase-resolves the free surface and fluid motions throughout the water column, allowing for high resolution of wave propagation and breaking processes. In this study we apply a coupled system of nested models including SWAN over a large domain of the North Carolina shelf with smaller nested SWASH domains in areas of interest to determine the hydrodynamic processes occurring over shore oblique bars. In this presentation we focus on a high resolution grid (10 vertical layers, 10 m horizontal resolution) applied to the Duck region with model validation from acoustic wave and current data, and observations from the Coastal Lidar And Radar Imaging System (CLARIS). By altering the bathymetry input for each model run based on bathymetric surveys and comparing the predicted and observed wave heights and current profiles, the effects of subtle bathymetric perturbations have on wave refraction, wave breaking, surf zone currents and vorticity are investigated. The ability to predict wave breaking and hydrodynamics with a non-hydrostatic model may improve our understanding of surf zone dynamics in relation to morphologic conditions.
Characterizing Droplet Formation from Non-Linear Slosh in a Propellant Tank
NASA Technical Reports Server (NTRS)
Brodnick, Jacob; Yang, Hong; West, Jeffrey
2015-01-01
The Fluid Dynamics Branch (ER42) at the Marshall Space Flight Center (MSFC) was tasked with characterizing the formation and evolution of liquid droplets resulting from nonlinear propellant slosh in a storage tank. Lateral excitation of propellant tanks can produce high amplitude nonlinear slosh waves through large amplitude excitations and or excitation frequencies near a resonance frequency of the tank. The high amplitude slosh waves become breaking waves upon attaining a certain amplitude or encountering a contracting geometry such as the upper dome section of a spherical tank. Inherent perturbations in the thinning regions of breaking waves result in alternating regions of high and low pressure within the fluid. Droplets form once the force from the local pressure differential becomes larger than the force maintaining the fluid interface shape due to surface tension. Droplets released from breaking waves in a pressurized tank may lead to ullage collapse given the appropriate conditions due to the increased liquid surface area and thus heat transfer between the fluids. The goal of this project is to create an engineering model that describes droplet formation as a function of propellant slosh for use in the evaluation of ullage collapse during a sloshing event. The Volume of Fluid (VOF) model in the production level Computational Fluid Dynamics (CFD) code Loci-Stream was used to predict droplet formation from breaking waves with realistic surface tension characteristics. Various excitation frequencies and amplitudes were investigated at multiple fill levels for a single storage tank to create the engineering model of droplet formation from lateral propellant slosh.
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-08-01
Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.
NASA Astrophysics Data System (ADS)
Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.
2017-10-01
A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.
Imaging across the interface of small-scale breaking waves
NASA Astrophysics Data System (ADS)
Techet, Alexandra H.; Belden, Jesse L.
2007-11-01
Flow characteristics on both the air and water side of small scale spilling and plunging waves are investigated using fully time-resolved particle image velocimetry (PIV). PIV at 1000 frames per second (fps) is used to capture the flow field in both the air and water for waves generated by shoaling. Reynolds number of the waves is on the order of Re = 9x10^4 to 2x10^6, where Re = ρ√g 3̂μ, ρ is fluid density, μ is fluid dynamic viscosity, g is gravity, and λ is the characteristic wavelength of the breaking wave before breaking. Isopropyl alcohol is mixed with the distilled water in the tank to reduce surface tension and thus achieve plunging breakers on this scale. Flow in the water is seeded using conventional silver-coated hollow glass spheres, whereas the quiescent air side (i.e. no wind) is seeded using micro-air balloons with high stokes drag and thus long settling times. Imaging of both the air and water are performed simultaneously and advanced image processing is performed to determine the water surface location and to avoid surface tracking during PIV processing. Repeatable, coherent vortical structures are revealed on the air-side of the waves and are considered mechanisms for energy transfer across the interface.
Investigation of Surface Waves in Deep and Shallow Water using Coherent Radars at Grazing Incidence
NASA Astrophysics Data System (ADS)
Buckley, M.; Horstmann, J.; Carrasco, R.; Seemann, J.; Stresser, M.
2016-02-01
Coherent microwave radars operating at X-band near grazing incidence are utilized to measure the backscatter intensity and Doppler velocity from the small-scale surface roughness of the ocean. The radar backscatter is dependent on the wind and strongly modulated by the surface waves and therefore enables to retrieve the surface wind as well as surface waves. The radar measured Doppler velocities are also modulated by contributions from the wind, current and waves and allow getting additional information on these parameters. In addition coherent marine radars allow to observe breaking waves, which lead to a increase in radar backscatter as well as a strong change of the Doppler speed.Within this presentation we will introduce and validate new methods to measure spectral wave properties such as wave directions, periods and significant wave height from coherent marine radars. The methods have been applied in deep and shallow water and validated to measurements of directional wave riders as well as an Acoustic Wave and Current Profiler. These comparisons show an overall excellent performance of coherent radars for the retrieval of spectral wave properties (e.g. Hs rms of 0.2 m). Furthermore, new methodologies will be presented that enable to observe and quantify wave breaking in deep water as well as in the littoral zone. The above mentioned methods have been applied to investigate the influence of Offshore Wind Farms (OWF) on the wave field with respect to the spectral properties as well as the amount of wave breaking. We will present the results obtained during a cruise in May 2015 within and around the OWF Dantysk in the German Bight of the North Sea, which consist of eighty 3.5 MW wind turbines. In addition we will present our initial results on the investigation of wave dissipation in the littoral zone at the coast of the island Sylt using marine radars, pressure gauges as well as directional wave riders.
Laboratory Studies of Sea-Ice-Wave Interactions
NASA Astrophysics Data System (ADS)
Monty, J.; Meylan, M. H.; Babanin, A. V.; Toffoli, A.; Bennetts, L.
2016-12-01
A world-first facility for studying the Marginal Ice Zone has been constructed in the Michell Hydrodynamics Laboratory at the University of Melbourne. A 14m long wave tank (0.75m wide, 0.6m deep) resides in a freezer, where air temperature can be controlled down to -15C. This permits the freezing of the water surface. Large stainless steel ice-making trays (up to 4 m long) are also available to create ice of desired thickness and microstructure, which can be lowered onto the water surface. A computer controlled wave generator is capable of creating waves of any desired form. The temperature of the water in the tank can also be controlled between 2 and 30C. The tank frame is constructed of marine-treated wood and the entire tank is glass and acrylic, permitting the use of corrosive fluids, such as salt water. Here we present the first laboratory experiments of break-up of a controlled thickness, fresh water ice sheet impacted by regular and JONSWAP spectrum surface waves. The geometry of the resultant ice-floes is measured with high-resolution, time-resolved imaging, providing the crucial data of floe size distribution. Initial observations show that, in the case of high steepness waves, the primary mechanisms of ice break-up at the ice edge are overwash and rafting, both of which put weight on the ice interior to the ice-water interface. This additional weight (and impact in the case of rafting) breaks more ice, which allows overwash and rafting deeper into the ice sheet, breaking more ice and so on. For lower steepness waves, overwash and rafting are still present but far less significant. Finally, results of vertical ice movement using laser height gauges will be presented showing the attenuation of waves into an ice sheet and through a pack of ice floes. These results are compared with field data and theory available (e.g. Squire & Moore, Nature, 1980 and Kohout et al., Nature, 2014).
Laboratory modeling of edge wave generation over a plane beach by breaking waves
NASA Astrophysics Data System (ADS)
Abcha, Nizar; Ezersky, Alexander; Pelinovsky, Efim
2015-04-01
Edge waves play an important role in coastal hydrodynamics: in sediment transport, in formation of coastline structure and coastal bottom topography. Investigation of physical mechanisms leading to the edge waves generation allows us to determine their effect on the characteristics of spatially periodic patterns like crescent submarine bars and cusps observed in the coastal zone. In the present paper we investigate parametric excitation of edge wave with frequency two times less than the frequency of surface wave propagating perpendicular to the beach. Such mechanism of edge wave generation has been studied previously in a large number of papers using the assumption of non-breaking waves. This assumption was used in theoretical calculations and such conditions were created in laboratory experiments. In the natural conditions, the wave breaking is typical when edge waves are generated at sea beach. We study features of such processes in laboratory experiments. Experiments were performed in the wave flume of the Laboratory of Continental and Coast Morphodynamics (M2C), Caen. The flume is equipment with a wave maker controlled by computer. To model a plane beach, a PVC plate is placed at small angle to the horizontal bottom. Several resistive probes were used to measure characteristics of waves: one of them was used to measure free surface displacement near the wave maker and two probes were glued on the inclined plate. These probes allowed us to measure run-up due to parametrically excited edge waves. Run-up height is determined by processing a movie shot by high-speed camera. Sub-harmonic generation of standing edge waves is observed for definite control parameters: edge waves represent themselves a spatial mode with wavelength equal to double width of the flume; the frequency of edge wave is equal to half of surface wave frequency. Appearance of sub-harmonic mode instability is studied using probes and movie processing. The dependence of edge wave exponential growth rate index on the amplitude of surface wave is found. On the plane of parameters (amplitude - frequency) of surface wave we have found a region corresponding parametric instability leading to excitation of edge waves. It is shown that for small super criticalities, the amplitude of edge wave grows with amplitude of surface wave. For large amplitude of surface wave, wave breaking appears and parametric instability is suppressed. Such suppression of instability is caused by increasing of turbulent viscosity in near shore zone. It was shown that parametric excitation of edge wave can increase significantly (up to two times) the maximal run-up. Theoretical model is developed to explain suppression of instability due to turbulent viscosity. This theoretical model is based on nonlinear mode amplitude equation including terms responsible for parametric forcing, frequency detuning, nonlinear detuning, linear and nonlinear edge wave damping. Dependence of coefficients on turbulent viscosity is discussed.
Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering
NASA Astrophysics Data System (ADS)
Tsakmakidis, K. L.; Shen, L.; Schulz, S. A.; Zheng, X.; Upham, J.; Deng, X.; Altug, H.; Vakakis, A. F.; Boyd, R. W.
2017-06-01
A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δt inversely proportional to the bandwidth (Δt·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this “fundamental” limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance.
Dynamics of Scroll Wave in a Three-Dimensional System with Changing Gradient.
Yuan, Xiao-Ping; Chen, Jiang-Xing; Zhao, Ye-Hua; Liu, Gui-Quan; Ying, He-Ping
2016-01-01
The dynamics of a scroll wave in an excitable medium with gradient excitability is studied in detail. Three parameter regimes can be distinguished by the degree of gradient. For a small gradient, the system reaches a simple rotating synchronization. In this regime, the rigid rotating velocity of spiral waves is maximal in the layers with the highest filament twist. As the excitability gradient increases, the scroll wave evolutes into a meandering synchronous state. This transition is accompanied by a variation in twisting rate. Filament twisting may prevent the breakup of spiral waves in the bottom layers with a low excitability with which a spiral breaks in a 2D medium. When the gradient is large enough, the twisted filament breaks up, which results in a semi-turbulent state where the lower part is turbulent while the upper part contains a scroll wave with a low twisting filament.
Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering.
Chen, Ji; Li, Tao; Wang, Shuming; Zhu, Shining
2017-08-09
Thanks to the superiority in controlling the optical wave fronts, plasmonic nanostructures have led to various striking applications, among which metasurface holograms have been well developed and endowed with strong multiplexing capability. Here, we report a new design of multiplexed plasmonic hologram, which allows for reconstruction of multiple holographic images in free space by scatterings of surface plasmon polariton (SPP) waves in different propagation directions. Besides, the scattered polarization states can be further modulated by arranging the orientations of nanoscatterers. By incorporation of the SPP propagation and polarized scattering, a 4-fold hologram with low crosstalk is successfully demonstrated, which breaks the limitation of only two orthogonal states in conventional polarization multiplexers. Moreover, our design using the near-field SPP as reference wave holds the advantage for compact integration. This holographic approach is expected to inspire new photonic designs with enhanced information capacity and integratability.
Acquisition of Inertia by a Moving Crack
NASA Astrophysics Data System (ADS)
Goldman, Tamar; Livne, Ariel; Fineberg, Jay
2010-03-01
We experimentally investigate the dynamics of “simple” tensile cracks. Within an effectively infinite medium, a crack’s dynamics perfectly correspond to inertialess behavior predicted by linear elastic fracture mechanics. Once a crack interacts with waves that it generated at earlier times, this description breaks down. Cracks then acquire inertia and sluggishly accelerate. Crack inertia increases with crack speed v and diverges as v approaches its limiting value. We show that these dynamics are in excellent accord with an equation of motion derived in the limit of an infinite strip [M. Marder, Phys. Rev. Lett. 66, 2484 (1991)PRLTAO0031-900710.1103/PhysRevLett.66.2484].
2013-09-01
wave breaking (NWB) and eight wave breaking (WB) storms are shown...studies, and it follows that the wind storm characteristics are likely more three dimensional as well. For the purposes of this study, a severe DSWS is...regularly using the HWAS network at USAFA since its installation in 2004. A careful examination of these events reveals downslope storms that are
Verification and Validation of the Coastal Modeling System. Report 3: CMS-Flow: Hydrodynamics
2011-12-01
Jansen (1978) Spectrum TMA Directional spreading distribution Cosine Power Directional spreading parameter γ 3.3 Bottom friction Off (default...Ramp duration 3 hr The wave breaking formula applied was Battjes and Jansen (1978) because it is the recommended wave breaking formula when using...Li, Z.H., K.D. Nguyen , J.C. Brun-Cottan and J.M. Martin. 1994. Numerical simulation of the turbidity maximum transport in the Gironde Estuary (France
A Jet Break in the X-ray Light Curve of Short GRB 111020A: Implications for Energetics and Rates
NASA Technical Reports Server (NTRS)
Fong, W.; Berger, E.; Margutti, R.; Zauderer, B. A.; Troja, E.; Czekala, I.; Chornock, R.; Gehrels, N.; Sakamoto, T.; Fox, D. B.;
2012-01-01
We present broadband observations of the afterglow and environment of the short GRB 111020A. An extensive X-ray light curve from Swift/XRT, XMM-Newton, and Chandra, spanning approx.100 s to 10 days after the burst, reveals a significant break at (delta)t approx. = 2 days with pre- and post-break decline rates of (alpha)X,1 approx. = -0.78 and (alpha)X,2 < or approx. 1.7, respectively. Interpreted as a jet break, we infer a collimated outflow with an opening angle of (theta)j approx. = 3deg - 8deg. The resulting beaming-corrected gamma-ray (10-1000 keV band) and blast-wave kinetic energies are (2-3) x 10(exp 48) erg and (0.3-2) x 10(exp 49) erg, respectively, with the range depending on the unknown redshift of the burst. We report a radio afterglow limit of <39 micro-Jy (3(sigma)) from Expanded Very Large Array observations that, along with our finding that v(sub c) < v(sub X), constrains the circumburst density to n(sub 0) approx.0.01 0.1/cu cm. Optical observations provide an afterglow limit of i > or approx.24.4 mag at 18 hr after the burst and reveal a potential host galaxy with i approx. = 24.3 mag. The subarcsecond localization from Chandra provides a precise offset of 0".80+/-0".11 (1(sigma))from this galaxy corresponding to an offset of 5.7 kpc for z = 0.5-1.5. We find a high excess neutral hydrogen column density of (7.5+/-2.0) x 10(exp 21)/sq cm (z = 0). Our observations demonstrate that a growing fraction of short gamma-ray bursts (GRBs) are collimated, which may lead to a true event rate of > or approx.100-1000 Gpc(sup -3)/yr, in good agreement with the NS-NS merger rate of approx. = 200-3000 Gpc(sup -3)/ yr. This consistency is promising for coincident short GRB-gravitational wave searches in the forthcoming era of Advanced LIGO/VIRGO.
NASA Astrophysics Data System (ADS)
Wienkers, A. F.; Ogilvie, G. I.
2018-07-01
Non-linear evolution of the parametric instability of inertial waves inherent to eccentric discs is studied by way of a new local numerical model. Mode coupling of tidal deformation with the disc eccentricity is known to produce exponentially growing eccentricities at certain mean-motion resonances. However, the details of an efficient saturation mechanism balancing this growth still are not fully understood. This paper develops a local numerical model for an eccentric quasi-axisymmetric shearing box which generalizes the often-used Cartesian shearing box model. The numerical method is an overall second-order well-balanced finite volume method which maintains the stratified and oscillatory steady-state solution by construction. This implementation is employed to study the non-linear outcome of the parametric instability in eccentric discs with vertical structure. Stratification is found to constrain the perturbation energy near the mid-plane and localize the effective region of inertial wave breaking that sources turbulence. A saturated marginally sonic turbulent state results from the non-linear breaking of inertial waves and is subsequently unstable to large-scale axisymmetric zonal flow structures. This resulting limit-cycle behaviour reduces access to the eccentric energy source and prevents substantial transport of angular momentum radially through the disc. Still, the saturation of this parametric instability of inertial waves is shown to damp eccentricity on a time-scale of a thousand orbital periods. It may thus be a promising mechanism for intermittently regaining balance with the exponential growth of eccentricity from the eccentric Lindblad resonances and may also help explain the occurrence of 'bursty' dynamics such as the superhump phenomenon.
Spontaneous Wave Generation from Submesoscale Fronts and Filaments
NASA Astrophysics Data System (ADS)
Shakespeare, C. J.; Hogg, A.
2016-02-01
Submesoscale features such as eddies, fronts, jets and filaments can be significant sources of spontaneous wave generation at the ocean surface. Unlike near-inertial waves forced by winds, these spontaneous waves are typically of higher frequency and can propagate through the thermocline, whereupon they break and drive mixing in the ocean interior. Here we investigate the spontaneous generation, propagation and subsequent breaking of these waves using a combination of theory and submesoscale resolving numerical models. The mechanism of generation is nearly identical to that of lee waves where flow is deflected over a rigid obstacle on the sea floor. Here, very sharp fronts and filaments of order 100m width moving in the submesoscale surface flow generate "surface lee waves" by presenting an obstacle to the surrounding stratified fluid. Using our numerical model we quantify the net downward wave energy flux from the surface, and where it is dissipated in the water column. Our results suggest an alternative to the classical paradigm where the energy associated with mixing in the ocean interior is sourced from bottom-generated lee waves.
Urban, Aleš; Hanzlíková, Hana; Kyselý, Jan; Plavcová, Eva
2017-12-13
This study aimed to assess the impacts of heat waves during the summer of 2015 on mortality in the Czech Republic and to compare them with those of heat waves back to the previous record-breaking summer of 1994. We analyzed daily natural-cause mortality across the country's entire population. A mortality baseline was determined using generalized additive models adjusted for long-term trends, seasonal and weekly cycles, and identified heat waves. Mortality deviations from the baseline were calculated to quantify excess mortality during heat waves, defined as periods of at least three consecutive days with mean daily temperature higher than the 95th percentile of annual distribution. The summer of 2015 was record-breaking in the total duration of heat waves as well as their total heat load. Consequently, the impact of the major heat wave in 2015 on the increase in excess mortality relative to the baseline was greater than during the previous record-breaking heat wave in 1994 (265% vs. 240%). Excess mortality was comparable among the younger age group (0-64 years) and the elderly (65+ years) in the 1994 major heat wave while it was significantly larger among the elderly in 2015. The results suggest that the total heat load of a heat wave needs to be considered when assessing its impact on mortality, as the cumulative excess heat factor explains the magnitude of excess mortality during a heat wave better than other characteristics such as duration or average daily mean temperature during the heat wave. Comparison of the mortality impacts of the 2015 and 1994 major heat waves suggests that the recently reported decline in overall heat-related mortality in Central Europe has abated and simple extrapolation of the trend would lead to biased conclusions even for the near future. Further research is needed toward understanding the additional mitigation measures required to prevent heat-related mortality in the Czech Republic and elsewhere.
Urban, Aleš; Hanzlíková, Hana; Kyselý, Jan; Plavcová, Eva
2017-01-01
This study aimed to assess the impacts of heat waves during the summer of 2015 on mortality in the Czech Republic and to compare them with those of heat waves back to the previous record-breaking summer of 1994. We analyzed daily natural-cause mortality across the country’s entire population. A mortality baseline was determined using generalized additive models adjusted for long-term trends, seasonal and weekly cycles, and identified heat waves. Mortality deviations from the baseline were calculated to quantify excess mortality during heat waves, defined as periods of at least three consecutive days with mean daily temperature higher than the 95th percentile of annual distribution. The summer of 2015 was record-breaking in the total duration of heat waves as well as their total heat load. Consequently, the impact of the major heat wave in 2015 on the increase in excess mortality relative to the baseline was greater than during the previous record-breaking heat wave in 1994 (265% vs. 240%). Excess mortality was comparable among the younger age group (0–64 years) and the elderly (65+ years) in the 1994 major heat wave while it was significantly larger among the elderly in 2015. The results suggest that the total heat load of a heat wave needs to be considered when assessing its impact on mortality, as the cumulative excess heat factor explains the magnitude of excess mortality during a heat wave better than other characteristics such as duration or average daily mean temperature during the heat wave. Comparison of the mortality impacts of the 2015 and 1994 major heat waves suggests that the recently reported decline in overall heat-related mortality in Central Europe has abated and simple extrapolation of the trend would lead to biased conclusions even for the near future. Further research is needed toward understanding the additional mitigation measures required to prevent heat-related mortality in the Czech Republic and elsewhere. PMID:29236040
Modeling Water Waves with Smoothed Particle Hydrodynamics
2013-09-30
SPH Model for Water Waves and Other Free Surface Flows ...Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes...proving to be a competent modeling scheme for free surface flows in three dimensions including the complex flows of the surf zone. As the GPU
Wave-Breaking Turbulence in the Ocean Surface Layer
2016-06-01
bubbles may be important, both to the process of energy dissipation and to the quality of acoustic Doppler data, especially during rough conditions...energy beneath a breaking wave. For the roughest conditions in this dataset (20ms21 winds), bubbles and ‘‘spindrift’’ (spraying foam ) may become...to occur at the upper end of this dataset (U10 5 20ms 21). The pulse-coherent acoustic Doppler methods used on board the SWIFTs are not capable of
Transformation of Waves Across the Surf Zone.
1981-03-01
Kuo is more realis- tic but still results in a sharp cut-off of the distribution at the breaking heights. 5. Goda Distribution Goda (1975) derived a...J.I., "Probabilities of Breaking Wave Characteris- tics ," Proc. 12th Coastal Engineering Conf., pp. 399- 412, 1970. Chakrabarty, S.K. and R.P. Cooley...Spring, MD 20910 21. Director 2 Instituto Oceanografico de la Armada Guayaquil, Ecuador 22. Director de Educacion de la Armada Comandancia General de
Spontaneous symmetry breaking in quasi one dimension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satpathi, Urbashi, E-mail: urbashi@bose.res.in; Deo, P. Singha
2015-06-24
Electronic charge and spin separation leading to charge density wave and spin density wave is well established in one dimension in the presence and absence of Coulomb interaction. We start from quasi one dimension and show the possibility of such a transition in quasi one dimension as well as in two dimensions by going to a regime where it can be shown for electrons that just interact via Fermi statistics. Such density waves arise due to internal symmetry breaking in a many fermion quantum system. We can extend this result to very wide rings with infinitely many electrons including Coulombmore » interaction.« less
Nanthakumar, Kumaraswamy; Jalife, José; Massé, Stéphane; Downar, Eugene; Pop, Mihaela; Asta, John; Ross, Heather; Rao, Vivek; Mironov, Sergey; Sevaptsidis, Elias; Rogers, Jack; Wright, Graham; Dhopeshwarkar, Rajesh
2007-07-01
Our objective was to establish a novel model for the study of ventricular fibrillation (VF) in humans. We adopted the established techniques of optical mapping to human ventricles for the first time to determine whether human VF is the result of wave breaks and singularity point formation and is maintained by high-frequency rotors and fibrillatory conduction. We describe the technique of acquiring optical signals in human hearts during VF, their characteristics, and the feasibility of possible analyses that could be performed to elucidate mechanisms of human VF. We used explanted hearts from five cardiomyopathic patients who underwent transplantation. The hearts were Langendorff perfused with Tyrode solution (95% O(2)-5% CO(2)), and the potentiometric dye di-4-ANEPPS was injected as a bolus into the coronary circulation. Fluorescence was excited at 531 +/- 20 nm with a 150-W halogen light source; the emission signal was long-pass filtered at 610 nm and recorded with a mapping camera. Fractional change of fluorescence varied between 2% and 12%. Average signal-to-noise ratio was 40 dB. The mean velocity of VF wave fronts was 0.25 +/- 0.04 m/s. Submillimetric spatial resolution (0.65-0.85 mm), activation mapping, and transformation of the data to phase-based analysis revealed reentrant, colliding, and fractionating wave fronts in human VF. On many occasions the VF wave fronts were as large as the entire vertical length (8 cm) of the mapping field, suggesting that there are a limited number of wave fronts on the human heart during VF. Phase transformation of the optical signals allowed the first demonstration ever of phase singularity point, wave breaks, and rotor formation in human VF. This method provides opportunities for potential analyses toward elucidation of the mechanisms of VF and defibrillation in humans.
Pre-supernova outbursts via wave heating in massive stars - II. Hydrogen-poor stars
NASA Astrophysics Data System (ADS)
Fuller, Jim; Ro, Stephen
2018-05-01
Pre-supernova (SN) outbursts from massive stars may be driven by hydrodynamical wave energy emerging from the core of the progenitor star during late nuclear-burning phases. Here, we examine the effects of wave heating in stars containing little or no hydrogen, i.e. progenitors of Type IIb/Ib SNe. Because there is no massive hydrogen envelope, wave energy is thermalized near the stellar surface where the overlying atmospheric mass is small but the optical depth is large. Wave energy can thus unbind this material, driving an optically thick, super-Eddington wind. Using 1D hydrodynamic MESA simulations of ˜5 M⊙ He stars, we find that wave heating can drive pre-SN outbursts composed of a dense wind whose mass-loss rate can exceed ˜0.1 M⊙ yr-1. The wind terminal velocities are a few 100 km s-1, and outburst luminosities can reach ˜106 L⊙. Wave-driven outbursts may be linked with observed or inferred pre-SN outbursts of Type Ibn/transitional/transformational SNe, and pre-SN wave-driven mass loss is a good candidate to produce these types of SNe. However, we also show that non-linear wave breaking in the core of the star may prevent such outbursts in stars with thick convective helium-burning shells. Hence, only a limited subset of SN progenitors is likely to experience wave-driven pre-SN outbursts.
Cyclic Steps and Antidunes : Relating Their Features to a Suspension Index
NASA Astrophysics Data System (ADS)
Yokokawa, M.; Kishima, Y.; Parker, G.
2010-12-01
Cyclic Steps and Antidunes : Relating Their Features to a Suspension Index Miwa Yokokawa (1), Yasushi Kishima (1), Gary Parker (2, 3) 1: Osaka Institute of Technology, Hirakata, Osaka, Japan 2: Dept. of Civil & Environmental Engineering, University of Illinois, Urbana, Illinois, U.S.A. 3: Dept. of Geology, University of Illinois, Urbana, Illinois, U.S.A. There are very few comparative studies of the differences in hydraulic conditions and morphologic features of bed- and water-surface-waves associated with cyclic steps and antidunes. In this study, the features of both the bed and the water surface, as well as hydraulic conditions are examined over the spectrum from antidune to cyclic steps. Experiments were performed using a flume at the Osaka Institute of Technology. The resultant features of the bedforms are as follows. In the case of antidunes, bed waves and water surface waves are in phase except when they collapse. Antidunes show several kinds of behavior; migrating downstream, standing, or migrating upstream. Upstream-migrating antidunes are divided into non-breaking, and breaking-types. Breaking antidunes appear alternatively with the plane bed state. Cyclic steps migrate upstream regularly associated with trains of hydraulic jumps, which divide each step. There is a significant change in water depth at the hydraulic jump, so that the phasing between the bed waves and water surface waves break at the each hydraulic jump. There is a kind of compromise between cyclic steps and antidunes, which we designate as “intermediate steps”. They move upstream and are associated with regular trains of hydraulic jumps. The jumps, however, occasionally collapse toward upstream. When this happens, bed waves move rapidly upstream; low-amplitude water surface waves and bed waves become in phase all over the bed shortly after the collapse. Then after some time, water surface waves become sufficiently prominent to yield regular hydraulic jumps. This cycle is then repeated.The hydraulic conditions for these bedfoms were examined using three non-dimensional parameters, i.e. the Froude Number, the Suspension Index, and the dimensionless particle size. The suspension index is a newly introduced parameter which is the ratio of the shear velocity divided by the settling velocity of the sediment (u*/Vs). Data from previous experimental studies are examined together with the present data in studying the characteristic regimes of bedform formation. In a diagram of Froude Number v.s. Suspension Index, antidunes, intermediate steps and cyclic steps can be divided along the axis of the Suspension Index. In the lowest range of the suspension index, downstream-migrating antidunes and upstream-migrating antidunes that do not break are found. The intermediate steps discussed above are located in the middle range. The highest range corresponds to cyclic steps and breaking antidunes. As described above, the Suspension Index can serve as a scale to quantify the spectrum between antidunes and cyclic steps. The use of the parameter also helps verify that suspension plays an important role in the formation and maintenance of cyclic steps.
NASA Astrophysics Data System (ADS)
Ting, F. C. K.; LeClaire, P.
2016-02-01
Understanding the mechanisms of sediment pickup and distribution in breaking waves is important for modeling sediment transport in the surf zone. Previous studies were mostly concerned with bulk sediment transport under specific wave conditions. The distribution of suspended sediments in breaking waves had not been measured together with coherent flow structures. In this study, two-phase flow measurements were obtained under a train of plunging regular waves on a plane slope using the volumetric three-component velocimetry (V3V) technique. The measurements captured the motions of sediment particles simultaneously with the three-component, three-dimensional (3C3D) velocity fields of turbulent coherent structures (large eddies) induced by breaking waves. Sediment particles (solid glass spheres diameter 0.125 to 0.15 mm, specific gravity 2.5) were separated from fluid tracers (mean diameter 13 µm, specific gravity 1.3) based on a combination of particle spot size and brightness in the two-phase images. The interactions between the large eddies and glass spheres were investigated for plunger vortices generated at incipient breaking and for splash-up vortices generated at the second plunge point. The measured data show that large eddies impinging on the bottom was the primary mechanism which lift sediment particles into suspension and momentarily increased near-bed suspended sediment concentration. Although eddy impingement events were sporadic in space and time, the distributions of suspended sediments in the large eddies were not uniform. High suspended sediment concentration and vertical sediment flux were found in the wall-jet region where the impinging flow was deflected outward and upward. Sediment particles were also trapped and carried around by counter-rotating vortices (Figure 1). Suspended sediment concentration was significantly lower in the impingement region where the fluid velocity was downward, even though turbulent kinetic energy in the down flow was very high. These results suggest that vertical velocity or turbulent shear stress may be a better parameter for predicting sediment pick-up rate than turbulent kinetic energy. It was also found that splash-up vortices enhanced onshore transport relative to the condition when no vortex impinged on the bottom.
Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D
2010-09-01
The effectiveness of chemical dispersants (Corexit 9500 and SPC 1000) on heavy fuel oil (IFO180 as test oil) has been evaluated under different wave conditions in a flow-through wave tank. The dispersant effectiveness was determined by measuring oil concentrations and droplet size distributions. An analysis of covariance (ANCOVA) model indicated that wave type and temperature significantly (p<0.05) affected the dynamic dispersant effectiveness (DDE). At higher temperatures (16 degrees C), the test IFO180 was effectively dispersed under breaking waves with a DDE of 90% and 50% for Corexit 9500 and SPC 1000, respectively. The dispersion was ineffective under breaking waves at lower temperature (10 degrees C), and under regular wave conditions at all temperatures (10-17 degrees C), with DDE<15%. Effective chemical dispersion was associated with formation of smaller droplets (with volumetric mean diameters or VMD < or = 200 microm), whereas ineffective dispersion produced large oil droplets (with VMD > or = 400 microm). Copyright 2010 Elsevier Ltd. All rights reserved.
Wave-Current Conditions and Navigation Safety at an Inlet Entrance
2015-06-26
effects of physical processes. Wave simulations with refraction, shoaling, and breaking provide estimates of wave-related parameters of interest to...summer and winter months and to better understand the cause- effect relationship between navigability conditions at Tillamook Inlet and characteristics of...the Coriolis force, wind stress, wave stress, bottom stress, vegetation flow drag, bottom friction, wave roller, and turbulent diffusion. Governing
Observation-Based Dissipation and Input Terms for Spectral Wave Models, with End-User Testing
2014-09-30
scale influence of the Great barrier reef matrix on wave attenuation, Coral Reefs [published, refereed] Ghantous, M., and A.V. Babanin, 2014: One...Observation-Based Dissipation and Input Terms for Spectral Wave Models...functions, based on advanced understanding of physics of air-sea interactions, wave breaking and swell attenuation, in wave - forecast models. OBJECTIVES The
NASA Technical Reports Server (NTRS)
Ray, Richard D.
1999-01-01
Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.
NASA Astrophysics Data System (ADS)
Tavakkol, Sasan; Lynett, Patrick
2017-08-01
In this paper, we introduce an interactive coastal wave simulation and visualization software, called Celeris. Celeris is an open source software which needs minimum preparation to run on a Windows machine. The software solves the extended Boussinesq equations using a hybrid finite volume-finite difference method and supports moving shoreline boundaries. The simulation and visualization are performed on the GPU using Direct3D libraries, which enables the software to run faster than real-time. Celeris provides a first-of-its-kind interactive modeling platform for coastal wave applications and it supports simultaneous visualization with both photorealistic and colormapped rendering capabilities. We validate our software through comparison with three standard benchmarks for non-breaking and breaking waves.
NASA Astrophysics Data System (ADS)
Lee, Han Soo; Yamashita, Takao; Hsu, John R.-C.; Ding, Fei
2013-01-01
In August 2009, Typhoon Morakot caused massive flooding and devastating mudslides in the southern Taiwan triggered by extremely heavy rainfall (2777 mm in 4 days) which occurred during its passage. It was one of the deadliest typhoons that have ever attacked Taiwan in recent years. In this study, numerical simulations are performed for the storm surge and ocean surface waves, together with dynamic meteorological fields such as wind, pressure and precipitation induced by Typhoon Morakot, using an atmosphere-waves-ocean integrated modelling system. The wave-induced dissipation stress from breaking waves, whitecapping and depth-induced wave breaking, is parameterized and included in the wave-current interaction process, in addition to its influence on the storm surge level in shallow water along the coast of Taiwan. The simulated wind and pressure field captures the characteristics of the observed meteorological field. The spatial distribution of the accumulated rainfall within 4 days, from 00:00 UTC 6 August to 00:00 UTC 10 August 2009, shows similar patterns as the observed values. The 4-day accumulated rainfall of 2777 mm at the A-Li Shan mountain weather station for the same period depicted a high correlation with the observed value of 2780 mm/4 days. The effects of wave-induced dissipation stress in the wave-current interaction resulted in increased surge heights on the relatively shallow western coast of Taiwan, where the bottom slope of the bathymetry ranges from mild to moderate. The results also show that wave-breaking has to be considered for accurate storm surge prediction along the east coast of Taiwan over the narrow bank of surf zone with a high horizontal resolution of the model domain.
Ice Floe Breaking in Contemporary Third Generation Operational Wave Models
NASA Astrophysics Data System (ADS)
Sévigny, C.; Baudry, J.; Gauthier, J. C.; Dumont, D.
2016-02-01
The dynamical zone observed at the edge of the consolidated ice area where are found the wave-fractured floes (i.e. marginal ice zone or MIZ) has become an important topic in ocean modeling. As both operational and climate ocean models now seek to reproduce the complex atmosphere-ice-ocean system with realistic coupling processes, many theoretical and numerical studies have focused on understanding and modeling this zone. Few attempts have been made to embed wave-ice interactions specific to the MIZ within a two-dimensional model, giving the possibility to calculate both the attenuation of surface waves by sea ice and the concomitant breaking of the sea ice-cover into smaller floes. One of the first challenges consists in improving the parameterization of wave-ice dynamics in contemporary third generation operational wave models. A simple waves-in-ice model (WIM) similar to the one proposed by Williams et al. (2013a,b) was implemented in WAVEWATCH III. This WIM considers ice floes as floating elastic plates and predicts the dimensionless attenuation coefficient by the use of a lookup-table-based, wave scattering scheme. As in Dumont et al. (2011), the different frequencies are treated individually and floe breaking occurs for a particular frequency when the expected wave amplitude exceeds the allowed strain amplitude, which considers ice floes properties and wavelength in ice field. The model is here further refined and tested in idealized two-dimensional cases, giving preliminary results of the performance and sensitivity of the parameterization to initial wave and ice conditions. The effects of the wave-ice coupling over the incident wave spectrum are analyzed as well as the resulting floe size distribution. The model gives prognostic values of the lateral extent of the marginal ice zone with maximum ice floe diameter that progressively increases with distance from the ice edge.
Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction
NASA Astrophysics Data System (ADS)
Sargsian, Misak; Granados, Carlos
2009-05-01
We investigate hard photodisintegration of two nucleons from ^3He nucleus within the framework of hard rescattering model (HRM). In HRM a quark of one nucleon knocked-out by incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with high relative momentum. HRM allows to express the amplitude of two-nucleon break-up reaction through the convolution of photon-quark scattering, NN hard scattering amplitude and nuclear spectral function which can be calculated using nonrelativistic ^3He wave function. HRM predicts several specific features for hard break-up reaction. First, the cross section will approximately scale as s-11. Also one predicts comparable or larger cross section for pp break up as compared to that of pn break-up, which is opposite to what is observed in low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn break-up cross sections. This is due to the fact that same-helicity pp-component is strongly suppressed in the ground state wave function of ^3He. Due to this suppression HRM predicts significantly different asymmetries for the cross section of polarization transfer NN break-up reactions for circularly polarized photons. For the pp break-up this asymmetry is predicted to be zero while for the pn it is close to 23.
NASA Astrophysics Data System (ADS)
Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane
The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO). Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from Garcez Faria et al. (1998, 2000). Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).
Quantification of nearshore morphology based on video imaging
Alexander, P.S.; Holman, R.A.
2004-01-01
The Argus network is a series of video cameras with aerial views of beaches around the world. Intensity contrasts in time exposure images reveal areas of preferential breaking, which are closely tied to underlying bed morphology. This relationship was further investigated, including the effect of tidal elevation and wave height on the presence of wave breaking and its cross-shore position over sand bars. Computerized methods of objectively extracting shoreline and sand bar locations were developed, allowing the vast quantity of data generated by Argus to be more effectively examined. Once features were identified in the images, daily alongshore mean values were taken to create time series of shoreline and sand bar location, which were analyzed for annual cycles and cross-correlated with wave data to investigate environmental forcing and response. These data extraction techniques were applied to images from four of the Argus camera sites. A relationship between wave height and shoreline location was found in which increased wave heights resulted in more landward shoreline positions; given the short lag times over which this correlation was significant, and that the strong annual signal in wave height was not replicated in the shoreline time series, it is likely that this relationship is a result of set-up during periods of large waves. Wave height was also found to have an effect on sand bar location, whereby an increase in wave height resulted in offshore bar migration. This correlation was significant over much longer time lags than the relationship between wave height and shoreline location, and a strong annual signal was found in the location of almost all observed bars, indicating that the sand bars are migrating with changes in wave height. In the case of the site with multiple sand bars, the offshore bars responded more significantly to changes in wave height, whereas the innermost bar seemed to be shielded from incident wave energy by breaking over the other bars. A relationship was also found between a site's mean wave height and inner sand bar location; sites with the highest wave heights tended to have sand bars farther from shore than those with relatively low wave heights. ?? 2004 Elsevier B.V. All rights reserved.
The local properties of ocean surface waves by the phase-time method
NASA Technical Reports Server (NTRS)
Huang, Norden E.; Long, Steven R.; Tung, Chi-Chao; Donelan, Mark A.; Yuan, Yeli; Lai, Ronald J.
1992-01-01
A new approach using phase information to view and study the properties of frequency modulation, wave group structures, and wave breaking is presented. The method is applied to ocean wave time series data and a new type of wave group (containing the large 'rogue' waves) is identified. The method also has the capability of broad applications in the analysis of time series data in general.
The role of coral reef rugosity in dissipating wave energy and coastal protection
NASA Astrophysics Data System (ADS)
Harris, Daniel; Rovere, Alessio; Parravicini, Valeriano; Casella, Elisa
2016-04-01
Coral reefs are the most effective natural barrier in dissipating wave energy through breaking and bed friction. The attenuation of wave energy by coral reef flats is essential in the protection and stability of coral reef aligned coasts and reef islands. However, the effectiveness of wave energy dissipation by coral reefs may be diminished under future climate change scenarios with a potential reduction of coral reef rugosity due to increased stress environmental stress on corals. The physical roughness or rugosity of coral reefs is directly related to ecological diversity, reef health, and hydrodynamic roughness. However, the relationship between physical roughness and hydrodynamic roughness is not well understood despite the crucial role of bed friction in dissipating wave energy in coral reef aligned coasts. We examine the relationship between wave energy dissipation across a fringing reef in relation to the cross-reef ecological zonation and the benthic hydrodynamic roughness. Waves were measured by pressure transducers in a cross-reef transect on the reefs flats and post processed on a wave by wave basis to determine wave statistics such as significant wave height and wave period. Results from direct wave measurement were then used to calibrate a 1D wave dissipation model that incorporates dissipation functions due to bed friction and wave breaking. This model was used to assess the bed roughness required to produce the observed wave height dissipation during propagation from deep water and across the coral reef flats. Changes in wave dissipation was also examined under future scenarios of sea level rise and reduced bed roughness. Three dimensional models of the benthic reef structure were produced through structure-from-motion photogrammetry surveys. Reef rugosity was then determined from these surveys and related to the roughness results from the calibrated model. The results indicate that applying varying roughness coefficients as the benthic ecological assemblage changes produces the most accurate assessment of wave energy dissipation across the reef flat. However, the modelled results of bed roughness (e.g. 0.01 for the fore-reef slope) were different to the directly measured rugosity values (0.05 for the fore-reef slope) from three dimension structure-from-motion surveys. In spite of this, the modelled and directly measured values of roughness are similar considering the difficulties outlined in previous research when relating the coral reef structural complexity to a single value of hydrodynamic roughness. Bed roughness was shown to be a secondary factor behind wave breaking in dissipating wave energy. However, without bed friction waves could be an order of magnitude higher in the back-reef environment. Bed friction is also increasingly important in wave dissipation at higher sea levels as wave energy dissipation due to wave breaking is reduced at greater depths. This shows that maintaining a structurally diverse and healthy reef is crucial under future sea level rise scenarios in order to maintain the protection of coastal environments. These results also indicate that significant geomorphic change in coastal environments will occur due to reduced wave dissipation at higher sea levels unless reefs are capable of keeping up with forecasted sea level rise.
The dynamical link between deep Atlantic extratropical cyclones and intense Mediterranean cyclones
NASA Astrophysics Data System (ADS)
Raveh-Rubin, Shira; Flaounas, Emmanouil
2017-04-01
Breaking of atmospheric Rossby waves has been previously shown to lead to intense Mediterranean cyclones, one of the most prominent environmental risks in the region. Wave breaking may be enhanced by warm conveyor belts (WCBs) associated with extratropical cyclones developing over the Atlantic Ocean. More precisely, WCBs supply the upper troposphere with air masses of low potential vorticity that, in turn, amplify ridges and thus favor Rossby wave breaking. This study identifies and validates the relevance of the mechanism that connects Atlantic cyclones and intense mature Mediterranean cyclones through ridge amplification by WCBs. Using ECMWF ERA-Interim reanalyses and a feature-based approach, we analyze the 200 most intense Mediterranean cyclones for the years 1989-2008 and show that their majority (181 cases) is indeed associated with this mechanism upstream. Results show that multiple Atlantic cyclones are associated with each case of intense Mediterranean cyclone downstream. Moreover, the associated Atlantic cyclones are particularly deep compared to climatology.
Flavour symmetry breaking in the kaon parton distribution amplitude
none,
2014-11-01
We compute the kaon's valence-quark (twist-two parton) distribution amplitude (PDA) by projecting its Poincaré-covariant Bethe–Salpeter wave-function onto the light-front. At a scale ζ = 2 GeV, the PDA is a broad, concave and asymmetric function, whose peak is shifted 12–16% away from its position in QCD's conformal limit. These features are a clear expression of SU(3)-flavour-symmetry breaking. They show that the heavier quark in the kaon carries more of the bound-state's momentum than the lighter quark and also that emergent phenomena in QCD modulate the magnitude of flavour-symmetry breaking: it is markedly smaller than one might expect based on themore » difference between light-quark current masses. Our results add to a body of evidence which indicates that at any energy scale accessible with existing or foreseeable facilities, a reliable guide to the interpretation of experiment requires the use of such nonperturbatively broadened PDAs in leading-order, leading-twist formulae for hard exclusive processes instead of the asymptotic PDA associated with QCD's conformal limit. We illustrate this via the ratio of kaon and pion electromagnetic form factors: using our nonperturbative PDAs in the appropriate formulae, F K/F π=1.23 at spacelike-Q 2=17 GeV 2, which compares satisfactorily with the value of 0.92(5) inferred in e +e - annihilation at s=17 GeV 2.« less
NASA Technical Reports Server (NTRS)
Paffenholz, Joseph; Fox, Jon W.; Gu, Xiaobai; Jewett, Greg S.; Datta, Subhendu K.
1990-01-01
Scattering of Rayleigh-Lamb waves by a normal surface-breaking crack in a plate has been studied both theoretically and experimentally. The two-dimensionality of the far field, generated by a ball impact source, is exploited to characterize the source function using a direct integration technique. The scattering of waves generated by this impact source by the crack is subsequently solved by employing a Green's function integral expression for the scattered field coupled with a finite element representation of the near field. It is shown that theoretical results of plate response, both in frequency and time, are similar to those obtained experimentally. Additionally, implication for practical applications are discussed.
Charge and current orders in the spin-fermion model with overlapping hot spots
NASA Astrophysics Data System (ADS)
Volkov, Pavel A.; Efetov, Konstantin B.
2018-04-01
Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016), 10.1103/PhysRevB.93.085131] spin-fermion model with overlapping `hot spots' on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at (0 ,π );(π ,0 ) and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves, as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.
Near-inertial waves and deep ocean mixing
NASA Astrophysics Data System (ADS)
Shrira, V. I.; Townsend, W. A.
2013-07-01
For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.
Temporal Clustering of Regional-Scale Extreme Precipitation Events in Southern Switzerland
NASA Astrophysics Data System (ADS)
Barton, Yannick; Giannakaki, Paraskevi; Von Waldow, Harald; Chevalier, Clément; Pfhal, Stephan; Martius, Olivia
2017-04-01
Temporal clustering of extreme precipitation events on subseasonal time scales is a form of compound extremes and is of crucial importance for the formation of large-scale flood events. Here, the temporal clustering of regional-scale extreme precipitation events in southern Switzerland is studied. These precipitation events are relevant for the flooding of lakes in southern Switzerland and northern Italy. This research determines whether temporal clustering is present and then identifies the dynamics that are responsible for the clustering. An observation-based gridded precipitation dataset of Swiss daily rainfall sums and ECMWF reanalysis datasets are used. To analyze the clustering in the precipitation time series a modified version of Ripley's K function is used. It determines the average number of extreme events in a time period, to characterize temporal clustering on subseasonal time scales and to determine the statistical significance of the clustering. Significant clustering of regional-scale precipitation extremes is found on subseasonal time scales during the fall season. Four high-impact clustering episodes are then selected and the dynamics responsible for the clustering are examined. During the four clustering episodes, all heavy precipitation events were associated with an upperlevel breaking Rossby wave over western Europe and in most cases strong diabatic processes upstream over the Atlantic played a role in the amplification of these breaking waves. Atmospheric blocking downstream over eastern Europe supported this wave breaking during two of the clustering episodes. During one of the clustering periods, several extratropical transitions of tropical cyclones in the Atlantic contributed to the formation of high-amplitude ridges over the Atlantic basin and downstream wave breaking. During another event, blocking over Alaska assisted the phase locking of the Rossby waves downstream over the Atlantic.
NASA Astrophysics Data System (ADS)
Guha, Anirban
2017-11-01
Theoretical studies on linear shear instabilities as well as different kinds of wave interactions often use simple velocity and/or density profiles (e.g. constant, piecewise) for obtaining good qualitative and quantitative predictions of the initial disturbances. Moreover, such simple profiles provide a minimal model to obtain a mechanistic understanding of shear instabilities. Here we have extended this minimal paradigm into nonlinear domain using vortex method. Making use of unsteady Bernoulli's equation in presence of linear shear, and extending Birkhoff-Rott equation to multiple interfaces, we have numerically simulated the interaction between multiple fully nonlinear waves. This methodology is quite general, and has allowed us to simulate diverse problems that can be essentially reduced to the minimal system with interacting waves, e.g. spilling and plunging breakers, stratified shear instabilities (Holmboe, Taylor-Caulfield, stratified Rayleigh), jet flows, and even wave-topography interaction problem like Bragg resonance. We found that the minimal models capture key nonlinear features (e.g. wave breaking features like cusp formation and roll-ups) which are observed in experiments and/or extensive simulations with smooth, realistic profiles.
Atmospheric blocking as a traffic jam in the jet stream
NASA Astrophysics Data System (ADS)
Nakamura, N.; Huang, S. Y.
2017-12-01
It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.
An A-train climatology of extratropical cyclone clouds and precipitation
NASA Astrophysics Data System (ADS)
Naud, C. M.; Booth, J.; Del Genio, A. D.; van den Heever, S. C.; Posselt, D. J.
2016-12-01
It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.
Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering.
Tsakmakidis, K L; Shen, L; Schulz, S A; Zheng, X; Upham, J; Deng, X; Altug, H; Vakakis, A F; Boyd, R W
2017-06-23
A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δ t inversely proportional to the bandwidth (Δ t ·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this "fundamental" limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Nuclear Physics Around the Unitarity Limit.
König, Sebastian; Grießhammer, Harald W; Hammer, H-W; van Kolck, U
2017-05-19
We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy. In this limit, the gross features of states in the nuclear chart are correlated to only one dimensionful parameter, which is related to the breaking of scale invariance to a discrete scaling symmetry and set by the triton binding energy. Observables are moved to their physical values by small perturbative corrections, much like in descriptions of the fine structure of atomic spectra. We provide evidence in favor of the conjecture that light, and possibly heavier, nuclei are bound weakly enough to be insensitive to the details of the interactions but strongly enough to be insensitive to the exact size of the two-nucleon system.
Observation-based source terms in the third-generation wave model WAVEWATCH
NASA Astrophysics Data System (ADS)
Zieger, Stefan; Babanin, Alexander V.; Erick Rogers, W.; Young, Ian R.
2015-12-01
Measurements collected during the AUSWEX field campaign, at Lake George (Australia), resulted in new insights into the processes of wind wave interaction and whitecapping dissipation, and consequently new parameterizations of the input and dissipation source terms. The new nonlinear wind input term developed accounts for dependence of the growth on wave steepness, airflow separation, and for negative growth rate under adverse winds. The new dissipation terms feature the inherent breaking term, a cumulative dissipation term and a term due to production of turbulence by waves, which is particularly relevant for decaying seas and for swell. The latter is consistent with the observed decay rate of ocean swell. This paper describes these source terms implemented in WAVEWATCH III ®and evaluates the performance against existing source terms in academic duration-limited tests, against buoy measurements for windsea-dominated conditions, under conditions of extreme wind forcing (Hurricane Katrina), and against altimeter data in global hindcasts. Results show agreement by means of growth curves as well as integral and spectral parameters in the simulations and hindcast.
NASA Astrophysics Data System (ADS)
Edge, Ronald
2001-05-01
Just what is happening when a surfer taps into the energy of a breaking wave and rides to shore? It's sport, it's art, it's skill, stamina, and drama. It is also physics — hydrodynamics, wave propagation, kinematics, and dynamics.
Modeling quiescent phase transport of air bubbles induced by breaking waves
NASA Astrophysics Data System (ADS)
Shi, Fengyan; Kirby, James T.; Ma, Gangfeng
Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.
Langmuir circulation inhibits near-surface water turbulence
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-07-01
In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed or foam, can be drawn into long rows along the surface. Driving this organization is Langmuir circulation, a phenomenon in which the wind and waves cause surface waters to rotate helically, moving like a wire wrapped around a pole in the windward direction. These spiral currents oscillate between clockwise and counterclockwise rotations, such that in some places the surface waters are pushed together and in others they are pulled apart. Researchers have previously found that at sites of convergence the bubbles produced by breaking waves are pushed to depths of 15 meters or more, with important implications for air-sea gas mixing and other processes.
Characteristics of finite amplitude stationary gravity waves in the atmosphere of Venus
NASA Technical Reports Server (NTRS)
Young, Richard E.; Walterscheid, Richard L.; Schubert, Gerald; Pfister, Leonhard; Houben, Howard; Bindschadler, Duane L.
1994-01-01
This paper extends the study of stationary gravity waves generated near the surface of Venus reported previously by Young et al. to include finite amplitude effects associated with large amplitude waves. Waves are forced near the surface of Venus by periodic forcing. The height-dependent profiles of static stability and mean wind in the Venus atmosphere play a very important role in the evolution of the nonlinear behavior of the waves, just as they do in the linear wave solutions. Certain wave properties are qualitatively consistent with linear wave theory, such as wave trapping, resonance, and wave evanescence for short horizontal wavelenghts. However, the finite amplitude solutions also exhibit many other interesting features. In particular, for forcing amplitudes representative of those that could be expected in mountainous regions such as Aphrodite Terra, waves generated near the surface can reach large amplitudes at and above cloud levels, with clear signatures in the circulation pattern. At still higher levels, the waves can reach large enough amplitude to break, unless damping rates above the clouds are sufficient to limit wave amplitude growth. Well below cloud levels the waves develop complex flow patterns as the result of finite amplitude wave-wave interactions, and waves are generated having considerably shorter horizontal wavelenghts than that associated with the forcing near the surface. Nonlinear interactions can excite waves that are resonant with the background wind and static stability fields even when the primary surface forcing does not, and these waves can dominate the wave spectrum near cloud levels. A global map of Venus topographic slopes derived from Magellan altimetry data shows that slopes of magnitude comparable to or exceeding that used to force the model are ubiquitous over the surface.
Fourier Analysis and the Rhythm of Conversation.
ERIC Educational Resources Information Center
Dabbs, James M., Jr.
Fourier analysis, a common technique in engineering, breaks down a complex wave form into its simple sine wave components. Communication researchers have recently suggested that this technique may provide an index of the rhythm of conversation, since vocalizing and pausing produce a complex wave form pattern of alternation between two speakers. To…
DARLA: Data Assimilation and Remote Sensing for Littoral Applications
2017-03-01
in the surf zone. The foam produced in an actively breaking crest, or wave roller, has a distinct signature in IR imagery. A retrieval algorithm is...the surface. The velocity profiles are obtained from a pulse-coherent acoustic Doppler sonar on a wave-following platform, termed a Surface Wave
Coherent Structures and Evolution of Vorticity in Short-Crested Breaking Surface Waves
NASA Astrophysics Data System (ADS)
Kirby, James; Derakhti, Morteza
2017-11-01
We employ a multi-phase LES/VOF code to study turbulence and coherent structures generated during breaking of short-crested surface water waves. We examine the evolution of coherent vortex structures evolving at the scale of the width of the breaking event, and their long-time interaction with smaller vortex loops formed by the local instability of the breaking crest. Long-time results are often characterized by the detachment of the larger scale vortex loop from the surface and formation of a closed vortex ring. The evolution of circulation for the vortical flow field is examined. The initial concentration of forcing close to the free surface leads to spatial distributions of both span-wise and vertical vorticity distributions which are concentrated close to the surface. This result, which persists into shallow water, is at odds with the basic simplicity of the Peregrine mechanism, suggesting that even shallow flows such as the surf zone should be regarded as being forced (in dissipative situations) by a wave-induced surface stress rather than a uniform-over-depth body force. The localized forcing leads to the development of a complex pattern of stream-wise vorticity, comparable in strength to the vertical and span-wise components, and also persist into shallow water. NSF OCE-1435147.
Niv, Sharon; Tuvblad, Catherine; Raine, Adrian; Baker, Laura A.
2013-01-01
Purpose This twin study examined the structure of genetic and environmental influences on aggression and rule-breaking in order to examine change and stability across the span of childhood to mid-adolescence. Methods Behavioral assessments were conducted at two time points: age 9–10 years and 14–15 years. Using behavioral genetics biometric modeling, the longitudinal structure of influences was investigated. Results Aggression and rule-breaking were found to be influenced by a latent common factor of antisocial behavior (ASB) within each wave of data collection. The childhood-age common factor of ASB was influenced by 41% genetics, 40% shared environment and 19% nonshared environment. In adolescence, 41% of influences on the common factor were novel and entirely genetic, while the remainder of influences were stable across time. Additionally, both aggression and rule-breaking within each wave were found to have unique influences not common across subscales or across waves, highlighting specificity of influences on different problem behaviors at both ages. Conclusions This research sheds light on the commonality of influences on etiology of different forms of antisocial behavior, and suggests future directions for research into intervention for antisocial behavior problems in youth, such as investigation of adolescence-specific environmental influences on the development of antisocial behavior problems. PMID:24347737
Projections of extreme water level events for atolls in the western Tropical Pacific
NASA Astrophysics Data System (ADS)
Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.
2014-12-01
Conditions that lead to extreme water levels and coastal flooding are examined for atolls in the Republic of the Marshall Islands based on a recent field study of wave transformations over fringing reefs, tide gauge observations, and wave model hindcasts. Wave-driven water level extremes pose the largest threat to atoll shorelines, with coastal levels scaling as approximately one-third of the incident breaking wave height. The wave-driven coastal water level is partitioned into a mean setup, low frequency oscillations associated with cross-reef quasi-standing modes, and wind waves that reach the shore after undergoing high dissipation due to breaking and bottom friction. All three components depend on the water level over the reef; however, the sum of the components is independent of water level due to cancelling effects. Wave hindcasts suggest that wave-driven water level extremes capable of coastal flooding are infrequent events that require a peak wave event to coincide with mid- to high-tide conditions. Interannual and decadal variations in sea level do not change the frequency of these events appreciably. Future sea-level rise scenarios significantly increase the flooding threat associated with wave events, with a nearly exponential increase in flooding days per year as sea level exceeds 0.3 to 1.0 m above current levels.
NASA Astrophysics Data System (ADS)
Tang, Qunshu; Xu, Min; Zheng, Chan; Xu, Xing; Xu, Jiang
2018-02-01
In this work, a secondary nonlinear internal wave (NIW) on the continental shelf of the northern South China Sea is investigated using high-resolution seismic imaging and joint inversion of water structure properties combined with in situ hydrographic observations. It is an extraordinary wave combination with two mode-2 NIWs and one elevated NIW occurring within a short distance of 2 km. The most energetic part of the NIW could be regarded as a mode-2 NIW in the upper layer between 40 and 120 m depth. The vertical particle velocity of ˜41 cm/s may exceed the critical value of wave breaking and thus collapse the strong stratification followed by a series of processes including internal wave breaking, overturning, Kelvin-Helmholtz instability, stratification splitting, and eventual restratification. Among these processes, the shear-induced Kelvin-Helmholtz instability is directly imaged using the seismic method for the first time. The stratification splitting and restratification show that the unstable stage lasts only for a few hours and spans several kilometers. It is a new observation that the elevated NIW could be generated in a deepwater region (as deep as ˜370 m). Different from the periodical NIWs originating from the Luzon Strait, this secondary NIW is most likely generated locally, at the continental shelf break during ebb tide.
NASA Astrophysics Data System (ADS)
Liu, Bin; Meyer-Ter-Vehn, Juergen; Ruhl, Hartmut
2017-10-01
We introduce an alternative approach for laser driven self-injected high quality ion acceleration. We call it ion wave breaking acceleration. It operates in relativistic self-transparent plasma for ultra-intense ultra-short laser pulses. Laser propagating in a transparent plasma excites an electron wave as well as an ion wave. When the ion wave breaks, a fraction of ions is self-injected into the positive part of the laser driven wake. This leads to a superior ion pulse with peaked energy spectra; in particular in realistic three-dimensional geometry, the injection occurs localized close to the laser axis producing highly directed bunches. A theory is developed to investigate the ion wave breaking dynamics. Three dimensional Particle-in-Cell simulations with pure-gaussian laser pulses and pre-expanded near-critical density plasma targets have been done to verify the theoretical results. It is shown that hundreds of MeV, easily controllable and manipulable, micron-scale size, highly collimated and quasi-mono-energetic ion beams can be produced by using ultra-intense ultra-short laser pulses with total laser energies less than 10 Joules. Such ion beams may find important applications in tumour therapy. B. Liu acknowledges support from the Alexander von Humboldt Foundation. B. Liu and H. Ruhl acknowledge supports from the Gauss Centre for Supercomputing (GCS), and the Cluster-of-Excellence Munich Centre for Advanced Photonics (MAP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvaro Calle Cordon,Manuel Pavon Valderrama,Enrique Ruiz Arriola
2012-02-01
We study the interplay between charge symmetry breaking and renormalization in the NN system for S-waves. We find a set of universality relations which disentangle explicitly the known long distance dynamics from low energy parameters and extend them to the Coulomb case. We analyze within such an approach the One-Boson-Exchange potential and the theoretical conditions which allow to relate the proton-neutron, proton-proton and neutron-neutron scattering observables without the introduction of extra new parameters and providing good phenomenological success.
Evidence for intertwined superfluid and density wave order in two dimensional 4He
NASA Astrophysics Data System (ADS)
Saunders, John
2015-03-01
We report the identification of a new state of quantum matter with intertwined superfluid and density wave order in a system of two dimensional bosons subject to a triangular lattice potential. Using a torsional oscillator we have measured the response of the second atomic layer of 4He adsorbed on the surface of graphite over a wide temperature range down to 2 mK. Superfluidity is observed over a narrow range of film densities, emerging suddenly and collapsing towards a quantum critical point, near to layer completion where a Mott insulating phase is predicted to form. The unusual temperature dependence of the superfluid density in the T --> 0 limit and the absence of a clear superfluid onset temperature are explained, self-consistently, by an ansatz for the excitation spectrum, reflecting density wave order, and a quasi-condensate wavefunction breaking both gauge and translational symmetry. In collaboration with Jan Nyeki, Anastasia Phillis, Andrew Ho, Derek Lee, Piers Coleman, Jeevak Parpia, Brian Cowan. Supported by EPSRC (U.K) EP/H048375/1.
NASA Astrophysics Data System (ADS)
Bougher, S. W.; Rafkin, S.; Drossart, P.
2006-11-01
A consistent picture of the dynamics of the Venus upper atmosphere from ˜90 to 200 km has begun to emerge [e.g., Bougher, S.W., Alexander, M.J., Mayr, H.G., 1997. Upper Atmosphere Dynamics: Global Circulation and Gravity Waves. Venus II, CH. 2.4. University of Arizona Press, Tucson, pp. 259-292; Lellouch, E., Clancy, T., Crisp, D., Kliore, A., Titov, D., Bougher, S.W., 1997. Monitoring of Mesospheric Structure and Dynamics. Venus II, CH. 3.1. University of Arizona Press, Tucson, pp. 295-324]. The large-scale circulation of the Venus upper atmosphere (upper mesosphere and thermosphere) can be decomposed into two distinct flow patterns: (1) a relatively stable subsolar-to-antisolar (SS-AS) circulation cell driven by solar heating, and (2) a highly variable retrograde superrotating zonal (RSZ) flow. Wave-like perturbations have also been observed. However, the processes responsible for maintaining (and driving variations in) these SS-AS and RSZ winds are not well understood. Variations in winds are thought to result from gravity wave breaking and subsequent momentum and energy deposition in the upper atmosphere [Alexander, M.J., 1992. A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207-2210; Zhang, S., Bougher, S.W., Alexander, M.J., 1996. The impact of gravity waves on the Venus thermosphere and O2 IR nightglow. J. Geophys. Res. 101, 23195-23205]. However, existing data sets are limited in their spatial and temporal coverage, thereby restricting our understanding of these changing circulation patterns. One of the major goals of the Venus Express (VEX) mission is focused upon increasing our understanding of the circulation and dynamical processes of the Venus atmosphere up to the exobase [Titov, D.V., Lellouch, E., Taylor, F.W., 2001. Venus Express: Response to ESA's call for ideas for the re-use of the Mars Express platform. Proposal to European Space Agency, 1-74]. Several VEX instruments are slated to obtain remote measurements (2006-2008) that will complement those obtained earlier by the Pioneer Venus Orbiter (PVO) between 1978 and 1992. These VEX measurements will provide a more comprehensive investigation of the Venus upper atmosphere (90-200 km) structure and dynamics over another period in the solar cycle and for variable lower atmosphere conditions. An expanded climatology of Venus upper atmosphere structure and wind components will be developed. In addition, gravity wave parameters above the cloud tops will be measured (or inferred), and used to constrain gravity wave breaking models. In this manner, the gravity wave breaking mechanism (thought to regulate highly variable RSZ winds) can be tested using Venus general circulation models (GCMs).
Water-waves frequency upshift of the spectral mean due to wind forcing
NASA Astrophysics Data System (ADS)
Eeltink, Debbie; Chabchoub, Amin; Brunetti, Maura; Kasparian, Jerome; Kimmoun, Olivier; Branger, Hubert
2017-04-01
The effect of wind forcing on monochromatic modulated water waves was investigated both numerically and experimentally in the context of the Modified Non-Linear Schrödinger (MNLS) equation framework. While wind is usually associated with a frequency downshift of the dominant spectral peak, we show that it may induce an upshift of the spectral mean due to an asymmetric amplification of the spectrum. Here the weighted average spectral mean is equal to the ratio of the momentum of the envelope to its norm and it detects any asymmetries in the spectrum (Segur et al. 2005). Wind can however indirectly induce frequency downshifts, by promoting dissipative effects like wave breaking. We highlight that the definition of the up- and downshift in terms of peak frequency or average frequency is critical for a relevant discussion. In our model, the wind input consists of a leading order forcing term that amplifies all frequencies equally and induces a broadening of the spectrum, and a higher order asymmetric term (Brunetti et al. 2014; Brunetti & Kasparian 2014) that amplifies higher frequencies more than lower ones and induces a permanent upshift of the spectral mean. The effect of MNLS + wind is exactly opposite to MNLS + viscosity, where the lower order viscosity terms damp the whole spectrum, while the higher order viscosity terms damp higher frequencies more than lower ones and thus causes a permanent downshift, as evidenced by Carter & Govan (2016). We corroborated the model with wave tank experiments conducted in the IRPHE/Pytheas large wind-wave facility located in Marseille, France. Wave data analysis show the temporary downshift in the spectral peak sense caused by the wind, and the temporary upshift in the spectral mean sense characteristic of the MNLS. As the tank-length was limited, we used long-range simulations to obtain upshift in the spectral mean sense caused by the wind. The limit of the model is reached when breaking events occur. We acknowledge financial support from the Swiss National Science Foundation (project 200021-155970), the Labex MEC (French ANR-10-LABX-0092) and the A*MIDEX project (ANR-11-IDEX-0001-02). • Brunetti, M. and Kasparian, J. 2014 "Modulational instability in wind-forced waves". Physics Letters A, 378: 48, 3626-3630. • Brunetti, M., Marchiando, N., Berti, N. and Kasparian, J. 2014 "Nonlinear fast growth of water waves under wind forcing". Physics Letters A 378: 1415, 1025-1030. • Carter, J. D. and Govan, A. 2016 "Frequency downshift in a viscous fluid." Eur. Journ. Mech. - B/Fluids 59: 177-185. • Segur, H., Henderson, D., Carter, J., Hammack, J., Li, C.-M., Pheiff, D. and Socha, K. 2005 "Stabilizing the Benjamin-Feir instability". Journ. Fluid Mechanics, 539: 229-271.
Effective holographic theory of charge density waves
NASA Astrophysics Data System (ADS)
Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele
2018-04-01
We use gauge/gravity duality to write down an effective low energy holographic theory of charge density waves. We consider a simple gravity model which breaks translations spontaneously in the dual field theory in a homogeneous manner, capturing the low energy dynamics of phonons coupled to conserved currents. We first focus on the leading two-derivative action, which leads to excited states with nonzero strain. We show that including subleading quartic derivative terms leads to dynamical instabilities of AdS2 translation invariant states and to stable phases breaking translations spontaneously. We compute analytically the real part of the electric conductivity. The model allows to construct Lifshitz-like hyperscaling violating quantum critical ground states breaking translations spontaneously. At these critical points, the real part of the dc conductivity can be metallic or insulating.
Collective bubble oscillations as a component of surf infrasound.
Park, Joseph; Garcés, Milton; Fee, David; Pawlak, Geno
2008-05-01
Plunging surf is a known generator of infrasound, though the mechanisms have not been clearly identified. A model based on collective bubble oscillations created by demise of the initially entrained air pocket is examined. Computed spectra are compared to infrasound data from the island of Kauai during periods of medium, large, and extreme surf. Model results suggest that bubble oscillations generated by plunging waves are plausible generators of infrasound, and that dynamic bubble plume evolution on a temporal scale comparable to the breaking wave period may contribute to the broad spectral lobe of dominant infrasonic energy observed in measured data. Application of an inverse model has potential to characterize breaking wave size distributions, energy, and temporal changes in seafloor morphology based on remotely sensed infrasound.
Asymmetric nonlinear system is not sufficient for a nonreciprocal wave diode
NASA Astrophysics Data System (ADS)
Wu, Gaomin; Long, Yang; Ren, Jie
2018-05-01
We demonstrate symmetric wave propagations in asymmetric nonlinear systems. By solving the nonlinear Schördinger equation, we first analytically prove the existence of symmetric transmission in asymmetric systems with a single nonlinear delta-function interface. We then point out that a finite width of the nonlinear interface region is necessary to produce nonreciprocity in asymmetric systems. However, a geometrical resonant condition for breaking nonreciprocal propagation is then identified theoretically and verified numerically. With such a resonant condition, the nonlinear interface region of finite width behaves like a single nonlinear delta-barrier so that wave propagations in the forward and backward directions are identical under arbitrary incident wave intensity. As such, reciprocity reemerges periodically in the asymmetric nonlinear system when changing the width of interface region. Finally, similar resonant conditions of discrete nonlinear Schördinger equation are discussed. Therefore, we have identified instances of reciprocity that breaking spatial symmetry in nonlinear interface systems is not sufficient to produce nonreciprocal wave propagation.
The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the ...
Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking
Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng
2016-01-01
One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking. PMID:27387438
Translational Symmetry-Breaking for Spiral Waves
NASA Astrophysics Data System (ADS)
LeBlanc, V. G.; Wulff, C.
2000-10-01
Spiral waves are observed in numerous physical situations, ranging from Belousov-Zhabotinsky (BZ) chemical reactions, to cardiac tissue, to slime-mold aggregates. Mathematical models with Euclidean symmetry have recently been developed to describe the dynamic behavior (for example, meandering) of spiral waves in excitable media. However, no physical experiment is ever infinite in spatial extent, so the Euclidean symmetry is only approximate. Experiments on spiral waves show that inhomogeneities can anchor spirals and that boundary effects (for example, boundary drifting) become very important when the size of the spiral core is comparable to the size of the reacting medium. Spiral anchoring and boundary drifting cannot be explained by the Euclidean model alone. In this paper, we investigate the effects on spiral wave dynamics of breaking the translation symmetry while keeping the rotation symmetry. This is accomplished by introducing a small perturbation in the five-dimensional center bundle equations (describing Hopf bifurcation from one-armed spiral waves) which is SO(2)-equivariant but not equivariant under translations. We then study the effects of this perturbation on rigid spiral rotation, on quasi-periodic meandering and on drifting.
On the response to ocean surface currents in synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Phillips, O. M.
1984-01-01
The balance of wave action spectral density for a fixed wave-number is expressed in terms of a new dimensionless function, the degree of saturation, b, and is applied to an analysis of the variations of this quantity (and local spectral level) at wave-numbers large compared to that of the spectral peak, that are produced by variations in the ocean surface currents in the presence of wind input and wave breaking. Particular care is taken to provide physically based representations of wind input and loss by wave breaking and a relatively convenient equation is derived that specifies the distribution of the degree of saturation in a current field, relative to its ambient (undisturbed) background in the absence of currents. The magnitude of the variations in b depends on two parameters, U(o)/c, where U/(o) is the velocity scale of the current and c the phase speed of the surface waves at the (fixed) wave-number considered or sampled by SAR, and S = (L/lambda) (u*/c)(2), where L is the length scale of the current distribution, lambda the wavelength of the surface waves the length scale of the current distribution, lambda the wavelength of the surface waves and u* the friction velocity of the wind.
Strong and highly variable push of ocean waves on Southern Ocean sea ice.
Stopa, Justin E; Sutherland, Peter; Ardhuin, Fabrice
2018-06-05
Sea ice in the Southern Ocean has expanded over most of the past 20 y, but the decline in sea ice since 2016 has taken experts by surprise. This recent evolution highlights the poor performance of numerical models for predicting extent and thickness, which is due to our poor understanding of ice dynamics. Ocean waves are known to play an important role in ice break-up and formation. In addition, as ocean waves decay, they cause a stress that pushes the ice in the direction of wave propagation. This wave stress could not previously be quantified due to insufficient observations at large scales. Sentinel-1 synthetic aperture radars (SARs) provide high-resolution imagery from which wave height is measured year round encompassing Antarctica since 2014. Our estimates give an average wave stress that is comparable to the average wind stress acting over 50 km of sea ice. We further reveal highly variable half-decay distances ranging from 400 m to 700 km, and wave stresses from 0.01 to 1 Pa. We expect that this variability is related to ice properties and possibly different floe sizes and ice thicknesses. A strong feedback of waves on sea ice, via break-up and rafting, may be the cause of highly variable sea-ice properties.
NASA Astrophysics Data System (ADS)
Antoniuk, Oleg; Sprik, Rudolf
2010-03-01
We developed a random matrix model to describe the statistics of resonances in an acoustic cavity with broken time-reversal invariance. Time-reversal invariance braking is achieved by connecting an amplified feedback loop between two transducers on the surface of the cavity. The model is based on approach [1] that describes time- reversal properties of the cavity without a feedback loop. Statistics of eigenvalues (nearest neighbor resonance spacing distributions and spectral rigidity) has been calculated and compared to the statistics obtained from our experimental data. Experiments have been performed on aluminum block of chaotic shape confining ultrasound waves. [1] Carsten Draeger and Mathias Fink, One-channel time- reversal in chaotic cavities: Theoretical limits, Journal of Acoustical Society of America, vol. 105, Nr. 2, pp. 611-617 (1999)
Modified plenoptic camera for phase and amplitude wavefront sensing
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Davis, Christopher C.
2013-09-01
Shack-Hartmann sensors have been widely applied in wavefront sensing. However, they are limited to measuring slightly distorted wavefronts whose local tilt doesn't surpass the numerical aperture of its micro-lens array and cross talk of incident waves on the mrcro-lens array should be strictly avoided. In medium to strong turbulence cases of optic communication, where large jitter in angle of arrival and local interference caused by break-up of beam are common phenomena, Shack-Hartmann sensors no longer serve as effective tools in revealing distortions in a signal wave. Our design of a modified Plenoptic Camera shows great potential in observing and extracting useful information from severely disturbed wavefronts. Furthermore, by separating complex interference patterns into several minor interference cases, it may also be capable of telling regional phase difference of coherently illuminated objects.
NASA Astrophysics Data System (ADS)
de la Camara, Alvaro; Mechoso, Carlos R.; Mancho, Ana M.; Serrano, Encarna; Ide, Kayo
2013-04-01
The trajectories in the lower stratosphere of isopycnic balloons released from Antarctica by international field campaigns during the southern springs of 2005 and 2010 showed events of latitudinal transport inside the stratospheric polar vortex, both away and towards the poleward flank of the polar night jet. The present work applies trajectory-based diagnostic techniques to examine mechanisms at work during such events. Reverse domain filling calculations of potential vorticity (PV) fields from ECMWF ERA-Interim data set during the events show irreversible filamentation of the PV fields in the inner side of the polar night jet, which is a signature of planetary (Rossby) wave breaking. Balloons motions during the events are fairly consistent with the PV filaments. Events of both large (~15° of arch length) and small (~5° of arch length) balloon displacements from the vortex edge are associated to deep and shallow penetration into the core of the elongated PV contours. The function M is applied to study the configuration of Lagrangian coherent structures during the events. A close association is found between hyperbolic points and breaking waves inside the vortex. The geometric configuration of the invariant manifolds associated with the hyperbolic points helps to understand the apparent chaotic behavior of balloons motions, and to identify and analyze balloon transport events not captured by the Reverse Domain Filling calculations. The Antarctic polar vortex edge is an effective barrier to air parcel crossings. Rossby wave breaking inside the vortex, however, can contribute to tracer mixing inside the vortex and to occasional air crossings of the edge.
Model-Data Assimilation of Internal Waves during ASIAEX-2001
NASA Technical Reports Server (NTRS)
Liu, Antony; Zhao, Yun-He; Tang, T. Y.; Ramp, Steven R.
2003-01-01
In recent Asian Seas International Acoustics Experiment (ASIAEX), extensive moorings have been deployed around the continental shelf break area in the northeast of South China Sea in May 2001. Simultaneous RADARSAT SAR images have been collected during the field test to integrate with the in-situ measurements from moorings, ship-board sensors, and CTD casts. Besides it provides synoptic information, satellite imagery is very useful for tracking the internal waves, and locating surface fronts and mesoscale features. During ASIAEX in May 2001, many large internal waves were observed at the test area and were the major oceanic features for acoustic volume interaction. Based on the internal wave distribution maps compiled from satellite data, the wave crest can be as long as 200 km with amplitude of 100 m. Environmental parameters have been calculated based on extensive CTD casts data near the ASIAEX area. Nonlinear internal wave models have been applied to integrate and assimilate both SAR and mooring data. Using SAR data in deep water as an initial condition, numerical simulations produce the wave evolution on the continental shelf and compared reasonably well with the mooring measurements at the downstream station. The shoaling, turning, and dissipation of large internal waves on the shelf break, elevation solitons, and wave-wave interaction have been studied and are very important issues for acoustic propagation. The internal wave effects on acoustic modal coupling has been implicated and discussed.
NASA Astrophysics Data System (ADS)
Pelinovsky, Efim; Chaikovskaia, Natalya; Rodin, Artem
2015-04-01
The paper presents the analysis of the formation and evolution of shock wave in shallow water with no restrictions on its amplitude in the framework of the nonlinear shallow water equations. It is shown that in the case of large-amplitude waves appears a new nonlinear effect of reflection from the shock front of incident wave. These results are important for the assessment of coastal flooding by tsunami waves and storm surges. Very often the largest number of victims was observed on the coastline where the wave moved breaking. Many people, instead of running away, were just looking at the movement of the "raging wall" and lost time. This fact highlights the importance of researching the problem of security and optimal behavior of people in situations with increased risk. Usually there is uncertainty about the exact time, when rogue waves will impact. This fact limits the ability of people to adjust their behavior psychologically to the stressful situations. It concerns specialists, who are busy both in the field of flying activity and marine service as well as adults, young people and children, who live on the coastal zone. The rogue wave research is very important and it demands cooperation of different scientists - mathematicians and physicists, as well as sociologists and psychologists, because the final goal of efforts of all scientists is minimization of the harm, brought by rogue waves to humanity.
Approximate Solutions for Ideal Dam-Break Sediment-Laden Flows on Uniform Slopes
NASA Astrophysics Data System (ADS)
Ni, Yufang; Cao, Zhixian; Borthwick, Alistair; Liu, Qingquan
2018-04-01
Shallow water hydro-sediment-morphodynamic (SHSM) models have been applied increasingly widely in hydraulic engineering and geomorphological studies over the past few decades. Analytical and approximate solutions are usually sought to verify such models and therefore confirm their credibility. Dam-break flows are often evoked because such flows normally feature shock waves and contact discontinuities that warrant refined numerical schemes to solve. While analytical and approximate solutions to clear-water dam-break flows have been available for some time, such solutions are rare for sediment transport in dam-break flows. Here we aim to derive approximate solutions for ideal dam-break sediment-laden flows resulting from the sudden release of a finite volume of frictionless, incompressible water-sediment mixture on a uniform slope. The approximate solutions are presented for three typical sediment transport scenarios, i.e., pure advection, pure sedimentation, and concurrent entrainment and deposition. Although the cases considered in this paper are not real, the approximate solutions derived facilitate suitable benchmark tests for evaluating SHSM models, especially presently when shock waves can be numerically resolved accurately with a suite of finite volume methods, while the accuracy of the numerical solutions of contact discontinuities in sediment transport remains generally poorer.
Nuclear Physics Around the Unitarity Limit
König, Sebastian; Grießhammer, Harald W.; Hammer, H. -W.; ...
2017-05-15
We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy. In this limit, the gross features of states in the nuclear chart are correlated to only one dimensionful parameter, which is related to the breaking of scale invariance to a discrete scaling symmetry and set by the triton binding energy. Observables are moved to their physical values by small perturbative corrections, much like in descriptions of the fine structure of atomic spectra. We provide evidence in favor of themore » conjecture that light, and possibly heavier, nuclei are bound weakly enough to be insensitive to the details of the interactions but strongly enough to be insensitive to the exact size of the two-nucleon system.« less
Spin rotational symmetry breaking by orbital current patterns in two-leg Cu-O Hubbard ladders
NASA Astrophysics Data System (ADS)
Chudzinski, Piotr; Gabay, Marc; Giamarchi, Thierry
2010-03-01
In the weak-coupling limit, we study, as a function of doping, two-leg ladders with a unit cell containing both Cu and O atoms. For purely repulsive interactions, using bosonization and a novel RG scheme, we find that in a broad region of the phase diagram, the ground state consists of a pattern of orbital currents (OCP) defined on the top of an incommensurate density wave. The internal symmetry of the OCP is specific for the ladder structure, different than the ones suggested up to now for 2D cuprates. We focus on this OCP and look for measurable signals of its existence: we compute magnetic fields induced within the ladder and we check what kind of changes in the phase diagram one may expect due to SU(2) spin-rotational symmetry breaking. We also investigate a single impurity problem (incl. OCP): we discuss if Kondo physics is at play, and make qualitative predictions about the nature of impurity backscattering. This enables us to show the influence of SU(2) symmetry breaking on conductivity. We estimate the value of gap opened due to the OCP, give analytic expressions for correlation functions and discuss magnetic properties of a new phase.
NASA Astrophysics Data System (ADS)
Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard
2018-06-01
Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.
The Three-Dimensionality of Spiral Shocks: Did Chondrules Catch a Breaking Wave?
NASA Astrophysics Data System (ADS)
Boley, A. C.; Durisen, R. H.; Pickett, M. K.
2005-12-01
Spiral shocks in vertically stratified disks lead to hydraulic/shock-jumps (hs-jumps) that stimulate large scale (tenths of an AU or more) radial and vertical motions, breaking surface waves, high-altitude shocks, and vortical flows. These effects are demonstrated by three-dimensional hydrodynamics simulations in Solar Nebula models. Trajectories of fluid elements, along with their thermal histories, suggest that hs-jumps mix the nebular gas and provide diverse pre-shock conditions, some of which are conducive to chondrule formation. In addition, hs-jumps may provide an energy source for driving nebular turbulence to size-sort chondrules.
Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Backward Raman amplification in the long-wavelength infrared
NASA Astrophysics Data System (ADS)
Johnson, L. A.; Gordon, D. F.; Palastro, J. P.; Hafizi, B.
2017-03-01
The wealth of work in backward Raman amplification in plasma has focused on the extreme intensity limit; however, backward Raman amplification may also provide an effective and practical mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation (LWIR). An electromagnetic simulation coupled with a relativistic cold fluid plasma model is used to demonstrate the generation of picosecond pulses at a wavelength of 10 μm with terawatt powers through backward Raman amplification. The effects of collisional damping, Landau damping, pump depletion, and wave breaking are examined, as well as the resulting design considerations for an LWIR Raman amplifier.
Ashihara, Takashi; Namba, Tsunetoyo; Ikeda, Takanori; Ito, Makoto; Nakazawa, Kazuo; Trayanova, Natalia
2004-02-24
Recent studies have demonstrated that regional capture during cardiac fibrillation is associated with an elevated capture threshold. It is typically assumed that the temporal excitable gap (capture window) during fibrillation reflects the size of the spatial excitable gap (excitable tissue between fibrillation waves). Because capture threshold is high, virtual electrode polarization is expected to be involved in the process. However, little is known about the underlying mechanisms of myocardial capture during fibrillation. To clarify these issues, we conducted altogether 3168 simulations of single spiral wave capture in a bidomain sheet. Unipolar stimuli of strengths 4, 8, 16, and 24 mA and 2-ms duration were delivered at 99 locations in the sheet. We found that cathode-break rather than cathode-make excitation was the dominant mechanism of myocardial capture. When the stimulation site was located diagonally with respect to the core (upper left or lower right if the spiral wave rotates counterclockwise), the cathode-break excitation easily invaded the spatial excitable gap and resulted in a successful capture as a result of the formation of virtual anodes in the direction of the myocardial fibers. Thus, the spatial distribution of the temporal excitable gap did not reflect the spatial excitable gap. The areas exhibiting wide temporal excitable gaps were areas in which the cathode-break excitation wave fronts easily invaded the spatial excitable gap via the virtual anodes. This study provides mechanistic insight into myocardial capture.
Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro.
Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga
2012-01-01
Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment.Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm(2) to 2 mW/cm(2), representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.
Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro
Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga
2012-01-01
Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction. PMID:23029508
Modeling Water Waves with Smoothed Particle Hydrodynamics
2011-09-30
Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes...particle detection--To study free surface flows and analyze their complex deformations, we need to know which particles are located on the free surface ...Hydrodynamics is proving to be a competent modeling scheme for free surface flows in two and three dimensions. As the GPU hardware improves, it is
Controlling Wavebreaking in a Viscous Fluid Conduit
NASA Astrophysics Data System (ADS)
Anderson, Dalton; Maiden, Michelle; Hoefer, Mark
2015-11-01
This poster will present a new technique in the experimental investigation of dispersive hydrodynamics. In shallow water flows, internal ocean waves, superfluids, and optical media, wave breaking can be resolved by a dispersive shock wave (DSW). In this work, an experimental method to control the location of DSW formation (gradient catastrophe) is explained. The central idea is to convert an initial value problem (Riemann problem) into an equivalent boundary value problem. The system to which this technique is applied is a fluid conduit resulting from high viscosity contrast between a buoyant interior and heavier exterior fluid. The conduit cross-sectional area is modeled by a nonlinear, conservative, dispersive, third order partial differential equation. Using this model, the aim is to predict the breaking location of a DSW by controlling one boundary condition. An analytical expression for this boundary condition is derived by solving the dispersionless equation backward in time from the desired step via the method of characteristics. This is used in experiment to generate an injection rate profile for a high precision piston pump. This translates to the desired conduit shape. Varying the jump height and desired breaking location indicates good control of DSW formation. This result can be improved by deriving a conduit profile by numerical simulation of the full model equation. Controlling the breaking location of a DSW allows for the investigation of dynamics independent of the boundary. Support provided by NSF CAREER DMS-1255422 , NSF EXTREEMS.
Selection of Multiarmed Spiral Waves in a Regular Network of Neurons
Hu, Bolin; Ma, Jun; Tang, Jun
2013-01-01
Formation and selection of multiarmed spiral wave due to spontaneous symmetry breaking are investigated in a regular network of Hodgkin-Huxley neuron by changing the excitability and imposing spatial forcing currents on the neurons in the network. The arm number of the multiarmed spiral wave is dependent on the distribution of spatial forcing currents and excitability diversity in the network, and the selection criterion for supporting multiarmed spiral waves is discussed. A broken spiral segment is measured by a short polygonal line connected by three adjacent points (controlled nodes), and a double-spiral wave can be developed from the spiral segment. Multiarmed spiral wave is formed when a group of double-spiral waves rotate in the same direction in the network. In the numerical studies, a group of controlled nodes are selected and spatial forcing currents are imposed on these nodes, and our results show that l-arm stable spiral wave (l = 2, 3, 4,...8) can be induced to occupy the network completely. It is also confirmed that low excitability is critical to induce multiarmed spiral waves while high excitability is important to propagate the multiarmed spiral wave outside so that distinct multiarmed spiral wave can occupy the network completely. Our results confirm that symmetry breaking of target wave in the media accounts for emergence of multiarmed spiral wave, which can be developed from a group of spiral waves with single arm under appropriate condition, thus the potential formation mechanism of multiarmed spiral wave in the media is explained. PMID:23935966
33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...
33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...
33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...
33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...
33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...
Linear and nonlinear dynamics of isospectral granular chains
NASA Astrophysics Data System (ADS)
Chaunsali, R.; Xu, H.; Yang, J.; Kevrekidis, P. G.
2017-04-01
We study the dynamics of isospectral granular chains that are highly tunable due to the nonlinear Hertz contact law interaction between the granular particles. The system dynamics can thus be tuned easily from being linear to strongly nonlinear by adjusting the initial compression applied to the chain. In particular, we introduce both discrete and continuous spectral transformation schemes to generate a family of granular chains that are isospectral in their linear limit. Inspired by the principle of supersymmetry in quantum systems, we also introduce a methodology to add or remove certain eigenfrequencies, and we demonstrate numerically that the corresponding physical system can be constructed in the setting of one-dimensional granular crystals. In the linear regime, we highlight the similarities in the elastic wave transmission characteristics of such isospectral systems, and emphasize that the presented mathematical framework allows one to suitably tailor the wave transmission through a general class of granular chains, both ordered and disordered. Moreover, we show how the dynamic response of these structures deviates from its linear limit as we introduce Hertzian nonlinearity in the chain and how nonlinearity breaks the notion of linear isospectrality.
Hydrodynamic response of a fringing coral reef to a rise in mean sea level
NASA Astrophysics Data System (ADS)
Taebi, Soheila; Pattiaratchi, Charitha
2014-07-01
Ningaloo Reef, located along the northwest coast of Australia, is one of the longest fringing coral reefs in the world extending ~300 km. Similar to other fringing reefs, it consists of a barrier reef ~1-6 km offshore with occasional gaps, backed by a shallow lagoon. Wave breaking on the reef generates radiation stress gradients that produces wave setup across the reef and lagoon and mean currents across the reef. A section of Ningaloo Reef at Sandy Bay was chosen as the focus of an intense 6-week field experiment and numerical simulation using the wave model SWAN coupled to the three-dimensional circulation model ROMS. The physics of nearshore processes such as wave breaking, wave setup and mean flow across the reef was investigated in detail by examining the various momentum balances established in the system. The magnitude of the terms and the distance of their peaks from reef edge in the momentum balance were sensitive to the changes in mean sea level, e.g. the wave forces decreased as the mean water depth increased (and hence, wave breaking dissipation was reduced). This led to an increase in the wave power at the shoreline, a slight shift of the surf zone to the lee side of the reef and changes in the intensity of the circulation. The predicted hydrodynamic fields were input into a Lagrangian particle tracking model to estimate the transport time scale of the reef-lagoon system. Flushing time of the lagoon with the open ocean was computed using two definitions in renewal of semi-enclosed water basins and revealed the sensitivity of such a transport time scale to methods. An increase in the lagoon exchange rate at smaller mean sea-level rise and the decrease at higher mean sea-level rise was predicted through flushing time computed using both methods.
NASA Astrophysics Data System (ADS)
Brumer, S. E.; Zappa, C. J.; Fairall, C. W.; Blomquist, B.; Brooks, I. M.; Tamura, H.; Yang, M.; Huebert, B. J.
2016-02-01
The High Wind Gas exchange Study (HiWinGS) presents the unique opportunity to gain new insights on the poorly understood aspects of air-sea interaction under high winds. The HiWinGS cruise took place in the North Atlantic during October and November 2013. Wind speeds exceeded 15 m s-1 25% of the time, including 48 hrs with U10 > 20 m s-1. Continuous measurements of turbulent fluxes of heat, momentum, and gas were taken from the bow of the R/V Knorr. Visible imagery was acquired from the port and starboard side of the flying bridge during daylight hours at 20Hz and directional wave spectra were obtained when on station from a wave rider buoy. Additional wave field statistics were computed from a laser altimeter as well as from a Wavewatch III hindcast. Taking advantage of the range of physical forcing and wave conditions sampled during HiWinGS, we investigate how the fractional whitecap coverage (W) and gas transfer velocity (K) vary with sea state. We distinguish between windseas and swell based on a separation algorithm applied to directional wave spectra, allowing contrasting pure windseas to swell dominated periods. For mixed seas, system alignment is considered when interpreting results. The four gases sampled during HiWinGS ranged from being mostly waterside controlled to almost entirely airside controlled. While bubble-mediated transfer appears to be small for moderately soluble gases like DMS, the importance of wave breaking turbulence transport has yet to be determined for all gases regardless of their solubility. This will be addressed by correlating measured K to estimates of active whitecap fraction (WA) and turbulent kinetic energy dissipation rate (ɛ). WA and ɛ are estimated from moments of the breaking crest length distribution derived from the imagery, focusing on young seas, when it is likely that large-scale breaking waves (i.e., whitecapping) will dominate the ɛ.
Effect of ion compensation of the beam space charge on gyrotron operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.
In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ionmore » compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.« less
The Formation and Fate of Internal Waves in the South China Sea
2015-11-05
FOf’miiiiiiM and Fate at Internal Waves In the South •C:hln;~t Sea --- --------· . _.,.. --- -------Author(s) Name{s) (Firsi,MI,La$t), Code, Atfi(iation...Tswen-Yung (David) Tang7 Internal gravity waves , the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in...for man-made structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their
A Comparison Between Internal Waves Observed in the Southern Ocean and Lee Wave Generation Theory
NASA Astrophysics Data System (ADS)
Nikurashin, M.; Benthuysen, J.; Naveira Garabato, A.; Polzin, K. L.
2016-02-01
Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a few kilometers above rough bottom topography. The enhancement is co-located with the deep-reaching fronts of the Antarctic Circumpolar Current, suggesting that the internal waves and turbulence are sustained by near-bottom flows interacting with rough topography. Recent numerical simulations confirm that oceanic flows impinging on rough small-scale topography are very effective generators of internal gravity waves and predict vigorous wave radiation, breaking, and turbulence within a kilometer above bottom. However, a linear lee wave generation theory applied to the observed bottom topography and mean flow characteristics has been shown to overestimate the observed rates of the turbulent energy dissipation. In this study, we compare the linear lee wave theory with the internal wave kinetic energy estimated from finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). We show that the observed internal wave kinetic energy levels are generally in agreement with the theory. Consistent with the lee wave theory, the observed internal wave kinetic energy scales quadratically with the mean flow speed, stratification, and topographic roughness. The correlation coefficient between the observed internal wave kinetic energy and mean flow and topography parameters reaches 0.6-0.8 for the 100-800 m vertical wavelengths, consistent with the dominant lee wave wavelengths, and drops to 0.2-0.5 for wavelengths outside this range. A better agreement between the lee wave theory and the observed internal wave kinetic energy than the observed turbulent energy dissipation suggests remote breaking of internal waves.
Numerical study of dam-break induced tsunami-like bore with a hump of different slopes
NASA Astrophysics Data System (ADS)
Cheng, Du; Zhao, Xi-zeng; Zhang, Da-ke; Chen, Yong
2017-12-01
Numerical simulation of dam-break wave, as an imitation of tsunami hydraulic bore, with a hump of different slopes is performed in this paper using an in-house code, named a Constrained Interpolation Profile (CIP)-based model. The model is built on a Cartesian grid system with the Navier Stokes equations using a CIP method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of solid body boundary. A more accurate interface capturing scheme, the Tangent of hyperbola for interface capturing/Slope weighting (THINC/SW) scheme, is adopted as the interface capturing method. Then, the CIP-based model is applied to simulate the dam break flow problem in a bumpy channel. Considerable attention is paid to the spilling type reflected bore, the following spilling type wave breaking, free surface profiles and water level variations over time. Computations are compared with available experimental data and other numerical results quantitatively and qualitatively. Further investigation is conducted to analyze the influence of variable slopes on the flow features of the tsunami-like bore.
Weakly and strongly coupled Belousov-Zhabotinsky patterns.
Weiss, Stephan; Deegan, Robert D
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
Weakly and strongly coupled Belousov-Zhabotinsky patterns
NASA Astrophysics Data System (ADS)
Weiss, Stephan; Deegan, Robert D.
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
2000-03-13
of breaking waves , the position and strength of surface currents, and the propagation of the tide into very shallow waters. In the surf zone...6) sediment properties determine shock wave propagation , a method for mine neutralization in the surf zone. 48 OCEANOGRAPHY AND MINE WARFARE...mines will be buried in the sediments, sedimentary explosive shock wave propagation is critical for determining operational performance. Presently, we
NASA Astrophysics Data System (ADS)
Zhang, Shun; Guy, Robert; Del Alamo, Juan Carlos
2017-11-01
Physarum polycephalum is a multinucleated slime mold whose endoplasm flows periodically driven by the contraction of its ectoplasm, a dense shell of F-actin cross-linked by myosin molecular motors and attached to the cell membrane. We find that physarum fragments smaller than 100 microns remain round and stay in place. However, larger fragments break symmetry leading to sustained forward locomotion, in process that is reminiscent of an interfacial instability that seems to settle around two different limit cycles (traveling waves and standing waves). We use both theory and experiments to study how coordination emerges between the different mechanical and chemical subsystems of the fragment to initiate locomotion. The role of many involved factors, such as fragment size, substratum adhesiveness, rheological properties, actin polymerization and traction stresses are investigated, and we find they agree well with our predictive model.
NASA Astrophysics Data System (ADS)
Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang
2016-10-01
We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.
Holographic P -wave superconductors in 1 +1 dimensions
NASA Astrophysics Data System (ADS)
Alkac, Gokhan; Chakrabortty, Shankhadeep; Chaturvedi, Pankaj
2017-10-01
We study (1 +1 )-dimensional P -wave holographic superconductors described by three- dimensional Einstein-Maxwell gravity coupled to a massive complex vector field in the context of AdS3/CFT2 correspondence. In the probe limit, where the backreaction of matter fields is neglected, we show that there is a formation of a vector hair around the black hole below a certain critical temperature. In the dual strongly coupled (1 +1 )-dimensional boundary theory, this holographically corresponds to the formation of a charged vector condensate which breaks spontaneously both the U (1 ) and S O (1 ,1 ) symmetries. We numerically compute both the free energy and the ac conductivity for the superconducting phase of the boundary field theory. Our numerical computations clearly establish that the superconducting phase of the boundary theory is favorable to the normal phase, and the presence of a magnetic moment term in the dual bulk theory effects the conductivity in the boundary field theory.
Observation of wave celerity evolution in the nearshore using digital video imagery
NASA Astrophysics Data System (ADS)
Yoo, J.; Fritz, H. M.; Haas, K. A.; Work, P. A.; Barnes, C. F.; Cho, Y.
2008-12-01
Celerity of incident waves in the nearshore is observed from oblique video imagery collected at Myrtle Beach, S.C.. The video camera covers the field view of length scales O(100) m. Celerity of waves propagating in shallow water including the surf zone is estimated by applying advanced image processing and analysis methods to the individual video images sampled at 3 Hz. Original image sequences are processed through video image frame differencing, directional low-pass image filtering to reduce the noise arising from foam in the surf zone. The breaking wave celerity is computed along a cross-shore transect from the wave crest tracks extracted by a Radon transform-based line detection method. The observed celerity from the nearshore video imagery is larger than the linear wave celerity computed from the measured water depths over the entire surf zone. Compared to the nonlinear shallow water wave equation (NSWE)-based celerity computed using the measured depths and wave heights, in general, the video-based celerity shows good agreements over the surf zone except the regions across the incipient wave breaking locations. In the regions across the breaker points, the observed wave celerity is even larger than the NSWE-based celerity due to the transition of wave crest shapes. The observed celerity using the video imagery can be used to monitor the nearshore geometry through depth inversion based on the nonlinear wave celerity theories. For this purpose, the exceeding celerity across the breaker points needs to be corrected accordingly compared to a nonlinear wave celerity theory applied.
Variability of the Magnetic Field Power Spectrum in the Solar Wind at Electron Scales
NASA Astrophysics Data System (ADS)
Roberts, Owen Wyn; Alexandrova, O.; Kajdič, P.; Turc, L.; Perrone, D.; Escoubet, C. P.; Walsh, A.
2017-12-01
At electron scales, the power spectrum of solar-wind magnetic fluctuations can be highly variable and the dissipation mechanisms of the magnetic energy into the various particle species is under debate. In this paper, we investigate data from the Cluster mission’s STAFF Search Coil magnetometer when the level of turbulence is sufficiently high that the morphology of the power spectrum at electron scales can be investigated. The Cluster spacecraft sample a disturbed interval of plasma where two streams of solar wind interact. Meanwhile, several discontinuities (coherent structures) are seen in the large-scale magnetic field, while at small scales several intermittent bursts of wave activity (whistler waves) are present. Several different morphologies of the power spectrum can be identified: (1) two power laws separated by a break, (2) an exponential cutoff near the Taylor shifted electron scales, and (3) strong spectral knees at the Taylor shifted electron scales. These different morphologies are investigated by using wavelet coherence, showing that, in this interval, a clear break and strong spectral knees are features that are associated with sporadic quasi parallel propagating whistler waves, even for short times. On the other hand, when no signatures of whistler waves at ∼ 0.1{--}0.2{f}{ce} are present, a clear break is difficult to find and the spectrum is often more characteristic of a power law with an exponential cutoff.
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2008-01-01
and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. 1 Report Documentation Page Form...297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2008-01-01
and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. 1 Report Documentation Page Form...297. Jessup , A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery
NASA Astrophysics Data System (ADS)
Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.
2015-04-01
In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.
On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm
NASA Astrophysics Data System (ADS)
Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.
2017-04-01
Oceanic bubbles play an important role in the air-sea exchange of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical processes, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas fluxes are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas flux difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas flux. The wave-age dependence is not included in any existing bubble-mediated gas flux parameterizations.
NASA Astrophysics Data System (ADS)
Abdi, Asad; Gharaie, Mohamad Hosein Mahmudy; Bádenas, Beatriz
2014-12-01
We report eventites generated by turbulence events triggered by breaking internal waves in Jurassic pelagic muds deposited in a graben area located between the Arabian and Bisotoun carbonate platforms, at the Kermanshah basin (West Iran). The 43 m-thick studied Pliensbachian-Aalenian succession at Kermanshah includes sponge spicule-radiolarian limestones and cherts with cm- to dm-thick intercalations of pyroclastic beds and coarse-grained deposits formed by neritic-derived grains and reworked pelagic material. Breaking of internal waves in localized areas reworked the available sediment on sea floor, including the erosion of cohesive pelagic muds and the resuspension of neritic-derived grains, which were resedimented from the Bisotoun platform most probably by storms or turbidity currents. The generated internal wave deposits include: flat- and round pebble limestone conglomerates, formed by deposition of pelagic clasts and neritic-derived grains near the breaker zone; laminated packstone-grainstones deposited by high-energy, upslope (swash) and downslope (backswash) flows; cm-thick packstone-grainstones with asymmetrical starved ripples and hummocy crossstratification, generated downdip by waning of backwash flows and internal wave oscillatory flows. These internal wave deposits predominate in the Pliensbachian-early Toarcian, and were related to internal waves developed along a thermocline linked to climate warming and excited by submarine volcanic eruptions, storms or tectonic shaking.
Fate of internal waves on a shallow shelf
NASA Astrophysics Data System (ADS)
Davis, Kristen; Arthur, Robert; Reid, Emma; Decarlo, Thomas; Cohen, Anne
2017-11-01
Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a shelf-slope region of a coral atoll in the South China Sea. The spatially-continuous view of the near-bottom temperature field provided by the DTS offers a perspective of physical processes previously available only in laboratory settings or numerical models. These processes include internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, internal ``tide pools'' (dense water left behind after the retreat of an internal wave), and internal run-down (near-bottom, offshore-directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf - whether they are transmitted into shallow waters or reflected back offshore - is mediated by local water column density and shear structure, with important implications for nearshore distributions of energy, heat, and nutrients. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for field work supported by Academia Sinica and for K.D. and E.R. from NSF.
Importance of d-wave contributions in the charge symmetry breaking reaction dd →4Heπ0
NASA Astrophysics Data System (ADS)
Adlarson, P.; Augustyniak, W.; Bardan, W.; Bashkanov, M.; Bergmann, F. S.; Berłowski, M.; Bondar, A.; Büscher, M.; Calén, H.; Ciepał, I.; Clement, H.; Czerwiński, E.; Demmich, K.; Engels, R.; Erven, A.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goswami, A.; Grigoryev, K.; Gullström, C.-O.; Hanhart, C.; Heijkenskjöld, L.; Hejny, V.; Hüsken, N.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kemmerling, G.; Khatri, G.; Khoukaz, A.; Khreptak, O.; Kirillov, D. A.; Kistryn, S.; Kleines, H.; Kłos, B.; Krzemień, W.; Kulessa, P.; Kupść, A.; Kuzmin, A.; Lalwani, K.; Lersch, D.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Morsch, H.-P.; Moskal, P.; Ohm, H.; Parol, W.; Perez del Rio, E.; Piskunov, N. M.; Prasuhn, D.; Pszczel, D.; Pysz, K.; Pyszniak, A.; Ritman, J.; Roy, A.; Rudy, Z.; Rundel, O.; Sawant, S.; Schadmand, S.; Schätti-Ozerianska, I.; Sefzick, T.; Serdyuk, V.; Shwartz, B.; Sitterberg, K.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Stephan, E.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Trzciński, A.; Wolke, M.; Wrońska, A.; Wüstner, P.; Yamamoto, A.; Zabierowski, J.; Zieliński, M. J.; Złomańczuk, J.; Żuprański, P.; Żurek, M.; WASA-at-COSY Collaboration
2018-06-01
This letter reports a first quantitative analysis of the contribution of higher partial waves in the charge symmetry breaking reaction dd →4Heπ0 using the WASA-at-COSY detector setup at an excess energy of Q = 60MeV. The determined differential cross section can be parametrized as d σ /d Ω = a + bcos2 θ*, where θ* is the production angle of the pion in the center-of-mass coordinate system, and the results for the parameters are a = (1.55 ± 0.46(stat) + 0.32 - 0.8 (syst)) pb /sr and b = (13.1 ± 2.1 (stat)-2.7+1.0 (syst)) pb /sr. The data are compatible with vanishing p-waves and a sizable d-wave contribution. This finding should strongly constrain the contribution of the Δ isobar to the dd →4Heπ0 reaction and is, therefore, crucial for a quantitative understanding of quark mass effects in nuclear production reactions.
Emergent Topological order from Spin-Orbit Density wave
NASA Astrophysics Data System (ADS)
Gupta, Gaurav; Das, Tanmoy
We study the emergence of a Z2 -type topological order because of Landau type symmetry breaking order parameter. When two Rashba type SOC bands of different chirality become nested by a magic wavevector [(0, ∖pi) or (∖pi,0)], it introduces the inversion of chirality between different lattice sites. Such a density wave state is known as spin-orbit density wave. The resulting quantum order is associated with the topological order which is classified by a Z2 invariant. So, this system can simultaneously be classified by both a symmetry breaking order parameter and the associated Z2 topological invariant. This order parameter can be realized or engineered in two- or quasi-two-dimensional fermionic lattices, quantum wires, with tunable RSOC and correlation strength. The work is facilitated by the computer cluster facility at Department of Physics, Indian Institute of Science.
Nonadiabatic Josephson current pumping by chiral microwave irradiation
NASA Astrophysics Data System (ADS)
Venitucci, B.; Feinberg, D.; Mélin, R.; Douçot, B.
2018-05-01
Irradiating a Josephson junction with microwaves can operate not only on the amplitude but also on the phase of the Josephson current. This requires breaking time-inversion symmetry, which is achieved by introducing a phase lapse between the microwave components acting on the two sides of the junction. General symmetry arguments and the solution of a specific single-level quantum dot model show that this induces chirality in the Cooper pair dynamics due to the topology of the Andreev bound-state wave function. Another essential condition is to break electron-hole symmetry within the junction. A shift of the current-phase relation is obtained, which is controllable in sign and amplitude with the microwave phase and an electrostatic gate, thus producing a "chiral" Josephson transistor. The dot model is solved in the infinite-gap limit by Floquet theory and in the general case with Keldysh nonequilibrium Green's functions. The chiral current is nonadiabatic: it is extremal and changes sign close to resonant chiral transitions between the Andreev bound states.
Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in YBa2Cu3Oy
NASA Astrophysics Data System (ADS)
Sato, Y.; Kasahara, S.; Murayama, H.; Kasahara, Y.; Moon, E.-G.; Nishizaki, T.; Loew, T.; Porras, J.; Keimer, B.; Shibauchi, T.; Matsuda, Y.
2017-11-01
A long-standing controversial issue in the quest to understand the superconductivity in cuprates is the nature of the enigmatic pseudogap region of the phase diagram. Especially important is whether the pseudogap state is a distinct thermodynamic phase characterized by broken symmetries below the onset temperature T*. Here we report torque-magnetometry measurements of anisotropic susceptibility within the ab planes in orthorhombic YBa2Cu3Oy with exceptionally high precision. The in-plane anisotropy displays a significant increase with a distinct kink at the pseudogap onset temperature T*, showing a remarkable scaling behaviour with respect to T/T* in a wide doping range. Our systematic analysis reveals that the rotational symmetry breaking sets in at T* in the limit where the effect of orthorhombicity is eliminated. These results provide thermodynamic evidence that the pseudogap onset is associated with a second-order nematic phase transition, which differs from the recently reported charge-density-wave transition that accompanies translational symmetry breaking.
Fulford, Janice M.
2003-01-01
A numerical computer model, Transient Inundation Model for Rivers -- 2 Dimensional (TrimR2D), that solves the two-dimensional depth-averaged flow equations is documented and discussed. The model uses a semi-implicit, semi-Lagrangian finite-difference method. It is a variant of the Trim model and has been used successfully in estuarine environments such as San Francisco Bay. The abilities of the model are documented for three scenarios: uniform depth flows, laboratory dam-break flows, and large-scale riverine flows. The model can start computations from a ?dry? bed and converge to accurate solutions. Inflows are expressed as source terms, which limits the use of the model to sufficiently long reaches where the flow reaches equilibrium with the channel. The data sets used by the investigation demonstrate that the model accurately propagates flood waves through long river reaches and simulates dam breaks with abrupt water-surface changes.
NASA Astrophysics Data System (ADS)
Lubis, S. W.; Nakamura, N.
2017-12-01
Previous studies have shown that the monsoonal circulation plays an important role in planetary wave breaking (PWB). The highest frequency of breaking events occurs just downstream (east) of the monsoon region in summer. PWB induces mixing of potential vorticity (PV) and hence, alter the horizontal mixing in the atmosphere. Here, the authors hypothesize that the stratospheric easterlies in the boreal summer also play a significant role in the PWB and mixing associated with the summer monsoon. If the stratospheric winds were westerly in boreal summer, the frequency of PWB would be decreased due to more waves penetrating in the stratosphere, resulting in less horizontal PWB and thus reduced mixing in the subtropical tropopause region. The hypothesis is examined by using a set of idealized moist GFDL simulations. The monsoon circulation is produced by adding a land-sea contrast with a Gaussian-shaped mountains positioned in the midlatitudes. Other key ingredients for the monsoon, including albedo, oceanic warm pool, and Q-flux, were also ideally imposed in all simulations. Our control simulation produces a summer monsoon-like circulation similar to the observation. In particular, the thermally forced monsoonal circulation forms a prominent closed upper-level anticyclone that dominates the summertime upper-level flow. Associated with this circulation is an upward-bulging tropopause that forms a large reservoir of anomalously low PV. Consistent with previous studies, the well-defined tropospheric jet lies just poleward of the upper-level anticyclone, and acts as a dynamical barrier between the low-PV reservoir over the monsoonal region and the high-PV reservoir in the extratropics. This barrier disappears just northeast of the monsoon area in the jet exit region, allowing more quasi-planetary waves to break in this region. Repetitive wave breaking further weakens the PV gradient, leading to the formation of the surf zone and stronger mixing in this region. To quantify the role of the stratospheric circulation in the PWB and mixing associated with the summer monsoon, we add an artificial local cooling in the stratosphere and thereby preserve the stratospheric westerlies in summer. The extent to which PWB and mixing are modified by the presence of stratospheric westerlies will be discussed.
NASA Astrophysics Data System (ADS)
Wang, P. K.; Cheng, K. Y.; Lindsey, D. T.
2017-12-01
Deep convective clouds play an important role in the transport of momentum, energy, and chemical species from the surface to upper troposphere and lower stratosphere (UT/LS), but exactly how these processes occur and how important they are as compared to other processes are still up to debate. The main hurdle to the complete understanding of these transport processes is the difficulty in observing storm systems directly. Remote sensing data such as those obtained by radars and satellites are very valuable but they need correct interpretation before we can use them profitably. We have performed numerical simulations of thunderstorms using a physics-based cloud resolving model and compared model results with satellite observations. Many major features of observed satellite storm top images, such as cold-V, close in warm area, above anvil cirrus plumes, are successfully simulated and can be interpreted by the model physics. However, due to the limitation of resolution and other ambiguities, we have been unable to determine the real cause of some features such as the conversion of jumping cirrus to long trail plumes and whether or no small scale ( < 1 km) wave breaking occur. We are fortunate to have encountered a line of sea breeze storms along the coast of China during a flight from Beijing to Taipei in July 2106. The flight was at an altitude such that storm tops could be clearly observed. Nearly all of the mature storm cells that can be identified had very vigorous storm top activities, indicating very strong stratosphere/troposphere exchange (STE). There is no doubt that the signatures of wave breaking, i.e., jumping cirrus, occurs from very small scale (< 1 km) to tens of km. this matches our previous model results very well. Furthermore, one storm cell shows very clearly the process whereby a jumping cirrus is being transformed into a long trail cirrus plume which was often observed in satellite images. We have also obtained the corresponding Himawari-8 satellite images for this line of storms. Aircraft observation, satellite images and model results will be compared and the implications to STE discussed.
NASA Astrophysics Data System (ADS)
Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef
2018-05-01
This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.
Wavelength selection and symmetry breaking in orbital wave ripples
NASA Astrophysics Data System (ADS)
Nienhuis, Jaap H.; Perron, J. Taylor; Kao, Justin C. T.; Myrow, Paul M.
2014-10-01
Sand ripples formed by waves have a uniform wavelength while at equilibrium and develop defects while adjusting to changes in the flow. These patterns arise from the interaction of the flow with the bed topography, but the specific mechanisms have not been fully explained. We use numerical flow models and laboratory wave tank experiments to explore the origins of these patterns. The wavelength of "orbital" wave ripples (λ) is directly proportional to the oscillating flow's orbital diameter (d), with many experimental and field studies finding λ/d ≈ 0.65. We demonstrate a coupling that selects this ratio: the maximum length of the flow separation zone downstream of a ripple crest equals λ when λ/d ≈ 0.65. We show that this condition maximizes the growth rate of ripples. Ripples adjusting to changed flow conditions develop defects that break the bed's symmetry. When d is shortened sufficiently, two new incipient crests appear in every trough, but only one grows into a full-sized crest. Experiments have shown that the same side (right or left) wins in every trough. We find that this occurs because incipient secondary crests slow the flow and encourage the growth of crests on the next flank. Experiments have also shown that when d is lengthened, ripple crests become increasingly sinuous and eventually break up. We find that this occurs because crests migrate preferentially toward the nearest adjacent crest, amplifying any initial sinuosity. Our results reveal the mechanisms that form common wave ripple patterns and highlight interactions among unsteady flows, sediment transport, and bed topography.
NASA Astrophysics Data System (ADS)
Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.
2017-12-01
Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase velocities of multiple, interfering arrivals in one time window. We demonstrate how this property can be exploited to separate the wavefield into its elastic wave-modes and to isolate or suppress waves arriving from specific directions (directional filtering), both in a fully automated fashion.
Potential Regional Sediment Management (RSM) Projects in the Haleiwa Region, Oahu, Hawaii
2014-05-01
relic stream channels on wave -induced flow patterns. Wave breaking and energy dissipation over the reefs result in return currents (from nearshore to...long), (c) a stub breakwater (80 ft long), and (d) a wave absorber (140 ft long). The non-federal sponsor for the harbor is the State of Hawaii...Coastal Inlets Research Program (CIRP) Coastal Modeling System (CMS) numerical models CMS- Wave and CMS- Flow (Sanchez et al. 2011) were implemented to
Breaking Wave Impact on a Partially Submerged Rigid Cube in Deep Water
NASA Astrophysics Data System (ADS)
Ikeda, C. M.; Choquette, M.; Duncan, J. H.
2011-11-01
The impact of a plunging breaking wave on a partially submerged cube is studied experimentally. The experiments are performed in a wave tank that is 14.8 m long, 1.15 m wide and 2.2 m high with a water depth of 0.91 m. A single repeatable plunging breaker is generated from a dispersively focused wave packet (average frequency of 1.4 Hz) that is created with a programmable wave maker. The rigid (L = 30 . 5 cm) cube is centered in the width of the tank and mounted from above with one face oriented normal to the oncoming wave. The position of the center of the front face of the cube is varied from the breaker location (xb ~ 6 . 35 m) to xb + 0 . 05 m in the streamwise direction and from - 0 . 25 L to 0 . 25 L vertically relative to the mean water level. A high-speed digital camera is used to record both white-light and laser-induced fluorescence (LIF) movies of the free surface shape in front of the cube before and after the wave impact. When the wave hits the cube just as the plunging jet is formed, a high-velocity vertical jet is created and the trajectory and maximum height of the jet are strongly influenced by the vertical position of the cube. Supported by the Office of Naval Research, Contract Monitor R. D. Joslin.
Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements
2011-09-30
crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to provide a more comprehensive description of...Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microscale breaking waves
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2006-09-30
length spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005...Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2010-01-01
Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks...and K.R. Phadnis , 2005: Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery using a PIV algorithm
Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements
2013-09-30
Phillips et al., 2001] and microscale breaker crest length spectral density [e.g., Jessup and Phadnis , 2005] have been reported. Our effort seeks...16, 290-297. Jessup, A. T., and K. R. Phadnis (2005), Measurement of the geometric and kinematic properties of microsacle breaking waves from
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2006-09-30
crest length spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis ...Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery using a
Ocean Surface Wave Optical Roughness: Innovative Polarization Measurement
2008-01-01
et al, 2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported...Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from
THE MOVEMENT OF OIL UNDER NON-BREAKING WAVES
The combined effects of wave kinematics, turbulent diffusion, and buoyancy on the transport of oil droplets at sea were investigated in this work using random walk techniques in a Monte Carlo framework. Six hundred oil particles were placed at the water surface and tracked for 5...
Surface Wave Dynamics in the Coastal Zone
2014-09-30
also collected from the Duck measurement site, operated by the USACE Field Research Facility at Duck , North Carolina. The collection and validation...similar analysis for 10 storm periods using wave data collected at Duck , North Carolina. The preparations consist of creating a dedicated unstructured...validated in the Southern North Sea and Duck validation studies. The shallow water source terms for wave breaking and triad interactions are being
Numerical experiments on breaking waves on contrasting beaches using a two-phase flow approach
NASA Astrophysics Data System (ADS)
Bakhtyar, R.; Barry, D. A.; Kees, C. E.
2012-11-01
A mechanistic understanding of beach environments needs to account for interactions of oceanic forcing and beach materials, in particular the role of waves on the evolution of the beach profile. A fully coupled two-phase flow model was used to simulate nearshore fluid-sediment turbulent flow in the cross-shore direction. It includes the Reynolds-Averaged Navier-Stokes equations and turbulent stress closures for each phase, and accounts for inter-granular stresses. The model has previously been validated using laboratory-scale data, so the results are likely more reliable for that scale. It was used to simulate wave breaking and the ensuing hydrodynamics and sediment transport processes in the surf/swash zones. Numerical experiments were conducted to investigate the effects of varying beach and wave characteristics (e.g., beach slope, sediment grain size, wave periods and heights) on the foreshore profile changes. Spilling and plunging breakers occur on dissipative and intermediate beaches, respectively. The impact of these wave/beach types on nearshore zone hydrodynamics and beach morphology was determined. The numerical results showed that turbulent kinetic energy, sediment concentrations and transport rate are greater on intermediate than on dissipative beaches. The results confirmed that wave energy, beach grain size and bed slope are main factors for sediment transport and beach morphodynamics. The location of the maximum sediment transport is near the breaking point for both beach types. Coarse- and fine-sand beaches differ significantly in their erosive characteristics (e.g., foreshore profile evolutions are erosive and accretionary on the fine and coarse sand beaches, respectively). In addition, a new parameter (based on main driving factors) is proposed that can characterize the sediment transport in the surf and swash zones. The results are consistent with existing physical observations, suggesting that the two-phase flow model is suitable for the simulation of hyper-concentrated mixed water-sediment flows in the nearshore. The model thus has potential as a useful tool for investigating interactions between nearshore hydrodynamics and beach morphology.
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Nelson, William; Davis, Christopher C.
2014-10-01
Plenoptic functions are functions that preserve all the necessary light field information of optical events. Theoretical work has demonstrated that geometric based plenoptic functions can serve equally well in the traditional wave propagation equation known as the "scalar stochastic Helmholtz equation". However, in addressing problems of 3D turbulence simulation, the dominant methods using phase screen models have limitations both in explaining the choice of parameters (on the transverse plane) in real-world measurements, and finding proper correlations between neighboring phase screens (the Markov assumption breaks down). Though possible corrections to phase screen models are still promising, the equivalent geometric approach based on plenoptic functions begins to show some advantages. In fact, in these geometric approaches, a continuous wave problem is reduced to discrete trajectories of rays. This allows for convenience in parallel computing and guarantees conservation of energy. Besides the pairwise independence of simulated rays, the assigned refractive index grids can be directly tested by temperature measurements with tiny thermoprobes combined with other parameters such as humidity level and wind speed. Furthermore, without loss of generality one can break the causal chain in phase screen models by defining regional refractive centers to allow rays that are less affected to propagate through directly. As a result, our work shows that the 3D geometric approach serves as an efficient and accurate method in assessing relevant turbulence problems with inputs of several environmental measurements and reasonable guesses (such as Cn 2 levels). This approach will facilitate analysis and possible corrections in lateral wave propagation problems, such as image de-blurring, prediction of laser propagation over long ranges, and improvement of free space optic communication systems. In this paper, the plenoptic function model and relevant parallel algorithm computing will be presented, and its primary results and applications are demonstrated.
Comparing wave shoaling methods used in large-scale coastal evolution modeling
NASA Astrophysics Data System (ADS)
Limber, P. W.; Adams, P. N.; Murray, A.
2013-12-01
A variety of methods are available to simulate wave propagation from the deep ocean to the surf zone. They range from simple and computationally fast (e.g. linear wave theory applied to shore-parallel bathymetric contours) to complicated and computationally intense (e.g., Delft's ';Simulating WAves Nearshore', or SWAN, model applied to complex bathymetry). Despite their differences, the goal of each method is the same with respect to coastline evolution modeling: to link offshore waves with rates of (and gradients in) alongshore sediment transport. Choosing a shoaling technique for modeling coastline evolution should be partly informed by the spatial and temporal scales of the model, as well as the model's intent (is it simulating a specific coastline, or exploring generic coastline dynamics?). However, the particular advantages and disadvantages of each technique, and how the advantages/disadvantages vary over different model spatial and temporal scales, are not always clear. We present a wave shoaling model that simultaneously computes breaking wave heights and angles using three increasingly complex wave shoaling routines: the most basic approach assuming shore-parallel bathymetric contours, a wave ray tracing method that includes wave energy convergence and divergence and non-shore-parallel contours, and a spectral wave model (SWAN). Initial results show reasonable agreement between wave models along a flat shoreline for small (1 m) wave heights, low wave angles (0 to 10 degrees), and simple bathymetry. But, as wave heights and angles increase, bathymetry becomes more variable, and the shoreline shape becomes sinuous, the model results begin to diverge. This causes different gradients in alongshore sediment transport between model runs employing different shoaling techniques and, therefore, different coastline behavior. Because SWAN does not approximate wave breaking (which drives alongshore sediment transport) we use a routine to extract grid cells from SWAN output where wave height is approximately one-half of the water depth (a standard wave breaking threshold). The goal of this modeling exercise is to understand under what conditions a simple wave model is sufficient for simulating coastline evolution, and when using a more complex shoaling routine can optimize a coastline model. The Coastline Evolution Model (CEM; Ashton and Murray, 2006) is used to show how different shoaling routines affect modeled coastline behavior. The CEM currently includes the most basic wave shoaling approach to simulate cape and spit formation. We will instead couple it to SWAN, using the insight from the comprehensive wave model (above) to guide its application. This will allow waves transformed over complex bathymetry, such as cape-associated shoals and ridges, to be input for the CEM so that large-scale coastline behavior can be addressed in less idealized environments. Ashton, A., and Murray, A.B., 2006, High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes: Journal of Geophysical Research, v. 111, p. F04011, doi:10.1029/2005JF000422.
Mangrove forest against dyke-break-induced tsunami on rapidly subsiding coasts
NASA Astrophysics Data System (ADS)
Takagi, Hiroshi; Mikami, Takahito; Fujii, Daisuke; Esteban, Miguel; Kurobe, Shota
2016-07-01
Thin coastal dykes typically found in developing countries may suddenly collapse due to rapid land subsidence, material ageing, sea-level rise, high wave attack, earthquakes, landslides, or a collision with vessels. Such a failure could trigger dam-break tsunami-type flooding, or "dyke-break-induced tsunami", a possibility which has so far been overlooked in the field of coastal disaster science and management. To analyse the potential consequences of one such flooding event caused by a dyke failure, a hydrodynamic model was constructed based on the authors' field surveys of a vulnerable coastal location in Jakarta, Indonesia. In a 2 m land subsidence scenario - which is expected to take place in the study area after only about 10-20 years - the model results show that the floodwaters rapidly rise to a height of nearly 3 m, resembling the flooding pattern of earthquake-induced tsunamis. The depth-velocity product criterion suggests that many of the narrow pedestrian paths behind the dyke could experience strong flows, which are far greater than the safe limits that would allow pedestrian evacuation. A couple of alternative scenarios were also considered to investigate how such flood impacts could be mitigated by creating a mangrove belt in front of the dyke as an additional safety measure. The dyke-break-induced tsunamis, which in many areas are far more likely than regular earthquake tsunamis, cannot be overlooked and thus should be considered in disaster management and urban planning along the coasts of many developing countries.
Stone, G.W.; Pepper, D.A.; Xu, Jie; Zhang, X.
2004-01-01
Ship Shoal, a transgressive sand body located at the 10 m isobath off south-central Louisiana, is deemed a potential sand source for restoration along the rapidly eroding Isles Dernieres barrier chain and possibly other sites in Louisiana. Through numerical wave modeling we evaluate the potential response of mining Ship Shoal on the wave field. During severe and strong storms, waves break seaward of the western flank of Ship Shoal. Therefore, removal of Ship Shoal (approximately 1.1 billion m3) causes a maximum increase of the significant wave height by 90%-100% and 40%-50% over the shoal and directly adjacent to the lee of the complex for two strong storm scenarios. During weak storms and fair weather conditions, waves do not break over Ship Shoal. The degree of increase in significant wave height due to shoal removal is considerably smaller, only 10%-20% on the west part of the shoal. Within the context of increasing nearshore wave energy levels, removal of the shoal is not significant enough to cause increased erosion along the Isles Dernieres. Wave approach direction exerts significant control on the wave climate leeward of Ship Shoal for stronger storms, but not weak storms or fairweather. Instrumentation deployed at the shoal allowed comparison of measured wave heights with numerically derived wave heights using STWAVE. Correlation coefficients are high in virtually all comparisons indicating the capability of the model to simulate wave behavior satisfactorily at the shoal. Directional waves, currents and sediment transport were measured during winter storms associated with frontal passages using three bottom-mounted arrays deployed on the seaward and landward sides of Ship Shoal (November, 1998-January, 1999). Episodic increases in wave height, mean and oscillatory current speed, shear velocity, and sediment transport rates, associated with recurrent cold front passages, were measured. Dissipation mechanisms included both breaking and bottom friction due to variable depths across the shoal crest and variable wave amplitudes during storms and fair-weather. Arctic surge fronts were associated with southerly storm waves, and southwesterly to westerly currents and sediment transport. Migrating cyclonic fronts generated northerly swell that transformed into southerly sea, and currents and sediment transport that were southeasterly overall. Waves were 36% higher and 9% longer on the seaward side of the shoal, whereas mean currents were 10% stronger landward, where they were directed onshore, in contrast to the offshore site, where seaward currents predominated. Sediment transport initiated by cold fronts was generally directed southeasterly to southwesterly at the offshore site, and southerly to westerly at the nearshore site. The data suggest that both cold fronts and the shoal, exert significant influences on regional hydrodynamics and sediment transport.
Quantification of Surf Zone Bathymetry from Video Observations of Wave Breaking
NASA Astrophysics Data System (ADS)
Aarninkhof, S.; Ruessink, G.
2002-12-01
Cost-efficient methods to quantify surf zone bathymetry with high resolution in time and space would be of great value for coastal research and management. Automated video techniques provide the potential to do so. Time-averaged video observations of the nearshore zone show bright intensities at locations where waves preferentially break. Highly similar patterns are found from model simulations of depth-induced wave breaking, which show increasing rates of wave dissipation in shallow areas like sand bars. Thus, video observations of wave breaking - at least qualitatively - reflect sub-merged beach bathymetry. In search of the quantification of this relationship, we present a new model concept to map sub-merged beach bathymetry from time-averaged video images. This is achieved by matching model-predicted and video-observed rates of wave dissipation. First, time-averaged image intensities are sampled along a cross-shore array and interpreted in terms of a wave dissipation parameter. This involves a correction for the effect of persistent foam, which is visible at time-averaged video images but not predicted by common wave propagation models. The dissipation profiles thus obtained are used to update an initial beach bathymetry through optimisation of the match between measured and modelled rates of wave dissipation. The latter is done by raising the bottom elevation in areas where the measured dissipation rate exceeds the computed dissipation and vice versa. Since the model includes video data with high resolution in time (typically multiple images over a tidal cycle), it allows for virtually continous monitoring of surfzone bathymetry . Model tests against a synthetic data set of artificially generated wave dissipation profiles have shown the model's capability to accurately reconstruct beach bathymetry, over a wide range of morphological configurations. Maximum model deviations were found in the case of highly developed bar-trough systems (bar heights up to 4 m) and near the shoreline. Model performance strongly benefits from an increase of wave heights and tidal ranges. At the moment, the model is subject to validation against a data set of multiple-barred beach profiles, surveyed during a 3 week period of stormy wheather in the course of the Coast3D field experiments at Egmond (The Netherlands). Although the video-based estimates of bar bathymetry show a shoreward off-set of the location of the inner bar and vertical deviations of 0.5 (0.8) m near the outer (inner) bar crest, these preliminary results show a promising match in terms of profile shape and the migration of the seaward bar face. Model application at the time scale of months to years is subject to present research. This work was supported by the DIOC Earth Observations of Delft University of Technology, the Delft Cluster program at Delft Hydraulics, the Dutch Ministry of Public Works Rijkswaterstaaat and the EU-funded Coastview project.
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2008-01-01
Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to...1986: Statistics of breaking waves observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2008-01-01
e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to provide a more comprehensive description of the physical and optical roughness...1986: Statistics of breaking waves observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis
Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements
2011-09-30
Phillips et al, 2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported...Statistics of breaking waves observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R
HB06 : Field Validation of Realtime Predictions of Surfzone Waves and Currents
NASA Astrophysics Data System (ADS)
Guza, R. T.; O'Reilly, W. C.; Feddersen, F.
2006-12-01
California shorelines can be contaminated by the discharge of polluted streams and rivers onto the beach face or into the surf zone. Management decisions (for example, beach closures) can be assisted by accurate characterization of the waves and currents that transport and mix these pollutants. A real-time, operational waves and alongshore current model, developed for a 5 km alongshore reach at Huntington Beach (http://cdip.ucsd.edu/hb06/), will be tested for a month during Fall 2006 as part of the HB06 field experiment. The model has two components: prediction of incident waves immediately seaward of the surf zone, and the transformation of breaking waves across the surf zone. The California Safe Boating Network Model (O'Reilly et al., California World Ocean Conference, 2006) is used to estimate incident wave properties. This regional wave model accounts for blocking and refraction by offshore islands and shoals, and variation of the shoreline orientation. At Huntington Beach, the network model uses four buoys exposed to the deep ocean to estimate swell, and four nearby buoys to estimate locally generated seas. The model predictions will be compared with directional wave buoy observations in 22 m depth, 1 km from the shore. The computationally fast model for surfzone waves and breaking-wave driven alongshore currents, appropriate for random waves on beaches with simple bathymetry, is based on concepts developed and tested by Ed Thornton and his colleagues over the last 30 years. Modeled alongshore currents at Huntington Beach, with incident waves predicted by the Network model, will be compared with waves and currents observed during HB06 along a transect extending from 4 m depth to the shoreline. Support from the California Coastal Conservancy, NOAA, and ONR is gratefully acknowledged.
Calibration of PCB-132 Sensors in a Shock Tube
NASA Technical Reports Server (NTRS)
Berridge, Dennis C.; Schneider, Steven P.
2012-01-01
While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.
Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves
NASA Astrophysics Data System (ADS)
El, G. A.; Khamis, E. G.; Tovbis, A.
2016-09-01
We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schrödinger (NLS) equation with the initial condition in the form of a rectangular barrier (a ‘box’). We use the Whitham modulation theory combined with the nonlinear steepest descent for the semi-classical inverse scattering transform, to describe the evolution and interaction of two counter-propagating nonlinear wave trains—the dispersive dam break flows—generated in the NLS box problem. We show that the interaction dynamics results in the emergence of modulated large-amplitude quasi-periodic breather lattices whose amplitude profiles are closely approximated by the Akhmediev and Peregrine breathers within certain space-time domain. Our semi-classical analytical results are shown to be in excellent agreement with the results of direct numerical simulations of the small-dispersion focusing NLS equation.
Lee wave breaking region: the map of instability development scenarios
NASA Astrophysics Data System (ADS)
Yakovenko, S. N.
2017-10-01
Numerical study of a stably stratified flow above the two-dimensional cosine-shaped obstacle has been performed by DNS and LES. These methods were implemented to solve the three-dimensional Navier-Stokes equations in the Boussinesq approximation, together with by the scalar diffusion equation. The results of scanning in the wide ranges of physical parameters (Reynolds and Prandtl/Schmidt numbers relating to laboratory experiment cases and atmospheric or oceanic situations) are presented for instability and turbulence development scenarios in the overturning internal lee waves. The latter is generated by the obstacle in a flow with the constant inflow values of velocity and stable density gradient. Evolution of lee-wave breaking is explored by visualization of velocity and scalar (density) fields, and the analysis of spectra. Based on the numerical simulation results, the power-law dependence on Reynolds number is demonstrated for the wavelength of the most unstable perturbation.
Validation of a Wave Data Assimilation System Based on SWAN
NASA Astrophysics Data System (ADS)
Flampourisi, Stylianos; Veeramony, Jayaram; Orzech, Mark D.; Ngodock, Hans E.
2013-04-01
SWAN is one of the most broadly used models for wave predictions in the nearshore, with known and extensively studied limitations due to the physics and/or to the numerical implementation. In order to improve the performance of the model, a 4DVAR data assimilation system based on a tangent linear code and the corresponding adjoint from the numerical SWAN model has been developed at NRL(Orzech et. al., 2013), by implementing the methodology of Bennett 2002. The assimilation system takes into account the nonlinear triad and quadruplet interactions, depth-limited breaking, wind forcing, bottom friction and white-capping. Using conjugate gradient method, the assimilation system minimizes a quadratic penalty functional (which represents the overall error of the simulation) and generates the correction of the forward simulation in spatial, temporal and spectral domain. The weights are given to the output of the adjoint by calculating the covariance to an ensemble of forward simulations according to Evensen 2009. This presentation will focus on the extension of the system to a weak-constrainted data assimilation system and on the extensive validation of the system by using wave spectra for forcing, assimilation and validation, from FRF Duck, North Carolina, during August 2011. During this period, at the 17 m waverider buoy location, the wind speed was up to 35 m/s (due to Hurricane Irene) and the significant wave height varied from 0.5 m to 6 m and the peak period between 5 s and 18 s. In general, this study shows significant improvement of the integrated spectral properties, but the main benefit of assimilating the wave spectra (and not only their integrated properties) is that the accurate simulation of separated, in frequency and in direction, wave systems is possible even nearshore, where non-linear phenomena are dominant. The system is ready to be used for more precise reanalysis of the wave climate and climate variability, and determination of coastal hazards in regional or local scales, in case of available wave data. References: Orzech, M.D., J. Veeramony, and H.E. Ngodock, 2013: A variational assimilation system for nearshore wave modeling. J. Atm. & Oc. Tech., in press.
Splash singularity for water waves.
Castro, Angel; Córdoba, Diego; Fefferman, Charles L; Gancedo, Francisco; Gómez-Serrano, Javier
2012-01-17
We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time.
Splash singularity for water waves
Castro, Angel; Córdoba, Diego; Fefferman, Charles L.; Gancedo, Francisco; Gómez-Serrano, Javier
2012-01-01
We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time. PMID:22219372
NASA Astrophysics Data System (ADS)
Hochmuth, K.; Gohl, K.; Uenzelmann-Neben, G.; Werner, R.
2014-12-01
The Manihiki Plateau of the western Pacific is one of the world - wide greatest Large Igneous Province (LIP) on oceanic crust. It is assumed that the Manihiki Plateau was emplaced as the centerpiece of the "Super-LIP" Ontong Java Nui by multiple volcanic phases during the Cretaceous Magnetic Quiet Period. The subsequent break-up of Ontong Java Nui led to fragmentation of the Manihiki Plateau into three sub-plateaus, which all exhibit individual relicts of the "Super-LIP" break-up. We examine two deep crustal seismic refraction/wide-angle reflection profiles crossing the two largest sub-plateaus of the Manihiki Plateau, the Western Plateaus and the High Plateau. Modeling of P- and S-wave velocities reveals surprising differences in the crustal structure between the two sub-plateaus. Whereas the High Plateau shows a constant crustal thickness of 20 km, relicts of multiple volcanic phases and break-up features at its margins, the model of the Western Plateaus reveals a crustal thickness decreasing from 17 km to only 9 km. There is only little evidence of secondary phases of volcanic activity. The main upper crustal structure on the Western Plateaus consists of fault systems and sedimentary basins. We infer that the High Plateau experienced phases of strong secondary volcanism, and that tectonic deformation was limited to its edges. The Western Plateaus, on the contrary, were deformed by crustal stretching and underwent only little to no secondary volcanism. This indicates that the two main sub-plateaus of the Manihiki Plateau experienced a different geological history and have played their individual parts in the break-up history of Ontong Java Nui.
Diffractive Optics: Design, Fabrication, and Applications, Technical Digest Series, Volume 9, 1992
1992-01-01
integration of optoelec- lens are presented and discussed. (p. 8) tronic chips with the passive glass optics. (p. 26) 10:00 am-10:30 am Coffee Break 2...optical pickup, Wai-Hon Lee, HOETRON, Inc. This paper discusses the recent pro- 3:30 pm-4:00 pm COFFEE BREAK gress in miniaturization of optical pickup...compared to 0th-order EMT and to 10:00 am-10:30 am COFFEE BREAK a rigorous coupled wave approach. (p. 44) 5:10 pm CABILDO ROOM MD4 Filter properties of
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
NASA Astrophysics Data System (ADS)
Borges, L. H. C.; Barone, F. A.
2016-02-01
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.
NASA Astrophysics Data System (ADS)
Bock, Katherine J.
This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third-order dispersion contribution from the diffraction gratings inside the laser cavity was studied, as it was also considered to be an energy-limiting factor. No significant effect was found as a result of third-order dispersion; however, a region of operation was observed where two different pulse regimes were found at the same values of net cavity group velocity dispersion. Results verify the main idea and indicate that a long length of low-doped gain fiber is preferable to a shorter, more highly doped one. The low-doped fiber in an otherwise equivalent cavity allows the nonlinear phase shift to grow at a slower rate, which results in the pulse achieving a higher peak power before reaching the nonlinear phase shift threshold at which optical wave breaking occurs. For a range of net cavity group velocity dispersion values, the final result is that the low doped fiber generates pulses of approximately twice the value of energy of the highly-doped gain fiber. Two techniques of mode-locking cavities were investigated to achieve this result. The first cavity used NPE mode-locking which masked the results, and the second used a SESAM for mode-locking which gave clear results supporting the hypothesis.
Negative refraction and backward wave in pseudochiral mediums: illustrations of Gaussian beams.
Chern, Ruey-Lin; Chang, Po-Han
2013-02-11
We investigate the phenomena of negative refraction and backward wave in pseudochiral mediums, with illustrations of Gaussian beams. Due to symmetry breaking intrinsic in pseudochiral mediums, there exist two elliptically polarized eigenwaves with different wave vectors. As the chirality parameter increases from zero, the two waves begin to split from each other. For a wave incident from vacuum onto a pseudochiral medium, negative refraction may occur for the right-handed wave, whereas backward wave may appear for the left-handed wave. These features are illustrated with Gaussian beams based on Fourier integral formulations for the incident, reflected, and transmitted waves. Negative refraction and backward wave are manifest, respectively, on the energy flow in space and wavefront movement in time.
Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H
2016-02-02
High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.
Global Measurements of Stratospheric Mountain Waves from Space
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Preusse, Peter; Jackman, Charles H. (Technical Monitor)
1999-01-01
Temperatures acquired by the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) during shuttle mission STS-66 have provided measurements of stratospheric mountain waves from space. Large-amplitude, long-wavelength mountain waves at heights of 15 to 30 kilometers above the southern Andes Mountains were observed and characterized, with vigorous wave breaking inferred above 30 kilometers. Mountain waves also occurred throughout the stratosphere (15 to 45 kilometers) over a broad mountainous region of central Eurasia. The global distribution of mountain wave activity accords well with predictions from a mountain wave model. The findings demonstrate that satellites can provide the global data needed to improve mountain wave parameterizations and hence global climate and forecast models.
Physical modeling of long-wave run-up mitigation using submerged breakwaters
NASA Astrophysics Data System (ADS)
Lee, Yu-Ting; Wu, Yun-Ta; Hwung, Hwung-Hweng; Yang, Ray-Yeng
2016-04-01
Natural hazard due to tsunami inundation inland has been viewed as a crucial issue for coastal engineering community. The 2004 India Ocean tsunami and the 2011 Tohoku earthquake tsunami were caused by mega scale earthquakes that brought tremendous catastrophe in the disaster regions. It is thus of great importance to develop innovative approach to achieve the reduction and mitigation of tsunami hazards. In this study, new experiments have been carried out in a laboratory-scale to investigate the physical process of long-wave through submerged breakwaters built upon a mild slope. Solitary-wave is employed to represent the characteristic of long-wave with infinite wavelength and wave period. Our goal is twofold. First of all, through changing the positions of single breakwater and multiple breakwaters upon a mild slope, the optimal locations of breakwaters can be pointed out by means of maximum run-up reduction. Secondly, through using a state-of-the-art measuring technique Bubble Image Velocimetry, which features non-intrusive and image-based measurement, the wave kinematics in the highly aerated region due to solitary-wave shoaling, breaking and uprush can be quantitated. Therefore, the mitigation of long-wave due to the construction of submerged breakwaters built upon a mild slope can be evaluated not only for imaging run-up and run-down characteristics but also for measuring turbulent velocity fields due to breaking wave. Although we understand the most devastating tsunami hazards cannot be fully mitigated with impossibility, this study is to provide quantitated information on what kind of artificial coastal structure that can withstand which level of wave loads.
Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model
NASA Astrophysics Data System (ADS)
Marsooli, Reza; Orton, Philip M.; Mellor, George
2017-07-01
Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.
NASA Technical Reports Server (NTRS)
Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart
2007-01-01
In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.
Impact of plunging breaking waves on a partially submerged cube
NASA Astrophysics Data System (ADS)
Wang, A.; Ikeda, C.; Duncan, J. H.
2013-11-01
The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. This work is supported by the Office of Naval Research under grant N000141110095.
Secondary Generation of Mountain Waves in the Stratosphere
NASA Astrophysics Data System (ADS)
Woods, Bryan K.
Secondary generation of mountain waves was documented using in situ aircraft data from the Terrain-Induced Rotor Experiment (T-REX). Mountain waves propagating from the Sierra Nevada generated secondary waves due to stratospheric wave breaking. The seminal Eliassen and Palm (1961) relation of mountain wave energy and momentum fluxes is observationally verified for the first time. One case of reversed wave fluxes in the stratosphere is shown to be the result of multiscale secondary waves propagating down from the stratosphere. The Tropopause Inversion Layer (TIL) is shown to be capable of serving as a wave duct trapping such secondary waves. Simple idealized 2D simulations are shown to reproduce secondary wave patterns that bare striking resemblance to those observed in T-REX. However, 3D simulations are shown to fail to reproduce realistic secondary waves.
Falling films on flexible inclines
NASA Astrophysics Data System (ADS)
Matar, O. K.; Craster, R. V.; Kumar, S.
2007-11-01
The nonlinear stability and dynamic behavior of falling fluid films is studied for flow over a flexible substrate. We use asymptotic methods to deduce governing equations valid in various limits. Long-wave theory is used to derive Benney-like coupled equations for the film thickness and substrate deflection. Weakly nonlinear equations are then derived from these equations that, in the limit of large wall damping and/or large wall tension, reduce to the Kuramoto-Sivashinsky equation. These models break down when inertia becomes more significant, so we also use a long-wave approximation in conjunction with integral theory to derive three strongly coupled nonlinear evolution equations for the film thickness, substrate deflection, and film volumetric flow rate valid at higher Reynolds numbers. These equations, accounting for inertia, capillary, viscous, wall tension, and damping effects, are solved over a wide range of parameters. Our results suggest that decreasing wall damping and/or wall tension can promote the development of chaos in the weakly nonlinear regime and lead to severe substrate deformations in the strongly nonlinear regime; these can give rise to situations in which the free surface and underlying substrate come into contact in finite time.
Triaxial instabilities in rapidly rotating neutron stars
NASA Astrophysics Data System (ADS)
Basak, Arkadip
2018-06-01
Viscosity driven bar mode secular instabilities of rapidly rotating neutron stars are studied using LORENE/Nrotstar code. These instabilities set a more rigorous limit to the rotation frequency of a neutron star than the Kepler frequency/mass-shedding limit. The procedure employed in the code comprises of perturbing an axisymmetric and stationary configuration of a neutron star and studying its evolution by constructing a series of triaxial quasi-equilibrium configurations. Symmetry breaking point was found out for Polytropic as well as 10 realistic equations of states (EOS) from the CompOSE data base. The concept of piecewise polytropic EOSs has been used to comprehend the rotational instability of Realistic EOSs and validated with 19 different Realistic EOSs from CompOSE. The possibility of detecting quasi-periodic gravitational waves from viscosity driven instability with ground-based LIGO/VIRGO interferometers is also discussed very briefly.
Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves
Hui, Jie; Li, Rui; Phillips, Evan H.; Goergen, Craig J.; Sturek, Michael; Cheng, Ji-Xin
2016-01-01
The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology. PMID:27069873
Data-Informed Large-Eddy Simulation of Coastal Land-Air-Sea Interactions
NASA Astrophysics Data System (ADS)
Calderer, A.; Hao, X.; Fernando, H. J.; Sotiropoulos, F.; Shen, L.
2016-12-01
The study of atmospheric flows in coastal areas has not been fully addressed due to the complex processes emerging from the land-air-sea interactions, e.g., abrupt change in land topography, strong current shear, wave shoaling, and depth-limited wave breaking. The available computational tools that have been applied to study such littoral regions are mostly based on open-ocean assumptions, which most times do not lead to reliable solutions. The goal of the present study is to better understand some of these near-shore processes, employing the advanced computational tools, developed in our research group. Our computational framework combines a large-eddy simulation (LES) flow solver for atmospheric flows, a sharp-interface immersed boundary method that can deal with real complex topographies (Calderer et al., J. Comp. Physics 2014), and a phase-resolved, depth-dependent, wave model (Yang and Shen, J. Comp. Physics 2011). Using real measured data taken in the FRF station in Duck, North Carolina, we validate and demonstrate the predictive capabilities of the present computational framework, which are shown to be in overall good agreement with the measured data under different wind-wave scenarios. We also analyse the effects of some of the complex processes captured by our simulation tools.
Triggering extreme events at the nanoscale in photonic seas
NASA Astrophysics Data System (ADS)
Liu, C.; van der Wel, R. E. C.; Rotenberg, N.; Kuipers, L.; Krauss, T. F.; di Falco, A.; Fratalocchi, A.
2015-04-01
Hurricanes, tsunamis, rogue waves and tornadoes are rare natural phenomena that embed an exceptionally large amount of energy, which appears and quickly disappears in a probabilistic fashion. This makes them difficult to predict and hard to generate on demand. Here we demonstrate that we can trigger the onset of rare events akin to rogue waves controllably, and systematically use their generation to break the diffraction limit of light propagation. We illustrate this phenomenon in the case of a random field, where energy oscillates among incoherent degrees of freedom. Despite the low energy carried by each wave, we illustrate how to control a mechanism of spontaneous synchronization, which constructively builds up the spectral energy available in the whole bandwidth of the field into giant structures, whose statistics is predictable. The larger the frequency bandwidth of the random field, the larger the amplitude of rare events that are built up by this mechanism. Our system is composed of an integrated optical resonator, realized on a photonic crystal chip. Through near-field imaging experiments, we record confined rogue waves characterized by a spatial localization of 206 nm and with an ultrashort duration of 163 fs at a wavelength of 1.55 μm. Such localized energy patterns are formed in a deterministic dielectric structure that does not require nonlinear properties.
NASA Astrophysics Data System (ADS)
Sheen, K.; Naveira-Garabato, A. C.; Brearley, J. A.
2012-04-01
The principal objective of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is to investigate the role of turbulent mixing in mediating the vertical and horizontal transport of water masses, which shape the overturning circulation. Here, microstructure and finestructure data, collected as part of this multi-component experiment, are presented. Direct observations of turbulent energy dissipation rates show that mid-depth diapycnal diffusivities increase progressively from O(10-5 m2s-1) in the Pacific sector of the Antarctic Circumpolar Current (ACC) to O(10-4 m2s-1) in the Scotia Sea. Analysis of coincident LADCP and CTD data demonstrates that enhanced turbulent dissipation rates are associated with a more energetic, less inertial internal wave field and increased upward energy propagation. Breaking lee waves, a process enhanced by stronger flow and rougher topography found in the eastern sections, is likely to be a key mechanism in determining the distribution of turbulent mixing in the ACC. Spatially varying discrepancies between the microstructure and finestructure mixing observations indicate regions where wave-wave interaction models break down and internal waves interact with the mean flow. An episodic enhancement of current velocities at 2000 m depth is observed in the northwest Scotia Sea in both LADCP and mooring data. Finestructure analysis indicates that this mid-depth jet has a profound impact of the internal wave field, causing both internal wave reflection and critical layer dissipation.
The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea
NASA Astrophysics Data System (ADS)
Lentz, S. J.; Churchill, J. H.; Davis, K. A.; Farrar, J. T.; Pineda, J.; Starczak, V.
2016-02-01
Current dynamics across a platform reef in the Red Sea near Jeddah, Saudi Arabia, are examined using 18 months of current profile, pressure, surface wave, and wind observations. The platform reef is 700 m long, 200 m across with spatial and temporal variations in water depth over the reef ranging from 0.6 to 1.6 m. Surface waves breaking at the seaward edge of the reef cause a 2-10 cm setup of sea level that drives cross-reef currents of 5-20 cm s-1. Bottom stress is a significant component of the wave setup balance in the surf zone. Over the reef flat, where waves are not breaking, the cross-reef pressure gradient associated with wave setup is balanced by bottom stress. The quadratic drag coefficient for the depth-average flow decreases with increasing water depth from Cda = 0.17 in 0.4 m of water to Cda = 0.03 in 1.2 m of water. The observed dependence of the drag coefficient on water depth is consistent with open-channel flow theory and a hydrodynamic roughness of zo = 0.06 m. A simple one-dimensional model driven by incident surface waves and wind stress accurately reproduces the observed depth-averaged cross-reef currents and a portion of the weaker along-reef currents over the focus reef and two other Red Sea platform reefs. The model indicates the cross-reef current is wave forced and the along-reef current is partially wind forced.
Planetary Wave Breaking and Tropospheric Forcing as Seen in the Stratospheric Sudden Warming of 2006
2009-02-01
involved in this complex case ( Harnik et al. 2005). The forecasting experiments (Fig. 8) show, in this case, the importance of accurately forecasting the...Phoebus, 1992: The Navy’s operational atmospheric analysis. Wea. Forecasting, 7, 232–249. Harnik , N., R. K. Scott, and J. Perlwitz, 2005: Wave
Modelling of upper ocean mixing by wave-induced turbulence
NASA Astrophysics Data System (ADS)
Ghantous, Malek; Babanin, Alexander
2013-04-01
Mixing of the upper ocean affects the sea surface temperature by bringing deeper, colder water to the surface. Because even small changes in the surface temperature can have a large impact on weather and climate, accurately determining the rate of mixing is of central importance for forecasting. Although there are several mixing mechanisms, one that has until recently been overlooked is the effect of turbulence generated by non-breaking, wind-generated surface waves. Lately there has been a lot of interest in introducing this mechanism into models, and real gains have been made in terms of increased fidelity to observational data. However our knowledge of the mechanism is still incomplete. We indicate areas where we believe the existing models need refinement and propose an alternative model. We use two of the models to demonstrate the effect on the mixed layer of wave-induced turbulence by applying them to a one-dimensional mixing model and a stable temperature profile. Our modelling experiment suggests a strong effect on sea surface temperature due to non-breaking wave-induced turbulent mixing.
One-dimensional modelling of upper ocean mixing by turbulence due to wave orbital motion
NASA Astrophysics Data System (ADS)
Ghantous, M.; Babanin, A. V.
2014-02-01
Mixing of the upper ocean affects the sea surface temperature by bringing deeper, colder water to the surface. Because even small changes in the surface temperature can have a large impact on weather and climate, accurately determining the rate of mixing is of central importance for forecasting. Although there are several mixing mechanisms, one that has until recently been overlooked is the effect of turbulence generated by non-breaking, wind-generated surface waves. Lately there has been a lot of interest in introducing this mechanism into ocean mixing models, and real gains have been made in terms of increased fidelity to observational data. However, our knowledge of the mechanism is still incomplete. We indicate areas where we believe the existing parameterisations need refinement and propose an alternative one. We use two of the parameterisations to demonstrate the effect on the mixed layer of wave-induced turbulence by applying them to a one-dimensional mixing model and a stable temperature profile. Our modelling experiment suggests a strong effect on sea surface temperature due to non-breaking wave-induced turbulent mixing.
Mechanical circulator for elastic waves by using the nonreciprocity of flexible rotating rings
NASA Astrophysics Data System (ADS)
Beli, Danilo; Silva, Priscilla Brandão; Arruda, José Roberto de França
2018-01-01
Circulators have a wide range of applications in wave manipulation. They provide a nonreciprocal response by breaking the time-reversal symmetry. In the mechanical field, nonlinear isolators and ferromagnetic circulators can be used for this objective. However, they require high power and high volumes. Herein, a flexible rotating ring is used to break the time-reversal symmetry as a result of the combined effect of Coriolis acceleration and material damping. Complete asymmetry of oscillating and evanescent components of wavenumbers is achieved. The elastic ring produces a nonreciprocal response that is used to design a three port mechanical circulator. The rotational speed for maximum transmission in one port and isolation in the other one is determined using analytical equations. A spectral element formulation is used to compute the complex dispersion diagrams and the forced response. Waveguides that support longitudinal and flexural waves are investigated. In this case, the ring nonreciprocity is modulated by the waveguide reciprocal response and the transmission coefficients can be affected. The proposed device is compact, nonferromagnetic, and may open new directions for elastic wave manipulation.
On the soft supersymmetry-breaking parameters in gauge-mediated models
NASA Astrophysics Data System (ADS)
Wagner, C. E. M.
1998-09-01
Gauge mediation of supersymmetry breaking in the observable sector is an attractive idea, which naturally alleviates the flavor changing neutral current problem of supersymmetric theories. Quite generally, however, the number and quantum number of the messengers are not known; nor is their characteristic mass scale determined by the theory. Using the recently proposed method to extract supersymmetry-breaking parameters from wave-function renormalization, we derived general formulae for the soft supersymmetry-breaking parameters in the observable sector, valid in the small and moderate tan β regimes, for the case of split messengers. The full leading-order effects of top Yukawa and gauge couplings on the soft supersymmetry-breaking parameters are included. We give a simple interpretation of the general formulae in terms of the renormalization group evolution of the soft supersymmetry-breaking parameters. As a by-product of this analysis, the one-loop renormalization group evolution of the soft supersymmetry-breaking parameters is obtained for arbitrary boundary conditions of the scalar and gaugino mass parameters at high energies.
NASA Astrophysics Data System (ADS)
Pizzo, Nick
2017-11-01
A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.
Surf Zone Currents. Volume I. State of Knowledge.
1982-09-01
elevation above an arbitrary datum a angle between wave crest and bottom contour a angle between wave crest and the shoreline . ab angle between breaking...b- Note that neglecting wave setup, refraction and for small ab , equation (74) reduces to that employed by Longuet-Higgins (eq. 48). These researchers...28. As ab o (Note that ab = o means theory reduces to original order (zero order) solution given by Longuet-Higgins, 1970, the triangular solution is
Lamb wave scattering by a surface-breaking crack in a plate
NASA Technical Reports Server (NTRS)
Datta, S. K.; Al-Nassar, Y.; Shah, A. H.
1991-01-01
An NDE method based on finite-element representation and modal expansion has been developed for solving the scattering of Lamb waves in an elastic plate waveguide. This method is very powerful for handling discontinuities of arbitrary shape, weldments of different orientations, canted cracks, etc. The advantage of the method is that it can be used to study the scattering of Lamb waves in anisotropic elastic plates and in multilayered plates as well.
Optical shock waves in silica aerogel.
Gentilini, S; Ghajeri, F; Ghofraniha, N; Di Falco, A; Conti, C
2014-01-27
Silica aerogels are materials well suited for high power nonlinear optical applications. In such regime, the non-trivial thermal properties may give rise to the generation of optical shock waves, which are also affected by the structural disorder due to the porous solid-state gel. Here we report on an experimental investigation in terms of beam waist and input power, and identify various regimes of the generation of wave-breaking phenomena in silica aerogels.
Upper atmospheric gravity wave details revealed in nightglow satellite imagery
Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.
2015-01-01
Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004
Upper atmospheric gravity wave details revealed in nightglow satellite imagery.
Miller, Steven D; Straka, William C; Yue, Jia; Smith, Steven M; Alexander, M Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T
2015-12-08
Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼ 90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation.
Laboratory Measurements of the Sound Generated by Breaking Waves
1991-12-01
these techniques have not yet proven effective for studying the dynamics of breaking. The primary motivation for the research 3 presented in this...experiments described in this thesis were motivated by the fact that these preliminary experiments described above demonstrated that the simple I...1991. The research was motivated by the fact that preliminary measurements by Melville, Loewen, Felizardo, Jessup and Buckingham (1988) demonstrated
Wave and setup dynamics on steeply-sloping reefs with large bottom roughness
NASA Astrophysics Data System (ADS)
Buckley, M. L.; Hansen, J.; Lowe, R.
2016-12-01
High-resolution observations from a wave flume were used to investigate the dynamics of wave setup over a steeply-sloping fringing reef profile with the effect of bottom roughness modeled using roughness elements scaled to mimic a coral reef. Results with roughness were compared with smooth bottom runs across sixteen offshore wave and still water level conditions. The time-averaged and depth-integrated force balance was evaluated from observations collected at seventeen locations across the flume, which was found to consist of cross-shore pressure and radiation stress gradients whose sum was balanced by mean quadratic bottom stresses. We found that when radiation stress gradients were calculated from observations of the radiation stress derived from linear wave theory, both wave setdown and setup were under predicted for the majority of wave and water level conditions tested. Inaccuracies in the predicted setdown and setup were improved by including a wave roller model, which provides a correction to the kinetic energy predicted by linear wave theory for breaking waves and produces a spatial delay in the wave forcing that was consistent with the observations. The introduction of roughness had two primary effects. First, the amount of wave energy dissipated during wave breaking was reduced due to frictional wave dissipation that occurred on the reef slope offshore of the breakpoint. Second, offshore directed mean bottom stresses were generated by the interaction of the combined wave-current velocity field with the roughness elements. These two mechanisms acted counter to one another. As a result, setup on the reef flat was comparable (7% mean difference) between corresponding rough and smooth runs. These findings are used to assess prior results from numerical modelling studies of reefs, and also to discuss the broader implications for how steep slopes and large roughness influences setup dynamics for general nearshore systems.
Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios
NASA Astrophysics Data System (ADS)
Nangombe, Shingirai; Zhou, Tianjun; Zhang, Wenxia; Wu, Bo; Hu, Shuai; Zou, Liwei; Li, Donghuan
2018-05-01
Anthropogenic forcing is anticipated to increase the magnitude and frequency of extreme events1, the impacts of which will be particularly hard-felt in already vulnerable locations such as Africa2. However, projected changes in African climate extremes remain little explored, particularly in the context of the Paris Agreement targets3,4. Here, using Community Earth System Model low warming simulations5, we examine how heat and hydrological extremes may change in Africa under stabilized 1.5 °C and 2 °C scenarios, focusing on the projected changing likelihood of events that have comparable magnitudes to observed record-breaking seasons. In the Community Earth System Model, limiting end-of-century warming to 1.5 °C is suggested to robustly reduce the frequency of heat extremes compared to 2 °C. In particular, the probability of events similar to the December-February 1991/1992 southern African and 2009/2010 North African heat waves is estimated to be reduced by 25 ± 5% and 20 ± 4%, respectively, if warming is limited to 1.5 °C instead of 2 °C. For hydrometeorological extremes (that is, drought and heavy precipitation), by contrast, signal differences are indistinguishable from the variation between ensemble members. Thus, according to this model, continued efforts to limit warming to 1.5 °C offer considerable benefits in terms of minimizing heat extremes and their associated socio-economic impacts across Africa.
Scattering of ultrasonic wave by cracks in a plate
NASA Technical Reports Server (NTRS)
Liu, S. W.; Datta, S. K.
1993-01-01
A hybrid numerical method combining finite elements and the boundary integral representation is used to investigate the transient scattering of ultrasonic waves by a crack in a plate. The incident wave models the guided waves generated by a steel ball impact on the plate. Two surface-breaking cracks and one subsurface crack are studied here. The results show that the location and depth of cracks have measurable effects on the surface responses in time and frequency domains. Also, the scattered fields have distinct differences in the three cases.
NASA Astrophysics Data System (ADS)
da Silva, Jose C. B.; Magalhaes, J. M.; Buijsman, M. C.; Garcia, C. A. E.
2016-08-01
Mode-2 internal waves are usually not as energetic as larger mode-1 Internal Solitary Waves (ISWs), but they have attracted a great deal of attention in recent years because they have been identified as playing a significant role in mixing shelf waters [1]. This mixing is particularly effective for mode-2 ISWs because the location of these waves in the middle of the pycnocline plays an important role in eroding the barrier between the base of the surface mixed layer and the stratified deep layer below. An urgent problem in physical oceanography is therefore to account for the magnitude and distribution of ISW-driven mixing, including mode-2 ISWs. Several generation mechanisms of mode-2 ISWs have been identified. These include: (1) mode-1 ISWs propagating onshore (shoaling) and entering the breaking instability stage, or propagating over a steep sill; (2) a mode-1 ISW propagating offshore (antishoaling) over steep slopes of the shelf break, and undergoing modal transformation; (3) intrusion of the whole head of a gravity current into a three-layer fluid; (4) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (5) nonlinear disintegration of internal tide modes; (6) lee wave mechanism. In this paper we provide methods to identify internal wave features denominated "Wave Tails" in SAR images of the ocean surface, which are many times associated with second mode internal waves. The SAR case studies that are presented portray evidence of the aforementioned generation mechanisms, and we further discuss possible methods to discriminate between the various types of mode-2 ISWs in SAR images, that emerge from these physical mechanisms. Some of the SAR images correspond to numerical simulations with the MITgcm in fully nonlinear and nonhydrostatic mode and in a 2D configuration with realistic stratification, bathymetry and other environmental conditions.Results of a global survey with some of these observations are presented, including: the Mascarene Ridge of the Indian Ocean; South China Sea; Andaman Sea; tropical Atlantic off the Amazon shelf break, Bay of Biscay of the western European margin; etc. The survey included the following SAR missions: ERS-1/2; Envisat and TerraSAR-X.
AE Source Orientation by Plate Wave Analysis
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Prosser, William H.
1991-01-01
Lead breaks (Hsu-Neilsen source) were used to generate simulated acoustic emission signals in an aluminum plate at angles of 0, 30, 60, and 90 degrees with respect to the plane of the plate. This was accomplished by breaking the lead on slots cut into the plate at the respective angles. The out-of-plane and in-plane displacement components of the resulting signals were detected by broad band transducers and digitized. Analysis of the waveforms showed them to consist of the extensional and flexural plate modes. The amplitude of both components of the two modes was dependent on the source orientation angle. This suggests that plate wave analysis may be used to determine the source orientation of acoustic emission sources.
NASA Astrophysics Data System (ADS)
Berggren, Karl-Fredrik; Tellander, Felix; Yakimenko, Irina
2018-05-01
Non-Hermitian quantum mechanics with parity-time (PT) symmetry is presently gaining great interest, especially within the fields of photonics and optics. Here, we give a brief overview of low-dimensional semiconductor nanodevices using the example of a quantum dot with input and output leads, which are mimicked by imaginary potentials for gain and loss, and how wave functions, particle flow, coalescence of levels and associated breaking of PT symmetry may be analysed within such a framework. Special attention is given to the presence of exceptional points and symmetry breaking. Related features for musical string instruments and ‘wolf-notes’ are outlined briefly with suggestions for further experiments.
Berner, Eta S.; Detmer, Don E.; Simborg, Donald
2005-01-01
For over thirty years, there have been predictions that the widespread clinical use of computers was imminent. Yet the “wave” has never broken. In this article, two broad time periods are examined: the 1960's to the 1980's and the 1980's to the present. Technology immaturity, health administrator focus on financial systems, application “unfriendliness,” and physician resistance were all barriers to acceptance during the early time period. Although these factors persist, changes in clinicians' economics, more computer literacy in the general population, and, most importantly, changes in government policies and increased support for clinical computing suggest that the wave may break in the next decade. PMID:15492029
Gravity waves in Titan's atmosphere
NASA Technical Reports Server (NTRS)
Friedson, A. James
1994-01-01
Scintillations (high frequency variations) observed in the radio signal during the occultation of Voyager 1 by Titan (Hinson and Tyler, 1983) provide information concerning neutral atmospheric density fluctuations on scales on hundreds of meters to a few kilometers. Those seen at altitudes higher than 25 km above the surface were interpreted by Hinson and Tyler as being caused by linear, freely propagating (energy-conserving) gravity waves, but this interpretation was found to be inconsistent with the scintillation data below the 25-km altitude level. Here an attempt is made to interpret the entire scintillation profile between the surface and the 90-km altitude level in terms of gravity waves generated at the surface. Numerical calculations of the density fluctuations caused by two-dimensional, nonhydrostatic, finite-amplitude gravity waves propagating vertically through Titan's atmosphere are performed to produce synthetic scintillation profiles for comparison with the observations. The numerical model accurately treats the effects of wave transience, nonlinearity, and breakdown due to convective instability in the overturned part of the wave. The high-altitude scintillation data were accurately recovered with a freely propagating wave solution, confirming the analytic model of Hinson and Tyler. It is found that the low-altitude scintillation data can be fit by a model where a component of the gravity waves becomes convectively unstable and breaks near the 15 km level. The large-scale structure of the observed scintillation profile in the entire altitude range between 5 and 85 km can be simulated by a model where the freely propagating and breaking waves are forced at the surface simultaneously. Further analysis of the Voyager 1 Titan low-altitude scintillation data, using inversion theory appropriate for strong scattering, could potentially remove some of the ambiguities remaining in this analysis and allow a better determination of the strength and source of the waves.
Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Lenain, L.; Melville, W. K.
2016-02-01
While sea spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related processes in the coupling of the ocean with the atmosphere, sea spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an air-sea interaction experiment, the ONR phase-resolved High-Resolution Air-Sea Interaction experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The sea-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.
Case Studies of the Mesospheric Response to Recent Minor, Major, and Extended Stratospheric Warmings
2010-06-06
Pawson, J. N. Lee , W. H. Daffer, R. A. Fuller, and N. J. Livesey (2009b), Aura Micro- wave Limb Sounder observations of dynamics and transport during...Schoeberl, M., D. Strobel , and J. Apruzese (1983), A numerical model of gravity wave breaking and stress in the mesosphere, J. Geophys. Res., 88(C9
Gravitational Waves from Rotating Neutron Stars and Evaluation of fast Chirp Transform Techniques
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)
2000-01-01
X-ray observations suggest that neutron stars in low mass X-ray binaries (LMXB) are rotating with frequencies from 300 - 600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince in the context of searching for the chirping signals observed during X-ray bursts.
Frequency-agile dual-comb spectroscopy
NASA Astrophysics Data System (ADS)
Millot, Guy; Pitois, Stéphane; Yan, Ming; Hovhannisyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W.; Picqué, Nathalie
2016-01-01
Spectroscopic gas sensing and its applications to, for example, trace detection or chemical kinetics, require ever more demanding measurement times, acquisition rates, sensitivities, precisions and broad tuning ranges. Here, we propose a new approach to near-infrared molecular spectroscopy, utilizing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous-wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in a nonlinear optical fibre of normal dispersion. With a dual-comb spectrometer, we record Doppler-limited spectra spanning 60 GHz within 13 μs and an 80 kHz refresh rate, at a tuning speed of 10 nm s-1. The sensitivity for weak absorption is enhanced by a long gas-filled hollow-core fibre. New opportunities for real-time diagnostics may be opened up, even outside the laboratory.
Feedback between intracellular flow, signaling and active stresses in Physarum plasmodial fragments
NASA Astrophysics Data System (ADS)
Zhang, Shun; Guy, Robert; Del Alamo, Juan Carlos
2016-11-01
Physarum polycephalum is a multinucleated slime mold whose endoplasm flows periodically driven by the contraction of its ectoplasm, a dense shell of F-actin cross-linked by myosin molecular motors and attached to the cell membrane. Ectoplasm contractions are regulated by calcium ions whose propagation is in turn governed by the flow. We study experimentally how this feedback leads to auto-oscillation by simultaneously measuring endoplasmic flow speed and rheological properties, the traction stresses between the ectoplasm and its substratum and the distribution of endoplasmic free calcium ions. We find that physarum fragments smaller than 100 microns remain round and stay in place. However, larger fragments break symmetry leading to sustained forward locomotion, in process that is reminiscent of an interfacial instability that seems to settle around two different limit cycles (traveling waves and standing waves). By using different adhesive coatings in the substratum we investigate the role of substratum friction in the emergence of coherent endoplasmic flow patterns and overall physarum fragment locomotion.
Charge density wave transition in single-layer titanium diselenide
Chen, P.; Chan, Y. -H.; Fang, X. -Y.; ...
2015-11-16
A single molecular layer of titanium diselenide (TiSe 2) is a promising material for advanced electronics beyond graphene--a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe 2 exhibits a charge density wave (CDW) transition at critical temperature T C=232±5 K, which is higher than the bulk T C=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below T C in conjunction with the emergencemore » of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The behavior of the Bardeen-Cooper-Schrieffer (BCS) gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.« less
Self-organising of wave and beach relief in storm: field experiments
NASA Astrophysics Data System (ADS)
Kuznetsova, Olga; Saprykina, Yana; Kuznetsov, Sergey; Stremel, Margarita; Korsinin, Dmitry; Trifonova, Ekaterina; Andreeva, Natalia
2017-04-01
This paper presents results of waves and morfodynamics observation carried out in frame of complex field experiments "Shkorpilowtsy-2016" and "Shkorpilowtsy-2007", which were made in order to understand how bottom deformations depend on wave parameters and how wave-bottom self-organisation process runs during storm events. Sediment transport and profile deformations were analysed taking into account the presence of underwater bar (data 2007) and without it (data 2016). Experiments were made on field base of Institute of Oceanology "Fridtjof Nansen" (Bulgarian Academy of Sciences) in Shkorpilowtsy settlement, that is locates on Black Sea coast, 40 km from Varna. The base is equipped with 253 m research pier that provide measuring until 5 m depth on distance 200 m from shore. During filed works synchronous observations on wave parameters and bottom changes were made on average three times a day for one month: 18.09-08.10.2007 and 07.10-02.11.2016. Morphological observations involved cross-shore beach profile deformations measuring along the scientific pier from shore to sea through each 2 m using metal pole in 2007 and metal or rope lot in 2016. Wave measurements included visual observations of breaking and surf zones location, wave type (wind or swell wave) and direction as well as free surface deviation (wave chronogram) registrations using high-frequency capacitive or resistance sensors mounted along the pier. In 2007 registration of free surface elevation was carried out with 7 capacitance and 8 resistant wire gauges, in 2016 - with 18 capacitance wire gauges. Sampling frequency was 5 Hz in 2007 and 20 Hz in 2016, duration of the records varied from 20 min up to one hour in 2007 and between 10 min and one hour in 2016. Wave spectra computed from chronogram allowed to estimate wave spectral (significant wave height, spectral peak and mean periods and complex) and integral parameters (Irribaren and Ursell numbers) to analyse dependence bottom deformations on it. Self-organising of bottom relief and waves were studied on a scale of several storms. Results of investigations show that increase of significant wave height and spectral peak period of wave entering in coastal zone as well as Ursell number lead to erosion, which was localised in first 100 m near on barred profile and covered whole observed profile in case without bar. Features of sediment transport by forming a mobile temporal underwater bar were examined for cases of flat sloping and barred underwater beach profiles. On timescale of one storm type of wave breaking affect sediment transport: plunging wave breaking is responsible for formation and evolution of underwater sand bar as well as decreasing of sediment amount in upper part of beach profile and shoreline regression, while spilling do not lead to significant bottom deformations. The work was supported by Russian Foundation of Basic Research (grants 16-55-76002 (ERA-a), 16-35-00542 (mol_a), 15-05-08239, 15-05-04669).
Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2004-01-01
We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Isanin, A V; Bulanov, S S; Kamenets, F F; Pegoraro, F
2005-03-01
During the interaction of a low-frequency relativistic soliton with the electron density modulations of a wake plasma wave, part of the electromagnetic energy of the soliton is reflected in the form of an extremely short and ultraintense electromagnetic pulse. We calculate the spectra of the reflected and of the transmitted electromagnetic pulses analytically. The reflected wave has the form of a single cycle attosecond pulse.
2011-09-30
simulation provides boundary condition to the SPH simulation in a sub- domain. For the test with surface wave propagation, the free surface and the...This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that can be used to study the fundamental physics...of horizontal velocity(normalized by wave phase speed c) obtained from SPH simulation and the corresponding free surface obtained from LSM
Rhoades, Galena K.; Kamp Dush, Claire M.; Atkins, David C.; Stanley, Scott M.; Markman, Howard J.
2011-01-01
This study was the first to examine the impact of unmarried relationship break-up on psychological distress and life satisfaction using a within-subjects design. Among unmarried 18 to 35-year olds (N = 1295), 36.5% had one or more break-ups over a 20-month period. Experiencing a break-up was associated with an increase in psychological distress and a decline in life satisfaction (from pre- to post-dissolution). In addition, several characteristics of the relationship or of the break-up were associated with the magnitude of the changes in life satisfaction following a break-up. Specifically, having been cohabiting and having had plans for marriage were associated with larger declines in life satisfaction while having begun to date someone new was associated with smaller declines. Interestingly, having higher relationship quality at the previous wave was associated with smaller declines in life satisfaction following a break-up. No relationship or break-up characteristics were significantly associated with the magnitude of changes in psychological distress after a break-up. Existing theories are used to explain the results. Implications for clinical work and future research on unmarried relationships are also discussed. PMID:21517174
NASA Astrophysics Data System (ADS)
Horinouchi, Takeshi; Sassi, Fabrizio; Boville, Byron A.
2000-11-01
Atmospheric transport between the tropics and the extratropics, in the lowest part of the stratosphere during Northern Hemisphere winter, is investigated. The role of synoptic-scale disturbances that propagate laterally into the tropics is examined using the middle atmosphere version of the National Center for Atmospheric Research Community Climate Model Version 3 general circulation model. In the lower stratosphere, synoptic-scale Rossby waves propagate vigorously from the northern (i.e., winter) extratropics through two ``westerly ducts,'' where the westerly zonal mean winds near the equator are favorable to Rossby wave propagation. The waves break in the westerly ducts and modify the mean potential vorticity (PV) structure to connect subtropical and equatorial regions of sharp PV gradients. Frequent wave breaking and the wave -induced PV structure create distinct routes where transport occurs vigorously between the tropics and the northern extratropics. Interhemispheric transport also occurs through regions associated with the westerly ducts. In the Southern (summer) Hemisphere lower stratosphere, synoptic-scale disturbances propagate mainly as ``tongues'' of PV elongated from extratropical disturbances. The transport between the tropics and the southern extratropics has a strong geographic preference but is dominated by the monsoon circulation, as was shown for the upper troposphere by Chen [1995]. PV tongues and other transient anomalies are of secondary importance.
The Velocity and Attenuation of Acoustic Emission Waves in SiC/SiC Composites Loaded in Tension
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Gyekenyesi, Andrew L.; Gray, Hugh R. (Technical Monitor)
2002-01-01
The behavior of acoustic waves produced by microfracture events and from pencil lead breaks was studied for two different silicon carbide fiber-reinforced silicon carbide matrix composites. The two composite systems both consisted of Hi-Nicalon (trademark) fibers and carbon interfaces but had different matrix compositions that led to considerable differences in damage accumulation and acoustic response. This behavior was primarily due to an order of magnitude difference in the interfacial shear stress for the two composite systems. Load/unload/reload tensile tests were performed and measurements were made over the entire stress range in order to determine the stress-dependence of acoustic activity for increasing damage states. It was found that using the extensional wave velocities from acoustic emission (AE) events produced from pencil lead breaks performed outside of the transducers enabled accurate measurements of the stiffness of the composite. The extensional wave velocities changed as a function of the damage state and the stress where the measurement was taken. Attenuation for AE waveforms from the pencil lead breaks occurred only for the composite possessing the lower interfacial shear stress and only at significantly high stresses. At zero stress after unloading from a peak stress, no attenuation occurred for this composite because of crack closure. For the high interfacial stress composite no attenuation was discernable at peak or zero stress over the entire stress-range of the composite. From these observations, it is believed that attenuation of AE waveforms is dependent on the magnitude of matrix crack opening.
NASA Astrophysics Data System (ADS)
Li, C.; Miller, J.; Wang, J.; Koley, S. S.; Katz, J.
2017-10-01
This laboratory experimental study investigates the temporal evolution of the size distribution of subsurface oil droplets generated as breaking waves entrain oil slicks. The measurements are performed for varying wave energy, as well as large variations in oil viscosity and oil-water interfacial tension, the latter achieved by premixing the oil with dispersant. In situ measurements using digital inline holography at two magnifications are applied for measuring the droplet sizes and Particle Image Velocimetry (PIV) for determining the temporal evolution of turbulence after wave breaking. All early (2-10 s) size distributions have two distinct size ranges with different slopes. For low dispersant to oil ratios (DOR), the transition between them could be predicted based on a turbulent Weber (We) number in the 2-4 range, suggesting that turbulence plays an important role. For smaller droplets, all the number size distributions have power of about -2.1, and for larger droplets, the power decreases well below -3. The measured steepening of the size distribution over time is predicted by a simple model involving buoyant rise and turbulence dispersion. Conversely, for DOR 1:100 and 1:25 oils, the diameter of slope transition decreases from ˜1 mm to 46 and 14 µm, respectively, much faster than the We-based prediction, and the size distribution steepens with increasing DOR. Furthermore, the concentration of micron-sized droplets of DOR 1:25 oil increases for the first 10 min after entrainment. These phenomena are presumably caused by the observed formation and breakup oil microthreads associated with tip streaming.
Han, Young Keun; Miller, Kevin M
2009-08-01
To compare vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification machines. Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. The vacuum rise time under normal and enhanced aspiration modes, vacuum limit accuracy, and occlusion break surge of the Infiniti Vision System, Stellaris Vision Enhancement System, and WhiteStar Signature Phacoemulsification System were tested. Vacuum rise time and limit accuracy were measured at limit settings of 400 mm Hg and 600 mm Hg. Surge area was recorded at vacuum limit settings of 200 mm Hg, 300 mm Hg, 400 mm Hg, and 500 mm Hg. The Infiniti had the fastest vacuum rise times under normal and enhanced aspiration modes. At 4 seconds, the vacuum limit accuracy was greatest with the Infiniti at the 400 mm Hg limit and the Signature at the 600 mm Hg limit. The Stellaris did not reach either vacuum target. The Infiniti performed better than the other 2 machines during testing of occlusion break surge at all vacuum limit settings above 200 mm Hg. Under controlled laboratory test conditions, the Infiniti had the fastest vacuum rise time, greatest vacuum limit accuracy at 400 mm Hg, and least occlusion break surge. These results can be explained by the lower compliance of the Infiniti system.
A model for wave control on coral breakage and species distribution in the Hawaiian Islands
Storlazzi, C.D.; Brown, E.K.; Field, M.E.; Rodgers, K.; Jokiel, P.L.
2005-01-01
The fringing reef off southern Molokai, Hawaii, is currently being studied as part of a multi-disciplinary project led by the US Geological Survey. As part of this study, modeling and field observations were utilized to help understand the physical controls on reef morphology and the distribution of different coral species. A model was developed that calculates wave-induced hydrodynamic forces on corals of a specific form and mechanical strength. From these calculations, the wave conditions under which specific species of corals would either be stable or would break due to the imposed wave-induced forces were determined. By combining this hydrodynamic force-balance model with various wave model output for different oceanographic conditions experienced in the study area, we were able to map the locations where specific coral species should be stable (not subject to frequent breakage) in the study area. The combined model output was then compared with data on coral species distribution and coral cover at 12 sites along Molokai's south shore. Observations and modeling suggest that the transition from one coral species to another may occur when the ratio of the coral colony's mechanical strengths to the applied (wave-induced) forces may be as great as 5:1, and not less than 1:1 when corals would break. This implies that coral colony's mechanical strength and wave-induced forces may be important in defining gross coral community structure over large (orders of 10's of meters) spatial scales. ?? Springer-Verlag 2004.
Modification of the Undertow and Turbulence by Submerged Vegetation in a Laboratory Surf Zone
NASA Astrophysics Data System (ADS)
Mandel, T.; Suckale, J.; Marras, S.; Maldonado, S.; Koseff, J. R.
2016-12-01
Breaking waves in the surf zone are a dominant factor shaping the evolution of our coastlines. The turbulence generated by wave breaking causes sediment resuspension, while wave runup, rundown, and the undertow transport this sediment along and across the shore (Longo et al., 2002). Coastal hazard models must now address the added complications of climate change, including sea level rise, stronger storm events, and ecosystem degradation (Arkema et al., 2013). A robust theoretical understanding of surf zone dynamics is therefore imperative to considering the magnitude and implications of these potential changes. However, little work has been done to extend our current theoretical understanding to realistic beach faces, with aquatic vegetation, reefs, and other roughness elements that might mitigate scour and sedimentation. Clarifying these relationships will help scientists and policy-makers decide where to focus ecosystem restoration and preservation efforts, in order to maximize their protective benefits to infrastructure and economic activity on the coast. In order to evaluate the role of vegetation in coastal protection, we conducted a series of experiments in an idealized laboratory surf zone. We examine the impact of submerged model vegetation on the undertow profile, wave orbital velocities, turbulent kinetic energy, and wave-induced stresses, and compare these results to theoretical formulations that model these quantities. We find that vegetation reduces the wave energy available to be converted to turbulent kinetic energy during breaking, indicating a mechanism to mitigate suspension of sediment. Vegetation also reduces the magnitude of the undertow, likely reducing transport of sediment offshore. These results suggest that vegetation provides significant protective benefits for coastal communities at risk from erosion beyond its well-characterized ability to attenuate wave height, and motivate further work to incorporate these effects into models of near-shore hydrodynamics. Longo S, Petti M, Losada IJ. 2002. Turbulence in the swash and surf zones: a review. Coast Eng 45:129-147. Arkema KK, Guannel G, Verutes G, Wood SA, Guerry A, Ruckelshaus M, Kareiva P, Lacayo M, Silver JM. Coastal habitats shield people and property from sea-level rise and storms. Nat Clim Change 3:913-918.
NASA Astrophysics Data System (ADS)
Strauss, L.; Serafin, S.; Grubišić, V.
2012-04-01
Wave-induced boundary-layer separation (BLS) results from the adverse-pressure gradient forces that are exerted on the atmospheric boundary-layer by internal gravity waves in flow over orography. BLS has received significant attention in recent years, particularly so, because it is a key ingredient in the formation of atmospheric rotors. Traditionally depicted as horizontal eddies in the lee of mountain ranges, rotors originate from the interaction between internal gravity waves and the atmospheric boundary-layer. Our study focuses on the first observationally documented case of wave-induced BLS, which occurred on 26 Jan 2006 in the lee of the Medicine Bow Mountains in SE Wyoming (USA). Observations from the University of Wyoming King Air (UWKA) aircraft, in particular, the remote sensing measurements with the Wyoming Cloud Radar (WCR), reveal strong wave activity, downslope winds in excess of 30 m/s, and near-surface flow reversal in the lee of the mountain range. The fine resolution of WCR data (on the order of 40x40 m2 for two-dimensional velocity fields) exhibits fine-scale vortical structures ("subrotors") which are embedded within the main rotor zone. Our case study intends to complete the characterisation of the observed boundary-layer separation event. Modelling of the event with the mesoscale Weather Research and Forecast Model (WRF) provides insight into the mesoscale triggers of wave-induced BLS and turbulence generation. Indeed, the mesoscale model underpins the expected concurrence of the essential processes (gravity waves, wave breaking, downslope windstorms, etc.) leading to BLS. To exploit the recorded in situ and radar data to their full extent, a quantitative evaluation of the structure and intensity of turbulence is conducted by means of a power spectral analysis of the vertical wind component, measured along the flight track. An intercomparison of observational and modelling results serves the purpose of model verification and can shed some more light onto the limits of validity of airborne observations and mesoscale modelling. For example, the exact timing, magnitude, and evolution of the internal gravity waves present in the mesoscale model are carefully analysed. As for the observations, measures of turbulence gained from in situ and radar data, collected over complex topography within a limited period of time, must be interpreted with caution. Approaches to tackling these challenges are a matter of ongoing research and will be discussed in concluding.
Symmetry-breaking instability of quadratic soliton bound states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delque, Michaeel; Departement d'Optique P.M. Duffieux, Institut FEMTO-ST, Universite de Franche-Comte, CNRS UMR 6174, F-25030 Besancon; Fanjoux, Gil
We study both numerically and experimentally two-dimensional soliton bound states in quadratic media and demonstrate their symmetry-breaking instability. The experiment is performed in a potassium titanyl phosphate crystal in a type-II configuration. The bound state is generated by the copropagation of the antisymmetric fundamental beam locked in phase with the symmetrical second harmonic one. Experimental results are in good agreement with numerical simulations of the nonlinear wave equations.
The solution of the dam-break problem in the Porous Shallow water Equations
NASA Astrophysics Data System (ADS)
Cozzolino, Luca; Pepe, Veronica; Cimorelli, Luigi; D'Aniello, Andrea; Della Morte, Renata; Pianese, Domenico
2018-04-01
The Porous Shallow water Equations are commonly used to evaluate the propagation of flooding waves in the urban environment. These equations may exhibit not only classic shocks, rarefactions, and contact discontinuities, as in the ordinary two-dimensional Shallow water Equations, but also special discontinuities at abrupt porosity jumps. In this paper, an appropriate parameterization of the stationary weak solutions of one-dimensional Porous Shallow water Equations supplies the inner structure of the porosity jumps. The exact solution of the corresponding dam-break problem is presented, and six different wave configurations are individuated, proving that the solution exists and it is unique for given initial conditions and geometric characteristics. These results can be used as a benchmark in order to validate one- and two-dimensional numerical models for the solution of the Porous Shallow water Equations. In addition, it is presented a novel Finite Volume scheme where the porosity jumps are taken into account by means of a variables reconstruction approach. The dam-break results supplied by this numerical scheme are compared with the exact dam-break results, showing the promising capabilities of this numerical approach. Finally, the advantages of the novel porosity jump definition are shown by comparison with other definitions available in the literature, demonstrating its advantages, and the issues raising in real world applications are discussed.
Gas exchange in the ice zone: the role of small waves and big animals
NASA Astrophysics Data System (ADS)
Loose, B.; Takahashi, A.; Bigdeli, A.
2016-12-01
The balance of air-sea gas exchange and net biological carbon fixation determine the transport and transformation of carbon dioxide and methane in the ocean. Air-sea gas exchange is mostly driven by upper ocean physics, but biology can also play a role. In the open ocean, gas exchange increases proportionate to the square of wind speed. When sea ice is present, this dependence breaks down in part because breaking waves and air bubble entrainment are damped out by interactions between sea ice and the wave field. At the same time, sea ice motions, formation, melt, and even sea ice-associated organisms can act to introduce turbulence and air bubbles into the upper ocean, thereby enhancing air-sea gas exchange. We take advantage of the knowledge advances of upper ocean physics including bubble dynamics to formulate a model for air-sea gas exchange in the sea ice zone. Here, we use the model to examine the role of small-scale waves and diving animals that trap air for insulation, including penguins, seals and polar bears. We compare these processes to existing parameterizations of wave and bubble dynamics in the open ocean, to observe how sea ice both mitigates and locally enhances air-sea gas transfer.
Ekino, T; Gabovich, A M; Suan Li, Mai; Szymczak, H; Voitenko, A I
2017-12-20
Quasiparticle tunnel conductance-voltage characteristics (CVCs), [Formula: see text], were calculated for break junctions (BJs) made up of layered d-wave superconductors partially gapped by charge-density waves (CDWs). The current is assumed to flow in the ab-plane of electrodes. The influence of CDWs is analyzed by comparing the resulting CVCs with CVCs calculated for BJs made up of pure d-wave superconductors with relevant parameters. The main CDW-effects were found to be the appearance of new CVC peculiarities and the loss of CVC symmetry with respect to the V-sign. Tunnel directionality was shown to be one of the key factors in the formation of [Formula: see text] dependences. In particular, the orientation of electrodes with respect to the current channel becomes very important. As a result, [Formula: see text] can acquire a large variety of forms similar to those for tunnel junctions between superconductors with s-wave, d-wave, and mixed symmetry of their order parameters. The diversity of peculiarities is especially striking at finite temperatures. In the case of BJs made up of pure d-wave superconductors, the resulting CVC can include a two-peak gap-driven structure. The results were compared with the experimental BJ data for a number of high-T c oxides. It was shown that the large variety of the observed current-voltage characteristics can be interpreted in the framework of our approach. Thus, quasiparticle tunnel currents in the ab-plane can be used as an additional mean to detect CDWs competing with superconductivity in cuprates or other layered superconductors.
NASA Astrophysics Data System (ADS)
Ekino, T.; Gabovich, A. M.; Li, Mai Suan; Szymczak, H.; Voitenko, A. I.
2017-12-01
Quasiparticle tunnel conductance-voltage characteristics (CVCs), G(V) , were calculated for break junctions (BJs) made up of layered d-wave superconductors partially gapped by charge-density waves (CDWs). The current is assumed to flow in the ab-plane of electrodes. The influence of CDWs is analyzed by comparing the resulting CVCs with CVCs calculated for BJs made up of pure d-wave superconductors with relevant parameters. The main CDW-effects were found to be the appearance of new CVC peculiarities and the loss of CVC symmetry with respect to the V-sign. Tunnel directionality was shown to be one of the key factors in the formation of G(V) dependences. In particular, the orientation of electrodes with respect to the current channel becomes very important. As a result, G(V) can acquire a large variety of forms similar to those for tunnel junctions between superconductors with s-wave, d-wave, and mixed symmetry of their order parameters. The diversity of peculiarities is especially striking at finite temperatures. In the case of BJs made up of pure d-wave superconductors, the resulting CVC can include a two-peak gap-driven structure. The results were compared with the experimental BJ data for a number of high-T c oxides. It was shown that the large variety of the observed current-voltage characteristics can be interpreted in the framework of our approach. Thus, quasiparticle tunnel currents in the ab-plane can be used as an additional mean to detect CDWs competing with superconductivity in cuprates or other layered superconductors.
NASA Technical Reports Server (NTRS)
Garcia, Rolando R.; Boville, Byron A.
1994-01-01
According to the 'downward control' principle, the extratropical mean vertical velocity on a given pressure level is approximately proportional to the meridional gradient of the vertically integrated zonal force per unit mass exerted by waves above that level. In this paper, a simple numerical model that includes parameterizations of both planetary and gravity wave breaking is used to explore the influence of gravity wave breaking in the mesosphere on the mean meridional circulation and temperature distribution at lower levels in the polar winter stratosphere. The results of these calculations suggest that gravity wave drag in the mesosphere can affect the state of the polar winter stratosphere down to altitudes below 30 km. The effect is most important when planetary wave driving is relatively weak: that is, during southern winter and in early northern winter. In southern winter, downwelling weakens by a factor of 2 near the stratospause and by 20% at 30 km when gravity wave drag is not included in the calculations. As a consequence, temperatures decrease considerably throughout the polar winter stratosphere (over 20 K above 40 km and as much as 8 K at 30 km, where the effect is enhanced by the long radiative relaxation timescale). The polar winter states obtained when gravity wave drag is omitted in this simple model resemble the results of simulations with some general circulation models and suggest that some of the shortcomings of the latter may be due to a deficit in mesospheric momentum deposition by small-scale gravity waves.
Hurricane genesis: on the breaking African easterly waves and critical layers
NASA Astrophysics Data System (ADS)
Asaadi, Ali; Brunet, Gilbert; Yau, Peter
2015-04-01
This study bring new understanding on the decades-old hurricane genesis problem that starts with westward travelling African easterly waves that can evolve into coherent cyclonic vortices depending on their strength and other nonlinear wave breaking processes. In general, observations indicate that only a small fraction of the African easterly waves that occur in a single hurricane season contribute to tropical cyclogenesis. However, this small fraction includes a large portion of named storms. In addition, a recent study by Dunkerton et al. (2009) has shown that named storms in the Atlantic and eastern Pacific basins are almost all associated with a cyclonic Kelvin "cat's eye" of a tropical easterly wave typical of critical layers, located equatorward of the easterly jet axis. To better understand the dynamics involved in hurricane genesis, the flow characteristics and the physical and dynamical mechanisms by which easterly waves form cat's eyes are investigated with the help of atmospheric reanalyzes and numerical simulations. We perform a climatological study of developing easterly waves covering the 1998-2001 hurricane seasons using ERA-Interim 6-hourly reanalysis data. Composite analyses for all named storms show a monotonic potential vorticity (PV) profile with weak meridional PV gradient and a cyclonic (i.e., south of the easterly jet axis) critical line for time periods of several days preceding the cat's eye formation. In addition, the developing PV anomaly composite shows a statistically significant companion wave-packet of non-developing easterly waves. A barotropic shallow water model is used to study the initial value and forced problems of disturbances on a parabolic jet and realistic profiles associated with weak basic state meridional PV gradients, leading to Kelvin cat's eye formation around the jet axis. The results highlight the synergy of the dynamical mechanisms, including wave breaking and PV redistribution within the nonlinear critical layer characterized by weak PV gradients, and the thermodynamical mechanisms such as convectively generated PV anomalies in the cat's eye formation in tropical cyclogenesis. These findings are consistent with the analytical theory of free and forced disturbances to an easterly parabolic jet (Brunet and Warn, 1990; Brunet and Haynes, 1995; Choboter et al., 2000). 1) Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 5587-5646. 2) Brunet, G., and T. Warn, 1990: Rossby Wave Critical Layers on a Jet. J. Atmos. Sci., 47, 1173-1178. 3) Brunet, and P. H. Haynes, 1995: The Nonlinear Evolution of Disturbances to a Parabolic Jet. J. Atmos. Sci., 52, 464-477. 4) Choboter, P. F., G. Brunet, and S. A. Maslowe, 2000: Forced Disturbances in a Zero Absolute Vorticity Gradient Environment. J. Atmos. Sci., 57, 1406-1419.
Polarimetric optical imaging of scattering surfaces.
Barter, J D; Lee, P H
1996-10-20
A polarimetric optical specular event detector (OSED) has been developed to provide spatially and temporally resolved polarimetric data of backscattering in the visible from water wave surfaces. The OSED acquires simultaneous, two-dimensionally resolved images of the remote target in two orthogonal planes of polarization. With the use of plane-polarized illumination the OSED presently can measure, in an ensemble of breaking waves, the equivalent four-element polarization matrix common to polarimetric radars. Upgrade to full Stokes parameter state of polarization measurements is straightforward with the use of present single-aperture, multi-imager CCD camera technology. The OSED is used in conjunction with a coherent pulse-chirped radar (PCR), which also measures the four-element polarization matrix, to provide direct time-correlated identification of backscattering mechanisms operative during wave-breaking events which heretofore have not been described theoretically. We describe the instrument and its implementation, and examples of spatially resolved polarimetric data are displayed as correlated with the PCR backscatter cross section and polarization ratio records.
Li, Zhengkai; Spaulding, Malcolm L; French-McCay, Deborah
2017-06-15
A surface oil entrainment model and droplet size model have been developed to estimate the flux of oil under surface breaking waves. Both equations are expressed in dimensionless Weber number (We) and Ohnesorge number (Oh, which explicitly accounts for the oil viscosity, density, and oil-water interfacial tension). Data from controlled lab studies, large-scale wave tank tests, and field observations have been used to calibrate the constants of the two independent equations. Predictions using the new algorithm compared well with the observed amount of oil removed from the surface and the sizes of the oil droplets entrained in the water column. Simulations with the new algorithm, implemented in a comprehensive spill model, show that entrainment rates increase more rapidly with wind speed than previously predicted based on the existing Delvigne and Sweeney's (1988) model, and a quasi-stable droplet size distribution (d<~50μm) is developed in the near surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sheet flow measurements on a surf-zone sandbar under shoaling and breaking waves
NASA Astrophysics Data System (ADS)
Mieras, R.; Puleo, J. A.; Cox, D. T.; Anderson, D. L.; Kim, Y.; Hsu, T. J.
2016-02-01
A large-scale experiment to quantify sheet flow processes over a sandbar under varying levels of wave steepness was conducted in the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory. A fixed profile was constructed with concrete slabs anchored to the flume side walls, with the exception of the sandbar crest, where a steel pit was installed and filled with well-sorted sediment (d50 0.17 mm). This hybrid approach allowed for the isolation of small-scale bed response to large-scale wave forcing over the sandbar, where an array of sensors was positioned to measure hydrodynamic forcing and sediment response. Near-bed (< 3 cm above the bed) velocities were estimated using Nortek Vectrino-II profiling velocimeters, while sheet layer sediment concentration profiles (volumetric concentrations > 0.08 m3/m3) were approximated using Conductivity Concentration Profilers. Test conditions consisted of a regular wave train with incident wave heights for individual runs ranging from 0.4 m to 0.6 m and incident wave periods from 5 s to 9 s, encompassing a variety of skewed and asymmetric wave shapes across the shoaling and breaking regimes. Ensemble-averaged sediment concentration profiles exhibit considerable variation across the different conditions. The largest variation in sheet layer thickness occurs beneath the wave crest, ranging from 30 grain diameters for 5 sec, 0.4 m waves, up to 80 grain diameters for 7 sec, 0.6 m waves. Furthermore, the initiation and duration of sheet flow relative to the wave period differs for each condition set. It is likely that more than one mechanism plays a role in determining the aforementioned sheet layer characteristics. In the present work, we focus on the relative magnitude and phase of the near-bed flow acceleration and shear stress in determining the characteristics of the sheet layer.
Biodamage via shock waves initiated by irradiation with ions.
Surdutovich, Eugene; Yakubovich, Alexander V; Solov'yov, Andrey V
2013-01-01
Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.
Topological defects in the Georgi-Machacek model
NASA Astrophysics Data System (ADS)
Chatterjee, Chandrasekar; Kurachi, Masafumi; Nitta, Muneto
2018-06-01
We study topological defects in the Georgi-Machacek model in a hierarchical symmetry breaking in which extra triplets acquire vacuum expectation values before the doublet. We find a possibility of topologically stable non-Abelian domain walls and non-Abelian flux tubes (vortices or cosmic strings) in this model. In the limit of the vanishing U (1 )Y gauge coupling in which the custodial symmetry becomes exact, the presence of a vortex spontaneously breaks the custodial symmetry, giving rise to S2 Nambu-Goldstone (NG) modes localized around the vortex corresponding to non-Abelian fluxes. Vortices are continuously degenerated by these degrees of freedom, thereby called non-Abelian. By taking into account the U (1 )Y gauge coupling, the custodial symmetry is explicitly broken, the NG modes are lifted to become pseudo-NG modes, and all non-Abelian vortices fall into a topologically stable Z string. This is in contrast to the standard model in which Z strings are nontopological and are unstable in the realistic parameter region. Non-Abelian domain walls also break the custodial symmetry and are accompanied by localized S2 NG modes. Finally, we discuss the existence of domain wall solutions bounded by flux tubes, where their S2 NG modes match. The domain walls may quantum mechanically decay by creating a hole bounded by a flux tube loop, and would be cosmologically safe. Gravitational waves produced from unstable domain walls could be detected by future experiments.
Nonlinear relativistic plasma resonance: Renormalization group approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metelskii, I. I., E-mail: metelski@lebedev.ru; Kovalev, V. F., E-mail: vfkvvfkv@gmail.com; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru
An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy ofmore » the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.« less
An experimental study of a plunging liquid jet induced air carryunder and dispersion
NASA Astrophysics Data System (ADS)
Bonetto, F.; Drew, D. A.; Lahey, R. T., Jr.
1993-03-01
A good understanding of the air carryunder and bubble dispersion process associated with a plunging liquid jet is vital if one is to be able to quantify such diverse phenomena as sea surface chemistry, the meteorological significance of breaking ocean waves (e.g., mitigation of the greenhouse effect due to the absorption of CO2 by the oceans), the performance of certain type of chemical reactors, and a number of other important maritime-related applications. The absorption of greenhouse gases into the ocean has been hypothesized to be highly dependent upon the air carryunder that occurs due to breaking waves. This process can be approximated with a plunging liquid jet. Moreover, the air entrainment process due to the breaking bow waves of surface ships may cause long (i.e., up to 5 km in length) wakes. Naturally, easily detectable wakes are undesirable for naval warships. In addition, the air carryunder that occurs at most hydraulic structures in rivers is primarily responsible for the large air/water mass transfer that is associated with these structures. Also, air entrainment plays an important role in the slug flow regime. In particular, the liquid film surrounding a Taylor bubble has a flow in the opposite direction from the Taylor bubble. This liquid film can be thought of as a plunging liquid jet that produces a surface depression in the rear part of the Taylor bubble.
Dynamics of scroll waves with time-delay propagation in excitable media
NASA Astrophysics Data System (ADS)
Chen, Jiang-Xing; Xiao, Jie; Qiao, Li-Yan; Xu, Jiang-Rong
2018-06-01
Information transmission delay can be widely observed in various systems. Here, we study the dynamics of scroll waves with time-delay propagation among slices in excitable media. Weak time delay induces scroll waves to meander. Through increasing the time delay, we find a series of dynamical transitions. Firstly, the straight filament of a scroll wave becomes twisted. Then, the scroll wave breaks and forms interesting patterns. With long time delay, loosed scroll waves are maintained while their period are greatly decreased. Also, cylinder waves appears. The influences of diffusively coupling strength on the time-delay-induced scroll waves are studied. It is found that the critical time delay characterizing those transitions decreases as the coupling strength is increased. A phase diagram in the diffusive coupling-time delay plane is presented.
Null geodesics and wave front singularities in the Gödel space-time
NASA Astrophysics Data System (ADS)
Kling, Thomas P.; Roebuck, Kevin; Grotzke, Eric
2018-01-01
We explore wave fronts of null geodesics in the Gödel metric emitted from point sources both at, and away from, the origin. For constant time wave fronts emitted by sources away from the origin, we find cusp ridges as well as blue sky metamorphoses where spatially disconnected portions of the wave front appear, connect to the main wave front, and then later break free and vanish. These blue sky metamorphoses in the constant time wave fronts highlight the non-causal features of the Gödel metric. We introduce a concept of physical distance along the null geodesics, and show that for wave fronts of constant physical distance, the reorganization of the points making up the wave front leads to the removal of cusp ridges.
Heart Fibrillation and Parallel Supercomputers
NASA Technical Reports Server (NTRS)
Kogan, B. Y.; Karplus, W. J.; Chudin, E. E.
1997-01-01
The Luo and Rudy 3 cardiac cell mathematical model is implemented on the parallel supercomputer CRAY - T3D. The splitting algorithm combined with variable time step and an explicit method of integration provide reasonable solution times and almost perfect scaling for rectilinear wave propagation. The computer simulation makes it possible to observe new phenomena: the break-up of spiral waves caused by intracellular calcium and dynamics and the non-uniformity of the calcium distribution in space during the onset of the spiral wave.
Vertical Ship Motion Study for Ambrose Entrance Channel, New York
2014-05-01
channels, PIANC Bulletin 1971, Vol. 1, No. 7, 17-20. Hardy, T. A. 1993. The attenuation of spectral transformation of wind waves on a coral reef ...A80(12): 95 p. Hearn, C. J. 1999. Wave -breaking hydrodynamics within coral reef systems and the effect of changing relative sea level, Journal of...Values of cf applied for coral reefs range from 0.05 to 0.40 (Hardy 1993; Hearn 1999 and Lowe et al. 2005). CMS- Wave uses a default value of cf
2012-07-01
Matagorda Peninsula east of MCR where a thicker cover of sand with vegetated dunes can be observed. 2.8 Typical beach profile Beach profile shape is a...clay bluffs on the beach face o Small tidal range, defined in Chapter 2, tends to focus wave action on the bluff toe o Breaking waves propel shell...toward the bluff, abrading the bluff toe o Abrasion undercuts the bluff, causing large sections to fail Slope failure o Cyclical wave loading on
1985-01-01
a number of problems chosen so that the risk of SHM break-down wa.s minimized. A beautiful example is the absorption coefficient of a...the aporo~ cimation We consider here the case of one normalized Gaussian, to isolate the effects of LilA from those of the neglect of the *Interaction
The New Wave of Childhood Studies: Breaking the Grip of Bio-Social Dualism?
ERIC Educational Resources Information Center
Ryan, Kevin William
2012-01-01
The article takes as its starting point a new wave of researchers who use concepts such as "hybridity" and "multiplicity" in a bid to move the study of childhood beyond the strictures of what Lee and Motzkau call "bio-social dualism", whereby the division between the "natural child" of developmental psychology and the "social child" of…
Turbulence and dissipation in a computational model of Luzon Strait
NASA Astrophysics Data System (ADS)
Jalali, Masoud; Sarkar, Sutanu
2014-11-01
Generation sites for topographic internal gravity waves can also be sites of intense turbulence. Bottom-intensified flow at critical slopes leads to convective instability and turbulent overturns [Gayen & Sarkar (2011)]. A steep ridge with small excursion number, Ex , but large super criticality can lead to nonlinear features according to observations [Klymak et al. (2008)] and numerical simulations [Legg & Klymak (2008)]. The present work uses high resolution 3-D LES to simulate flow over a model with multiscale topography patterned after a cross-section of Luzon Strait, a double-ridge generation site which was the subject of the recent IWISE experiment. A 1:100 scaling of topography was employed and environmental parameters were chosen to match the slope criticality and Fr number in the field. Several turbulent zones were identified including breaking lee waves, critical slope boundary layer, downslope jets, internal wave beams, and vortical valley flows. The multiscale model topography has subridges where a local Ex may be defined. Wave breaking and turbulence at these subridges can be understood if the local value of Ex is employed when using the Ex -based regimes identified by Jalali et al. (2014) in their DNS of oscillating flow over a single triangular obstacle.
Wave packet analysis and break-up length calculations for an accelerating planar liquid jet
NASA Astrophysics Data System (ADS)
Turner, M. R.; Healey, J. J.; Sazhin, S. S.; Piazzesi, R.
2012-02-01
This paper examines the process of transition to turbulence within an accelerating planar liquid jet. By calculating the propagation and spatial evolution of disturbance wave packets generated at a nozzle where the jet emerges, we are able to estimate break-up lengths and break-up times for different magnitudes of acceleration and different liquid to air density ratios. This study uses a basic jet velocity profile that has shear layers in both air and the liquid either side of the fluid interface. The shear layers are constructed as functions of velocity which behave in line with our CFD simulations of injecting diesel jets. The non-dimensional velocity of the jet along the jet centre-line axis is assumed to take the form V (t) = tanh(at), where the parameter a determines the magnitude of the acceleration. We compare the fully unsteady results obtained by solving the unsteady Rayleigh equation to those of a quasi-steady jet to determine when the unsteady effects are significant and whether the jet can be regarded as quasi-steady in typical operating conditions for diesel engines. For a heavy fluid injecting into a lighter fluid (density ratio ρair/ρjet = q < 1), it is found that unsteady effects are mainly significant at early injection times where the jet velocity profile is changing fastest. When the shear layers in the jet thin with time, the unsteady effects cause the growth rate of the wave packet to be smaller than the corresponding quasi-steady jet, whereas for thickening shear layers the unsteady growth rate is larger than that of the quasi-steady jet. For large accelerations (large a), the unsteady effect remains at later times but its effect on the growth rate of the wave packet decreases as the time after injection increases. As the rate of acceleration is reduced, the range of velocity values for which the jet can be considered as quasi-steady increases until eventually the whole jet can be considered quasi-steady. For a homogeneous jet (q = 1), the range of values of a for which the jet can be considered completely quasi-steady increases to larger values of a. Finally, we investigate approximating the wave packet break-up length calculations with a method that follows the most unstable disturbance wave as the jet accelerates. This approach is similar to that used in CFD simulations as it greatly reduces computational time. We investigate whether or not this is a good approximation for the parameter values typically used in diesel engines.
NASA Astrophysics Data System (ADS)
Soloviev, A.; Dean, C.; Lukas, R.; Donelan, M. A.; Terray, E. A.
2016-12-01
Surface-wave breaking is a powerful mechanism producing significant energy flux to small scale turbulence. Most of the turbulent energy produced by breaking waves dissipates within one significant wave height, while the turbulent diffusion layer extends to approximately ten significant wave heights. Notably, the near-surface shear may practically vanish within the wave-stirred layer due to small-scale turbulent mixing. The surface ocean temperature-salinity structure, circulation, and mass exchanges (including greenhouse gases and pollutants) substantially depend on turbulent mixing and non-local transport in the near-surface layer of the ocean. Spatially coherent organized motions have been recognized as an important part of non-local transport. Langmuir circulation (LC) and ramp-like structures are believed to vertically transfer an appreciable portion of the momentum, heat, gases, pollutants (e.g., oil), and other substances in the upper layer of the ocean. Free surface significantly complicates the analysis of turbulent exchanges at the air-sea interface and the coherent structures are not yet completely understood. In particular, there is growing observational evidence that in the case of developing seas when the wind direction may not coincide with the direction of the energy containing waves, the Langmuir lines are oriented in the wind rather than the wave direction. In addition, the vortex force due to Stokes drift in traditional models is altered in the breaking-wave-stirred layer. Another complication is that the ramp-like structures in the upper ocean turbulent boundary layer have axes perpendicular to the axes of LC. The ramp-like structures are not considered in the traditional model. We have developed a new model, which treats the LC and ramp-like structures in the near-surface layer of the ocean as a coupled system. Using computational fluid dynamics tools (LES), we have been able to reproduce both LC and ramp-like structures coexisting in space though intermittent in time. In the model, helicity isosurfaces appear to be tilted and, in general, coordinated with the tilted velocity isosurfaces produced by ramp-like structures. This is an indication of coupling between the LC and ramp-like structures. Remarkably, the new model is able to explain observations of LC under developing seas.
Kumar, N.; Voulgaris, G.; Warner, John C.
2011-01-01
Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5?? to 10?? in comparison to normally incident waves. ?? 2011 Elsevier B.V.
Invasion-wave-induced first-order phase transition in systems of active particles.
Ihle, Thomas
2013-10-01
An instability near the transition to collective motion of self-propelled particles is studied numerically by Enskog-like kinetic theory. While hydrodynamics breaks down, the kinetic approach leads to steep solitonlike waves. These supersonic waves show hysteresis and lead to an abrupt jump of the global order parameter if the noise level is changed. Thus they provide a mean-field mechanism to change the second-order character of the phase transition to first order. The shape of the wave is shown to follow a scaling law and to quantitatively agree with agent-based simulations.
Langmuir wave phase-mixing in warm electron-positron-dusty plasmas
NASA Astrophysics Data System (ADS)
Pramanik, Sourav; Maity, Chandan
2018-04-01
An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.
Anomalous tropical planetary wave activity during 2015/2016 quasi biennial oscillation disruption
NASA Astrophysics Data System (ADS)
Kumar, Karanam Kishore; Mathew, Sneha Susan; Subrahmanyam, K. V.
2018-01-01
In the present communication, a record breaking duration (23 months) of the eastward phase of the QBO at 20 hPa is reported and details of the tropical wave activity during the recent anomalous QBO event are discussed. Two-dimensional Fourier analysis revealed the presence of 30-40 and 10-15 day westward propagating wave number 1 structures at 40 hPa pressure level over the equator. A combination of the mid-latitude Rossby waves and the 30-40 day oscillations seems to be the most probable mechanism for the observed disruption of the QBO.
... the doctor uses a tool that produces sound waves to break up the cataract into small pieces. ... JA, Vander JF, eds. Ophthalmology Secrets in Color . 4th ed. Philadelphia, PA: Elsevier; 2016:chap 21.
Dalyander, P. Soupy; Long, Joseph W.; Plant, Nathaniel G.; Thompson, David M.
2013-01-01
During the Deepwater Horizon oil spill, oil in the surf zone mixed with sediment in the surf zone to form heavier-than-water sediment oil agglomerates of various size, ranging from small (cm-scale) pieces (surface residual balls, SRBs) to large mats (100-m scale, surface residue mats, SR mats). Once SR mats formed in the nearshore or in the intertidal zone, they may have become buried by sand moving onshore or alongshore. To assist in locating possible sites of buried oil, wave scenarios previously developed by the U.S. Geological Survey (USGS) were used to determine the depths at which surface oil had the potential to mix with suspended sediment. For sediment to mix with floating oil and form an agglomerate of sufficient density to sink to the seafloor, either the water must be very shallow (e.g., within the swash zone) or sediment must be suspended to the water surface in sufficient concentrations to create a denser-than-sea water agglomerate. The focus of this study is to analyze suspended sediment mixing with surface oil in depths beyond the swash zone, in order to define the seaward limit of mat formation. A theoretical investigation of sediment dynamics in the nearshore zone revealed that non-breaking waves do not suspend enough sediment to the surface to form sinking sand/oil agglomerates. For this study, it was assumed that the cross-shore distribution of potential agglomerate formation is associated with the primary breaker line, and the presence of plunging breakers, over the time frame of oiling. The potential locations of submerged oil mats (SOMs) are sites where (1) possible agglomerate formation occurred, where (2) sediment accreted post-oiling and buried the SOM, and where (3) the bathymetry has not subsequently eroded to re-expose any mat that may have formed at that site. To facilitate identification of these locations, the range of water level variation over the time frame of oiling was also prescribed, which combined with the wave-breaking depth analysis and pre-oiling bathymetry would identify the potential geographic locations of SOMs.
Analysis OpenMP performance of AMD and Intel architecture for breaking waves simulation using MPS
NASA Astrophysics Data System (ADS)
Alamsyah, M. N. A.; Utomo, A.; Gunawan, P. H.
2018-03-01
Simulation of breaking waves by using Navier-Stokes equation via moving particle semi-implicit method (MPS) over close domain is given. The results show the parallel computing on multicore architecture using OpenMP platform can reduce the computational time almost half of the serial time. Here, the comparison using two computer architectures (AMD and Intel) are performed. The results using Intel architecture is shown better than AMD architecture in CPU time. However, in efficiency, the computer with AMD architecture gives slightly higher than the Intel. For the simulation by 1512 number of particles, the CPU time using Intel and AMD are 12662.47 and 28282.30 respectively. Moreover, the efficiency using similar number of particles, AMD obtains 50.09 % and Intel up to 49.42 %.
On wave breaking for Boussinesq-type models
NASA Astrophysics Data System (ADS)
Kazolea, M.; Ricchiuto, M.
2018-03-01
We consider the issue of wave breaking closure for Boussinesq type models, and attempt at providing some more understanding of the sensitivity of some closure approaches to the numerical set-up, and in particular to mesh size. For relatively classical choices of weakly dispersive propagation models, we compare two closure strategies. The first is the hybrid method consisting in suppressing the dispersive terms in breaking regions, as initially suggested by Tonelli and Petti in 2009. The second is an eddy viscosity approach based on the solution of a a turbulent kinetic energy. The formulation follows early work by O. Nwogu in the 90's, and some more recent developments by Zhang and co-workers (Ocean Mod. 2014), adapting it to be consistent with the wave breaking detection used here. We perform a study of the behaviour of the two closures for different mesh sizes, with attention to the possibility of obtaining grid independent results. Based on a classical shallow water theory, we also suggest some monitors to quantify the different contributions to the dissipation mechanism, differentiating those associated to the scheme from those of the partial differential equation. These quantities are used to analyze the dynamics of dissipation in some classical benchmarks, and its dependence on the mesh size. Our main results show that numerical dissipation contributes very little to the the results obtained when using eddy viscosity method. This closure shows little sensitivity to the grid, and may lend itself to the development and use of non-dissipative/energy conserving numerical methods. The opposite is observed for the hybrid approach, for which numerical dissipation plays a key role, and unfortunately is sensitive to the size of the mesh. In particular, when working, the two approaches investigated provide results which are in the same ball range and which agree with what is usually reported in literature. With the hybrid method, however, the inception of instabilities is observed at mesh sizes which vary from case to case, and depend on the propagation model. These results are comforted by numerical computations on a large number of classical benchmarks. To perform a systematic study of the behaviour of the two closures for different mesh sizes, with attention to the possibility of obtaining grid independent results, To gain an insight into the mechanism actually responsible for wave breaking by providing a quantitative description of the different contributions to the dissipation mechanism, differentiating those associated to the numerical scheme from those introduced at the PDE level, To provide some understanding of the sensitivity of the above mentioned dissipation to the mesh size, To prove the equivalent capabilities of the approaches studied in reproducing simple as well as complex wave transformation, while showing the substantial difference in the underlying dissipation mechanisms. The paper is organised as follows. Section two presents the two Boussinesq approximations used in this work. Section 3 discusses the numerical approximation of the models, as well as of the wave breaking closure. The comparison of the two approaches on a wide selection of benchmarks is discussed in Section 4. The paper is ended by a summary and a sketch of the future and ongoing developments of this work.
NASA Astrophysics Data System (ADS)
Mohandie, R. K.; Teng, M. H.
2009-12-01
Numerical and experimental studies were carried out to examine the mitigating capabilities of coral reefs and vegetations on tsunami and storm surge inundation. For long waves propagating over variable depth such as that over a reef, the nonlinear and dispersive Boussinesq equations were applied. For run-up onto dry land where the nonlinear effect dominates, the nonlinear and nondispersive shallow water equations were used. Long waves with various amplitudes and wavelengths propagating over coral reefs of different length and height were investigated to quantify under which conditions a coral reef may be effective in reducing the wave impact. It was observed that a reef can make a long wave separate into several smaller waves and it can also cause wave breaking resulting in energy dissipation. Our data suggest that both wave separation and breaking induced by coral reefs are effective at mitigating long wave run-up, with the latter being noticeably more effective than the former. As expected, it was observed that the higher the coral reef height, the more the reduction in wave run-up especially when the reef height is greater than 50% of the water depth. For reefs to be effective as a barrier for long waves such as tsunamis and storm surges, it was found that the reefs must be sufficiently long in the wave propagation direction, for example, with its length to be at least of the same magnitude as the wavelength or longer. In this study, it was shown that an effective reef can reduce the long wave run-up by as much as 25% and 50% by wave separation and wave breaking, respectively. Three types of vegetation, namely, grass, shrub and coconut trees, were modeled and tested in a wave tank against various initial wave amplitude and beach slopes in the Hydraulics Lab at the University of Hawaii (UH) to examine each particular type’s effectiveness in reducing wave run-up and to determine its roughness coefficient for wave run-up through numerical simulation and experimental measurement. These roughness coefficients were shown to be higher than the traditional Manning’s coefficient values for vegetation in channel flows. Also, the coefficients were shown to be a function of the ratio of the initial wave amplitude over the vegetation height and are relatively independent of the beach slope. The vegetation spacing and tree diameters in the lab models were selected based on the typical spacing and tree diameter observed in the field through a reduced scale. All three types of vegetation were found to be effective in reducing wave run-up especially on mildly sloped beaches with a reduction rate ranging from 20% to more than 50%. A numerical simulation that incorporated the effects of coral reef and the combined vegetation types showed that on a 5 degree slope the reduction in run-up was 61% as compared to an unprotected scenario. A larger scale experimental study on coconut and bushes in the NSF-funded tsunami basin at the OSU also showed these vegetations are effective at reducing wave run-up. These results can be helpful in achieving a better understanding of the role that coral reefs and vegetation play in tsunami and storm surge mitigation.
2002-11-27
Ignited by lightning strikes during a record-breaking heat wave, the Biscuit Fire became Oregon largest wildfire of the past century. NASA Terra spacecraft acquired these image between mid July and early September 2002.
Planetary wave-gravity wave interactions during mesospheric inversion layer events
NASA Astrophysics Data System (ADS)
Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.
2013-07-01
lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion amplitude may get modulated by the interaction between gravity waves and planetary waves. The eddy diffusion associated with gravity wave drag may also cause suppression in the planetary wave activity.
Dudley, J M; Sarano, V; Dias, F
2013-06-20
The Hokusai woodcut entitled The great wave off Kanagawa has been interpreted as an unusually large storm wave, likely to be classed as a rogue wave, and possibly generated from nonlinear wave dynamics (J. H. E. Cartwright and H. Nakamura, Notes Rec. R. Soc. 63 , 119-135 (2009)). In this paper, we present a complementary discussion of this hypothesis, discussing in particular how linear and nonlinear mechanisms can both contribute to the emergence of rogue wave events. By making reference to the Great wave 's simultaneous transverse and longitudinal localization, we show that the purely linear mechanism of directional focusing also predicts characteristics consistent with those of the Great wave . In addition, we discuss the properties of a particular rogue wave photographed on the open ocean in sub-Antarctic waters, which shows two-dimensional localization and breaking dynamics remarkably similar to Hokusai's depiction in the woodcut.
Dudley, J. M.; Sarano, V.; Dias, F.
2013-01-01
The Hokusai woodcut entitled The great wave off Kanagawa has been interpreted as an unusually large storm wave, likely to be classed as a rogue wave, and possibly generated from nonlinear wave dynamics (J. H. E. Cartwright and H. Nakamura, Notes Rec. R. Soc. 63, 119–135 (2009)). In this paper, we present a complementary discussion of this hypothesis, discussing in particular how linear and nonlinear mechanisms can both contribute to the emergence of rogue wave events. By making reference to the Great wave's simultaneous transverse and longitudinal localization, we show that the purely linear mechanism of directional focusing also predicts characteristics consistent with those of the Great wave. In addition, we discuss the properties of a particular rogue wave photographed on the open ocean in sub-Antarctic waters, which shows two-dimensional localization and breaking dynamics remarkably similar to Hokusai's depiction in the woodcut. PMID:24687148
Stochastic Acceleration of Ions Driven by Pc1 Wave Packets
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.
2015-01-01
The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.
Mechanical energy transport. [during stellar turbulences
NASA Technical Reports Server (NTRS)
Stein, R. F.; Leibacher, J. W.
1980-01-01
The properties, generation, and dissipation mechanisms of acoustic, gravity and Alfven waves are described, whose restoring forces are pressure, buoyancy, and magnetic tension, respectively. For acoustic waves, generation by turbulent convective motions and by the Eddington Valve thermal overstability is discussed, considering the 'five-minute' oscillation; dissipation is possible either by radiation or shocks. Generation of gravity waves by penetrative convective motions and by shear arising from supergranule motions is reviewed, and dissipation due to wave breaking, interaction with the mean horizontal fluid flow, and very severe radiative damping is considered. Attention is given to Alfven wave generation by convective motions and thermal overstability, and to dissipation by mode coupling, wave decay, current dissipation, and particle collisions producing Joule or viscous heating.
Offshore Breaking of Impact Tsunami: Van Dorn was Right
NASA Technical Reports Server (NTRS)
Korycansky, D. G.; Lynett, P. J.
2005-01-01
Tsunami generated by the impacts of asteroids and comets into the Earth s oceans are widely recognized as a potentially catastrophic hazard to the Earth s population (e.g. Chapman and Morrison 1994, Nature, 367, 33; Hills et al. 1994, in Hazards Due to Comets and Asteroids, (ed. T. Gehrels), 779; Atkinson et al. 2000, Report of the UK Task Force on Potentially Hazardous NEOs; Ward and Asphaug 2000, Icarus, 145, 64). A peculiarity of ocean impacts is the potential global effects of an impact that would otherwise be of only regional or local importance should it occur on land. This is, of course, due to the ability of waves to propagate globally, as seen by the terrible effects of the recent earthquake off the coast of Sumatra. The overall process of an impact tsunami is complex and falls into several distinct phases: 1) initial impact of the bolide into the ocean and formation of a transient cavity in the water, 2) collapse of the cavity and propagation of large waves from the impact center outward over deep water (typically several km in depth), 3) initial effects on wave amplitude as shallower water of the continental slope is reached ("wave shoaling"), possible breaking of waves in relatively shallow water (less than 100 m depth), on continental shelves, and 5) final contact of waves with the shore and their progression onto dry land ("run-up" and "run-in"). Here we report on numerical calculations (and semi-analytic theory) covering phases 3 and 4.
Modeling ocean wave propagation under sea ice covers
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley H.; Cheng, Sukun
2015-02-01
Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology. Laboratory experiments, field measurements and numerical simulations supporting the fundamental research in wave-ice interaction models are discussed. We conclude with some outlook of future research needs in this field.
Models and observations of foam coverage and bubble content in the surf zone
NASA Astrophysics Data System (ADS)
Kirby, J. T.; Shi, F.; Holman, R. A.
2010-12-01
Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water column motion. Preliminary steps to calibrate and verify the resulting models will be taken based on results to be collected during the Surf Zone Optics experiment at Duck, NC in September 2010. Initial efforts will focus on an examination of breaking wave patterns and persistent foam distributions, using ARGUS imagery.
NASA Astrophysics Data System (ADS)
Peevey, Tanya
The upper troposphere lower stratosphere (UTLS) is a region of minimum temperatures that contains the tropopause. As a transition region between the troposphere and the stratosphere, the UTLS contains various processes that facilitate stratosphere-troposphere exchange (STE) which can redistribute radiatively important species such as water vapor or ozone. One potential marker for STE is the double tropopause (DT). Therefore this study seeks to further understand how DTs form and how they could enhance the current understanding of some STE processes in the UTLS. Using data from the High Resolution Dynamic Limb Sounder (HIRDLS), a data set with high vertical and horizontal resolution, newly discovered DT structures are found over the Pacific and Atlantic oceans that suggest a relationship between the DT and both storm tracks and Rossby waves. The association between DTs and storm tracks is examined by further analyzing the recently discovered and unexpected relationship between the DT and the tropopause inversion layer (TIL) in a developing baroclinic disturbance. Results show an increase in the number of DTs when the lapse rate of the extratropical TIL is less than -2°C/km, i.e. when the TIL is stronger and the local stability is higher. Composites of ERA-Interim DT profiles for three different TIL strengths shows that the vertical motion and relative vorticity both decrease as the TIL increases, which suggests the warm conveyor belt as a mechanism. This is investigated further with a case study analysis of a developing extratropical cyclone in the Pacific Ocean. Additionally, an analysis of DTs in relation to the large scale flow responsible for storm development shows a strong correlation between monthly Rossby wave activity, ozone laminae and DT variability. Further examination shows that if these waves break a DT will be found with a wave breaking event about 30% of the time in the eastern Pacific and eastern Atlantic oceans, both regions of poleward wave breaking. These results highlight a new and more complicated DT structure that is a product of both large scale dynamics and small scale vertical motions, thus adding new information to the current understanding of the UTLS.
Noncritical quadrature squeezing through spontaneous polarization symmetry breaking.
Garcia-Ferrer, Ferran V; Navarrete-Benlloch, Carlos; de Valcárcel, Germán J; Roldán, Eugenio
2010-07-01
We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We first consider Type II frequency-degenerate optical parametric oscillators but discard them for a number of reasons. Then we propose a four-wave-mixing cavity, in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity, complete noise suppression in a quadrature of the output field occurs, irrespective of the parameter values.
Refined Source Terms in WAVEWATCH III with Wave Breaking and Sea Spray Forecasts
2015-09-30
young wind seas reported by Schwendeman et al. (2014) and for the open ocean cases reported by Sutherland and Melville (2015). These verifications...modeled Λ(c) distributions shown in Figure 3 follow a very similar dependence to the Sutherland and Melville observations to about 1-2 m/s. The...and 11) as well as Sutherland and Melville (2015) which show beff ~ O(10-3). Figure 4. Modeled behavior of spectrally-integrated breaking
NASA Astrophysics Data System (ADS)
Cherdantsev, Andrey; Hann, David; Azzopardi, Barry
2013-11-01
High-speed LIF-technique is applied to study gas-sheared liquid film in horizontal rectangular duct with 161 mm width. Instantaneous distributions of film thickness resolved in both longitudinal and transverse coordinates were obtained with a frequency of 10 kHz and spatial resolution from 0.125 mm to 0.04 mm. Processes of generation of fast and slow ripples by disturbance waves are the same as described in literature for downwards annular pipe flow. Disturbance waves are often localized by transverse coordinate and may have curved or slanted fronts. Fast ripples, covering disturbance waves, are typically horseshoe-shaped and placed in staggered order. Their characteristic transverse size is of order 1 cm and it decreases with gas velocity. Entrainment of liquid from film surface can also be visualized. Mechanisms of ripple disruption, known as ``bag break-up'' and ``ligament break-up,'' were observed. Both mechanisms may occur on the same disturbance waves. Various scenarios of droplet deposition on the liquid film are observed, including the impact, slow sinking and bouncing, characterized by different outcome of secondary droplets or entrapped bubbles. Number and size of bubbles increase greatly inside the disturbance waves. Both quantities increase with gas and liquid flow rates. EPSRC Programme Grant MEMPHIS (EP/K003976/1), and Roll-Royce UTC (Nottingham, for access to flow facility).
Guilbault, Kimberly R.; Brown, C.S.; Friedman, J.M.; Shafroth, P.B.
2012-01-01
Russian olive (Elaeagnus angustifolia L.), a Eurasian tree now abundant along rivers in western North America, has an apparent southern distribution limit running through southern California, Arizona, New Mexico and Texas. We used field observations to precisely define this limit in relation to temperature variables. We then investigated whether lack of cold temperatures south of the limit may prevent the accumulation of sufficient chilling, inhibiting dormancy loss of seeds and buds. We found that Russian olive occurrence was more strongly associated with low winter temperatures than with high summer temperatures, and results of controlled seed germination and vegetative bud-break experiments suggest that the chilling requirements for germination and bud-break are partly responsible for the southern range limit. Both seed germination proportion and germination time decreased under conditions simulating those south of the range limit. Similarly, percentage bud break decreased when chilling dropped below values typical of the range limit. In 17–65% of the years from 1980 to 2000, the chilling accumulated at a site near the range limit (El Paso, TX) would lead to a 10% or more decrease in bud-break. The potential decline in growth could have large fitness consequences for Russian olive. If climate change exhibits a warming trend, our results suggest the chilling requirement for bud-break of Russian olive trees will not be met in some years and its southern range limit may retreat northward.
Inductive and electrostatic acceleration in relativistic jet-plasma interactions.
Ng, Johnny S T; Noble, Robert J
2006-03-24
We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma-wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of 2 during the simulation period. Particle acceleration via these mechanisms occurred when the criteria for Weibel instability were satisfied.
The dissociation of liquid silica at high pressure and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, D; Boehly, T; Eggert, J
2005-11-17
Liquid silica at high pressure and temperature is shown to undergo significant structural modifications and profound changes in its electronic properties. Temperature measurements on shock waves in silica at 70-1000 GPa indicate that the specific heat of liquid SiO{sub 2} rises well above the Dulong-Petit limit, exhibiting a broad peak with temperature that is attributable to the growing structural disorder caused by bond-breaking in the melt. The simultaneous sharp rise in optical reflectivity of liquid SiO{sub 2} indicates that dissociation causes the electrical and therefore thermal conductivities of silica to attain metallic-like values of 1-5 x 10{sup 5} S/m andmore » 24-600 W/m.K respectively.« less
Generation of internal solitary waves by frontally forced intrusions in geophysical flows.
Bourgault, Daniel; Galbraith, Peter S; Chavanne, Cédric
2016-12-06
Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.
3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking
NASA Astrophysics Data System (ADS)
Zhang, Lin; Wu, Tso-Ren
2016-04-01
In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most importantly, the amount of water loosed in the event. The simulated water movement excited by the seismic acceleration was visually similar to the video clip mentioned before. From the simulation results, we observed that the water was mainly leaked at the corner of the water tank with a nonlinear curve of the free-surface. This phenomenon can't be found in the conventional studies with acceleration in a sole direction. We also studied the effect from a porous body placed on the lower part of the tank. Detailed results and discussion will be presented in the full paper. Keywords Sloshing, Splash3D, LES, Breaking waves, VOF, spent fuel pool, Nuclear power plant
The role of spring precipitation deficits on European and North American summer heat wave activity
NASA Astrophysics Data System (ADS)
Cowan, Tim; Hegerl, Gabi
2017-04-01
Heat waves are relatively short-term climate phenomena with potentially severe societal impacts, particularly on health, agriculture and the natural environment. In water-limited regions, increased heat wave activity over intra-decadal periods is often associated with protracted droughts, as observed over North America's Central and Southern Great Plains in the 1930s and 1950s, highlighting the importance of land surface-atmosphere feedbacks. Here we present an analysis of the covariability of spring precipitation deficit and summer heat waves for North America and Europe, the latter having experienced an increase in summer heat wave frequency since the 1950s (Perkins et al. 2012). Over the Great Plains summer heat waves are significantly earlier, longer and hotter if following dry rather than wet springs, with the mega-heat waves of the 1930s Dust Bowl decade an extreme example (e.g. Cowan et al. 2017). Similar relationships can be found in some parts of Europe for heat wave frequency and duration, namely Southern and Eastern Europe, although the heat wave timing and amplitude (i.e. the hottest events) appear less sensitive to spring drying. Climate model results investigating the relationship between heat waves and precipitation deficit in regions in Europe and North America will also be presented. It is necessary to pinpoint the causes of large decadal variations in heat wave metrics, as seen in the 1930s over North America and more recently across Central Europe, for event attribution purposes and to improve near-decadal prediction. The tight link between spring drought and summer heat waves will also be important for understanding the impacts of these climatic events and supports the development of compound event analysis techniques. References: Cowan, T., G. Hegerl, I. Colfescu, A. Purich and G. Boshcat (2016), Factors contributing to record-breaking heat waves over the Great Plains during the 1930s Dust Bowl. Journal of Climate, doi: 10.1175/JCLI-D-16-0436.1 (in press). Perkins, S. E., L. V. Alexander, and J. R. Nairn (2012), Increasing frequency, intensity and duration of observed global heatwaves and warm spells, Geophys. Res. Lett., 39, L20714, doi:10.1029/2012GL053361.
A finite-difference time-domain electromagnetic solver in a generalized coordinate system
NASA Astrophysics Data System (ADS)
Hochberg, Timothy Allen
A new, finite-difference, time-domain method for the simulation of full-wave electromagnetic wave propogation in complex structures is developed. This method is simple and flexible; it allows for the simulation of transient wave propogation in a large class of practical structures. Boundary conditions are implemented for perfect and imperfect electrically conducting boundaries, perfect magnetically conducting boundaries, and absorbing boundaries. The method is validated with the aid of several different types of test cases. Two types of coaxial cables with helical breaks are simulated and the results are discussed.
The Offlap Break Position Vs Sea Level: A Discussion
NASA Astrophysics Data System (ADS)
Tropeano, M.; Pieri, P.; Pomar, L.; Sabato, L.
Sedimentary lithosomes with subhorizontal topsets, basinward prograding foresets and subhorizontal bottomsets are common in the geologic record, and most of them display similar bedding architectures and/or seismic reflection patterns (i.e. Gylbert- type deltas and shelf wedges). Nevertheless, in shallow marine settings these bodies may form in distinct sedimentary environments and they result from different sed- imentary processes. The offlap break (topset edge) occurs in relation to the posi- tion of baselevel and two main groups of lithosomes can be differentiated with re- spect to the position of the offlap break within the shelf profile. The baselevel of the first group is the sea level (or lake level); the topsets are mainly composed by continental- or very-shallow-water sedimentary facies and the offlap break practi- cally corresponds to the shoreline. Exemples of these lithosomes are high-constructive deltas (river-dominated deltas) and prograding beaches. For the second group, base- level corresponds to the base of wave/tide traction, and their topsets are mostly composed by shoreface/nearshore deposits. Examples of these lithosomes are high- destructive deltas (wave/tide-dominated deltas) and infralittoral prograding wedges (i.e Hernandez-Molina et al., 2000). The offlap break corresponds to the shelf edge (shoreface edge), which is located at the transition between nearshore and offshore set- tings, where a terrace prodelta- or transition-slope may develop (Pomar &Tropeano, 2001). Two main problems derive from these alternative interpretations of shallow- marine seaward prograding lithosomes: 1) both in ancient sedimentary shallow-marine successios (showing seaward prograding foresets) and in high resolution seismic pro- files (showing shelf wedges), the offlap break is commonly considered to correspond to the sea-level (shoreline) and used to inferr paleo sea-level positions and to construct sea-level curves. Without a good facies control, this use of the offlap break might cause a misinterpretation of the ancient sea-level positions and the inferred relative sea-level changes. 2) both baselevels, the sea level and the wave/tide base, govern sedimentary accumulation in wave/tide dominated shelves and, consequently, two offlap breaks may coexist (beach edge and shoreface edge) in shallow-marine depositional profiles (Carter et al., 1991). In this setting, two seaward-clinobedded lithosomes, separated by an unconformity, may develop during relative still-stand or falls of the sea-level (Hill et al., 1998). In this case, the two stacked lithosomes could be misinterpreted as two different systems tracts, or sequences, and it could led to the construction of an 1 uncorrect curve of sea-level changes. Carter R.M., Abbott S.T., Fulthorpe C.S., Haywick D.W. and Henderson R.A. (1991): Application of global sea-level and sequence-stratigraphic models in Southern Hemi- sphere Neogene strata from New Zealand. Sp. Publ. IAS, 12, 41-65. Hernández- Molina F.J., Fernández-Salas L.M., Lobo F., Somoza L., Diaz-del-Rio V. and Alver- inho Dias J.M. (2000): The infralittoral prograding wedge: a new large-scale prograda- tional sedimentary body in shallow marine environments. Geo-Marine Letters, 20, 109-117. Hill P.R., Longuépée H. and Roberge M. (1998). Live from Canada: forced regression in action; deltaic shoreface sandbodies being formed. Abstracts, 15th Int. Cong. IAS, Alicante (Spain), 427-428. Pomar L. and Tropeano M. (2001). The Cal- carenite di Gravina Formation in Matera (southern Italy): new insights for coarse- grained, large-scale, cross-bedded bodies encased in offshore deposits. AAPG Bull., 85, 661-689. 2
NASA Technical Reports Server (NTRS)
Cho, John Y. N.; Newell, Reginald E.; Bui, T. Paul; Browell, Edward V.; Fenn, Martha A.; Gary, Bruce L.; Mahoney, Michael J.; Gregory, Gerald L.; Sachse, Glen W.; Vay, Stephanie A.
1999-01-01
With aircraft-mounted in-situ and remote sensing instruments for dynamical, thermal. and chemical measurements, we studied two cases of tropopause folding. In both folds we found Kelvin-Helmholtz billows with horizontal wavelength of about 900 m and thickness of about 120 m. In one case the instability was effectively mixing the bottomside of the fold, leading to the transfer of stratospheric air into the troposphere. Also we discovered in both cases small-scale secondary ozone maxima shortly after the aircraft ascended past the topside of the fold that corresponded to regions of convective instability. We interpreted this phenomenon as convectively breaking gravity waves. Therefore, we posit that convectively breaking gravity waves acting on tropopause folds must be added to the list of important irreversible mixing mechanisms leading to stratosphere-troposphere exchange.
All-passive nonreciprocal metastructure.
Mahmoud, Ahmed M; Davoyan, Arthur R; Engheta, Nader
2015-09-28
One-way propagation of light, analogous to the directional flow of electrons in the presence of electric potential difference, has been an important goal in the wave-matter interaction. Breaking time-reversal symmetry in photonic flows is faced with challenges different from those for electron flows. In recent years several approaches and methods have been offered towards achieving this goal. Here we investigate another systematic approach to design all-passive relatively high-throughput metastructures that exhibit nonreciprocal properties and achieve wave-flow isolation. Moreover, we build on those findings and propose a paradigm for a quasi-two-dimensional metastructure that mimics the nonreciprocal property of Faraday rotation without using any magnetic or electric biasing. We envision that the proposed approaches may serve as a building block for all-passive time-reversal symmetry breaking with potential applications for future nonreciprocal systems and devices.
NASA Astrophysics Data System (ADS)
Matsui, Toshinori
2018-01-01
Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.
NASA Astrophysics Data System (ADS)
Costantino, Lorenzo; Heinrich, Philippe
2014-05-01
Small scale atmospheric waves, usually referred as internal of Gravity Waves (GW), represent an efficient transport mechanism of energy and momentum through the atmosphere. They propagate upward from their sources in the lower atmosphere (flow over topography, convection and jet adjustment) to the middle and upper atmosphere. Depending on the horizontal wind shear, they can dissipate at different altitudes and force the atmospheric circulation of the stratosphere and mesosphere. The deposition of momentum associated with the dissipation, or wave breaking, exerts an acceleration to the mean flow, that can significantly alter the thermal and dynamical structure of the atmosphere. GW may have spatial scales that range from few to hundreds of kilometers and range from minutes to hours. For that reason, General Circulation Model (GCM) used in climate studies have generally a coarse resolution, of approximately 2-5° horizontally and 3 km vertically, in the stratosphere. This resolution is fine enough to resolve Rossby-waves but not the small-scale GW activity. Hence, to calculate the momentum-forcing generated by the unresolved waves, they use a drag parametrization which mainly consists in some tuning parameters, constrained by observations of wind circulation and temperature in the upper troposphere and middle atmosphere (Alexander et al., 2010). Traditionally, the GW Drag (GWD) parametrization is used in climate and forecasting models to adjust the structure of winter jets and the horizontal temperature gradient. It was firstly based on the parametrization of orographic waves, which represent zero-phase-speed waves generated by sub-grid topography. Regional models, with horizontal resolutions that can reach few tens or hundreds of meters, are able to directly resolve small-scale GW and may represent a valuable addition to direct observations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, this study tests the capability of the Weather Research and Forecasting (WRF) model to generate and propagate GW forced by convection and orography, without any GW parametrization. Results from model simulations are compared with in-situ observations of potential energy vertical profiles in the stratosphere, measured by a LIDAR located at the Observatoire de Haute Provence (Southern France). This comparison allows, to a certain extent, to validate WRF numerical results and quantify some of those wave parameters (e.g., GW drag force, intrinsic frequency, breaking level altitude, etc..) that are fundamental for a deeper understanding of GW role in atmospheric dynamics, but that are not easily measurable by ground- or space-based systems (limited to specific region or certain latitude band). Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. and Watanabe, S. (2010), Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q.J.R. Meteorol. Soc., 136: 1103-1124. doi: 10.1002/qj.637
NASA Astrophysics Data System (ADS)
Ma, Wen-Long; Liu, Ren-Bao
2016-08-01
Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.
New challenges of the ARISE project
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth
2015-04-01
It has been robustly demonstrated that variations in the circulation of the middle atmosphere influence weather and climate throughout the troposphere all the way to the Earth's surface. A key part of the coupling between the troposphere and stratosphere occurs through the propagation and breaking of planetary-scale Rossby waves and gravity waves. Limited observation of the middle atmosphere and these waves in particular limits the ability to faithfully reproduce the dynamics of the middle atmosphere in numerical weather prediction and climate models. The ARISE project combines for the first time international networks with complementary technologies such as infrasound, lidar and airglow. This joint network provided advanced data products that started to be used as benchmarks for weather forecast models. The ARISE network also allows enhanced and detailed monitoring of other extreme events in the Earth system such as erupting volcanoes, magnetic storms, tornadoes and tropical thunderstorms. In order to improve the ability of the network to monitor atmospheric dynamics, ARISE proposes to extend i) the existing network coverage in Africa and the high latitudes, ii) the altitude range in the stratosphere and mesosphere, iii) the observation duration using routine observation modes, and to use complementary existing infrastructures and innovative instrumentations. Data will be collected over the long term to improve weather forecasting to monthly or seasonal timescales, to monitor atmospheric extreme events and climate change. ARISE focuses on the link between models and observations for future assimilation of data by operational weather forecasting models. Among the applications, ARISE2 proposes infrasound remote volcano monitoring to provide notifications to civil aviation.
E. M. Forgan; Huecker, M.; Blackburn, E.; ...
2015-12-09
Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa 2Cu 3O 6.54 at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO 2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO 2 planes, and are out of phase with each other. The planar oxygen atomsmore » have the largest displacements, perpendicular to the CuO 2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For example, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.« less
A review of potential tsunami impacts to the Suez Canal
NASA Astrophysics Data System (ADS)
Finkl, C.; Pelinovsky, E.
2012-04-01
Destructive tsunamis in the eastern Mediterranean and Red seas, induced by earthquakes and/or volcanic activity, pose potential hazards to docked seaport shipping and fixed harbor infrastructure as well as to in-transit international shipping within the Suez Canal. Potential vulnerabilities of the Suez Canal to possible tsunami impacts are reviewed by reference to geological, historical, archaeoseismological, and anecdotal data. Tsunami catalogues and databases compiled by earlier researchers are perused to estimate potential return periods for tsunami events that could affect directly the Suez Canal and its closely associated operational infrastructures. Analysis of these various records indicates a centurial return period, or multiples thereof, for long-wave repetition that could generally affect the Nile Delta. It is estimated that tsunami waves 2 m high would have a breaking length about 5 km down Canal whereas a 10 m wave break would occur about 1 km into the Canal. Should a tsunami strike the eastern flanks of the Nile Delta, it would damage Egypt's maritime infrastructure and multi-national commercial vessels and military ships then using the Canal.
NASA Astrophysics Data System (ADS)
Forgan, E. M.; Blackburn, E.; Holmes, A. T.; Briffa, A. K. R.; Chang, J.; Bouchenoire, L.; Brown, S. D.; Liang, Ruixing; Bonn, D.; Hardy, W. N.; Christensen, N. B.; Zimmermann, M. V.; Hücker, M.; Hayden, S. M.
2015-12-01
Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.
Absence of time-reversal symmetry breaking in the noncentrosymmetric superconductor Mo3Al2C
NASA Astrophysics Data System (ADS)
Bauer, E.; Sekine, C.; Sai, U.; Rogl, P.; Biswas, P. K.; Amato, A.
2014-08-01
Zero-field muon spin rotation and relaxation (μSR) studies carried out on the strongly coupled, noncentrosymmetric superconductor Mo3Al2C,Tc=9 K, did not reveal hints of time-reversal symmetry breaking as was found for a number of other noncentrosymmetric systems. Transverse field measurements performed above and below the superconducting transition temperature defined the temperature dependent London penetration depth, which in turn served to derive from a microscopic point of view a simple s-wave superconducting state in Mo3Al2C. The present investigations also provide fairly solid grounds to conclude that time-reversal symmetry breaking is not an immanent feature of noncentrosymmetric superconductors.
Jet simulations and gamma-ray burst afterglow jet breaks
NASA Astrophysics Data System (ADS)
van Eerten, H. J.; Meliani, Z.; Wijers, R. A. M. J.; Keppens, R.
2011-01-01
The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on circumstances, the radio jet break may be postponed significantly. Using high-accuracy adaptive mesh fluid simulations in one dimension, coupled to a detailed synchrotron radiation code, we demonstrate that this is true even for the standard fireball model and hard-edged jets. We confirm these effects with a simulation in two dimensions. The frequency dependence of the jet break is a result of the angle dependence of the emission, the changing optical depth in the self-absorbed regime and the shape of the synchrotron spectrum in general. In the optically thin case the conventional analysis systematically overestimates the jet break time, leading to inferred opening angles that are underestimated by a factor of ˜1.3 and explosion energies that are underestimated by a factor of ˜1.7, for explosions in a homogeneous environment. The methods presented in this paper can be applied to adaptive mesh simulations of arbitrary relativistic fluid flows. All analysis presented here makes the usual assumption of an on-axis observer.
Investigation of skin structures based on infrared wave parameter indirect microscopic imaging
NASA Astrophysics Data System (ADS)
Zhao, Jun; Liu, Xuefeng; Xiong, Jichuan; Zhou, Lijuan
2017-02-01
Detailed imaging and analysis of skin structures are becoming increasingly important in modern healthcare and clinic diagnosis. Nanometer resolution imaging techniques such as SEM and AFM can cause harmful damage to the sample and cannot measure the whole skin structure from the very surface through epidermis, dermis to subcutaneous. Conventional optical microscopy has the highest imaging efficiency, flexibility in onsite applications and lowest cost in manufacturing and usage, but its image resolution is too low to be accepted for biomedical analysis. Infrared parameter indirect microscopic imaging (PIMI) uses an infrared laser as the light source due to its high transmission in skins. The polarization of optical wave through the skin sample was modulated while the variation of the optical field was observed at the imaging plane. The intensity variation curve of each pixel was fitted to extract the near field polarization parameters to form indirect images. During the through-skin light modulation and image retrieving process, the curve fitting removes the blurring scattering from neighboring pixels and keeps only the field variations related to local skin structures. By using the infrared PIMI, we can break the diffraction limit, bring the wide field optical image resolution to sub-200nm, in the meantime of taking advantage of high transmission of infrared waves in skin structures.
Structure of the European upper mantle revealed by adjoint tomography
NASA Astrophysics Data System (ADS)
Zhu, Hejun; Bozdağ, Ebru; Peter, Daniel; Tromp, Jeroen
2012-07-01
Images of the European crust and upper mantle, created using seismic tomography, identify the Cenozoic Rift System and related volcanism in central and western Europe. They also reveal subduction and slab roll back in the Mediterranean-Carpathian region. However, existing tomographic models are either high in resolution, but cover only a limited area, or low in resolution, and thus miss the finer-scale details of mantle structure. Here we simultaneously fit frequency-dependent phase anomalies of body and surface waveforms in complete three-component seismograms with an iterative inversion strategy involving adjoint methods, to create a tomographic model of the European upper mantle. We find that many of the smaller-scale structures such as slabs, upwellings and delaminations that emerge naturally in our model are consistent with existing images. However, we also derive some hitherto unidentified structures. Specifically, we interpret fast seismic-wave speeds beneath the Dinarides Mountains, southern Europe, as a signature of northeastward subduction of the Adria plate; slow seismic-wave speeds beneath the northern part of the Rhine Graben as a reservoir connected to the Eifel hotspot; and fast wave-speed anomalies beneath Scandinavia as a lithospheric drip, where the lithosphere is delaminating and breaking away. Our model sheds new light on the enigmatic palaeotectonic history of Europe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Jibin; Qiao Zhijun
This paper deals with the following equation m{sub t}=(1/2)(1/m{sup k}){sub xxx}-(1/2)(1/m{sup k}){sub x}, which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the casesmore » of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.« less
Spatiotemporal optical dark X solitary waves.
Baronio, Fabio; Chen, Shihua; Onorato, Miguel; Trillo, Stefano; Wabnitz, Stefan; Kodama, Yuji
2016-12-01
We introduce spatiotemporal optical dark X solitary waves of the (2+1)D hyperbolic nonlinear Schrödinger equation (NLSE), which rules wave propagation in a self-focusing and normally dispersive medium. These analytical solutions are derived by exploiting the connection between the NLSE and a well-known equation of hydrodynamics, namely the type II Kadomtsev-Petviashvili (KP-II) equation. As a result, families of shallow water X soliton solutions of the KP-II equation are mapped into optical dark X solitary wave solutions of the NLSE. Numerical simulations show that optical dark X solitary waves may propagate for long distances (tens of nonlinear lengths) before they eventually break up, owing to the modulation instability of the continuous wave background. This finding opens a novel path for the excitation and control of X solitary waves in nonlinear optics.
NASA Astrophysics Data System (ADS)
Tarpin, Malo; Canet, Léonie; Wschebor, Nicolás
2018-05-01
In this paper, we present theoretical results on the statistical properties of stationary, homogeneous, and isotropic turbulence in incompressible flows in three dimensions. Within the framework of the non-perturbative renormalization group, we derive a closed renormalization flow equation for a generic n-point correlation (and response) function for large wave-numbers with respect to the inverse integral scale. The closure is obtained from a controlled expansion and relies on extended symmetries of the Navier-Stokes field theory. It yields the exact leading behavior of the flow equation at large wave-numbers |p→ i| and for arbitrary time differences ti in the stationary state. Furthermore, we obtain the form of the general solution of the corresponding fixed point equation, which yields the analytical form of the leading wave-number and time dependence of n-point correlation functions, for large wave-numbers and both for small ti and in the limit ti → ∞. At small ti, the leading contribution at large wave-numbers is logarithmically equivalent to -α (ɛL ) 2 /3|∑tip→ i|2, where α is a non-universal constant, L is the integral scale, and ɛ is the mean energy injection rate. For the 2-point function, the (tp)2 dependence is known to originate from the sweeping effect. The derived formula embodies the generalization of the effect of sweeping to n-point correlation functions. At large wave-numbers and large ti, we show that the ti2 dependence in the leading order contribution crosses over to a |ti| dependence. The expression of the correlation functions in this regime was not derived before, even for the 2-point function. Both predictions can be tested in direct numerical simulations and in experiments.
Modeling Surfzone/Inner-shelf Exchange
2013-09-30
goal here is the use a wave-resolving Boussinesq model to figure out how to parameterize the vorticity generation due to short-crested breaking of...individual waves. The Boussinesq model funwaveC used here, developed by the PI and distributed as open-source software, has been val- idated in ONR funded...shading of bottom bathymetry, mooring locations (green squares) and the local co-ordinate system (black arrows). Positive x is directed towards the
Modeling Wind Wave Evolution from Deep to Shallow Water
2014-09-30
results are very promising (see Figure 2). However, for the sake of efficiency, non-hydrostatic models assume a single-valued free surface in the...1996) are ongoing. Figure 3 Smoothed-Particle Hydrodynamics ( SPH ) simulations of waves breaking over an artificial reef in the laboratory (see... surface as predicted by the SPH model (see Dalrymple & Rogers, 2006). The agreement in the breaker dynamics predicted by the model and seen in the
ONR Ocean Wave Dynamics Workshop
NASA Astrophysics Data System (ADS)
In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.
Annular flow in rod-bundle: Effect of spacer on disturbance waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Son H.; Kunugi, Tomoaki
2016-08-01
A high-speed camera technique is used to study the effect of spacers on the disturbance waves present in annular two-phase flow within a rod-bundle geometry. Images obtained using a backlight configuration to visualize the spacer-wave interactions at the micro-scale resolution (in time and space) are discussed. This paper also presents additional images obtained using a reflected light configuration which provides new observations of the disturbance waves. These images show the separation effect caused by the spacer on the liquid film in which the size of generated liquid droplets can be controlled by the gas superficial velocity. Furthermore, the data confirmmore » that the spacer breaks the circumferential coherent structures of the waves.« less
Haxel, Joseph H; Dziak, Robert P; Matsumoto, Haru
2013-05-01
A year-long experiment (March 2010 to April 2011) measuring ambient sound at a shallow water site (50 m) on the central OR coast near the Port of Newport provides important baseline information for comparisons with future measurements associated with resource development along the inner continental shelf of the Pacific Northwest. Ambient levels in frequencies affected by surf-generated noise (f < 100 Hz) characterize the site as a high-energy end member within the spectrum of shallow water coastal areas influenced by breaking waves. Dominant sound sources include locally generated ship noise (66% of total hours contain local ship noise), breaking surf, wind induced wave breaking and baleen whale vocalizations. Additionally, an increase in spectral levels for frequencies ranging from 35 to 100 Hz is attributed to noise radiated from distant commercial ship commerce. One-second root mean square (rms) sound pressure level (SPLrms) estimates calculated across the 10-840 Hz frequency band for the entire year long deployment show minimum, mean, and maximum values of 84 dB, 101 dB, and 152 dB re 1 μPa.
The role of satellite directional wave spectra for the improvement of the ocean-waves coupling
NASA Astrophysics Data System (ADS)
Aouf, Lotfi; Hauser, Danièle; Chapron, Bertrand
2017-04-01
Swell waves are well captured by the Synthetic Aperture Radar (SAR) which provides the directional wave spectra for waves roughly larger than 200 m. Since the launch of sentinel-1A and 1B SAR directional wave spectra are available to improve the swell wave forecasting and the coupling processes at the air-sea interface. Moreover next year CFOSAT mission will provide directional wave spectra for waves with wavelengths comprised between 70 to 500 m. This study aims to evaluate the assimilation of SAR and synthetic CFOSAT wave spectra on the coupling between the wave model MFWAM and the ocean model NEMO. Three coupling processes as described in Breivik et al. (2014) of Stokes-Coriolis forcing, the ocean side stress and the turbulence injected by the wave breaking in the ocean mixed layer have been used. a coupling run is performed with and without assimilation of directional wave spectra. the impact of SAR wave data on key parameters such as surface sea temperature, currents and salinity is investigated. Particular attention is carried out for ocean areas with swell dominant wave climate.
Convectively-generated gravity waves and clear-air turbulence (CAT)
NASA Astrophysics Data System (ADS)
Sharman, Robert; Lane, Todd; Trier, Stanley
2013-04-01
Upper-level turbulence is a well-known hazard to aviation that is responsible for numerous injuries each year, with occasional fatalities, and results in millions of dollars of operational costs to airlines each year. It has been widely accepted that aviation-scale turbulence that occurs in clear air (CAT) at upper levels (upper troposphere and lower stratosphere) has its origins in Kelvin-Helmholtz instabilities induced by enhanced shears and reduced Richardson numbers associated with the jet stream and upper level fronts. However, it is becoming increasingly apparent that gravity waves and gravity wave "breaking" also play a major role in instigating turbulence that affects aviation. Gravity waves and inertia-gravity waves may be produced by a variety of sources, but one major source that impacts aviation seems to be those produced by convection. The relation of convectively-induced gravity waves to turbulence outside the cloud (either above cloud or laterally away from cloud) is examined based on high resolution cloud-resolving simulations, both with and without cloud microphysics in the simulations. Results for both warm-season and cold-season cloud systems indicate that the turbulence in the clear air away from cloud is often caused by gravity wave production processes in or near the cloud which once initiated, are able to propagate away from the storm, and may eventually "break." Without microphysics of course this effect is absent and turbulence is not produced in the simulations. In some cases the convectively-induced turbulence may be many kilometers away from the active convection and can easily be misinterpreted as "clear-air turbulence" (CAT). This is a significant result, and may be cause for a reassessment of the working definition of CAT ("turbulence encountered outside of convective clouds", FAA Advisory Circular AC 00-30B, 1997).
NASA Astrophysics Data System (ADS)
Chung, Chung-Hou; Sun, Shih-Jye; Chang, Yung-Yeh; Tsai, Wei-Feng; Zhang, Fuchun
Large Hubbard U limit of the Kane-Mele model on a zigzag ribbon of honeycomb lattice near half-filling is studied via a renormalized mean-field theory. The ground state exhibits time-reversal symmetry (TRS) breaking dx2 -y2 + idxy -wave superconductivity. At large spin-orbit coupling, the Z2 topological phase with non-trivial spin Chern number in the pure Kane-Mele model is persistent into the TRS broken state (called ``spin-Chern phase''), and has two pairs of counter-propagating helical Majorana modes at the edges. As the spin-orbit coupling is reduced, the system undergoes a topological quantum phase transition from the spin-Chern to chiral superconducting states. Possible relevance of our results to adatom-doped graphene and irridate compounds is discussed.Ref.:Shih-Jye Sun, Chung-Hou Chung, Yung-Yeh Chang, Wei-Feng Tsai, and Fu-Chun Zhang, arXiv:1506.02584. CHC acknowledges support from NSC Grant No. 98-2918-I-009-06, No. 98-2112-M-009-010-MY3, the NCTU-CTS, the MOE-ATU program, the NCTS of Taiwan, R.O.C.
Fault Zone Imaging from Correlations of Aftershock Waveforms
NASA Astrophysics Data System (ADS)
Hillers, Gregor; Campillo, Michel
2018-03-01
We image an active fault zone environment using cross correlations of 154 15 s long 1992 Landers earthquake aftershock seismograms recorded along a line array. A group velocity and phase velocity dispersion analysis of the reconstructed Rayleigh waves and Love waves yields shear wave velocity images of the top 100 m along the 800 m long array that consists of 22 three component stations. Estimates of the position, width, and seismic velocity of a low-velocity zone are in good agreement with the findings of previous fault zone trapped waves studies. Our preferred solution indicates the zone is offset from the surface break to the east, 100-200 m wide, and characterized by a 30% velocity reduction. Imaging in the 2-6 Hz range resolves further a high-velocity body of similar width to the west of the fault break. Symmetry and shape of zero-lag correlation fields or focal spots indicate a frequency and position dependent wavefield composition. At frequencies greater than 4 Hz surface wave propagation dominates, whereas at lower frequencies the correlation field also exhibits signatures of body waves that likely interact with the high-velocity zone. The polarization and late arrival times of coherent wavefronts observed above the low-velocity zone indicate reflections associated with velocity contrasts in the fault zone environment. Our study highlights the utility of the high-frequency correlation wavefield obtained from records of local and regional seismicity. The approach does not depend on knowledge of earthquake source parameters, which suggests the method can return images quickly during aftershock campaigns to guide network updates for optimal coverage of interesting geological features.
NASA Astrophysics Data System (ADS)
Wang, X.; Tu, C. Y.; He, J.; Wang, L.
2017-12-01
It has been a longstanding debate on what the nature of Elsässer variables z- observed in the Alfvénic solar wind is. It is widely believed that z- represents inward propagating Alfvén waves and undergoes non-linear interaction with z+ to produce energy cascade. However, z- variations sometimes show nature of convective structures. Here we present a new data analysis on z- autocorrelation functions to get some definite information on its nature. We find that there is usually a break point on the z- auto-correlation function when the fluctuations show nearly pure Alfvénicity. The break point observed by Helios-2 spacecraft near 0.3 AU is at the first time lag ( 81 s), where the autocorrelation coefficient has the value less than that at zero-time lag by a factor of more than 0.4. The autocorrelation function breaks also appear in the WIND observations near 1 AU. The z- autocorrelation function is separated by the break into two parts: fast decreasing part and slowly decreasing part, which cannot be described in a whole by an exponential formula. The breaks in the z- autocorrelation function may represent that the z- time series are composed of high-frequency white noise and low-frequency apparent structures, which correspond to the flat and steep parts of the function, respectively. This explanation is supported by a simple test with a superposition of an artificial random data series and a smoothed random data series. Since in many cases z- autocorrelation functions do not decrease very quickly at large time lag and cannot be considered as the Lanczos type, no reliable value for correlation-time can be derived. Our results showed that in these cases with high Alfvénicity, z- should not be considered as inward-propagating wave. The power-law spectrum of z+ should be made by fluid turbulence cascade process presented by Kolmogorov.
Success and failure of the plasma analogy for Laughlin states on a torus
NASA Astrophysics Data System (ADS)
Fremling, Mikael
2017-01-01
We investigate the nature of the plasma analogy for the Laughlin wave function on a torus describing the quantum Hall plateau at ν =\\frac{1}{q} . We first establish, as expected, that the plasma is screening if there are no short nontrivial paths around the torus. We also find that when one of the handles has a short circumference—i.e. the thin-torus limit—the plasma no longer screens. To quantify this we compute the normalization of the Laughlin state, both numerically and analytically. In the thin torus limit, the analytical form of the normalization simplify and we can reconstruct the normalization and analytically extend it back into the 2D regime. We find that there are geometry dependent corrections to the normalization, and this in turn implies that the plasma in the plasma analogy is not screening when in the thin torus limit. Despite the breaking of the plasma analogy in this limit, the analytical approximation is still a good description of the normalization for all tori, and also allows us to compute hall viscosity at intermediate thickness.
Hindcast of breaking waves and its impact at an island sheltered coast, Karwar
NASA Astrophysics Data System (ADS)
Dora, G. Udhaba; Kumar, V. Sanil
2018-01-01
Variability in the characteristics of depth-induced wave breakers along a non-uniform coastal topography and its impact on the morpho-sedimentary processes is examined at the island sheltered wave-dominated micro-tidal coast, Karwar, west coast of India. Waves are simulated using the coupled wind wave model, SWAN nested in WAVEWATCH III, forced by the reanalysis winds from different sources (NCEP/NCAR, ECMWF, and NCEP/CFSR). Impact of the wave breakers is evaluated through mean longshore current and sediment transport for various wave energy conditions across different coastal morphology. Study revealed that the NCEP/CFSR wind is comparatively reasonable in simulation of nearshore waves using the SWAN model nested by 2D wave spectra generated from WAVEWATCH III. The Galvin formula for estimating mean longshore current using the crest wave period and the Kamphuis approximation for longshore sediment transport is observed realistically at the sheltered coastal environment while the coast interacts with spilling and plunging breakers.
Wave energy and intertidal productivity
Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.
1987-01-01
In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813
Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave
NASA Technical Reports Server (NTRS)
Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.
1992-01-01
Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.
NASA Astrophysics Data System (ADS)
Kawamori, Eiichirou
2017-09-01
A transition from Langmuir wave turbulence (LWT) to coherent Langmuir wave supercontinuum (LWSC) is identified in one-dimensional particle-in-cell simulations as the emergence of a broad frequency band showing significant temporal coherence of a wave field accompanied by a decrease in the von Neumann entropy of classical wave fields. The concept of the von Neumann entropy is utilized for evaluation of the phase-randomizing degree of the classical wave fields, together with introduction of the density matrix of the wave fields. The transition from LWT to LWSC takes place when the energy per one plasmon (one wave quantum) exceeds a certain threshold. The coherent nature, which Langmuir wave systems acquire through the transition, is created by four wave mixings of the plasmons. The emergence of temporal coherence and the decrease in the phase randomization are considered as the development of long-range order and spontaneous symmetry breaking, respectively, indicating that the LWT-LWSC transition is a second order phase transition phenomenon.
Wave Shape and Impact Pressure Measurements at a Rock Coast Cliff
NASA Astrophysics Data System (ADS)
Varley, S. J.; Rosser, N. J.; Brain, M.; Vann Jones, E. C.
2016-02-01
Rock coast research focuses largely on wave behaviour across beaches and shore platforms but rarely considers direct wave interaction with cliffs. Hydraulic action is one of the most important drivers of erosion along rock coasts. The magnitude of wave impact pressure has been shown by numerical and laboratory studies to be related to the wave shape. In deep water, a structure is only subjected to the hydrostatic pressure due to the oscillating clapotis. Dynamic pressures, related to the wave celerity, are exerted in shallower water when the wave is breaking at the point of impact; very high magnitude, short duration shock pressures are theorised to occur when the approaching wavefront is vertical. As such, wave shape may directly influence the potential of the impact to weaken rock and cause erosion. Measurements of impact pressure at coastal cliffs are limited, and the occurrence and influence of this phenomenon is currently poorly constrained. To address this, we have undertaken a field monitoring study on the magnitude and vertical distribution of wave impact pressures at the rocky, macro-tidal coastline of Staithes, North Yorkshire, UK. A series of piezo-resistive pressure transducers and a camera were installed at the base of the cliff during low tide. Transducers were deployed vertically up the cliff face and aligned shore-normal to capture the variation in static and dynamic pressure with height during a full spring tidal cycle. Five minute bursts of 5 kHz pressure readings and 4 Hz wave imaging were sampled every 30 minutes for six hours during high tide. Pressure measurements were then compensated for temperature and combined with wave imaging to produce a pressure time series and qualitative wave shape category for each wave impact. Results indicate the presence of a non-linear relationship between pressure impact magnitude, the occurrence of shock pressures, wave shape and tidal stage, and suggest that breaker type on impact (and controls thereof) may be fundamental in dictating the effectiveness of hydraulic action in eroding rock coast cliffs. Our findings demonstrate the sensitivity of wave loading to changes in water depth and, hence, projected sea-level rise. This research leads directly into a wider project investigating the role of wave shape as a key control on marine forcing of erosion.
NASA Astrophysics Data System (ADS)
Callaghan, A. H.; Deane, G. B.; Stokes, M. D.
2017-08-01
Surfactants are ubiquitous in the global oceans: they help form the materially-distinct sea surface microlayer (SML) across which global ocean-atmosphere exchanges take place, and they reside on the surfaces of bubbles and whitecap foam cells prolonging their lifetime thus altering ocean albedo. Despite their importance, the occurrence, spatial distribution, and composition of surfactants within the upper ocean and the SML remains under-characterized during conditions of vigorous wave breaking when in-situ sampling methods are difficult to implement. Additionally, no quantitative framework exists to evaluate the importance of surfactant activity on ocean whitecap foam coverage estimates. Here we use individual laboratory breaking waves generated in filtered seawater and seawater with added soluble surfactant to identify the imprint of surfactant activity in whitecap foam evolution. The data show a distinct surfactant imprint in the decay phase of foam evolution. The area-time-integral of foam evolution is used to develop a time-varying stabilization function, ϕ>(t>) and a stabilization factor, Θ, which can be used to identify and quantify the extent of this surfactant imprint for individual breaking waves. The approach is then applied to wind-driven oceanic whitecaps, and the laboratory and ocean Θ distributions overlap. It is proposed that whitecap foam evolution may be used to determine the occurrence and extent of oceanic surfactant activity to complement traditional in-situ techniques and extend measurement capabilities to more severe sea states occurring at wind speeds in excess of about 10 m/s. The analysis procedure also provides a framework to assess surfactant-driven variability within and between whitecap coverage data sets.
NASA Astrophysics Data System (ADS)
Shang, T.; Pang, G. M.; Baines, C.; Jiang, W. B.; Xie, W.; Wang, A.; Medarde, M.; Pomjakushina, E.; Shi, M.; Mesot, J.; Yuan, H. Q.; Shiroka, T.
2018-01-01
The noncentrosymmetric superconductor Re24Ti5 , a time-reversal symmetry- (TRS-) breaking candidate with Tc=6 K , was studied by means of muon-spin rotation/relaxation (μ SR ) and tunnel-diode oscillator techniques. At the macroscopic level, its bulk superconductivity was investigated via electrical resistivity, magnetic susceptibility, and heat-capacity measurements. The low-temperature penetration depth, superfluid density, and electronic heat capacity all evidence an s -wave coupling with an enhanced superconducting gap. The spontaneous magnetic fields revealed by zero-field μ SR below Tc indicate a time-reversal symmetry breaking and thus the unconventional nature of superconductivity in Re24Ti5 . The concomitant occurrence of TRS breaking also in the isostructural Re6(Zr ,Hf ) compounds hints at its common origin in this superconducting family and that an enhanced spin-orbital coupling does not affect pairing symmetry.
NASA Astrophysics Data System (ADS)
Shope, J. B.; Storlazzi, C. D.; Hoeke, R. K.
2016-12-01
Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. With sea level and wave climates projected to change over the next century, it is unclear how shoreline wave runup and erosion patterns along these low elevation islands will respond, making it difficult for communities to prepare for the future. To investigate this, extreme boreal winter and summer wave conditions under a variety of future sea-level rise (SLR) scenarios were modeled at two atolls, Wake and Midway, using Delft3D. Nearshore wave conditions were used to find the potential longshore sediment flux, and wave-driven shoreline erosion was calculated as the divergence of the longshore drift; runup and the locations where runup exceed the berm elevation were also found. Of the aforementioned parameters, SLR is projected to be the dominant force driving future island morphological change and flooding. Increased sea level reduces depth-limited breaking by the atoll reef, allowing larger waves to reach the shoreline, increasing runup height and driving greater inland flooding along most coastlines. Previously protected shorelines, such as lagoon shorelines or shorelines with comparably wide reef flats, are projected see the greatest relative increases in runup. Increases in inland flooding extent were greatest along seaward shorelines due to increases in runup. Changes in incident wave directions had a smaller effect on runup, and the projected changes to incident wave heights had a negligible effect. SLR also drove the greatest changes to island shoreline morphology. Windward islands are projected to become thinner as seaward and lagoonal shorelines erode, accreting toward more leeward shorelines and shorelines with comparably wider reef flats. Similarly, leeward islands are anticipated to become thinner and longer, accreting towards their longitudinal ends. The shorelines of these islands will likely change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.
NASA Astrophysics Data System (ADS)
Honegger, D. A.; Haller, M. C.; Diaz Mendez, G. M.; Pittman, R.; Catalan, P. A.
2012-12-01
Land-based X-band marine radar observations were collected as part of the month-long DARLA-MURI / RIVET-DRI field experiment at New River Inlet, NC in May 2012. Here we present a synopsis of preliminary results utilizing microwave radar backscatter time series collected from an antenna located 400 m inside the inlet mouth and with a footprint spanning 1000 m beyond the ebb shoals. Two crucial factors in the forcing and constraining of nearshore numerical models are accurate bathymetry and offshore variability in the wave field. Image time series of radar backscatter from surface gravity waves can be utilized to infer these parameters over a large swath and during times of poor optical visibility. Presented are radar-derived wavenumber vector maps obtained from the Plant et al. (2008) algorithm and bathymetric estimates as calculated using Holman et al. (JGR, in review). We also evaluate the effects of tidal currents on the wave directions and depth inversion accuracy. In addition, shifts in the average wave breaking patterns at tidal frequencies shed light on depth- (and possibly current-) induced breaking as a function of tide level and tidal current velocity, while shifts over longer timescales imply bedform movement during the course of the experiment. Lastly, lowpass filtered radar image time series of backscatter intensity are shown to identify the structure and propagation of tidal plume fronts and multiscale ebb jets at the offshore shoal boundary.
Acoustic valley edge states in a graphene-like resonator system
NASA Astrophysics Data System (ADS)
Yang, Yahui; Yang, Zhaoju; Zhang, Baile
2018-03-01
The concept of valley physics, as inspired by the recent development in valleytronic materials, has been extended to acoustic crystals for manipulation of air-borne sound. Many valleytronic materials follow the model of a gapped graphene. Yet the previously demonstrated valley acoustic crystal adopted a mirror-symmetry-breaking mechanism, lacking a direct counterpart in condensed matter systems. In this paper, we investigate a two-dimensional (2D) periodic acoustic resonator system with inversion symmetry breaking, as an analogue of a gapped graphene monolayer. It demonstrates the quantum valley Hall topological phase for sound waves. Similar to a gapped graphene, gapless topological valley edge states can be found at a zigzag domain wall separating different domains with opposite valley Chern numbers, while an armchair domain wall hosts no gapless edge states. Our study offers a route to simulate novel valley phenomena predicted in gapped graphene and other 2D materials with classical acoustic waves.
Validating simple dynamical simulations of the unitary Fermi gas
NASA Astrophysics Data System (ADS)
Forbes, Michael McNeil; Sharma, Rishi
2014-10-01
We present a comparison between simulated dynamics of the unitary fermion gas using the superfluid local density approximation (SLDA) and a simplified bosonic model, the extended Thomas-Fermi (ETF) with a unitary equation of state. Small-amplitude fluctuations have similar dynamics in both theories for frequencies far below the pair-breaking threshold and wave vectors much smaller than the Fermi momentum. The low-frequency linear responses in both match well for surprisingly large wave vectors, even up to the Fermi momentum. For nonlinear dynamics such as vortex generation, the ETF provides a semiquantitative description of SLDA dynamics as long as the fluctuations do not have significant power near the pair-breaking threshold; otherwise the dynamics of the ETF cannot be trusted. Nonlinearities in the ETF tend to generate high-frequency fluctuations, and with no normal component to remove this energy from the superfluid, features such as vortex lattices cannot relax and crystallize as they do in the SLDA.
NASA Astrophysics Data System (ADS)
Takadoya, M.; Notake, M.; Kitahara, M.; Achenbach, J. D.; Guo, Q. C.; Peterson, M. L.
A neural network approach has been developed to determine the depth of a surface breaking crack in a steel plate from ultrasonic backscattering data. The network is trained by the use of a feedforward three-layered network together with a back-propagation algorithm for error corrections. Synthetic data are employed for network training. The signal used for crack isonification is a mode converted 45 deg transverse wave. The plate with a surface breaking crack is immersed in water, and the crack is insonified from the opposite uncracked side of the plate. A numerical analysis of the backscattered field is carried out based on the elastic wave theory by the use of the boundary element method. The numerical analysis provides synthetic data for the training of the network. The training data have been calculated for cracks with specific increments of the experimental data which are different from the training data.
NASA Astrophysics Data System (ADS)
Bhowmick, Somnath; B, Renjith; Mishra, Manoj K.; Sarma, Manabendra
2012-08-01
Effect of electron correlation on single strand breaks (SSBs) induced by low energy electron (LEE) has been investigated in a fragment excised from a DNA, viz., 2'-deoxycytidine-3'-monophosphate [3'-dCMPH] molecule in gas phase at DFT-B3LYP/6-31+G(d) accuracy level and using local complex potential based time dependent wave packet (LCP-TDWP) approach. The results obtained, in conjunction with our earlier investigation, show the possibility of SSB at very low energy (0.15 eV) where the LEE transfers from π* to σ* resonance state which resembles a SN2 type mechanism. In addition, for the first time, an indication of quantum mechanical tunneling in strand breaking is seen from the highest anionic bound vibrational state (χ5), which may have a substantial role during DNA damage.
Topological sound in active-liquid metamaterials
NASA Astrophysics Data System (ADS)
Souslov, Anton; van Zuiden, Benjamin C.; Bartolo, Denis; Vitelli, Vincenzo
2017-11-01
Liquids composed of self-propelled particles have been experimentally realized using molecular, colloidal or macroscopic constituents. These active liquids can flow spontaneously even in the absence of an external drive. Unlike spontaneous active flow, the propagation of density waves in confined active liquids is not well explored. Here, we exploit a mapping between density waves on top of a chiral flow and electrons in a synthetic gauge field to lay out design principles for artificial structures termed topological active metamaterials. We design metamaterials that break time-reversal symmetry using lattices composed of annular channels filled with a spontaneously flowing active liquid. Such active metamaterials support topologically protected sound modes that propagate unidirectionally, without backscattering, along either sample edges or domain walls and despite overdamped particle dynamics. Our work illustrates how parity-symmetry breaking in metamaterial structure combined with microscopic irreversibility of active matter leads to novel functionalities that cannot be achieved using only passive materials.
Li, Zhengkai; Spaulding, Malcolm; French McCay, Deborah; Crowley, Deborah; Payne, James R
2017-01-15
An oil droplet size model was developed for a variety of turbulent conditions based on non-dimensional analysis of disruptive and restorative forces, which is applicable to oil droplet formation under both surface breaking-wave and subsurface-blowout conditions, with or without dispersant application. This new model was calibrated and successfully validated with droplet size data obtained from controlled laboratory studies of dispersant-treated and non-treated oil in subsea dispersant tank tests and field surveys, including the Deep Spill experimental release and the Deepwater Horizon blowout oil spill. This model is an advancement over prior models, as it explicitly addresses the effects of the dispersed phase viscosity, resulting from dispersant application and constrains the maximum stable droplet size based on Rayleigh-Taylor instability that is invoked for a release from a large aperture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Low Frequency Ocean Ambient Noise: Measurements and Theory,
1987-12-14
entrained gas bubbles which result from wave breaking and which are forced by intense velocity of the gravity-capil- lary waves. For wind speeds with a...ternal force acting on the volume and has a dipole character. These two terms could be important in the incorporation of entrained bubble oscil- lation and...Applied Research Lab, Penn. State Univ., State College, PA 16804 Mellen, R.H., 1987: private communication. Minnaert, M., 1933: ’ Musical Air-Bubbles
Surf Zone Properties and On/Offshore Sediment Transport.
1982-06-01
and Random Waves," Proceedings, 14th Coastal Engineering Conference, 1974, pp.558-574. Levi - Civita , T., "Determination Rigoreuse des Ondes...on Beach 2-6 Classification of Normal and Storm Beach 23 Profiles by Dean 2-7 Classification of Normal and Storm Beach 24 Profiles by Author 2-8 Two ...the surface and near bottom, return flow near mid-depth before wave breaking. There were considerable laboratory evidences supporting the two -dimen
Heise, M; Hoffmann, Ch; Abshagen, J; Pinter, A; Pfister, G; Lücke, M
2008-02-15
We present a new mechanism that allows the stable existence of domain walls between oppositely traveling waves in pattern-forming systems far from onset. It involves a nonlinear mode coupling that results directly from the nonlinearities in the underlying momentum balance. Our work provides the first observation and explanation of such strongly nonlinearly driven domain walls that separate structured states by a phase generating or annihilating defect. Furthermore, the influence of a symmetry breaking externally imposed flow on the wave domains and the domain walls is studied. The results are obtained for vortex waves in the Taylor-Couette system by combining numerical simulations of the full Navier-Stokes equations and experimental measurements.