Sample records for wave drag parameterization

  1. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part I: Gravity Wave Forcing.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.

  2. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone

    USGS Publications Warehouse

    Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.

    2009-01-01

    The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.

  3. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part II: Combined Effects of Gravity Waves and Equatorial Planetary Waves.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag.In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.

  4. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    NASA Technical Reports Server (NTRS)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  5. Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model

    DTIC Science & Technology

    2013-08-26

    Teixeira, J., Peng, M., Hogan, T.F., Pauley, R., 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models...Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model David S. Trossman a,⇑, Brian K. Arbic a, Stephen T...input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds

  6. Effects of Parameterized Orographic Drag on Weather Forecasting and Simulated Climatology Over East Asia During Boreal Summer

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Joo; Choi, Suk-Jin; Koo, Myung-Seo; Kim, Jung-Eun; Kwon, Young Cheol; Hong, Song-You

    2017-10-01

    The impact of subgrid orographic drag on weather forecasting and simulated climatology over East Asia in boreal summer is examined using two parameterization schemes in a global forecast model. The schemes consider gravity wave drag (GWD) with and without lower-level wave breaking drag (LLWD) and flow-blocking drag (FBD). Simulation results from sensitivity experiments verify that the scheme with LLWD and FBD improves the intensity of a summertime continental high over the northern part of the Korean Peninsula, which is exaggerated with GWD only. This is because the enhanced lower tropospheric drag due to the effects of lower-level wave breaking and flow blocking slows down the wind flowing out of the high-pressure system in the lower troposphere. It is found that the decreased lower-level divergence induces a compensating weakening of middle- to upper-level convergence aloft. Extended experiments for medium-range forecasts for July 2013 and seasonal simulations for June to August of 2013-2015 are also conducted. Statistical skill scores for medium-range forecasting are improved not only in low-level winds but also in surface pressure when both LLWD and FBD are considered. A simulated climatology of summertime monsoon circulation in East Asia is also realistically reproduced.

  7. A note on specific variability of long surface gravity waves and drag coefficient in coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Krzyścin, Janusz

    1990-01-01

    In this paper we solve analytically wave kinematic equations and the wave energy transport equation, for basic long surface gravity wave in the coastal upwelling zone. Using Gent and Taylor's (1978) parameterization of drag coefficient (which includes interaction between long surface waves and the air flow) we find variability of this coefficient due to wave amplification and refraction caused by specific surface water current in the region. The drag coefficient grows towards the shore. The growth is faster for stronger current. When the angle between waves and the current is less than 90° the growth is mainly connected with the waves steepness, but when the angle is larger, it is caused by relative growth of the wave phase velocity.

  8. Tidal waves within the thermosphere. [emphasizing wave dissipation and diffusion

    NASA Technical Reports Server (NTRS)

    Volland, H.; Mayr, H. G.

    1974-01-01

    The eigenfunctions of the atmosphere (the Hough functions within the lower atmosphere below about 100 km) change their structure and their propagation characteristics within the thermosphere due to dissipation effects such as heat conduction, viscosity, and ion drag. Wave dissipation can be parameterized to a first-order approximation by a complex frequency, the imaginary term of which simulates an effective ion drag force. It is shown how the equivalent depth, the attenuation, and the vertical wavelength of the predominant symmetric diurnal tidal modes change with height as functions of effective ion drag. The boundary conditions of tidal waves are discussed, and asymptotic solutions for the wave parameters like pressure, density, temperature, and wind generated by a heat input proportional to the mean pressure are given. Finally, diffusion effects upon the minor constituents within the thermosphere are described.

  9. Variability of bed drag on cohesive beds under wave action

    USGS Publications Warehouse

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 -4">−4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  10. Momentum Flux Estimates for South Georgia Island Mountain Waves in the Stratosphere Observed via Satellite

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan; Eckermann, Stephen D.; Broutman, Dave; Ma, Jun

    2009-01-01

    We show high-resolution satellite observations of mountain wave events in the stratosphere above South Georgia Island in the remote southern Atlantic Ocean and compute the wave momentum fluxes for these events. The fluxes are large, and they imply important drag forces on the circulation. Small island orography is generally neglected in mountain wave parameterizations used in global climate models because limited model resolution treats the grid cell containing the island as ocean rather than land. Our results show that satellite observations can be used to quantitatively constrain mountain wave momentum fluxes, and they suggest that mountain waves from island topography may be an important missing source of drag on the atmospheric circulation.

  11. Vertical propagation of information in a middle atmosphere data assimilation system by gravity-wave drag feedbacks

    NASA Astrophysics Data System (ADS)

    Ren, Shuzhan; Polavarapu, Saroja M.; Shepherd, Theodore G.

    2008-03-01

    The mesospheric response to the 2002 Antarctic Stratospheric Sudden Warming (SSW) is analysed using the Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS), where it represents a vertical propagation of information from the observations into the data-free mesosphere. The CMAM-DAS simulates a cooling in the lowest part of the mesosphere which is accomplished by resolved motions, but which is extended to the mid- to upper mesosphere by the response of the model's non-orographic gravity-wave drag parameterization to the change in zonal winds. The basic mechanism is that elucidated by Holton consisting of a net eastward wave-drag anomaly in the mesosphere during the SSW, although in this case there is a net upwelling in the polar mesosphere. Since the zonal-mean mesospheric response is shown to be predictable, this demonstrates that variations in the mesospheric state can be slaved to the lower atmosphere through gravity-wave drag.

  12. Development of a coupled wave-flow-vegetation interaction model

    USGS Publications Warehouse

    Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.

    2017-01-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  13. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    Air-sea interaction dramatically changes from moderate to very high wind speed conditions (Donelan et al. 2004). Unresolved physics of the air-sea interface are one of the weakest components in tropical cyclone prediction models. Rapid disruption of the air-water interface under very high wind speed conditions was reported in laboratory experiments (Koga 1981) and numerical simulations (Soloviev et al. 2012), which resembled the Kelvin-Helmholtz instability at an interface with very large density difference. Kelly (1965) demonstrated that the KH instability at the air-sea interface can develop through parametric amplification of waves. Farrell and Ioannou (2008) showed that gustiness results in the parametric KH instability of the air-sea interface, while the gusts are due to interacting waves and turbulence. The stochastic forcing enters multiplicatively in this theory and produces an exponential wave growth, augmenting the growth from the Miles (1959) theory as the turbulence level increases. Here we complement this concept by adding the effect of the two-phase environment near the mean interface, which introduces additional viscosity in the system (turning it into a rheological system). The two-phase environment includes air-bubbles and re-entering spray (spume), which eliminates a portion of the wind-wave wavenumber spectrum that is responsible for a substantial part of the air sea drag coefficient. The previously developed KH-type interfacial parameterization (Soloviev and Lukas 2010) is unified with two versions of the wave growth model. The unified parameterization in both cases exhibits the increase of the drag coefficient with wind speed until approximately 30 m/s. Above this wind speed threshold, the drag coefficient either nearly levels off or even slightly drops (for the wave growth model that accounts for the shear) and then starts again increasing above approximately 65 m/s wind speed. Remarkably, the unified parameterization reveals a local minimum of the drag coefficient wind speed dependence around 65 m/s. This minimum may contribute to the rapid intensification of storms to major tropical cyclones. The subsequent slow increase of the drag coefficient with wind above 65 m/s serves as an obstacle for further intensification of tropical cyclones. Such dependence may explain the observed bi-modal distribution of tropical cyclone intensity. Implementation of the new parameterization into operational models is expected to improve predictions of tropical cyclone intensity and the associated wave field. References: Donelan, M. A., B. K. Haus, N. Reul, W. Plant, M. Stiassnie, H. Graber, O. Brown, and E. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds, Farrell, B.F, and P.J. Ioannou, 2008: The stochastic parametric mechanism for growth of wind-driven surface water waves. Journal of Physical Oceanography 38, 862-879. Kelly, R.E., 1965: The stability of an unsteady Kelvin-Helmholtz flow. J. Fluid Mech. 22, 547-560. Koga, M., 1981: Direct production of droplets from breaking wind-waves-Its observation by a multi-colored overlapping exposure technique, Tellus 33, 552-563. Miles, J.W., 1959: On the generation of surface waves by shear flows, part 3. J. Fluid. Mech. 6, 583-598. Soloviev, A.V. and R. Lukas, 2010: Effects of bubbles and sea spray on air-sea exchanges in hurricane conditions. Boundary-Layer Meteorology 136, 365-376. Soloviev, A., A. Fujimura, and S. Matt, 2012: Air-sea interface in hurricane conditions. J. Geophys. Res. 117, C00J34.

  14. New Gravity Wave Treatments for GISS Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2011-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.

  15. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.

  16. Impacts of Horizontal Propagation of Orographic Gravity Waves on the Wave Drag in the Stratosphere and Lower Mesosphere

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Yuan; Xue, Ming; Zhu, Kefeng

    2017-11-01

    The impact of horizontal propagation of mountain waves on the orographic gravity wave drag (OGWD) in the stratosphere and lower mesosphere of the Northern Hemisphere is evaluated for the first time. Using a fine-resolution (1 arc min) terrain and 2.5°×2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data during 2011-2016, two sets of OGWD are calculated offline according to a traditional parameterization scheme (without horizontal propagation) and a newly proposed scheme (with horizontal propagation). In both cases, the zonal mean OGWDs show similar spatial patterns and undergo a notable seasonal variation. In winter, the OGWD is mainly distributed in the upper stratosphere and lower mesosphere of middle to high latitudes, whereas the summertime OGWD is confined in the lower stratosphere. Comparison between the two sets of OGWD reveal that the horizontal propagation of mountain waves tends to decrease (increase) the OGWD in the lower stratosphere (middle to upper stratosphere and lower mesosphere). Consequently, including the horizontal propagation of mountain waves in the parameterization of OGWD can reduce the excessive OGWD in the lower stratosphere and strengthen the insufficient gravity wave forcing in the mesosphere, which are the known problems of traditional OGWD schemes. The impact of horizontal propagation is more prominent in winter than in summer, with the OGWD in western Tibetan Plateau, Rocky Mountains, and Greenland notably affected.

  17. Investigate wave-mean flow interaction and transport in the extratropical winter stratosphere

    NASA Technical Reports Server (NTRS)

    Smith, Anne K.

    1993-01-01

    The grant supported studies using several models along with observations in order to investigate some questions of wave-mean flow interaction and transport in the extratropical winter stratosphere. A quasi-geostrophic wave model was used to investigate the possibility that resonant growth of planetary wave 2 may have played a role in the sudden stratospheric warming of February 1979. The results of the time-dependent integration support the interpretation of resonance during February, 1979. Because of the possibility that the model treatment of critical line interactions exerted a controlling influence on the atmospheric dynamics, a more accurate model was needed for wave-mean flow interaction studies. A new model was adapted from the 3-dimensional primitive equation model developed by K. Rose and G. Brasseur. In its present form the model is global, rather than hemispheric; it contains an infrared cooling algorithm and a parameterized solar heating; it has parameterized gravity wave drag; and the chemistry has been entirely revised.

  18. Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model

    NASA Astrophysics Data System (ADS)

    Becker, Erich; Vadas, Sharon L.

    2018-03-01

    This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.

  19. Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows

    DOE PAGES

    Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; ...

    2015-12-08

    In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocitymore » and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of ≈ 10 m s–1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.« less

  20. Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation

    PubMed Central

    Bechtold, Peter; Beljaars, Anton; Bozzo, Alessio; Pithan, Felix; Shepherd, Theodore G.; Zadra, Ayrton

    2016-01-01

    Abstract A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model‐dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot). The way τtot is partitioned between the different parameterizations is also model‐dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low‐level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales. PMID:27668040

  1. Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation

    NASA Astrophysics Data System (ADS)

    Sandu, Irina; Bechtold, Peter; Beljaars, Anton; Bozzo, Alessio; Pithan, Felix; Shepherd, Theodore G.; Zadra, Ayrton

    2016-03-01

    A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model-dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot). The way τtot is partitioned between the different parameterizations is also model-dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low-level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales.

  2. The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.

    PubMed

    Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao

    2017-08-01

    Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

  3. Explicit Global Simulation of Gravity Waves up to the Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2016-12-01

    At least for short-term simulations, middle atmosphere general circulation models (GCMs) can be run with sufficiently high resolution in order to describe a good part of the gravity wave spectrum explicitly. Nevertheless, the parameterization of unresolved dynamical scales remains an issue, especially when the scales of parameterized gravity waves (GWs) and resolved GWs become comparable. In addition, turbulent diffusion must always be parameterized along with other subgrid-scale dynamics. A practical solution to the combined closure problem for GWs and turbulent diffusion is to dispense with a parameterization of GWs, apply a high spatial resolution, and to represent the unresolved scales by a macro-turbulent diffusion scheme that gives rise to wave damping in a self-consistent fashion. This is the approach of a few GCMs that extend from the surface to the lower thermosphere and simulate a realistic GW drag and summer-to-winter-pole residual circulation in the upper mesosphere. In this study we describe a new version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which includes explicit (though idealized) computations of radiative transfer and the tropospheric moisture cycle. Particular emphasis is spent on 1) the turbulent diffusion scheme, 2) the attenuation of resolved GWs at critical levels, 3) the generation of GWs in the middle atmosphere from body forces, and 4) GW-tidal interactions (including the energy deposition of GWs and tides).

  4. New Approaches to the Parameterization of Gravity-Wave and Flow-Blocking Drag due to Unresolved Mesoscale Orography Guided by Mesoscale Model Predictability Research

    DTIC Science & Technology

    2012-09-30

    oscillation (SAO) and quasi-biennial oscillation ( QBO ) of stratospheric equatorial winds in long-term (10-year) nature runs. The ability of these new schemes...to generate and maintain tropical SAO and QBO circulations in Navy models for the first time is an important breakthrough, since these circulations

  5. Seasonal gravity wave drags on the upper stratosphere due to the northwestern pacific typhoons

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu; Lu, Daren

    In a recent study of the first author and his co-authors (Zeyu Chen, Peter Preusse, Michael Jarisch, Manfred Ern, and Dirk Offermann, 2003), it has been revealed that a northwestern Pacific typhoon can generate stratospheric gravity waves with the horizontal scales ranging from 500 km ˜ 1000 km, and carrying a magnitude of ˜ 0.001 Pascal of momentum flux into the upper stratosphere Statistics indicates that the annual mean number of typhoon in the northwestern Pacific is about 32, most of them happen in summer. In this presentation, we show that a parameterization scheme is developed to derive the magnitude of the momentum flux of the waves from operational satellite observations that can scale the intensity of a typhoon (e.g. the brightness temperature observations from the GMS-5 satellite), and operational meteorological data analysis. The seasonal effect of the Gravity Wave Drags due to the typhoons in the area is derived.

  6. Effect of gravity waves on the North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2017-04-01

    The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.

  7. New Gravity Wave Treatments for GISS Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2010-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.

  8. The Role of Bed Roughness in Wave Transformation Across Sloping Rock Shore Platforms

    NASA Astrophysics Data System (ADS)

    Poate, Tim; Masselink, Gerd; Austin, Martin J.; Dickson, Mark; McCall, Robert

    2018-01-01

    We present for the first time observations and model simulations of wave transformation across sloping (Type A) rock shore platforms. Pressure measurements of the water surface elevation using up to 15 sensors across five rock platforms with contrasting roughness, gradient, and wave climate represent the most extensive collected, both in terms of the range of environmental conditions, and the temporal and spatial resolution. Platforms are shown to dissipate both incident and infragravity wave energy as skewness and asymmetry develop and, in line with previous studies, surf zone wave heights are saturated and strongly tidally modulated. Overall, the observed properties of the waves and formulations derived from sandy beaches do not highlight any systematic interplatform variation, in spite of significant differences in platform roughness, suggesting that friction can be neglected when studying short wave transformation. Optimization of a numerical wave transformation model shows that the wave breaker criterion falls between the range of values reported for flat sandy beaches and those of steep coral fore reefs. However, the optimized drag coefficient shows significant scatter for the roughest sites and an alternative empirical drag model, based on the platform roughness, does not improve model performance. Thus, model results indicate that the parameterization of frictional drag using the bottom roughness length-scale may be inappropriate for the roughest platforms. Based on these results, we examine the balance of wave breaking to frictional dissipation for rock platforms and find that friction is only significant for very rough, flat platforms during small wave conditions outside the surf zone.

  9. Observations of the directional distribution of the wind energy input function over swell waves

    NASA Astrophysics Data System (ADS)

    Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.

    2016-02-01

    Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos⁡3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.

  10. Final Report for Project: Impacts of stratification and non-equilibrium winds and waves on hub-height winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Edward G.

    This project used a combination of turbulence-resolving large-eddy simulations, single-column modeling (where turbulence is parameterized), and currently available observations to improve, assess, and develop a parameterization of the impact of non-equilibrium wave states and stratification on the buoy-observed winds to establish reliable wind data at the turbine hub-height level. Analysis of turbulence-resolving simulations and observations illuminates the non-linear coupling between the atmosphere and the undulating sea surface. This analysis guides modification of existing boundary layer parameterizations to include wave influences for upward extrapolation of surface-based observations through the turbine layer. Our surface roughness modifications account for the interaction between stratificationmore » and the effects of swell’s amplitude and wavelength as well as swell’s relative motion with respect to the mean wind direction. The single-column version of the open source Weather and Research Forecasting (WRF) model (Skamarock et al., 2008) serves as our platform to test our proposed planetary boundary layer parameterization modifications that account for wave effects on marine atmospheric boundary layer flows. WRF has been widely adopted for wind resource analysis and forecasting. The single column version is particularly suitable to development, analysis, and testing of new boundary layer parameterizations. We utilize WRF’s single-column version to verify and validate our proposed modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer parameterization (Nakanishi and Niino, 2004). We explore the implications of our modifications for two-way coupling between WRF and wave models (e.g.,Wavewatch III). The newly implemented parameterization accounting for marine atmospheric boundary layer-wave coupling is then tested in three-dimensional WRF simulations at grid sizes near 1 km. These simulations identify the behavior of simulated winds at the wind plant scale. Overall project conclusions include; In the presence of fast-moving swell (significant wave height Hs = 6.4 m, and phase speed cp = 18 ms -1), the atmospheric boundary layer grows more rapidly when waves propagate opposite to the winds compared to when winds and waves are aligned. Pressure drag increases by nearly a factor of 2 relative to the turbulent stress for the extreme case where waves propagate at 180° compared to the pressure gradient forcing. Net wind speed reduces by nearly 15% at hub-height for the 180°-case compared to the 0°-case, and turbulence intensities increase by nearly a factor of 2. These impacts diminish with decreasing wave age; Stratification increases hub height wind speeds and increases the vertical shear of the mean wind across the rotor plane. Fortuitously, this stability-induced enhanced shear does not influence turbulence intensity at hub height, but does increase (decrease) turbulence intensity below (above) hub height. Increased stability also increases the wave-induced pressure stress by ~ 10%; Off the East Coast of the United States during Coupled Boundary Layers Air-Sea Transfer - Low Wind (CBLAST-Low), cases with short fetch include thin stable boundary layers with depths of only a few tens of meters. In the coastal zone, the relationship between the mean wind and the surface fiction velocity (u*(V )) is significantly related to wind direction for weak winds but is not systematically related to the air sea difference of virtual potential temperature, δθv; since waves generally propagate from the south at the Air-Sea Interaction Tower (ASIT) tower, these results suggest that under weak wind conditions waves likely influence surface stress more than stratification does; and Winds and waves are frequently misaligned in the coastal zone. Stability conditions persist for long duration. Over a four year period, the Forschungsplattformen in Nord- und Ostsee Nr. 1 (FINO1) tower (a site with long fetch) primarily experienced weakly-unstable conditions, while stability at the ASIT tower (with a larger influence of offshore winds) experiences a mix of both unstable and stable conditions, where the summer months are predominantly stable. Wind-wave misalignment likely explains the large scatter in observed non-dimensional surface roughness under swell-dominated conditions. Andreas et al.’s (2012) relationship between u* and the 10-m wind speed under predicts the increased u* produced by wave-induced pressure drag produced by misaligned winds and waves. Incorporating wave-state (speed and direction) influences in parameterizations improves predictive skill. In a broad sense, these results suggest that one needs information on winds, temperature, and wave state to upscale buoy measurements to hub-height and across the rotor plane. Our parameterization of wave-state influences on surface drag has been submitted for inclusion in the next publicly available release. In combination, our project elucidates the impacts of two important physical processes (non-equilibrium wind/waves and stratification) on the atmosphere within which offshore turbines operate. This knowledge should help guide and inform manufacturers making critical decisions surrounding design criteria of future turbines to be deployed in the coastal zone. Reductions in annually averaged hub height wind speed error using our new wave-state-aware surface layer parameterization are relatively modest. However since wind turbine power production depends on the wind speed cubed, the error in estimated power production is close to 5%; which is significant and can substantially impact wind resource assessment and decision making with regards to the viability of particular location for a wind plant location. For a single 30-hour forecast, significant reductions in wind speed prediction errors can yield substantially improved wind power forecast skill, thereby mitigating costs and/or increasing revenue through improved; forecasting for maintenance operations and planning; day-ahead forecasting for power trading and resource allocation; and short-term forecasting for dispatch and grid balancing.« less

  11. Numerical simulation and analysis of impact of non-orographic gravity waves drag of middle atmosphere in framework of a general circulation model

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Wang, S.

    2017-12-01

    Gravity wave drag (GWD) is among the drivers of meridional overturning in the middle atmosphere, also known as the Brewer-Dobson Circulation, and of the quasi-biennial oscillation (QBO). The small spatial scales and complications due to wave breaking require their effects to be parameterised. GWD parameterizations are usually divided into two parts, orographic and non-orographic. The basic dynamical and physical processes of the middle atmosphere and the mechanism of the interactions between the troposphere and the middle atmosphere were studied in the frame of a general circulation model. The model for the troposphere was expanded to a global model considering middle atmosphere with the capability of describing the basic processes in the middle atmosphere and the troposphere-middle atmosphere interactions. Currently, it is too costly to include full non-hydrostatic and rotational wave dynamics in an operational parameterization. The hydrostatic non-rotational wave dynamics which allow an efficient implementation that is suitably fast for operation. The simplified parameterization of non-orographic GWD follows from the WM96 scheme in which a framework is developed using conservative propagation of gravity waves, critical level filtering, and non-linear dissipation. In order to simulate and analysis the influence of non-orographic GWD on the stratospheric wind and temperature fields, experiments using Stratospheric Sudden Warming (SSW) event case occurred in January 2013 were carried out, and results of objective weather forecast verifications of the two months period were compared in detail. The verification of monthly mean of forecast anomaly correlation (ACC) and root mean square (RMS) errors shows consistently positive impact of non-orographic GWD on skill score of forecasting for the three to eight days, both in the stratosphere and troposphere, and visible positive impact on prediction of the stratospheric wind and temperature fields. Numerical simulation during SSW event demonstrates that the influence on the temperature of middle stratosphere is mainly positive and there were larger departure both for the wind and temperature fields considering the non-orographic GWD during the warming process.

  12. Field and numerical study of wind and surface waves at short fetches

    NASA Astrophysics Data System (ADS)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2016-04-01

    Measurements were carried out in 2012-2015 from May to October in the waters of Gorky Reservoir belonging to the Volga Cascade. The methods of the experiment focus on the study of airflow in the close proximity to the water surface. The sensors were positioned at the oceanographic Froude buoy including five two-component ultrasonic sensors WindSonic by Gill Instruments at different levels (0.1, 0.85, 1.3, 2.27, 5.26 meters above the mean water surface level), one water and three air temperature sensors, and three-channel wire wave gauge. One of wind sensors (0.1 m) was located on the float tracking the waveform for measuring the wind speed in the close proximity to the water surface. Basic parameters of the atmospheric boundary layer (the friction velocity u∗, the wind speed U10 and the drag coefficient CD) were calculated from the measured profiles of wind speed. Parameters were obtained in the range of wind speeds of 1-12 m/s. For wind speeds stronger than 4 m/s CD values were lower than those obtained before (see eg. [1,2]) and those predicted by the bulk parameterization. However, for weak winds (less than 3 m/s) CD values considerably higher than expected ones. The new parameterization of surface drag coefficient was proposed on the basis of the obtained data. The suggested parameterization of drag coefficient CD(U10) was implemented within wind input source terms in WAVEWATCH III [3]. The results of the numerical experiments were compared with the results obtained in the field experiments on the Gorky Reservoir. The use of the new drag coefficient improves the agreement in significant wave heights HS [4]. At the same time, the predicted mean wave periods are overestimated using both built-in source terms and adjusted source terms. We associate it with the necessity of the adjusting of the DIA nonlinearity model in WAVEWATCH III to the conditions of the middle-sized reservoir. Test experiments on the adjusting were carried out. The work was supported by the Russian Foundation for Basic Research (Grants No. 15-35-20953, 14-05-00367, 15-45-02580) and project ASIST of FP7. The field experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), numerical simulations are partially supported by Russian Science Foundation (Agreement No. 14-17-00667). References 1. A.V. Babanin, V.K. Makin Effects of wind trend and gustiness on the sea drag: Lake George study // Journal of Geophysical Research, 2008, 113, C02015, doi:10.1029/2007JC004233 2. S.S. Atakturk, K.B. Katsaros Wind Stress and Surface Waves Observed on Lake Washington // Journal of Physical Oceanography, 1999, 29, pp. 633-650 3. Kuznetsova A.M., Baydakov G.A., Papko V.V., Kandaurov A.A., Vdovin M.I., Sergeev D.A., Troitskaya Yu.I. Adjusting of wind input source term in WAVEWATCH III model for the middle-sized water body on the basis of the field experiment // Hindawi Publishing Corporation, Advances in Meteorology, 2016, Vol. 1, article ID 574602 4. G.A. Baydakov, A.M. Kuznetsova, D.A. Sergeev, V.V. Papko, A.A. Kandaurov, M.I. Vdovin, and Yu.I. Troitskaya Field study and numerical modeling of wind and surface waves at the middle-sized water body // Geophysical Research Abstracts, Vol.17, EGU2015-9427, Vienne, Austria, 2015.

  13. 'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere

    NASA Technical Reports Server (NTRS)

    Garcia, Rolando R.; Boville, Byron A.

    1994-01-01

    According to the 'downward control' principle, the extratropical mean vertical velocity on a given pressure level is approximately proportional to the meridional gradient of the vertically integrated zonal force per unit mass exerted by waves above that level. In this paper, a simple numerical model that includes parameterizations of both planetary and gravity wave breaking is used to explore the influence of gravity wave breaking in the mesosphere on the mean meridional circulation and temperature distribution at lower levels in the polar winter stratosphere. The results of these calculations suggest that gravity wave drag in the mesosphere can affect the state of the polar winter stratosphere down to altitudes below 30 km. The effect is most important when planetary wave driving is relatively weak: that is, during southern winter and in early northern winter. In southern winter, downwelling weakens by a factor of 2 near the stratospause and by 20% at 30 km when gravity wave drag is not included in the calculations. As a consequence, temperatures decrease considerably throughout the polar winter stratosphere (over 20 K above 40 km and as much as 8 K at 30 km, where the effect is enhanced by the long radiative relaxation timescale). The polar winter states obtained when gravity wave drag is omitted in this simple model resemble the results of simulations with some general circulation models and suggest that some of the shortcomings of the latter may be due to a deficit in mesospheric momentum deposition by small-scale gravity waves.

  14. Drag of Clean and Fouled Net Panels – Measurements and Parameterization of Fouling

    PubMed Central

    Gansel, Lars Christian; Plew, David R.; Endresen, Per Christian; Olsen, Anna Ivanova; Misimi, Ekrem; Guenther, Jana; Jensen, Østen

    2015-01-01

    Biofouling is a serious problem in marine aquaculture and it has a number of negative impacts including increased forces on aquaculture structures and reduced water exchange across nets. This in turn affects the behavior of fish cages in waves and currents and has an impact on the water volume and quality inside net pens. Even though these negative effects are acknowledged by the research community and governmental institutions, there is limited knowledge about fouling related effects on the flow past nets, and more detailed investigations distinguishing between different fouling types have been called for. This study evaluates the effect of hydroids, an important fouling organism in Norwegian aquaculture, on the forces acting on net panels. Drag forces on clean and fouled nets were measured in a flume tank, and net solidity including effect of fouling were determined using image analysis. The relationship between net solidity and drag was assessed, and it was found that a solidity increase due to hydroids caused less additional drag than a similar increase caused by change in clean net parameters. For solidities tested in this study, the difference in drag force increase could be as high as 43% between fouled and clean nets with same solidity. The relationship between solidity and drag force is well described by exponential functions for clean as well as for fouled nets. A method is proposed to parameterize the effect of fouling in terms of an increase in net solidity. This allows existing numerical methods developed for clean nets to be used to model the effects of biofouling on nets. Measurements with other types of fouling can be added to build a database on effects of the accumulation of different fouling organisms on aquaculture nets. PMID:26151907

  15. Disruption of the air-sea interface and formation of two-phase transitional layer in hurricane conditions

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Matt, S.; Fujimura, A.

    2012-04-01

    The change of the air-sea interaction regime in hurricane conditions is linked to the mechanism of direct disruption of the air-sea interface by pressure fluctuations working against surface tension forces (Soloviev and Lukas, 2010). The direct disruption of the air-sea interface due to the Kelvin-Helmholtz (KH) instability and formation of a two-phase transitional layer have been simulated with a computational fluid dynamics model. The volume of fluid multiphase model included surface tension at the water-air interface. The model was initialized with either a flat interface or short wavelets. Wind stress was applied at the upper boundary of the air layer, ranging from zero stress to hurricane force stress in different experiments. Under hurricane force wind, the numerical model demonstrated disruption of the air-water interface and the formation of spume and the two-phase transition layer. In the presence of a transition layer, the air-water interface is no longer explicitly identifiable. As a consequence, the analysis of dimensions suggests a linear dependence for velocity and logarithm of density on depth (which is consistent with the regime of marginal stability in the transition layer). The numerical simulations confirmed the presence of linear segments in the corresponding profiles within the transition layer. This permitted a parameterization of the equivalent drag coefficient due to the presence of the two-phase transition layer at the air-sea interface. This two-phase layer parameterization represented the lower limit imposed on the drag coefficient under hurricane conditions. The numerical simulations helped to reduce the uncertainty in the critical Richardson number applicable to the air-sea interface and in the values of two dimensionless constants; this reduced the uncertainty in the parameterization of the lower limit on the drag coefficient. The available laboratory data (Donelan et al., 2004) are bounded by the two-phase layer parameterization from below and the wave resistance parameterization from above. The available field data (Powell et al., 2003; Black et al., 2007) fall between these two parameterizations, for wind speeds of up to 50 m/s. A few points from the dropsonde data from Powell et al. (2003), obtained at very high wind speeds, are below the theoretical lower limit on the drag coefficient. We also conducted a numerical experiment with imposed short wavelets. Streamwise coherent structures were observed on the water surface, which were especially prominent on the top of wave crests. These intermittent streamwise structures on the top of wavelets, with periodicity in the transverse direction, presumably were a result of the Tollmien-Schlichting (TS) instability. Similar processes take place at the atomization of liquid fuels in cryogenic and diesel engines (Yecko et al., 2002). According to McNaughton and Brunet (2002), the nonlinear stage of the TS instability results in streamwise streaks followed by fluid ejections. This mechanism can contribute to the generation of spume in the form of streaks. Foam streaks are an observable feature on photographic images of the ocean surface under hurricane conditions. The mechanism of the TS instability can also contribute to dispersion of oil spills and other pollutants in hurricane conditions.

  16. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    NASA Astrophysics Data System (ADS)

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  17. Evaluating and Improving Wind Forecasts over South China: The Role of Orographic Parameterization in the GRAPES Model

    NASA Astrophysics Data System (ADS)

    Zhong, Shuixin; Chen, Zitong; Xu, Daosheng; Zhang, Yanxia

    2018-06-01

    Unresolved small-scale orographic (SSO) drags are parameterized in a regional model based on the Global/Regional Assimilation and Prediction System for the Tropical Mesoscale Model (GRAPES TMM). The SSO drags are represented by adding a sink term in the momentum equations. The maximum height of the mountain within the grid box is adopted in the SSO parameterization (SSOP) scheme as compensation for the drag. The effects of the unresolved topography are parameterized as the feedbacks to the momentum tendencies on the first model level in planetary boundary layer (PBL) parameterization. The SSOP scheme has been implemented and coupled with the PBL parameterization scheme within the model physics package. A monthly simulation is designed to examine the performance of the SSOP scheme over the complex terrain areas located in the southwest of Guangdong. The verification results show that the surface wind speed bias has been much alleviated by adopting the SSOP scheme, in addition to reduction of the wind bias in the lower troposphere. The target verification over Xinyi shows that the simulations with the SSOP scheme provide improved wind estimation over the complex regions in the southwest of Guangdong.

  18. Explicitly Stochastic Parameterization of Nonorographic Gravity-Wave Drag

    DTIC Science & Technology

    2010-01-01

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,Space Science Division,4555 Overlook Avenue SW,Washington,DC,20375 8. PERFORMING... ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT...τb exp [ − (c− coff ) 2 c2w ] , (1) τb = τ ∗ b F (φ, t), (2) with a phase-speed width cw = 30 m s −1. τb is the “background” momentum flux and is

  19. Active Subspaces of Airfoil Shape Parameterizations

    NASA Astrophysics Data System (ADS)

    Grey, Zachary J.; Constantine, Paul G.

    2018-05-01

    Design and optimization benefit from understanding the dependence of a quantity of interest (e.g., a design objective or constraint function) on the design variables. A low-dimensional active subspace, when present, identifies important directions in the space of design variables; perturbing a design along the active subspace associated with a particular quantity of interest changes that quantity more, on average, than perturbing the design orthogonally to the active subspace. This low-dimensional structure provides insights that characterize the dependence of quantities of interest on design variables. Airfoil design in a transonic flow field with a parameterized geometry is a popular test problem for design methodologies. We examine two particular airfoil shape parameterizations, PARSEC and CST, and study the active subspaces present in two common design quantities of interest, transonic lift and drag coefficients, under each shape parameterization. We mathematically relate the two parameterizations with a common polynomial series. The active subspaces enable low-dimensional approximations of lift and drag that relate to physical airfoil properties. In particular, we obtain and interpret a two-dimensional approximation of both transonic lift and drag, and we show how these approximation inform a multi-objective design problem.

  20. Directional Absorption of Parameterized Mountain Waves and Its Influence on the Wave Momentum Transport in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming

    2018-03-01

    The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.

  1. Atmospheric form drag over Arctic sea ice derived from high-resolution IceBridge elevation data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.

    2016-02-01

    Here we present a detailed analysis of atmospheric form drag over Arctic sea ice, using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. Surface features in the sea ice cover are detected using a novel feature-picking algorithm. We derive information regarding the height, spacing and orientation of unique surface features from 2009-2014 across both first-year and multiyear ice regimes. The topography results are used to explicitly calculate atmospheric form drag coefficients; utilizing existing form drag parameterizations. The atmospheric form drag coefficients show strong regional variability, mainly due to variability in ice type/age. The transition from a perennial to a seasonal ice cover therefore suggest a decrease in the atmospheric form drag coefficients over Arctic sea ice in recent decades. These results are also being used to calibrate a recent form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic sea ice in global climate models.

  2. Effect of roughness formulation on the performance of a coupled wave, hydrodynamic, and sediment transport model

    USGS Publications Warehouse

    Ganju, Neil K.; Sherwood, Christopher R.

    2010-01-01

    A variety of algorithms are available for parameterizing the hydrodynamic bottom roughness associated with grain size, saltation, bedforms, and wave–current interaction in coastal ocean models. These parameterizations give rise to spatially and temporally variable bottom-drag coefficients that ostensibly provide better representations of physical processes than uniform and constant coefficients. However, few studies have been performed to determine whether improved representation of these variable bottom roughness components translates into measurable improvements in model skill. We test the hypothesis that improved representation of variable bottom roughness improves performance with respect to near-bed circulation, bottom stresses, or turbulence dissipation. The inner shelf south of Martha’s Vineyard, Massachusetts, is the site of sorted grain-size features which exhibit sharp alongshore variations in grain size and ripple geometry over gentle bathymetric relief; this area provides a suitable testing ground for roughness parameterizations. We first establish the skill of a nested regional model for currents, waves, stresses, and turbulent quantities using a uniform and constant roughness; we then gauge model skill with various parameterization of roughness, which account for the influence of the wave-boundary layer, grain size, saltation, and rippled bedforms. We find that commonly used representations of ripple-induced roughness, when combined with a wave–current interaction routine, do not significantly improve skill for circulation, and significantly decrease skill with respect to stresses and turbulence dissipation. Ripple orientation with respect to dominant currents and ripple shape may be responsible for complicating a straightforward estimate of the roughness contribution from ripples. In addition, sediment-induced stratification may be responsible for lower stresses than predicted by the wave–current interaction model.

  3. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Ross, J. D.; Soloman, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6 micro b level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer.

  4. Directional bottom roughness associated with waves, currents, and ripples

    USGS Publications Warehouse

    Sherwood, Christopher R.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    Roughness lengths are used in wave-current bottom boundary layer models to parameterize drag associated with grain roughness, the effect of saltating grains during sediment transport, and small-scale bottom topography (ripples and biogenic features). We made field measurements of flow parameters and recorded sonar images of ripples at the boundary of a sorted-bedform at ~12-m depth on the inner shelf for a range of wave and current conditions over two months. We compared estimates of apparent bottom roughness inferred from the flow measurements with bottom roughness calculated using ripple geometry and the Madsen (1994) one-dimensional (vertical) wave-current bottom boundary layer model. One result of these comparisons was that the model over predicted roughness of flow from the dormant large ripples when waves were small. We developed a correction to the ripple-roughness model that incorporates an apparent ripple wavelength related to the combined wave-current flow direction. This correction provides a slight improvement for low-wave conditions, but does not address several other differences between observations and the modeled roughness.

  5. Validation of the Fully-Coupled Air-Sea-Wave COAMPS System

    NASA Astrophysics Data System (ADS)

    Smith, T.; Campbell, T. J.; Chen, S.; Gabersek, S.; Tsu, J.; Allard, R. A.

    2017-12-01

    A fully-coupled, air-sea-wave numerical model, COAMPS®, has been developed by the Naval Research Laboratory to further enhance understanding of oceanic, atmospheric, and wave interactions. The fully-coupled air-sea-wave system consists of an atmospheric component with full physics parameterizations, an ocean model, NCOM (Navy Coastal Ocean Model), and two wave components, SWAN (Simulating Waves Nearshore) and WaveWatch III. Air-sea interactions between the atmosphere and ocean components are accomplished through bulk flux formulations of wind stress and sensible and latent heat fluxes. Wave interactions with the ocean include the Stokes' drift, surface radiation stresses, and enhancement of the bottom drag coefficient in shallow water due to the wave orbital velocities at the bottom. In addition, NCOM surface currents are provided to SWAN and WaveWatch III to simulate wave-current interaction. The fully-coupled COAMPS system was executed for several regions at both regional and coastal scales for the entire year of 2015, including the U.S. East Coast, Western Pacific, and Hawaii. Validation of COAMPS® includes observational data comparisons and evaluating operational performance on the High Performance Computing (HPC) system for each of these regions.

  6. Atmospheric Form Drag Coefficients Over Arctic Sea Ice Using Remotely Sensed Ice Topography Data, Spring 2009-2015

    NASA Technical Reports Server (NTRS)

    Petty, Alek A.; Tsamados, Michel C.; Kurtz, Nathan T.

    2017-01-01

    Sea ice topography significantly impacts turbulent energy/momentum exchange, e.g., atmospheric (wind) drag, over Arctic sea ice. Unfortunately, observational estimates of this contribution to atmospheric drag variability are spatially and temporally limited. Here we present new estimates of the neutral atmospheric form drag coefficient over Arctic sea ice in early spring, using high-resolution Airborne Topographic Mapper elevation data from NASA's Operation IceBridge mission. We utilize a new three-dimensional ice topography data set and combine this with an existing parameterization scheme linking surface feature height and spacing to form drag. To be consistent with previous studies investigating form drag, we compare these results with those produced using a new linear profiling topography data set. The form drag coefficient from surface feature variability shows lower values [less than 0.5-1 × 10(exp. -3)] in the Beaufort/Chukchi Seas, compared with higher values [greater than 0.5-1 ×10(exp. -3)] in the more deformed ice regimes of the Central Arctic (north of Greenland and the Canadian Archipelago), which increase with coastline proximity. The results show moderate interannual variability, including a strong increase in the form drag coefficient from 2013 to 2014/2015 north of the Canadian Archipelago. The form drag coefficient estimates are extrapolated across the Arctic with Advanced Scatterometer satellite radar backscatter data, further highlighting the regional/interannual drag coefficient variability. Finally, we combine the results with existing parameterizations of form drag from floe edges (a function of ice concentration) and skin drag to produce, to our knowledge, the first pan-Arctic estimates of the total neutral atmospheric drag coefficient (in early spring) from 2009 to 2015.

  7. Skin friction drag reduction in turbulent flow using spanwise traveling surface waves

    NASA Astrophysics Data System (ADS)

    Musgrave, Patrick F.; Tarazaga, Pablo A.

    2017-04-01

    A major technological driver in current aircraft and other vehicles is the improvement of fuel efficiency. One way to increase the efficiency is to reduce the skin friction drag on these vehicles. This experimental study presents an active drag reduction technique which decreases the skin friction using spanwise traveling waves. A novel method is introduced for generating traveling waves which is low-profile, non-intrusive, and operates under various flow conditions. This wave generation method is discussed and the resulting traveling waves are presented. These waves are then tested in a low-speed wind tunnel to determine their drag reduction potential. To calculate the drag reduction, the momentum integral method is applied to turbulent boundary layer data collected using a pitot tube and traversing system. The skin friction coefficients are then calculated and the drag reduction determined. Preliminary results yielded a drag reduction of ≍ 5% for 244Hz traveling waves. Thus, this novel wave generation method possesses the potential to yield an easily implementable, non-invasive drag reduction technology.

  8. IMPLEMENTATION OF AN URBAN CANOPY PARAMETERIZATION IN MM5

    EPA Science Inventory

    The Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5) (Grell et al. 1994) has been modified to include an urban canopy parameterization (UCP) for fine-scale urban simulations (~1-km horizontal grid spacing). The UCP accounts for drag ...

  9. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, M.; Ross, J. D.; Solomon, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6microb level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer. Additional information is contained in the original extended abstract.

  10. Challenges in Understanding and Forecasting Winds in Complex Terrain.

    NASA Astrophysics Data System (ADS)

    Mann, J.; Fernando, J.; Wilczak, J. M.

    2017-12-01

    An overview will be given of some of the challenges in understanding and forecasting winds in complex terrain. These challenges can occur for several different reasons including 1) gaps in our understanding of fundamental physical boundary layer processes occurring in complex terrain; 2) a lack of adequate parameterizations and/or numerical schemes in NWP models; and 3) inadequate observations for initialization of NWP model forecasts. Specific phenomena that will be covered include topographic wakes/vortices, cold pools, gap flows, and mountain-valley winds, with examples taken from several air quality and wind energy related field programs in California as well as from the recent Second Wind Forecast Improvement Program (WFIP2) field campaign in the Columbia River Gorge/Basin area of Washington and Oregon States. Recent parameterization improvements discussed will include those for boundary layer turbulence, including 3D turbulence schemes, and gravity wave drag. Observational requirements for improving wind forecasting in complex terrain will be discussed, especially in the context of forecasting pressure gradient driven gap flow events.

  11. Wave drag as the objective function in transonic fighter wing optimization

    NASA Technical Reports Server (NTRS)

    Phillips, P. S.

    1984-01-01

    The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.

  12. Assessing the performance of wave breaking parameterizations in shallow waters in spectral wave models

    NASA Astrophysics Data System (ADS)

    Lin, Shangfei; Sheng, Jinyu

    2017-12-01

    Depth-induced wave breaking is the primary dissipation mechanism for ocean surface waves in shallow waters. Different parametrizations were developed for parameterizing depth-induced wave breaking process in ocean surface wave models. The performance of six commonly-used parameterizations in simulating significant wave heights (SWHs) is assessed in this study. The main differences between these six parameterizations are representations of the breaker index and the fraction of breaking waves. Laboratory and field observations consisting of 882 cases from 14 sources of published observational data are used in the assessment. We demonstrate that the six parameterizations have reasonable performance in parameterizing depth-induced wave breaking in shallow waters, but with their own limitations and drawbacks. The widely-used parameterization suggested by Battjes and Janssen (1978, BJ78) has a drawback of underpredicting the SWHs in the locally-generated wave conditions and overpredicting in the remotely-generated wave conditions over flat bottoms. The drawback of BJ78 was addressed by a parameterization suggested by Salmon et al. (2015, SA15). But SA15 had relatively larger errors in SWHs over sloping bottoms than BJ78. We follow SA15 and propose a new parameterization with a dependence of the breaker index on the normalized water depth in deep waters similar to SA15. In shallow waters, the breaker index of the new parameterization has a nonlinear dependence on the local bottom slope rather than the linear dependence used in SA15. Overall, this new parameterization has the best performance with an average scatter index of ∼8.2% in comparison with the three best performing existing parameterizations with the average scatter index between 9.2% and 13.6%.

  13. Laboratory modeling of air-sea interaction under severe wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow velocity profile was measured by WindSonic ultrasonic wind sensor. The water elevation was measured by the three-channel wave-gauge. Top and side views of the water surface were fixed by CCD-camera. Wind friction velocity and surface drag coefficients were retrieved from the measurements by the profile method. Obtained values are in good agreement with the data of measurements by Donelan et al (2004). The directional frequency-wave-number spectra of surface waves were retrieved by the wavelet directional method (Donelan et al, 1996). The obtained dependencies of parameters of the wind waves indicate existing of two regimes of the waves with the critical wind speed Ucr about 30 m/s. For U10Ucr the dependencies of peak wave period, peak wavelength, significant wave height on the wind speed tend to saturation, in the same time the peak wave slope has the maximum at approximately Ucr and then decreases with the tendency to saturation. The surface drag also tends to saturation for U10>Ucr similarly to (Donelan et al, 2004). Video filming indicates onset of wave breaking with white-capping and spray generation at wind speeds approximately equal to Ucr. We compared the obtained experimental dependencies with the predictions of the quasi-linear model of the turbulent boundary layer over the waved water surface (Reutov&Troitskaya, 1995). Comparing shows that theoretical predictions give low estimates for the measured drag coefficient and wave fields. Taking into account momentum flux associated with the spray generation yields theoretical estimations in good agreement with the experimental data. Basing on the experimental data a possible physical mechanism of the drag is suggested. Tearing of the wave crests at severe wind conditions leads to the effective smoothing (decreasing wave slopes) of the water surface, which in turn reduces the aerodynamic roughness of the water surface. Quantitative agreement of the experimental data and theoretical estimations od the surface drag occurs if spray and drop momentum flux is taken into account. This study was supported by Russian Foundation for basic research (project code 07-05-00565, 10-05-00339). References Andreas E. L. Spray stress revised, J. Phys. Oceanogr., 2004, v.34, p.1429--1440. Black P.G., et al, Bulletin of the American Meteorological Society, 2007, v. 88, №3, p.357-374. Donelan M.A., et al, J. Phys. Oceanogr., 26, 1901-1914, 1996 Donelan M.A., et al, Geophys. Res. Lett., 2004, v.31, L18306. Emanuel, K.A. , J. Atmos. Sci/, 1995, v.52, p.3969-3976. Fairall C.W., et al, J. Climate, 2003, v.16, № 4, p.571-591. French, J. R., et al, J. Atmos. Sci., 2007, v.64, p.1089-1102. Garratt J.R., Mon. Weather Rev., 1977, v.105, p.915-929. Kudryavtsev V. N., J. Geophys. Res., 2006, v.111, C07020. Kudryavtsev V., Makin V. , Boundary-Layer Meteorol., 2007, v.125, p. 289--303. Kukulka, T., T. Hara, and S. E. Belcher., J. Phys. Oceanogr., 37, 1811-1828, 2007 Makin V. K. ,Boundary Layer Meteorol., 2005, v. 115, №1, p.169-176. Powell, M.D., Vickery P.J., Reinhold T.A., Nature, 2003, v.422, p.279-283. Reutov V.P., Troitskaya Yu.I. ,. Izvestiya RAN, FAO, 31, 825-834, 1995

  14. A High Resolution Study of Black Sea Circulation and Hypothetical Oil Spills

    NASA Astrophysics Data System (ADS)

    Dietrich, D. E.; Bowman, M. J.; Korotenko, K. A.

    2008-12-01

    A 1/24 deg resolution adaptation of the DieCAST ocean model simulates a realistically intense Rim Current and ubiquitous mesoscale coastal anticyclonic eddies that result from anticyclonic vorticity generation by laterally differential bottom drag forces that are amplified near Black Sea coastal headlands. Climatological and synoptic surface forcings are compared. The effects of vertical momentum transfer by known (by Synop region fishermen, as reported by Ballard National Geographic article) big amplitude internal waves are parameterized by big vertical viscosity. Sensitivity to vertical viscosity is shown. Results of simulated hypothetical oil spills are shown. A simple method to nowcast/forecast the Black Sea currents is described and early results are shown.

  15. Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.

    2018-04-01

    Parameterization schemes of atmospheric normal modes (NMs) and orographic gravity waves (OGWs) have been implemented into the mechanistic Middle and Upper Atmosphere Model (MUAM) simulating atmospheric general circulation. Based on the 12-members ensemble of runs with the MUAM, a composite of the stratospheric warming (SW) has been constructed using the UK Met Office data as the lower boundary conditions. The simulation results show that OGW amplitudes increase at altitudes above 30 km in the Northern Hemisphere after the SW event. At altitudes of about 50 km, OGWs have largest amplitudes over North American and European mountain systems before and during the composite SW, and over Himalayas after the SW. Simulations demonstrate substantial (up to 50-70%) variations of amplitudes of stationary planetary waves (PWs) during and after the SW in the mesosphere-lower thermosphere of the Northern Hemisphere. Westward travelling NMs have amplitude maxima not only in the Northern, but also in the Southern Hemisphere, where these modes have waveguides in the middle and upper atmosphere. Simulated variations of PW and NM amplitudes correspond to changes in the mean zonal wind, EP-fluxes and wave refractive index at different phases of the composite SW events. Inclusion of the parameterization of OGW effects leads to decreases in amplitudes (up to 15%) of almost all SPWs before and after the SW event and their increase (up to 40-60%) after the SW in the stratosphere and mesosphere at middle and high northern latitudes. It is suggested that observed changes in NM amplitudes in the Southern Hemisphere during SW could be caused by divergence of increased southward EP-flux. This EP-flux increases due to OGW drag before SW and extends into the Southern Hemisphere.

  16. Experimental investigation of effect of surface gravity waves and spray on heat and momentum flux at strong wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily

    2015-04-01

    The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum amplitude at the maximum depth of the net (33cm). To create a stable temperature stratification of the wind, the air entering the flume was heated to 30-40 oC. The water temperature was maintained about 15 degrees. The air flow velocity in the flume corresponded to the 10-m wind speed from 10 to 35 m/s. Turbulent fluxes of heat and momentum and roughness parameters were retrieved from the velocity and temperature profiles measured at the distance 6.5 m from the inlet of the flume and subsequent data processing exploiting the self-similarity of the temperature and velocity profiles. In a result surface drag and heat exchange coefficients and roughness parameters were obtained. Wind wave spectra and integral parameters (significant wave height, mean square slope) were retrieved from measurements by 3-channel array wave gauge by coherent spectral data processing. To estimate the amount of spray in the air flow, a spray marker was introduced using the effect of a sharp decline in film anemometer readings in contact with a droplet. Dependences of the exchange coefficients on the wind speed, wave parameters and the spray marker were obtained. It is shown that the exchange coefficients increase with the wind speed and wave height. It was found, that the sharp increase of the drag and heat exchange coefficients at wind speeds exceeded 25 m/s was accompanied by the emergence and increasing concentration of the spray in the air flow over water. The correlation coefficient between the drag coefficient and the spray marker was about 0.9. Using high-speed video revealed the dominant mechanism for the generation of spray at strong winds. It is shown that it is associated with the development of a special type of instability of the air-water interface, which is known as "bag-breakup instability" in the theory of fragmentation of liquids. The hypothesis is suggested, that the observed increase of surface drag and heat exchange can be attributed to the development of this type of instability. This work was supported by the Russian Foundation of Basic Research (13-05-00865, 14-05-91767, 13-05-12093, 15-05-) and Alexander Kandaurov, Maxim Vdovin and Olga Ermakova acknowledge partial support from Russian Science Foundation (Agreement No. 14-17-00667).

  17. Variability in Arctic sea ice topography and atmospheric form drag: Combining IceBridge laser altimetry with ASCAT radar backscatter.

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.

    2016-12-01

    Here we present atmospheric form drag estimates over Arctic sea ice using high resolution, three-dimensional surface elevation data from NASA's Operation IceBridge Airborne Topographic Mapper (ATM), and surface roughness estimates from the Advanced Scatterometer (ASCAT). Surface features of the ice pack (e.g. pressure ridges) are detected using IceBridge ATM elevation data and a novel surface feature-picking algorithm. We use simple form drag parameterizations to convert the observed height and spacing of surface features into an effective atmospheric form drag coefficient. The results demonstrate strong regional variability in the atmospheric form drag coefficient, linked to variability in both the height and spacing of surface features. This includes form drag estimates around 2-3 times higher over the multiyear ice north of Greenland, compared to the first-year ice of the Beaufort/Chukchi seas. We compare results from both scanning and linear profiling to ensure our results are consistent with previous studies investigating form drag over Arctic sea ice. A strong correlation between ASCAT surface roughness estimates (using radar backscatter) and the IceBridge form drag results enable us to extrapolate the IceBridge data collected over the western-Arctic across the entire Arctic Ocean. While our focus is on spring, due to the timing of the primary IceBridge campaigns since 2009, we also take advantage of the autumn data collected by IceBridge in 2015 to investigate seasonality in Arctic ice topography and the resulting form drag coefficient. Our results offer the first large-scale assessment of atmospheric form drag over Arctic sea ice due to variable ice topography (i.e. within the Arctic pack ice). The analysis is being extended to the Antarctic IceBridge sea ice data, and the results are being used to calibrate a sophisticated form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic and Antarctic sea ice in global climate models.

  18. Some Examples of the Applications of the Transonic and Supersonic Area Rules to the Prediction of Wave Drag

    NASA Technical Reports Server (NTRS)

    Nelson, Robert L.; Welsh, Clement J.

    1960-01-01

    The experimental wave drags of bodies and wing-body combinations over a wide range of Mach numbers are compared with the computed drags utilizing a 24-term Fourier series application of the supersonic area rule and with the results of equivalent-body tests. The results indicate that the equivalent-body technique provides a good method for predicting the wave drag of certain wing-body combinations at and below a Mach number of 1. At Mach numbers greater than 1, the equivalent-body wave drags can be misleading. The wave drags computed using the supersonic area rule are shown to be in best agreement with the experimental results for configurations employing the thinnest wings. The wave drags for the bodies of revolution presented in this report are predicted to a greater degree of accuracy by using the frontal projections of oblique areas than by using normal areas. A rapid method of computing wing area distributions and area-distribution slopes is given in an appendix.

  19. Physically-based modeling of drag force caused by natural woody vegetation

    NASA Astrophysics Data System (ADS)

    Järvelä, J.; Aberle, J.

    2014-12-01

    Riparian areas and floodplains are characterized by woody vegetation, which is an essential feature to be accounted for in many hydro-environmental models. For applications including flood protection, river restoration and modelling of sediment processes, there is a need to improve the reliability of flow resistance estimates. Conventional methods such as the use of lumped resistance coefficients or simplistic cylinder-based drag force equations can result in significant errors, as these methods do not adequately address the effect of foliage and reconfiguration of flexible plant parts under flow action. To tackle the problem, physically-based methods relying on objective and measurable vegetation properties are advantageous for describing complex vegetation. We have conducted flume and towing tank investigations with living and artificial plants, both in arrays and with isolated plants, providing new insight into advanced parameterization of natural vegetation. The stem, leaf and total areas of the trees confirmed to be suitable characteristic dimensions for estimating flow resistance. Consequently, we propose the use of leaf area index and leaf-to-stem-area ratio to achieve better drag force estimates. Novel remote sensing techniques including laser scanning have become available for effective collection of the required data. The benefits of the proposed parameterization have been clearly demonstrated in our newest experimental studies, but it remains to be investigated to what extent the parameter values are species-specific and how they depend on local habitat conditions. The purpose of this contribution is to summarize developments in the estimation of vegetative drag force based on physically-based approaches as the latest research results are somewhat dispersed. In particular, concerning woody vegetation we seek to discuss three issues: 1) parameterization of reconfiguration with the Vogel exponent; 2) advantage of parameterizing plants with the leaf area index and leaf-to-stem-area ratio, and 3) effect of plant scale (size from twigs to mature trees). To analyze these issues we use experimental data from the authors' research teams as well as from other researchers. The results are expected to be useful for the design of future experimental campaigns and developing drag force models.

  20. Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.

    PubMed

    Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun

    2017-09-01

    Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.

  1. Seagrass blade motion under waves and its impact on wave decay

    NASA Astrophysics Data System (ADS)

    Luhar, M.; Infantes, E.; Nepf, H.

    2017-05-01

    The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).

  2. Dynamical response of the summer MLT to tropospheric global warming: Results from a mechanistic GCM with resolved gravity waves

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2009-04-01

    The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability of the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs is negligible, the main contribution to the EPF divergence at high latitudes of the MLT is due to mid- and high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of the Kuehlungsborn mechanistic general circulation model (KMCM) with high spatial resolution and Smagorinsky-type horizontal and vertical diffusion coefficients that are both scaled by the Richardson criterion. This model version allows for an explicit and self-consistent simulation of the gravity-wave drag in the MLT. A sensitivity experiment is conducted in which the main changes associated with tropospheric global warming are imposed by the differential heating, i.e., reduced static stability in the lower troposphere along with a reduced equator-to-pole temperature difference and enhanced latent heating in the intertropical convergence zone. These changes result in both a stronger Lorenz energy cycle and enhanced gravity-wave activity in the upper troposphere at middle latitudes. The altered gravity-wave sources result in the following remote effects in the summer MLT: downward shift of the residual circulation, as well as lower temperatures and reduced easterlies below the mesopause. These changes are consistent with enhanced turbulent diffusion and dissipation below the mesopause due to larger gravity-wave amplitudes.

  3. Concentrated energy addition for active drag reduction in hypersonic flow regime

    NASA Astrophysics Data System (ADS)

    Ashwin Ganesh, M.; John, Bibin

    2018-01-01

    Numerical optimization of hypersonic drag reduction technique based on concentrated energy addition is presented in this study. A reduction in wave drag is realized through concentrated energy addition in the hypersonic flowfield upstream of the blunt body. For the exhaustive optimization presented in this study, an in-house high precision inviscid flow solver has been developed. Studies focused on the identification of "optimum energy addition location" have revealed the existence of multiple minimum drag points. The wave drag coefficient is observed to drop from 0.85 to 0.45 when 50 Watts of energy is added to an energy bubble of 1 mm radius located at 74.7 mm upstream of the stagnation point. A direct proportionality has been identified between energy bubble size and wave drag coefficient. Dependence of drag coefficient on the upstream added energy magnitude is also revealed. Of the observed multiple minimum drag points, the energy deposition point (EDP) that offers minimum wave drag just after a sharp drop in drag is proposed as the most optimum energy addition location.

  4. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  5. Sensitivity of the mesosphere to the Lorenz energy cycle of the troposphere

    NASA Astrophysics Data System (ADS)

    Becker, Erich

    The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability in the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. In particular, a fixed GW source at a single level in the troposphere is often assumed. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs tends to vanish, the main contribution to the EPF divergence at high latitudes of the MLT is due to midand high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of a mechanistic GCM with high spatial resolution and a sophisticated parameterization of turbulence. This model explicitly simulates the wave drag of the MLT that results from the dynamical GW sources in the troposphere. The Smagorinsky-type horizontal and vertical diffusion coefficients are scaled by the Richardson criterion such that no sponge layer is required for the GWs to dissipate in the MLT. A sensitivity experiment shows that a reduced static stability in the lower troposphere, which may be associated with climate change, leads to a stronger Lorenz energy cycle. The intensification of the tropospheric heat engine is accompanied by enhanced GW acitivity in the upper troposphere at middle latitudes. These changes induce the following remote effects in the summer MLT: downshift of the residual circulation, as well as stronger dissipation, lower temperatures, and reduced easterlies below the mesopause. The simulated sensitivity is consistent with enhanced turbulent diffusion at lower altitudes resulting from stronger GW amplitudes.

  6. Effect of Gravity Waves from Small Islands in the Southern Ocean on the Southern Hemisphere Atmospheric Circulation

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Oman, L. D.

    2018-01-01

    The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.

  7. Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Shepherd, Theodore G.; Zappa, Giuseppe; Sandu, Irina

    2016-07-01

    State-of-the art climate models generally struggle to represent important features of the large-scale circulation. Common model deficiencies include an equatorward bias in the location of the midlatitude westerlies and an overly zonal orientation of the North Atlantic storm track. Orography is known to strongly affect the atmospheric circulation and is notoriously difficult to represent in coarse-resolution climate models. Yet how the representation of orography affects circulation biases in current climate models is not understood. Here we show that the effects of switching off the parameterization of drag from low-level orographic blocking in one climate model resemble the biases of the Coupled Model Intercomparison Project Phase 5 ensemble: An overly zonal wintertime North Atlantic storm track and less European blocking events, and an equatorward shift in the Southern Hemispheric jet and increase in the Southern Annular Mode time scale. This suggests that typical circulation biases in coarse-resolution climate models may be alleviated by improved parameterizations of low-level drag.

  8. Observational filter for limb sounders applied to convective gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Quang Thai; Preusse, Peter; Riese, Martin; Kalisch, Silvio

    Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.

  9. Observational filter for limb sounders applied to convective gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Thai; Kalisch, Silvio; Preusse, Peter; Riese, Martin

    2014-05-01

    Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.

  10. Stationary drag photocurrent caused by strong effective running wave in quantum wires: Quantization of current

    NASA Astrophysics Data System (ADS)

    Entin, M. V.; Magarill, L. I.

    2010-02-01

    The stationary current induced by a strong running potential wave in one-dimensional system is studied. Such a wave can result from illumination of a straight quantum wire with special grating or spiral quantum wire by circular-polarized light. The wave drags electrons in the direction correlated with the direction of the system symmetry and polarization of light. In a pure system the wave induces minibands in the accompanied system of reference. We study the effect in the presence of impurity scattering. The current is an interplay between the wave drag and impurity braking. It was found that the drag current is quantized when the Fermi level gets into energy gaps.

  11. A unified spectral,parameterization for wave breaking: from the deep ocean to the surf zone

    NASA Astrophysics Data System (ADS)

    Filipot, J.

    2010-12-01

    A new wave-breaking dissipation parameterization designed for spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is fi[|#12#|]rst calculated in the physical space before being distributed over the relevant spectral components. This parameterization allows a seamless numerical model from the deep ocean into the surf zone. This transition from deep to shallow water is made possible by a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth.The parameterization is further tested in the WAVEWATCH III TM code, from the global ocean to the beach scale. Model errors are smaller than with most specialized deep or shallow water parameterizations.

  12. On the Effect of Rigid Swept Surface Waves on Turbulent Drag

    NASA Technical Reports Server (NTRS)

    Denison, M.; Wilkinson, S. P.; Balakumar, P.

    2015-01-01

    Passive turbulent drag reduction techniques are of interest as a cost effective means to improve air vehicle fuel consumption. In the past, rigid surface waves slanted at an angle from the streamwise direction were deemed ineffective to reduce skin friction drag due to the pressure drag that they generate. A recent analysis seeking similarities to the spanwise shear stress generated by spatial Stokes layers suggested that there may be a range of wavelength, amplitude, and orientation in which the wavy surface would reduce turbulent drag. The present work explores, by experiments and Direct Numerical Simulations (DNS), the effect of swept wavy surfaces on skin friction and pressure drag. Plates with shallow and deep wave patterns were rapid-prototyped and tested using a drag balance in the 7x11 inch Low-Speed Wind Tunnel at the NASA LaRC Research Center. The measured drag o set between the wavy plates and the reference at plate is found to be within the experimental repeatability limit. Oil vapor flow measurements indicate a mean spanwise flow over the deep waves. The turbulent flow in channels with at walls, swept wavy walls and spatial Stokes spanwise velocity forcing was simulated at a friction Reynolds number of two hundred. The time-averaged and dynamic turbulent flow characteristics of the three channel types are compared. The drag obtained for the channel with shallow waves is slightly larger than for the at channel, within the range of the experiments. In the case of the large waves, the simulation over predicts the drag. The shortcomings of the Stokes layer analogy model for the estimation of the spanwise shear stress and drag are discussed.

  13. Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Rosenlof, K. H.

    1996-01-01

    The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.

  14. Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation

    NASA Technical Reports Server (NTRS)

    Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven

    2016-01-01

    This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.

  15. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  16. A Numerical Method for Calculating the Wave Drag of a Configuration from the Second Derivative of the Area Distribution of a Series of Equivalent Bodies of Revolution

    NASA Technical Reports Server (NTRS)

    Levy, Lionel L., Jr.; Yoshikawa, Kenneth K.

    1959-01-01

    A method based on linearized and slender-body theories, which is easily adapted to electronic-machine computing equipment, is developed for calculating the zero-lift wave drag of single- and multiple-component configurations from a knowledge of the second derivative of the area distribution of a series of equivalent bodies of revolution. The accuracy and computational time required of the method to calculate zero-lift wave drag is evaluated relative to another numerical method which employs the Tchebichef form of harmonic analysis of the area distribution of a series of equivalent bodies of revolution. The results of the evaluation indicate that the total zero-lift wave drag of a multiple-component configuration can generally be calculated most accurately as the sum of the zero-lift wave drag of each component alone plus the zero-lift interference wave drag between all pairs of components. The accuracy and computational time required of both methods to calculate total zero-lift wave drag at supersonic Mach numbers is comparable for airplane-type configurations. For systems of bodies of revolution both methods yield similar results with comparable accuracy; however, the present method only requires up to 60 percent of the computing time required of the harmonic-analysis method for two bodies of revolution and less time for a larger number of bodies.

  17. A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone

    NASA Astrophysics Data System (ADS)

    Filipot, J.-F.; Ardhuin, F.

    2012-11-01

    A new wave-breaking dissipation parameterization designed for phase-averaged spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is first explicitly calculated in physical space before being distributed over the relevant spectral components. The transition from deep to shallow water is made possible by using a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth. This parameterization is implemented in the WAVEWATCH III modeling framework, which is applied to a wide range of conditions and scales, from the global ocean to the beach scale. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Model errors are comparable to those of other specialized deep or shallow water parameterizations. This work shows that it is possible to have a seamless parameterization from the deep ocean to the surf zone.

  18. Computational analysis of blunt, thin airfoil sections at supersonic and subsonic speeds

    NASA Astrophysics Data System (ADS)

    Goodsell, Aga Myung

    The past decade has brought renewed interest in commercial supersonic aircraft design. Recent wing designs have included regions of low sweep resulting in supersonic leading edges at cruise. Thin biconvex sections are used in those regions to minimize wave drag and skin-friction drag. However, airfoil sections with sharp leading edges exhibit poor aerodynamic behavior at subsonic flight conditions. Blunt leading edges may improve performance by delaying the onset of separation at subsonic and transonic speeds. Their disadvantage is that they increase both wave drag, due to the formation of a detached bow wave, and skin-friction drag, from a loss of laminar flow. The effect of adding bluntness to a 4%-thick biconvex section was investigated using computational analysis tools. The aerodynamic performance of biconvex sections with circular leading edges was computed at supersonic, transonic, and takeoff conditions. At supersonic cruise, the increase in wave drag due to bluntness is a function of Mach number and leading-edge diameter. Some of the drag penalty is offset by the suction created downstream of the circular leading edge. The possibility of further drag reduction was explored with the development of a semi-analytical method to design blunt airfoil shapes which minimize wave drag. The effect on the transition location was evaluated using linear stability analyses of laminar boundary-layer profiles and the eN method. The analysis showed that laminar boundary layers on blunt airfoil sections are considerably less stable to Tollmien-Schlichting waves than that on a sharp biconvex. At transonic speeds, the results suggest a possible improvement in the lift-to-drag ratio over a limited range of angles of attack. At the takeoff condition, slight blunting of the leading edge does improve the lift-to-drag ratio at low angles of attack, but has little effect on maximum lift. It is concluded that the benefit of a blunt leading edge at off-design conditions is not sufficient to warrant the resulting drag penalty at supersonic cruise. Furthermore, if maintaining laminar flow is critical to the design and some bluntness is necessary for manufacturing purposes, then the leading-edge diameter should be minimized to prevent transition and to reduce wave drag.

  19. Parameterization of planetary wave breaking in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Garcia, Rolando R.

    1991-01-01

    A parameterization of planetary wave breaking in the middle atmosphere has been developed and tested in a numerical model which includes governing equations for a single wave and the zonal-mean state. The parameterization is based on the assumption that wave breaking represents a steady-state equilibrium between the flux of wave activity and its dissipation by nonlinear processes, and that the latter can be represented as linear damping of the primary wave. With this and the additional assumption that the effect of breaking is to prevent further amplitude growth, the required dissipation rate is readily obtained from the steady-state equation for wave activity; diffusivity coefficients then follow from the dissipation rate. The assumptions made in the derivation are equivalent to those commonly used in parameterizations for gravity wave breaking, but the formulation in terms of wave activity helps highlight the central role of the wave group velocity in determining the dissipation rate. Comparison of model results with nonlinear calculations of wave breaking and with diagnostic determinations of stratospheric diffusion coefficients reveals remarkably good agreement, and suggests that the parameterization could be useful for simulating inexpensively, but realistically, the effects of planetary wave transport.

  20. Stratospheric mountain wave attenuation in positive and negative ambient wind shear

    NASA Astrophysics Data System (ADS)

    Kruse, C. G.; Smith, R. B.

    2016-12-01

    Recently, much has been learned about the vertical propagation and attenuation of mountain waves launched by the Southern Alps of New Zealand (NZ) from the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign. Over NZ, approximately half of mountain wave events are strongly attenuated in a lower-stratospheric "valve layer," defined as a layer of reduced wind with no critical levels. Within a valve layer, negative wind shear causes mountain waves steepen and attenuate, with the amount of transmitted momentum flux controlled by the minimum wind speed within the layer. The other half of wave events are deep (propagating to 35+ km), usually with positive wind shear. Within these deep events, increasing amplitude with decreasing density causes mountain waves to attenuate gradually (after spatial/temporal averaging). Global reanalyses indicate that this valve layer is a climatological feature in the wintertime mid-latitudes above the subtropical jet, while deep events and gradual attenuation occur over higher latitudes below the polar stratospheric jet. The local physics of mountain wave attenuation in positive and negative ambient wind shear are investigated using realistic winter-long (JJA) 6-km resolution Weather Research and Forecasting (WRF) model simulations over the Andes. Attention is given to the spatiotemporal variability of wave attenuation and the various factors driving this variability (e.g. variability in wave generation, ambient conditions at attenuation level, inherent wave-induced instabilities). Mesoscale potential vorticity generation is used as an indicator of wave attenuation. Additionally, regionally integrated wave momentum flux and gravity wave drag (GWD) within WRF are quantified and compared with parameterized quantities in the MERRA1 and 2 reanalyses.

  1. Drag of two-dimensional small-amplitude symmetric and asymmetric wavy walls in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Lin, J. C.; Walsh, M. J.; Balasubramanian, R.

    1984-01-01

    Included are results of an experimental investigation of low-speed turbulent flow over multiple two-dimensional transverse rigid wavy surfaces having a wavelength on the order of the boundary-layer thickness. Data include surface pressure and total drag measurements on symmetric and asymmetric wall waves under a low-speed turbulent boundary-layer flow. Several asymmetric wave configurations exhibited drag levels below the equivalent symmetric (sine) wave. The experimental results compare favorably with numerical predictions from a Reynolds-averaged Navier-Stokes spectral code. The reported results are of particular interest for the estimation of drag, the minimization of fabrication waviness effects, and the study of wind-wave interactions.

  2. Optimal Inlet Shape Design of N2B Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2012-01-01

    The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the Subsonic Fixed Wing project of NASA Fundamental Aeronautics Program. In the present study, flow simulations are conducted around the N2B configuration by a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by the NPSS thermodynamic engine cycle model. The flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and airframe-propulsion integration. Adjoint-based optimal designs are then conducted for the inlet shape to minimize the airframe drag force and flow distortion at fan faces. Design surfaces are parameterized by NURBS, and the cowl lip geometry is modified by a spring analogy approach. By the drag minimization design, flow separation on the cowl surfaces are almost removed, and shock wave strength got remarkably reduced. For the distortion minimization design, a circumferential distortion indicator DPCP(sub avg) is adopted as the design objective and diffuser bottom and side wall surfaces are perturbed for the design. The distortion minimization results in a 12.5 % reduction in the objective function.

  3. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  4. Nonlifting wing-body combinations with certain geometric restraints having minimum wave drag at low supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1957-01-01

    Several variational problems involving optimum wing and body combinations having minimum wave drag for different kinds of geometrical restraints are analyzed. Particular attention is paid to the effect on the wave drag of shortening the fuselage and, for slender axially symmetric bodies, the effect of fixing the fuselage diameter at several points or even of fixing whole portions of its shape.

  5. On the Decrease of the Oceanic Drag Coefficient in High Winds

    NASA Astrophysics Data System (ADS)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  6. Develop and Test Coupled Physical Parameterizations and Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM

    DTIC Science & Technology

    2013-09-30

    Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM W. Erick Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529...Parameterizations and Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  7. Non-perturbational surface-wave inversion: A Dix-type relation for surface waves

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2015-01-01

    We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.

  8. Sediment movement along the U.S. east coast continental shelf-I. Estimates of bottom stress using the Grant-Madsen model and near-bottom wave and current measurements

    USGS Publications Warehouse

    Lyne, V.D.; Butman, B.; Grant, W.D.

    1990-01-01

    Bottom stress is calculated for several long-term time-series observations, made on the U.S. east coast continental shelf during winter, using the wave-current interaction and moveable bed models of Grant and Madsen (1979, Journal of Geophysical Research, 84, 1797-1808; 1982, Journal of Geophysical Research, 87, 469-482). The wave and current measurements were obtained by means of a bottom tripod system which measured current using a Savonius rotor and vane and waves by means of a pressure sensor. The variables were burst sampled about 10% of the time. Wave energy was reasonably resolved, although aliased by wave groupiness, and wave period was accurate to 1-2 s during large storms. Errors in current speed and direction depend on the speed of the mean current relative to the wave current. In general, errors in bottom stress caused by uncertainties in measured current speed and wave characteristics were 10-20%. During storms, the bottom stress calculated using the Grant-Madsen models exceeded stress computed from conventional drag laws by a factor of about 1.5 on average and 3 or more during storm peaks. Thus, even in water as deep as 80 m, oscillatory near-bottom currents associated with surface gravity waves of period 12 s or longer will contribute substantially to bottom stress. Given that the Grant-Madsen model is correct, parameterizations of bottom stress that do not incorporate wave effects will substantially underestimate stress and sediment transport in this region of the continental shelf.

  9. Effects of contrasting wave conditions on scour and drag on pioneer tidal marsh plants

    NASA Astrophysics Data System (ADS)

    Silinski, Alexandra; Heuner, Maike; Troch, Peter; Puijalon, Sara; Bouma, Tjeerd J.; Schoelynck, Jonas; Schröder, Uwe; Fuchs, Elmar; Meire, Patrick; Temmerman, Stijn

    2016-02-01

    Tidal marshes are increasingly valued for protecting shorelines against wave impact, but waves in turn may limit the initial establishment of tidal marsh pioneer plants. In estuaries, the shorelines typically experience a wide range of wave periods, varying from short period wind waves (usually of around 1-2 s in fair weather conditions) to long ship-generated waves, with secondary waves in the order of 2-7 s and primary waves with periods that can exceed 1 min. Waves are known to create sediment scour around, as well as to exert drag forces on obstacles such as seedlings and adults of establishing pioneer plant species. In intertidal systems, these two mechanisms have been identified as main causes for limiting potential colonization of bare tidal flats. In this paper, we want to assess to which extent common quantitative formulae for predicting local scour and drag forces on rigid cylindrical obstacles are valid for the estimation of scour and drag on slightly flexible plants with contrasting morphology, and hence applicable to predict plant establishment and survival under contrasting wave conditions. This has been tested in a full-scale wave flume experiment on two pioneer species (Scirpus maritimus and Scirpus tabernaemontani) and two life stages (seedlings and adults of S. maritimus) as well as on cylindrical reference sticks, which we have put under a range of wave periods (2-10 s), intended to mimic natural wind waves (short period waves) and ship-induced waves (artificial long period waves), at three water levels (5, 20, 35 cm). Our findings suggest that at very shallow water depths (5 cm) particular hydrodynamic conditions are created that lead to drag and scour that deviate from predictions. For higher water levels (20, 35 cm) scour can be well predicted for all wave conditions by an established formula for wave-induced scour around rigid cylinders. Drag forces can be relatively well predicted after introducing experimentally derived drag coefficients that are specific for the different plant morphologies. Best predictions were found for plants with a simple near-cylindrical morphology such as S. tabernaemontani, but are less accurate for plants of more complex structure such as S. maritimus, particularly for long period waves. In conclusion, our study offers valuable insights towards predicting/modelling the conditions under which seedlings and shoots of pioneer species can establish, and elucidates that long waves are more likely to counteract successful plant establishment than natural short waves.

  10. Spectral wave dissipation by submerged aquatic vegetation in a back-barrier estuary

    USGS Publications Warehouse

    Nowacki, Daniel J.; Beudin, Alexis; Ganju, Neil K.

    2017-01-01

    Submerged aquatic vegetation is generally thought to attenuate waves, but this interaction remains poorly characterized in shallow-water field settings with locally generated wind waves. Better quantification of wave–vegetation interaction can provide insight to morphodynamic changes in a variety of environments and also is relevant to the planning of nature-based coastal protection measures. Toward that end, an instrumented transect was deployed across a Zostera marina (common eelgrass) meadow in Chincoteague Bay, Maryland/Virginia, U.S.A., to characterize wind-wave transformation within the vegetated region. Field observations revealed wave-height reduction, wave-period transformation, and wave-energy dissipation with distance into the meadow, and the data informed and calibrated a spectral wave model of the study area. The field observations and model results agreed well when local wind forcing and vegetation-induced drag were included in the model, either explicitly as rigid vegetation elements or implicitly as large bed-roughness values. Mean modeled parameters were similar for both the explicit and implicit approaches, but the spectral performance of the explicit approach was poor compared to the implicit approach. The explicit approach over-predicted low-frequency energy within the meadow because the vegetation scheme determines dissipation using mean wavenumber and frequency, in contrast to the bed-friction formulations, which dissipate energy in a variable fashion across frequency bands. Regardless of the vegetation scheme used, vegetation was the most important component of wave dissipation within much of the study area. These results help to quantify the influence of submerged aquatic vegetation on wave dynamics in future model parameterizations, field efforts, and coastal-protection measures.

  11. Response spectrum method for extreme wave loading with higher order components of drag force

    NASA Astrophysics Data System (ADS)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Ali, Dastan Diznab Mohammad; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-03-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  12. User's guide for a computer program for calculating the zero-lift wave drag of complex aircraft configurations

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1983-01-01

    A computer program was developed to extend the geometry input capabilities of previous versions of a supersonic zero lift wave drag computer program. The arbitrary geometry input description is flexible enough to describe almost any complex aircraft concept, so that highly accurate wave drag analysis can now be performed because complex geometries can be represented accurately and do not have to be modified to meet the requirements of a restricted input format.

  13. Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model

    NASA Astrophysics Data System (ADS)

    Marsooli, Reza; Orton, Philip M.; Mellor, George

    2017-07-01

    Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.

  14. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  15. Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model

    NASA Astrophysics Data System (ADS)

    Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank

    2017-07-01

    Two parameterizations for horizontal mixing of momentum and tracers by subgrid mesoscale eddies are implemented in a high-resolution global ocean model. These parameterizations follow on the techniques of large eddy simulation (LES). The theory underlying one parameterization (2D Leith due to Leith, 1996) is that of enstrophy cascades in two-dimensional turbulence, while the other (QG Leith) is designed for potential enstrophy cascades in quasi-geostrophic turbulence. Simulations using each of these parameterizations are compared with a control simulation using standard biharmonic horizontal mixing.Simulations using the 2D Leith and QG Leith parameterizations are more realistic than those using biharmonic mixing. In particular, the 2D Leith and QG Leith simulations have more energy in resolved mesoscale eddies, have a spectral slope more consistent with turbulence theory (an inertial enstrophy or potential enstrophy cascade), have bottom drag and vertical viscosity as the primary sinks of energy instead of lateral friction, and have isoneutral parameterized mesoscale tracer transport. The parameterization choice also affects mass transports, but the impact varies regionally in magnitude and sign.

  16. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    NASA Astrophysics Data System (ADS)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  17. Theoretical Calculations of Supersonic Wave Drag at Zero Lift for a Particular Store Arrangement

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Malvestuto, Frank S , Jr; Maxie, Peter J , Jr

    1958-01-01

    An analysis, based on the linearized thin-airfoil theory for supersonic speeds, of the wave drag at zero lift has been carried out for a simple two-body arrangement consisting of two wedgelike surfaces, each with a rhombic lateral cross section and emanating from a common apex. Such an arrangement could be used as two stores, either embedded within or mounted below a wing, or as auxiliary bodies wherein the upper halves could be used as stores and the lower halves for bomb or missile purposes. The complete range of supersonic Mach numbers has been considered and it was found that by orienting the axes of the bodies relative to each other a given volume may be redistributed in a manner which enables the wave drag to be reduced within the lower supersonic speed range (where the leading edge is substantially subsonic). At the higher Mach numbers, the wave drag is always increased. If, in addition to a constant volume, a given maximum thickness-chord ratio is imposed, then canting the two surfaces results in higher wave drag at all Mach numbers. For purposes of comparison, analogous drag calculations for the case of two parallel winglike bodies with the same cross-sectional shapes as the canted configuration have been included. Consideration is also given to the favorable (dragwise) interference pressures acting on the blunt bases of both arrangements.

  18. Prediction of drag at subsonic and transonic speeds using Euler methods

    NASA Technical Reports Server (NTRS)

    Nikfetrat, K.; Van Dam, C. P.; Vijgen, P. M. H. W.; Chang, I. C.

    1992-01-01

    A technique for the evaluation of aerodynamic drag from flowfield solutions based on the Euler equations is discussed. The technique is limited to steady attached flows around three-dimensional configurations in the absence of active systems such as surface blowing/suction and propulsion. It allows the decomposition of the total drag into induced drag and wave drag and, consequently, it provides more information on the drag sources than the conventional surface-pressure integration technique. The induced drag is obtained from the integration of the kinetic energy (per unit distance) of the trailing vortex system on a wake plane and the wave drag is obtained from the integration of the entropy production on a plane just downstream of the shocks. The drag-evaluation technique is applied to three-dimensional flowfield solutions for the ONERA M6 wing as well as an aspect-ratio-7 wing with an elliptic spanwise chord distribution and an NACA-0012 section shape. Comparisons between the drag obtained with the present technique and the drag based on the integration of surface pressures are presented for two Euler codes.

  19. Investigation of passive shock wave-boundary layer control for transonic airfoil drag reduction

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Brower, W. B., Jr.; Bahi, L.; Ross, J.

    1982-01-01

    The passive drag control concept, consisting of a porous surface with a cavity beneath it, was investigated with a 12-percent-thick circular arc and a 14-percent-thick supercritical airfoil mounted on the test section bottom wall. The porous surface was positioned in the shock wave/boundary layer interaction region. The flow circulating through the porous surface, from the downstream to the upstream of the terminating shock wave location, produced a lambda shock wave system and a pressure decrease in the downstream region minimizing the flow separation. The wake impact pressure data show an appreciably drag reduction with the porous surface at transonic speeds. To determine the optimum size of porosity and cavity, tunnel tests were conducted with different airfoil porosities, cavities and flow Mach numbers. A higher drag reduction was obtained by the 2.5 percent porosity and the 1/4-inch deep cavity.

  20. Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2.

    PubMed

    Coy, Lawrence; Wargan, Krzysztof; Molod, Andrea M; McCarty, William R; Pawson, Steven

    2016-07-01

    The structure, dynamics, and ozone signal of the Quasi-Biennial Oscillation produced by the 35-year NASA MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications) reanalysis are examined based on monthly mean output. Along with the analysis of the QBO in assimilation winds and ozone, the QBO forcings created by assimilated observations, dynamics, parameterized gravity wave drag, and ozone chemistry parameterization are examined and compared with the original MERRA system. Results show that the MERRA-2 reanalysis produces a realistic QBO in the zonal winds, mean meridional circulation, and ozone over the 1980-2015 time period. In particular, the MERRA-2 zonal winds show improved representation of the QBO 50 hPa westerly phase amplitude at Singapore when compared to MERRA. The use of limb ozone observations creates improved vertical structure and realistic downward propagation of the ozone QBO signal during times when the MLS ozone limb observations are available (October 2004 to present). The increased equatorial GWD in MERRA-2 has reduced the zonal wind data analysis contribution compared to MERRA so that the QBO mean meridional circulation can be expected to be more physically forced and therefore more physically consistent. This can be important for applications in which MERRA-2 winds are used to drive transport experiments.

  1. Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2

    PubMed Central

    Coy, Lawrence; Wargan, Krzysztof; Molod, Andrea M.; McCarty, William R.; Pawson, Steven

    2018-01-01

    The structure, dynamics, and ozone signal of the Quasi-Biennial Oscillation produced by the 35-year NASA MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications) reanalysis are examined based on monthly mean output. Along with the analysis of the QBO in assimilation winds and ozone, the QBO forcings created by assimilated observations, dynamics, parameterized gravity wave drag, and ozone chemistry parameterization are examined and compared with the original MERRA system. Results show that the MERRA-2 reanalysis produces a realistic QBO in the zonal winds, mean meridional circulation, and ozone over the 1980–2015 time period. In particular, the MERRA-2 zonal winds show improved representation of the QBO 50 hPa westerly phase amplitude at Singapore when compared to MERRA. The use of limb ozone observations creates improved vertical structure and realistic downward propagation of the ozone QBO signal during times when the MLS ozone limb observations are available (October 2004 to present). The increased equatorial GWD in MERRA-2 has reduced the zonal wind data analysis contribution compared to MERRA so that the QBO mean meridional circulation can be expected to be more physically forced and therefore more physically consistent. This can be important for applications in which MERRA-2 winds are used to drive transport experiments. PMID:29551854

  2. Is the State of the Air-Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac

    2017-12-01

    Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the sea surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the air-sea interface under tropical cyclones is subject to the Kelvin-Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two-phase environment, which can attenuate gravity-capillary waves and alter the air-sea coupling. The unified parameterization of waveform and two-phase drag based on the physics of the air-sea interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force (U10≈35 m s-1). Remarkably, there is a local Cd minimum—"an aerodynamic drag well"—at around U10≈60 m s-1. The negative slope of the Cd dependence on wind-speed between approximately 35 and 60 m s-1 favors rapid storm intensification. In contrast, the positive slope of Cd wind-speed dependence above 60 m s-1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward.

  3. The GISS global climate-middle atmosphere model. II - Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag

    NASA Technical Reports Server (NTRS)

    Rind, D.; Suozzo, R.; Balachandran, N. K.

    1988-01-01

    The variability which arises in the GISS Global Climate-Middle Atmosphere Model on two time scales is reviewed: interannual standard deviations, derived from the five-year control run, and intraseasonal variability as exemplified by statospheric warnings. The model's extratropical variability for both mean fields and eddy statistics appears reasonable when compared with observations, while the tropical wind variability near the stratopause may be excessive possibly, due to inertial oscillations. Both wave 1 and wave 2 warmings develop, with connections to tropospheric forcing. Variability on both time scales results from a complex set of interactions among planetary waves, the mean circulation, and gravity wave drag. Specific examples of these interactions are presented, which imply that variability in gravity wave forcing and drag may be an important component of the variability of the middle atmosphere.

  4. On the Interaction Between Gravity Waves and Atmospheric Thermal Tides

    NASA Astrophysics Data System (ADS)

    Agner, Ryan Matthew

    Gravity waves and thermal tides are two of the most important dynamical features of the atmosphere. They are both generated in the lower atmosphere and propagate upward transporting energy and momentum to the upper atmosphere. This dissertation focuses on the interaction of these waves in the Mesosphere and Lower Thermosphere (MLT) region of the atmosphere using both observational data and Global Circulation Model (GCMs). The first part of this work focuses on observations of gravity wave interactions with the tides using both LIDAR data at the Star Fire Optical Range (SOR, 35?N, 106.5?W) and a meteor radar data at the Andes LIDAR Observatory (ALO, 30.3?S, 70.7?W). At SOR, the gravity waves are shown to enhance or damp the amplitude of the diurnal variations dependent on altitude while the phase is always delayed. The results compare well with previous mechanistic model results and with the Japanese Atmospheric General circulation model for Upper Atmosphere Research (JAGUAR) high resolution global circulation model. The meteor radar observed the GWs to almost always enhance the tidal amplitudes and either delay or advance the phase depending on the altitude. When compared to previous radar results from the same meteor radar when it was located in Maui, Hawaii, the Chile results are very similar while the LIDAR results show significant differences. This is because of several instrument biases when calculating GW momentum fluxes that is not significant when determining the winds. The radar needs to perform large amounts of all-sky averaging across many weeks, while the LIDAR directly detects waves in a small section of sky. The second part of this work focuses on gravity wave parameterization scheme effects on the tides in GCMs. The Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) and the extended Canadian Middle Atmosphere Model (eCMAM) are used for this analysis. The gravity wave parameterization schemes in the eCMAM (Hines scheme) have been shown to enhance the tidal amplitudes compared to observations while the parameterization scheme in SD-WACCM (Lindzen scheme) overdamps the tides. It is shown here that the Hines scheme assumption that only small scale gravity waves force the atmosphere do not create enough drag to properly constrain the tidal amplitudes. The Lindzen scheme produces too much drag because all wave scales are assumed to be saturated thus continuing to provide forcing on the atmosphere above the breaking altitude. The final part of this work investigates GWs, tides and their interactions on a local time scale instead of a global scale in the two GCMs. The local time GWs in eCMAM are found to have a strong seasonal dependence, with the majority of the forcings at the winter pole at latitudes where the diurnal variations are weak limiting their interactions. In SD-WACCM, the largest local GW forcings are located at mid latitudes near where the diurnal variations peak causing them to dampen the diurnal amplitudes. On a local time level the diurnal variations may be a summation of many tidal modes. The analysis reveals that in eCMAM the DW1 tidal mode is by far the dominant mode accounting for the local time variations. The high amount of modulation of GWs by the DW1 tidal winds does not allow it to be properly constrained, causing it to dominate the local time diurnal variations. Similarly, the DW1 projection of GW forcing is dominant over all other other modes and contributes the most to the local time diurnal GW variations. The local time wind variations in SD-WACCM are in uenced by several tidal modes because the DW1 tide is of compatible amplitudes to other modes. This is because of the increased damping on the tide by the GWs. It is also found that the local GW diurnal variations have significant contributions from all tidal modes due to the time and location of the forcing being dependent only on the tropospheric source regions and not the at altitude tidal winds.

  5. Gravity Waves Generated by Convection: A New Idealized Model Tool and Direct Validation with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Alexander, M. Joan; Stephan, Claudia

    2015-04-01

    In climate models, gravity waves remain too poorly resolved to be directly modelled. Instead, simplified parameterizations are used to include gravity wave effects on model winds. A few climate models link some of the parameterized waves to convective sources, providing a mechanism for feedback between changes in convection and gravity wave-driven changes in circulation in the tropics and above high-latitude storms. These convective wave parameterizations are based on limited case studies with cloud-resolving models, but they are poorly constrained by observational validation, and tuning parameters have large uncertainties. Our new work distills results from complex, full-physics cloud-resolving model studies to essential variables for gravity wave generation. We use the Weather Research Forecast (WRF) model to study relationships between precipitation, latent heating/cooling and other cloud properties to the spectrum of gravity wave momentum flux above midlatitude storm systems. Results show the gravity wave spectrum is surprisingly insensitive to the representation of microphysics in WRF. This is good news for use of these models for gravity wave parameterization development since microphysical properties are a key uncertainty. We further use the full-physics cloud-resolving model as a tool to directly link observed precipitation variability to gravity wave generation. We show that waves in an idealized model forced with radar-observed precipitation can quantitatively reproduce instantaneous satellite-observed features of the gravity wave field above storms, which is a powerful validation of our understanding of waves generated by convection. The idealized model directly links observations of surface precipitation to observed waves in the stratosphere, and the simplicity of the model permits deep/large-area domains for studies of wave-mean flow interactions. This unique validated model tool permits quantitative studies of gravity wave driving of regional circulation and provides a new method for future development of realistic convective gravity wave parameterizations.

  6. Active skin for turbulent drag reduction

    NASA Astrophysics Data System (ADS)

    Rediniotis, Othon K.; Lagoudas, Dimitris C.; Mani, Raghavendran; Karniadakis, George

    2002-07-01

    Drag reduction for aerial vehicles has a range of positive ramifications: reduced fuel consumption with the associated economic and environmental consequences, larger flight range and endurance and higher achievable flight speeds. This work capitalizes on recent advances in active turbulent drag reduction and active material based actuation to develop an active or 'smart' skin for turbulent drag reduction in realistic flight conditions. The skin operation principle is based on computational evidence that spanwise traveling waves of the right amplitude, wavelength and frequency can result in significant turbulent drag reduction. Such traveling waves can be induced in the smart skin via active-material actuation. The flow control technique pursued is 'micro' in the sense that only micro-scale wave amplitudes (order of 30mm) and energy inputs are sufficient to produce significant benefits. Two actuation principles have been proposed and analyzed. Different skin designs based on these two actuation principles have been discussed. The feasibility of these different actuation possibilities (such as Shape Memory Alloys and Piezoelectric material based actuators) and relative merits of different skin designs are discussed. The realization of a mechanically actuated prototype skin capable of generating a traveling wave, using a rapid prototyping machine, for the purpose of validating the proposed drag reduction technique is also presented.

  7. A mechanism of wave drag reduction in the thermal energy deposition experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markhotok, A., E-mail: amarhotk@phys.washington.edu

    2015-06-15

    Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressuremore » and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches.« less

  8. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGES

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; ...

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme.This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  9. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGES

    Thayer-Calder, Katherine; Gettelman, A.; Craig, Cheryl; ...

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations.This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysicsmore » scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. In conclusion, the new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, perceptible water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  10. Evaluation of wave runup predictions from numerical and parametric models

    USGS Publications Warehouse

    Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.

    2014-01-01

    Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.

  11. WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1994-01-01

    WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.

  12. Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon

    2004-01-01

    This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.

  13. Reducing the wave drag of wing airfoils in transonic flow regimes by the force action of airfoil surface elements on the flow

    NASA Astrophysics Data System (ADS)

    Aul'chenko, S. M.; Zamuraev, V. P.

    2012-11-01

    Mathematical modeling of the influence of forced oscillations of surface elements of a wing airfoil on the shock-wave structure of transonic flow past it has been carried out. The qualitative and quantitative influence of the oscillation parameters on the wave drag of the airfoil has been investigated.

  14. A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.

    1993-01-01

    Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.

  15. ADVANCED URBANIZED METEOROLOGICAL MODELING AND AIR QUALITY SIMULATIONS WITH CMAQ AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    We present results from a study testing the new boundary layer parameterization method, the canopy drag approach (DA) which is designed to explicitly simulate the effects of buildings, street and tree canopies on the dynamic, thermodynamic structure and dispersion fields in urban...

  16. The Effects of Surface Waviness and of Rib Stitching on Wing Drag

    NASA Technical Reports Server (NTRS)

    Hood, Manley J

    1939-01-01

    Surface waviness and rib stitching have been investigated as part of a series of tests to determine the effects on wing drag of common surface irregularities. The tests were made in the N.A.C.A. 8-foot high-speed wind tunnel at Reynolds Numbers up to 17,000,000. The results of the tests showed that the waviness common to airplane wings will cause no serious increase in drag unless the waviness exists on the forward part of the wing, where it may cause premature transition or premature compressibility effects. Waves 3 inches wide and 0.048 inch high, for example, increased the drag 1 percent when they covered the rear 67 percent of both surfaces and 10 percent when they covered the rear 92 percent. A single wave 3 inches wide and only 0.020 inch high at the 10.5-percent-chord point on the upper surface caused transition to occur on the wave and increased the drag 6 percent. Rib stitching increased the drag 7 percent when the rib spacing was 6 inches; the drag increment was proportional to the number of ribs for wider spacings. About one-third of the increase was due to premature transition at the forward ends of the stitching.

  17. Direct Measurements of Mean Reynolds Stress and Ripple Roughness in the Presence of Energetic Forcing by Surface Waves

    NASA Astrophysics Data System (ADS)

    Scully, Malcolm E.; Trowbridge, John H.; Sherwood, Christopher R.; Jones, Katie R.; Traykovski, Peter

    2018-04-01

    Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave-exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave-current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two-dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub-orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub-orbital ripples. Paradoxically, the dominant along-shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave-exposed environments with heterogeneous roughness.

  18. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    NASA Astrophysics Data System (ADS)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  19. Minimum Wave Drag for Arbitrary Arrangements of Wings and Bodies

    NASA Technical Reports Server (NTRS)

    Jones, Robert T

    1957-01-01

    Studies of various arrangements of wings and bodies designed to provide favorable wave interference at supersonic speeds lead to the problem of determining the minimum possible valve of the wave resistance obtainable by any disposition of the elements of an aircraft within a definitely prescribed region. Under the assumptions that the total lift and the total volume of the aircraft are given, conditions that must be satisfied if the drag is to be a minimum are found. The report concludes with a discussion of recent developments of the theory which lead to an improved understanding of the drag associated with the production of lift.

  20. Assessment of the importance of the current-wave coupling in the shelf ocean forecasts

    NASA Astrophysics Data System (ADS)

    Jordà, G.; Bolaños, R.; Espino, M.; Sánchez-Arcilla, A.

    2006-10-01

    The effects of wave-current interactions on shelf ocean forecasts is investigated in the framework of the MFSTEP (Mediterranean Forecasting System Project Towards Enviromental Predictions) project. A one way sequential coupling approach is adopted to link the wave model (WAM) to the circulation model (SYMPHONIE). The coupling of waves and currents has been done considering four main processes: wave refraction due to currents, surface wind drag and bo€ttom drag modifications due to waves, and the wave induced mass flux. The coupled modelling system is implemented in the southern Catalan shelf (NW Mediterranean), a region with characteristics similar to most of the Mediterranean shelves. The sensitivity experiments are run in a typical operational configuration. The wave refraction by currents seems to be not very relevant in a microtidal context such as the western Mediterranean. The main effect of waves on current forecasts is through the modification of the wind drag. The Stokes drift also plays a significant role due to its spatial and temporal characteristics. Finally, the enhanced bottom friction is just noticeable in the inner shelf.

  1. Validation of whitecap fraction and breaking wave parameters from WAVEWATCH-III using in situ and remote-sensing data

    NASA Astrophysics Data System (ADS)

    Leckler, F.; Hanafin, J. A.; Ardhuin, F.; Filipot, J.; Anguelova, M. D.; Moat, B. I.; Yelland, M.; Prytherch, J.

    2012-12-01

    Whitecaps are the main sink of wave energy. Although the exact processes are still unknown, it is clear that they play a significant role in momentum exchange between atmosphere and ocean, and also influence gas and aerosol exchange. Recently, modeling of whitecap properties was implemented in the spectral wave model WAVEWATCH-III ®. This modeling takes place in the context of the Oceanflux-Greenhouse Gas project, to provide a climatology of breaking waves for gas transfer studies. We present here a validation study for two different wave breaking parameterizations implemented in the spectral wave model WAVEWATCH-III ®. The model parameterizations use different approaches related to the steepness of the carrying waves to estimate breaking wave probabilities. That of Ardhuin et al. (2010) is based on the hypothesis that breaking probabilities become significant when the saturation spectrum exceeds a threshold, and includes a modification to allow for greater breaking in the mean wave direction, to agree with observations. It also includes suppression of shorter waves by longer breaking waves. In the second, (Filipot and Ardhuin, 2012) breaking probabilities are defined at different scales using wave steepness, then the breaking wave height distribution is integrated over all scales. We also propose an adaptation of the latter to make it self-consistent. The breaking probabilities parameterized by Filipot and Ardhuin (2012) are much larger for dominant waves than those from the other parameterization, and show better agreement with modeled statistics of breaking crest lengths measured during the FAIRS experiment. This stronger breaking also has an impact on the shorter waves due to the parameterization of short wave damping associated with large breakers, and results in a different distribution of the breaking crest lengths. Converted to whitecap coverage using Reul and Chapron (2003), both parameterizations agree reasonably well with commonly-used empirical fits of whitecap coverage against wind speed (Monahan and Woolf, 1989) and with the global whitecap coverage of Anguelova and Webster (2006), derived from space-borne radiometry. This is mainly due to the fact that the breaking of larger waves in the parametrization by Filipot and Ardhuin (2012) is compensated for by the intense breaking of smaller waves in that of Ardhuin et al. (2010). Comparison with in situ data collected during research ship cruises in the North and South Atlantic (SEASAW, DOGEE and WAGES), and the Norwegian Sea (HiWASE) between 2006 and 2011 also shows good agreement. However, as large scale breakers produce a thicker foam layer, modeled mean foam thickness clearly depends on the scale of the breakers. Foam thickness is thus a more interesting parameter for calibrating and validating breaking wave parameterizations, as the differences in scale can be determined. With this in mind, we present the initial results of validation using an estimation of mean foam thickness using multiple radiometric bands from satellites SMOS and AMSR-E.

  2. Determination of Shapes of Boattail Bodies of Revolution for Minimum Wave Drag

    NASA Technical Reports Server (NTRS)

    Adams, Mac C.

    1951-01-01

    By use of an approximate equation for the wave drag of slender bodies of revolution in a supersonic flow field, the optimum shapes of certain boattail bodies are determined for minimum wave drag. The properties of three specific families of bodies are determined, the first family consisting of bodies having a given length and base area and a contour passing through a prescribed point between the nose and base, the second family having fixed length, base area, and maximum area, and the third family having given length, volume, and base area. The method presented is easily generalized to determine minimum-wave-drag profile shapes which have contours that must pass through any prescribed number of points. According to linearized theory, the optimum profiles are found to have infinite slope at the nose but zero radius of curvature so that the bodies appear to have pointed noses, a zero slope at the body base, and no variation of wave drag with Mach number. For those bodies having a specified intermediate.diameter (that is, location and magnitude given), the maximum body diameter is shown to be larger, in general, than the specified diameter. It is also shown that, for bodies having a specified maximum diameter, the location of the maximum diameter is not arbitrary but is determined from the ratio of base diameter to maximum diameter.

  3. On the variability of the Charnock constant and the functional dependence of the drag coefficient on wind speed: Part II-Observations

    NASA Astrophysics Data System (ADS)

    Bye, John A. T.; Wolff, Jörg-Olaf; Lettmann, Karsten A.

    2014-07-01

    An analytical expression for the 10 m drag law in terms of the 10 m wind speed at the maximum in the 10 m drag coefficient, and the Charnock constant is presented, which is based on the results obtained from a model of the air-sea interface derived in Bye et al. (2010). This drag law is almost independent of wave age and over the mid-range of wind speeds (5-17 ms-1) is very similar to the drag law based on observed data presented in Foreman and Emeis (2010). The linear fit of the observed data which incorporates a constant into the traditional definition of the drag coefficient is shown to arise to first-order as a consequence of the momentum exchange across the air-sea boundary layer brought about by wave generation and spray production which are explicitly represented in the theoretical model.

  4. Application of a planetary wave breaking parameterization to stratospheric circulation statistics

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Garcia, Rolando R.

    1994-01-01

    The planetary wave parameterization scheme developed recently by Garcia is applied to statospheric circulation statistics derived from 12 years of National Meteorological Center operational stratospheric analyses. From the data a planetary wave breaking criterion (based on the ratio of the eddy to zonal mean meridional potential vorticity (PV) gradients), a wave damping rate, and a meridional diffusion coefficient are calculated. The equatorward flank of the polar night jet during winter is identified as a wave breaking region from the observed PV gradients; the region moves poleward with season, covering all high latitudes in spring. Derived damping rates maximize in the subtropical upper stratosphere (the 'surf zone'), with damping time scales of 3-4 days. Maximum diffusion coefficients follow the spatial patterns of the wave breaking criterion, with magnitudes comparable to prior published estimates. Overall, the observed results agree well with the parameterized calculations of Garcia.

  5. Analysis and design of planar and non-planar wings for induced drag minimization

    NASA Technical Reports Server (NTRS)

    Straussfogel, Dennis M.; Maughmer, Mark D.

    1991-01-01

    Improvements in the aerodynamic efficiency of commercial transport aircraft will reduce fuel usage with subsequent reduced cost, both monetary and environmental. To this end, the current research is aimed at reducing the overall drag of these aircraft with specific emphasis on reducing the drag generated by the lifting surfaces. The ultimate goal of this program is to create a wing design methodology which optimizes the geometry of the wing for lowest total drag within the constraints of a particular design specification. The components of drag which must be considered include profile drag, and wave drag. Profile drag is dependent upon, among other things, the airfoil section and the total wetted area. Induced drag, which is manifested as energy left in the wake by the trailing vortex system is mostly a function of wing span, but also depends on other geometric wing parameters. Wave drag of the wing, important in the transonic flight regime, is largely affected by the airfoil section, wing sweep, and so forth. The optimization problem is that of assessing the various parameters which contribute to the different components of wing drag, and determining the wing geometry which generates the best overall performance for a given aircraft mission. The primary thrust of the research effort to date was in the study of induced drag. Results from the study are presented.

  6. Improving the Predictability of Severe Water Levels along the Coasts of Marginal Seas

    NASA Astrophysics Data System (ADS)

    Ridder, N. N.; de Vries, H.; van den Brink, H.; De Vries, H.

    2016-12-01

    Extreme water levels can lead to catastrophic consequences with severe societal and economic repercussions. Particularly vulnerable are countries that are largely situated below sea level. To support and optimize forecast models, as well as future adaptation efforts, this study assesses the modeled contribution of storm surges and astronomical tides to total water levels under different air-sea momentum transfer parameterizations in a numerical surge model (WAQUA/DCSMv5) of the North Sea. It particularly focuses on the implications for the representation of extreme and rapidly recurring severe water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5, which is currently used to forecast coastal water levels in the Netherlands, is forced with ERA Interim reanalysis data. Model results are obtained from two different methodologies to parameterize air-sea momentum transfer. The first calculates the governing wind stress forcing using a drag coefficient derived from the conventional approach of wind speed dependent Charnock constants. The other uses instantaneous wind stress from the parameterization of the quasi-linear theory applied within the ECMWF wave model which is expected to deliver a more realistic forcing. The performance of both methods is tested by validating the model output with observations, paying particular attention to their ability to reproduce rapidly succeeding high water levels and extreme events. In a second step, the common features of and connections between these events are analyzed. The results of this study will allow recommendations for the improvement of water level forecasts within marginal seas and support decisions by policy makers. Furthermore, they will strengthen the general understanding of severe and extreme water levels as a whole and help to extend the currently limited knowledge about clustering events.

  7. Viscous drag reduction in boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  8. Evaluation of Simulated Marine Aerosol Production Using the WaveWatchIII Prognostic Wave Model Coupled to the Community Atmosphere Model within the Community Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, M. S.; Keene, William C.; Zhang, J.

    2016-11-08

    Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind speed as a proxy for wave action. This investigation coupled the 3 rd generation prognostic WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to drive PMA production using wave energy dissipation rate – analogous to whitecapping – in place of 10-meter wind speed. The wind speed parameterization did not capture basin-scale variability in relations between wind and wave fields. Overall, the wave parameterization did not improve comparison between simulated versus measured AOD ormore » Na +, thus highlighting large remaining uncertainties in model physics. Results confirm the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with laboratory- and field-based characterizations of the primary physical drivers of PMA production. No discernible correlations were evident between simulated PMA fields and observed chlorophyll or sea surface temperature.« less

  9. Orbital, Rotational and Climatic Interactions: Energy Dissipation and Angular Momentum Exchange in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.

    2001-01-01

    A numerical ocean tide model has been developed and tested using highly accurate TOPEX/Poseidon (T/P) tidal solutions. The hydrodynamic model is based on time stepping a finite difference approximation to the non-linear shallow water equations. Two novel features of our implementation are a rigorous treatment of self attraction and loading (SAL), and a physically based parameterization for internal tide (IT) radiation drag. The model was run for a range of grid resolutions, and with variations in model parameters and bathymetry. For a rational treatment of SAL and IT drag, the model run at high resolution (1/12 degree) fits the T/P solutions to within 5 cm RMS in the open ocean. Both the rigorous SAL treatment and the IT drag parameterization are required to obtain solutions of this quality. The sensitivity of the solution to perturbations in bathymetry suggest that the fit to T/P is probably now limited by errors in this critical input. Since the model is not constrained by any data, we can test the effect of dropping sea-level to match estimated bathymetry from the last glacial maximum (LGM). Our results suggest that the 100 m drop in sea-level in the LGM would have significantly increased tidal amplitudes in the North Atlantic, and increased overall tidal dissipation by about 40%. However, details in tidal solutions for the past 20 ka are sensitive to the assumed stratification. IT drag accounts for a significant fraction of dissipation, especially in the LGM when large areas of present day shallow sea were exposed, and this parameter is poorly constrained at present.

  10. Evaluation of WRF Simulations With Different Selections of Subgrid Orographic Drag Over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Beljaars, A.; Wang, Y.; Huang, B.; Lin, C.; Chen, Y.; Wu, H.

    2017-09-01

    Weather Research and Forecasting (WRF) simulations with different selections of subgrid orographic drag over the Tibetan Plateau have been evaluated with observation and ERA-Interim reanalysis. Results show that the subgrid orographic drag schemes, especially the turbulent orographic form drag (TOFD) scheme, efficiently reduce the 10 m wind speed bias and RMS error with respect to station measurements. With the combination of gravity wave, flow blocking and TOFD schemes, wind speed is simulated more realistically than with the individual schemes only. Improvements are also seen in the 2 m air temperature and surface pressure. The gravity wave drag, flow blocking drag, and TOFD schemes combined have the smallest station mean bias (-2.05°C in 2 m air temperature and 1.27 hPa in surface pressure) and RMS error (3.59°C in 2 m air temperature and 2.37 hPa in surface pressure). Meanwhile, the TOFD scheme contributes more to the improvements than the gravity wave drag and flow blocking schemes. The improvements are more pronounced at low levels of the atmosphere than at high levels due to the stronger drag enhancement on the low-level flow. The reduced near-surface cold bias and high-pressure bias over the Tibetan Plateau are the result of changes in the low-level wind components associated with the geostrophic balance. The enhanced drag directly leads to weakened westerlies but also enhances the a-geostrophic flow in this case reducing (enhancing) the northerlies (southerlies), which bring more warm air across the Himalaya Mountain ranges from South Asia (bring less cold air from the north) to the interior Tibetan Plateau.

  11. Particle transport model sensitivity on wave-induced processes

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  12. Investigation to optimize the passive shock wave-boundary layer control for supercritical airfoil drag reduction

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Ficarra, R.; Orozco, R.

    1983-01-01

    The optimization of passive shock wave/boundary layer control for supercritical airfoil drag reduction was investigated in a 3 in. x 15.4 in. Transonic Blowdown Wind Tunnel. A 14% thick supercritical airfoil was tested with 0%, 1.42% and 2.8% porosities at Mach numbers of .70 to .83. The 1.42% case incorporated a linear increase in porosity with the flow direction while the 2.8% case was uniform porosity. The static pressure distributions over the airfoil, the wake impact pressure data for determining the profile drag, and the Schlieren photographs for porous surface airfoils are presented and compared with the results for solid-surface airfoils. While the results show that linear 1.42% porosity actually led to a slight increase in drag it was found that the uniform 2.8% porosity can lead to a drag reduction of 46% at M = .81.

  13. Empirical parameterization of setup, swash, and runup

    USGS Publications Warehouse

    Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H.

    2006-01-01

    Using shoreline water-level time series collected during 10 dynamically diverse field experiments, an empirical parameterization for extreme runup, defined by the 2% exceedence value, has been developed for use on natural beaches over a wide range of conditions. Runup, the height of discrete water-level maxima, depends on two dynamically different processes; time-averaged wave setup and total swash excursion, each of which is parameterized separately. Setup at the shoreline was best parameterized using a dimensional form of the more common Iribarren-based setup expression that includes foreshore beach slope, offshore wave height, and deep-water wavelength. Significant swash can be decomposed into the incident and infragravity frequency bands. Incident swash is also best parameterized using a dimensional form of the Iribarren-based expression. Infragravity swash is best modeled dimensionally using offshore wave height and wavelength and shows no statistically significant linear dependence on either foreshore or surf-zone slope. On infragravity-dominated dissipative beaches, the magnitudes of both setup and swash, modeling both incident and infragravity frequency components together, are dependent only on offshore wave height and wavelength. Statistics of predicted runup averaged over all sites indicate a - 17 cm bias and an rms error of 38 cm: the mean observed runup elevation for all experiments was 144 cm. On intermediate and reflective beaches with complex foreshore topography, the use of an alongshore-averaged beach slope in practical applications of the runup parameterization may result in a relative runup error equal to 51% of the fractional variability between the measured and the averaged slope.

  14. On the use of infrasound for constraining global climate models

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; Ribstein, Bruno; Lott, Francois; Cugnet, David

    2017-11-01

    Numerical prediction of infrasound is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect the temperature and the wind, yet the process by which the gravity wave field changes the infrasound arrivals remains poorly understood. In the present work, we use a stochastic parameterization to represent the subgrid scale gravity wave field from the atmospheric specifications provided by the European Centre for Medium-Range Weather Forecasts. It is shown that regardless of whether the gravity wave field possesses relatively small or large features, the sensitivity of acoustic waveforms to atmospheric disturbances can be extremely different. Using infrasound signals recorded during campaigns of ammunition destruction explosions, a new set of tunable parameters is proposed which more accurately predicts the small-scale content of gravity wave fields in the middle atmosphere. Climate simulations are performed using the updated parameterization. Numerical results demonstrate that a network of ground-based infrasound stations is a promising technology for dynamically tuning the gravity wave parameterization.

  15. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    DTIC Science & Technology

    2013-09-30

    Even more problematic are the observed deviations from the constant-flux layer behavior, which the definition of sea drag relies on. Recently...Geophys. Res. Lett., 36, L06607, 4p Babanin, A.V. and V.K. Makin, 2008: Effects of wind trend and gustiness on the sea drag: Lake George study. J. Geophys

  16. Momentum and buoyancy transfer in atmospheric turbulent boundary layer over wavy water surface - Part 1: Harmonic wave

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yu. I.; Ezhova, E. V.; Zilitinkevich, S. S.

    2013-10-01

    The surface-drag and mass-transfer coefficients are determined within a self-consistent problem of wave-induced perturbations and mean fields of velocity and density in the air, using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. Investigation of a harmonic wave propagating along the wind has disclosed that the surface drag is generally larger for shorter waves. This effect is more pronounced in the unstable and neutral stratification. The stable stratification suppresses turbulence, which leads to weakening of the momentum and mass transfer.

  17. Run-up parameterization and beach vulnerability assessment on a barrier island: a downscaling approach

    NASA Astrophysics Data System (ADS)

    Medellín, G.; Brinkkemper, J. A.; Torres-Freyermuth, A.; Appendini, C. M.; Mendoza, E. T.; Salles, P.

    2016-01-01

    We present a downscaling approach for the study of wave-induced extreme water levels at a location on a barrier island in Yucatán (Mexico). Wave information from a 30-year wave hindcast is validated with in situ measurements at 8 m water depth. The maximum dissimilarity algorithm is employed for the selection of 600 representative cases, encompassing different combinations of wave characteristics and tidal level. The selected cases are propagated from 8 m water depth to the shore using the coupling of a third-generation wave model and a phase-resolving non-hydrostatic nonlinear shallow-water equation model. Extreme wave run-up, R2%, is estimated for the simulated cases and can be further employed to reconstruct the 30-year time series using an interpolation algorithm. Downscaling results show run-up saturation during more energetic wave conditions and modulation owing to tides. The latter suggests that the R2% can be parameterized using a hyperbolic-like formulation with dependency on both wave height and tidal level. The new parametric formulation is in agreement with the downscaling results (r2 = 0.78), allowing a fast calculation of wave-induced extreme water levels at this location. Finally, an assessment of beach vulnerability to wave-induced extreme water levels is conducted at the study area by employing the two approaches (reconstruction/parameterization) and a storm impact scale. The 30-year extreme water level hindcast allows the calculation of beach vulnerability as a function of return periods. It is shown that the downscaling-derived parameterization provides reasonable results as compared with the numerical approach. This methodology can be extended to other locations and can be further improved by incorporating the storm surge contributions to the extreme water level.

  18. Inclusion of surface gravity wave effects in vertical mixing parameterizations with application to Chesapeake Bay, USA

    NASA Astrophysics Data System (ADS)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.; Suttles, S. E.

    2016-02-01

    Enhancement of wind-driven mixing by Langmuir turbulence (LT) may have important implications for exchanges of mass and momentum in estuarine and coastal waters, but the transient nature of LT and observational constraints make quantifying its impact on vertical exchange difficult. Recent studies have shown that wind events can be of first order importance to circulation and mixing in estuaries, prompting this investigation into the ability of second-moment turbulence closure schemes to model wind-wave enhanced mixing in an estuarine environment. An instrumented turbulence tower was deployed in middle reaches of Chesapeake Bay in 2013 and collected observations of coherent structures consistent with LT that occurred under regions of breaking waves. Wave and turbulence measurements collected from a vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of TKE, dissipation, turbulent length scale, and the surface wave field. Direct measurements of air-sea momentum and sensible heat fluxes were collected by a co-located ultrasonic anemometer deployed 3m above the water surface. Analyses of the data indicate that the combined presence of breaking waves and LT significantly influences air-sea momentum transfer, enhancing vertical mixing and acting to align stress in the surface mixed layer in the direction of Lagrangian shear. Here these observations are compared to the predictions of commonly used second-moment turbulence closures schemes, modified to account for the influence of wave breaking and LT. LT parameterizations are evaluated under neutrally stratified conditions and buoyancy damping parameterizations are evaluated under stably stratified conditions. We compare predicted turbulent quantities to observations for a variety of wind, wave, and stratification conditions. The effects of fetch-limited wave growth, surface buoyancy flux, and tidal distortion on wave mixing parameterizations will also be discussed.

  19. A non-axisymmetric linearized supersonic wave drag analysis: Mathematical theory

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1996-01-01

    A Mathematical theory is developed to perform the calculations necessary to determine the wave drag for slender bodies of non-circular cross section. The derivations presented in this report are based on extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing Fourier decomposition to compute the pressure coefficient on and about a slender body of arbitrary cross section.

  20. Vertical structure of mean cross-shore currents across a barred surf zone

    USGS Publications Warehouse

    Haines, John W.; Sallenger, Asbury H.

    1994-01-01

    Mean cross-shore currents observed across a barred surf zone are compared to model predictions. The model is based on a simplified momentum balance with a turbulent boundary layer at the bed. Turbulent exchange is parameterized by an eddy viscosity formulation, with the eddy viscosity Aυ independent of time and the vertical coordinate. Mean currents result from gradients due to wave breaking and shoaling, and the presence of a mean setup of the free surface. Descriptions of the wave field are provided by the wave transformation model of Thornton and Guza [1983]. The wave transformation model adequately reproduces the observed wave heights across the surf zone. The mean current model successfully reproduces the observed cross-shore flows. Both observations and predictions show predominantly offshore flow with onshore flow restricted to a relatively thin surface layer. Successful application of the mean flow model requires an eddy viscosity which varies horizontally across the surf zone. Attempts are made to parameterize this variation with some success. The data does not discriminate between alternative parameterizations proposed. The overall variability in eddy viscosity suggested by the model fitting should be resolvable by field measurements of the turbulent stresses. Consistent shortcomings of the parameterizations, and the overall modeling effort, suggest avenues for further development and data collection.

  1. The QBO in Two GISS Global Climate Models: 1. Generation of the QBO

    NASA Technical Reports Server (NTRS)

    Rind, David; Jonas, Jeffrey A.; Balachandra, Nambath; Schmidt, Gavin A.; Lean, Judith

    2014-01-01

    The adjustment of parameterized gravity waves associated with model convection and finer vertical resolution has made possible the generation of the quasi-biennial oscillation (QBO) in two Goddard Institute for Space Studies (GISS) models, GISS Middle Atmosphere Global Climate Model III and a climate/middle atmosphere version of Model E2. Both extend from the surface to 0.002 hPa, with 2deg × 2.5deg resolution and 102 layers. Many realistic features of the QBO are simulated, including magnitude and variability of its period and amplitude. The period itself is affected by the magnitude of parameterized convective gravity wave momentum fluxes and interactive ozone (which also affects the QBO amplitude and variability), among other forcings. Although varying sea surface temperatures affect the parameterized momentum fluxes, neither aspect is responsible for the modeled variation in QBO period. Both the parameterized and resolved waves act to produce the respective easterly and westerly wind descent, although their effect is offset in altitude at each level. The modeled and observed QBO influences on tracers in the stratosphere, such as ozone, methane, and water vapor are also discussed. Due to the link between the gravity wave parameterization and the models' convection, and the dependence on the ozone field, the models may also be used to investigate how the QBO may vary with climate change.

  2. Scaling depth-induced wave-breaking in two-dimensional spectral wave models

    NASA Astrophysics Data System (ADS)

    Salmon, J. E.; Holthuijsen, L. H.; Zijlema, M.; van Vledder, G. Ph.; Pietrzak, J. D.

    2015-03-01

    Wave breaking in shallow water is still poorly understood and needs to be better parameterized in 2D spectral wave models. Significant wave heights over horizontal bathymetries are typically under-predicted in locally generated wave conditions and over-predicted in non-locally generated conditions. A joint scaling dependent on both local bottom slope and normalized wave number is presented and is shown to resolve these issues. Compared to the 12 wave breaking parameterizations considered in this study, this joint scaling demonstrates significant improvements, up to ∼50% error reduction, over 1D horizontal bathymetries for both locally and non-locally generated waves. In order to account for the inherent differences between uni-directional (1D) and directionally spread (2D) wave conditions, an extension of the wave breaking dissipation models is presented. By including the effects of wave directionality, rms-errors for the significant wave height are reduced for the best performing parameterizations in conditions with strong directional spreading. With this extension, our joint scaling improves modeling skill for significant wave heights over a verification data set of 11 different 1D laboratory bathymetries, 3 shallow lakes and 4 coastal sites. The corresponding averaged normalized rms-error for significant wave height in the 2D cases varied between 8% and 27%. In comparison, using the default setting with a constant scaling, as used in most presently operating 2D spectral wave models, gave equivalent errors between 15% and 38%.

  3. Characterizing Arctic sea ice topography and atmospheric form drag using high-resolution IceBridge data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.; Farrell, S. L.; Newman, T.; Harbeck, J.; Feltham, D. L.; Richter-Menge, J.

    2015-12-01

    Here we present a detailed analysis of Arctic sea ice topography using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. We derive novel ice topography statistics from 2009-2014 across both first-year and multiyear ice regimes - including the height, area coverage, orientation and spacing of distinct surface features. The sea ice topography exhibits strong spatial variability, including increased surface feature (e.g. pressure ridge) height and area coverage within the multi-year ice regions. The ice topography also shows a strong coastal dependency, with the feature height and area coverage increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. The ice topography data have also been used to explicitly calculate atmospheric drag coefficients over Arctic sea ice; utilizing existing relationships regarding ridge geometry and their impact on form drag. The results are being used to calibrate the recent drag parameterization scheme included in the sea ice model CICE.

  4. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.

    2008-01-01

    We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay. 

  5. A Unified Directional Spectrum for Long and Short Wind-Driven Waves

    NASA Technical Reports Server (NTRS)

    Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D.

    1997-01-01

    Review of several recent ocean surface wave models finds that while comprehensive in many regards, these spectral models do not satisfy certain additional, but fundamental, criteria. We propose that these criteria include the ability to properly describe diverse fetch conditions and to provide agreement with in situ observations of Cox and Munk [1954] and Jiihne and Riemer [1990] and Hara et al. [1994] data in the high-wavenumber regime. Moreover, we find numerous analytically undesirable aspects such as discontinuities across wavenumber limits, nonphysical tuning or adjustment parameters, and noncentrosymmetric directional spreading functions. This paper describes a two-dimensional wavenumber spectrum valid over all wavenumbers and analytically amenable to usage in electromagnetic models. The two regime model is formulated based on the Joint North Sea Wave Project (JONSWAP) in the long-wave regime and on the work of Phillips [1985] and Kitaigorodskii [1973] at the high wavenumbers. The omnidirectional and wind-dependent spectrum is constructed to agree with past and recent observations including the criteria mentioned above. The key feature of this model is the similarity of description for the high- and low-wavenumber regimes; both forms are posed to stress that the air-sea interaction process of friction between wind and waves (i.e., generalized wave age, u/c) is occurring at all wavelengths simultaneously. This wave age parameterization is the unifying feature of the spectrum. The spectrum's directional spreading function is symmetric about the wind direction and has both wavenumber and wind speed dependence. A ratio method is described that enables comparison of this spreading function with previous noncentrosymmetric forms. Radar data are purposefully excluded from this spectral development. Finally, a test of the spectrum is made by deriving roughness length using the boundary layer model of Kitaigorodskii. Our inference of drag coefficient versus wind speed and wave age shows encouraging agreement with Humidity Exchange Over the Sea (HEXOS) campaign results.

  6. Alfven waves associated with long cylindrical satellites

    NASA Technical Reports Server (NTRS)

    Venkataraman, N. S.; Gustafson, W. A.

    1973-01-01

    The Alfven wave excited by a long cylindrical satellite moving with a constant velocity at an angle relative to a uniform magnetic field has been calculated. Assuming a plasma with infinite conductivity, the linearized momentum equation and Maxwell's equations are applied to a cylindrical satellite carrying a variable current. The induced magnetic field is determined, and it is shown that the Alfven disturbance zone is of limited extent, depending on the satellite shape. The wave drag coefficient is calculated and shown to be small compared to the induction drag coefficient at all altitudes considered.

  7. Refined numerical solution of the transonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Liang, S.-M.; Fung, K.-Y.

    1985-01-01

    A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.

  8. Measurements of long-range enhanced collisional velocity drag through plasma wave damping

    NASA Astrophysics Data System (ADS)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2018-05-01

    We present damping measurements of axial plasma waves in magnetized, multispecies ion plasmas. At high temperatures T ≳ 10-2 eV, collisionless Landau damping dominates, whereas, at lower temperatures T ≲ 10-2 eV, the damping arises from interspecies collisional drag, which is dependent on the plasma composition and scales roughly as T-3 /2 . This drag damping is proportional to the rate of parallel collisional slowing, and is found to exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agrees with a new collision theory that includes long-range collisions. Centrifugal mass separation and collisional locking of the species occur at ultra-low temperatures T ≲ 10-3 eV, which reduce the drag damping from the T-3 /2 collisional scaling. These mechanisms are investigated by measuring the damping of higher frequency axial modes, and by measuring the damping in plasmas with a non-equilibrium species profile.

  9. Analyses and simulations of the upper ocean's response to Hurricane Felix at the Bermuda Testbed Mooring site: 13-23 August 1995

    NASA Astrophysics Data System (ADS)

    Zedler, S. E.; Dickey, T. D.; Doney, S. C.; Price, J. F.; Yu, X.; Mellor, G. L.

    2002-12-01

    The center of Hurricane Felix passed 85 km to the southwest of the Bermuda Testbed Mooring (BTM; 31°44'N, 64°10'W) site on 15 August 1995. Data collected in the upper ocean from the BTM during this encounter provide a rare opportunity to investigate the physical processes that occur in a hurricane's wake. Data analyses indicate that the storm caused a large increase in kinetic energy at near-inertial frequencies, internal gravity waves in the thermocline, and inertial pumping, mixed layer deepening, and significant vertical redistribution of heat, with cooling of the upper 30 m and warming at depths of 30-70 m. The temperature evolution was simulated using four one-dimensional mixed layer models: Price-Weller-Pinkel (PWP), K Profile Parameterization (KPP), Mellor-Yamada 2.5 (MY), and a modified version of MY2.5 (MY2). The primary differences in the model results were in their simulations of temperature evolution. In particular, when forced using a drag coefficient that had a linear dependence on wind speed, the KPP model predicted sea surface cooling, mixed layer currents, and the maximum depth of cooling closer to the observations than any of the other models. This was shown to be partly because of a special parameterization for gradient Richardson number (RgKPP) shear instability mixing in response to resolved shear in the interior. The MY2 model predicted more sea surface cooling and greater depth penetration of kinetic energy than the MY model. In the MY2 model the dissipation rate of turbulent kinetic energy is parameterized as a function of a locally defined Richardson number (RgMY2) allowing for a reduction in dissipation rate for stable Richardson numbers (RgMY2) when internal gravity waves are likely to be present. Sensitivity simulations with the PWP model, which has specifically defined mixing procedures, show that most of the heat lost from the upper layer was due to entrainment (parameterized as a function of bulk Richardson number RbPWP), with the remainder due to local Richardson number (RgPWP) instabilities. With the exception of the MY model the models predicted reasonable estimates of the north and east current components during and after the hurricane passage at 25 and 45 m. Although the results emphasize differences between the modeled responses to a given wind stress, current controversy over the formulation of wind stress from wind speed measurements (including possible sea state and wave age and sheltering effects) cautions against using our results for assessing model skill. In particular, sensitivity studies show that MY2 simulations of the temperature evolution are excellent when the wind stress is increased, albeit with currents that are larger than observed. Sensitivity experiments also indicate that preexisting inertial motion modulated the amplitude of poststorm currents, but that there was probably not a significant resonant response because of clockwise wind rotation for our study site.

  10. Representations of the Stratospheric Polar Vortices in Versions 1 and 2 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM)

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Stolarski, R.S.; Nielsen, J.E.; Perlwitz, J.; Oman, L.; Waugh, D.

    2009-01-01

    This study will document the behavior of the polar vortices in two versions of the GEOS CCM. Both versions of the model include the same stratospheric chemistry, They differ in the underlying circulation model. Version 1 of the GEOS CCM is based on the Goddard Earth Observing System, Version 4, general circulation model which includes the finite-volume (Lin-Rood) dynamical core and physical parameterizations from Community Climate Model, Version 3. GEOS CCM Version 2 is based on the GEOS-5 GCM that includes a different tropospheric physics package. Baseline simulations of both models, performed at two-degree spatial resolution, show some improvements in Version 2, but also some degradation, In the Antarctic, both models show an over-persistent stratospheric polar vortex with late breakdown, but the year-to-year variations that are overestimated in Version I are more realistic in Version 2. The implications of this for the interactions with tropospheric climate, the Southern Annular Mode, will be discussed. In the Arctic both model versions show a dominant dynamically forced variabi;ity, but Version 2 has a persistent warm bias in the low stratosphere and there are seasonal differences in the simulations. These differences will be quantified in terms of climate change and ozone loss. Impacts of model resolution, using simulations at one-degree and half-degree, and changes in physical parameterizations (especially the gravity wave drag) will be discussed.

  11. Direct measurement of the Einstein relation in a macroscopic, non-equilibrium system of chaotic surface waves

    NASA Astrophysics Data System (ADS)

    Welch, Kyle; Liebman-Pelaez, Alexander; Corwin, Eric

    Equilibrium statistical mechanics is traditionally limited to thermal systems. Can it be applied to athermal, non-equilibrium systems that nonetheless satisfy the basic criteria of steady-state chaos and isotropy? We answer this question using a macroscopic system of chaotic surface waves which is, by all measures, non-equilibrium. The waves are generated in a dish of water that is vertically oscillated above a critical amplitude. We have constructed a rheometer that actively measures the drag imparted by the waves on a buoyant particle, a quantity entirely divorced in origin from the drag imparted by the fluid in which the particle floats. We also perform a separate, passive measurement, extracting a diffusion constant and effective temperature. Having directly measured all three properties (temperature, diffusion constant, and drag coefficient) we go on to show that our macroscopic, non-equilibrium case is wholly consistent with the Einstein relation, a classic result for equilibrium thermal systems.

  12. Application of New Chorus Wave Model from Van Allen Probe Observations in Earth's Radiation Belt Modeling

    NASA Astrophysics Data System (ADS)

    Wang, D.; Shprits, Y.; Spasojevic, M.; Zhu, H.; Aseev, N.; Drozdov, A.; Kellerman, A. C.

    2017-12-01

    In situ satellite observations, theoretical studies and model simulations suggested that chorus waves play a significant role in the dynamic evolution of relativistic electrons in the Earth's radiation belts. In this study, we developed new wave frequency and amplitude models that depend on Magnetic Local Time (MLT)-, L-shell, latitude- and geomagnetic conditions indexed by Kp for upper-band and lower-band chorus waves using measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument onboard the Van Allen Probes. Utilizing the quasi-linear full diffusion code, we calculated corresponding diffusion coefficients in each MLT sector (1 hour resolution) for upper-band and lower-band chorus waves according to the new developed wave models. Compared with former parameterizations of chorus waves, the new parameterizations result in differences in diffusion coefficients that depend on energy and pitch angle. Utilizing obtained diffusion coefficients, lifetime of energetic electrons is parameterized accordingly. In addition, to investigate effects of obtained diffusion coefficients in different MLT sectors and under different geomagnetic conditions, we performed simulations using four-dimensional Versatile Electron Radiation Belt simulations and validated results against observations.

  13. A thermosphere-ionosphere-mesosphere-electrodynamic general circulation model (time-GCM): Equinox solar cycle minimum simulations (30-500 km)

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Ridley, E. C.

    1994-01-01

    A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere- electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu (1993) allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km.

  14. Numerical Simulation of Atmospheric Response to Pacific Tropical Instability Waves(.

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Xie, Shang-Ping; Wang, Yuqing

    2003-11-01

    Tropical instability waves (TIWs) are 1000-km-long waves that appear along the sea surface temperature (SST) front of the equatorial cold tongue in the eastern Pacific. The study investigates the atmospheric planetary boundary layer (PBL) response to TIW-induced SST variations using a high-resolution regional climate model. An investigation is made of the importance of pressure gradients induced by changes in air temperature and moisture, and vertical mixing, which is parameterized in the model by a 1.5-level turbulence closure scheme. Significant turbulent flux anomalies of sensible and latent heat are caused by changes in the air sea temperature and moisture differences induced by the TIWs. Horizontal advection leads to the occurrence of the air temperature and moisture extrema downwind of the SST extrema. High and low hydrostatic surface pressures are then located downwind of the cold and warm SST patches, respectively. The maximum and minimum wind speeds occur in phase with SST, and a thermally direct circulation is created. The momentum budget indicates that pressure gradient, vertical mixing, and horizontal advection dominate. In the PBL the vertical mixing acts as a frictional drag on the pressure-gradient-driven winds. Over warm SST the mixed layer deepens relative to over cold SST. The model simulations of the phase and amplitude of wind velocity, wind convergence, and column-integrated water vapor perturbations due to TIWs are similar to those observed from satellite and in situ data.

  15. Comparisons of AEROX computer program predictions of lift and induced drag with flight test data

    NASA Technical Reports Server (NTRS)

    Axelson, J.; Hill, G. C.

    1981-01-01

    The AEROX aerodynamic computer program which provides accurate predictions of induced drag and trim drag for the full angle of attack range and for Mach numbers from 0.4 to 3.0 is described. This capability is demonstrated comparing flight test data and AEROX predictions for 17 different tactical aircraft. Values of minimum (skin friction, pressure, and zero lift wave) drag coefficients and lift coefficient offset due to camber (when required) were input from the flight test data to produce total lift and drag curves. The comparisons of trimmed lift drag polars show excellent agreement between the AEROX predictions and the in flight measurements.

  16. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits.

    PubMed

    Heuner, Maike; Silinski, Alexandra; Schoelynck, Jonas; Bouma, Tjeerd J; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species--known as ecosystem engineers--are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced.

  17. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits

    PubMed Central

    Schoelynck, Jonas; Bouma, Tjeerd J.; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species—known as ecosystem engineers—are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced. PMID:26367004

  18. ATMOSPHERIC CIRCULATION OF HOT JUPITERS: DAYSIDE–NIGHTSIDE TEMPERATURE DIFFERENCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komacek, Thaddeus D.; Showman, Adam P., E-mail: tkomacek@lpl.arizona.edu

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperaturemore » differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.« less

  19. A numerical model of gravity wave breaking and stress in the mesosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Strobel, D. F.; Apruzese, J. P.

    1983-01-01

    The goal of the study is to calculate numerically the deceleration and heating caused by breaking gravity waves. The effect of the radiative dissipation of the wave is included as vertical-wavelength-dependent Newtonian cooling. The parameterization for zonal deceleration is extended by breaking gravity waves (Lindzen, 1981) to include the turbulent diffusion of heat and momentum. After describing the numerical model, the numerical results are presented and compared with the parameterizations in a noninteractive model of the mean zonal wind. Attention is then given to the transport of constituents by gravity waves and the attendant turbulent zone. It is noted that if gravity wave breaking were not an intermittent process, gravity wave stresses would produce an adiabatic mesosphere with a zonal mean velocity close to the phase speed of the breaking wave.

  20. Wave drag reduction due to a self-aligning aerodisk

    NASA Astrophysics Data System (ADS)

    Schnepf, Ch.; Wysocki, O.; Schülein, E.

    2015-06-01

    The effect of a self-aligning aerodisk on the wave drag of a blunt slender body in a pitching maneuver has been numerically investigated. The self-alignment was realized by a coupling of the flow solver and a flight mechanics tool. The slender body was pitched with high repetition rate between α = 0° and 20° at M = 1.41. Even at high α, the concept could align the aerodisk to the oncoming flow. In comparison to the reference body without a self-aligning aerodisk, a distinct drag reduction is achieved. A comparison with existing experimental data shows a qualitatively good agreement considering the shock and separation structure and the kinematics of the aerodisk.

  1. Application of new parameterizations of gas transfer velocity and their impact on regional and global marine CO 2 budgets

    NASA Astrophysics Data System (ADS)

    Fangohr, Susanne; Woolf, David K.

    2007-06-01

    One of the dominant sources of uncertainty in the calculation of air-sea flux of carbon dioxide on a global scale originates from the various parameterizations of the gas transfer velocity, k, that are in use. Whilst it is undisputed that most of these parameterizations have shortcomings and neglect processes which influence air-sea gas exchange and do not scale with wind speed alone, there is no general agreement about their relative accuracy. The most widely used parameterizations are based on non-linear functions of wind speed and, to a lesser extent, on sea surface temperature and salinity. Processes such as surface film damping and whitecapping are known to have an effect on air-sea exchange. More recently published parameterizations use friction velocity, sea surface roughness, and significant wave height. These new parameters can account to some extent for processes such as film damping and whitecapping and could potentially explain the spread of wind-speed based transfer velocities published in the literature. We combine some of the principles of two recently published k parameterizations [Glover, D.M., Frew, N.M., McCue, S.J. and Bock, E.J., 2002. A multiyear time series of global gas transfer velocity from the TOPEX dual frequency, normalized radar backscatter algorithm. In: Donelan, M.A., Drennan, W.M., Saltzman, E.S., and Wanninkhof, R. (Eds.), Gas Transfer at Water Surfaces, Geophys. Monograph 127. AGU,Washington, DC, 325-331; Woolf, D.K., 2005. Parameterization of gas transfer velocities and sea-state dependent wave breaking. Tellus, 57B: 87-94] to calculate k as the sum of a linear function of total mean square slope of the sea surface and a wave breaking parameter. This separates contributions from direct and bubble-mediated gas transfer as suggested by Woolf [Woolf, D.K., 2005. Parameterization of gas transfer velocities and sea-state dependent wave breaking. Tellus, 57B: 87-94] and allows us to quantify contributions from these two processes independently. We then apply our parameterization to a monthly TOPEX altimeter gridded 1.5° × 1.5° data set and compare our results to transfer velocities calculated using the popular wind-based k parameterizations by Wanninkhof [Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97: 7373-7382.] and Wanninkhof and McGillis [Wanninkhof, R. and McGillis, W., 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophys. Res. Lett., 26(13): 1889-1892]. We show that despite good agreement of the globally averaged transfer velocities, global and regional fluxes differ by up to 100%. These discrepancies are a result of different spatio-temporal distributions of the processes involved in the parameterizations of k, indicating the importance of wave field parameters and a need for further validation.

  2. A multi-model assessment of the impact of currents, waves and wind in modelling surface drifters and oil spill

    NASA Astrophysics Data System (ADS)

    De Dominicis, M.; Bruciaferri, D.; Gerin, R.; Pinardi, N.; Poulain, P. M.; Garreau, P.; Zodiatis, G.; Perivoliotis, L.; Fazioli, L.; Sorgente, R.; Manganiello, C.

    2016-11-01

    Validation of oil spill forecasting systems suffers from a lack of data due to the scarcity of oil slick in situ and satellite observations. Drifters (surface drifting buoys) are often considered as proxy for oil spill to overcome this problem. However, they can have different designs and consequently behave in a different way at sea, making it not straightforward to use them for oil spill model validation purposes and to account for surface currents, waves and wind when modelling them. Stemming from the need to validate the MEDESS4MS (Mediterranean Decision Support System for Marine Safety) multi-model oil spill prediction system, which allows access to several ocean, wave and meteorological operational model forecasts, an exercise at sea was carried out to collect a consistent dataset of oil slick satellite observations, in situ data and trajectories of different type of drifters. The exercise, called MEDESS4MS Serious Game 1 (SG1), took place in the Elba Island region (Western Mediterranean Sea) during May 2014. Satellite images covering the MEDESS4MS SG1 exercise area were acquired every day and, in the case an oil spill was observed from satellite, vessels of the Italian Coast Guard (ITCG) were sent in situ to confirm the presence of the pollution. During the exercise one oil slick was found in situ and drifters, with different water-following characteristics, were effectively deployed into the oil slick and then monitored in the following days. Although it was not possible to compare the oil slick and drifter trajectories due to a lack of satellite observations of the same oil slick in the following days, the oil slick observations in situ and drifters trajectories were used to evaluate the quality of MEDESS4MS multi-model currents, waves and winds by using the MEDSLIK-II oil spill model. The response of the drifters to surface ocean currents, different Stokes drift parameterizations and wind drag has been examined. We found that the surface ocean currents mainly drive the transport of completely submerged drifters. The accuracy of the simulations increases with higher resolution currents and with addition of the Stokes drift, which is better estimated when provided by wave models. The wind drag improves the modelling of drifter trajectories only in the case of partially emerged drifters, otherwise it leads to an incorrect reproduction of the drifters' direction, which is particularly evident in high speed wind conditions.

  3. On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause

    NASA Astrophysics Data System (ADS)

    Limpasuvan, Varavut; Orsolini, Yvan J.; Chandran, Amal; Garcia, Rolando R.; Smith, Anne K.

    2016-05-01

    Based on a climate-chemistry model (constrained by reanalyses below ~50 km), the zonal-mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean circulation in the presence of gravity waves (GWs), helping the polar vortex recover and communicating the sudden stratospheric warming (SSW) impact across the equator. With the SSW onset, strong westward PW drag appears above 80 km primarily from the dissipation of wave number 1 perturbations with westward period of 5-12 days, generated from below by the unstable westward polar stratospheric jet that develops as a result of the SSW. The filtering effect of this jet also allows eastward propagating GWs to saturate in the winter MLT, providing eastward drag that promotes winter polar mesospheric cooling. The dominant PW forcing translates to a net westward drag above the eastward mesospheric jet, which initiates downwelling over the winter pole. As the eastward polar stratospheric jet returns, this westward PW drag persists above 80 km and acts synergistically with the return of westward GW drag to drive a stronger polar downwelling that warms the pole adiabatically and helps reform the stratopause at an elevated altitude. With the polar wind reversal during the SSW onset, the westward drag by the quasi-stationary PW in the winter stratosphere drives an anomalous equatorial upwelling and cooling that enhance tropical stratospheric ozone. Along with equatorial wind anomalies, this ozone enhancement subsequently amplifies the migrating semidiurnal tide amplitude in the winter midlatitudes.

  4. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water.

    PubMed

    Blake, R W

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ( approximately 0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive hydrodynamic resistance, thereby increasing their operational life.

  5. Optimizing Internal Wave Drag in a Forward Barotropic Model with Semidiurnal Tides

    DTIC Science & Technology

    2015-01-23

    Center 875 North Randolph Street, Suite 1425 Arlington, VA 22203-1995 ONR Approved for public release, distribution is unlimited. A global tuning...factor with a larger value in the Atlantic. Our best global mean RMS error of 4.4 cm for areas deeper than 1000 m and equatorward of 66_ is among the...lowest obtained in a forward barotropic tide model. Barotropic tides; Global modeling; Linear wave drag Unclassified Unclassified Unclassified UU

  6. Lift, drag and thrust measurement in a hypersonic impulse facility

    NASA Technical Reports Server (NTRS)

    Tuttle, S. L.; Mee, D. J.; Simmons, J. M.

    1995-01-01

    This paper reports the extension of the stress wave force balance to the measurement of forces on models which are non-axisymmetric or which have non-axisymmetric load distributions. Recent results are presented which demonstrate the performance of the stress wave force balance for drag measurement, for three-component force measurement and preliminary results for thrust measurement on a two-dimensional scramjet nozzle. In all cases, the balances respond within a few hundred microseconds.

  7. The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies

    USGS Publications Warehouse

    Zhao, M.; Golaz, J.-C.; Held, I. M.; Guo, H.; Balaji, V.; Benson, R.; Chen, J.-H.; Chen, X.; Donner, L. J.; Dunne, J. P.; Dunne, Krista A.; Durachta, J.; Fan, S.-M.; Freidenreich, S. M.; Garner, S. T.; Ginoux, P.; Harris, L. M.; Horowitz, L. W.; Krasting, J. P.; Langenhorst, A. R.; Liang, Z.; Lin, P.; Lin, S.-J.; Malyshev, S. L.; Mason, E.; Milly, Paul C.D.; Ming, Y.; Naik, V.; Paulot, F.; Paynter, D.; Phillipps, P.; Radhakrishnan, A.; Ramaswamy, V.; Robinson, T.; Schwarzkopf, D.; Seman, C. J.; Shevliakova, E.; Shen, Z.; Shin, H.; Silvers, L.; Wilson, J. R.; Winton, M.; Wittenberg, A. T.; Wyman, B.; Xiang, B.

    2018-01-01

    In Part 2 of this two‐part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken to tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.

  8. The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning Strategies

    DOE PAGES

    Zhao, Ming; Golaz, J. -C.; Held, I. M.; ...

    2018-02-19

    Here, in Part 2 of this two–part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken tomore » tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.« less

  9. The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning Strategies

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Golaz, J.-C.; Held, I. M.; Guo, H.; Balaji, V.; Benson, R.; Chen, J.-H.; Chen, X.; Donner, L. J.; Dunne, J. P.; Dunne, K.; Durachta, J.; Fan, S.-M.; Freidenreich, S. M.; Garner, S. T.; Ginoux, P.; Harris, L. M.; Horowitz, L. W.; Krasting, J. P.; Langenhorst, A. R.; Liang, Z.; Lin, P.; Lin, S.-J.; Malyshev, S. L.; Mason, E.; Milly, P. C. D.; Ming, Y.; Naik, V.; Paulot, F.; Paynter, D.; Phillipps, P.; Radhakrishnan, A.; Ramaswamy, V.; Robinson, T.; Schwarzkopf, D.; Seman, C. J.; Shevliakova, E.; Shen, Z.; Shin, H.; Silvers, L. G.; Wilson, J. R.; Winton, M.; Wittenberg, A. T.; Wyman, B.; Xiang, B.

    2018-03-01

    In Part 2 of this two-part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken to tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.

  10. The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ming; Golaz, J. -C.; Held, I. M.

    Here, in Part 2 of this two–part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken tomore » tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.« less

  11. Gravity Waves in the Atmosphere: Instability, Saturation, and Transport.

    DTIC Science & Technology

    1995-11-13

    role of gravity wave drag in the extratropical QBO , destabilization of large-scale tropical waves by deep moist convection, and a general theory of equatorial inertial instability on a zonally nonuniform, nonparallel flow.

  12. Gravitational mass attraction measurement for drag-free references

    NASA Astrophysics Data System (ADS)

    Swank, Aaron J.

    Exciting new experiments in gravitational physics are among the proposed future space science missions around the world. Such future space science experiments include gravitational wave observatories, which require extraordinarily precise instruments for gravitational wave detection. In fact, future space-based gravitational wave observatories require the use of a drag free reference sensor, which is several orders of magnitude more precise than any drag free satellite launched to date. With the analysis methods and measurement techniques described in this work, there is one less challenge associated with achieving the high-precision drag-free satellite performance levels required by gravitational wave observatories. One disturbance critical to the drag-free performance is an acceleration from the mass attraction between the spacecraft and drag-free reference mass. A direct measurement of the gravitational mass attraction force is not easily performed. Historically for drag-free satellite design, the gravitational attraction properties were estimated by using idealized equations between a point mass and objects of regular geometric shape with homogeneous density. Stringent requirements are then placed on the density distribution and fabrication tolerances for the drag-free reference mass and satellite components in order to ensure that the allocated gravitational mass attraction disturbance budget is not exceeded due to the associated uncertainty in geometry and mass properties. Yet, the uncertainty associated with mass properties and geometry generate an unacceptable uncertainty in the mass attraction calculation, which make it difficult to meet the demanding drag-free performance requirements of future gravitational wave observatories. The density homogeneity and geometrical tolerances required to meet the overall drag-free performance can easily force the use of special materials or manufacturing processes, which are impractical or not feasible. The focus of this research is therefore to develop the necessary equations for the gravitational mass attraction force and gradients between two general distributed bodies. Assuming the drag-free reference mass to be a single point mass object is no longer necessary for the gravitational attraction calculations. Furthermore, the developed equations are coupled with physical measurements in order to eliminate the mass attraction uncertainty associated with mass properties. The mass attraction formula through a second order expansion consists of the measurable quantifies of mass, mass center, and moment of inertia about the mass center. Thus, the gravitational self-attraction force on the drag free reference due to the satellite can be indirectly measured. By incorporating physical measurements into the mass attraction calculation, the uncertainty in the density distribution as well as geometrical variations due to the manufacturing process are included in the analysis. For indirect gravitational mass attraction measurements, the corresponding properties of mass, mass center, and moment of inertia must be precisely determined for the proof mass and satellite components. This work focuses on the precision measurement of the moment of inertia for the drag-free test mass. Presented here is the design of a new moment of inertia measurement apparatus utilizing a five-wire torsion pendulum design. The torsion pendulum is utilized to measure the moment of inertia tensor for a prospective drag-free test mass geometry. The measurement results presented indicate the prototype five-wire torsion has matched current state of the art precision. With only minimal work to reduce laboratory environmental disturbances, the apparatus has the prospect of exceeding state of the art precision by almost an order of magnitude. In addition, the apparatus is shown to be capable of measuring the mass center offset from the geometric center to a level better than typical measurement devices. Although the pendulum was not originally designed for mass center measurements, preliminary results indicate an apparatus with a similar design may have the potential of achieving state of the art precision.

  13. Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers

    NASA Technical Reports Server (NTRS)

    Hough, G. R.

    1980-01-01

    The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.

  14. Weak wind-wave/tide interaction over fixed and moveable bottoms: a formulation and some preliminary results

    NASA Astrophysics Data System (ADS)

    Kagan, B. A.; Alvarez, O.; Izquierdo, A.

    2005-05-01

    The formulation of weak wind-wave/low-frequency current interaction is discussed comprehensively as applied to fixed- and moveable-bottom cases. It involves (1) a dependence of the drag coefficient on the ratio between wave and current bottom friction velocity amplitudes, (2) the resistance law for the oscillatory, rough, turbulent bottom boundary layer (BBL) which accounts for the usually neglected effects of rotation and the phase difference between the bottom stress and the friction-free current velocity, (3) the expression for the BBL depth in terms of the bottom Rossby number and (4) the bottom roughness predictor of Grant and Madsen (J. Geophys. Res., 87 (1982) 469) in the version of Tolman (J. Phys. Oceanogr., 24 (1994) 994). The formulation is implemented in the UCA (University of Cadiz) 2D nonlinear, high-resolution, hydrodynamic model and used to study the influence of wind-wave/tide interaction, bottom mobility and the improved flow-resistance description on the M 2 tidal dynamics of Cadiz Bay. The inclusion of either of the first two factors can cause the drag coefficient to increase significantly over its reference value. If the third factor is included, changes in the drag coefficient are quite moderate. This is because the effect of rotation is opposite in sign to the effect of phase difference, so that these effects taken together very nearly balance. The reason why bottom mobility has such an important influence on shallow-water tidal dynamics as wind-wave/tide interaction has, is the occurrence of the large irregular variations in the drag coefficient that accompany sediment motion.

  15. Longitudinal aerodynamic performance of a series of power-law and minimum wave drag bodies at Mach 6 and several Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.

    1974-01-01

    Experimental data have been obtained for two series of bodies at Mach 6 and Reynolds numbers, based on model length, from 1.4 million to 9.5 million. One series consisted of axisymmetric power-law bodies geometrically constrained for constant length and base diameter with values of the exponent n of 0.25, 0.5, 0.6, 0.667, 0.75, and 1.0. The other series consisted of positively and negatively cambered bodies of polygonal cross section, each having a constant longitudinal area distribution conforming to that required for minimizing zero-lift wave drag at hypersonic speeds under the geometric constraints of given length and volume. At the highest Reynolds number, the power-law body for minimum drag is blunter (exponent n lower) than predicted by inviscid theory (n approximately 0.6 instead of n = 0.667); however, the peak value of lift-drag ratio occurs at n = 0.667. Viscous effects were present on the bodies of polygonal cross section but were less pronounced than those on the power-law bodies. The trapezoidal bodies with maximum width at the bottom were found to have the highest maximum lift-drag ratio and the lowest mimimum drag.

  16. Tidal asymmetry and residual circulation over linear sandbanks and their implication on sediment transport: a process-oriented numerical study

    USGS Publications Warehouse

    Sanay, Rosario; Voulgaris, George; Warner, John C.

    2007-01-01

    A series of process-oriented numerical simulations is carried out in order to evaluate the relative role of locally generated residual flow and overtides on net sediment transport over linear sandbanks. The idealized bathymetry and forcing are similar to those present in the Norfolk Sandbanks, North Sea. The importance of bottom drag parameterization and bank orientation with respect to the ambient flow is examined in terms of residual flow and overtide generation, and subsequent sediment transport implications are discussed. The results show that although the magnitudes of residual flow and overtides are sensitive to bottom roughness parameterization and bank orientation, the magnitude of the generated residual flow is always larger than that of the locally generated overtides. Also, net sediment transport is always dominated by the nonlinear interaction of the residual flow and the semidiurnal tidal currents, although cross-bank sediment transport can occur even in the absence of a cross-shore residual flow. On the other hand, net sediment divergence/convergence increases as the bottom drag decreases and as bank orientation increases. The sediment erosion/deposition is not symmetric about the crest of the bank, suggesting that originally symmetric banks would have the tendency to become asymmetric.

  17. Seasonal and interannual variability of the Arctic sea ice: A comparison between AO-FVCOM and observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Chen, Changsheng; Beardsley, Robert C.; Gao, Guoping; Qi, Jianhua; Lin, Huichan

    2016-11-01

    A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the sea ice in the Arctic over the period 1978-2014. The spatial-varying horizontal model resolution was designed to better resolve both topographic and baroclinic dynamics scales over the Arctic slope and narrow straits. The model-simulated sea ice was in good agreement with available observed sea ice extent, concentration, drift velocity and thickness, not only in seasonal and interannual variability but also in spatial distribution. Compared with six other Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME, and UW), the AO-FVCOM-simulated ice thickness showed a higher mean correlation coefficient of ˜0.63 and a smaller residual with observations. Model-produced ice drift speed and direction errors varied with wind speed: the speed and direction errors increased and decreased as the wind speed increased, respectively. Efforts were made to examine the influences of parameterizations of air-ice external and ice-water interfacial stresses on the model-produced bias. The ice drift direction was more sensitive to air-ice drag coefficients and turning angles than the ice drift speed. Increasing or decreasing either 10% in water-ice drag coefficient or 10° in water-ice turning angle did not show a significant influence on the ice drift velocity simulation results although the sea ice drift speed was more sensitive to these two parameters than the sea ice drift direction. Using the COARE 4.0-derived parameterization of air-water drag coefficient for wind stress did not significantly influence the ice drift velocity simulation.

  18. Tropical Cumulus Convection and Upward Propagating Waves in Middle Atmospheric GCMs

    NASA Technical Reports Server (NTRS)

    Horinouchi, T.; Pawson, S.; Shibata, K.; Langematz, U.; Manzini, E.; Giorgetta, M. A.; Sassi, F.; Wilson, R. J.; Hamilton, K. P.; deGranpre, J.; hide

    2002-01-01

    It is recognized that the resolved tropical wave spectrum can vary considerably between general circulation models (GCMs) and that these differences can have an important impact on the simulated climate. A comprehensive comparison of the waves is presented for the December-January-February period using high-frequency (three-hourly) data archives from eight GCMs and one simple model participating in the GCM Reality Intercomparison Project for SPARC (GRIPS). Quantitative measures of the structure and causes of the wavenumber-frequency structure of resolved waves and their impacts on the climate are given. Space-time spectral analysis reveals that the wave spectrum throughout the middle atmosphere is linked to variability of convective precipitation, which is determined by the parameterized convection. The variability of the precipitation spectrum differs by more than an order of magnitude between the models, with additional changes in the spectral distribution (especially the frequency). These differences can be explained primarily by the choice of different, cumulus par amet erizations: quasi-equilibrium mass-flux schemes tend to produce small variability, while the moist-convective adjustment scheme is most active. Comparison with observational estimates of precipitation variability suggests that the model values are scattered around the truth. This result indicates that a significant portion of the forcing of the equatorial quasi-biennial oscillation (QBO) is provided by waves with scales that are not resolved in present-day GCMs, since only the moist convective adjustment scheme (which has the largest transient variability) can force a QBO in models that have no parameterization of non-stationary gravity waves. Parameterized cumulus convection also impacts the nonmigrating tides in the equatorial region. In most of the models, momentum transport by diurnal nonmigrating tides in the mesosphere is larger than that by Kelvin waves, being more significant than has been thought. It is shown that the equatorial semi-annual oscillation in the models examined is driven mainly by gravity waves with periods shorter than three days, with at least some contribution from parameterized gravity waves; the contribution from the ultra-fast zonal wavenumber-1 Kelvin waves is negligible.

  19. Direct measurements of mean Reynolds stress and ripple roughness in the presence of energetic forcing by surface waves

    USGS Publications Warehouse

    Scully, Malcolm; Trowbridge, John; Sherwood, Christopher R.; Jones, Katie R.; Traykovski, Peter A.

    2018-01-01

    Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave‐exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave‐current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two‐dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub‐orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub‐orbital ripples. Paradoxically, the dominant along‐shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave‐exposed environments with heterogeneous roughness.

  20. Analysis of Drag Reduction Methods and Mechanisms of Turbulent.

    PubMed

    Yunqing, Gu; Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.

  1. Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    PubMed Central

    Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected. PMID:29104425

  2. Modeling Wave-Ice Interactions in the Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Orzech, Mark; Shi, Fengyan; Bateman, Sam; Veeramony, Jay; Calantoni, Joe

    2015-04-01

    The small-scale (O(m)) interactions between waves and ice floes in the marginal ice zone (MIZ) are investigated with a coupled model system. Waves are simulated with the non-hydrostatic finite-volume model NHWAVE (Ma et al., 2012) and ice floes are represented as bonded collections of smaller particles with the discrete element system LIGGGHTS (Kloss et al., 2012). The physics of fluid and ice are recreated as authentically as possible, to allow the coupled system to supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which ice floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and ice pack retreat rates. Although Wadhams et al. (1986) suggest that only a small portion (roughly 10%) of wave energy entering the MIZ is reflected, dissipation mechanisms for the remaining energy have yet to be delineated or measured. The virtual experiments are designed to focus on specific properties and processes - such as floe size and shape, collision and fracturing events, and variations in wave climate - and measure their relative roles the transfer of energy and momentum from waves to ice. Questions to be examined include: How is energy dissipated by ice floe collisions, fracturing, and drag, and how significant is the wave attenuation associated with each process? Do specific wave/floe length scale ratios cause greater wave attenuation? How does ice material strength affect the rate of wave energy loss? The coupled system will ultimately be used to test and improve upon wave-ice parameterizations for large-scale climate models. References: >Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics 12(2/3), 140-152. >Ma, G., F. Shi, and J.T. Kirby (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling 43-44, 22-35. >Wadhams P., V. Squire, J.A. Ewing, and R.W. Pascal (1986). The effect of the marginal ice zone on the directional wave spectrum of the ocean. J. Phys. Oceanog., 16(2), 358-376.

  3. Supersonic Cruise/Transonic Maneuver Wing Section Development Study.

    DTIC Science & Technology

    1980-06-01

    duct. The inlet is contoured to fit the blended forebody and results in a high-aspect-ratio, minimum height duct which facilitates clearance of the...following. Most of the changes were directed toward reducing the supersonic wave drag. The winglet was removed to reduce supersonic volume and camber...drag and skin friction drag. The primary function of the winglet was to provide directional stability at high angles of attack. Analysis of the HiMAT

  4. Projectile channeling in chain bundle dusty plasma liquids: Wave excitation and projectile-wave interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2011-03-15

    The microscopic channeling dynamics of projectiles in subexcitable chain bundle dusty plasma liquids consisting of long chains of negatively charged dusts suspended in low pressure glow discharges is investigated experimentally using fast video-microscopy. The long distance channeling of the projectile in the channel formed by the surrounding dust chain bundles and the excitation of a narrow wake associated with the elliptical motions of the background dusts are demonstrated. In the high projectile speed regime, the drag force due to wake wave excitation increases with the decreasing projectile speed. The excited wave then leads the slowed down projectile after the projectilemore » speed is decreased below the resonant speed of wave excitation. The wave-projectile interaction causes the increasing projectile drag below the resonant speed and the subsequent oscillation around a descending average level, until the projectile settles down to the equilibrium point. Long distance projectile surfing through the resonant crest trapping by the externally excited large amplitude solitary wave is also demonstrated.« less

  5. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMauro, Edward Paisley; Wagner, Justin L.; Beresh, Steven J.

    High-speed, time-resolved particle image velocimetry with a pulse-burst laser was used to measure the gas-phase velocity upstream and downstream of a shock wave–particle curtain interaction at three shock Mach numbers (1.22, 1.40, and 1.45) at a repetition rate of 37.5 kHz. The particle curtain was formed from free-falling soda-lime particles resulting in volume fractions of 9% or 23% at mid-height, depending on particle diameter (106–125 and 300–355 μm, respectively). Following impingement by a shock wave, a pressure difference was created between the upstream and downstream sides of the curtain, which accelerated flow through the curtain. Jetting of flow through themore » curtain was observed downstream once deformation of the curtain began, demonstrating a long-term unsteady effect. Using a control volume approach, the unsteady drag on the curtain was estimated from velocity and pressure data. The drag imposed on the curtain has a strong volume fraction dependence with a prolonged unsteadiness following initial shock impingement. Additionally, the data suggest that the resulting pressure difference following the propagation of the reflected and transmitted shock waves is the primary component to curtain drag.« less

  6. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV

    DOE PAGES

    DeMauro, Edward Paisley; Wagner, Justin L.; Beresh, Steven J.; ...

    2017-06-08

    High-speed, time-resolved particle image velocimetry with a pulse-burst laser was used to measure the gas-phase velocity upstream and downstream of a shock wave–particle curtain interaction at three shock Mach numbers (1.22, 1.40, and 1.45) at a repetition rate of 37.5 kHz. The particle curtain was formed from free-falling soda-lime particles resulting in volume fractions of 9% or 23% at mid-height, depending on particle diameter (106–125 and 300–355 μm, respectively). Following impingement by a shock wave, a pressure difference was created between the upstream and downstream sides of the curtain, which accelerated flow through the curtain. Jetting of flow through themore » curtain was observed downstream once deformation of the curtain began, demonstrating a long-term unsteady effect. Using a control volume approach, the unsteady drag on the curtain was estimated from velocity and pressure data. The drag imposed on the curtain has a strong volume fraction dependence with a prolonged unsteadiness following initial shock impingement. Additionally, the data suggest that the resulting pressure difference following the propagation of the reflected and transmitted shock waves is the primary component to curtain drag.« less

  7. Wave drag reduction with a self-aligning aerodisk on a missile configuration

    NASA Astrophysics Data System (ADS)

    Schnepf, C.; Wysocki, O.; Schülein, E.

    2017-06-01

    A self-aligning aerodisk to reduce the wave drag on a pitching missile is numerically investigated. The motion and the Mach number were chosen to match a maneuver flight of an actual missile: pitching frequency f = 7.5 Hz, Mach number M = 2.2, and range of angle of attack 0° < < 21° . The self-alignment was realized with a coupling of the §ow solver with a 6DoF (6 degrees of freedom) tool. In the entire range of angle of attack, the drag could be reduced with the self-aligning aerodisk. A comparison with experimental data showed in parts a quite good agreement in the aerodynamic coe©cients, in the shock structure, and in the alignment of the aerodisk.

  8. Low-drag events in transitional wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Park, Jae Sung; Kushwaha, Anubhav; Dennis, David J. C.; Graham, Michael D.; Poole, Robert J.

    2017-03-01

    Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 - 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.

  9. The effects on cruise drag of installing long-duct refan-engine nacelles on the McDonnell Douglas DC-8-50 and -61

    NASA Technical Reports Server (NTRS)

    Callaghan, J. T.; Donelson, J. E.; Morelli, J. P.

    1973-01-01

    A high-speed wind tunnel test was conducted to determine the effect on cruise performance of installing long-duct refan-engine nacelles on the DC-8-50 and -61 models. Drag data and wing/pylon/nacelle channel pressure data are presented. At a typical cruise condition there exists a very small interference drag penalty of less than one-percent of total cruise data for the Refan installation. Pressure data indicate that some supersonic flow is present in the inboard channel of the inboard refan nacelle installation, but it is not sufficient to cause any wave drag on boundary layer separation. One pylon modification, which takes the form of pylon bumps, was tested. It resulted in a drag penalty, because its design goal of eliminating shock-related interference drag was not required and the bump thus became a source of additional parasite drag.

  10. Effects of wind waves versus ship waves on tidal marsh plants: a flume study on different life stages of Scirpus maritimus.

    PubMed

    Silinski, Alexandra; Heuner, Maike; Schoelynck, Jonas; Puijalon, Sara; Schröder, Uwe; Fuchs, Elmar; Troch, Peter; Bouma, Tjeerd J; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival.

  11. Effects of Wind Waves versus Ship Waves on Tidal Marsh Plants: A Flume Study on Different Life Stages of Scirpus maritimus

    PubMed Central

    Schoelynck, Jonas; Puijalon, Sara; Schröder, Uwe; Fuchs, Elmar; Troch, Peter; Bouma, Tjeerd J.; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival. PMID:25799017

  12. Validation Study of Wave Breaking Influence in a Coupled Wave Model for Hurricane Wind Conditions

    DTIC Science & Technology

    2008-08-27

    ACRONYM(S) Grant Management Organisation, The University of New South Wales, Sydney 2052, GMO Australia 11. SPONSOR/MONITOR’S REPORT NUMBER(S) None 12...of Snyder et al.(1981) and laboratory measurements ( Plant , 1982). The differences between forms (i) and (ii) are indicative of the level of uncertainty...parameterizations (Snyder, 1981; Plant , 1982; Hsaio-Shemdin, 1983) for growing seas (U10o/c-2). The Janssen9l parameterization is consistent with Snyder8l for

  13. Progress on wave-ice interactions: satellite observations and model parameterizations

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Boutin, Guillaume; Dumont, Dany; Stopa, Justin; Girard-Ardhuin, Fanny; Accensi, Mickael

    2017-04-01

    In the open ocean, numerical wave models have their largest errors near sea ice, and, until recently, virtually no wave data was available in the sea ice to. Further, wave-ice interaction processes may play an important role in the Earth system. In particular, waves may break up an ice layer into floes, with significant impact on air-sea fluxes. With thinner Arctic ice, this process may contribut to the growing similarity between Arctic and Antarctic sea ice. In return, the ice has a strong damping impact on the waves that is highly variable and not understood. Here we report progress on parameterizations of waves interacting with a single ice layer, as implemented in the WAVEWATCH III model (WW3 Development Group, 2016), and based on few in situ observations, but extensive data derived from Synthetic Aperture Radars (SARs). Our parameterizations combine three processes. First a parameterization for the energy-conserving scattering of waves by ice floes (assuming isotropic back-scatter), which has very little effect on dominant waves of periods larger than 7 s, consistent with the observed narrow directional spectra and short travel times. Second, we implemented a basal friction below the ice layer (Stopa et al. The Cryosphere, 2016). Third, we use a secondary creep associated with ice flexure (Cole et al. 1998) adapted to random waves. These three processes (scattering, friction and creep) are strongly dependent on the maximum floe size. We have thus included an estimation of the potential floe size based on an ice flexure failure estimation adapted from Williams et al. (2013). This combination of dissipation and scattering is tested against measured patterns of wave height and directional spreading, and evidence of ice break-up, all obtained from SAR imagery (Ardhuin et al. 2017), and some in situ data (Collins et al. 2015). The combination of creep and friction is required to reproduce a strong reduction in wave attenuation in broken ice as observed by Collins et al. (2015). Ongoing developments include the coupling of WAVEWATCH III to the NEMO-LIM3 and NEMO-CICE models using the OASIS3-MCT communicator. This coupled system will provide a meaningful memory of the ice floe sizes, as the ice is advected. It will also make possible the investigation of feedback processes on the ice.

  14. An entropy and viscosity corrected potential method for rotor performance prediction

    NASA Technical Reports Server (NTRS)

    Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.

    1988-01-01

    An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.

  15. Parameterizing unresolved obstacles with source terms in wave modeling: A real-world application

    NASA Astrophysics Data System (ADS)

    Mentaschi, Lorenzo; Kakoulaki, Georgia; Vousdoukas, Michalis; Voukouvalas, Evangelos; Feyen, Luc; Besio, Giovanni

    2018-06-01

    Parameterizing the dissipative effects of small, unresolved coastal features, is fundamental to improve the skills of wave models. The established technique to deal with this problem consists in reducing the amount of energy advected within the propagation scheme, and is currently available only for regular grids. To find a more general approach, Mentaschi et al., 2015b formulated a technique based on source terms, and validated it on synthetic case studies. This technique separates the parameterization of the unresolved features from the energy advection, and can therefore be applied to any numerical scheme and to any type of mesh. Here we developed an open-source library for the estimation of the transparency coefficients needed by this approach, from bathymetric data and for any type of mesh. The spectral wave model WAVEWATCH III was used to show that in a real-world domain, such as the Caribbean Sea, the proposed approach has skills comparable and sometimes better than the established propagation-based technique.

  16. Typhoon air-sea drag coefficient in coastal regions

    NASA Astrophysics Data System (ADS)

    Zhao, Zhong-Kuo; Liu, Chun-Xia; Li, Qi; Dai, Guang-Feng; Song, Qing-Tao; Lv, Wei-Hua

    2015-02-01

    The air-sea drag during typhoon landfalls is investigated for a 10 m wind speed as high as U10 ≈ 42 m s-1, based on multilevel wind measurements from a coastal tower located in the South China Sea. The drag coefficient (CD) plotted against the typhoon wind speed is similar to that of open ocean conditions; however, the CD curve shifts toward a regime of lower winds, and CD increases by a factor of approximately 0.5 relative to the open ocean. Our results indicate that the critical wind speed at which CD peaks is approximately 24 m s-1, which is 5-15 m s-1 lower than that from deep water. Shoaling effects are invoked to explain the findings. Based on our results, the proposed CD formulation, which depends on both water depth and wind speed, is applied to a typhoon forecast model. The forecasts of typhoon track and surface wind speed are improved. Therefore, a water-depth-dependence formulation of CD may be particularly pertinent for parameterizing air-sea momentum exchanges over shallow water.

  17. Aircraft drag prediction and reduction. Addendum 1: Computational drag analyses and minimization; mission impossible?

    NASA Technical Reports Server (NTRS)

    Slooff, J. W.

    1986-01-01

    The Special Course on Aircraft Drag Prediction was sponsored by the AGARD Fluid Dynamics Panel and the von Karman Institute and presented at the von Karman Institute, Rhode-Saint-Genese, Belgium, on 20 to 23 May 1985 and at the NASA Langley Research Center, Hampton, Virginia, USA, 5 to 6 August 1985. The course began with a general review of drag reduction technology. Then the possibility of reduction of skin friction through control of laminar flow and through modification of the structure of the turbulence in the boundary layer were discussed. Methods for predicting and reducing the drag of external stores, of nacelles, of fuselage protuberances, and of fuselage afterbodies were then presented followed by discussion of transonic drag rise. The prediction of viscous and wave drag by a method matching inviscid flow calculations and boundary layer integral calculations, and the reduction of transonic drag through boundary layer control are also discussed. This volume comprises Paper No. 9 Computational Drag Analyses and Minimization: Mission Impossible, which was not included in AGARD Report 723 (main volume).

  18. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  19. A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.

    1985-01-01

    Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.

  20. Wave-Current Conditions and Navigation Safety at an Inlet Entrance

    DTIC Science & Technology

    2015-06-26

    effects of physical processes. Wave simulations with refraction, shoaling, and breaking provide estimates of wave-related parameters of interest to...summer and winter months and to better understand the cause- effect relationship between navigability conditions at Tillamook Inlet and characteristics of...the Coriolis force, wind stress, wave stress, bottom stress, vegetation flow drag, bottom friction, wave roller, and turbulent diffusion. Governing

  1. Improvement of the free-surface tension model in shallow water basin by using in-situ bottom-friction measurements

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Kuznetsov, Konstantin; Roux, Bernard

    2016-04-01

    Wind stress on the free surface is the main driving force behind the circulation of the upper part of the ocean, which in hydrodynamic models are usually defined in terms of the coefficient of surface tension (Zhang et al., 2009, Davies et al., 2003). Moreover, wave motion impacts local currents and changes sea level, impacts the transport and the stratification of the entire water column. Influence of surface waves at the bottom currents is particularly pronounced in the shallow coastal systems. However, existing methods of parameterization of the surface tension have significant limits, especially in strong wind waves (Young et al., 2001, Jones et al., 2004) due to the difficulties of measuring the characteristics of surface waves in stormy conditions. Thus, the formula for calculating the coefficient of surface tension in our day is the actual problem in modeling fluid dynamics, particularly in the context of strong surface waves. In the hydrodynamic models usually a coefficient of surface tension is calculated once at the beginning of computation as a constant that depends on the averaged wind waves characteristic. Usually cases of strongly nonlinear wind waves are not taken into account, what significantly reduces the accuracy of the calculation of the flow structures and further calculation of the other processes in water basins, such as the spread of suspended matter and pollutants. Thus, wave motion influencing the pressure on the free surface and at the bottom must be considered in hydrodynamic models particularly in shallow coastal systems. A method of reconstruction of a free-surface drag coefficient based on the measured in-situ bottom pressure fluctuations is developed and applied in a three-dimensional hydrodynamic model MARS3D, developed by the French laboratory of IFREMER (IFREMER - French Research Institute for Marine Dynamics). MARS3D solves the Navier-Stokes equations for incompressible fluid in the Boussinesq approximation and with the hydrostatic assumption (Lazure and Dumas, 2008, Blumberg et al., 1986). Precisely, we introduce a formulation of the surface drag coefficient as a logarithmic function of the sea surface roughness (Zhang et al., 2009), which in turn can be predicted from the height and steepness of the waves (Taylor and Yelland, 2000), measured by the bottom pressure sensors. Using numerous field data, Taylor and Yelland (2000) showed that the surface drag coefficient values in lakes and sheltered waters are typically significantly higher than is observed in the open ocean. In particular, the effect of limited water depth is very significant in the case of the strong wind forcing. Wind waves propagating into shoaling water begin to be limited by bottom friction and become "younger". This kind of approach is used to predict a more relevant surface drag coefficient for the coastal areas of the Mediterranean Berre lagoon (France) for which experimental data of pressure measurements under storm conditions are available (Paquier, 2014). This is important to better understand the development problematics of the nearshore submerged aquatic vegetation (Alekseenko et al., 2013). *This work is supported by grant of Russian Foundation for Basic Research (RFBR) n°16-35-00526 and by the French Water Agency (Agence de l'Eau-RMC - convention n°2010-0042). References 1. E. Alekseenko E., Roux B., Sukhinov A., Kotarba R., Fougere D.: Near shoreline hydrodynamics in a Mediterranean lagoon. Nonlinear Processes in Geophysics, 20, 189-198, 2013. 2. Blumberg A.F. and Mellor G.L.: A description of a Tree-Dimensional Coastal Ocean Circulation Model, Geophysical Fluid Dynamics Program, Princeton Univ., Princeton, New Jersey, 1-16, 1986. 3. Davies A., Xing M., Jiuxing I.: Processes influencing wind-induced current profiles in near coastal stratified regions. Continental Shelf Research 23 (14-15): 1379-1400, 2003. 4. Jones, I.S.F. and Toba Y. (Eds.): Wind Stress over the Ocean. Cambridge Univ. Press, 307pp, 2001. 5. Lazure P. and Dumas F.: An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Wat. Res. 31: 233-250, 2008. 6. Paquier A-E.: - Interactions de la dynamique hydro-sédimentaire avec les herbiers de phanérogames, Étang de Berre ; PhD thesis Aix-Marseille University; 27 Nov. 2014. 7. Taylor P. and Yelland M.: The Dependence of Sea Surface Roughness on the Height and Steepness of the Waves, Physical Oceanography, 2000. 8. Young I.R., Banner M.L., Donelan M.A., Babanin A.V., Melville W.K., Veron F., and McCormic C.: An Integrated Study of the Wind Wave Source Term Balance in Finite Depth Water, J. Atmos. Oceanic Technol. 22: 814-831, 2004. 9. Zhang H, Sannasiraj S.A., and Chan E.S.: Wind Wave Effects on Hydrodynamic Modeling of Ocean Circulation in the South China Sea, The Open Civil Engineering Journal, 3, 48-61, 2009.

  2. A dynamic subgrid-scale parameterization of the effective wall stress in atmospheric boundary layer flows over multiscale, fractal-like surfaces

    NASA Astrophysics Data System (ADS)

    Anderson, William; Meneveau, Charles

    2010-05-01

    A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).

  3. Modeling of Thermospheric Neutral Density Variations in Response to Geomagnetic Forcing using GRACE Accelerometer Data

    NASA Astrophysics Data System (ADS)

    Calabia, A.; Matsuo, T.; Jin, S.

    2017-12-01

    The upper atmospheric expansion refers to an increase in the temperature and density of Earth's thermosphere due to increased geomagnetic and space weather activities, producing anomalous atmospheric drag on LEO spacecraft. Increased drag decelerates satellites, moving their orbit closer to Earth, decreasing the lifespan of satellites, and making satellite orbit determination difficult. In this study, thermospheric neutral density variations due to geomagnetic forcing are investigated from 10 years (2003-2013) of GRACE's accelerometer-based estimates. In order to isolate the variations produced by geomagnetic forcing, 99.8% of the total variability has been modeled and removed through the parameterization of annual, LST, and solar-flux variations included in the primary Empirical Orthogonal Functions. The residual disturbances of neutral density variations have been investigated further in order to unravel their relationship to several geomagnetic indices and space weather activity indicators. Stronger fluctuations have been found in the southern polar cap, following the dipole-tilt angle variations. While the parameterization of the residual disturbances in terms of Dst index results in the best fit to training data, the use of merging electric field as a predictor leads to the best forecasting performance. An important finding is that modeling of neutral density variations in response geomagnetic forcing can be improved by accounting for the latitude-dependent delay. Our data-driven modeling results are further compared to modeling with TIEGCM.

  4. Nearshore Current Model Workshop Summary.

    DTIC Science & Technology

    1983-09-01

    dissipation , and wave-current interaction. b. Incorporation into models of wave-breaking. c. Parameterization of turbulence in models. d. Incorporation...into models of surf zone energy dissipation . e. Methods to specify waves and currents on the boundaries of the grid. f. Incorporation into models of...also recommended. Improvements should include nonlinear and irregular wave effects and improved models of wave-breaking and wave energy dissipation in

  5. Improving microphysics in a convective parameterization: possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Labbouz, Laurent; Heikenfeld, Max; Stier, Philip; Morrison, Hugh; Milbrandt, Jason; Protat, Alain; Kipling, Zak

    2017-04-01

    The convective cloud field model (CCFM) is a convective parameterization implemented in the climate model ECHAM6.1-HAM2.2. It represents a population of clouds within each ECHAM-HAM model column, simulating up to 10 different convective cloud types with individual radius, vertical velocities and microphysical properties. Comparisons between CCFM and radar data at Darwin, Australia, show that in order to reproduce both the convective cloud top height distribution and the vertical velocity profile, the effect of aerodynamic drag on the rising parcel has to be considered, along with a reduced entrainment parameter. A new double-moment microphysics (the Predicted Particle Properties scheme, P3) has been implemented in the latest version of CCFM and is compared to the standard single-moment microphysics and the radar retrievals at Darwin. The microphysical process rates (autoconversion, accretion, deposition, freezing, …) and their response to changes in CDNC are investigated and compared to high resolution CRM WRF simulations over the Amazon region. The results shed light on the possibilities and limitations of microphysics improvements in the framework of CCFM and in convective parameterizations in general.

  6. Experimental and numerical investigation of low-drag intervals in turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Park, Jae Sung; Ryu, Sangjin; Lee, Jin

    2017-11-01

    It has been widely investigated that there is a substantial intermittency between high and low drag states in wall-bounded shear flows. Recent experimental and computational studies in a turbulent channel flow have identified low-drag time intervals based on wall shear stress measurements. These intervals are a weak turbulence state characterized by low-speed streaks and weak streamwise vortices. In this study, the spatiotemporal dynamics of low-drag intervals in a turbulent boundary layer is investigated using experiments and simulations. The low-drag intervals are monitored based on the wall shear stress measurement. We show that near the wall conditionally-sampled mean velocity profiles during low-drag intervals closely approach that of a low-drag nonlinear traveling wave solution as well as that of the so-called maximum drag reduction asymptote. This observation is consistent with the channel flow studies. Interestingly, the large spatial stretching of the streak is very evident in the wall-normal direction during low-drag intervals. Lastly, a possible connection between the mean velocity profile during the low-drag intervals and the Blasius profile will be discussed. This work was supported by startup funds from the University of Nebraska-Lincoln.

  7. Effect of flow oscillations on cavity drag and a technique for their control

    NASA Technical Reports Server (NTRS)

    Gharib, M.; Roshko, A.; Sarohia, V.

    1985-01-01

    Experiments to relate the state of the shear layer to cavity drag have been performed in a water channel using a 4" axisymmetric cavity model. Detailed flow measurements in various cavity flow oscillation phases, amplitude amplification along the flow direction, distribution of shear stress, and other momentum flux obtained by laser Doppler velocimeter are presented. Measurements show exponential dependence of cavity drag on the length of the cavity. A jump in the cavity drag coefficient is observed as the cavity flow shows a bluff body wake type behavior. Natural and forced oscillations are introduced by a sinusoidally heated thin-film strip which excites the Tollmein-Schlichting waves in the boundary layer upstream of the gap. For a large gap, self-sustained periodic oscillations are observed, while for smaller gaps, which do not oscillate naturally, periodical oscillations can be obtained by external forcing through the strip heater. The drag of the cavity can be increased by one order of magnitude in the non-oscillating case through external forcing. Also, it is possible to completely eliminate mode switching by external forcing. For the first time, it is demonstrated that amplitude of cavity flow Kelvin-Helmholtz wave is dampened or cancelled by introduction of external perturbation of natural flow frequency but different phase.

  8. Analyses of the stratospheric dynamics simulated by a GCM with a stochastic nonorographic gravity wave parameterization

    NASA Astrophysics Data System (ADS)

    Serva, Federico; Cagnazzo, Chiara; Riccio, Angelo

    2016-04-01

    The effects of the propagation and breaking of atmospheric gravity waves have long been considered crucial for their impact on the circulation, especially in the stratosphere and mesosphere, between heights of 10 and 110 km. These waves, that in the Earth's atmosphere originate from surface orography (OGWs) or from transient (nonorographic) phenomena such as fronts and convective processes (NOGWs), have horizontal wavelengths between 10 and 1000 km, vertical wavelengths of several km, and frequencies spanning from minutes to hours. Orographic and nonorographic GWs must be accounted for in climate models to obtain a realistic simulation of the stratosphere in both hemispheres, since they can have a substantial impact on circulation and temperature, hence an important role in ozone chemistry for chemistry-climate models. Several types of parameterization are currently employed in models, differing in the formulation and for the values assigned to parameters, but the common aim is to quantify the effect of wave breaking on large-scale wind and temperature patterns. In the last decade, both global observations from satellite-borne instruments and the outputs of very high resolution climate models provided insight on the variability and properties of gravity wave field, and these results can be used to constrain some of the empirical parameters present in most parameterization scheme. A feature of the NOGW forcing that clearly emerges is the intermittency, linked with the nature of the sources: this property is absent in the majority of the models, in which NOGW parameterizations are uncoupled with other atmospheric phenomena, leading to results which display lower variability compared to observations. In this work, we analyze the climate simulated in AMIP runs of the MAECHAM5 model, which uses the Hines NOGW parameterization and with a fine vertical resolution suitable to capture the effects of wave-mean flow interaction. We compare the results obtained with two version of the model, the default and a new stochastic version, in which the value of the perturbation field at launching level is not constant and uniform, but extracted at each time-step and grid-point from a given PDF. With this approach we are trying to add further variability to the effects given by the deterministic NOGW parameterization: the impact on the simulated climate will be assessed focusing on the Quasi-Biennial Oscillation of the equatorial stratosphere (known to be driven also by gravity waves) and on the variability of the mid-to-high latitudes atmosphere. The different characteristics of the circulation will be compared with recent reanalysis products in order to determine the advantages of the stochastic approach over the traditional deterministic scheme.

  9. Estimation of the electromagnetic bias from retracked TOPEX data

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Martin, Jan M.

    1994-01-01

    We examine the electromagnetic (EM) bias by using retracked TOPEX altimeter data. In contrast to previous studies, we use a parameterization of the EM bias which does not make stringent assumptions about the form of the correction or its global behavior. We find that the most effective single parameter correction uses the altimeter-estimated wind speed but that other parameterizations, using a wave age related parameter of significant wave height, may also significantly reduce the repeat pass variance. The different corrections are compared, and their improvement of the TOPEX height variance is quantified.

  10. Parameterizing Gravity Waves and Understanding Their Impacts on Venus' Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Yigit, Erdal

    2018-01-01

    The complexity of Venus’ upper atmospheric circulation is still being investigated. Simulations of Venus’ upper atmosphere largely depend on the utility of Rayleigh Friction (RF) as a driver and necessary process to reproduce observations (i.e. temperature, density, nightglow emission). Currently, there are additional observations which provide more constraints to help characterize the driver(s) of the circulation. This work will largely focus on the impact parameterized gravity waves have on Venus’ upper atmosphere circulation within a three dimensional hydrodynamic model (Venus Thermospheric General Circulation Model).

  11. Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2.

    NASA Technical Reports Server (NTRS)

    Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio

    2014-01-01

    The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the GEOS-5 (Goddard Earth Observing System Model - 5) Atmospheric General Circulation Model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO's MERRA2 reanalysis, the global mesoscale "nature run", the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean-atmosphere and coupled atmosphere-chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of "resolution aware" parameters related to the moist physics were shown to result in improvements at higher resolutions, and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.

  12. QBO Influence on Polar Stratospheric Variability in the GEOS Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Oman, L. D.; Li, F.; Slong, I.-S.; Newman, P. A.; Nielsen, J. E.

    2010-01-01

    The quasi-biennial oscillation modulates the strength of both the Arctic and Antarctic stratospheric vortices. Model and observational studies have found that the phase and characteristics of the quasi-biennial oscillation (QBO) contribute to the high degree of variability in the Arctic stratosphere in winter. While the Antarctic stratosphere is less variable, recent work has shown that Southern Hemisphere planetary wave driving increases in response to "warm pool" El Nino events that are coincident with the easterly phase of the QBO. These events hasten the breakup of the Antarctic polar vortex. The Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) is now capable of generating a realistic QBO, due a new parameterization of gravity wave drag. In this presentation, we will use this new model capability to assess the influence of the QBO on polar stratospheric variability. Using simulations of the recent past, we will compare the modeled relationship between QBO phase and mid-winter vortex strength with the observed Holton-Tan relation, in both hemispheres. We will use simulations of the 21 St century to estimate future trends in the relationship between QBO phase and vortex strength. In addition, we will evaluate the combined influence of the QBO and El Nino/Southern Oscillation (ENSO) on the timing of the breakup of the polar stratospheric vortices in the GEOS CCM. We will compare the influence of these two natural phenomena with trends in the vortex breakup associated with ozone recovery and increasing greenhouse gas concentrations.

  13. On the use of wave parameterizations and a storm impact scaling model in National Weather Service Coastal Flood and decision support operations

    USGS Publications Warehouse

    Mignone, Anthony; Stockdon, H.; Willis, M.; Cannon, J.W.; Thompson, R.

    2012-01-01

    National Weather Service (NWS) Weather Forecast Offices (WFO) are responsible for issuing coastal flood watches, warnings, advisories, and local statements to alert decision makers and the general public when rising water levels may lead to coastal impacts such as inundation, erosion, and wave battery. Both extratropical and tropical cyclones can generate the prerequisite rise in water level to set the stage for a coastal impact event. Forecasters use a variety of tools including computer model guidance and local studies to help predict the potential severity of coastal flooding. However, a key missing component has been the incorporation of the effects of waves in the prediction of total water level and the associated coastal impacts. Several recent studies have demonstrated the importance of incorporating wave action into the NWS coastal flood program. To follow up on these studies, this paper looks at the potential of applying recently developed empirical parameterizations of wave setup, swash, and runup to the NWS forecast process. Additionally, the wave parameterizations are incorporated into a storm impact scaling model that compares extreme water levels to beach elevation data to determine the mode of coastal change at predetermined “hotspots” of interest. Specifically, the storm impact model compares the approximate storm-induced still water level, which includes contributions from tides, storm surge, and wave setup, to dune crest elevation to determine inundation potential. The model also compares the combined effects of tides, storm surge, and the 2 % exceedance level for vertical wave runup (including both wave setup and swash) to dune toe and crest elevations to determine if erosion and/or ocean overwash may occur. The wave parameterizations and storm impact model are applied to two cases in 2009 that led to significant coastal impacts and unique forecast challenges in North Carolina: the extratropical “Nor'Ida” event during 11-14 November and the large swell event from distant Hurricane Bill on 22 August. The coastal impacts associated with Nor'Ida were due to the combined effects of surge, tide, and wave processes and led to an estimated 5.8 million dollars in damage. While the impacts from Hurricane Bill were not as severe as Nor'Ida, they were mainly associated with wave processes. Thus, this event exemplifies the importance of incorporating waves into the total water level and coastal impact prediction process. These examples set the stage for potential future applications including adaption to the more complex topography along the New England coast.

  14. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.; Eckermann, S. D.

    2012-01-01

    As the first gravity wave (GW) climatology study using nadir-viewing infrared sounders, 50 Atmospheric Infrared Sounder (AIRS) radiance channels are selected to estimate GW variances at pressure levels between 2-100 hPa. The GW variance for each scan in the cross-track direction is derived from radiance perturbations in the scan, independently of adjacent scans along the orbit. Since the scanning swaths are perpendicular to the satellite orbits, which are inclined meridionally at most latitudes, the zonal component of GW propagation can be inferred by differencing the variances derived between the westmost and the eastmost viewing angles. Consistent with previous GW studies using various satellite instruments, monthly mean AIRS variance shows large enhancements over meridionally oriented mountain ranges as well as some islands at winter hemisphere high latitudes. Enhanced wave activities are also found above tropical deep convective regions. GWs prefer to propagate westward above mountain ranges, and eastward above deep convection. AIRS 90 field-of-views (FOVs), ranging from +48 deg. to -48 deg. off nadir, can detect large-amplitude GWs with a phase velocity propagating preferentially at steep angles (e.g., those from orographic and convective sources). The annual cycle dominates the GW variances and the preferred propagation directions for all latitudes. Indication of a weak two-year variation in the tropics is found, which is presumably related to the Quasi-biennial oscillation (QBO). AIRS geometry makes its out-tracks capable of detecting GWs with vertical wavelengths substantially shorter than the thickness of instrument weighting functions. The novel discovery of AIRS capability of observing shallow inertia GWs will expand the potential of satellite GW remote sensing and provide further constraints on the GW drag parameterization schemes in the general circulation models (GCMs).

  15. Planetary wave-gravity wave interactions during mesospheric inversion layer events

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.

    2013-07-01

    lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion amplitude may get modulated by the interaction between gravity waves and planetary waves. The eddy diffusion associated with gravity wave drag may also cause suppression in the planetary wave activity.

  16. Resonant Drag Instability of Grains Streaming in Fluids

    NASA Astrophysics Data System (ADS)

    Squire, J.; Hopkins, P. F.

    2018-03-01

    We show that grains streaming through a fluid are generically unstable if their velocity, projected along some direction, matches the phase velocity of a fluid wave (linear oscillation). This can occur whenever grains stream faster than any fluid wave. The wave itself can be quite general—sound waves, magnetosonic waves, epicyclic oscillations, and Brunt–Väisälä oscillations each generate instabilities, for example. We derive a simple expression for the growth rates of these “resonant drag instabilities” (RDI). This expression (i) illustrates why such instabilities are so virulent and generic and (ii) allows for simple analytic computation of RDI growth rates and properties for different fluids. As examples, we introduce several new instabilities, which could see application across a variety of physical systems from atmospheres to protoplanetary disks, the interstellar medium, and galactic outflows. The matrix-based resonance formalism we introduce can also be applied more generally in other (nonfluid) contexts, providing a simple means for calculating and understanding the stability properties of interacting systems.

  17. Numerical studies of laminar and turbulent drag reduction, part 2

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Orszag, S. A.

    1983-01-01

    The flow over wave shaped surfaces is studied using a Navier Stokes solver. Detailed comparisons with theoretical results are presented, including the stability of a laminar flow over wavy surfaces. Drag characteristics of nonplanar surfaces are predicted using the Navier-Stokes solver. The secondary instabilities of wall bounded and free shear flows are also discussed.

  18. A drag measurement technique for free piston shock tunnels

    NASA Technical Reports Server (NTRS)

    Sanderson, S. R.; Simmons, J. M.; Tuttle, S. L.

    1991-01-01

    A new technique is described for measuring drag with 100-microsecond rise time on a nonlifting model in a free piston shock tunnel. The technique involves interpretation of the stress waves propagating within the model and its support. A finite element representation and spectral methods are used to obtain a mean square optimal estimate of the time history of the aerodynamic loading. Thus, drag is measured instantaneously and the previous restriction caused by the mechanical time constant of balances is overcome. The effectiveness of the balance is demonstrated by measuring the drag on cones with 5 and 15 deg semi-vertex angles in nominally Mach 5.6 flow with stagnation enthalpies from 2.6 to 33 MJ/kg.

  19. Temporal variability of gravity wave drag - vertical coupling and possible climate links

    NASA Astrophysics Data System (ADS)

    Miksovsky, Jiri; Sacha, Petr; Kuchar, Ales; Pisoft, Petr

    2017-04-01

    In the atmosphere, the internal gravity waves (IGW) are one of the fastest ways of natural information transfer in the vertical direction. Tropospheric changes that result in modification of sourcing, propagation or breaking conditions for IGWs almost immediately influence the distribution of gravity wave drag in the stratosphere. So far most of the related studies deal with IGW impacts higher in the upper stratospheric/mesospheric region and with the modulation of IGWs by planetary waves. This is most likely due to the fact that IGWs induce highest accelerations in the mesosphere and lower thermosphere region. However, the imposed drag force is much bigger in the stratosphere. In the presented analysis, we have assessed the relationship between the gravity wave activity in the stratosphere and other climatic phenomena through statistical techniques. Multivariable regression has been applied to investigate the IGW-related eastward and northward wind tendencies in the CMAM30-SD data, subject to the explanatory variables involving local circulation characteristics (derived from regional configuration of the thermobaric field) as well as the phases of the large-scale internal climate variability modes (ENSO, NAO, QBO). Our tests have highlighted several geographical areas with statistically significant responses of the orographic gravity waves effect to each of the variability modes under investigation; additional experiments have also indicated distinct signs of nonlinearity in some of the links uncovered. Furthermore, we have also applied composite analysis of displaced and split stratospheric polar vortex events (SPV) from CMAM30-SD to focus on how the strength and occurrence of the IGW hotspots can play a role in SPV occurrence and frequency.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Y.; Neal, C.; Salari, K.

    Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time formore » each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.« less

  1. Assessment of fine-scale parameterizations of turbulent dissipation rates in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Hibiya, T.

    2016-12-01

    To sustain the global overturning circulation, more mixing is required in the ocean than has been observed. The most likely candidates for this missing mixing are breaking of wind-induced near-inertial waves and bottom-generated internal lee waves in the sparsely observed Southern Ocean. Nevertheless, there is a paucity of direct microstructure measurements in the Southern Ocean where energy dissipation rates have been estimated mostly using fine-scale parameterizations. In this study, we assess the validity of the existing fine-scale parameterizations in the Antarctic Circumpolar Current (ACC) region using the data obtained from simultaneous full-depth measurements of micro-scale turbulence and fine-scale shear/strain carried out south of Australia during January 17 to February 2, 2016. Although the fine-scale shear/strain ratio (Rω) is close to the Garrett-Munk (GM) value at the station north of Subtropical Front, the values of Rω at the stations south of Subantarctic Front well exceed the GM value, suggesting that the local internal wave spectra are significantly biased to lower frequencies. We find that not all of the observed energy dissipation rates at these locations are well predicted using Gregg-Henyey-Polzin (GHP; Gregg et al., 2003) and Ijichi-Hibiya (IH; Ijichi and Hibiya, 2015) parameterizations, both of which take into account the spectral distortion in terms of Rω; energy dissipation rates at some locations are obviously overestimated by GHP and IH, although only the strain-based Wijesekera (Wijesekera et al., 1993) parameterization yields fairly good predictions. One possible explanation for this result is that a significant portion of the observed shear variance at these locations might be attributed to kinetic-energy-dominant small-scale eddies associated with the ACC, so that fine-scale strain rather than Rω becomes a more appropriate parameter to characterize the actual internal wave field.

  2. Finescale parameterizations of energy dissipation in a region of strong internal tides and sheared flow, the Lucky-Strike segment of the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Pasquet, Simon; Bouruet-Aubertot, Pascale; Reverdin, Gilles; Turnherr, Andreas; Laurent, Lou St.

    2016-06-01

    The relevance of finescale parameterizations of dissipation rate of turbulent kinetic energy is addressed using finescale and microstructure measurements collected in the Lucky Strike segment of the Mid-Atlantic Ridge (MAR). There, high amplitude internal tides and a strongly sheared mean flow sustain a high level of dissipation rate and turbulent mixing. Two sets of parameterizations are considered: the first ones (Gregg, 1989; Kunze et al., 2006) were derived to estimate dissipation rate of turbulent kinetic energy induced by internal wave breaking, while the second one aimed to estimate dissipation induced by shear instability of a strongly sheared mean flow and is a function of the Richardson number (Kunze et al., 1990; Polzin, 1996). The latter parameterization has low skill in reproducing the observed dissipation rate when shear unstable events are resolved presumably because there is no scale separation between the duration of unstable events and the inverse growth rate of unstable billows. Instead GM based parameterizations were found to be relevant although slight biases were observed. Part of these biases result from the small value of the upper vertical wavenumber integration limit in the computation of shear variance in Kunze et al. (2006) parameterization that does not take into account internal wave signal of high vertical wavenumbers. We showed that significant improvement is obtained when the upper integration limit is set using a signal to noise ratio criterion and that the spatial structure of dissipation rates is reproduced with this parameterization.

  3. Multi-objective aerodynamic shape optimization of small livestock trailers

    NASA Astrophysics Data System (ADS)

    Gilkeson, C. A.; Toropov, V. V.; Thompson, H. M.; Wilson, M. C. T.; Foxley, N. A.; Gaskell, P. H.

    2013-11-01

    This article presents a formal optimization study of the design of small livestock trailers, within which the majority of animals are transported to market in the UK. The benefits of employing a headboard fairing to reduce aerodynamic drag without compromising the ventilation of the animals' microclimate are investigated using a multi-stage process involving computational fluid dynamics (CFD), optimal Latin hypercube (OLH) design of experiments (DoE) and moving least squares (MLS) metamodels. Fairings are parameterized in terms of three design variables and CFD solutions are obtained at 50 permutations of design variables. Both global and local search methods are employed to locate the global minimum from metamodels of the objective functions and a Pareto front is generated. The importance of carefully selecting an objective function is demonstrated and optimal fairing designs, offering drag reductions in excess of 5% without compromising animal ventilation, are presented.

  4. Spatially varying drag within a wave-exposed mangrove forest and on the adjacent tidal flat

    NASA Astrophysics Data System (ADS)

    Mullarney, Julia C.; Henderson, Stephen M.; Reyns, Johan A. H.; Norris, Benjamin K.; Bryan, Karin R.

    2017-09-01

    Mangroves have been shown to protect shorelines against damage from the combined hydrodynamic forces of waves and tides, owing to the presence of roots (pneumatophores) and tree trunks that enhance vegetative drag. However, field measurements within these environments are limited. We present field observations of flows from the seaward coast of Cù Lao Dung Island (Sóc Trăng Province) in the Mekong Delta, Vietnam. Measurements were made in two different seasons along a transect that crosses from mudflats to mangrove forest. Flows are also explored using an idealised numerical model. Both the data and model capture the flow transitions from mudflat across the fringing region to the forest interior. We observe a rotation of the obliquely incident flows toward an orientation nearly perpendicular to the vegetated/unvegetated boundary. The momentum balances governing the large-scale flow are assessed and indicate the relative importance of friction, winds and depth-averaged pressure forces. In the forest, drag coefficients were 10-30 times greater than values usually observed for bottom friction, with particularly effective friction in the regions of dense pneumatophores at the fringe and when water depths were lower than the height of the pneumatophores. Pressure gradient balances suggest that the drag induced by bottom friction from pneumatophores was dominant relative to drag from the larger, but sparser, tree trunks.

  5. Generation and Evolution of Internal Waves in Luzon Strait

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in Luzon...inertial waves , nonlinear internal waves (NLIWs), and turbulence mixing––in the ocean and thereby help develop improved parameterizations of mixing for...ocean models. Mixing within the stratified ocean is a particular focus as the complex interplay of internal waves from a variety of sources and

  6. Generation and Evolution of Internal Waves in Luzon Strait

    DTIC Science & Technology

    2016-03-01

    1 DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in...internal tides, inertial waves , nonlinear internal waves (NLIWs), and turbulence mixing––in the ocean and thereby help develop improved parameterizations of...mixing for ocean models. Mixing within the stratified ocean is a particular focus as the complex interplay of internal waves from a variety of

  7. Modeling Wind Wave Evolution from Deep to Shallow Water

    DTIC Science & Technology

    2012-09-30

    WORK COMPLETED Development of a Lumped Quadruplet Approximation ( LQA ) A scalable parameterization of non-linear four-wave interactions is being...what we refer to as the Lumped Quadruplet Approximation ( LQA ), in which discrete contributions on the locus are treated as individual wave number...includes inhomogeneous wave fields, but is compatible with the action balance generally used in operational wave models. RESULTS Development LQA

  8. Equivalent Longitudinal Area Distributions of the B-58 and XB-70-1 Airplanes for Use in Wave Drag and Sonic Boom Calculations

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Maglieri, Domenic J.; Driver, Cornelius; Bobbitt, Percy J.

    2011-01-01

    A detailed geometric description, in wave drag format, has been developed for the Convair B-58 and North American XB-70-1 delta wing airplanes. These descriptions have been placed on electronic files, the contents of which are described in this paper They are intended for use in wave drag and sonic boom calculations. Included in the electronic file and in the present paper are photographs and 3-view drawings of the two airplanes, tabulated geometric descriptions of each vehicle and its components, and comparisons of the electronic file outputs with existing data. The comparisons include a pictorial of the two airplanes based on the present geometric descriptions, and cross-sectional area distributions for both the normal Mach cuts and oblique Mach cuts above and below the vehicles. Good correlation exists between the area distributions generated in the late 1950s and 1960s and the present files. The availability of these electronic files facilitates further validation of sonic boom prediction codes through the use of two existing data bases on these airplanes, which were acquired in the 1960s and have not been fully exploited.

  9. Enhanced viscous flow drag reduction using acoustic excitation

    NASA Technical Reports Server (NTRS)

    Nagel, R. T.

    1988-01-01

    Large eddy break up devices (LEBUs) constitute a promising method of obtaining drag reduction in a turbulent boundary layer. Enhancement of the LEBU effectiveness by exciting its trailing edge with acoustic waves phase locked to the large scale structure influencing the momentum transfer to the wall is sought. An initial estimate of the required sound pressure level for an effective pulse was obtained by considering the magnitude of the pressure perturbations at the near wake of a thin plate in inviscid flow. Detailed skin friction measurments were obtained in the flow region downstream of a LEBU excited with acoustic waves. The data are compared with skin friction measurements of a simply manipulated flow, without acoustic excitation and with a plain flow configuration. The properties and the scales of motion in the flow regime downstream of the acoustically excited LEBU are studied. A parametric study based upon the characteristics of the acoustic input was pursued in addition to the careful mapping of the drag reduction phenomenon within the acoustically manipulated boundary layer. This study of boundary layer manipulation has lead to improved skin friction drag reduction and further understanding of the turbulent boundary layer.

  10. Air-Sea Interaction in the Gulf of Tehuantepec

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Friehe, C. A.; Melville, W. K.

    2007-05-01

    Measurements of meteorological fields and turbulence were made during gap wind events in the Gulf of Tehuantepec using the NSF C-130 aircraft. The flight patterns started at the shore and progressed to approximately 300km offshore with low-level (30m) tracks, stacks and soundings. Parameterizations of the wind stress, sensible and latent heat fluxes were obtained from approximately 700 5 km low-level tracks. Structure of the marine boundary layer as it evolved off-shore was obtained with stack patterns, aircraft soundings and deployment of dropsondes. The air-sea fluxes approximately follow previous parameterizations with some evidence of the drag coefficient leveling out at about 20 meters/sec with the latent heat flux slightly increasing. The boundary layer starts at shore as a gap wind low-level jet, thins as the jet expands out over the gulf, exhibits a hydraulic jump, and then increases due to turbulent mixing.

  11. Thermospheric density and satellite drag modeling

    NASA Astrophysics Data System (ADS)

    Mehta, Piyush Mukesh

    The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and GRACE satellites. Moving toward accurate atmospheric models and absolute densities requires physics based models for CD. Closed-form solutions of CD have been developed and exist for a handful of simple geometries (flat plate, sphere, and cylinder). However, for complex geometries, the Direct Simulation Monte Carlo (DSMC) method is an important tool for developing CD models. DSMC is computationally intensive and real-time simulations for CD are not feasible. Therefore, parameterized models for CD are required. Modeling CD for an RSO requires knowledge of the gas-surface interaction (GSI) that defines the manner in which the atmospheric particles exchange momentum and energy with the surface. The momentum and energy exchange is further influenced by likely adsorption of atomic oxygen that may partially or completely cover the surface. An important parameter that characterizes the GSI is the energy accommodation coefficient, α. An innovative and state-of-the-art technique of developing parameterized drag coefficient models is presented and validated using the GRACE satellite. The effect of gas-surface interactions on physical drag coefficients is examined. An attempt to reveal the nature of gas-surface interactions at altitudes above 500 km is made using the STELLA satellite. A model that can accurately estimate CD has the potential to: (i) reduce the sources of uncertainty in the drag model, (ii) improve density estimates by resolving time-varying biases and moving toward absolute densities, and (iii) increase data sources for density estimation by allowing for the use of a wide range of RSOs as information sources. Results from this work have the potential to significantly improve the accuracy of conjunction analysis and SSA.

  12. Satellite Detection of Orographic Gravity-wave Activity in the Winter Subtropical Stratosphere over Australia and Africa

    NASA Technical Reports Server (NTRS)

    Eckermann, S. D.; Wu, D. L.

    2012-01-01

    Orographic gravity-wave (OGW) parameterizations in models produce waves over subtropical mountain ranges in Australia and Africa that propagate into the stratosphere during austral winter and deposit momentum, affecting weather and climate. Satellite sensors have measured stratospheric GWs for over a decade, yet find no evidence of these waves. So are parameterizations failing here? Here we argue that the short wavelengths of subtropical OGWs place them near or below the detection limits of satellite sensors. To test this hypothesis, we reanalyze nine years of stratospheric radiances from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite during austral winter, applying new averaging techniques to maximize signal-to-noise and improve thresholds for OGW detection. Deep climatological enhancements in stratospheric OGW variance over specific mountain ranges in Australia and southern Africa are revealed for the first time, which exhibit temporal and vertical variations consistent with predicted OGW responses to varying background winds.

  13. A Robust Definition for the Turbulent Langmuir Number

    NASA Astrophysics Data System (ADS)

    Christensen, K. H.; Breivik, O.; Sutherland, G.; Belcher, S. E.; Gargett, A.

    2016-02-01

    The turbulent Langmuir number combines the water side friction velocity and the surface value of the Stokes drift, and is central to parameterizations of mixing by Langmuir turbulence. Making a direct comparison between such parameterizations and observations is difficult since the surface Stokes drift is sensitive to both the spectral tail and the directional spread of the waves. We propose a new definition for the turbulent Langmuir number based on low order moments of the one-dimensional frequency spectrum, hence eliminating most of the uncertainties associated with the diagnostic spectral tail. Comparison is made between the old and the new definitions using both observed and modeled wave spectra. The new definition has a higher variation around the mean and is better at resolving typical oceanic conditions. In addition, it is backwards compatible with the old definition for monochromatic waves, which means that scalings based on large eddy simulations with monochromatic wave forcing are still valid.

  14. Influence of natural surfactants on short wind waves in the coastal Peruvian waters

    NASA Astrophysics Data System (ADS)

    Kiefhaber, D.; Zappa, C. J.; Jähne, B.

    2015-07-01

    Results from measurements of wave slope statistics during the R/V Meteor M91 cruise in the coastal upwelling regions off the coast of Peru are reported. Wave slope probability distributions were measured with an instrument based on the reflection of light at the water surface and a method very similar to the Cox and Munk (1954b) sun glitter technique. During the cruise, the mean square slope (mss) of the waves was found to be very variable, despite the limited range of encountered wind speeds. The Cox and Munk (1954b) parameterization for clean water is found to overestimate mss, but most measurements fall in the range spanned by their clean water and slick parameterizations. The observed variability of mss is attributed to the wave damping effect of surface films, generated by increased biological production in the upwelling zones. The small footprint and high temporal resolution of the measurement allows for tracking abrupt changes in conditions caused by the often patchy structure of the surface films.

  15. An Investigation of the Influence of Waves on Sediment Processes in Skagit Bay

    DTIC Science & Technology

    2012-09-30

    parameterizations common to most surface wave models, including wave generation by wind , energy dissipation from whitecapping, and quadruplet wave-wave...supply and wind on tidal flat sediment transport. It will be used to evaluate the capabilities of state-of-the-art open source sediment models and to...N00014-08-1-1115 which supported the hydrodynamic model development. Wind forcing for the wave and hydrodynamic models for realistic experiments will

  16. Enhanced viscous flow drag reduction using acoustic excitation

    NASA Technical Reports Server (NTRS)

    Nagel, Robert T.

    1987-01-01

    Proper acoustic excitation of a single large-eddy break-up device can increase the resulting drag reduction and, after approximately 40 to 50 delta downstream, provide net drag reduction. Precise optimization of the input time delay, amplitude and response threshold is difficult but possible to achieve. Drag reduction is improved with optimized conditions. The possibility of optimized processing strongly suggests a mechanism which involves interaction of the acoustic waves and large eddies at the trailing edge of the large eddy break-up device. Although the mechanism for spreading of this phenomenon is unknown, it is apparent that the drag reduction effect does tend to spread spanwise as the flow convects downstream. The phenomenon is not unique to a particular blade configuration or flow velocity, although all data have been obtained at relatively low Reynolds numbers. The general repeatibility of the results for small configuration changes serves as verification of the phenomenon.

  17. Aquatic burst locomotion by hydroplaning and paddling in common eiders (Somateria mollissima).

    PubMed

    Gough, William T; Farina, Stacy C; Fish, Frank E

    2015-06-01

    Common eiders (Somateria mollissima) are heavy sea-ducks that spend a large portion of their time swimming at the water surface. Surface swimming generates a bow and hull wave that can constructively interfere and produce wave drag. The speed at which the wavelengths of these waves equal the waterline length of the swimming animal is the hull speed. To increase surface swimming speed beyond the hull speed, an animal must overtake the bow wave. This study found two distinct behaviors that eider ducks used to exceed the hull speed: (1) 'steaming', which involved rapid oaring with the wings to propel the duck along the surface of the water, and (2) 'paddle-assisted flying', during which the ducks lifted their bodies out of the water and used their feet to paddle against the surface while flapping their wings in the air. An average hull speed (0.732±0.046 m s(-1)) was calculated for S. mollissima by measuring maximum waterline length from museum specimens. On average, steaming ducks swam 5.5 times faster and paddle-assisted flying ducks moved 6.8 times faster than the hull speed. During steaming, ducks exceeded the hull speed by increasing their body angle and generating dynamic lift to overcome wave drag and hydroplane along the water surface. During paddle-assisted flying, ducks kept their bodies out of the water, thereby avoiding the limitations of wave drag altogether. Both behaviors provided alternatives to flight for these ducks by allowing them to exceed the hull speed while staying at or near the water surface. © 2015. Published by The Company of Biologists Ltd.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less

  19. Statistical models of global Langmuir mixing

    NASA Astrophysics Data System (ADS)

    Li, Qing; Fox-Kemper, Baylor; Breivik, Øyvind; Webb, Adrean

    2017-05-01

    The effects of Langmuir mixing on the surface ocean mixing may be parameterized by applying an enhancement factor which depends on wave, wind, and ocean state to the turbulent velocity scale in the K-Profile Parameterization. Diagnosing the appropriate enhancement factor online in global climate simulations is readily achieved by coupling with a prognostic wave model, but with significant computational and code development expenses. In this paper, two alternatives that do not require a prognostic wave model, (i) a monthly mean enhancement factor climatology, and (ii) an approximation to the enhancement factor based on the empirical wave spectra, are explored and tested in a global climate model. Both appear to reproduce the Langmuir mixing effects as estimated using a prognostic wave model, with nearly identical and substantial improvements in the simulated mixed layer depth and intermediate water ventilation over control simulations, but significantly less computational cost. Simpler approaches, such as ignoring Langmuir mixing altogether or setting a globally constant Langmuir number, are found to be deficient. Thus, the consequences of Stokes depth and misaligned wind and waves are important.

  20. Hydrodynamic Drag Reduction

    DTIC Science & Technology

    2015-04-01

    Computational Engineering unstructured RANS/LES/DES solver , Tenasi, was used to predict drag and simulate the free surface flow around the ACV over a...using a second-order accurate Roe approximate Riemann scheme, while viscous fluxes are evaluated using a second-order directional derivative approach...Predictions of rigid body ship motions for the SI75 container ship in incident waves and methodology for a one-way coupling of the Tenasi flow solver

  1. A special method for finding body distortions that reduce the wave drag of wing and body combinations at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Heaslet, Max A

    1956-01-01

    For a given wing and supersonic Mach number, the problem of shaping an adjoining fuselage so that the combination will have a low wave drag is considered. Only fuselages that can be simulated by singularities (multipoles) distributed along the body axis are studied. However, the optimum variations of such singularities are completely specified in terms of the given wing geometry. An application is made to an elliptic wing having a biconvex section, a thickness-chord ratio equal to 0.05 at the root, and an aspect ratio equal to 3. A comparison of the theoretical results with a wind-tunnel experiment is also presented.

  2. Why do modelled and observed surface wind stress climatologies differ in the trade wind regions?

    NASA Astrophysics Data System (ADS)

    Simpson, I.; Bacmeister, J. T.; Sandu, I.; Rodwell, M. J.

    2017-12-01

    Global climate models (GCMs) exhibit stronger easterly zonal surface wind stress and near surface winds in the Northern Hemisphere (NH) trade winds than observationally constrained reanalyses or other observational products. A comparison, between models and reanalyses, of the processes that contribute to the zonal mean, vertically integrated balance of momentum, reveals that this wind stress discrepancy cannot be explained by either the resolved dynamics or parameterized tendencies that are common to each. Rather, a substantial residual exists in the momentum balance of the reanalyses, pointing toward a role for the analysis increments. Indeed, they are found to systematically weaken the NH near surface easterlies in winter, thereby reducing the surface wind stress. Similar effects are found in the Southern Hemisphere and further analysis of the spatial structure and seasonality of these increments, demonstrates that they act to weaken the near surface flow over much of the low latitude oceans in both summer and winter. This suggests an erroneous /missing process in GCMs that constitutes a missing drag on the low level zonal flow over oceans. Either this indicates a mis-representation of the drag between the surface and the atmosphere, or a missing internal atmospheric process that amounts to an additional drag on the low level zonal flow. If the former is true, then observation based surface stress products, which rely on similar drag formulations to GCMs, may be underestimating the strength of the easterly surface wind stress.

  3. Aerodynamic Design of the Hybrid Wing Body Propulsion-Airframe Integration

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Kim, Hyoungjin; Lee, ByungJoon; Liou, Meng-Sing

    2017-01-01

    A hybrid wingbody (HWB) concept is being considered by NASA as a potential subsonic transport aircraft that meets aerodynamic, fuel, emission, and noise goals in the time frame of the 2030s. While the concept promises advantages over conventional wing-and-tube aircraft, it poses unknowns and risks, thus requiring in-depth and broad assessments. Specifically, the configuration entails a tight integration of the airframe and propulsion geometries; the aerodynamic impact has to be carefully evaluated. With the propulsion nacelle installed on the (upper) body, the lift and drag are affected by the mutual interference effects between the airframe and nacelle. The static margin for longitudinal stability is also adversely changed. We develop a design approach in which the integrated geometry of airframe (HWB) and propulsion is accounted for simultaneously in a simple algebraic manner, via parameterization of the planform and airfoils at control sections of the wingbody. In this paper, we present the design of a 300-passenger transport that employs distributed electric fans for propulsion. The trim for stability is achieved through the use of the wingtip twist angle. The geometric shape variables are determined through the adjoint optimization method by minimizing the drag while subject to lift, pitch moment, and geometry constraints. The design results clearly show the influence on the aerodynamic characteristics of the installed nacelle and trimming for stability. A drag minimization with the trim constraint yields a reduction of 10 counts in the drag coefficient.

  4. Gas transfer under high wind and its dependence on wave breaking and sea state

    NASA Astrophysics Data System (ADS)

    Brumer, Sophia; Zappa, Christopher; Fairall, Christopher; Blomquist, Byron; Brooks, Ian; Yang, Mingxi

    2016-04-01

    Quantifying greenhouse gas fluxes on regional and global scales relies on parameterizations of the gas transfer velocity K. To first order, K is dictated by wind speed (U) and is typically parameterized as a non-linear functions of U. There is however a large spread in K predicted by the traditional parameterizations at high wind speed. This is because a large variety of environmental forcing and processes (Wind, Currents, Rain, Waves, Breaking, Surfactants, Fetch) actually influence K and wind speed alone cannot capture the variability of air-water gas exchange. At high wind speed especially, breaking waves become a key factor to take into account when estimating gas fluxes. The High Wind Gas exchange Study (HiWinGS) presents the unique opportunity to gain new insights on this poorly understood aspects of air-sea interaction under high winds. The HiWinGS cruise took place in the North Atlantic during October and November 2013. Wind speeds exceeded 15 m s-1 25% of the time, including 48 hrs with U10 > 20 m s-1. Continuous measurements of turbulent fluxes of heat, momentum, and gas (CO2, DMS, acetone and methanol) were taken from the bow of the R/V Knorr. The wave field was sampled by a wave rider buoy and breaking events were tracked in visible imagery was acquired from the port and starboard side of the flying bridge during daylight hours at 20Hz. Taking advantage of the range of physical forcing and wave conditions sampled during HiWinGS, we test existing parameterizations and explore ways of better constraining K based on whitecap coverage, sea state and breaking statistics contrasting pure windseas to swell dominated periods. We distinguish between windseas and swell based on a separation algorithm applied to directional wave spectra for mixed seas, system alignment is considered when interpreting results. The four gases sampled during HiWinGS ranged from being mostly waterside controlled to almost entirely airside controlled. While bubble-mediated transfer appears to be small for moderately soluble gases like DMS, the importance of wave breaking turbulence transport has yet to be determined for all gases regardless of their solubility. This will be addressed by correlating measured K to estimates of active whitecap fraction (WA) and turbulent kinetic energy dissipation rate (ɛ). WA and ɛ are estimated from moments of the breaking crest length distribution derived from the imagery, focusing on young seas, when it is likely that large-scale breaking waves (i.e., whitecapping) will dominate the ɛ.

  5. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less

  6. Heat-transfer characteristics of the R113 annular two-phase closed thermosyphon - Heat transfer in the condenser

    NASA Astrophysics Data System (ADS)

    Maezawa, Saburo; Tsuchida, Akira; Takuma, Masao

    1988-08-01

    Visual observation of flow patterns in the condenser and heat transfer measurements were conducted for heat transfer rate ranges of 18-800 W using a vertical annular device with various quantities of R113 as a working fluid. As a result of visual observations, it was shown that ripples (interfacial waves) were generated on the condensate film surface when the condensate film Reynolds number exceeded approximately 20, and the condensation heat transfer was prompted. A simple theoretical analysis was presented in which the effects of interfacial waves and vapor drag were both considered. This analysis agreed very well with experimental results when the working fluid quantity was small enough so that the two-phase mixture generated by boiling the working fluid did not reach the condenser. The effects of interfacial waves and vapor drag on condensation heat transfer were also investigated theoretically.

  7. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small and large scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties relate to minimum drag, wave drag, high angle of attack characteristics, and power induced effects.

  8. Current-induced dissipation in spectral wave models

    NASA Astrophysics Data System (ADS)

    Rapizo, H.; Babanin, A. V.; Provis, D.; Rogers, W. E.

    2017-03-01

    Despite many recent developments of the parameterization for wave dissipation in spectral models, it is evident that when waves propagate onto strong adverse currents the rate of energy dissipation is not properly estimated. The issue of current-induced dissipation is studied through a comprehensive data set in the tidal inlet of Port Phillip Heads, Australia. The wave parameters analyzed are significantly modulated by the tidal currents. Wave height in conditions of opposing currents (ebb tide) can reach twice the offshore value, whereas during coflowing currents (flood), it can be reduced to half. The wind-wave model SWAN is able to reproduce the tide-induced modulation of waves and the results show that the variation of currents is the dominant factor in modifying the wave field. In stationary simulations, the model provides an accurate representation of wave height for slack and flood tides. During ebb tides, wave energy is highly overestimated over the opposing current jet. None of the four parameterizations for wave dissipation tested performs satisfactorily. A modification to enhance dissipation as a function of the local currents is proposed. It consists of the addition of a factor that represents current-induced wave steepening and it is scaled by the ratio of spectral energy to the threshold breaking level. The new term asymptotes to the original form as the current in the wave direction tends to zero. The proposed modification considerably improves wave height and mean period in conditions of adverse currents, whereas the good model performance in coflowing currents is unaltered.

  9. The K-π+ S-wave from the D+→K-π+π+ decay

    NASA Astrophysics Data System (ADS)

    FOCUS Collaboration; Link, J. M.; Yager, P. M.; Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; Dos Reis, A. C.; Carrillo, S.; Cuautle, E.; Sánchez-Hernández, A.; Uribe, C.; Vázquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.; Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.; Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.; Casimiro, E.; Reyes, M.; Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; Dicorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T. F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Pegna, D. Lopes; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Göbel, C.; Otalora, J.; Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.; Wilson, J. R.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Moore, J. E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.; Sheaff, M.

    2009-10-01

    Using data from FOCUS (E831) experiment at Fermilab, we present a model independent partial-wave analysis of the K-π+ S-wave amplitude from the decay D+→K-π+π+. The S-wave is a generic complex function to be determined directly from the data fit. The P- and D-waves are parameterized by a sum of Breit-Wigner amplitudes. The measurement of the S-wave amplitude covers the whole elastic range of the K-π+ system.

  10. Improvements to embedded shock wave calculations for transonic flow-applications to wave drag and pressure rise predictions

    NASA Technical Reports Server (NTRS)

    Seebass, A. R.

    1974-01-01

    The numerical solution of a single, mixed, nonlinear equation with prescribed boundary data is discussed. A second order numerical procedure for solving the nonlinear equation and a shock fitting scheme was developed to treat the discontinuities that appear in the solution.

  11. The Total-Pressure Recovery and Drag Characteristics of Several Auxiliary Inlets at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Dennard, John S.

    1959-01-01

    Several flush and scoop-type auxiliary inlets have been tested for a range of Mach numbers from 0.55 to 1.3 to determine their transonic total-pressure recovery and drag characteristics. The inlet dimensions were comparable with the thickness of the boundary layer in which they were tested. Results indicate that flush inlets should be inclined at very shallow angles with respect to the surface for optimum total-pressure recovery and drag characteristics. Deep, narrow inlets have lower drag than wide shallow ones at Mach numbers greater than 0.9 but at lower Mach numbers the wider inlets proved superior. Inlets with a shallow approach ramp, 7 deg, and diverging ramp walls which incorporated boundary-layer bypass had lower drag than any other inlet tested for Mach numbers up to 1.2 and had the highest pressure recovery of all of the flush inlets. The scoop inlets, which operated in a higher velocity flow than the flush inlets, had higher drag coefficients. Several of these auxiliary inlets projected multiple, periodic shock waves into the stream when they were operated at low mass-flow ratios.

  12. Drag reduction in channel flow using nonlinear control

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R.

    1993-01-01

    Two nonlinear control schemes have been applied to the problem of drag reduction in channel flow. Both schemes have been tested using numerical simulations at a mass flux Reynolds numbers of 4408, utilizing 2D nonlinear neutral modes for goal dynamics. The OGY-method, which requires feedback, reduces drag to 60-80 percent of the turbulent value at the same Reynolds number, and employs forcing only within a thin region near the wall. The H-method, or model-based control, fails to achieve any drag reduction when starting from a fully turbulent initial condition, but shows potential for suppressing or retarding laminar-to-turbulent transition by imposing instead a transition to a low drag, nonlinear traveling wave solution to the Navier-Stokes equation. The drag in this state corresponds to that achieved by the OGY-method. Model-based control requires no feedback, but in experiments to date has required the forcing be imposed within a thicker layer than the OGY-method. Control energy expenditures in both methods are small, representing less than 0.1 percent of the uncontrolled flow's energy.

  13. Control of the electromagnetic drag using fluctuating light fields

    NASA Astrophysics Data System (ADS)

    Pastor, Víctor J. López; Marqués, Manuel I.

    2018-05-01

    An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.

  14. Effects of wave shape on sheet flow sediment transport

    USGS Publications Warehouse

    Hsu, T.-J.; Hanes, D.M.

    2004-01-01

    A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.

  15. Breaking Gravity Waves Over Large-Scale Topography

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Shapiro, M. A.

    2002-12-01

    The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.

  16. Aerial dispersal of particles emitted inside plant canopies: Application to the spread of plant diseases

    NASA Astrophysics Data System (ADS)

    Pan, Ying

    This work combines numerical, experimental, and theoretical methods to investigate the dispersion of particles inside and above plant canopies. The large-eddy simulation (LES) approach is used to reproduce turbulence statistics and three-dimensional particle dispersion within the canopy roughness sublayer. The Eulerian description of conservation laws of fluid momentum and particle concentration implies that the continuous concentration field is advected by the continuous flow field. Within the canopy, modifications are required for the filtered momentum and concentration equations, because spatial filtering of flow variables and concentration field is inapplicable to a control volume consisting of both fluid and solid elements. In this work, the canopy region is viewed as a space occupied by air only. The sink of airflow momentum induced by forces acting on the surfaces of canopy elements is parameterized as a non-conservative virtual body force that dissipates the kinetic energy of the air. This virtual body force must reflect the characteristic of the surface forces exerted by canopy elements within the control volume, and is parameterized as a "drag force" following standard practice in LES studies. Specifically, the "drag force" is calculated as a product of a drag coefficient, the projected leaf area density, and the square of velocity. Using a constant drag coefficient, this model allows first-order accuracy in reproducing the vertically integrated sink of momentum within the canopy layer for airflows of high Reynolds number. The corresponding LES results of first- and second-order turbulence statistics are in good agreement with experimental data obtained in the field interior, within and just above mature maize canopies. However, the distribution of momentum sink among weak and strong events has not been well reproduced, inferred from the significant underestition of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events. Using a velocity-dependent drag coefficient that accounts for the effect of plant reconfiguration, the "drag force" model leads to LES results of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events in better agreement with field experimental data. The link between plant reconfiguration and turbulence dynamics within the canopy roughness sublayer is further investigated. The "reconfiguration drag model" using velocity-dependent drag coefficient is revised to incorporate a theoretical model of the force balance on individual crosswind blades. In the LES, the dimension and degree of the reconfiguration of canopy elements affect the magnitude and position of peak streamwise velocity skewness within the canopy as well as the fractions of vertical momentum flux transported by strong events. The streamwise velocity skewness is shown to be related to the penetration of strong events into the canopy, which is associated with the passage of canopy-scale coherent eddies. With the profile of mean vertical momentum flux constrained by field experimental data, changing the model of drag coefficient induces negligible changes in the vertically integrated "drag force" within the canopy layer. Consequently, first- and second-order turbulence statistics remain approximately the same. However, enhancing the rate of decrease of drag coefficient with increasing velocity increases the streamwise and vertical velocity skewness, the fractions of vertical momentum flux transported by strong events, as well as the ratio between vertical momentum flux transported by relatively strong head-down "sweeps" and relatively weak head-up "ejections." These results confirmed the inadequacy of describing the effects of canopy-scale coherent structures using just first- and second-order turbulence statistics. The filtered concentration equation is applied to the dispersion of particles within the canopy roughness sublayer, assuming that a virtual continuous concentration field is advected by a virtual continuous velocity field. A canopy deposition model is used to model the sink of particle concentration associated with the impaction, sedimentation, retention, and re-entrainment of particles on the surfaces of canopy elements. LES results of mean particle concentration field and mean ground deposition rate were evaluated against data obtained during an artificial continuous point-source release experiment. Accounting for the effect of reconfiguration by using a velocity dependent drag coefficient leads to better agreement between LES results and field experimental data of the mean particle concentration field, suggesting the importance of reproducing the distribution of momentum sink among weak and strong events for reproducing the dispersion of particles. LES results obtained using a velocity-dependent drag coefficient are analyzed to estimate essential properties for the occurrence of plant disease epidemics. The most interesting finding is that an existing analytical function can be used to model the crosswind-integrated mean concentration field above the canopy normalized by the escape fraction for particles released from the field interior. (Abstract shortened by ProQuest.).

  17. The effect of breaking gravity waves on the dynamics and chemistry of the mesosphere and lower thermosphere (invited review)

    NASA Technical Reports Server (NTRS)

    Garcia, R. R.

    1986-01-01

    The influence of breaking gravity waves on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves. It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the zonal wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.

  18. Two species drag/diffusion model for energetic particle driven modes

    NASA Astrophysics Data System (ADS)

    Aslanyan, V.; Sharapov, S. E.; Spong, D. A.; Porkolab, M.

    2017-12-01

    A nonlinear bump-on-tail model for the growth and saturation of energetic particle driven plasma waves has been extended to include two populations of fast particles—one dominated by dynamical friction at the resonance and the other by velocity space diffusion. The resulting temporal evolution of the wave amplitude and frequency depends on the relative weight of the two populations. The two species model is applied to burning plasma with drag-dominated alpha particles and diffusion-dominated ICRH accelerated minority ions, showing the stabilization of bursting modes. The model also suggests an explanation for the recent observations on the TJ-II stellarator, where Alfvén Eigenmodes transition between steady state and bursting as the magnetic configuration varied.

  19. The energy balance of wind waves and the remote sensing problem

    NASA Technical Reports Server (NTRS)

    Hasselmann, K.

    1972-01-01

    Measurements of wave growth indicate an energy balance of the wave spectrum governed primarily by input from the atmosphere, nonlinear transfer to shorter and longer waves, and advection. The pronounced spectral peak and sharp low frequency cut-off characteristic of fetch-limited spectra are explained as a self-stabilizing feature of the nonlinear wave-wave interactions. The momentum transferred from the atmosphere to the wind waves accounts for a large part of the wind drag. These findings are relevant for remote microwave sensing of the sea surface by backscatter and passive radiometry methods.

  20. Investigation at Mach Numbers of 0.20 to 3.50 of Blended Wing-Body Combinations of Sonic Design with Diamond, Delta, and Arrow Plan Forms

    NASA Technical Reports Server (NTRS)

    Holdaway, George H.; Mellenthin, Jack A.

    1960-01-01

    The models had aspect-ratio-2 diamond, delta, and arrow wings with the leading edges swept 45.00 deg, 59.04 deg, and 70.82 deg, respectively. The wing sections were computed by varying the section shape along with the body radii (blending process) to match the prescribed area distribution and wing plan form. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local chords in a streamwise direction. The models were tested with transition fixed at Reynolds numbers of about 4,000,000 to 9,000,0000, based on the mean aerodynamic chord of the wings. The effect of varying Reynolds number was checked at both subsonic and supersonic speeds. The diamond model was superior to the other plan forms at transonic speeds ((L/D)max = 11.00 to 9.52) because of its higher lift-curve slope and near optimum wave drag due to the blending process. For the wing thickness tested with the diamond model, the marked body and wing contouring required for transonic conditions resulted in a large wave-drag penalty at the higher supersonic Mach numbers where the leading and trailing edges of the wing were supersonic. Because of the low sweep of the trailing edge of the delta model, this configuration was less adaptable to the blending process. Removing a body bump prescribed by the Mach number 1.00 design resulted in a good supersonic design. This delta model with 10 percent less volume was superior to the other plan forms at Mach numbers of 1.55 to 2.35 ((L/D)max = 8.65 to 7.24), but it and the arrow model were equally good at Mach numbers of 2.50 to 3.50 ((L/D)max - 6.85 to O.39). At transonic speeds the arrow model was inferior because of the reduced lift-curve slope associated with its increased sweep and also because of the wing base drag. The wing base-drag coefficients of the arrow model based on the wing planform area decreased from a peak value of 0.0029 at Mach number 1.55 to 0.0003 at Mach number 3.50. Linear supersonic theory was satisfactory for predicting the aerodynamic trends at Mach numbers from 1.55 to 3.50 of lift-curve slope, wave drag, drag due to lift, aerodynamic-center location, and maximum lift-drag ratios for each of the models.

  1. LAGRANGE: LAser GRavitational-wave ANtenna in GEodetic Orbit

    NASA Astrophysics Data System (ADS)

    Buchman, S.; Conklin, J. W.; Balakrishnan, K.; Aguero, V.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Saud, T. A.; Byer, R. L.; Bower, K.; Costello, B.; Cutler, G. D.; DeBra, D. B.; Faied, D. M.; Foster, C.; Genova, A. L.; Hanson, J.; Hooper, K.; Hultgren, E.; Klavins, A.; Lantz, B.; Lipa, J. A.; Palmer, A.; Plante, B.; Sanchez, H. S.; Saraf, S.; Schaechter, D.; Shu, K.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Williams, S. D.; Worden, S. P.; Zhou, J.; Zoellner, A.

    2013-01-01

    We describe a new space gravitational wave observatory design called LAG-RANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per spacecraft, operating in “true” drag-free mode (no test mass forcing). Other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include updated drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.

  2. Fully resolved simulations of expansion waves propagating into particle beds

    NASA Astrophysics Data System (ADS)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  3. System engineering study of electrodynamic tether as a spaceborne generator and radiator of electromagnetic waves in the ULF/ELF frequency band

    NASA Technical Reports Server (NTRS)

    Estes, Robert D.

    1987-01-01

    An electrodynamic tether deployed from a satellite in low-Earth orbit can perform, if properly instrumented, as a partially self-powered generator of electromagnetic waves in the ULF/ELF band, potentially at power levels high enough to be of practical use. Two basic problems are examined. The first is that of the level of wave power that the system can be expected to generate in the ULF/ELF radiation band. The second major question is whether an electrodynamic tethered satellite system for transmitting waves can be made partially self-powering so that power requirements for drag compensation can be met within economical constraints of mass, cost, and complexity. The theoretical developments and the system applications study are presented. The basic design criteria, the drag-compensation method, the effects on the propagation paths from orbit to Earth surface of high-altitude nuclear debris patches, and the estimate of masses and sizes are covered. An outline of recommended analytical work, to be performed as a follow-on to the present study, is contained.

  4. Interannual variability in the gravity wave drag - vertical coupling and possible climate links

    NASA Astrophysics Data System (ADS)

    Šácha, Petr; Miksovsky, Jiri; Pisoft, Petr

    2018-05-01

    Gravity wave drag (GWD) is an important driver of the middle atmospheric dynamics. However, there are almost no observational constraints on its strength and distribution (especially horizontal). In this study we analyze orographic GWD (OGWD) output from Canadian Middle Atmosphere Model simulation with specified dynamics (CMAM-sd) to illustrate the interannual variability in the OGWD distribution at particular pressure levels in the stratosphere and its relation to major climate oscillations. We have found significant changes in the OGWD distribution and strength depending on the phase of the North Atlantic Oscillation (NAO), quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation. The OGWD variability is shown to be induced by lower-tropospheric wind variations to a large extent, and there is also significant variability detected in near-surface momentum fluxes. We argue that the orographic gravity waves (OGWs) and gravity waves (GWs) in general can be a quick mediator of the tropospheric variability into the stratosphere as the modifications of the OGWD distribution can result in different impacts on the stratospheric dynamics during different phases of the studied climate oscillations.

  5. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.

    PubMed

    Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring; Bruus, Henrik

    2012-11-21

    We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles and the Stokes drag force from the induced acoustic streaming flow. These forces are calculated numerically in two steps. First, the thermoacoustic equations are solved to first order in the imposed ultrasound field taking into account the micrometer-thin but crucial thermoviscous boundary layer near the rigid walls. Second, the products of the resulting first-order fields are used as source terms in the time-averaged second-order equations, from which the net acoustic forces acting on the particles are determined. The resulting acoustophoretic particle velocities are quantified for experimentally relevant parameters using a numerical particle-tracking scheme. The model shows the transition in the acoustophoretic particle motion from being dominated by streaming-induced drag to being dominated by radiation forces as a function of particle size, channel geometry, and material properties.

  6. Effects of orography on planetary scale flow

    NASA Technical Reports Server (NTRS)

    Smith, R. B.

    1986-01-01

    The earth's orography is composed of a wide variety of scales, each contributing to the spectrum of atmospheric motions. A well studied subject (originating with Charney and Eliassen) is the direct forcing of planetary scale waves by the planetary scale orography: primarily the Tibetan plateau and the Rockies. However, because of the non-linear terms in the equations of dynamic meteorology, even the smallest scales of mountain induced flow can contribute to the planetary scale if the amplitude of the small scale disturbance is sufficintly large. Two possible mechanisms for this are illustrated. First, preferentially located lee cyclones can force planetary waves by their meridional transport of heat and momentum (Hansen and Chen). Recent theories are helping to explain the phenomena of lee cyclogenesis (e.g., Smith, 1984, J.A.S.). Second, mesoscale mountain wave and severe downslope wind phenomena produce such a large local drag, that planetary scale waves can be produced. The mechanism of upscale transfer is easy to understand in this case as the standing planetary scale wave has a wavelength which depends on the mean structure of the atmosphere, and not on the width of the mountain (just as in small scale lee wave theory). An example of a theoretical description of a severe wind flow with very large drag is shown.

  7. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    DOE PAGES

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less

  8. Viscous Aerodynamic Shape Optimization with Installed Propulsion Effects

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Seidel, Jonathan A.; Rallabhandi, Sriram K.

    2017-01-01

    Aerodynamic shape optimization is demonstrated to tailor the under-track pressure signature of a conceptual low-boom supersonic aircraft. Primarily, the optimization reduces nearfield pressure waveforms induced by propulsion integration effects. For computational efficiency, gradient-based optimization is used and coupled to the discrete adjoint formulation of the Reynolds-averaged Navier Stokes equations. The engine outer nacelle, nozzle, and vertical tail fairing are axi-symmetrically parameterized, while the horizontal tail is shaped using a wing-based parameterization. Overall, 48 design variables are coupled to the geometry and used to deform the outer mold line. During the design process, an inequality drag constraint is enforced to avoid major compromise in aerodynamic performance. Linear elastic mesh morphing is used to deform volume grids between design iterations. The optimization is performed at Mach 1.6 cruise, assuming standard day altitude conditions at 51,707-ft. To reduce uncertainty, a coupled thermodynamic engine cycle model is employed that captures installed inlet performance effects on engine operation.

  9. Atmospheric-like rotating annulus experiment: gravity wave emission from baroclinic jets

    NASA Astrophysics Data System (ADS)

    Rodda, Costanza; Borcia, Ion; Harlander, Uwe

    2017-04-01

    Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating- annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modelling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Joint laboratory experiment and numerical simulation have been conducted. The comparison between the data obtained from the experiment and the numerical simulations shows a very good agreement for the large scale baroclinic wave regime. Moreover, in both cases a clear signal of horizontal divergence, embedded in the baroclinic wave front, appears suggesting IGWs emission.

  10. Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices

    NASA Technical Reports Server (NTRS)

    Tingas, S. A.; Rao, D. M.

    1982-01-01

    Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack.

  11. Applications of a direct/iterative design method to complex transonic configurations

    NASA Technical Reports Server (NTRS)

    Smith, Leigh Ann; Campbell, Richard L.

    1992-01-01

    The current study explores the use of an automated direct/iterative design method for the reduction of drag in transport configurations, including configurations with engine nacelles. The method requires the user to choose a proper target-pressure distribution and then develops a corresponding airfoil section. The method can be applied to two-dimensional airfoil sections or to three-dimensional wings. The three cases that are presented show successful application of the method for reducing drag from various sources. The first two cases demonstrate the use of the method to reduce induced drag by designing to an elliptic span-load distribution and to reduce wave drag by decreasing the shock strength for a given lift. In the second case, a body-mounted nacelle is added and the method is successfully used to eliminate increases in wing drag associated with the nacelle addition by designing to an arbitrary pressure distribution as a result of the redesigning of a wing in combination with a given underwing nacelle to clean-wing, target-pressure distributions. These cases illustrate several possible uses of the method for reducing different types of drag. The magnitude of the obtainable drag reduction varies with the constraints of the problem and the configuration to be modified.

  12. Air-sea fluxes of momentum and mass in the presence of wind waves

    NASA Astrophysics Data System (ADS)

    Zülicke, Christoph

    2010-05-01

    An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.

  13. Field Observations of Coastal Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.

    2016-12-01

    In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the exchange of momentum, heat, and mass across the air-sea interface. For decades, the focus of air-sea interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and air-sea gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured air-sea flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the air-sea fluxes. Preliminary findings show that interactions between the local wind-sea and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-air-sea interactions will also be investigated.

  14. Transdimensional Bayesian tomography of the lowermost mantle from shear waves

    NASA Astrophysics Data System (ADS)

    Richardson, C.; Mousavi, S. S.; Tkalcic, H.; Masters, G.

    2017-12-01

    The lowermost layer of the mantle, known as D'', is a complex region that contains significant heterogeneities on different spatial scales and a wide range of physical and chemical features such as partial melting, seismic anisotropy, and variations in thermal and chemical composition. The most powerful tools we have to probe this region are seismic waves and corresponding imaging techniques such as tomography. Recently, we developed compressional velocity tomograms of D'' using a transdimensional Bayesian inversion, where the model parameterization is not explicit and regularization is not required. This has produced a far more nuanced P-wave velocity model of D'' than that from traditional S-wave tomography. We also note that P-wave models of D'' vary much more significantly among various research groups than the corresponding S-wave models. This study therefore seeks to develop a new S-wave velocity model of D'' underneath Australia by using predominantly ScS-S differential travel times measured through waveform correlation and Bayesian transdimensional inversion to further understand and characterize heterogeneities in D''. We used events at epicentral distances between 45 and 75 degrees from stations in Australia at depths of over 200 km and with magnitudes between 6.0 and 6.7. Because of globally incomplete coverage of station and earthquake locations, a major limitation of deep earth tomography has been the explicit parameterization of the region of interest. Explicit parameterization has been foundational in most studies, but faces inherent problems of either over-smoothing the data, or allowing for too much noise. To avoid this, we use spherical Voronoi polygons, which allow for a high level of flexibility as the polygons can grow, shrink, or be altogether deleted throughout a sequence of iterations. Our technique also yields highly desired model parameter uncertainties. While there is little doubt that D'' is heterogeneous, there is still much that is unclear about the extent and spatial distribution of different heterogeneous domains, as there are open questions about their dynamics and chemical interactions in the context of the surrounding mantle and outer core. In this context, our goal is also to quantify and understand the differences between S-wave and P-wave velocity tomographic models.

  15. Development of a two-dimensional zonally averaged statistical-dynamical model. III - The parameterization of the eddy fluxes of heat and moisture

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Yao, Mao-Sung

    1990-01-01

    A number of perpetual January simulations are carried out with a two-dimensional zonally averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional general circulation model with zonally symmetric forcing. The three-dimensional model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations. Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic wave due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the two-dimensional model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the three-dimensional model, and only underestimate the magnitude of the fluxes by 10 to 20 percent.

  16. Interaction of a shock wave with multiple spheres suspended in different arrangements

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Te; Sui, Zhen-Zhen; Shi, Hong-Hui

    2018-03-01

    In this study, the unsteady drag force, Fd, drag coefficient, Cd, and the relevant dynamic behaviors of waves caused by the interaction between a planar incident shock wave and a multi-sphere model are investigated by using imbedded accelerometers and a high-speed Schlieren system. The shock wave is produced in a horizontal 200 mm inner diameter circular shock tube with a 2000 mm × 200 mm × 200 mm transparent test section. The time history of Cd is obtained based on band-block and low-pass Fast Fourier Transformation filtering combined with Savitzky-Golay polynomial smoothing for the measured acceleration. The effects of shock Mach number, Ms, geometry of multi-sphere model, nondimensional distance between sphere centers, H, and channel blockage are analyzed. We find that all time histories of Cd have a similar double-peak shaped main structure. It is due to wave reflection, diffraction, interference, and convergence at different positions of the spheres. The peak Fd increases, whereas the peak Cd decreases monotonically with increasing Ms. The increase of shock strength due to shock focusing by upstream spheres increases the peak Fd of downstream spheres. Both the increase in sphere number and the decrease in distance between spheres promote wave interference between neighboring spheres. As long as the wave interference times are shorter than the peak times, the peak Fd and Cd are higher compared to a single sphere.

  17. Refined Source Terms in Wave Watch 3 with Wave Breaking and Sea Spray Forecasts

    DTIC Science & Technology

    2016-08-05

    Farmer at IOS Canada involved a novel scale analysis of breaking waves. This was motivated by the results of the model study of wave breaking onset by...timely development that needs careful examination. 4.11 Highlights of the SPANDEX study SPANDEX, the Spray Production and Dynamics Experiment, is...speed alone. To accomplish this goal, a parallel laboratory study (SPANDEX II) was undertaken to parameterize sea spray flux dependences on breaking

  18. Micro-tidal coastal reed beds: Hydro-morphological insights and observations on wave transformation from the southern Baltic Sea

    NASA Astrophysics Data System (ADS)

    I.; | J., Möller; | T., Mantilla-Contreras; | A., Spencer; Hayes

    2011-05-01

    This paper investigates the hydro-morphological controls on incident wind-generated waves at, and the transformation of such waves within, two Phragmites australis reed beds in the southern Baltic Sea. Meteorological conditions in combination with geomorphological controls result, over short (<2 km) distances, in significant differences in water level and wave climate to which fringing reed beds are exposed. Significant wave height attenuation reached a maximum of 2.6% m -1 and 11.8% m -1 at the transition from open water into the reed vegetation at the sheltered and exposed sites respectively. Wave attenuation through the emergent reed vegetation was significantly lower in greater water depths, suggesting (1) a reduced influence of bed friction by small shoots/roots and/or (2) drag reduction due to flexing of plants when the wave motion is impacting stems at a greater height above the bed. For a given water depth, wave dissipation increased with increasing incident wave height, however, suggesting that, despite their ability to flex, reed stems may be rigid enough to cause increased drag under greater wave forcing. The higher frequency part of the wave spectrum (>0.5 Hz) was preferentially reduced at the reed margin, confirming the theoretical wave frequency dependence of bottom friction. The possibility of physiological adaptation (differences in reed stem diameter) to water depth and wave exposure differences is discussed. The results have implications for the possible impact of environmental changes, both acute (e.g. storm surges) or chronic (e.g. sea level rise) in character, and for the appropriate management of reed bed sites and delivery of ecological goods and services.

  19. Turbulence Simulation of Laboratory Wind-Wave Interaction in High Winds and Upscaling to Ocean Conditions

    DTIC Science & Technology

    2016-12-22

    investigated air-sea fluxes characterized by strong air flow separation over a very steep wave field. We first investigated propagating steep wave...mechanisms for flow separation over rigid surfaces compared with unsteady surfaces with a boundary slip velocity. We investigated passive scalar fluxes. In...turbulent flow over steep stationary roughness, the primary mechanism for momentum flux is via pressure drag resulting from flow separation. However

  20. Investigation of the relationship between hurricane waves and extreme runup

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Stockdon, H. F.

    2006-12-01

    In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.

  1. Control of the flow over wing airfoils in transonic regimes by means of force action of surface elements on the flow

    NASA Astrophysics Data System (ADS)

    Aul'chenko, S. M.; Zamuraev, V. P.

    2012-09-01

    Mathematical modeling of the effect of force oscillations of surface elements of a wing airfoil on the shock-wave structure of the transonic flow over it is implemented. The qualitative and quantitative effect of the oscillation parameters on the airfoil wave drag is investigated.

  2. The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea

    NASA Astrophysics Data System (ADS)

    Lentz, S. J.; Churchill, J. H.; Davis, K. A.; Farrar, J. T.; Pineda, J.; Starczak, V.

    2016-02-01

    Current dynamics across a platform reef in the Red Sea near Jeddah, Saudi Arabia, are examined using 18 months of current profile, pressure, surface wave, and wind observations. The platform reef is 700 m long, 200 m across with spatial and temporal variations in water depth over the reef ranging from 0.6 to 1.6 m. Surface waves breaking at the seaward edge of the reef cause a 2-10 cm setup of sea level that drives cross-reef currents of 5-20 cm s-1. Bottom stress is a significant component of the wave setup balance in the surf zone. Over the reef flat, where waves are not breaking, the cross-reef pressure gradient associated with wave setup is balanced by bottom stress. The quadratic drag coefficient for the depth-average flow decreases with increasing water depth from Cda = 0.17 in 0.4 m of water to Cda = 0.03 in 1.2 m of water. The observed dependence of the drag coefficient on water depth is consistent with open-channel flow theory and a hydrodynamic roughness of zo = 0.06 m. A simple one-dimensional model driven by incident surface waves and wind stress accurately reproduces the observed depth-averaged cross-reef currents and a portion of the weaker along-reef currents over the focus reef and two other Red Sea platform reefs. The model indicates the cross-reef current is wave forced and the along-reef current is partially wind forced.

  3. An immersed boundary method for direct and large eddy simulation of stratified flows in complex geometry

    NASA Astrophysics Data System (ADS)

    Rapaka, Narsimha R.; Sarkar, Sutanu

    2016-10-01

    A sharp-interface Immersed Boundary Method (IBM) is developed to simulate density-stratified turbulent flows in complex geometry using a Cartesian grid. The basic numerical scheme corresponds to a central second-order finite difference method, third-order Runge-Kutta integration in time for the advective terms and an alternating direction implicit (ADI) scheme for the viscous and diffusive terms. The solver developed here allows for both direct numerical simulation (DNS) and large eddy simulation (LES) approaches. Methods to enhance the mass conservation and numerical stability of the solver to simulate high Reynolds number flows are discussed. Convergence with second-order accuracy is demonstrated in flow past a cylinder. The solver is validated against past laboratory and numerical results in flow past a sphere, and in channel flow with and without stratification. Since topographically generated internal waves are believed to result in a substantial fraction of turbulent mixing in the ocean, we are motivated to examine oscillating tidal flow over a triangular obstacle to assess the ability of this computational model to represent nonlinear internal waves and turbulence. Results in laboratory-scale (order of few meters) simulations show that the wave energy flux, mean flow properties and turbulent kinetic energy agree well with our previous results obtained using a body-fitted grid (BFG). The deviation of IBM results from BFG results is found to increase with increasing nonlinearity in the wave field that is associated with either increasing steepness of the topography relative to the internal wave propagation angle or with the amplitude of the oscillatory forcing. LES is performed on a large scale ridge, of the order of few kilometers in length, that has the same geometrical shape and same non-dimensional values for the governing flow and environmental parameters as the laboratory-scale topography, but significantly larger Reynolds number. A non-linear drag law is utilized in the large-scale application to parameterize turbulent losses due to bottom friction at high Reynolds number. The large scale problem exhibits qualitatively similar behavior to the laboratory scale problem with some differences: slightly larger intensification of the boundary flow and somewhat higher non-dimensional values for the energy fluxed away by the internal wave field. The phasing of wave breaking and turbulence exhibits little difference between small-scale and large-scale obstacles as long as the important non-dimensional parameters are kept the same. We conclude that IBM is a viable approach to the simulation of internal waves and turbulence in high Reynolds number stratified flows over topography.

  4. Internal wave emission from baroclinic jets: experimental results

    NASA Astrophysics Data System (ADS)

    Borcia, Ion D.; Rodda, Costanza; Harlander, Uwe

    2016-04-01

    Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating-annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modeling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Here we show first results from a small rotating annulus experiments and we will further present our new experimental facility to study wave emission from jets and fronts.

  5. A model of air-sea gas exchange incorporating the physics of the turbulent boundary layer and the properties of the sea surface

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Schluessel, Peter

    The model presented contains interfacial, bubble-mediated, ocean mixed layer, and remote sensing components. The interfacial (direct) gas transfer dominates under conditions of low and—for quite soluble gases like CO2—moderate wind speeds. Due to the similarity between the gas and heat transfer, the temperature difference, ΔT, across the thermal molecular boundary layer (cool skin of the ocean) and the interfacial gas transfer coefficient, Kint are presumably interrelated. A coupled parameterization for ΔT and Kint has been derived in the context of a surface renewal model [Soloviev and Schluessel, 1994]. In addition to the Schmidt, Sc, and Prandtl, Pr, numbers, the important parameters are the surface Richardson number, Rƒ0, and the Keulegan number, Ke. The more readily available cool skin data are used to determine the coefficients that enter into both parameterizations. At high wind speeds, the Ke-number dependence is further verified with the formula for transformation of the surface wind stress to form drag and white capping, which follows from the renewal model. A further extension of the renewal model includes effects of solar radiation and rainfall. The bubble-mediated component incorporates the Merlivat et al. [1993] parameterization with the empirical coefficients estimated by Asher and Wanninkhof [1998]. The oceanic mixed layer component accounts for stratification effects on the air-sea gas exchange. Based on the example of GasEx-98, we demonstrate how the results of parameterization and modeling of the air-sea gas exchange can be extended to the global scale, using remote sensing techniques.

  6. Microwave Remote Sensing of Falling Snow

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Wang, J. R.; Meneghini, R.; Johnson, B.; Tanelli, S.; Roman-Nieves, J. I.; Sekelsky, S. M.; Skofronick-Jackson, G.

    2005-01-01

    This study analyzes passive and active microwave measurements during the 2003 Wakasa Bay field experiment for understanding of the electromagnetic characteristics of frozen hydrometeors at millimeter-wave frequencies. Based on these understandings, parameterizations of the electromagnetic scattering properties of snow at millimeter-wave frequencies are developed and applied to the hydrometeor profiles obtained by airborne radar measurements. Calculated brightness temperatures and radar reflectivity are compared with the millimeter-wave measurements.

  7. Contributions of Lower Atmospheric Drivers to the Semiannual Oscillation in Thermospheric Global Mass Density

    NASA Astrophysics Data System (ADS)

    Jones, M., Jr.; Emmert, J. T.; Drob, D. P.; Siskind, D. E.

    2016-12-01

    The thermosphere exhibits intra-annual variations (IAV) in globally averaged mass density that noticeably impact the drag environment of satellites in low Earth orbit. Particularly, the annual and semiannual oscillations (AO and SAO) are collectively the second largest component, after solar variability, of thermospheric global mass density variations. Several mechanisms have been proposed to explain the oscillations, but they have yet to be reproduced by first-principles modeling simulations. Recent studies have focused on estimating the SAO in eddy diffusion required to explain the thermospheric SAO in mass density. Less attention has been paid to the effect of lower and middle atmospheric drivers on the lower boundary of the thermosphere. In this study, we utilize the National Center for Atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), to elucidate how the different lower atmospheric drivers influence IAV, and in particular the SAO of globally-averaged thermospheric mass density. We performed numerical simulations of a continuous calendar year assuming constant solar forcing, manipulating the lower atmospheric tidal forcing and gravity wave parameterization in order to quantify the SAO in thermospheric mass density attributable to different lower atmospheric drivers. The prominent initial results are as follows: (1) The "standard" TIME-GCM is capable of simulating the SAO in globally-averaged mass density at 400 km from first-principles, and its amplitude and phase compare well with empirical models; (2) The simulations suggest that seasonally varying Kzz driven by breaking GWs is not the primary driver of the SAO in upper thermospheric globally averaged mass density; (3) Preliminary analysis suggests that the SAO in the upper thermospheric mass density could be a by-product of dynamical wave transport in the mesopause region.

  8. Drag Reduction Control for Flow over a Hump with Surface-Mounted Thermoacoustic Actuator

    DTIC Science & Technology

    2015-01-06

    integrating qwall over the actuator stripe and taking the average over one oscillation period. This gives Q̇ = 2σq̂/π. Now we can define the drag...itself to produce acoustic waves, the input AC current sinusoidally heats this membrane due to Joule heating and creates surface pressure...such that its heat ca- pacity per unit area (HCPUA) is at least two orders of magnitude smaller than that of the metal . Since the output acoustic power

  9. Models and observations of foam coverage and bubble content in the surf zone

    NASA Astrophysics Data System (ADS)

    Kirby, J. T.; Shi, F.; Holman, R. A.

    2010-12-01

    Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water column motion. Preliminary steps to calibrate and verify the resulting models will be taken based on results to be collected during the Surf Zone Optics experiment at Duck, NC in September 2010. Initial efforts will focus on an examination of breaking wave patterns and persistent foam distributions, using ARGUS imagery.

  10. An Integrative Wave Model for the Marginal Ice Zone Based on a Rheological Parameterization

    DTIC Science & Technology

    2015-09-30

    2015) Characterizing the behavior of gravity wave propagation into a floating or submerged viscous layer , 2015 AGU Joint Assembly Meeting, May 3–7...are the PI and a PhD student. Task 1: Use an analytical method to determine the propagation of waves through a floating viscoelastic mat for a wide...and Ben Holt. 2 Task 3: Assemble all existing laboratory and field data of wave propagation in ice covers. Task 4: Determine if all existing

  11. An Investigation of the Influence of Waves on Sediment Processes in Skagit Bay

    DTIC Science & Technology

    2011-09-30

    source term parameterizations common to most surface wave models, including wave generation by wind , energy dissipation from whitecapping, and...I. Total energy and peak frequency. Coastal Engineering (29), 47-78. Zijlema, M. Computation of wind -wave spectra in coastal waters with SWAN on unstructured grids Coastal Engineering, 2010, 57, 267-277 ...supply and wind on tidal flat sediment transport. It will be used to evaluate the capabilities of state-of-the-art open source sediment models and to

  12. Magnon-drag thermopile.

    PubMed

    Costache, Marius V; Bridoux, German; Neumann, Ingmar; Valenzuela, Sergio O

    2011-12-18

    Thermoelectric effects in spintronics are gathering increasing attention as a means of managing heat in nanoscale structures and of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role; however, little is known about the underlying physical mechanisms involved. The reason is the lack of information about magnon interactions and of reliable methods to obtain it, in particular for electrical conductors because of the intricate influence of electrons. Here, we demonstrate a conceptually new device that enables us to gather information on magnon-electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon-drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. This information is crucial to understand the physics of electron-magnon interactions, magnon dynamics and thermal spin transport.

  13. A Theoretical and Experimental Investigation of the Lift and Drag Characteristics of Hydrofoils at Subcritical and Supercritical Speeds

    NASA Technical Reports Server (NTRS)

    Wadlin, Kenneth L; Shuford, Charles L , Jr; Mcgehee, John R

    1955-01-01

    A theoretical and experimental investigation at subcavitation speeds was made of the effect of the free-water surface and rigid boundaries on the lift and drag of an aspect-ratio-10 hydrofoil at both subcritical and supercritical speeds and of an aspect ratio-4 hydrofoil at supercritical speeds. Approximate theoretical solutions for the effects of the free-water surface and rigid boundaries on drag at subcritical speeds are developed. An approximate theoretical solution for the effects of these boundaries on drag at subcritical speeds is also presented. The agreement between theory and experiment at both supercritical and subcritical speeds is satisfactory for engineering calculations of hydrofoil characteristics from aerodynamic data. The experimental investigation indicated no appreciable effect of the limiting speed of wave propagation on lift-curve slope or angle of zero lift. It also showed that the increase in drag as the critical speed is approached from the supercritical range is gradual. The result is contrary to the abrupt increase at the critical speed predicted by theory.

  14. On hydrodynamics of drag and lift of the human arm.

    PubMed

    Gardano, Paola; Dabnichki, Peter

    2006-01-01

    The work presents results on drag and lift measurement conducted in a low speed wind tunnel on a replica of the entire human arm. The selected model positions were identical to those during purely rotational front crawl stroke in quasi-static conditions. A computational fluid dynamics model using Fluent showed close correspondence with the experimental results and confirmed the suitability of low speed wind tunnel for the drag and lift measurement in quasi-static conditions. The obtained profiles of the hydrodynamic forces were similar to the dynamic data presented in an earlier study suggesting that shape drag is a major contributing factor in propulsive force generation. The aim of this study was to underline the importance of the entire arm analysis, the elbow angle and a newly defined angle of attack representing the angle of shoulder rotation. It was found that both the maximum value of the drag force at 160 degrees elbow flexion angle and the momentum generated by it exceed the respective magnitudes for the fully extended arm. The latter is underlined by a prolonged plateau of near maximum drag that was obtained at shoulder angle range of 50-140 degrees suggesting that optimal arm configuration in terms of propulsive force generation requires elbow flexion. Furthermore it was found that drag trend is not consistent with the widely assumed and used sinus wave profile. A gap in the existing experimental research was filled as for the first time the entire arm lift and drag was measured across the entire stroke range.

  15. Investigating the impact of surface wave breaking on modeling the trajectories of drifters in the northern Adriatic Sea during a wind-storm event

    USGS Publications Warehouse

    Carniel, S.; Warner, J.C.; Chiggiato, J.; Sclavo, M.

    2009-01-01

    An accurate numerical prediction of the oceanic upper layer velocity is a demanding requirement for many applications at sea and is a function of several near-surface processes that need to be incorporated in a numerical model. Among them, we assess the effects of vertical resolution, different vertical mixing parameterization (the so-called Generic Length Scale -GLS- set of k-??, k-??, gen, and the Mellor-Yamada), and surface roughness values on turbulent kinetic energy (k) injection from breaking waves. First, we modified the GLS turbulence closure formulation in the Regional Ocean Modeling System (ROMS) to incorporate the surface flux of turbulent kinetic energy due to wave breaking. Then, we applied the model to idealized test cases, exploring the sensitivity to the above mentioned factors. Last, the model was applied to a realistic situation in the Adriatic Sea driven by numerical meteorological forcings and river discharges. In this case, numerical drifters were released during an intense episode of Bora winds that occurred in mid-February 2003, and their trajectories compared to the displacement of satellite-tracked drifters deployed during the ADRIA02-03 sea-truth campaign. Results indicted that the inclusion of the wave breaking process helps improve the accuracy of the numerical simulations, subject to an increase in the typical value of the surface roughness z0. Specifically, the best performance was obtained using ??CH = 56,000 in the Charnok formula, the wave breaking parameterization activated, k-?? as the turbulence closure model. With these options, the relative error with respect to the average distance of the drifter was about 25% (5.5 km/day). The most sensitive factors in the model were found to be the value of ??CH enhanced with respect to a standard value, followed by the adoption of wave breaking parameterization and the particular turbulence closure model selected. ?? 2009 Elsevier Ltd.

  16. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Grishkov, V. E.; Uryupin, S. A.

    2017-03-01

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron-ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  17. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  18. Average Skin-Friction Drag Coefficients from Tank Tests of a Parabolic Body of Revolution (NACA RM-10)

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J; Loposer, J Dan

    1954-01-01

    Average skin-friction drag coefficients were obtained from boundary-layer total-pressure measurements on a parabolic body of revolution (NACA rm-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4 x 10(6) to 70 x 10(6). The tests were made in the Langley tank no. 1 with the body sting-mounted at a depth of two maximum body diameters. The arithmetic mean of three drag measurements taken around the body was in good agreement with flat-plate results, but, apparently because of the slight surface wave caused by the body, the distribution of the boundary layer around the body was not uniform over part of the Reynolds number range.

  19. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  20. Computational simulations of the interaction of water waves with pitching flap-type ocean wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Using an in-house computational framework, we have studied the interaction of water waves with pitching flap-type ocean wave energy converters (WECs). The computational framework solves the full 3D Navier-Stokes equations and captures important effects, including the fluid-solid interaction, the nonlinear and viscous effects. The results of the computational tool, is first compared against the experimental data on the response of a flap-type WEC in a wave tank, and excellent agreement is demonstrated. Further simulations at the model and prototype scales are presented to assess the validity of the Froude scaling. The simulations are used to address some important questions, such as the validity range of common WEC modeling approaches that rely heavily on the Froude scaling and the inviscid potential flow theory. Additionally, the simulations examine the role of the Keulegan-Carpenter (KC) number, which is often used as a measure of relative importance of viscous drag on bodies exposed to oscillating flows. The performance of the flap-type WECs is investigated at various KC numbers to establish the relationship between the viscous drag and KC number for such geometry. That is of significant importance because such relationship only exists for simple geometries, e.g., a cylinder. Support from the National Science Foundation is gratefully acknowledged.

  1. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    PubMed

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  2. Spectral cumulus parameterization based on cloud-resolving model

    NASA Astrophysics Data System (ADS)

    Baba, Yuya

    2018-02-01

    We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.

  3. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    USGS Publications Warehouse

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.

  4. INTERACTIONS OF RAPIDLY MOVING BODIES IN TERRESTRIAL ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, K.P.

    1960-03-31

    The drag of a moving body or satellite in the upper atmosphere where the molecular mean free paths are large is studied with special reference to interactions with magnetic fields. The various models for aerodynamic drag are reviewed, and some theoretical expectations for cone and cylindrical satellites (Sputnik III and Explorer IV) are tabulated, tumbling effects included. Gyration of charged particles in a magnetic field is studied; at the altitudes of interest, electrons but not ions are free to spiral. Satellites will become charged because of their contact with charged particles; they usually become negatively charged and, since their velocitymore » is greater than that of ions, they behave like enormous ions with large charges. There is also drag due to Coulomb interaction of the satellite with charged particles, which describe hyperbolic orbits around the satellite. Present theories of Coulomb drag are critically reviewed. According to the Chopra-Singer theory, Coulomb drag contributes significantly to the total drag at 350 km, becomes comparable to the neutral drag at 500 km, and is predominant above 650 km. The next kind of drag considered is induction drag, caused by electric currents induced by the motion through the magnetic field. Induction drag tends to damp out rotational as well as translational motion and is negligible compared to neutral drag at 250 km but becomes large at 500 km. A sphere in strong magnetic fields does not affect the magnetic fields if the Reynolds number of flow is large and the magnetic Reynolds number is small, and a cylinder of fInid with radius equal to that of the sphere is pushed out in front of the sphere. Large magnetic Reynolds numbers are also considered. Another kind of drag is that caused by generation of electromagnetic waves from the satellite; they propagate along the direction of the magnetic field at a velocity slightly less than that of the satellite. The contribution of this drag is negligible at 250 km but is comparable to the Coulomb drag at 800 kin. Experimental apparatus for the simulation of electron and ion bombardment and aerodynamical testing of a satellite are described. A bibliography of 103 references is given. (D.L.C.)« less

  5. Flow Around Steep Topography

    DTIC Science & Technology

    2015-09-30

    interest in these activities. These tours are being coordinated with the Coral Reef Research Foundation (CRRF), a research organization in Palau...form drag, lee waves , eddy generation) over small-scale topographic features and (ii) fundamentally nonlinear processes (turbulent island wakes...detail in another annual report. From 9 October to 12 November 2015, another SeaSoar cruise on Revelle will focus on wakes and arrested lee waves near

  6. A depth-averaged 2-D shallow water model for breaking and non-breaking long waves affected by rigid vegetation

    USDA-ARS?s Scientific Manuscript database

    This paper presents a depth-averaged two-dimensional shallow water model for simulating long waves in vegetated water bodies under breaking and non-breaking conditions. The effects of rigid vegetation are modelled in the form of drag and inertia forces as sink terms in the momentum equations. The dr...

  7. Application of the adjoint optimisation of shock control bump for ONERA-M6 wing

    NASA Astrophysics Data System (ADS)

    Nejati, A.; Mazaheri, K.

    2017-11-01

    This article is devoted to the numerical investigation of the shock wave/boundary layer interaction (SWBLI) as the main factor influencing the aerodynamic performance of transonic bumped airfoils and wings. The numerical analysis is conducted for the ONERA-M6 wing through a shock control bump (SCB) shape optimisation process using the adjoint optimisation method. SWBLI is analyzed for both clean and bumped airfoils and wings, and it is shown how the modified wave structure originating from upstream of the SCB reduces the wave drag, by improving the boundary layer velocity profile downstream of the shock wave. The numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm are used to find the optimum location and shape of the SCB for the ONERA-M6 airfoil and wing. Two different geometrical models are introduced for the 3D SCB, one with linear variations, and another with periodic variations. Both configurations result in drag reduction and improvement in the aerodynamic efficiency, but the periodic model is more effective. Although the three-dimensional flow structure involves much more complexities, the overall results are shown to be similar to the two-dimensional case.

  8. Curvilinear trajectory estimation of a supersonic bullet using ballistic shock wave arrivals at asynchronous acoustic sensor nodes.

    PubMed

    Lo, Kam W

    2017-06-01

    The trajectory of a supersonic bullet, which is subjected to drag and gravity, is curvilinear and the supersonic flight of the bullet generates a ballistic shock wave (SW). A model for the differential time of arrival (DTOA) of the SW at a pair of acoustic sensors is derived for a given bullet trajectory, which is fully described by seven parameters including the drag coefficient exponent and ballistic constant of the bullet. Assuming that the drag coefficient exponent is 0.5, the DTOA model is used to develop a nonlinear least-squares (NLS) method to estimate the other six trajectory parameters using DTOA of SW measurements from each node (which comprises a small acoustic sensor array) of an asynchronous sensor network. The position of the shooter and the muzzle speed of the bullet are then determined by tracing the estimated bullet trajectory back to topographic or man-made obstructions on a digital map. The effectiveness of the NLS method is verified using simulated data for different types of real bullets, and the error standard deviations in the parameter estimates are close to the Cramer-Rao lower bounds.

  9. A study of transonic aerodynamic analysis methods for use with a hypersonic aircraft synthesis code

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Davis, Paul Christopher

    1992-01-01

    A means of performing routine transonic lift, drag, and moment analyses on hypersonic all-body and wing-body configurations were studied. The analysis method is to be used in conjunction with the Hypersonic Vehicle Optimization Code (HAVOC). A review of existing techniques is presented, after which three methods, chosen to represent a spectrum of capabilities, are tested and the results are compared with experimental data. The three methods consist of a wave drag code, a full potential code, and a Navier-Stokes code. The wave drag code, representing the empirical approach, has very fast CPU times, but very limited and sporadic results. The full potential code provides results which compare favorably to the wind tunnel data, but with a dramatic increase in computational time. Even more extreme is the Navier-Stokes code, which provides the most favorable and complete results, but with a very large turnaround time. The full potential code, TRANAIR, is used for additional analyses, because of the superior results it can provide over empirical and semi-empirical methods, and because of its automated grid generation. TRANAIR analyses include an all body hypersonic cruise configuration and an oblique flying wing supersonic transport.

  10. The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO

    NASA Astrophysics Data System (ADS)

    Hindley, N. P.; Wright, C. J.; Smith, N. D.; Mitchell, N. J.

    2015-07-01

    Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they advance our understanding of the nature and origins of waves in the southern stratosphere.

  11. Ubiquitous Instabilities of Dust Moving in Magnetized Gas

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Squire, Jonathan

    2018-06-01

    Squire & Hopkins (2017) showed that coupled dust-gas mixtures are generically subject to "resonant drag instabilities" (RDIs), which drive violently-growing fluctuations in both. But the role of magnetic fields and charged dust has not yet been studied. We therefore explore the RDI in gas which obeys ideal MHD and is coupled to dust via both Lorentz forces and drag, with an external acceleration (e.g., gravity, radiation) driving dust drift through gas. We show this is always unstable, at all wavelengths and non-zero values of dust-to-gas ratio, drift velocity, dust charge, "stopping time" or drag coefficient (for any drag law), or field strength; moreover growth rates depend only weakly (sub-linearly) on these parameters. Dust charge and magnetic fields do not suppress instabilities, but give rise to a large number of new instability "families," each with distinct behavior. The "MHD-wave" (magnetosonic or Alfvén) RDIs exhibit maximal growth along "resonant" angles where the modes have a phase velocity matching the corresponding MHD wave, and growth rates increase without limit with wavenumber. The "gyro" RDIs are driven by resonances between drift and Larmor frequencies, giving growth rates sharply peaked at specific wavelengths. Other instabilities include "acoustic" and "pressure-free" modes (previously studied), and a family akin to cosmic ray instabilities which appear when Lorentz forces are strong and dust streams super-Alfvénically along field lines. We discuss astrophysical applications in the warm ISM, CGM/IGM, HII regions, SNe ejecta/remnants, Solar corona, cool-star winds, GMCs, and AGN.

  12. First Test of Long-Range Collisional Drag via Plasma Wave Damping

    NASA Astrophysics Data System (ADS)

    Affolter, Matthew

    2017-10-01

    In magnetized plasmas, the rate of particle collisions is enhanced over classical predictions when the cyclotron radius rc is less than the Debye length λD. Classical theories describe local velocity scattering collisions with impact parameters ρ

  13. Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement.

    PubMed

    Yekutieli, Yoram; Sagiv-Zohar, Roni; Aharonov, Ranit; Engel, Yaakov; Hochner, Binyamin; Flash, Tamar

    2005-08-01

    The octopus arm requires special motor control schemes because it consists almost entirely of muscles and lacks a rigid skeletal support. Here we present a 2D dynamic model of the octopus arm to explore possible strategies of movement control in this muscular hydrostat. The arm is modeled as a multisegment structure, each segment containing longitudinal and transverse muscles and maintaining a constant volume, a prominent feature of muscular hydrostats. The input to the model is the degree of activation of each of its muscles. The model includes the external forces of gravity, buoyancy, and water drag forces (experimentally estimated here). It also includes the internal forces generated by the arm muscles and the forces responsible for maintaining a constant volume. Using this dynamic model to investigate the octopus reaching movement and to explore the mechanisms of bend propagation that characterize this movement, we found the following. 1) A simple command producing a wave of muscle activation moving at a constant velocity is sufficient to replicate the natural reaching movements with similar kinematic features. 2) The biomechanical mechanism that produces the reaching movement is a stiffening wave of muscle contraction that pushes a bend forward along the arm. 3) The perpendicular drag coefficient for an octopus arm is nearly 50 times larger than the tangential drag coefficient. During a reaching movement, only a small portion of the arm is oriented perpendicular to the direction of movement, thus minimizing the drag force.

  14. Wind-wave coupling in the atmospheric boundary layer over a reservoir: field measurements and verification of the model

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Papko, Vladislav; Baidakov, Georgy; Vdovin, Maxim; Kandaurov, Alexander; Sergeev, Daniil

    2013-04-01

    This paper presents the results of field experiments conducted at the Gorky Reservoir to test a quasi-linear model of the atmospheric boundary layer [1]. In the course of the experiment we simultaneously measured profiles of wind speed and surface wave spectra using instruments placed on the Froude buoy, which measures the following parameters: i) the module and the direction of the wind speed using ultrasonic wind sensor WindSonic Gill instruments, located on the 4 - levels from 0.1 x 5 m long; ii) profile of the surface waves with 3-channel string wave-gauge with a base of 5 cm, iii) the temperature of the water and air with a resistive sensor. From the measured profiles of wind speed, we calculated basic parameters of the atmospheric boundary layer: the friction velocity u*, the wind speed at the standard height of 10 m U10 and the drag coefficient CD. Data on CD(U10), obtained at the Gorky Reservoir, were compared with similar data obtained on Lake George in Australia during the Australian Shallow Water Experiment (AUSWEX) conducted in 1997 - 1999 [2,3]. A good agreement was obtained between measured data at two different on the parameters of inland waters: deep Gorky reservoir and shallow Lake George.To elucidate the reasons for this coincidence of the drag coefficients under strongly different conditions an analysis of surface waves was conducted.Measurements have shown that in both water bodies the surface wave spectra have almost the same asymptotics (spatial spectrum - k-3, the frequency spectrum -5), corresponding to the Phillips saturation spectrum.These spectra are typically observed for the steep surface waves, for which the basic dissipation mechanism is wave breaking. The similarity of the short-wave parts of the spectra can be regarded as a probable cause of coincidence of dependency of drag coefficient of the water surface on wind speed. Quantitative verification of this hypothesis was carried out in the framework of quasi-linear model of the wind over the waves [1]. In the calculations the input parameters are measured friction velocity of wind and surface wave spectrum. The appropriate wind speed at the standard height of 10 m and the resistance coefficient surface were calculated. It is shown that at a wind speed of 6 m/s, the model reproduces the measurements. Significant difference of model predictions and measurements at lower values may be due to large measurement error caused by the nonstationarity of weak winds. Authors are grateful to prof. A.Babanin for fruitful discussion and access to data of AUSWEX. This work was supported by RFBR (project 11-05-12047-ofi-m, 13-05-00865-a, 12-05-33070). References 1. Troitskaya, Y. I., D. A. Sergeev, A. A. Kandaurov, G. A.Baidakov, M A. Vdovin, and V. I. Kazakov Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions J.Geophys. Res., 117, C00J21, doi:10.1029/2011JC007778 2. Donelan M.A., Babanin A.V., Young I.R., Banner M.L., McCormick C. Wave follower field measurements of the wind input spectral function. Part I: Measurements and calibrations // J. Atmos. Oceanic Technol., 2005. V. 22. P. 799-813. 3. Babanin, A.V., and V.K. Makin: Effects of wind trend and gustiness on the sea drag: Lake George study. Journal of Geophysical Research, 2008, 113, C02015, doi:10.1029/2007JC004233, 18p

  15. The Impact of Parameterized Convection on Climatological Precipitation in Atmospheric Global Climate Models

    NASA Astrophysics Data System (ADS)

    Maher, Penelope; Vallis, Geoffrey K.; Sherwood, Steven C.; Webb, Mark J.; Sansom, Philip G.

    2018-04-01

    Convective parameterizations are widely believed to be essential for realistic simulations of the atmosphere. However, their deficiencies also result in model biases. The role of convection schemes in modern atmospheric models is examined using Selected Process On/Off Klima Intercomparison Experiment simulations without parameterized convection and forced with observed sea surface temperatures. Convection schemes are not required for reasonable climatological precipitation. However, they are essential for reasonable daily precipitation and constraining extreme daily precipitation that otherwise develops. Systematic effects on lapse rate and humidity are likewise modest compared with the intermodel spread. Without parameterized convection Kelvin waves are more realistic. An unexpectedly large moist Southern Hemisphere storm track bias is identified. This storm track bias persists without convection schemes, as does the double Intertropical Convergence Zone and excessive ocean precipitation biases. This suggests that model biases originate from processes other than convection or that convection schemes are missing key processes.

  16. Use of On-Line Tracers as a Diagnostic Tool in General Circulation Model Development. 2; Transport Between the Troposphere and Stratosphere

    NASA Technical Reports Server (NTRS)

    Rind, David H.; Lerner, Jean; Shah, Kathy; Suozzo, Robert

    1999-01-01

    A key component of climate/chemistry modeling is how to handle the influx into (and egress from) the troposphere. This is especially important when considering tropospheric ozone, and its precursors (e.g., NO(x) from aircraft). A study has been conducted with various GISS models to determine the minimum requirements necessary for producing realistic troposphere-stratosphere exchange. Four on-line tracers are employed: CFC-11 and SF6 for mixing from the troposphere into the stratosphere, Rn222 for vertical mixing within the troposphere, and 14C for mixing from the stratosphere into the troposphere. Four standard models are tested, with varying vertical resolution, gravity wave drag and location of the model top, and additional subsidiary models are employed to examine specific features. The results show that proper vertical transport between the troposphere and stratosphere in the GISS models requires lifting the top of the model considerably out of the stratosphere, and including gravity wave drag in the lower stratosphere. Increased vertical resolution without these aspects does not improve troposphere-stratosphere exchange. The transport appears to be driven largely by the residual circulation within the stratosphere; associated E-P flux convergences require both realistic upward propagating energy from the troposphere, and realistic pass-through possibilities. A 23 layer version with a top at the mesopause and incorporating gravity wave drag appears to have reasonable stratospheric-tropospheric exchange, in terms of both the resulting tracer distributions and atmospheric mass fluxes.

  17. The influence of orographic waves and quasi-biennial oscillations on vertical ozone flux in the model of general atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.

    2017-11-01

    A parameterization of the dynamical and thermal effects of orographic gravity waves (OGWs) and assimilation quasibiennial oscillations (QBOs) of the zonal wind in the equatorial lower atmosphere are implemented into the numerical model of the general circulation of the middle and upper atmosphere MUAM. The sensitivity of vertical ozone fluxes to the effects of stationary OGWs at different QBO phases at altitudes up to 100 km for January is investigated. The simulated changes in vertical velocities produce respective changes in vertical ozone fluxes caused by the effects of the OGW parameterization and the transition from the easterly to the westerly QBO phase. These changes can reach 40 - 60% in the Northern Hemisphere at altitudes of the middle atmosphere.

  18. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system

    USGS Publications Warehouse

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.

  19. Ekman pumping mechanism driving precipitation anomalies in response to equatorial heating

    NASA Astrophysics Data System (ADS)

    Hamouda, Mostafa E.; Kucharski, Fred

    2018-03-01

    In this paper some basic mechanisms for rainfall teleconnections to a localized tropical sea surface temperature anomaly are re-visited using idealized AGCM aqua-planet simulations. The dynamical response is generally in good agreement with the Gill-Matsuno theory. The mechanisms analyzed are (1) the stabilization of the tropical troposphere outside the heating region, (2) the Walker circulation modification and (3) Ekman pumping induced by the low-level circulation responses. It is demonstrated that all three mechanisms, and in particular (2) and (3), contribute to the remote rainfall teleconnections. However, mechanism (3) best coincides with the overall horizontal structure of rainfall responses. It is shown by using the models boundary layer parameterization that low-level vertical velocities are indeed caused by Ekman pumping and that this induces vertical velocities in the whole tropospheric column through convective feedbacks. Also the modification of the responses due to the presence of idealized warm pools is investigated. It is shown that warm pools modify the speed of the tropical waves, consistent with Doppler shifts and are thus able to modify the Walker circulation adjustments and remote rainfall responses. The sensitivity of the responses, and in particular the importance of the Ekman pumping mechanism, to large variations in the drag coefficient is also tested, and it is shown that the Ekman pumping mechanism is robust for a wide range of values.

  20. Quantitative Experimental Determination of Primer-Dimer Formation Risk by Free-Solution Conjugate Electrophoresis

    PubMed Central

    Desmarais, Samantha M.; Leitner, Thomas; Barron, Annelise E.

    2012-01-01

    DNA barcodes are short, unique ssDNA primers that “mark” individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis (FSCE) approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer-barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 basepairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive basepairs formed, yet non-consecutive basepairs did not create stable dimers even when 20 out of 30 possible basepairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation. PMID:22331820

  1. Global Measurements of Stratospheric Mountain Waves from Space

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Preusse, Peter; Jackman, Charles H. (Technical Monitor)

    1999-01-01

    Temperatures acquired by the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) during shuttle mission STS-66 have provided measurements of stratospheric mountain waves from space. Large-amplitude, long-wavelength mountain waves at heights of 15 to 30 kilometers above the southern Andes Mountains were observed and characterized, with vigorous wave breaking inferred above 30 kilometers. Mountain waves also occurred throughout the stratosphere (15 to 45 kilometers) over a broad mountainous region of central Eurasia. The global distribution of mountain wave activity accords well with predictions from a mountain wave model. The findings demonstrate that satellites can provide the global data needed to improve mountain wave parameterizations and hence global climate and forecast models.

  2. Drag measurements of an axisymmetric nacelle mounted on a flat plate at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Wilcox, Floyd J., Jr.

    1995-01-01

    An experimental investigation was conducted to determine the effect of diverter wedge half-angle and nacelle lip height on the drag characteristics of an assembly consisting of a nacelle fore cowl from a typical high-speed civil transport (HSCT) and a diverter mounted on a flat plate. Data were obtained for diverter wedge half-angles of 4.0 deg, 6.0 deg, and 8.0 deg and ratios of the nacelle lip height above a flat plate to the boundary-layer thickness (h(sub n)/delta) of approximately 0.87 to 2.45. Limited drag data were also obtained on a complete nacelle/diverter configuration that included fore and aft cowls. Although the nacelle/diverter drag data were not corrected for base pressures or internal flow drag, the data are useful for comparing the relative drag of the configuration tested. The tests were conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.50, 1.80, 2.10, and 2.40 and Reynolds numbers ranging from 2.00 x 10(exp 6) to 5.00 x 10(exp 6) per foot. The results of this investigation showed that the nacelle/diverter drag essentially increased linearly with increasing h(sub n)/delta except near 1.0 where the data showed a nonlinear behavior. This nonlinear behavior was probably caused by the interaction of the shock waves from the nacelle/diverter configuration with the flat-plate boundary layer. At the lowest h(sub n)/delta tested, the diverter wedge half-angle had virtually no effect on the nacelle/diverter drag. However, as h(sub n)/delta increased, the nacelle/diverter drag increased as diverter wedge half-angle increased.

  3. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    NASA Technical Reports Server (NTRS)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In the tropics, only with the AD parameterization can the model produce realistic semiannual oscillations.

  4. Prediction of Drag Reduction in Supersonic and Hypersonic Flows with Counterflow Jets

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O.; Beaulieu, Warren; Hager, James O.; Turner, James E. (Technical Monitor)

    2002-01-01

    Computational fluid dynamics solutions of the flowfield of a truncated cone-cylinder with and without counterflow jets have been obtained for the short penetration mode (SPM) and long penetration mode (LPM) of the freestream-counterflow jet interaction flowfield. For the case without the counterflow jet, the comparison of the normalized surface pressures showed very good agreement with experimental data. For the case with the SPM jet, the predicted surface pressures did not compare as well with the experimental data upstream of the expansion corner, while aft of the expansion corner, the comparison of the solution and the data is seen to give much better agreement. The difference in the prediction and the data could be due to the transient character of the jet penetration modes, possible effects of the plasma physics that are not accounted for here, or even the less likely effect of flow turbulence, etc. For the LPM jet computations, one-dimensional isentropic relations were used to derived the jet exit conditions in order to obtain the LPM solutions. The solution for the jet exit Mach number of 3 shows a jet penetration several times longer than that of the SPM, and therefore much weaker bow shock, with an attendant reduction in wave drag. The LPM jet is, in essence, seen to be a "pencil" of fluid, with much higher dynamic pressure, embedded in the oncoming supersonic or hypersonic freestream. The methodology for determining the conditions for the LPM jet could enable a practical approach for the design and application of counterflow LPM jets for the reduction of wave drag and heat flux, thus significantly enhancing the aerodynamic characteristics and aerothermal performance of supersonic and hypersonic vehicles. The solutions show that the qualitative flow structure is very well captured. The obtained results, therefore, suggest that counterflowing jets are viable candidate technology concepts that can be employed to give significant reductions in wave drag, heat flux, and other attendant aerodynamic benefits.

  5. Accurate predictor-corrector skip entry guidance for low lift-to-drag ratio spacecraft

    NASA Astrophysics Data System (ADS)

    Enmi, Y.; Qian, W.; He, K.; Di, D.

    2018-06-01

    This paper develops numerical predictor-corrector skip en try guidance for vehicles with low lift-to-drag L/D ratio during the skip entry phase of a Moon return mission. The guidance method is composed of two parts: trajectory planning before entry and closed-loop gu idance during skip entry. The result of trajectory planning before entry is able to present an initial value for predictor-corrector algorithm in closed-loop guidance for fast convergence. The magnitude of bank angle, which is parameterized as a linear function of the range-to-go, is modulated to satisfy the downrange requirements. The sign of the bank ang le is determined by the bank-reversal logic. The predictor-corrector algorithm repeatedly applied onboard in each guidance cycle to realize closed-loop guidance in the skip entry phase. The effectivity of the proposed guidance is validated by simulations in nominal conditions, including skip entry, loft entry, and direct entry, as well as simulations in dispersion conditions considering the combination disturbance of the entry interface, the aerodynamic coefficients, the air density, and the mass of the vehicle.

  6. LES Modeling of Lateral Dispersion in the Ocean on Scales of 10 m to 10 km

    DTIC Science & Technology

    2015-10-20

    ocean on scales of 0.1-10 km that can be implemented in larger-scale ocean models. These parameterizations will incorporate the effects of local...ocean on scales of 0.1-10 km that can be implemented in larger-scale ocean models. These parameterizations will incorporate the effects of local...www.fields.utoronto.ca/video-archive/static/2013/06/166-1766/mergedvideo.ogv) and at the Nonlinear Effects in Internal Waves Conference held at Cornell University

  7. Importance of parametrizing constraints in quantum-mechanical variational calculations

    NASA Technical Reports Server (NTRS)

    Chung, Kwong T.; Bhatia, A. K.

    1992-01-01

    In variational calculations of quantum mechanics, constraints are sometimes imposed explicitly on the wave function. These constraints, which are deduced by physical arguments, are often not uniquely defined. In this work, the advantage of parametrizing constraints and letting the variational principle determine the best possible constraint for the problem is pointed out. Examples are carried out to show the surprising effectiveness of the variational method if constraints are parameterized. It is also shown that misleading results may be obtained if a constraint is not parameterized.

  8. Aerothermodynamic shape optimization of hypersonic blunt bodies

    NASA Astrophysics Data System (ADS)

    Eyi, Sinan; Yumuşak, Mine

    2015-07-01

    The aim of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on the axisymmetric Euler/Navier-Stokes and finite-rate chemical reaction equations. The equations are coupled simultaneously and solved implicitly using Newton's method. The Jacobian matrix is evaluated analytically. A gradient-based numerical optimization is used. The adjoint method is utilized for sensitivity calculations. The objective of the design is to generate a hypersonic blunt geometry that produces the minimum drag with low aerodynamic heating. Bezier curves are used for geometry parameterization. The performances of the design optimization method are demonstrated for different hypersonic flow conditions.

  9. The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative Parameterizations. Part 1: African Wave Circulation

    NASA Technical Reports Server (NTRS)

    Noble, Erik; Druyan, Leonard M.; Fulakeza, Matthew

    2014-01-01

    The performance of the NCAR Weather Research and Forecasting Model (WRF) as a West African regional-atmospheric model is evaluated. The study tests the sensitivity of WRF-simulated vorticity maxima associated with African easterly waves to 64 combinations of alternative parameterizations in a series of simulations in September. In all, 104 simulations of 12-day duration during 11 consecutive years are examined. The 64 combinations combine WRF parameterizations of cumulus convection, radiation transfer, surface hydrology, and PBL physics. Simulated daily and mean circulation results are validated against NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and NCEP/Department of Energy Global Reanalysis 2. Precipitation is considered in a second part of this two-part paper. A wide range of 700-hPa vorticity validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve correlations against reanalysis of 0.40-0.60 and realistic amplitudes of spatiotemporal variability for the 2006 focus year while a parallel-benchmark simulation by the NASA Regional Model-3 (RM3) achieves higher correlations, but less realistic spatiotemporal variability. The largest favorable impact on WRF-vorticity validation is achieved by selecting the Grell-Devenyi cumulus convection scheme, resulting in higher correlations against reanalysis than simulations using the Kain-Fritch convection. Other parameterizations have less-obvious impact, although WRF configurations incorporating one surface model and PBL scheme consistently performed poorly. A comparison of reanalysis circulation against two NASA radiosonde stations confirms that both reanalyses represent observations well enough to validate the WRF results. Validation statistics for optimized WRF configurations simulating the parallel period during 10 additional years are less favorable than for 2006.

  10. Performance evaluation of WAVEWATCH III model in the Persian Gulf using different wind resources

    NASA Astrophysics Data System (ADS)

    Kazeminezhad, Mohammad Hossein; Siadatmousavi, Seyed Mostafa

    2017-07-01

    The third-generation wave model, WAVEWATCH III, was employed to simulate bulk wave parameters in the Persian Gulf using three different wind sources: ERA-Interim, CCMP, and GFS-Analysis. Different formulations for whitecapping term and the energy transfer from wind to wave were used, namely the Tolman and Chalikov (J Phys Oceanogr 26:497-518, 1996), WAM cycle 4 (BJA and WAM4), and Ardhuin et al. (J Phys Oceanogr 40(9):1917-1941, 2010) (TEST405 and TEST451 parameterizations) source term packages. The obtained results from numerical simulations were compared to altimeter-derived significant wave heights and measured wave parameters at two stations in the northern part of the Persian Gulf through statistical indicators and the Taylor diagram. Comparison of the bulk wave parameters with measured values showed underestimation of wave height using all wind sources. However, the performance of the model was best when GFS-Analysis wind data were used. In general, when wind veering from southeast to northwest occurred, and wind speed was high during the rotation, the model underestimation of wave height was severe. Except for the Tolman and Chalikov (J Phys Oceanogr 26:497-518, 1996) source term package, which severely underestimated the bulk wave parameters during stormy condition, the performances of other formulations were practically similar. However, in terms of statistics, the Ardhuin et al. (J Phys Oceanogr 40(9):1917-1941, 2010) source terms with TEST405 parameterization were the most successful formulation in the Persian Gulf when compared to in situ and altimeter-derived observations.

  11. Aerodynamic tests and analysis of a turbojet-boosted launch vehicle concept (spacejet) over a Mach number range of 1.50 to 2.86. [Langley Unitary Plan Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Riebe, G. D.; Small, W. J.; Morris, O. A.

    1981-01-01

    Results from analytical and experimental studies of the aerodynamic characteristics of a turbojet-boosted launch vehicle concept through a Mach number range of 1.50 to 2.86 are presented. The vehicle consists of a winged orbiter utilizing an area-ruled axisymmetric body and two winged turbojet boosters mounted underneath the orbiter wing. Drag characteristics near zero lift were of prime interest. Force measurements and flow visualization techniques were employed. Estimates from wave drag theory, supersonic lifting surface theory, and impact theory are compared with data and indicate the ability of these theories to adequately predict the aerodynamic characteristics of the vehicle. Despite the existence of multiple wings and bodies in close proximity to each other, no large scale effects of boundary layer separation on drag or lift could be discerned. Total drag levels were, however, sensitive to booster locations.

  12. On the Application of Contour Bumps for Transonic Drag Reduction(Invited)

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Owens, Lewis R.

    2005-01-01

    The effect of discrete contour bumps on reducing the transonic drag at off-design conditions on an airfoil have been examined. The research focused on fully-turbulent flow conditions, at a realistic flight chord Reynolds number of 30 million. State-of-the-art computational fluid dynamics methods were used to design a new baseline airfoil, and a family of fixed contour bumps. The new configurations were experimentally evaluated in the 0.3-m Transonic Cryogenic Tunnel at the NASA Langley Research center, which utilizes an adaptive wall test section to minimize wall interference. The computational study showed that transonic drag reduction, on the order of 12% - 15%, was possible using a surface contour bump to spread a normal shock wave. The computational study also indicated that the divergence drag Mach number was increased for the contour bump applications. Preliminary analysis of the experimental data showed a similar contour bump effect, but this data needed to be further analyzed for residual wall interference corrections.

  13. Mach wave properties in the presence of source and medium heterogeneity

    NASA Astrophysics Data System (ADS)

    Vyas, J. C.; Mai, P. M.; Galis, M.; Dunham, Eric M.; Imperatori, W.

    2018-06-01

    We investigate Mach wave coherence for kinematic supershear ruptures with spatially heterogeneous source parameters, embedded in 3D scattering media. We assess Mach wave coherence considering: 1) source heterogeneities in terms of variations in slip, rise time and rupture speed; 2) small-scale heterogeneities in Earth structure, parameterized from combinations of three correlation lengths and two standard deviations (assuming von Karman power spectral density with fixed Hurst exponent); and 3) joint effects of source and medium heterogeneities. Ground-motion simulations are conducted using a generalized finite-difference method, choosing a parameterization such that the highest resolved frequency is ˜5 Hz. We discover that Mach wave coherence is slightly diminished at near fault distances (< 10 km) due to spatially variable slip and rise time; beyond this distance the Mach wave coherence is more strongly reduced by wavefield scattering due to small-scale heterogeneities in Earth structure. Based on our numerical simulations and theoretical considerations we demonstrate that the standard deviation of medium heterogeneities controls the wavefield scattering, rather than the correlation length. In addition, we find that peak ground accelerations in the case of combined source and medium heterogeneities are consistent with empirical ground motion prediction equations for all distances, suggesting that in nature ground shaking amplitudes for supershear ruptures may not be elevated due to complexities in the rupture process and seismic wave-scattering.

  14. Wave modeling for the Beaufort and Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Rogers, W.; Thomson, J.; Shen, H. H.; Posey, P. G.; Hebert, D. A.

    2016-02-01

    Authors: W. Erick Rogers(1), Jim Thomson(2), Hayley Shen (3), PamelaPosey (1), David Hebert (1) 1 Naval Research Laboratory, Stennis Space Center, Mississippi, USA2 Applied Physics Laboratory, University of Washington, Seattle,Washington, USA3 Clarkson University, Potsdam, New York, USA Abstract : In this presentation, we will discuss the development and application of numerical models for prediction of wind-generated surface gravity waves to the Arctic Ocean, and specifically the Beaufort and Chukchi Seas, for which the Office of Naval Research (ONR) has supported two major field campaigns in 2014 and 2015. The modeling platform is the spectral wave model WAVEWATCH III (R) (WW3). We will begin by reviewing progress with the model numerics in 2007 and 2008 which permits efficient application at high latitudes. Then, we will discuss more recent progress (2012 to 2015) adding new physics to WW3 for ice effects. The latter include two parameterizations for dissipation by turbulence at the ice/water interface, and a more complex parameterization which treat the ice as a viscoelastic fluid. With these new physics, the primary challenge is to find observational data suitable for calibration of the parameterization, and there are concerns about validity of application of any calibration to the wide variety of ice types that exist in the Arctic (or Southern Ocean). Quality of input is another major challenge, for which some recent progress has been made (at least in the context of ice concentration and ice edge) with data assimilative ice modeling at NRL. We will discuss our recent work to invert for dissipation rate using data from a 2012 mooring in the Beaufort Sea, how the results vary by season (ice retreat vs. advance), and what this tells us in context of those complex physical parameterizations used by the model. We will summarize plans for further development of the model, such as adding scattering by floes, through collaboration with IFREMER (France), and improving on the simple "proportional scaling" treatment of the open water source functions in presence of partial ice cover. Finally, we will discuss lessons learned for wave modeling from the autumn 2015 R/V Sikuliaq cruise supported by ONR.

  15. Turbulence characteristics of velocity and scalars in an internal boundary-layer above a lake

    NASA Astrophysics Data System (ADS)

    Sahlee, E.; Rutgersson, A.; Podgrajsek, E.

    2012-12-01

    We analyze turbulence measurements, including methane, from a small island in a Swedish lake. The turbulence structure was found to be highly influenced by the surrounding land during daytime. Variance spectra of both horizontal velocity and scalars during both unstable and stable stratification displayed a low frequency peak. The energy at lower frequencies displayed a daily variation, increasing in the morning and decreasing in the afternoon. We interpret this behavior as a sign of spectral lag, where the low frequency energy, large eddies, originate from the convective boundary layer above the surrounding land. When the air is advected over the lake the small eddies rapidly equilibrates with new surface forcing. However, the larger eddies remain for an appreciable distance and influence the turbulence in the developing lake boundary layer. The variance of the horizontal velocity is increased by these large eddies however, momentum fluxes and scalar variances and fluxes appear unaffected. The drag coefficient, Stanton number and Dalton number used to parameterize the momentum flux, heat flux and latent heat flux respectively all compare very well with parameterizations developed for open ocean conditions.

  16. Dynamic response of some tentative compliant wall structures to convected turbulence fields

    NASA Technical Reports Server (NTRS)

    Nijim, H. H.; Lin, Y. K.

    1977-01-01

    Some tentative compliant wall structures designed for possible skin friction drag reduction are investigated. Among the structural models considered is a ribbed membrane backed by polyurethane or PVS plastisol. This model is simplified as a beam placed on a viscoelastic foundation as well as on a set of evenly spaced supports. The total length of the beam may be either finite or infinite, and the supports may be either rigid or elastic. Another structural model considered is a membrane mounted over a series of pretensioned wires, also evenly spaced, and the entire membrane is backed by an air cavity. The forcing pressure field is idealized as a frozen random pattern convected downstream at a characteristic velocity. The results are given in terms of the frequency response functions of the system, the spectral density of the structural motion, and the spectral density of the boundary layer pressure including the effect of structural motion. These results are used in a parametric study of structural configurations capable of generating favorable wave lengths, wave amplitudes, and wave speeds in the structural motion for potential drag reduction.

  17. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  18. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  19. Covariance Function for Nearshore Wave Assimilation Systems

    DTIC Science & Technology

    2018-01-30

    covariance can be modeled by a parameterized Gaussian function, for nearshore wave assimilation applications, the covariance function depends primarily on...case of missing values at the compiled time series, the gaps were filled by weighted interpolation. The weights depend on the number of the...averaging, in order to create the continuous time series, filters out the dependency on the instantaneous meteorological and oceanographic conditions

  20. Coupling of wave and circulation models in coastal-ocean predicting systems: A case study for the German Bight

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Wahle, Kathrin

    2015-04-01

    This study addresses the coupling between wind wave and circulation models on the example of the German Bight and its coastal area called the Wadden Sea (the area between the barrier islands and the coast). This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The uncertainties in most of the presently used models result from the nonlinear feedback between strong tidal currents and wind-waves, which can no longer be ignored, in particular in the coastal zone where its role seems to be dominant. A nested modelling system is used in the Helmholtz-Zentrum Geesthacht to producing reliable now- and short-term forecasts of ocean state variables, including wind waves and hydrodynamics. In this study we present analysis of wave and hydrographic observations, as well as the results of numerical simulations. The data base includes ADCP observations and continuous measurements from data stations. The individual and collective role of wind, waves and tidal forcing are quantified. The performance of the forecasting system is illustrated for the cases of several extreme events. Effects of ocean waves on coastal circulation and SST simulations are investigated considering wave-dependent stress and wave breaking parameterization during extreme events, e.g. hurricane Xavier in December, 2013. Also the effect which the circulation exerts on the wind waves is tested for the coastal areas using different parameterizations. The improved skill resulting from the new developments in the forecasting system, in particular during extreme events, justifies further enhancements of the coastal pre-operational system for the North Sea and German Bight.

  1. Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lenain, L.; Melville, W. K.

    2016-02-01

    While sea spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related processes in the coupling of the ocean with the atmosphere, sea spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an air-sea interaction experiment, the ONR phase-resolved High-Resolution Air-Sea Interaction experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The sea-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.

  2. Design of supercritical swept wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P.; Mcfadden, G.

    1982-01-01

    Computational fluid dynamics are used to discuss problems inherent to transonic three-dimensional flow past supercritical swept wings. The formulation for a boundary value problem for the flow past the wing is provided, including consideration of weak shock waves and the use of parabolic coordinates. A swept wing code is developed which requires a mesh of 152 x 10 x 12 points and 200 time cycles. A formula for wave drag is calculated, based on the idea that the conservation form of the momentum equation becomes an entropy inequality measuring the drag, expressible in terms of a small-disturbance equation for a potential function in two dimensions. The entropy inequality has been incorporated in a two-dimensional code for the analysis of transonic flow over airfoils. A method of artificial viscosity is explored for optimum pressure distributions with design, and involves a free boundary problem considering speed over only a portion of the wing.

  3. gLISA: geosynchronous laser interferometer space antenna concepts with off-the-shelf satellites.

    PubMed

    Tinto, M; DeBra, D; Buchman, S; Tilley, S

    2015-01-01

    We discuss two geosynchronous gravitational wave (GW) mission concepts, which we generically name gLISA. One relies on the science instrument hosting program onboard geostationary commercial satellites, while the other takes advantage of recent developments in the aerospace industry that result in dramatic satellite and launching vehicle cost reductions for a dedicated geosynchronous mission. To achieve the required level of disturbance free-fall onboard these large and heavy platforms, we propose a new drag-free system, which we have named "two-stage" drag-free. It incorporates the Modular Gravitational Reference Sensor (developed at Stanford University) and does not rely on the use of μN thrusters. Although both mission concepts are characterized by different technical and programmatic challenges, individually they could be flown and operated at a cost significantly lower than those of previously envisioned gravitational wave missions, and in the year 2015 we will perform at JPL a detailed selecting mission analysis.

  4. Application of two procedures for dual-point design of transonic airfoils

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Campbell, Richard L.; Allison, Dennis O.

    1994-01-01

    Two dual-point design procedures were developed to reduce the objective function of a baseline airfoil at two design points. The first procedure to develop a redesigned airfoil used a weighted average of the shapes of two intermediate airfoils redesigned at each of the two design points. The second procedure used a weighted average of two pressure distributions obtained from an intermediate airfoil redesigned at each of the two design points. Each procedure was used to design a new airfoil with reduced wave drag at the cruise condition without increasing the wave drag or pitching moment at the climb condition. Two cycles of the airfoil shape-averaging procedure successfully designed a new airfoil that reduced the objective function and satisfied the constraints. One cycle of the target (desired) pressure-averaging procedure was used to design two new airfoils that reduced the objective function and came close to satisfying the constraints.

  5. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  6. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Mike; Banks, Dan; Garzon, Andres; Matisheck, Jason

    2014-01-01

    IR thermography was used to characterize the transition front on a S-NLF test article at chord Reynolds numbers in excess of 30 million Changes in transition due to Mach number, Reynolds number, and surface roughness were investigated - Regions of laminar flow in excess of 80% chord at chord Reynolds numbers greater than 14 million IR thermography clearly showed the transition front and other flow features such as shock waves impinging upon the surface A series of parallel oblique shocks, of yet unknown origin, were found to cause premature transition at higher Reynolds numbers. NASA has a current goal to eliminate barriers to the development of practical supersonic transport aircraft Drag reduction through the use of supersonic natural laminar flow (S-NLF) is currently being explored as a means of increasing aerodynamic efficiency - Tradeoffs work best for business jet class at M<2 Conventional high-speed designs minimize inviscid drag at the expense of viscous drag - Existence of strong spanwise pressure gradient leads to crossflow (CF) while adverse chordwise pressure gradients amplifies and Tollmien-Schlichting (TS) instabilities Aerion Corporation has patented a S-NLF wing design (US Patent No. 5322242) - Low sweep to control CF - dp/dx < 0 on both wing surfaces to stabilize TS - Thin wing with sharp leading edge to minimize wave drag increase due to reduction in sweep NASA and Aerion have partnered to study S-NLF since 1999 Series of S-NLF experiments flown on the NASA F-15B research test bed airplane Infrared (IR) thermography used to characterize transition - Non-intrusive, global, good spatial resolution - Captures significant flow features well

  7. Observations from varying the lift and drag inputs to a noise prediction method for supersonic helical tip speed propellers

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1984-01-01

    Previous comparisons between calculated and measured supersonic helical tip speed propeller noise show them to have different trends of peak blade passing tone versus helical tip Mach number. It was postulated that improvements in this comparison could be made first by including the drag force terms in the prediction and then by reducing the blade lift terms at the tip to allow the drag forces to dominate the noise prediction. Propeller hub to tip lift distributions were varied, but they did not yield sufficient change in the predicted lift noise to improve the comparison. This result indicates that some basic changes in the theory may be needed. In addition, the noise predicted by the drag forces did not exhibit the same curve shape as the measured data. So even if the drag force terms were to dominate, the trends with helical tip Mach number for theory and experiment would still not be the same. The effect of the blade shock wave pressure rise was approxmated by increasing the drag coefficient at the blade tip. Predictions using this shock wdave approximation did have a curve shape similar to the measured data. This result indicates that the shock pressure rise probably controls the noise at supersonic tip speed and that the linear prediction method can give the proper noise trend with Mach number.

  8. Drag Coefficient and Foam in Hurricane Conditions.

    NASA Astrophysics Data System (ADS)

    Golbraikh, E.; Shtemler, Y.

    2016-12-01

    he present study is motivated by recent findings of saturation and even decrease in the drag coefficient (capping) in hurricane conditions, which is accompanied by the production of a foam layer on the ocean surface. As it is difficult to expect at present a comprehensive numerical modeling of the drag coefficient saturation that is followed by wave breaking and foam production, there is no complete confidence and understanding of the saturation phenomenon. Our semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd , with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the available optical and radiometric measurements of the fractional foam coverage,αf, combined with direct wind speed measurements in hurricane conditions, which provide the minimum of the effective drag coefficient, Cd for the sea covered with foam. The present model yields Cd10 versus U10 in fair agreement with that evaluated from both open-ocean and laboratory measurements of the vertical variation of mean wind speed in the range of U10 from low to hurricane speeds. The present approach opens opportunities for drag coefficient modeling in hurricane conditions and hurricane intensity estimation by the foam-coverage value using optical and radiometric measurements.

  9. Generation of BBFs and DFs, Formation of Substorm Auroras and Triggers of Substorm Onset

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2014-12-01

    Substorm onset is a dynamical response of the MI coupling system to external solar wind driving conditions and to internal dynamical processes. During the growth phase, the solar wind energy and momentum are transferred into the magnetosphere via MHD mesoscale Alfvenic interactions throughout the magnetopause current sheet. A decrease in momentum transfer from the solar wind into the magnetosphere starts a preconditioning stage, and produces a strong earthward body force acting on the whole magnetotail within a short time period. The strong earthward force will cause localized transients in the tail, such as multiple BBFs, DFs, plasma bubbles, and excited MHD waves. On auroral flux tubes, FACs carried by Alfven waves are generated by Alfvenic interactions between tail earthward flows associated with BBFs/DFs/Bubbles and the ionospheric drag. Nonlinear Alfvenic interaction between the incident and reflected Alfven wave packets in the auroral acceleration region can produce localized parallel electric fields and substorm auroral arcs. During the preconditioning stage prior to substorm onset, the generation of parallel electric fields and auroral arcs can redistribute perpendicular mechanical and magnetic stresses, "decoupling" the magnetosphere from the ionosphere drag. This will enhance the tail earthward flows and rapidly build up stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release and substorm auroral poleward expansion. We suggest that in preconditioning stage, the decrease in the solar wind momentum transfer is a necessary condition of the substorm onset. Additionally, "decoupling" the magnetosphere from ionosphere drag can trigger substorm expansion onset.

  10. Numerical simulation of turbulent convective flow over wavy terrain

    NASA Astrophysics Data System (ADS)

    Dörnbrack, A.; Schumann, U.

    1993-09-01

    By means of a large-eddy simulation, the convective boundary layer is investigated for flows over wavy terrain. The lower surface varies sinusoidally in the downstream direction while remaining constant in the other. Several cases are considered with amplitude δ up to 0.15 H and wavelength λ of H to 8 H, where H is the mean fluid-layer height. At the lower surface, the vertical heat flux is prescribed to be constant and the momentum flux is determined locally from the Monin-Obukhov relationship with a roughness length z o=10-4 H. The mean wind is varied between zero and 5 w *, where w * is the convective velocity scale. After rather long times, the flow structure shows horizontal scales up to 4 H, with a pattern similar to that over flat surfaces at corresponding shear friction. Weak mean wind destroys regular spatial structures induced by the surface undulation at zero mean wind. The surface heating suppresses mean-flow recirculation-regions even for steep surface waves. Short surface waves cause strong drag due to hydrostatic and dynamic pressure forces in addition to frictional drag. The pressure drag increases slowly with the mean velocity, and strongly with δ/ H. The turbulence variances increase mainly in the lower half of the mixed layer for U/w *>2.

  11. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  12. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  13. Longitudinal Variations of Low-Latitude Gravity Waves and Their Impacts on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Cullens, C. Y.; England, S.; Immel, T. J.

    2014-12-01

    The lower atmospheric forcing has important roles in the ionospheric variability. However, influences of lower atmospheric gravity waves on the ionospheric variability are still not clear due to the simplified gravity wave parameterizations and the limited knowledge of gravity wave distributions. In this study, we aim to study the longitudinal variations of gravity waves and their impacts of longitudinal variations of low-latitude gravity waves on the ionospheric variability. Our SABER results show that longitudinal variations of gravity waves at the lower boundary of TIME-GCM are the largest in June-August and January-February. We have implemented these low-latitude gravity wave variations from SABER instrument into TIME-GCM model. TIME-GCM simulation results of ionospheric responses to longitudinal variations of gravity waves and physical mechanisms will be discussed.

  14. Actinide electronic structure and atomic forces

    NASA Astrophysics Data System (ADS)

    Albers, R. C.; Rudin, Sven P.; Trinkle, Dallas R.; Jones, M. D.

    2000-07-01

    We have developed a new method[1] of fitting tight-binding parameterizations based on functional forms developed at the Naval Research Laboratory.[2] We have applied these methods to actinide metals and report our success using them (see below). The fitting procedure uses first-principles local-density-approximation (LDA) linear augmented plane-wave (LAPW) band structure techniques[3] to first calculate an electronic-structure band structure and total energy for fcc, bcc, and simple cubic crystal structures for the actinide of interest. The tight-binding parameterization is then chosen to fit the detailed energy eigenvalues of the bands along symmetry directions, and the symmetry of the parameterization is constrained to agree with the correct symmetry of the LDA band structure at each eigenvalue and k-vector that is fit to. By fitting to a range of different volumes and the three different crystal structures, we find that the resulting parameterization is robust and appears to accurately calculate other crystal structures and properties of interest.

  15. Calculations of the Supersonic Wave Drag of Nonlifting Wings with Arbitrary Sweepback and Aspect Ratio Wings Swept Behind the Mach Lines

    DTIC Science & Technology

    1947-02-21

    refers to an airfoil section cenrposed of two parabolic arcs. £1 each case, the ving is con - sidered to be cut off in a direction parallel to the... pro - f:llo (fig. -(b) and appendix A, oquation (A?-))> The drag cooffl- clonts &ct\\ and ^caTT &?e obtained slmilurly by integrating along tho...appendix D. Bra» coefficient of swot -tack wlnfl at Mach number of 1.0. - Tho solution of the equations for c. fiven in appendix 3 shown tliat, for

  16. Ice Floe Breaking in Contemporary Third Generation Operational Wave Models

    NASA Astrophysics Data System (ADS)

    Sévigny, C.; Baudry, J.; Gauthier, J. C.; Dumont, D.

    2016-02-01

    The dynamical zone observed at the edge of the consolidated ice area where are found the wave-fractured floes (i.e. marginal ice zone or MIZ) has become an important topic in ocean modeling. As both operational and climate ocean models now seek to reproduce the complex atmosphere-ice-ocean system with realistic coupling processes, many theoretical and numerical studies have focused on understanding and modeling this zone. Few attempts have been made to embed wave-ice interactions specific to the MIZ within a two-dimensional model, giving the possibility to calculate both the attenuation of surface waves by sea ice and the concomitant breaking of the sea ice-cover into smaller floes. One of the first challenges consists in improving the parameterization of wave-ice dynamics in contemporary third generation operational wave models. A simple waves-in-ice model (WIM) similar to the one proposed by Williams et al. (2013a,b) was implemented in WAVEWATCH III. This WIM considers ice floes as floating elastic plates and predicts the dimensionless attenuation coefficient by the use of a lookup-table-based, wave scattering scheme. As in Dumont et al. (2011), the different frequencies are treated individually and floe breaking occurs for a particular frequency when the expected wave amplitude exceeds the allowed strain amplitude, which considers ice floes properties and wavelength in ice field. The model is here further refined and tested in idealized two-dimensional cases, giving preliminary results of the performance and sensitivity of the parameterization to initial wave and ice conditions. The effects of the wave-ice coupling over the incident wave spectrum are analyzed as well as the resulting floe size distribution. The model gives prognostic values of the lateral extent of the marginal ice zone with maximum ice floe diameter that progressively increases with distance from the ice edge.

  17. Effect of Off-Body Laser Discharge on Drag Reduction of Hemisphere Cylinder in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Kianvashrad, Nadia; Knight, Doyle; Wilkinson, Stephen P.; Chou, Amanda; Horne, Robert A.; Herring, Gregory C.; Beeler, George B.; Jangda, Moazzam

    2017-01-01

    The interaction of an off-body laser discharge with a hemisphere cylinder in supersonic flow is investigated. The objectives are 1) experimental determination of the drag reduction and energetic efficiency of the laser discharge, and 2) assessment of the capability for accurate simulation of the interaction. The combined computational and experimental study comprises two phases. In the first phase, laser discharge in quiescent air was examined. The temporal behavior of the shock wave formed by the laser discharge was compared between experiment and simulation and good agreement is observed. In the second phase, the interaction of the laser discharge with a hemisphere cylinder was investigated numerically. Details of the pressure drag reduction and the physics of the interaction of the heated region with the bow shock are included. The drag reduction due to this interaction persisted for about five characteristic times where one characteristic time represents the time for the flow to move a distance equal to the hemisphere radius. The energetic efficiency of laser discharge for the case with 50 mJ energy absorbed by the gas is calculated as 3.22.

  18. On the diverse roles of fluid dynamic drag in animal swimming and flying

    PubMed Central

    2018-01-01

    Questions of energy dissipation or friction appear immediately when addressing the problem of a body moving in a fluid. For the most simple problems, involving a constant steady propulsive force on the body, a straightforward relation can be established balancing this driving force with a skin friction or form drag, depending on the Reynolds number and body geometry. This elementary relation closes the full dynamical problem and sets, for instance, average cruising velocity or energy cost. In the case of finite-sized and time-deformable bodies though, such as flapping flyers or undulatory swimmers, the comprehension of driving/dissipation interactions is not straightforward. The intrinsic unsteadiness of the flapping and deforming animal bodies complicates the usual application of classical fluid dynamic forces balance. One of the complications is because the shape of the body is indeed changing in time, accelerating and decelerating perpetually, but also because the role of drag (more specifically the role of the local drag) has two different facets, contributing at the same time to global dissipation and to driving forces. This causes situations where a strong drag is not necessarily equivalent to inefficient systems. A lot of living systems are precisely using strong sources of drag to optimize their performance. In addition to revisiting classical results under the light of recent research on these questions, we discuss in this review the crucial role of drag from another point of view that concerns the fluid–structure interaction problem of animal locomotion. We consider, in particular, the dynamic subtleties brought by the quadratic drag that resists transverse motions of a flexible body or appendage performing complex kinematics, such as the phase dynamics of a flexible flapping wing, the propagative nature of the bending wave in undulatory swimmers, or the surprising relevance of drag-based resistive thrust in inertial swimmers. PMID:29445037

  19. Evaluation of Tsunami Run-Up on Coastal Areas at Regional Scale

    NASA Astrophysics Data System (ADS)

    González, M.; Aniel-Quiroga, Í.; Gutiérrez, O.

    2017-12-01

    Tsunami hazard assessment is tackled by means of numerical simulations, giving as a result, the areas flooded by tsunami wave inland. To get this, some input data is required, i.e., the high resolution topobathymetry of the study area, the earthquake focal mechanism parameters, etc. The computational cost of these kinds of simulations are still excessive. An important restriction for the elaboration of large scale maps at National or regional scale is the reconstruction of high resolution topobathymetry on the coastal zone. An alternative and traditional method consists of the application of empirical-analytical formulations to calculate run-up at several coastal profiles (i.e. Synolakis, 1987), combined with numerical simulations offshore without including coastal inundation. In this case, the numerical simulations are faster but some limitations are added as the coastal bathymetric profiles are very simply idealized. In this work, we present a complementary methodology based on a hybrid numerical model, formed by 2 models that were coupled ad hoc for this work: a non-linear shallow water equations model (NLSWE) for the offshore part of the propagation and a Volume of Fluid model (VOF) for the areas near the coast and inland, applying each numerical scheme where they better reproduce the tsunami wave. The run-up of a tsunami scenario is obtained by applying the coupled model to an ad-hoc numerical flume. To design this methodology, hundreds of worldwide topobathymetric profiles have been parameterized, using 5 parameters (2 depths and 3 slopes). In addition, tsunami waves have been also parameterized by their height and period. As an application of the numerical flume methodology, the coastal parameterized profiles and tsunami waves have been combined to build a populated database of run-up calculations. The combination was tackled by means of numerical simulations in the numerical flume The result is a tsunami run-up database that considers real profiles shape, realistic tsunami waves, and optimized numerical simulations. This database allows the calculation of the run-up of any new tsunami wave by interpolation on the database, in a short period of time, based on the tsunami wave characteristics provided as an output of the NLSWE model along the coast at a large scale domain (regional or National scale).

  20. Breaking Waves on the Ocean Surface

    NASA Astrophysics Data System (ADS)

    Schwendeman, Michael S.

    In the open ocean, breaking waves are a critical mechanism for the transfer of energy, momentum, and mass between the atmosphere and the ocean. Despite much study, fundamental questions about wave breaking, such as what determines whether a wave will break, remain unresolved. Measurements of oceanic breakers, or "whitecaps," are often used to validate the hypotheses derived in simplified theoretical, numerical, or experimental studies. Real-world measurements are also used to improve the parameterizations of wave-breaking in large global models, such as those forecasting climate change. Here, measurements of whitecaps are presented using ship-based cameras, from two experiments in the North Pacific Ocean. First, a method for georectifying the camera imagery is described using the distant horizon, without additional instrumentation. Over the course of the experiment, this algorithm correctly identifies the horizon in 92% of images in which it is visible. In such cases, the calculation of camera pitch and roll is accurate to within 1 degree. The main sources of error in the final georectification are from mislabeled horizons due to clouds, rain, or poor lighting, and from vertical "heave" motions of the camera, which cannot be calculated with the horizon method. This method is used for correcting the imagery from the first experiment, and synchronizing the imagery from the second experiment to an onboard inertial motion package. Next, measurements of the whitecap coverage, W, are shown from both experiments. Although W is often used in models to represent whitecapping, large uncertainty remains in the existing parameterizations. The data show good agreement with recent measurements using the wind speed. Although wave steepness and dissipation are hypothesized to be more robust predictors of W, this is shown to not always be the case. Wave steepness shows comparable success to the wind parameterizations only when using a mean-square slope variable calculated over the equilibrium range waves and normalizing by the wave directional spread. Meanwhile, correlation of W with turbulent dissipation measurements is significantly worse, which may be due to uncertainty in the measurements or bias related to micro-breaking waves. Finally, phase-resolved, three-dimensional, measurements of the whitecaps were made from a new ship-based stereo video system. Comparison with concurrent buoy measurements indicate that the stereo data accurately reproduces the wave statistics, including the frequency spectra. The whitecaps are characterized by transient and spatially localized regions of extreme surface gradients, rather than large crest-to-trough steepnesses. It was found that whitecaps were around 10 times more likely to have extreme slopes, and 50% of the observed extreme surface slopes were in the vicinity of the breaking waves. The maximum whitecap slopes show good agreement with the Stokes 120 degree limiting crest geometry, and the whitecap crest loses much of its maximum steepness shortly after the onset of breaking. The whitecap phase speeds are consistently less than the linear or weakly nonlinear predicted phase speed, which indicate the effect of narrow-band wave groups, despite the broad-band wave spectra.

  1. Modeling Surfzone/Inner-shelf Exchange

    DTIC Science & Technology

    2013-09-30

    goal here is the use a wave-resolving Boussinesq model to figure out how to parameterize the vorticity generation due to short-crested breaking of...individual waves. The Boussinesq model funwaveC used here, developed by the PI and distributed as open-source software, has been val- idated in ONR funded...shading of bottom bathymetry, mooring locations (green squares) and the local co-ordinate system (black arrows). Positive x is directed towards the

  2. USSR Report, Engineering and Equipment

    DTIC Science & Technology

    1984-04-17

    MEKHANIKA ZHIDKOSTI I GAZA, No 5, May 83). 17 Wave Drag of Elongated Astroid Bodies at Moderate Supersonic Flight Velocities (M, I. Follej...mechanical components of such a test stand include an electric drive motor with speed regulation, a Belt transmission, a worm gear for speed

  3. Wave Overtopping of a Barrier Beach

    DTIC Science & Technology

    2009-09-01

    but can result in increased dune erosion along Scenic Road as occurred in 1993, 1997, and 2005 (James, 2005). Field data and observations for...factors are equal to 1. The equations for these run-up formulas are parameterized on significant wave height at the toe of the structure as measured in...3 exp C r SS RQ C D HgH γ ⎛ ⎞ = −⎜ ⎟ ⎝ ⎠ 2pξ > where the significant wave height at the toe of the structure, SH and pT are used. Again the

  4. Shock Waves Mitigation at Blunt Bodies Using Needles and Shells Against a Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Blankson, I. M.; Sakharov, V. I.; Shvets, A. I.

    2004-01-01

    The paper contains some experimental and numerical simulation test results on cylindrical blunt body drag reduction using thin spikes or shell mounted in front of a body against a supersonic flow. Experimental tests were conducted using the Aeromechanics and Gas Dynamics Laboratory facilities at the Institute of Mechanics of Moscow State University (IMMSU). Numerical simulations utilizing NASA and IM/MSU codes were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory. The main purpose of this research is to examine the efficiency of application of multiple spikes for drag reduction and flow stability at the front of a blunt body in different flight conditions, i.e. Mach number, angle of attack, etc. The principal conclusions of these test results are: multiple spike/needle application leads to decrease of drag reduction benefits by comparison with the case of one central mounted needle at the front of a blunt body, but increase lift benefits.

  5. Experimental and theoretical modelling of sand-water-object interaction under nonlinear progressive waves

    NASA Astrophysics Data System (ADS)

    Testik, Firat Yener

    An experimental and theoretical study has been conducted to obtain a fundamental understanding of the dynamics of the sand, water and a solid object interaction as progressive gravity waves impinge on a sloping beach. Aside from obvious scientific interest, this exceedingly complex physical problem is important for naval applications, related to the behavior of disk/cylindrical shaped objects (mines) in the coastal waters. To address this problem, it was divided into a set of simpler basic problems. To begin, nonlinear progressive waves were investigated experimentally in a wave tank for the case of a rigid (impermeable) sloping bottom. Parameterizations for wave characteristics were proposed and compared with the experiments. In parallel, a numerical wave tank model (NWT) was calibrated using experimental data from a single run, and wave field in the wave tank was simulated numerically for the selected experiments. Subsequently, a layer of sand was placed on the slope and bottom topography evolution processes (ripple and sandbar dynamics, bottom topography relaxation under variable wave forcing, etc.) were investigated experimentally. Models for those processes were developed and verified by experimental measurements. Flow over a circular cylinder placed horizontally on a plane wall was also studied. The far-flow field of the cylinder placed in the wave tank was investigated experimentally and numerical results from the NWT simulations were compared with the experimental data. In the mean time, the near-flow velocity/vorticity field around a short cylinder under steady and oscillatory flow was studied in a towing tank. Horseshoe vortex formation and periodic shedding were documented and explained. With the understanding gained through the aforementioned studies, dynamics and burial/scour around the bottom objects in the wave tank were studied. Possible scenarios on the behavior of the disk-shaped objects were identified and explained. Scour around 3D cylindrical objects was investigated. Different scour regimes were identified experimentally and explained theoretically. Proper physical parameterizations on the time evolution and equilibrium scour characteristics were proposed and verified experimentally.

  6. Rayleigh phase velocities in the upper mantle of the Pacific-North American plate boundary in southern California

    NASA Astrophysics Data System (ADS)

    Escobar, L.; Weeraratne, D. S.; Kohler, M. D.

    2013-05-01

    The Pacific-North America plate boundary, located in Southern California, presents an opportunity to study a unique tectonic process that has been shaping the plate tectonic setting of the western North American and Mexican Pacific margin since the Miocene. This is one of the few locations where the interaction between a migrating oceanic spreading center and a subduction zone can be studied. The rapid subduction of the Farallon plate outpaced the spreading rate of the East Pacific Rise rift system causing it to be subducted beneath southern California and northern Mexico 30 Ma years ago. The details of microplate capture, reorganization, and lithospheric deformation on both the Pacific and North American side of this boundary is not well understood, but may have important implications for fault activity, stresses, and earthquake hazard analysis both onshore and offshore. We use Rayleigh waves recorded by an array of 34 ocean bottom seismometers deployed offshore southern California for a 12 month duration from August 2010 to 2011. Our array recorded teleseismic earthquakes at distances ranging from 30° to 120° with good signal-to-noise ratios for magnitudes Mw ≥ 5.9. The events exhibit good azimuthal distribution and enable us to solve simultaneously for Rayleigh wave phase velocities and azimuthal anisotropy. Fewer events occur at NE back-azimuths due to the lack of seismicity in central North America. We consider seismic periods between 18 - 90 seconds. The inversion technique considers non-great circle path propagation by representing the arriving wave field as two interfering plane waves. This takes advantage of statistical averaging of a large number of paths that travel offshore southern California and northern Mexico allowing for improved resolution and parameterization of lateral seismic velocity variations at lithospheric and sublithospheric depths. We present phase velocity results for periods sampling mantle structure down to 150 km depth along the west coast margin. With this study, we seek to understand the strength and deformation of the Pacific oceanic lithosphere resulting from plate convergence and subduction beneath Southern California 30 Ma as well as translational stresses present today. We also test for predictions of several geodynamic models which describe the kinematic mantle flow that accompanies plate motion within this area including passive mantle drag due to Pacific plate motion and toroidal flow in the western U.S. region that may extend offshore.

  7. Projection of wave conditions in response to climate change: A community approach to global and regional wave downscaling

    USGS Publications Warehouse

    Erikson, Li H.; Hemer, M.; Lionello, Piero; Mendez, Fernando J.; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan; Wolf, Judith

    2015-01-01

    Future changes in wind-wave climate have broad implications for coastal geomorphology and management. General circulation models (GCM) are now routinely used for assessing climatological parameters, but generally do not provide parameterizations of ocean wind-waves. To fill this information gap, a growing number of studies use GCM outputs to independently downscale wave conditions to global and regional levels. To consolidate these efforts and provide a robust picture of projected changes, we present strategies from the community-derived multi-model ensemble of wave climate projections (COWCLIP) and an overview of regional contributions. Results and strategies from one contributing regional study concerning changes along the eastern North Pacific coast are presented.

  8. Mesospheric Simulations with the NOGAPS-ALPHA model: Applications to the Summer Polar Mesosphere and AIM data

    NASA Astrophysics Data System (ADS)

    Siskind, D. E.; Eckermann, S. D.; McCormack, J. P.; Hoppel, K. W.; Russell, J. M.; Bailey, S.; Hervig, M.; Rusch, D.

    2007-12-01

    The Navy Operational Global Atmospheric Prediction System (NOGAPS), the Department of Defense's global numerical weather prediction (NWP) system, consists of two main components: the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS) and a global spectral general circulation model (GCM) for forecasting. NRL researchers are currently developing an Advanced-Level Physics High-Altitude (ALPHA) NOGAPS prototype that extends the currently operational 1 hPa upper boundary of NOGAPS through the mesosphere and lower thermosphere (MLT) to ~110 km. We report results of preliminary experiments with this NOGAPS-ALPHA system during May-June 2007, focused on the northern hemisphere (NH) summer mesosphere observed from the Aeronomy of Ice in the Mesosphere (AIM) satellite. These AIM-period NOGAPS-ALPHA experiments have two main goals: to provide global modeling support for AIM science and to allow objective validation of these new NOGAPS-ALPHA MLT fields using independent observations from AIM. We report results of runs which assimilate temperature and water vapor data from the SABER and MLS instruments up to ~0.01 hPa. We investigate the development of the cold NH summer mesopause in NOGAPS-ALPHA and its sensitivity to parameterized nonorographic gravity wave drag (GWD) and radiative heating/cooling by comparing with temperatures and water vapor measured by AIM's SOFIE instrument. We can also compare the variability in the NOGAPS-ALPHA temperature and water vapor fields with mesospheric cloud occurrence statistics measured by CIPS on AIM.

  9. Design by Dragging: An Interface for Creative Forward and Inverse Design with Simulation Ensembles

    PubMed Central

    Coffey, Dane; Lin, Chi-Lun; Erdman, Arthur G.; Keefe, Daniel F.

    2014-01-01

    We present an interface for exploring large design spaces as encountered in simulation-based engineering, design of visual effects, and other tasks that require tuning parameters of computationally-intensive simulations and visually evaluating results. The goal is to enable a style of design with simulations that feels as-direct-as-possible so users can concentrate on creative design tasks. The approach integrates forward design via direct manipulation of simulation inputs (e.g., geometric properties, applied forces) in the same visual space with inverse design via “tugging” and reshaping simulation outputs (e.g., scalar fields from finite element analysis (FEA) or computational fluid dynamics (CFD)). The interface includes algorithms for interpreting the intent of users’ drag operations relative to parameterized models, morphing arbitrary scalar fields output from FEA and CFD simulations, and in-place interactive ensemble visualization. The inverse design strategy can be extended to use multi-touch input in combination with an as-rigid-as-possible shape manipulation to support rich visual queries. The potential of this new design approach is confirmed via two applications: medical device engineering of a vacuum-assisted biopsy device and visual effects design using a physically based flame simulation. PMID:24051845

  10. Balancing Power Absorption Against Structural Loads With Viscous Drag and Power-Takeoff Efficiency Considerations

    DOE PAGES

    Tom, Nathan; Yu, Yi-Hsiang; Wright, Alan; ...

    2017-11-17

    The focus of this paper is to balance power absorption against structural loading for a novel fixed-bottom oscillating surge wave energy converter in both regular and irregular wave environments. The power-to-load ratio will be evaluated using pseudospectral control (PSC) to determine the optimum power-takeoff (PTO) torque based on a multiterm objective function. This paper extends the pseudospectral optimal control problem to not just maximize the time-averaged absorbed power but also include measures for the surge-foundation force and PTO torque in the optimization. The objective function may now potentially include three competing terms that the optimizer must balance. Separate weighting factorsmore » are attached to the surge-foundation force and PTO control torque that can be used to tune the optimizer performance to emphasize either power absorption or load shedding. To correct the pitch equation of motion, derived from linear hydrodynamic theory, a quadratic-viscous-drag torque has been included in the system dynamics; however, to continue the use of quadratic programming solvers, an iteratively obtained linearized drag coefficient was utilized that provided good accuracy in the predicted pitch motion. Furthermore, the analysis considers the use of a nonideal PTO unit to more accurately evaluate controller performance. The PTO efficiency is not directly included in the objective function but rather the weighting factors are utilized to limit the PTO torque amplitudes, thereby reducing the losses resulting from the bidirectional energy flow through a nonideal PTO. Results from PSC show that shedding a portion of the available wave energy can lead to greater reductions in structural loads, peak-to-average power ratio, and reactive power requirement.« less

  11. Japanese space gravitational wave antenna DECIGO and DPF

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru

    2017-11-01

    The gravitational wave detection will open a new gravitational wave astronomy, which gives a fruitful insight about early universe or birth and death of stars. In order to detect gravitational wave, we planed a space gravitational wave detector, DECIGO (DECi-heltz Interferometer Gravitational wave Observatory), which consists of three drag-free satellites forming triangle shaped Fabry-Perot laser interferometer with the arm length of 1000 km, and whose strain sensitivity is designed to be 2x10-24 /√Hz around 0.1 Hz. Before launching DECIGO around 2030, a milestone mission named DECIGO pathfinder (DPF) is planed to be launched whose main purpose is the feasibility test of the key technologies for DECIGO. In the present paper, the conceptual design and current status of DECIGO and DPF are reviewed.

  12. Study on Dissipation of Landslide Generated Waves in Different Shape of Reservoirs

    NASA Astrophysics Data System (ADS)

    An, Y.; Liu, Q.

    2017-12-01

    The landslide generated waves are major risks for many reservoirs located in mountainous areas. As the initial wave is often very huge (e.g. 30m of the height in Xiaowan event, 2009, China), the dissipation of the wave, which is closely connected with the shape of the reservoir (e.g. channel type vs. lake type), is a crucial factor in risk estimation and prevention. While even for channel type reservoir, the wave damping also varies a lot due to details of the shape such as branches and turnings. Focusing on the influence of this shape details on the wave damping in channel type reservoir, we numerically studied two landslide generated wave events with both a triangle shape of the cross section but different longitudinal shape configurations (Xiaowan event in 2009 and an assuming event in real topography). The two-dimensional Saint-Venant equation and dry-wet boundary treatment method are used to simulate the wave generation and propagation processes. The simulation is based on an open source code called `Basilisk' and the adaptive mesh refinement technique is used to achieve enough precision with affordable computational resources. The sensitivity of the parameters representing bed drag and the vortex viscosity is discussed. We found that the damping is relatively not sensitive to the bed drag coefficient, which is natural as the water depth is large compared with wave height. While the vortex viscosity needs to be chosen carefully as it is related to cross sectional velocity distribution. It is also found that the longitudinal shape, i.e. the number of turning points and branches, is the key factor influencing the wave damping. The wave height at the far field could be only one seventh comparing with the initial wave in the case with complex longitudinal shape, while the damping is much weaker in the straight channel case. We guess that this phenomenon is due to the increasing sloshing at these abruptly changed positions. This work could provide a deeper understanding on the landslide generated waves in the reservoir and helps engineers design better risk prevention facilities.

  13. Development of a CFD Model Including Tree's Drag Parameterizations: Application to Pedestrian's Wind Comfort in an Urban Area

    NASA Astrophysics Data System (ADS)

    Kang, G.; Kim, J.

    2017-12-01

    This study investigated the tree's effect on wind comfort at pedestrian height in an urban area using a computational fluid dynamics (CFD) model. We implemented the tree's drag parameterization scheme to the CFD model and validated the simulated results against the wind-tunnel measurement data as well as LES data via several statistical methods. The CFD model underestimated (overestimated) the concentrations on the leeward (windward) walls inside the street canyon in the presence of trees, because the CFD model can't resolve the latticed cage and can't reflect the concentration increase and decrease caused by the latticed cage in the simulations. However, the scalar pollutants' dispersion simulated by the CFD model was quite similar to that in the wind-tunnel measurement in pattern and magnitude, on the whole. The CFD model overall satisfied the statistical validation indices (root normalized mean square error, geometric mean variance, correlation coefficient, and FAC2) but failed to satisfy the fractional bias and geometric mean bias due to the underestimation on the leeward wall and overestimation on the windward wall, showing that its performance was comparable to the LES's performance. We applied the CFD model to evaluation of the trees' effect on the pedestrian's wind-comfort in an urban area. To investigate sensory levels for human activities, the wind-comfort criteria based on Beaufort wind-force scales (BWSs) were used. In the tree-free scenario, BWS 4 and 5 (unpleasant condition for sitting long and sitting short, respectively) appeared in the narrow spaces between buildings, in the upwind side of buildings, and the unobstructed areas. In the tree scenario, BWSs decreased by 1 3 grade inside the campus of Pukyong National University located in the target area, which indicated that trees planted in the campus effectively improved pedestrian's wind comfort.

  14. FY16 NRL DoD High Performance Computing Modernization Program

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  15. Ultrasound finite element simulation sensitivity to anisotropic titanium microstructures

    NASA Astrophysics Data System (ADS)

    Freed, Shaun; Blackshire, James L.; Na, Jeong K.

    2016-02-01

    Analytical wave models are inadequate to describe complex metallic microstructure interactions especially for near field anisotropic property effects and through geometric features smaller than the wavelength. In contrast, finite element ultrasound simulations inherently capture microstructure influences due to their reliance on material definitions rather than wave descriptions. To better understand and quantify heterogeneous crystal orientation effects to ultrasonic wave propagation, a finite element modeling case study has been performed with anisotropic titanium grain structures. A parameterized model has been developed utilizing anisotropic spheres within a bulk material. The resulting wave parameters are analyzed as functions of both wavelength and sphere to bulk crystal mismatch angle.

  16. Impacts of an offshore wind farm on the lower marine atmosphere

    NASA Astrophysics Data System (ADS)

    Volker, P. J.; Huang, H.; Capps, S. B.; Badger, J.; Hahmann, A. N.; Hall, A. D.

    2013-12-01

    Due to a continuing increase in energy demand and heightened environmental consciousness, the State of California is seeking out more environmentally-friendly energy resources. Strong and persistent winds along California's coast can be harnessed effectively by current wind turbine technology, providing a promising source of alternative energy. Using an advanced wind farm parameterization implemented in the Weather Research & Forecast model, we investigate the potential impacts of a large offshore wind farm on the lower marine atmosphere. Located offshore of the Sonoma Coast in northern California, this theoretical wind farm includes 200-7 megawatt, 125 m hub height wind turbines which are able to provide a total of 1.4 TW of power for use in neighboring cities. The wind turbine model (i.e., the Explicit Wake Parameterization originally developed at the Danish Technical University) acts as a source of drag where the sub-grid scale velocity deficit expansion is explicitly described. A swath consisting of hub-height velocity deficits and temperature and moisture anomalies extends more than 100 km downstream of the wind farm location. The presence of the large modern wind farm also creates flow distortion upstream in conjunction with an enhanced vertical momentum and scalar transport.

  17. Wave drag on floating bodies

    PubMed Central

    Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Élie; Chevy, Frédéric

    2011-01-01

    We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary. PMID:21876186

  18. Shock Tunnel Studies of the Hypersonic Flowfield around the Hypervelocity Ballistic Models with Aerospikes

    NASA Astrophysics Data System (ADS)

    Balakalyani, G.; Saravanan, S.; Jagadeesh, G.

    Reduced drag and aerodynamic heating are the two basic design requirements for any hypersonic vehicle [1]. The flowfield around an axisymmetric blunt body is characterized by a bow shockwave standing ahead of its nose. The pressure and temperature behind this shock wave are very high. This increased pressure and temperature are responsible for the high levels of drag and aerodynamic heating over the body. In the past, there have been many investigations on the use of aerospikes as a drag reduction tool. These studies on spiked bodies aim at reducing both the drag and aerodynamic heating by modifying the hypersonic flowfield ahead of the nose of the body [2]. However, most of them used very simple configurations to experimentally study the drag reduction using spikes at hypersonic speeds [3] and therefore very little experimental data is available for a realistic geometric configuration. In the present study, the standard AGARD Hypervelocity Ballistic model 1 is used as the test model. The addition of the spike to the blunt body significantly alters the flowfield ahead of the nose, leading to the formation of a low pressure conical recirculation region, thus causing a reduction in drag and wall heat flux [4]. In the present investigation, aerodynamic drag force is measured over the Hypervelocity Ballistic model-1, with and without spike, at a flow enthalpy of 1.7 MJ/kg. The experiments are carried out at a Mach number of 8 and at zero angle of attack. An internally mountable accelerometer based 3-component force balance system is used to measure the aerodynamic forces on the model. Also computational studies are carried out to complement the experiments.

  19. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    PubMed Central

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  20. Toward a universal mass-momentum transfer relationship for predicting nutrient uptake and metabolite exchange in benthic reef communities

    NASA Astrophysics Data System (ADS)

    Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin

    2016-09-01

    Here we synthesize data from previous field and laboratory studies describing how rates of nutrient uptake and metabolite exchange (mass transfer) are related to form drag and bottom stresses (momentum transfer). Reanalysis of this data shows that rates of mass transfer are highly correlated (r2 ≥ 0.9) with the root of the bottom stress (τbot0.4) under both waves and currents and only slightly higher under waves (~10%). The amount of mass transfer that can occur per unit bottom stress (or form drag) is influenced by morphological features ranging anywhere from millimeters to meters in scale; however, surface-scale roughness (millimeters) appears to have little effect on actual nutrient uptake by living reef communities. Although field measurements of nutrient uptake by natural reef communities agree reasonably well with predictions based on existing mass-momentum transfer relationships, more work is needed to better constrain these relationships for more rugose and morphologically complex communities.

  1. An Integrative Wave Model for the Marginal Ice Zone based on a Rheological Parameterization

    DTIC Science & Technology

    2013-09-30

    climate in the present and future Arctic seas. OBJECTIVES 1. To build a comprehensive wave-ice interaction mathematical framework for a wide...group (e.g. Fox and Squire, 1994, Meylan and Squire, 1996, Bennetts and Squire, 2009) is also applicable to the case of ice floes imbedded in a frazil...environmental protection purposes: such as navigation route planning, offshore structure design in the Arctic , and coastal erosion prevention. They

  2. New Method for calculating dynamical friction on a star moving through gas using Cartesian Simulations

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Blackman, Eric

    2018-01-01

    Closely interacting binary stars can incur Common Envelope Evolution (CEE) when at least one of the stars enters a giant phase. The extent to which CEE leads to envelope ejection and how tight the binaries become after CEE as a function of the mass and type of the companion stars has a broad range of phenomenological implications for both low mass and high mass binary stellar systems. Global simulations of CEE are emerging, but to understand the underlying physics of CEE and make connections with analytic formalisms, it helpful to employ reduced numerical models. Here we present results and analyses from simulations of gravitational drag using a Cartesian approach. Using AstroBEAR, a parallelized hydrodynamic/MHD simulation code, we simulate a system in which a 0.1 MSun main sequence secondary star is embedded in gas characteristic of the Envelope of a 3 MSun AGB star. The relative motion of the secondary star against the stationary envelope is represented by a supersonic wind that immerses a point particle, which is initially at rest, yet gradually dragged by the wind. Our approach differs from previous related wind-tunnel work by MacLeod et al. (2015,2017) in that we allow the particle to be displaced, offering a direct measurement of the drag force from its motion. We verify the validity of our method, extract the accretion rate of material in the wake via numerical integration, and compare the results between our method and previous work. We also use the results to help constrain the efficiency parameter in widely used analytic parameterizations of CEE.

  3. Modeling the Diurnal Tides in the MLT Region with the Doppler Spread Parameterization of Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Trob, D.; Porter, H. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Special Session: SA03 The mesosphere/lower thermosphere region: Structure, dynamics, composition, and emission. Ground based and satellite observations in the upper mesosphere and lower thermosphere (MLT) reveal large seasonal variations in the horizontal wind fields of the diurnal and semidiurnal tides. To provide an understanding of the observations, we discuss results obtained with our Numerical Spectral Model (NMS) that incorporates the gravity wave Doppler Spread Parameterization (DSP) of Hines. Our model reproduces many of the salient features observed, and we discuss numerical experiments that delineate the important processes involved. Gravity wave momentum deposition and the seasonal variations in the tidal excitation contribute primarily to produce the large equinoctial amplitude maxima in the diurnal tide. Gravity wave induced variations in eddy viscosity, not accounted for in the model, have been shown by Akmaev to be important too. For the semidiurnal tide, with amplitude maximum observed during winter solstice, these processes also contribute, but filtering by the mean zonal circulation is more important. A deficiency of our model is that it cannot reproduce the observed seasonal variations in the phase of the semidiurnal tide, and numerical experiments are being carried out to diagnose the cause and to alleviate this problem. The dynamical components of the upper mesosphere are tightly coupled through non-linear processes and wave filtering, and this may constrain the model and require it to reproduce in detail the observed phenomenology.

  4. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  5. Prototype Mcs Parameterization for Global Climate Models

    NASA Astrophysics Data System (ADS)

    Moncrieff, M. W.

    2017-12-01

    Excellent progress has been made with observational, numerical and theoretical studies of MCS processes but the parameterization of those processes remain in a dire state and are missing from GCMs. The perceived complexity of the distribution, type, and intensity of organized precipitation systems has arguably daunted attention and stifled the development of adequate parameterizations. TRMM observations imply links between convective organization and large-scale meteorological features in the tropics and subtropics that are inadequately treated by GCMs. This calls for improved physical-dynamical treatment of organized convection to enable the next-generation of GCMs to reliably address a slew of challenges. The multiscale coherent structure parameterization (MCSP) paradigm is based on the fluid-dynamical concept of coherent structures in turbulent environments. The effects of vertical shear on MCS dynamics implemented as 2nd baroclinic convective heating and convective momentum transport is based on Lagrangian conservation principles, nonlinear dynamical models, and self-similarity. The prototype MCS parameterization, a minimalist proof-of-concept, is applied in the NCAR Community Climate Model, Version 5.5 (CAM 5.5). The MCSP generates convectively coupled tropical waves and large-scale precipitation features notably in the Indo-Pacific warm-pool and Maritime Continent region, a center-of-action for weather and climate variability around the globe.

  6. Riccati parameterized self-similar waves in two-dimensional graded-index waveguide

    NASA Astrophysics Data System (ADS)

    Kumar De, Kanchan; Goyal, Amit; Raju, Thokala Soloman; Kumar, C. N.; Panigrahi, Prasanta K.

    2015-04-01

    An analytical method based on gauge-similarity transformation technique has been employed for mapping a (2+1)- dimensional variable coefficient coupled nonlinear Schrödinger equations (vc-CNLSE) with dispersion, nonlinearity and gain to standard NLSE. Under certain functional relations we construct a large family of self-similar waves in the form of bright similaritons, Akhmediev breathers and rogue waves. We report the effect of dispersion on the intensity of the solitary waves. Further, we illustrate the procedure to amplify the intensity of self-similar waves using isospectral Hamiltonian approach. This approach provides an efficient mechanism to generate analytically a wide class of tapering profiles and widths by exploiting the Riccati parameter. Equivalently, it enables one to control efficiently the self-similar wave structures and hence their evolution.

  7. FY16 NRL DoD High Performance Computing Modernization Program Annual Reports

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  8. Drag Coefficient Comparisons Between Observed and Model Simulated Directional Wave Spectra Under Hurricane Conditions

    DTIC Science & Technology

    2016-04-19

    of the ix flight segments ( white dots P1 to P6 shown in Fig. 3 ) to com- are the directional wave spectrum between the model and the RA measurement. At...September 14; and using constructed model spectra set C for (b) September 9, (d) September 12, and (f) September 14. The thick white line is the...model for hurri- cane conditions. The calibration factors (proportionality constants of the source functions) are determined from a comparison of modeled

  9. An Analysis of the Loads on and Dynamic Response of a Floating Flexible Tube in Waves and Currents

    DTIC Science & Technology

    2014-05-09

    the tube about 4.57 meters. The CFD code associated with the SolidWorks Flow Simulation tool was applied for this application. Flow Simulation uses...Liquid-Filled Membrane Structure in Waves," Journal of Fluids and Structures, no. 9, pp. 937-956, 1995. [16] SolidWorks , " Flow Simulation 2012...influence of Reynolds number on the drag coefficient. Simulations were performed with the 100% full (solid) model with flow velocities that yielded

  10. Quantifying the Uncertainties and Multi-parameter Trade-offs in Joint Inversion of Receiver Functions and Surface Wave Velocity and Ellipticity

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2016-12-01

    When constraining the structure of the Earth's continental lithosphere, multiple seismic observables are often combined due to their complementary sensitivities.The transdimensional Bayesian (TB) approach in seismic inversion allows model parameter uncertainties and trade-offs to be quantified with few assumptions. TB sampling yields an adaptive parameterization that enables simultaneous inversion for different model parameters (Vp, Vs, density, radial anisotropy), without the need for strong prior information or regularization. We use a reversible jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate different seismic observables - surface wave dispersion (SWD), Rayleigh wave ellipticity (ZH ratio), and receiver functions - into the inversion for the profiles of shear velocity (Vs), compressional velocity (Vp), density (ρ), and radial anisotropy (ξ) beneath a seismic station. By analyzing all three data types individually and together, we show that TB sampling can eliminate the need for a fixed parameterization based on prior information, and reduce trade-offs in model estimates. We then explore the effect of different types of misfit functions for receiver function inversion, which is a highly non-unique problem. We compare the synthetic inversion results using the L2 norm, cross-correlation type and integral type misfit function by their convergence rates and retrieved seismic structures. In inversions in which only one type of model parameter (Vs for the case of SWD) is inverted, assumed scaling relationships are often applied to account for sensitivity to other model parameters (e.g. Vp, ρ, ξ). Here we show that under a TB framework, we can eliminate scaling assumptions, while simultaneously constraining multiple model parameters to varying degrees. Furthermore, we compare the performance of TB inversion when different types of model parameters either share the same or use independent parameterizations. We show that different parameterizations can lead to differences in retrieved model parameters, consistent with limited data constraints. We then quantitatively examine the model parameter trade-offs and find that trade-offs between Vp and radial anisotropy might limit our ability to constrain shallow-layer radial anisotropy using current seismic observables.

  11. Comparison of Evolutionary (Genetic) Algorithm and Adjoint Methods for Multi-Objective Viscous Airfoil Optimizations

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.

  12. Perturbed Partial Cavity Drag Reduction at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    Ventilated partial cavities were investigated at Reynolds numbers to 80 million. These cavities could be suitable for friction drag reduction on ocean going vessels and thereby lead to environmental and economical benefits. The test model was a 3.05 m wide by 12.9 m long flat plate, with a 0.18 m backward-facing step and a cavity-terminating beach, which had an adjustable slope, tilt and height. The step and beach trapped a ventilated partial cavity over the longitudinal mid-section of the model. Large-scale flow perturbations, mimicking the effect of ambient ocean waves were investigated. For the conditions tested a cavity could be maintained under perturbed flow conditions when the gas flux supplied was greater than the minimum required to maintain a cavity under steady conditions, with larger perturbations requiring more excess gas flux to maintain the cavity. High-speed video was used to observe the unsteady three dimensional cavity closure, the overall cavity shape, and the cavity oscillations. Cavities with friction drag reduction exceeding 95% were attained at optimal conditions. A simplified energy cost-benefit analysis of partial cavity drag reduction was also performed. The results suggest that PCDR could potentially lead to energy savings.

  13. Controls on Turbulent Mixing in a Strongly Stratified and Sheared Tidal River Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurisa, Joseph T.; Nash, Jonathan D.; Moum, James N.

    Considerable effort has been made to parameterize turbulent kinetic energy (TKE) dissipation rate ..epsilon.. and mixing in buoyant plumes and stratified shear flows. Here, a parameterization based on Kunze et al. is examined, which estimates ..epsilon.. as the amount of energy contained in an unstable shear layer (Ri < Ric) that must be dissipated to increase the Richardson number Ri = N2/S2 to a critical value Ric within a turbulent decay time scale. Observations from the tidal Columbia River plume are used to quantitatively assess the relevant parameters controlling ..epsilon.. over a range of tidal and river discharge forcings. Observedmore » ..epsilon.. is found to be characterized by Kunze et al.'s form within a factor of 2, while exhibiting slightly decreased skill near Ri = Ric. Observed dissipation rates are compared to estimates from a constant interfacial drag formulation that neglects the direct effects of stratification. This is found to be appropriate in energetic regimes when the bulk-averaged Richardson number Rib is less than Ric/4. However, when Rib > Ric/4, the effects of stratification must be included. Similarly, ..epsilon.. scaled by the bulk velocity and density differences over the plume displays a clear dependence on Rib, decreasing as Rib approaches Ric. The Kunze et al. ..epsilon.. parameterization is modified to form an expression for the nondimensional dissipation rate that is solely a function of Rib, displaying good agreement with the observations. It is suggested that this formulation is broadly applicable for unstable to marginally unstable stratified shear flows.« less

  14. Heterogeneous mechanics of the mouse pulmonary arterial network.

    PubMed

    Lee, Pilhwa; Carlson, Brian E; Chesler, Naomi; Olufsen, Mette S; Qureshi, M Umar; Smith, Nicolas P; Sochi, Taha; Beard, Daniel A

    2016-10-01

    Individualized modeling and simulation of blood flow mechanics find applications in both animal research and patient care. Individual animal or patient models for blood vessel mechanics are based on combining measured vascular geometry with a fluid structure model coupling formulations describing dynamics of the fluid and mechanics of the wall. For example, one-dimensional fluid flow modeling requires a constitutive law relating vessel cross-sectional deformation to pressure in the lumen. To investigate means of identifying appropriate constitutive relationships, an automated segmentation algorithm was applied to micro-computerized tomography images from a mouse lung obtained at four different static pressures to identify the static pressure-radius relationship for four generations of vessels in the pulmonary arterial network. A shape-fitting function was parameterized for each vessel in the network to characterize the nonlinear and heterogeneous nature of vessel distensibility in the pulmonary arteries. These data on morphometric and mechanical properties were used to simulate pressure and flow velocity propagation in the network using one-dimensional representations of fluid and vessel wall mechanics. Moreover, wave intensity analysis was used to study effects of wall mechanics on generation and propagation of pressure wave reflections. Simulations were conducted to investigate the role of linear versus nonlinear formulations of wall elasticity and homogeneous versus heterogeneous treatments of vessel wall properties. Accounting for heterogeneity, by parameterizing the pressure/distention equation of state individually for each vessel segment, was found to have little effect on the predicted pressure profiles and wave propagation compared to a homogeneous parameterization based on average behavior. However, substantially different results were obtained using a linear elastic thin-shell model than were obtained using a nonlinear model that has a more physiologically realistic pressure versus radius relationship.

  15. Influence of parameterized small-scale gravity waves on the migrating diurnal tide in Earth's thermosphere

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal; Medvedev, Alexander S.

    2017-04-01

    Effects of subgrid-scale gravity waves (GWs) on the diurnal migrating tides are investigated from the mesosphere to the upper thermosphere for September equinox conditions, using a general circulation model coupled with the extended spectral nonlinear GW parameterization of Yiğit et al. (). Simulations with GW effects cut off above the turbopause and included in the entire thermosphere have been conducted. GWs appreciably impact the mean circulation and cool the thermosphere down by up to 12-18%. GWs significantly affect the winds modulated by the diurnal migrating tide, in particular, in the low-latitude mesosphere and lower thermosphere and in the high-latitude thermosphere. These effects depend on the mutual correlation of the diurnal phases of the GW forcing and tides: GWs can either enhance or reduce the tidal amplitude. In the low-latitude MLT, the correlation between the direction of the deposited GW momentum and the tidal phase is positive due to propagation of a broad spectrum of GW harmonics through the alternating winds. In the Northern Hemisphere high-latitude thermosphere, GWs act against the tide due to an anticorrelation of tidal wind and GW momentum, while in the Southern high-latitudes they weakly enhance the tidal amplitude via a combination of a partial correlation of phases and GW-induced changes of the circulation. The variable nature of GW effects on the thermal tide can be captured in GCMs provided that a GW parameterization (1) considers a broad spectrum of harmonics, (2) properly describes their propagation, and (3) correctly accounts for the physics of wave breaking/saturation.

  16. Internal wave scattering in continental slope canyons, part 1: Theory and development of a ray tracing algorithm

    NASA Astrophysics Data System (ADS)

    Nazarian, Robert H.; Legg, Sonya

    2017-10-01

    When internal waves interact with topography, such as continental slopes, they can transfer wave energy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent of global continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first step in the development of such parameterizations, we conduct a parameter space study of M2 tidal-frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifically, we examine the effects of varying the canyon mouth width, shape and slope of the thalweg (line of lowest elevation). This effort is divided into two parts. In the first part, presented here, we extend the theory of 3-dimensional internal wave reflection to a rotated coordinate system aligned with our idealized V-shaped canyons. Based on the updated linear internal wave reflection solution that we derive, we construct a ray tracing algorithm which traces a large number of rays (the discrete analog of a continuous wave) into the canyon region where they can scatter off topography. Although a ray tracing approach has been employed in other studies, we have, for the first time, used ray tracing to calculate changes in wavenumber and ray density which, in turn, can be used to calculate the Froude number (a measure of the likelihood of instability). We show that for canyons of intermediate aspect ratio, large spatial envelopes of instability can form in the presence of supercritical sidewalls. Additionally, the canyon height and length can modulate the Froude number. The second part of this study, a diagnosis of internal wave scattering in continental slope canyons using both numerical simulations and this ray tracing algorithm, as well as a test of robustness of the ray tracing, is presented in the companion article.

  17. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature

    NASA Astrophysics Data System (ADS)

    Austin, Ryan A.

    2018-01-01

    The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.

  18. Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization

    NASA Astrophysics Data System (ADS)

    Talbot, Colm; Thrane, Eric

    2018-04-01

    Gravitational-wave detections have revealed a previously unknown population of stellar mass black holes with masses above 20 M ⊙. These observations provide a new way to test models of stellar evolution for massive stars. By considering the astrophysical processes likely to determine the shape of the binary black hole mass spectrum, we construct a parameterized model to capture key spectral features that relate gravitational-wave data to theoretical stellar astrophysics. In particular, we model the signature of pulsational pair-instability supernovae, which are expected to cause all stars with initial mass 100 M ⊙ ≲ M ≲ 150 M ⊙ to form ∼40 M ⊙ black holes. This would cause a cutoff in the black hole mass spectrum along with an excess of black holes near 40 M ⊙. We carry out a simulated data study to illustrate some of the stellar physics that can be inferred using gravitational-wave measurements of binary black holes and demonstrate several such inferences that might be made in the near future. First, we measure the minimum and maximum stellar black hole mass. Second, we infer the presence of a peak due to pair-instability supernovae. Third, we measure the distribution of black hole mass ratios. Finally, we show how inadequate models of the black hole mass spectrum lead to biased estimates of the merger rate and the amplitude of the stochastic gravitational-wave background.

  19. Observations and estimates of wave-driven water level extremes at the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-10-01

    Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.

  20. Inverse transonic airfoil design methods including boundary layer and viscous interaction effects

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1979-01-01

    The development and incorporation into TRANDES of a fully conservative analysis method utilizing the artificial compressibility approach is described. The method allows for lifting cases and finite thickness airfoils and utilizes a stretched coordinate system. Wave drag and massive separation studies are also discussed.

  1. Inserting Tides and Topographic Wave Drag into High-resolution Eddying Simulations

    DTIC Science & Technology

    2014-07-01

    Acknowledgements We thank Richard Ray for providing results from a global harmonic analysis of along-track satellite altimetry data, used in Figure 1...Rodriguez, 2012: SWOT : The Surface Water and Ocean Topography Mission, Jet Propulsion Laboratory JPL-Publication 12-05, 228 pp Garner, S.T., 2005: A

  2. Revisiting Southern Hemisphere polar stratospheric temperature trends in WACCM: The role of dynamical forcing

    NASA Astrophysics Data System (ADS)

    Calvo, N.; Garcia, R. R.; Kinnison, D. E.

    2017-04-01

    The latest version of the Whole Atmosphere Community Climate Model (WACCM), which includes a new chemistry scheme and an updated parameterization of orographic gravity waves, produces temperature trends in the Antarctic lower stratosphere in excellent agreement with radiosonde observations for 1969-1998 as regards magnitude, location, timing, and persistence. The maximum trend, reached in November at 100 hPa, is -4.4 ± 2.8 K decade-1, which is a third smaller than the largest trend in the previous version of WACCM. Comparison with a simulation without the updated orographic gravity wave parameterization, together with analysis of the model's thermodynamic budget, reveals that the reduced trend is due to the effects of a stronger Brewer-Dobson circulation in the new simulations, which warms the polar cap. The effects are both direct (a trend in adiabatic warming in late spring) and indirect (a smaller trend in ozone, hence a smaller reduction in shortwave heating, due to the warmer environment).

  3. Near Wall Dynamics in Colloidal Suspensions Studied by Evansescent Wave Dynamic Light Scattering

    NASA Astrophysics Data System (ADS)

    Lang, Peter R.

    2011-03-01

    The dynamics of dispersed colloidal particles is slowed down, and becomes anisotropic in the ultimate vicinity of a flat wall due to the wall drag effect. Although theoretically predicted in the early 20th century, experimental verification of this effect for Brownian particles became possible only in the late 80s. Since then a variety of experimental investigations on near wall Brownian dynamics by evanescent wave dynamic light scattering (EWDLS) has been published. In this contribution the method of EWDLS will be briefly introduced, experiments at low and high colloid concentration for hard-sphere suspensions, and the theoretical prediction for measured initial slopes of correlation functions will be discussed. On increasing the particle concentration the influence of the wall drag effect is found to diminishes gradually, until it becomes negligible at volume fractions above ϕ 0.35. The effect that a wall exerts on the orientational dynamics was investigated for different kinds of colloids. Experiments, simulations and a virial expansion theory show that rotational dynamics is slowed down as well. However, the effect is prominent in EWDLS only if the particles' short axis is of the order of the evanescent wave penetration depth. The author acknowledges financial support from the EU through FP7, project Nanodirect (Grant 395 No. NMP4-SL-2008-213948).

  4. Influence of wave modelling on the prediction of fatigue for offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Veldkamp, H. F.; van der Tempel, J.

    2005-01-01

    Currently it is standard practice to use Airy linear wave theory combined with Morison's formula for the calculation of fatigue loads for offshore wind turbines. However, offshore wind turbines are typically placed in relatively shallow water depths of 5-25 m where linear wave theory has limited accuracy and where ideally waves generated with the Navier-Stokes approach should be used. This article examines the differences in fatigue for some representative offshore wind turbines that are found if first-order, second-order and fully non-linear waves are used. The offshore wind turbines near Blyth are located in an area where non-linear wave effects are common. Measurements of these waves from the OWTES project are used to compare the different wave models with the real world in spectral form. Some attention is paid to whether the shape of a higher-order wave height spectrum (modified JONSWAP) corresponds to reality for other places in the North Sea, and which values for the drag and inertia coefficients should be used. Copyright

  5. Long-Period Oscillations of Hydraulic Fractures: Attenuation, Scaling Relationships, and Flow Stability

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2013-12-01

    Long-period seismicity due to the excitation of hydraulic fracture normal modes is thought to occur in many geological systems, including volcanoes, glaciers and ice sheets, and hydrocarbon reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluid within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis that accounts for quasi-dynamic elasticity of the fracture wall, as well as fluid drag, inertia, and compressibility. We consider symmetric perturbations and neglect the effects of stratification and gravity. In the long-wavelength or thin-fracture limit, dispersive guided waves known as crack waves propagate with phase velocity cw=√(G*|k|w/ρ), where G* = G/(1-υ) for shear modulus G and Poisson ratio υ, w is the crack half-width, k is the wavenumber, and ρ is the fluid density. Restoring forces from elastic wall deformation drive wave motions. In the opposite, short-wavelength limit, guided waves are simply sound waves within the fluid and little seismic excitation occurs due to minimal fluid-solid coupling. We focus on long-wavelength crack waves, which, in the form of standing wave modes in finite-length cracks, are thought to be a common mechanism for long-period seismicity. The dispersive nature of crack waves implies several basic scaling relations that might be useful when interpreting statistics of long-period events. Seismic observations may constrain a characteristic frequency f0 and seismic moment M0~GδwR2, where δw is the change in crack width and R is the crack dimension. Resonant modes of a fluid-filled crack have associated frequencies f~cw/R. Linear elasticity provides a link between pressure changes δp in the crack and the induced opening δw: δp~G δw/R. Combining these, and assuming that pressure changes have no variation with crack dimension, leads to the scaling law relating seismic moment and oscillation frequency, M0~(Gwδp/ρ)f0-2. This contrasts with the well-known self-similar earthquake scaling M0∝f0-3. Attenuation of long-period crack waves is due to both drag within the fluid and radiative energy losses from excitation of seismic waves. Fluid drag may be characterized by either a turbulent or laminar viscous law. We present a thorough characterization of viscous damping that is valid at both low frequencies, where the flow is always fully developed, and at high frequencies, where fluid inertia becomes important. We have derived simple formulas for the quality factor due to viscous attenuation. Waves may become unstable for sufficiently fast background fluid velocity u0. This instability, first proposed by Julian (1994), was further investigated by Dunham and Ogden (2012), who determined the instability condition, u0>cw/2. We establish a more general result: that the stability condition is not only independent of viscosity, but also uninfluenced by fluid inertia, although both do alter growth rates. We also show that radiation damping (excitation of plane P waves normal to the crack walls) has only a stabilizing effect. This work suggests that under geologically relevant conditions, crack wave propagation is most likely stable, and the occurrence of long-period oscillations thus requires some additional excitation process.

  6. Insights into Volcanic Tremor: A Linear Stability Analysis of Waves Propagating Along Fluid-Filled Cracks

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2012-12-01

    Crack waves are guided waves along fluid-filled cracks that propagate with phase velocity less than the sound wave speed. Chouet (JGR, 1986) and Ferrazzini and Aki (JGR, 1977) have shown that such waves could explain volcanic tremor in terms of the resonant modes of a finite length magma-filled crack. Based on an idealized lumped-parameter model, Julian (JGR, 1994) further proposed that the steady flow of a viscous magma in a volcanic conduit is unstable to perturbations, leading to self-excited oscillations of the conduit walls and radiation of seismic waves. Our objective is to evaluate the possibility of self-excited oscillations within a rigorous, continuum framework. Our specific focus has been on basaltic fissure eruptions. In a typical basaltic fissure system, the magnitudes of the wave restoring forces, fluid compressibility and wall elasticity, are highly depth dependent. Because of the elevated fluid compressibility from gas exsolution at shallow depths, fluid pressure perturbations in this regime propagate as acoustic waves with effectively rigid conduit walls. Below the exsolution depth, the conduit walls are more compliant relative to the magma compressibility and perturbations propagate as dispersive crack waves. Viscous magma flow through such a fissure will evolve to a fully developed state characterized by a parabolic velocity profile in several to tens of seconds. This time scale is greater than harmonic tremor periods, typically 0.1 to 1 second. A rigorous treatment of the wave response to pressure perturbations therefore requires a general analysis of conduit flow that is not in a fully developed state. We present a linearized analysis of the coupled fluid and elastic response to general flow perturbations. We assume that deformation of the wall is linear elastic. As our focus is on wavelengths greatly exceeding the crack width, fluid flow is described by a quasi-one dimensional, or width-averaged, model. We account for conservation of magma mass and momentum including compressibility and viscous drag. Our analysis further assumes small perturbations about a steady background flow, a linearized isothermal equation of state, and a nominally constant width channel. We confirm Julian's results that sufficiently rapid flow through a deformable-walled conduit is unstable to perturbations in the form of crack waves. Instability occurs when drag reduction from opening the conduit exceeds the increase in drag from increased fluid velocity. Crack waves are most unstable at long wavelengths, where the conduit becomes more compliant. In the long wavelength limit, we find a simple expression for the critical flow speed beyond which crack waves are unstable: u = c / 2, where c is the crack wave phase velocity. The instability condition is remarkably independent of viscosity. This result more rigorously confirms the conclusion of Dunham and Ogden (2012, J. App. Mech.), who found the same instability criterion under the limiting assumption of fully developed flow. In a typical basaltic system the occurrence of this instability requires flow speeds exceeding ~50 m/s at depths where magma is primarily liquid melt with little exsolved gas. At these depths, flow speeds of this order are unlikely to occur. We conclude that harmonic tremor due to self-excited oscillations is unlikely to occur in nature.

  7. An Experimental Investigation of Transonic Flow Past Two-Dimensional Wedge and Circular-Arc Sections Using A Mach-Zehnder Interferometer

    NASA Technical Reports Server (NTRS)

    Bryson, Arthur Earl, Jr

    1952-01-01

    Report presents the results of interferometer measurements of the flow field near two-dimensional wedge and circular-arc sections of zero angle of attack at high-subsonic and low-supersonic velocities. Both subsonic flow with local supersonic zone and supersonic flow with detached shock wave have been investigated. Pressure distributions and drag coefficients as a function of Mach number have been obtained. The wedge data are compared with the theoretical work on flow past wedge sections of Guderley and Yoshihara, Vincenti and Wagner, and Cole. Pressure distributions and drag coefficients for the wedge and circular-arc sections are presented throughout the entire transonic range of velocities.

  8. Lateral-drag propulsion forces induced by anisotropy.

    PubMed

    Nefedov, Igor S; Rubi, J Miguel

    2017-07-21

    We predict the existence of lateral drag forces near the flat surface of an absorbing slab made of an anisotropic material. The forces originate from the fluctuations of the electromagnetic field, when the anisotropy axis of the material forms a certain angle with the surface. In this situation, the spatial spectra of the fluctuating electromagnetic fields becomes asymmetric, different for positive and negative transverse wave vectors components. Differently from the case of van der Waals interactions in which the forward-backward symmetry is broken due to the particle movement, in our case the lateral motion results merely from the anisotropy of the slab. This new effect, of particular significance in hyperbolic materials, could be used for the manipulation of nanoparticles.

  9. Modeling the QBO and SAO Driven by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.

    1999-01-01

    Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW) is applied in a global scale numerical spectral model (NSM) to describe the semi-annual and quasi-biennial oscillations (SAO and QBO) as well as the long term interannual variations that are driven by wave mean flow interactions. This model has been successful in simulating the salient features observed near the equator at altitudes above 20 km, including the QBO extension into the upper mesosphere inferred from UARS measurements. The model has now been extended to describe also the mean zonal and meridional circulations of the upper troposphere and lower stratosphere that affect the equatorial QBO and its global scale extension. This is accomplished in part through tuning of the GW parameterization, and preliminary results lead to the following conclusions: (1) To reproduce the upwelling at equatorial latitudes associated with the Brewer/Dobson circulation that in part is modulated in the model by the vertical component of the Coriolis force, the eddy diffusivity in the lower stratosphere had to be enhanced and the related GW spectrum modified to bring it in closer agreement with the form recommended for the DSP. (2) To compensate for the required increase in the diffusivity, the observed QBO requires a larger GW source that is closer to the middle of the range recommended for the DSP. (3) Through global scale momentum redistribution, the above developments are conducive to extending the QBO and SAO oscillations to higher latitudes. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. (4) In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. Thus, a somewhat larger GW source is required to generate realistic amplitudes for the QBO and SAO.

  10. Forced Gravity Waves and the Tropospheric Response to Convection

    NASA Astrophysics Data System (ADS)

    Halliday, O. J.; Griffiths, S. D.; Parker, D. J.; Stirling, A.

    2017-12-01

    It has been known for some time that gravity waves facilitate atmospheric adjustment to convective heating. Further, convectively forced gravity waves condition the neighboring atmosphere for the initiation and / or suppression of convection. Despite this, the radiation of gravity waves in macro-scale models (which are typically forced at the grid-scale, by existing parameterization schemes) is not well understood. We present here theoretical and numerical work directed toward improving our understanding of convectively forced gravity wave effects at the mesoscale. Using the linear hydrostatic equations of motion for an incompressible (but non-Boussinesq) fluid with vertically varying buoyancy frequency, we find a radiating solution to prescribed sensible heating. We then interrogate the spatial and temporal sensitivity of the vertical velocity and potential temperature response to different heating functions, considering the remote and near-field forced response both to steady and pulsed heating. We find that the meso-scale tropospheric response to convection is significantly dependent on the upward radiation characteristics of the gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and stratification of the domain. Moving from a trapped to upwardly-radiating solution there is a 50% reduction in tropospherically averaged vertical velocity, but significant perturbations persist for up to 4 hours in the far-field. We find the tropospheric adjustment to be sensitive to the horizontal length scale which characterizes the heating, observing a 20% reduction in vertical velocity when comparing the response from a 10 km to a 100 km heat source. We assess the implications for parameterization of convection in coarse-grained models in the light of these findings. We show that an idealized `full-physics' nonlinear simulation of deep convection in the UK Met Office Unified Model is qualitatively described by the linear solution: departures are quantified and explored.

  11. Gliding locomotion of manta rays, killer whales and swordfish near the water surface.

    PubMed

    Zhan, Jie-Min; Gong, Ye-Jun; Li, Tian-Zeng

    2017-03-24

    The hydrodynamic performance of the locomotive near the water surface is impacted by its geometrical shape. For marine animals, their geometrical shape is naturally selective; thus, investigating gliding locomotion of marine animal under the water surface may be able to elucidate the influence of the geometrical shape. We investigate three marine animals with specific geometries: the killer whale is fusiform shaped; the manta ray is flat and broad-winged; and the swordfish is best streamlined. The numerical results are validated by the measured drag coefficients of the manta ray model in a towing tank. The friction drag of the three target models are very similar; the body shape affected form drag coefficient is order as swordfish < killer whale < manta ray; the induced wave breaking upon the body of the manta ray performs different to killer whale and swordfish. These bio-inspired observations provide a new and in-depth understanding of the shape effects on the hydrodynamic performances near the free surface.

  12. Analysis of gravity wave propagation and properties, comparison between WRF model simulations and LIDAR data in Southern France

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Heinrich, Philippe

    2014-05-01

    Small scale atmospheric waves, usually referred as internal of Gravity Waves (GW), represent an efficient transport mechanism of energy and momentum through the atmosphere. They propagate upward from their sources in the lower atmosphere (flow over topography, convection and jet adjustment) to the middle and upper atmosphere. Depending on the horizontal wind shear, they can dissipate at different altitudes and force the atmospheric circulation of the stratosphere and mesosphere. The deposition of momentum associated with the dissipation, or wave breaking, exerts an acceleration to the mean flow, that can significantly alter the thermal and dynamical structure of the atmosphere. GW may have spatial scales that range from few to hundreds of kilometers and range from minutes to hours. For that reason, General Circulation Model (GCM) used in climate studies have generally a coarse resolution, of approximately 2-5° horizontally and 3 km vertically, in the stratosphere. This resolution is fine enough to resolve Rossby-waves but not the small-scale GW activity. Hence, to calculate the momentum-forcing generated by the unresolved waves, they use a drag parametrization which mainly consists in some tuning parameters, constrained by observations of wind circulation and temperature in the upper troposphere and middle atmosphere (Alexander et al., 2010). Traditionally, the GW Drag (GWD) parametrization is used in climate and forecasting models to adjust the structure of winter jets and the horizontal temperature gradient. It was firstly based on the parametrization of orographic waves, which represent zero-phase-speed waves generated by sub-grid topography. Regional models, with horizontal resolutions that can reach few tens or hundreds of meters, are able to directly resolve small-scale GW and may represent a valuable addition to direct observations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, this study tests the capability of the Weather Research and Forecasting (WRF) model to generate and propagate GW forced by convection and orography, without any GW parametrization. Results from model simulations are compared with in-situ observations of potential energy vertical profiles in the stratosphere, measured by a LIDAR located at the Observatoire de Haute Provence (Southern France). This comparison allows, to a certain extent, to validate WRF numerical results and quantify some of those wave parameters (e.g., GW drag force, intrinsic frequency, breaking level altitude, etc..) that are fundamental for a deeper understanding of GW role in atmospheric dynamics, but that are not easily measurable by ground- or space-based systems (limited to specific region or certain latitude band). Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. and Watanabe, S. (2010), Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q.J.R. Meteorol. Soc., 136: 1103-1124. doi: 10.1002/qj.637

  13. Multi-scale mantle structure underneath the Americas from a new tomographic model of seismic shear velocity

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Becker, T. W.; Auer, L.; Boschi, L.

    2017-12-01

    We present a whole-mantle, variable resolution, shear-wave tomography model based on newly available and existing seismological datasets including regional body-wave delay times and multi-mode Rayleigh and Love wave phase delays. Our body wave dataset includes 160,000 S wave delays used in the DNA13 regional tomographic model focused on the western and central US, 86,000 S and SKS delays measured on stations in western South America (Porritt et al., in prep), and 3,900,000 S+ phases measured by correlation between data observed at stations in the IRIS global networks (IU, II) and stations in the continuous US, against synthetic data generated with IRIS Syngine. The surface wave dataset includes fundamental mode and overtone Rayleigh wave data from Schaeffer and Levedev (2014), ambient noise derived Rayleigh wave and Love wave measurements from Ekstrom (2013), newly computed fundamental mode ambient noise Rayleigh wave phase delays for the continuous US up to July 2017, and other, previously published, measurements. These datasets, along with a data-adaptive parameterization utilized for the SAVANI model (Auer et al., 2014), should allow significantly finer-scale imaging than previous global models, rivaling that of regional-scale approaches, under the USArray footprint in the continuous US, while seamlessly integrating into a global model. We parameterize the model for both vertically (vSV) and horizontally (vSH) polarized shear velocities by accounting for the different sensitivities of the various phases and wave types. The resulting, radially anisotropic model should allow for a range of new geodynamic analysis, including estimates of mantle flow induced topography or seismic anisotropy, without generating artifacts due to edge effects, or requiring assumptions about the structure of the region outside the well resolved model space. Our model shows a number of features, including indications of the effects of edge-driven convection in the Cordillera and along the eastern margin and larger-scale convection due to the subduction of the Farallon slab and along the edge of the Laurentia cratonic margin.

  14. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  15. Predicting dangerous ocean waves with spaceborne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Beal, R. C.

    1984-01-01

    It is pointed out that catastrophes, related to the occurrence of strong winds and large ocean waves, can consume more lives and property than most naval battles. The generation of waves by wind are considered, Pierson et al. (1955) have incorporated statistical concepts into a wave forecast model. The concept of an 'ocean wave spectrum' was introduced, with the wind acting independently on each Fourier component. However, even after 30 years of research and debate, the generation, propagation, and dissipation of the spectrum under arbitrary conditions continue to be controversial. It has now been found that spaceborne SAR has a surprising ability to precisely monitor spatially evolving wind and wave fields. Approaches to overcome certain weaknesses of the SAR method are discussed, taking into account the second Shuttle Imaging Radar experiment, and a possible long-term solution provided by Spectrasat. Spectrasat should be a low-altitude (200 to 250 km) satellite with active drag compensation.

  16. The Use of Steady and Unsteady Detonation Waves for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)

    1995-01-01

    Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.

  17. Andreas Acrivos Dissertation Award Talk: Modeling drag forces and velocity fluctuations in wall-bounded flows at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Yang, Xiang

    2017-11-01

    The sizes of fluid motions in wall-bounded flows scale approximately as their distances from the wall. At high Reynolds numbers, resolving near-wall, small-scale, yet momentum-transferring eddies are computationally intensive, and to alleviate the strict near-wall grid resolution requirement, a wall model is usually used. The wall model of interest here is the integral wall model. This model parameterizes the near-wall sub-grid velocity profile as being comprised of a linear inner-layer and a logarithmic meso-layer with one additional term that accounts for the effects of flow acceleration, pressure gradients etc. We use the integral wall model for wall-modeled large-eddy simulations (WMLES) of turbulent boundary layers over rough walls. The effects of rough-wall topology on drag forces are investigated. A rough-wall model is then developed based on considerations of such effects, which are now known as mutual sheltering among roughness elements. Last, we discuss briefly a new interpretation of the Townsend attached eddy hypothesis-the hierarchical random additive process model (HRAP). The analogy between the energy cascade and the momentum cascade is mathematically formal as HRAP follows the multi-fractal formulism, which was extensively used for the energy cascade.

  18. Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments

    NASA Astrophysics Data System (ADS)

    Zakšek, Klemen; Schroedter-Homscheidt, Marion

    Some applications, e.g. from traffic or energy management, require air temperature data in high spatial and temporal resolution at two metres height above the ground ( T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (SEVIRI data aboard the MSG and MODIS data aboard Terra and Aqua satellites). The method consists of two parts. First, a downscaling procedure from the SEVIRI pixel resolution of several kilometres to a one kilometre spatial resolution is performed using a regression analysis between the land surface temperature ( LST) and the normalized differential vegetation index ( NDVI) acquired by the MODIS instrument. Second, the lapse rate between the LST and T2m is removed using an empirical parameterization that requires albedo, down-welling surface short-wave flux, relief characteristics and NDVI data. The method was successfully tested for Slovenia, the French region Franche-Comté and southern Germany for the period from May to December 2005, indicating that the parameterization is valid for Central Europe. This parameterization results in a root mean square deviation RMSD of 2.0 K during the daytime with a bias of -0.01 K and a correlation coefficient of 0.95. This is promising, especially considering the high temporal (30 min) and spatial resolution (1000 m) of the results.

  19. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    NASA Astrophysics Data System (ADS)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  20. Drag-Free Control and Drag Force Recovery of Small Satellites

    NASA Technical Reports Server (NTRS)

    Nguyen, Anh N.; Conklin, John W.

    2017-01-01

    Drag-free satellites provide autonomous precision orbit determination, accurately map the static and time varying components of Earth's mass distribution, aid in our understanding of the fundamental force of gravity, and will ultimately open up a new window to our universe through the detection and observation of gravitational waves. At the heart of this technology is a gravitational reference sensor, which (a) contains and shields a free-floating proof mass from all non-gravitational forces, and (b) precisely measures the position of the test mass inside the sensor. Thus, both test mass and spacecraft follow a pure geodesic in spacetime. By tracking the position of a low Earth orbiting drag-free satellite we can directly determine the detailed shape of geodesics and through analysis, the higher order harmonics of the Earths geopotential. This paper explores two different drag-free control systems on small satellites. The first drag-free control system is a continuously compensated single thruster 3-unit CubeSat with a suspension-free spherical proof-mass. A feedback control system commands the thruster and Attitude and Determination Control System to fly the tender spacecraft with respect to the test mass. The spheres position is sensed with a LED-based differential optical shadow sensor, its electric charge controlled by photoemission using UV LEDs, and the spacecraft position is maintained with respect to the sphere using an ion electrospray propulsion system. This configuration is the most fuel-efficient drag-free system possible today. The second drag-free control system is an electro-statically suspended cubical proof-mass that is operated with a low duty cycle, limiting suspension force noise over brief, known time intervals on a small GRACE-II -like satellite. The readout is performed using a laser interferometer, which is immune to the dynamic range limitations of voltage references. This system eliminates the need for a thruster, enabling drag-free control systems for passive satellites. In both cases, the test mass position, GPS tracking data, and commanded actuation, either thrust or suspension system, can be analyzed to estimate the 3-axis drag forces acting on the satellite. The data produces the most precise maps of upper atmospheric drag forces and with additional information, detailed models that describe the dynamics of the upper atmosphere and its impact on all satellites that orbit the Earth. This paper highlights the history, applications, design, laboratory technology development and highly detailed simulation results of each control system.

  1. Google Wave: Collaboration Reworked

    ERIC Educational Resources Information Center

    Rethlefsen, Melissa L.

    2010-01-01

    Over the past several years, Internet users have become accustomed to Web 2.0 and cloud computing-style applications. It's commonplace and even intuitive to drag and drop gadgets on personalized start pages, to comment on a Facebook post without reloading the page, and to compose and save documents through a web browser. The web paradigm has…

  2. The utilization of satellite data and dynamics in understanding and predicting global weather phenomena

    NASA Technical Reports Server (NTRS)

    Shirer, H. N. (Editor); Dutton, J. A. (Editor)

    1985-01-01

    A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, the stability, and the long term evaluation of incipient unstable waves. The flow is forced by latitudinally dependent radiational heating. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance. The properties of the steady Hadley and Rossby required for a thermally forced rotating fluid on a sphere are further explained. An objective parameterization technique is developed for general nonlinear hydrodynamical systems. The typical structure is one in which the rates of change of the dependent variables depend on homogeneous quadratic and linear forms, as well as on inhomogeneous forcing terms. Also documented is a steady, axisymmetric model of the general circulation developed as a basis for climate stability studies. The model includes the effects of heating, rotation, and internal friction, but neglects topography. Included is further research on cloud street phenomena. Orientation angles and horizontal wavelengths of boundary layer rolls and cloud streets are determined from an analysis of a truncated spectral model of three dimensional shallow moist Boussinesq convection in a shearing environment is further explained. Relatively broadly spaced roll clouds have orientations for which the Fourier component of the roll perpendicular shear is nearly zero, but the second corresponds to narrowly spaced rolls having orientations for which the Fourier coefficients of both the perpendicular and the parallel components of the shear are nearly equal.

  3. Research on the drag reduction performance induced by the counterflowing jet for waverider with variable blunt radii

    NASA Astrophysics Data System (ADS)

    Li, Shi-bin; Wang, Zhen-guo; Barakos, George N.; Huang, Wei; Steijl, Rene

    2016-10-01

    Waverider will endure the huge aero-heating in the hypersonic flow, thus, it need be blunt for the leading edge. However, the aerodynamic performance will decrease for the blunt waverider because of the drag hoik. How to improve the aerodynamic performance and reduce the drag and aero-heating is very important. The variable blunt radii method will improve the aerodynamic performance, however, the huge aero-heating and bow shock wave at the head is still serious. In the current study, opposing jet is used in the waverider with variable blunt radii to improve its performance. The three-dimensional coupled implicit Reynolds-averaged Navier-Stokes(RANS) equation and the two equation SST k-ω turbulence model have been utilized to obtain the flow field properties. The numerical method has been validated against the available experimental data in the open literature. The obtained results show that the L/D will drop 7-8% when R changes from 2 to 8. The lift coefficient will increase, and the drag coefficient almost keeps the same when the variable blunt radii method is adopted, and the L/D will increase. The variable blunt radii method is very useful to improve the whole characteristics of blunt waverider and the L/D can improve 3%. The combination of the variable blunt radii method and opposing jet is a novel way to improve the whole performance of blunt waverider, and L/D can improve 4-5%. The aperture as a novel way of opposing jet is suitable for blunt waverider and also useful to improve the aerodynamic and aerothermodynamic characteristics of waverider in the hypersonic flow. There is the optimal P0in/P0 that can make the detached shock wave reattach the lower surface again so that the blunt waverider can get the better aerodynamic performance.

  4. The Role of Law-of-the-Wall and Roughness Scale in the Surface Stress Model for LES of the Rough-wall Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Paes, Paulo; Chamecki, Marcelo

    2017-11-01

    Large-eddy simulation (LES) of the high Reynolds number rough-wall boundary layer requires both a subfilter-scale model for the unresolved inertial term and a ``surface stress model'' (SSM) for space-time local surface momentum flux. Standard SSMs assume proportionality between the local surface shear stress vector and the local resolved-scale velocity vector at the first grid level. Because the proportionality coefficient incorporates a surface roughness scale z0 within a functional form taken from law-of-the-wall (LOTW), it is commonly stated that LOTW is ``assumed,'' and therefore ``forced'' on the LES. We show that this is not the case; the LOTW form is the ``drag law'' used to relate friction velocity to mean resolved velocity at the first grid level consistent with z0 as the height where mean velocity vanishes. Whereas standard SSMs do not force LOTW on the prediction, we show that parameterized roughness does not match ``true'' z0 when LOTW is not predicted, or does not exist. By extrapolating mean velocity, we show a serious mismatch between true z0 and parameterized z0 in the presence of a spurious ``overshoot'' in normalized mean velocity gradient. We shall discuss the source of the problem and its potential resolution.

  5. The sea state bias in altimeter estimates of sea level from collinear analysis of TOPEX data

    NASA Technical Reports Server (NTRS)

    Chelton, Dudley B.

    1994-01-01

    The wind speed and significant wave height (H(sub 1/3)) dependencies of the sea state bias in altimeter estimates of sea level, expressed in the form (Delta)h(sub SSB) = bH(sub 1/3), are examined from least squares analysis of 21 cycles of collinear TOPEX data. The bias coefficient b is found to increase in magnitude with increasing wind speed up to about 12 m/s and decrease monotonically in magnitude with increasing H(sub 1/3). A parameterization of b as a quadratic function of wind speed only, as in the formation used to produce the TOPEX geophysical data records (GDRs), is significantly better than a parameterization purely in terms of H(sub 1/3). However, a four-parameter combined wind speed and wave height formulation for b (quadratic in wind speed plus linear in H(sub 1/3)) significantly improves the accuracy of the sea state bias correction. The GDR formulation in terms of wind speed only should therefore be expanded to account for a wave height dependence of b. An attempt to quantify the accuracy of the sea state bias correction (Delta)h(sub SSB) concludes that the uncertainty is a disconcertingly large 1% of H(sub 1/3).

  6. A data driven model for dune morphodynamics

    NASA Astrophysics Data System (ADS)

    Palmsten, M.; Brodie, K.; Spore, N.

    2016-12-01

    Dune morphology results from a number of competing feedbacks between wave, Aeolian, and biologic processes. Only now are conceptual and numerical models for dunes beginning to incorporate all aspects of the processes driving morphodynamics. Drawing on a 35-year record of observations of dune morphology and forcing conditions at the Army Corps of Engineers Field Research Facility (FRF) at Duck, NC, USA, we hypothesize that local dune morphology results from the competition between dune growth during dry windy periods and erosion during storms. We test our hypothesis by developing a data driven model using a Bayesian network to hindcast dune-crest elevation change, dune position change, and shoreline position change. Model inputs include a description of dune morphology from dune-crest elevation, dune-base elevation, dune width, and beach width. Wave forcing and the effect of moisture is parameterized in terms of the maximum total water level and period that waves impact the dunes, along with precipitation. Aeolian forcing is parameterized in terms of maximum wind speed, direction and period that wind exceeds a critical value for sediment transport. We test the sensitivity of our model to forcing parameters and hindcast the 35-year record of dune morphodynamics at the FRF. We also discuss the role of vegetation on dune morphologic differences observed at the FRF.

  7. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows towardmore » Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.« less

  8. A stochastic parameterization for deep convection using cellular automata

    NASA Astrophysics Data System (ADS)

    Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.

    2012-12-01

    Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in large-scale variables in regions where convective activity is large. A two month extended evaluation of the deterministic behaviour of the scheme indicate a neutral impact on forecast skill. References: Bengtsson, L., H. Körnich, E. Källén, and G. Svensson, 2011: Large-scale dynamical response to sub-grid scale organization provided by cellular automata. Journal of the Atmospheric Sciences, 68, 3132-3144. Frenkel, Y., A. Majda, and B. Khouider, 2011: Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example. Journal of the Atmospheric Sciences, doi: 10.1175/JAS-D-11-0148.1. Huang, X.-Y., 1988: The organization of moist convection by internal 365 gravity waves. Tellus A, 42, 270-285. Khouider, B., J. Biello, and A. Majda, 2010: A Stochastic Multicloud Model for Tropical Convection. Comm. Math. Sci., 8, 187-216. Palmer, T., 2011: Towards the Probabilistic Earth-System Simulator: A Vision for the Future of Climate and Weather Prediction. Quarterly Journal of the Royal Meteorological Society 138 (2012) 841-861 Plant, R. and G. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87-105.

  9. Control of Tollmien-Schlichting instabilities by finite distributed wall actuation

    NASA Astrophysics Data System (ADS)

    Losse, Nikolas R.; King, Rudibert; Zengl, Marcus; Rist, Ulrich; Noack, Bernd R.

    2011-06-01

    Tollmien-Schlichting waves are one of the key mechanisms triggering the laminar-turbulent transition in a flat-plate boundary-layer flow. By damping these waves and thus delaying transition, skin friction drag can be significantly decreased. In this simulation study, a wall segment is actuated according to a control scheme based on a POD-Galerkin model driven extended Kalman filter for state estimation and a model predictive controller to dampen TS waves by negative superposition based on this information. The setup of the simulation is chosen to resemble actuation with a driven compliant wall, such as a membrane actuator. Most importantly, a method is proposed to integrate such a localized wall actuation into a Galerkin model.

  10. Electromagnetic radiation accompanying gravitational waves from black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A.; Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com

    The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiationmore » with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.« less

  11. Parameterization of wind turbine impacts on hydrodynamics and sediment transport

    NASA Astrophysics Data System (ADS)

    Rivier, Aurélie; Bennis, Anne-Claire; Pinon, Grégory; Magar, Vanesa; Gross, Markus

    2016-10-01

    Monopile foundations of offshore wind turbines modify the hydrodynamics and sediment transport at local and regional scales. The aim of this work is to assess these modifications and to parameterize them in a regional model. In the present study, this is achieved through a regional circulation model, coupled with a sediment transport module, using two approaches. One approach is to explicitly model the monopiles in the mesh as dry cells, and the other is to parameterize them by adding a drag force term to the momentum and turbulence equations. Idealised cases are run using hydrodynamical conditions and sediment grain sizes typical from the area located off Courseulles-sur-Mer (Normandy, France), where an offshore windfarm is under planning, to assess the capacity of the model to reproduce the effect of the monopile on the environment. Then, the model is applied to a real configuration on an area including the future offshore windfarm of Courseulles-sur-Mer. Four monopiles are represented in the model using both approaches, and modifications of the hydrodynamics and sediment transport are assessed over a tidal cycle. In relation to local hydrodynamic effects, it is observed that currents increase at the side of the monopile and decrease in front of and downstream of the monopile. In relation to sediment transport effect, the results show that resuspension and erosion occur around the monopile in locations where the current speed increases due to the monopile presence, and sediments deposit downstream where the bed shear stress is lower. During the tidal cycle, wakes downstream of the monopile reach the following monopile and modify the velocity magnitude and suspended sediment concentration patterns around the second monopile.

  12. Effects of surface wave breaking on the oceanic boundary layer

    NASA Astrophysics Data System (ADS)

    He, Hailun; Chen, Dake

    2011-04-01

    Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General Ocean Turbulence Model, GOTM) to investigate the effects of wave breaking on the oceanic boundary layer on diurnal to seasonal time scales. First a set of idealized experiments are carried out to demonstrate the basic physics and the necessity to include wave breaking. Then the model is applied to simulating observations at the northern North Sea and the Ocean Weather Station Papa, which shows that properly accounting for wave breaking effects can improve model performance and help it to successfully capture the observed upper ocean variability.

  13. Effect of Transpiration Injection on Skin Friction in an Internal Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Castiglone, L. A.; Northam, G. B.; Baker, N. R.; Roe, L. A.

    1996-01-01

    An experimental program was conducted at NASA Langley Research Center that included development and evaluation of an operational facility for wall drag measurement of potential scramjet fuel injection or wall cooling configurations. The facility consisted of a supersonic tunnel, with one wall composed of a series of interchangeable aluminum plates attached to an air bearing suspension system. The system was equipped with load cells that measured drag forces of 115 psia (793 kPa). This flow field contained a train of weak, unsteady, reflecting shock waves that were produced in the Mach 2 nozzle flows, the effect of reflecting shocks (which are to be expected in scramjet combustors) in internal flows has not previously been documented.

  14. Rollover of Apparent Wave Attenuation in Ice Covered Seas

    NASA Astrophysics Data System (ADS)

    Li, Jingkai; Kohout, Alison L.; Doble, Martin J.; Wadhams, Peter; Guan, Changlong; Shen, Hayley H.

    2017-11-01

    Wave attenuation from two field experiments in the ice-covered Southern Ocean is examined. Instead of monotonically increasing with shorter waves, the measured apparent attenuation rate peaks at an intermediate wave period. This "rollover" phenomenon has been postulated as the result of wind input and nonlinear energy transfer between wave frequencies. Using WAVEWATCH III®, we first validate the model results with available buoy data, then use the model data to analyze the apparent wave attenuation. With the choice of source parameterizations used in this study, it is shown that rollover of the apparent attenuation exists when wind input and nonlinear transfer are present, independent of the different wave attenuation models used. The period of rollover increases with increasing distance between buoys. Furthermore, the apparent attenuation for shorter waves drops with increasing separation between buoys or increasing wind input. These phenomena are direct consequences of the wind input and nonlinear energy transfer, which offset the damping caused by the intervening ice.

  15. Reynolds Number Effect on Spatial Development of Viscous Flow Induced by Wave Propagation Over Bed Ripples

    NASA Astrophysics Data System (ADS)

    Dimas, Athanassios A.; Kolokythas, Gerasimos A.

    Numerical simulations of the free-surface flow, developing by the propagation of nonlinear water waves over a rippled bottom, are performed assuming that the corresponding flow is two-dimensional, incompressible and viscous. The simulations are based on the numerical solution of the Navier-Stokes equations subject to the fully-nonlinear free-surface boundary conditions and appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. For the spatial discretization, a hybrid scheme is used where central finite-differences, in the horizontal direction, and a pseudo-spectral approximation method with Chebyshev polynomials, in the vertical direction, are applied. A fractional time-step scheme is used for the temporal discretization. Over the rippled bed, the wave boundary layer thickness increases significantly, in comparison to the one over flat bed, due to flow separation at the ripple crests, which generates alternating circulation regions. The amplitude of the wall shear stress over the ripples increases with increasing ripple height or decreasing Reynolds number, while the corresponding friction force is insensitive to the ripple height change. The amplitude of the form drag forces due to dynamic and hydrostatic pressures increase with increasing ripple height but is insensitive to the Reynolds number change, therefore, the percentage of friction in the total drag force decreases with increasing ripple height or increasing Reynolds number.

  16. Damping of Plasma Waves in Multi-species Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois; Affolter, Matthew; Driscoll, C. Fred

    2015-11-01

    The damping of Langmuir waves in multi-species pure ion plasmas is measured over four decades in temperature covering regimes of Landau, bounce harmonics, and interspecies drag damping. Thermal cyclotron spectroscopy determines the plasma composition. The plasma is predominantly Mg+ resulting from a Mg electrode arc, with roughly 5-30% other ions, typically H3O+ and O2+,arising from ionization and chemical reactions with the residual background gas. The plasma temperature is controlled with laser cooling of the Mg24 ions over the range 10-4 <= T <= 1 eV. For T >= 0 .1 eV, the damping rates agree closely with Landau theory for θ-symmetric standing waves, with discrete wavenumber k1 = π /Lp . At lower temperature 10-2 <= T <= 0 . 1 eV the damping is not fully understood, but is most likely a result of Landau damping on higher kz bounce harmonics produced by the rounded plasma ends. For T <=10-2 eV, damping rates 10 <= γ <=103 s-1 are proportional to the ion-ion collisionality νii ~T - 3 / 2 , consistent with a theory prediction that includes interspecies drag. A decrease in γ is observed at T <=10-3 eV, presumably due to strong magnetization, centrifugal separation of the species, and the collisionality approaching the mode frequencyf1 ~20 kHz. Supported by DOE grant DE-SC0002451.

  17. On resonant coupling of acoustic waves and gravity waves

    NASA Astrophysics Data System (ADS)

    Millet, Christophe

    2017-11-01

    Acoustic propagation in the atmosphere is often modeled using modes that are confined within waveguides causing the sound to propagate through multiple paths to the receiver. On the other hand, direct observations in the lower stratosphere show that the gravity wave field is intermittent, and is often dominated by rather well defined large-amplitude wave packets. In the present work, we use normal modes to describe both the gravity wave field and the acoustic field. The gravity wave spectrum is obtained by launching few monochromatic waves whose properties are chosen stochastically to mimic the intermittency. Owing to the disparity of the gravity and acoustic length scales, the interactions between the gravity wave field and each of the acoustic modes can be described using a multiple-scale analysis. The appropriate amplitude evolution equation for the acoustic field involves certain random terms that can be directly related to the gravity wave sources. We will show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the gravity wave parameterization can create or destroy specific acoustic features.

  18. Observations of tidal flow, waves and drag within a fringing coastal mangrove forest in the Mekong delta

    NASA Astrophysics Data System (ADS)

    Mullarney, J. C.; Bryan, K. R.; Henderson, S. M.; Norris, B. K.; Vo Luong, H. P.

    2016-02-01

    In recent years attention has focused on the ability of mangroves to protect shorelines against damage from the combined hydrodynamic forces of waves and tides, owing to the presence of roots (pneumatophores) and tree trunks enhancing vegetative drag. However, field measurements within these dynamic environments are limited. We report on field observations from the seaward side of Cù Lao Dung Island (Soc Trang Province) in the Mekong Delta, Vietnam. The island encompasses two contrasting environments from a sandy, prograding flat with gentle topographic slope on the southwest side to a steep, eroding and muddy fringe region on the northeast side. The data capture the flow transitions from mudflat across the fringing region to the forest interior. We observe a rotation of the obliquely incident flows to an orientation perpendicular to the vegetated/unvegetated boundary. The balances governing the large scale flow are assessed and indicate the relative importance of friction, winds and depth-averaged pressure forces. We find drag coefficients of 10-30 times greater than the usual values associated with bottom friction, with values particularly elevated in the regions of dense pneumatophores that are important during the early stages of the tidal cycle. The field observations are used in the set-up of a simple one-dimensional process model. The model predicts the movement of the tide across the vegetated flat, associated sediment transport and evolution of the across flat profile. Preliminary results indicate that mangrove profiles may evolve towards a close to linear shape in contrast to systems with temperate species or no vegetation.

  19. Predicting the ocurrence probability of freak waves baed on buoy data and non-stationary extreme value models

    NASA Astrophysics Data System (ADS)

    Tomas, A.; Menendez, M.; Mendez, F. J.; Coco, G.; Losada, I. J.

    2012-04-01

    In the last decades, freak or rogue waves have become an important topic in engineering and science. Forecasting the occurrence probability of freak waves is a challenge for oceanographers, engineers, physicists and statisticians. There are several mechanisms responsible for the formation of freak waves, and different theoretical formulations (primarily based on numerical models with simplifying assumption) have been proposed to predict the occurrence probability of freak wave in a sea state as a function of N (number of individual waves) and kurtosis (k). On the other hand, different attempts to parameterize k as a function of spectral parameters such as the Benjamin-Feir Index (BFI) and the directional spreading (Mori et al., 2011) have been proposed. The objective of this work is twofold: (1) develop a statistical model to describe the uncertainty of maxima individual wave height, Hmax, considering N and k as covariates; (2) obtain a predictive formulation to estimate k as a function of aggregated sea state spectral parameters. For both purposes, we use free surface measurements (more than 300,000 20-minutes sea states) from the Spanish deep water buoy network (Puertos del Estado, Spanish Ministry of Public Works). Non-stationary extreme value models are nowadays widely used to analyze the time-dependent or directional-dependent behavior of extreme values of geophysical variables such as significant wave height (Izaguirre et al., 2010). In this work, a Generalized Extreme Value (GEV) statistical model for the dimensionless maximum wave height (x=Hmax/Hs) in every sea state is used to assess the probability of freak waves. We allow the location, scale and shape parameters of the GEV distribution to vary as a function of k and N. The kurtosis-dependency is parameterized using third-order polynomials and the model is fitted using standard log-likelihood theory, obtaining a very good behavior to predict the occurrence probability of freak waves (x>2). Regarding the second objective of this work, we apply different algorithms using three spectral parameters (wave steepness, directional dispersion, frequential dispersion) as predictors, to estimate the probability density function of the kurtosis for a given sea state. ACKNOWLEDGMENTS The authors thank to Puertos del Estado (Spanish Ministry of Public Works) for providing the free surface measurement database.

  20. Dependence of radiation belt simulations to assumed radial diffusion rates

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Aseev, N.; Kellerman, A. C.; Reeves, G. D.

    2017-12-01

    Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons due to wave-particle interaction with ultra low frequency (ULF) waves, which makes it very important for radiation belt modeling and forecasting. We investigate the sensitivity of several parameterizations of the radial diffusion including Brautigam and Albert [2000], Ozeke et al. [2014] and Ali et al. [2016] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following previous studies, we first perform 1-D radial diffusion simulations. To take into account effects of local acceleration and loss, we perform additional 3-D simulations, including pitch-angle, energy and mixed diffusion. The obtained result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable between simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.

  1. Impact of air-sea drag coefficient for latent heat flux on large scale climate in coupled and atmosphere stand-alone simulations

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc

    2018-05-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux between coupled simulations with different atmospheric circulations. Finally, we analyze the impact of model tuning and show that it can offset part of the feedbacks.

  2. Influence of the surface drag coefficient (young waves) on the current structure of the Berre lagoon

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Roux, Bernard; Kharif, Christian; Sukhinov, Alexander; Kotarba, Richard; Fougere, Dominique; Chen, Paul Gang

    2013-04-01

    Due to the shallowness, currents and hydrodynamics of Berre lagoon (South of France) are closely conditioned by the bottom topography, and wind affects the entire water column, as for many other Mediterranean lagoons (Perez-Ruzafa, 2011). Wind stress, which is caused by moving atmospheric disturbance, is known to have a major influence in lagoon water circulation. According to the numerical simulation for the main directions of the wind: N-NW, S-SE and W (wind speed of 80 km/h) it is observed that the current is maximal alongshore in the wind direction; the bottom nearshore current being larger in shallower area. This fact is coherent with fundamental principle of wind-driven flows in closed or partially closed basins which states that in shallow water the dominant force balance is between surface wind stress and bottom friction, yielding a current in the direction of the wind (Mathieu et al, 2002, Hunter and Hearn, 1987; Hearn and Hunter,1990). A uniform wind stress applied at the surface of a basin of variable depth sets up a circulation pattern characterized by relatively strong barotropic coastal currents in the direction of the wind, with return flow occurring over the deeper regions (Csanady, 1967; Csanady, 1971). One of the key parameters characterizing the wind stress formulation is a surface drag coefficient (Cds). Thus, an effect of a surface drag coefficient, in the range 0.0016 - 0.0032, will be analyzed in this work. The value of surface drag coefficient Cds = 0.0016 used in our previous studies (Alekseenko et al., 2012), would correspond to mature waves (open sea). But, in the case of semi-closed lagoonal ecosystem, it would be more appropriate to consider "young waves" mechanism. A dependency of this coefficient in terms of the wind speed is given by Young (1999) in both cases of mature waves and young waves. For "young waves" generated at a wind speed of 80 km/h, Cds = 0.0032. So, the influence of Cds on the vertical profile of the velocity in the water column is analyzed in the range 0.0016 - 0.0032. For the three main wind directions considered in this work, for a wind speed of 80 km/h, the complex current structure of the Berre lagoon is analysed. In the nearshore zones, strong alongshore downwind currents are generated, reaching values of the order of 1m/s (up to 1.5 m/s) at the free surface, and 0.5 - 0.6 m/s at the bottom. References Alekseenko E., B. Roux, A. Sukhinov, R. Kotarba, D. Fougere. Coastal hydrodynamics in a windy lagoon; submitted to Computers and Fluids, oct. 2012 Csanady G. T.: Large-scale motion in the Great Lakes, Journal of Geophysical Research, 72(16), 4151-4161, 1967. Csanady G. T. : Baroclinic boundary currents and long edge-waves in basins with sloping shores. J. Physical Oceanography 1(2):92-104, 1971. Hunter, J.R. and Hearn, C.J.: Lateral and vertical variations in the wind-driven circulations in long, shallow lakes, Journal of Geophysical Research, 92 (C12), 1987. Hearn, C.J. and Hunter, J.R.: A note on the equivalence of some two- and three-dimensional models of wind-driven barotropic flow in shallow seas, Applied Mathematical Modelling, 14, 553-556, 1990. Mathieu P.P., Deleersnijder E., Cushman-Roisin B., Beckers J.M. and Bolding K.: The role of topography in small well-mixed bays, with application to the lagoon of Mururoa. Continental Shelf research, 22(9), 1379-1395, 2002. A. Pérez-Ruzafa, C. Marcos, I.M. Pérez-Ruzafa (2011). Mediterranean coastal lagoons in an ecosystem and aquatic resources management context//Physics and Chemistry of the Earth, Parts A/B/C, Volume 36, Issues 5-6, 2011, Pages 160-166 Young I.R., Wind generated ocean waves. Ocean Engineering Series Editors. Elsevier, 1999, ISBN: 0-08-043317-0.

  3. Rossby wave activity in a two-dimensional model - Closure for wave driving and meridional eddy diffusivity

    NASA Technical Reports Server (NTRS)

    Hitchman, Matthew H.; Brasseur, Guy

    1988-01-01

    A parameterization of the effects of Rossby waves in the middle atmosphere is proposed for use in two-dimensional models. By adding an equation for conservation of Rossby wave activity, closure is obtained for the meridional eddy fluxes and body force due to Rossby waves. Rossby wave activity is produced in a climatological fashion at the tropopause, is advected by a group velocity which is determined solely by model zonal winds, and is absorbed where it converges. Absorption of Rossby wave activity causes both an easterly torque and an irreversible mixing of potential vorticity, represented by the meridional eddy diffusivity, K(yy). The distribution of Rossby wave driving determines the distribution of K(yy), which is applied to all of the chemical constituents. This provides a self-consistent coupling of the wave activity with the winds, tracer distributions and the radiative field. Typical winter stratospheric values for K(yy) of 2 million sq m/sec are obtained. Poleward tracer advection is enhanced and meridional tracer gradients are reduced where Rossby wave activity is absorbed in the model.

  4. Covariant extension of the GPD overlap representation at low Fock states

    DOE PAGES

    Chouika, N.; Mezrag, C.; Moutarde, H.; ...

    2017-12-26

    Here, we present a novel approach to compute generalized parton distributions within the lightfront wave function overlap framework. We show how to systematically extend generalized parton distributions computed within the DGLAP region to the ERBL one, fulfilling at the same time both the polynomiality and positivity conditions. We exemplify our method using pion lightfront wave functions inspired by recent results of non-perturbative continuum techniques and algebraic nucleon lightfront wave functions. We also test the robustness of our algorithm on reggeized phenomenological parameterizations. This approach paves the way to a better understanding of the nucleon structure from non-perturbative techniques and tomore » a unification of generalized parton distributions and transverse momentum dependent parton distribution functions phenomenology through lightfront wave functions.« less

  5. Trial wave functions for a composite Fermi liquid on a torus

    NASA Astrophysics Data System (ADS)

    Fremling, M.; Moran, N.; Slingerland, J. K.; Simon, S. H.

    2018-01-01

    We study the two-dimensional electron gas in a magnetic field at filling fraction ν =1/2 . At this filling the system is in a gapless state which can be interpreted as a Fermi liquid of composite fermions. We construct trial wave functions for the system on a torus, based on this idea, and numerically compare these to exact wave functions for small systems found by exact diagonalization. We find that the trial wave functions give an excellent description of the ground state of the system, as well as its charged excitations, in all momentum sectors. We analyze the dispersion of the composite fermions and the Berry phase associated with dragging a single fermion around the Fermi surface and comment on the implications of our results for the current debate on whether composite fermions are Dirac fermions.

  6. Atomic physics effects on tokamak edge drift-tearing modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahm, T.S.

    1993-03-01

    The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold {Delta}{sup Th}, produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.

  7. Atomic physics effects on tokamak edge drift-tearing modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahm, T.S.

    1993-03-01

    The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold [Delta][sup Th], produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.

  8. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    DOE PAGES

    Chang, G.; Ruehl, K.; Jones, C. A.; ...

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less

  9. Future Drag Measurements from Venus Express

    NASA Astrophysics Data System (ADS)

    Keating, Gerald; Mueller-Wodarg, Ingo; Forbes, Jeffrey M.; Yelle, Roger; Bruinsma, Sean; Withers, Paul; Lopez-Valverde, Miguel Angel; Theriot, Res. Assoc. Michael; Bougher, Stephen

    Beginning in July 2008 during the Venus Express Extended Mission, the European Space Agency will dramatically drop orbital periapsis from near 250km to near 180km above the Venus North Polar Region. This will allow orbital decay measurements of atmospheric densities to be made near the Venus North Pole by the VExADE (Venus Express Atmospheric Drag Experiment) whose team leader is Ingo Mueller-Wodarg. VExADE consists of two parts VExADE-ODA (Orbital Drag Analysis from radio tracking data) and VExADE-ACC (Accelerometer in situ atmospheric density measurements). Previous orbital decay measurements of the Venus thermosphere were obtained by Pioneer Venus from the 1970's into the 1990's and from Magellan in the 1990's. The major difference is that the Venus Express will provide measurements in the North Polar Region on the day and night sides, while the earlier measurements were obtained primarily near the equator. The periapsis will drift upwards in altitude similar to the earlier spacecraft and then be commanded down to its lower original values. This cycle in altitude will allow estimates of vertical structure and thus thermospheric temperatures in addition to atmospheric densities. The periapsis may eventually be lowered even further so that accelerometers can more accurately obtain density measurements of the polar atmosphere as a function of altitude, latitude, longitude, local solar time, pressure, Ls, solar activity, and solar wind on each pass. Bias in accelerometer measurements will be determined and corrected for by accelerometer measurements obtained above the discernable atmosphere on each pass. The second experiment, VExADE-ACC, is similar to the accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter that carried similar accelerometers in orbit around Mars. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected thermospheric drag effects over the last 30 years. The Venus Express drag experiments will allow a global empirical model of the thermosphere to emerge. This new model will be a substantial improvement over the Venus International Reference Atmosphere, which was based principally on near equatorial measurements. General Circulation Models (GCM's) and other models will be generated that are in fair accord with the empirical models. The experiment may help us understand, on a global scale, tides, winds, gravity waves, planetary waves and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The observed global cooling from radiative effects of 15 micron excitation of CO2 by atomic oxygen should improve our understanding of global thermospheric cooling on Earth and Mars as well.

  10. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  11. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high Tc superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  12. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.

    PubMed

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-27

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  13. Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmosphere Model version 5.3 (CAM5.3), the effects of pre-existing ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of the cirrus cloud rather than in the whole area of the cirrus cloud. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The pre-existing ice crystals significantly reduce ice numbermore » concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and pre-existing ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 10 6 m -2) is less than that from the LP (8.46 × 10 6 m -2) and BN (5.62 × 10 6 m -2) parameterizations. As a result, the experiment using the KL parameterization predicts a much smaller anthropogenic aerosol long-wave indirect forcing (0.24 W m -2) than that using the LP (0.46 W m −2) and BN (0.39 W m -2) parameterizations.« less

  14. Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    DOE PAGES

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-02-11

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmosphere Model version 5.3 (CAM5.3), the effects of pre-existing ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of the cirrus cloud rather than in the whole area of the cirrus cloud. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The pre-existing ice crystals significantly reduce ice numbermore » concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and pre-existing ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 10 6 m -2) is less than that from the LP (8.46 × 10 6 m -2) and BN (5.62 × 10 6 m -2) parameterizations. As a result, the experiment using the KL parameterization predicts a much smaller anthropogenic aerosol long-wave indirect forcing (0.24 W m -2) than that using the LP (0.46 W m −2) and BN (0.39 W m -2) parameterizations.« less

  15. Wave Driven Non-linear Flow Oscillator for the 22-Year Solar Cycle

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Wolff, Charles L.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In the Earth's atmosphere, a zonal flow oscillation is observed with periods between 20 and 32 months, the Quasi Biennial Oscillation. This oscillation does not require external time dependent forcing but is maintained by non-linear wave momentum deposition. It is proposed that such a mechanism also drives long-period oscillations in planetary and stellar interiors. We apply this mechanism to generate a flow oscillation for the 22-year solar cycle. The oscillation would occur just below the convective envelope where waves can propagate. Using scale analysis, we present results from a simplified model that incorporates Hines' gravity wave parameterization. Wave amplitudes less than 10 m/s can produce reversing zonal flows of 25 m/s that should be sufficient to generate a corresponding oscillation in the poloidal magnetic field. Low buoyancy frequency and the associated increase in turbulence help to produce the desired oscillation period of the flow.

  16. Activity of convective coupled equatorial wave in tropical Tropopause layer in reanalysis and high-top CMIP5 models

    NASA Astrophysics Data System (ADS)

    Harza, Alia; Lubis, Sandro W.; Setiawan, Sonni

    2018-05-01

    The activity of convectively coupled equatorial waves (CCEWs), including Kelvin waves, Mixed Rossby-Gravity (MRG), and Equatorial Rossby (ER), in the tropical tropopause layer (TTL) is investigated in the Reanalysis and nine high-top CMIP5 models using the zonal wave number-frequency spectral analysis with equatorially symmetric-antisymmetric decomposition. We found that the TTL activities in the high-top CMIP5 models show significant difference among the high-top CMIP5 models with respect to the observation. The MIROC and HadGEM2-CC models work best in simulating Kelvin wave in the TTL, while the HadGEM2-CC and MPI-ESM-LR models work best in simulating MRG waves. The ER waves in TTL are best simulated in the MRI-CGCM model. None of the models are good in simulating all waves at once. It is concluded that the broad range of wave activity found in the different CMIP5 models depend on the convective parameterization used by each model and the representation of the tropical stratosphere variability, including the QBO.

  17. The Gravity Wave Response Above Deep Convection in a Squall Line Simulation

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, J. R.; Durran, D. R.

    1995-01-01

    High-frequency gravity waves generated by convective storms likely play an important role in the general circulation of the middle atmosphere. Yet little is known about waves from this source. This work utilizes a fully compressible, nonlinear, numerical, two-dimensional simulation of a midlatitude squall line to study vertically propagating waves generated by deep convection. The model includes a deep stratosphere layer with high enough resolution to characterize the wave motions at these altitudes. A spectral analysis of the stratospheric waves provides an understanding of the necessary characteristics of the spectrum for future studies of their effects on the middle atmosphere in realistic mean wind scenarios. The wave spectrum also displays specific characteristics that point to the physical mechanisms within the storm responsible for their forcing. Understanding these forcing mechanisms and the properties of the storm and atmosphere that control them are crucial first steps toward developing a parameterization of waves from this source. The simulation also provides a description of some observable signatures of convectively generated waves, which may promote observational verification of these results and help tie any such observations to their convective source.

  18. The global distribution of gravity wave energy in the lower stratosphere derived from GPS data and gravity wave modelling: Attempt and challenges

    NASA Astrophysics Data System (ADS)

    Fröhlich, K.; Schmidt, T.; Ern, M.; Preusse, P.; de La Torre, A.; Wickert, J.; Jacobi, Ch.

    2007-12-01

    Five years of global temperatures retrieved from radio occultations measured by Champ (Challenging Minisatellite Payload) and SAC-C (Satelite de Aplicaciones Cientificas-C) are analyzed for gravity waves (GWs). In order to separate GWs from other atmospheric variations, a high-pass filter was applied on the vertical profile. Resulting temperature fluctuations correspond to vertical wavelengths between 400 m (instrumental resolution) and 10 km (limit of the high-pass filter). The temperature fluctuations can be converted into GW potential energy, but for comparison with parameterization schemes GW momentum flux is required. We therefore used representative values for the vertical and horizontal wavelength to infer GW momentum flux from the GPS measurements. The vertical wavelength value is determined by high-pass filtering, the horizontal wavelength is adopted from a latitude-dependent climatology. The obtained momentum flux distributions agree well, both in global distribution and in absolute values, with simulations using the Warner and McIntyre parameterization (WM) scheme. However, discrepancies are found in the annual cycle. Online simulations, implementing the WM scheme in the mechanistic COMMA-LIM (Cologne Model of the Middle Atmosphere—Leipzig Institute for Meteorology) general circulation model (GCM), do not converge, demonstrating that a good representation of GWs in a GCM requires both a realistic launch distribution and an adequate representation of GW breaking and momentum transfer.

  19. SURA-IOOS Coastal Inundation Testbed Inter-Model Evaluation of Tides, Waves, and Hurricane Surge in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kerr, P. C.; Donahue, A.; Westerink, J. J.; Luettich, R.; Zheng, L.; Weisberg, R. H.; Wang, H. V.; Slinn, D. N.; Davis, J. R.; Huang, Y.; Teng, Y.; Forrest, D.; Haase, A.; Kramer, A.; Rhome, J.; Feyen, J. C.; Signell, R. P.; Hanson, J. L.; Taylor, A.; Hope, M.; Kennedy, A. B.; Smith, J. M.; Powell, M. D.; Cardone, V. J.; Cox, A. T.

    2012-12-01

    The Southeastern Universities Research Association (SURA), in collaboration with the NOAA Integrated Ocean Observing System program and other federal partners, developed a testbed to help accelerate progress in both research and the transition to operational use of models for both coastal and estuarine prediction. This testbed facilitates cyber-based sharing of data and tools, archival of observation data, and the development of cross-platform tools to efficiently access, visualize, skill assess, and evaluate model results. In addition, this testbed enables the modeling community to quantitatively assess the behavior (e.g., skill, robustness, execution speed) and implementation requirements (e.g. resolution, parameterization, computer capacity) that characterize the suitability and performance of selected models from both operational and fundamental science perspectives. This presentation focuses on the tropical coastal inundation component of the testbed and compares a variety of model platforms as well as grids in simulating tides, and the wave and surge environments for two extremely well documented historical hurricanes, Hurricanes Rita (2005) and Ike (2008). Model platforms included are ADCIRC, FVCOM, SELFE, SLOSH, SWAN, and WWMII. Model validation assessments were performed on simulation results using numerous station observation data in the form of decomposed harmonic constituents, water level high water marks and hydrographs of water level and wave data. In addition, execution speed, inundation extents defined by differences in wetting/drying schemes, resolution and parameterization sensitivities are also explored.

  20. Inhomogeneous Heisenberg spin chain and quantum vortex filament as non-holonomically deformed NLS systems

    NASA Astrophysics Data System (ADS)

    Abhinav, Kumar; Guha, Partha

    2018-03-01

    Through the Hasimoto map, various dynamical systems can be mapped to different integrodifferential generalizations of Nonlinear Schrödinger (NLS) family of equations some of which are known to be integrable. Two such continuum limits, corresponding to the inhomogeneous XXX Heisenberg spin chain [J. Phys. C 15, L1305 (1982)] and that of a thin vortex filament moving in a superfluid with drag [Eur. Phys. J. B 86, 275 (2013) 86; Phys. Rev. E 91, 053201 (2015)], are shown to be particular non-holonomic deformations (NHDs) of the standard NLS system involving generalized parameterizations. Crucially, such NHDs of the NLS system are restricted to specific spectral orders that exactly complements NHDs of the original physical systems. The specific non-holonomic constraints associated with these integrodifferential generalizations additionally posses distinct semi-classical signature.

  1. Self-similar Relativisitic Disks revisted

    NASA Astrophysics Data System (ADS)

    Cai, M. J.; Shu, F. H.

    2001-05-01

    We revisit the rotating self-similar disk first studied by Lynden-Bell and Pineault and extend it to include pressure. A two-parameter family of solutions is constructed numerically. These disks are parameterized by the constant linear rotation velocity v, and the isothermal sound speed γ 1/2. For sufficiently high velocities, an ergo region develops in the form of the exterior of a cone. For each value of γ , there is a maximum velocity vc above which there is no equilibrium solutions. For this solution the frame dragging is infinite and the ergo cone closes on the rotation axis. The null geodesic equations are also integrated numerically. Due to the infinite extend and mass of the system, all photon trajectories are focused towards the disk. The behavior of equatorial photons orbits is qualitatively the same as that of cold disks.

  2. Jason 1 Investigation: Altimetric Studies of Ocean Tidal Dynamics

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.

    2004-01-01

    Two papers on tidal dissipation were completed and published. The first of these extended our earlier work, which focused on the dominant M2 constituent, to include 7 additional constituents. In addition to confirming a total deep water dissipation total very close to 1 TW, this study demonstrated significant differences in the distribution of dissipation between diurnal and semi-diurnal constituents. The second paper involved an extensive modeling study of tides in the present day and the last glacial maximum. In this study we showed that accuracy of tidal solutions for the present day Ocean were significantly improved by including a parameterization of internal tide drag over rough topography in the deep ocean. It was also demonstrated that a complete self-consistent treatment of Ocean self attraction and tidal loading was required for accurate solutions.

  3. The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Bleck, Rainer; Obrien, Enda

    1990-01-01

    The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics.

  4. Multiscale Study of Currents Affected by Topography

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Multiscale Study of Currents Affected by Topography ... topography on the ocean general circulation is challenging because of the multiscale nature of the flow interactions. Small-scale details of the... topography , and the waves, drag, and turbulence generated at the boundary, from meter scale to mesoscale, interact in the boundary layers to influence the

  5. A Symmetric Time-Varying Cluster Rate of Descent Model

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2015-01-01

    A model of the time-varying rate of descent of the Orion vehicle was developed based on the observed correlation between canopy projected area and drag coefficient. This initial version of the model assumes cluster symmetry and only varies the vertical component of velocity. The cluster fly-out angle is modeled as a series of sine waves based on flight test data. The projected area of each canopy is synchronized with the primary fly-out angle mode. The sudden loss of projected area during canopy collisions is modeled at minimum fly-out angles, leading to brief increases in rate of descent. The cluster geometry is converted to drag coefficient using empirically derived constants. A more complete model is under development, which computes the aerodynamic response of each canopy to its local incidence angle.

  6. Aerodynamic design and analysis of the AST-204, AST-205, and AST-206 blended wing-fuse large supersonic transport configuration concepts

    NASA Technical Reports Server (NTRS)

    Martin, G. L.; Walkley, K. B.

    1980-01-01

    The aerodynamic design and analysis of three blended wing-fuselage supersonic cruise configurations providing four, five, and six abreast seating was conducted using a previously designed supersonic cruise configuration as the baseline. The five abreast configuration was optimized for wave drag at a Mach number of 2.7. The four and six abreast configurations were also optimized at Mach 2.7, but with the added constraint that the majority of their structure be common with the five abreast configuration. Analysis of the three configurations indicated an improvement of 6.0, 7.5, and 7.7 percent in cruise lift-to-drag ratio over the baseline configuration for the four, five, and six abreast configurations, respectively.

  7. Sagnac-interferometer-based fresnel flow probe.

    PubMed

    Tselikov, A; Blake, J

    1998-10-01

    We used a near-diffraction-limited flow or light-wave-interaction pipe to produce a Sagnac-interferometer-based Fresnel drag fluid flowmeter capable of detecting extremely small flow rates. An optimized design of the pipe along with the use of a state-of-the-art Sagnac interferometer results in a minimum-detectable water flow rate of 2.4 nl/s [1 drop/(5 h)]. The flowmeter's capability of measuring the water consumption by a small plant in real time has been demonstrated. We then designed an automated alignment system that finds and maintains the optimum fiber-coupling regime, which makes the applications of the Fresnel-drag-based flowmeters practical, especially if the length of the interaction pipe is long. Finally, we have applied the automatic alignment technique to an air flowmeter.

  8. Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments

    NASA Astrophysics Data System (ADS)

    Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  9. Joint High Speed Sealift (JHSS) Segmented Model Test Data Analysis and Validation of Numerical Simulations

    DTIC Science & Technology

    2012-12-01

    epoxy bonded to the shell and then the back spline is bolted to the bulkheads via flexible tabs on the bulkheads and brackets attached to the back...D. G., & Broutman, D. (2010). "Parameterization of the internal wave field generated by a submarine and its turbulent wake in a uniformly

  10. Degradation of turbulent skin-friction drag reduction with superhydrophobic, liquid-infused and riblet surfaces with increasing Reynolds number

    NASA Astrophysics Data System (ADS)

    Akhavan, Rayhaneh; Rastegari, Amirreza

    2017-11-01

    It is shown that the magnitude of Drag Reduction (DR) with Super-Hydrophobic (SH), liquid-infused, or riblet surfaces can be parameterized in terms of the shift, ΔB , in the intercept of a log-law representation of the mean velocity profile and the friction coefficient of the base flow. Available DNS data shows ΔB to be Reynolds number independent and only a function of the geometrical parameters of the surface micro-texture in viscous wall units. This allows the DR results from DNS to be extrapolated to higher Reynolds numbers. It is shown that for a given geometry and size of the wall micro-texture in viscous wall units, the magnitude of DR degrades by factors of 2 - 3 as the friction Reynolds number of the base flow increases from Reτ0 200 of DNS to Reτ0 105 -106 of practical applications. Extrapolation of DNS results in turbulent channel flow at Reτ0 222 and 442 with SH longitudinal microgrooves of width 15 <=g+0 <= 60 and shear-free-fractions of 0.875 - 0.985 shows that the maximum DRs which can be sustained with SH longitudinal micro-grooves of size g+0 <= 20 - 30 in practical applications is limited to DRs of 25 - 35 % at Reτ0 105 and 20 - 25 % at Reτ0 106 .

  11. On the physical air-sea fluxes for climate modeling

    NASA Astrophysics Data System (ADS)

    Bonekamp, J. G.

    2001-02-01

    At the sea surface, the atmosphere and the ocean exchange momentum, heat and freshwater. Mechanisms for the exchange are wind stress, turbulent mixing, radiation, evaporation and precipitation. These surface fluxes are characterized by a large spatial and temporal variability and play an important role in not only the mean atmospheric and oceanic circulation, but also in the generation and sustainment of coupled climate fluctuations such as the El Niño/La Niña phenomenon. Therefore, a good knowledge of air-sea fluxes is required for the understanding and prediction of climate changes. As part of long-term comprehensive atmospheric reanalyses with `Numerical Weather Prediction/Data assimilation' systems, data sets of global air-sea fluxes are generated. A good example is the 15-year atmospheric reanalysis of the European Centre for Medium--Range Weather Forecasts (ECMWF). Air-sea flux data sets from these reanalyses are very beneficial for climate research, because they combine a good spatial and temporal coverage with a homogeneous and consistent method of calculation. However, atmospheric reanalyses are still imperfect sources of flux information due to shortcomings in model variables, model parameterizations, assimilation methods, sampling of observations, and quality of observations. Therefore, assessments of the errors and the usefulness of air-sea flux data sets from atmospheric (re-)analyses are relevant contributions to the quantitative study of climate variability. Currently, much research is aimed at assessing the quality and usefulness of the reanalysed air-sea fluxes. Work in this thesis intends to contribute to this assessment. In particular, it attempts to answer three relevant questions. The first question is: What is the best parameterization of the momentum flux? A comparison is made of the wind stress parameterization of the ERA15 reanalysis, the currently generated ERA40 reanalysis and the wind stress measurements over the open ocean. The comparison reveals some clear differences in the mean drag coefficient. In addition, this study has indicated that progress has been made from the ERA15 to the ERA40 reanalyses by replacing the model parameterization with a constant Charnock parameter with one which depends on the sea state. The second research question is whether comparison of the response of an ocean model with ocean observations can be exploited to assess the quality of air-sea fluxes of the ERA15 reanalysis. To answer this question in a systematic way an inverse modeling approach is adopted using a four-dimensional variational data assimilation (4DVAR) scheme. Firstly, the functioning of the 4DVAR system is demonstrated from identical twin experiments. These experiments reveal that in the equatorial Pacific, a large reduction in wind-stress and upper-ocean temperature misfits can be achieved using an assimilation time window of eight weeks. It is concluded that the usefulness of inverse ocean modeling technique for global surface flux assessment is limited. The main merit of the developed ocean 4DVAR scheme will be to diagnose errors in the ocean analyses of the ocean model. The last research question is: are the ERA15 fluxes useful for the study of regional patterns of climate variability? The climate mode of consideration is the Antarctic Circumpolar Wave. This study stresses the importance to have the right climatological forcing conditions to assess time scales of climate variability and it confirms the usefulness of ERA15 air-sea fluxes as ocean model forcing fields to study climate variability on the interannual time scale.

  12. Assessment of dual-point drag reduction for an executive-jet modified airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1996-01-01

    This paper presents aerodynamic characteristics and pressure distributions for an executive-jet modified airfoil and discusses drag reduction relative to a baseline airfoil for two cruise design points. A modified airfoil was tested in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) for Mach numbers ranging from 0.250 to 0.780 and chord Reynolds numbers ranging from 3.0 x 10(exp 6) to 18.0 x 10(exp 6). The angle of attack was varied from minus 2 degrees to almost 10 degrees. Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The two design Mach numbers were 0.654 and 0.735, chord Reynolds numbers were 4.5 x 10(exp 6) and 8.9 x 10(exp 6), and normal-force coefficients were 0.98 and 0.51. Test data are presented graphically as integrated force and moment coefficients and chordwise pressure distributions. The maximum normal-force coefficient decreases with increasing Mach number. At a constant normal-force coefficient in the linear region, as Mach number increases an increase occurs in the slope of normal-force coefficient versus angle of attack, negative pitching-moment coefficient, and drag coefficient. With increasing Reynolds number at a constant normal-force coefficient, the pitching-moment coefficient becomes more negative and the drag coefficient decreases. The pressure distributions reveal that when present, separation begins at the trailing edge as angle of attack is increased. The modified airfoil, which is designed with pitching moment and geometric constraints relative to the baseline airfoil, achieved drag reductions for both design points (12 and 22 counts). The drag reductions are associated with stronger suction pressures in the first 10 percent of the upper surface and weakened shock waves.

  13. Two-fluid description of wave-particle interactions in strong Buneman turbulence

    NASA Astrophysics Data System (ADS)

    Che, H.

    2014-06-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.

  14. Observations of turbulent mixing in a shallow coral reef

    NASA Astrophysics Data System (ADS)

    Huang, Z. C.

    2016-02-01

    In situ measurements of waves, currents, and turbulence are presented to study turbulence properties within a depression that is surrounded by multiple coral-reef colonies in a fringing reef in Hobihu, Nan-Wan Bay, southern Taiwan. Turbulence was measured using a dual velocimetry technique, and wave bias contamination in the turbulence is controlled using ogive curve testing of the turbulent shear stress. The observed turbulent dissipation rate is approximately five times greater than simultaneous observations over the nearby sandy bottom site, which indicates stronger mixing within the coral reef than on sandy bottoms. Energetic downward momentum flux exists due to sweeping process; the turbulent kinetic energy is transported downward into the depression through the mechanisms of vertical turbulent transport and advection. The observed turbulent dissipation rate exceeds the shear production rate, which suggests that transport terms or other source terms might be important. The wake flow caused by the resistance force of coral colonies is examined. The form drag coefficient was estimated from the time-averaged alongshore linear momentum between two sites upstream and within the coral reef. The work done due to the form drag, which is termed the wake production, is found to strongly correlate and approximate well to the observed turbulent dissipation rate. The effects of waves and currents on the wake production are discussed. The observed TSS can be described well by classic turbulence closure model when the empirical stability function is adjusted. This study suggests that the complex canopy structure of multiple colonies and the coexistence of the wave-induced and current flows are significant factors for energetic turbulence in the coral reef, which could have positive effects to the health of the coral reefs.

  15. On the Chemical Mixing Induced by Internal Gravity Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; McElwaine, J. N.

    Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity,more » but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.« less

  16. Impact of 3-D orographic gravity wave parameterisation on stratosphere dynamics

    NASA Astrophysics Data System (ADS)

    Eichinger, Roland; Garny, Hella; Cai, Duy; Jöckel, Patrick

    2017-04-01

    Stratosphere dynamics are strongly influenced by gravity waves (GWs) propagating upwards from the troposphere. Some of these GWs are generated through flow over small-scale orography and can not be resolved by common general circulation models (GCMs). Due to computational model designs, their parameterisation usually follows a one dimensional columnar approach that, among other simplifications, neglects the horizontal propagation of GWs on their way up into the Middle Atmosphere. This causes contradictions between models and observations in location and strength of GW drag force through their dissipation and as a consequence, also in stratospheric mean flow. In the EMAC (ECHAM MESSy Atmospheric Chemistry) model, we have found this deficiency to cause a too weak Antarctic polar vortex, which directly impacts stratospheric temperatures and thereby the chemical reactions that determine ozone depletion. For this reason, we adapt a three dimensional parameterisation for orographic GWs, that had been implemented and tested in the MIROC GCM, to the MESSy coding standard. This computationally light scheme can then be used in a modular and flexible way in a cascade of model setups from an idealised version for conceptional process analyses to full climate chemistry simulations for quantitative investigations. This model enhancement can help to reconcile models and observations in wave drag forcing itself, but in consequence, also in Brewer-Dobson Circulation trends across the recent decades. Furthermore, uncertainties in weather and climate predictions as well as in future ozone projections can be reduced.

  17. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  18. Extreme storm surge modelling in the North Sea. The role of the sea state, forcing frequency and spatial forcing resolution

    NASA Astrophysics Data System (ADS)

    Ridder, Nina; de Vries, Hylke; Drijfhout, Sybren; van den Brink, Henk; van Meijgaard, Erik; de Vries, Hans

    2018-02-01

    This study shows that storm surge model performance in the North Sea is mostly unaffected by the application of temporal variations of surface drag due to changes in sea state provided the choice of a suitable constant Charnock parameter in the sea-state-independent case. Including essential meteorological features on smaller scales and minimising interpolation errors by increasing forcing data resolution are shown to be more important for the improvement of model performance particularly at the high tail of the probability distribution. This is found in a modelling study using WAQUA/DCSMv5 by evaluating the influence of a realistic air-sea momentum transfer parameterization and comparing it to the influence of changes in the spatial and temporal resolution of the applied forcing fields in an effort to support the improvement of impact and climate analysis studies. Particular attention is given to the representation of extreme water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5 is forced with ERA-Interim reanalysis data. Model results are obtained from a set of different forcing fields, which either (i) include a wave-state-dependent Charnock parameter or (ii) apply a constant Charnock parameter ( α C h = 0.032) tuned for young sea states in the North Sea, but differ in their spatial and/or temporal resolution. Increasing forcing field resolution from roughly 79 to 12 km through dynamically downscaling can reduce the modelled low bias, depending on coastal station, by up to 0.25 m for the modelled extreme water levels with a 1-year return period and between 0.1 m and 0.5 m for extreme surge heights.

  19. Numerical studies of porous airfoils in transonic flow. Ph.D. Thesis. Final Report, 1 Jun. 1985 - 31 Aug. 1986

    NASA Technical Reports Server (NTRS)

    Chow, C. Y.

    1986-01-01

    A numerical tool is constructed to examine the effects of a porous surface on transonic airfoil performance and to help understand the flow structure of passive shockwave/boundary layer interactions. The porous region is located near the shock with a cavity underneath it. This study is composed of two parts. Solved in the first part, with an inviscid-flow approach, is the transonic full-potential equation associated with transpiration boundary conditions which are obtained from porosity modeling. The numerical results indicate that a porous airfoil has a wave drag lower than that of a solid airfoil. The observed lambda-shock structure in the wind-tunnel testing can be predicted. Furthermore, the lift could be increased with an appropriate porosity distribution. In the second part of this work, the modified version of either an interactive boundary layer (IBL) algorithm or a thin-layer Navier-Stokes (TLNS) algorithm is used to study the outer flow, while a stream-function formulation is used to model the inner flow in the shallow cavity. The coupling procedure at the porous surface is based on Darcy's law and the assumption of a constant total pressure in the cavity. In addition, a modified Baldwin-Lomax turbulence model is used to describe the transpired turbulent boundary layer in the TLNS approach, while the Cebeci turbulence model is used in the IBL approach. According to the present analysis, a porous surface can reduce the wave drag appreciably, but can also increase the viscous losses. As has been observed experimentally, the numerical results indicate that the total drag is reduced at higher Mach numbers and increased at lower Mach numbers when the angles of attack are small. Furthermore, the streamline pattern of passive shock/boundary layer interaction are revealed.

  20. In-orbit performance of the LISA Pathfinder drag-free and attitude control system

    NASA Astrophysics Data System (ADS)

    Schleicher, A.; Ziegler, T.; Schubert, R.; Brandt, N.; Bergner, P.; Johann, U.; Fichter, W.; Grzymisch, J.

    2018-04-01

    LISA Pathfinder is a technology demonstrator mission that was funded by the European Space Agency and that was launched on December 3, 2015. LISA Pathfinder has been conducting experiments to demonstrate key technologies for the gravitational wave observatory LISA in its operational orbit at the L1 Lagrange point of the Earth-Sun system until final switch off on July 18, 2017. These key technologies include the inertial sensors, the optical metrology system, a set of µ-propulsion cold gas thrusters and in particular the high performance drag-free and attitude control system (DFACS) that controls the spacecraft in 15 degrees of freedom during its science phase. The main goal of the DFACS is to shield the two test masses inside the inertial sensors from all external disturbances to achieve a residual differential acceleration between the two test masses of less than 3 × 10-14 m/s2/√Hz over the frequency bandwidth of 1-30 mHz. This paper focuses on two important aspects of the DFACS that has been in use on LISA Pathfinder: the DFACS Accelerometer mode and the main DFACS Science mode. The Accelerometer mode is used to capture the test masses after release into free flight from the mechanical grabbing mechanism. The main DFACS Science Mode is used for the actual drag-free science operation. The DFACS control system has very strong interfaces with the LISA Technology Package payload which is a key aspect to master the design, development, and analysis of the DFACS. Linear as well as non-linear control methods are applied. The paper provides pre-flight predictions for the performance of both control modes and compares these predictions to the performance that is currently achieved in-orbit. Some results are also discussed for the mode transitions up to science mode, but the focus of the paper is on the Accelerometer mode performance and on the performance of the Science mode in steady state. Based on the achieved results, some lessons learnt are formulated to extend the results to the drag-free control system to be designed for future space-based gravity wave observatories like LISA.

  1. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng, Kevin; Workman, Jared, E-mail: kevin.heng@csh.unibe.ch, E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. Thismore » near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.« less

  2. Examining the Usability of Touch Screen Gestures for Older and Younger Adults.

    PubMed

    Gao, Qin; Sun, Qiqi

    2015-08-01

    We examined the usability issues associated with four touch screen gestures (clicking, dragging, zooming, and rotating) among older and younger users. It is especially important to accommodate older users' characteristics to ensure the accessibility of information and services that are important to their quality of life. Forty older and 40 younger participants completed four experiments, each of which focused on one gesture. The effects of age, type of touch screen (surface acoustic wave vs. optical), inclination angle (30°, 45°, 60°, and 75°), and user interface factors (clicking: button size and spacing; dragging: dragging direction and distance; zooming: design of zooming gesture; rotating: design of rotating gesture) on user performance and satisfaction were examined. Button sizes that are larger than 15.9 × 9.0 mm led to better performance and higher satisfaction. The effect of spacing was significant only when the button size was notably small or large. Rightward and downward dragging were preferred to leftward and upward dragging, respectively. The younger participants favored direct manipulation gestures using multiple fingers, whereas the older participants preferred the click-to design. The older participants working with large inclination angles of 60° to 75° reported a higher level of satisfaction than the older participants working with smaller angles. We proposed a set of design guidelines for touch screen user interfaces and discussed implications for the selection of appropriate technology and the configuration of the workspace. The implications are useful for the design of large touch screen applications, such as desktop computers, information kiosks, and health care support systems. © 2015, Human Factors and Ergonomics Society.

  3. Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown

    NASA Astrophysics Data System (ADS)

    Berti, Emanuele; Yagi, Kent; Yang, Huan; Yunes, Nicolás

    2018-05-01

    The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized "post-Kerr" ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.

  4. Modeling High-Resolution Coastal Ocean Dynamics with COAMPS: System Overview, Applications and Future Directions

    NASA Astrophysics Data System (ADS)

    Allard, R. A.; Campbell, T. J.; Edwards, K. L.; Smith, T.; Martin, P.; Hebert, D. A.; Rogers, W.; Dykes, J. D.; Jacobs, G. A.; Spence, P. L.; Bartels, B.

    2014-12-01

    The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®) is an atmosphere-ocean-wave modeling system developed by the Naval Research Laboratory which can be configured to cycle regional forecasts/analysis models in single-model (atmosphere, ocean, and wave) or coupled-model (atmosphere-ocean, ocean-wave, and atmosphere-ocean-wave) modes. The model coupling is performed using the Earth System Modeling Framework (ESMF). The ocean component is the Navy Coastal Ocean Model (NCOM), and the wave components include Simulating WAves Nearshore (SWAN) and WaveWatch-III. NCOM has been modified to include wetting and drying, the effects of Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum flux of surface waves, enhancement of bottom drag in shallow water, and enhanced vertical mixing due to Langmuir turbulence. An overview of the modeling system including ocean data assimilation and specification of boundary conditions will be presented. Results from a high-resolution (10-250m) modeling study from the Surfzone Coastal Oil Pathways Experiment (SCOPE) near Ft. Walton Beach, Florida in December 2013 will be presented. ®COAMPS is a registered trademark of the Naval Research Laboratory

  5. Three-dimensional characterization and control of Tollmien-Schlichting waves on a flat plate

    NASA Astrophysics Data System (ADS)

    Tuna, Burak; Amitay, Michael

    2014-11-01

    Tollmien-Schlichting (T-S) waves are instability waves inside the boundary layer which are the prime mechanism for the transition from laminar to turbulent flows. The T-S waves grow in amplitude and develop three-dimensionality as they advect downstream. At sufficiently large amplitude they break up into turbulent spots, followed by a turbulent flow, which yields a drag increase. The present work aims to identify the T-S waves and reduce their amplitude to delay transition to turbulence. For that propose, Piezoelectric-Driven Oscillating Surface (PDOS) actuator was developed; Two PDOS actuators were used are two stream wise locations. The upstream PDOS was used to excite and phase-lock the T-S waves, and the downstream PDOS was used to cancel the T-S waves by applying an anti phase disturbance at the proper amplitude. Stereoscopic particle image velocimetry (SPIV) was used to identify the three-dimensional development of the T-S waves along the flat plate. Moreover, the SPIV results showed that reduction of peak values of velocity fluctuations due to the T-S waves could be achieved, and this reduction corresponds to a delay of laminar to turbulent transition.

  6. Ultra-sensitive inertial sensors via neutral-atom interferometry

    NASA Technical Reports Server (NTRS)

    Clauser, John F.

    1989-01-01

    Upon looking at the various colossal interferometers, etc., discussed at this conference to test gravitational theory, one cannot avoid feeling that easier approaches exist. The use of low velocity, neutral atom matter waves in place of electromagnetic waves in sensitive inertial interferometer configurations is proposed. For applications, spacecraft experiments to sense a drag-free condition, to measure the Lense-Thirring precession, to measure the gravitomagnetic effect and/or the earth's geopotential (depending on altitude), and to detect long period gravitational waves are considered. Also, a terrestrial precision test of the equivalence principle on spin polarized atoms, capable of detecting effects of the 5th force is considered. While the ideas described herein are preliminary, the orders of magnitude are sufficiently tantalizing to warrant further study. Although existing proposed designs may be adequate for some of these experiments, the use of matter-wave interferometry offers reduced complexity and cost, and an absence of cryogenics.

  7. A nonlinear steady model for moist hydrostatic mountain waves

    NASA Technical Reports Server (NTRS)

    Barcilon, A.; Fitzjarrald, D.

    1985-01-01

    The dynamics of hydrostatic gravity waves generated by the passage of a steady, stably stratified, moist flow over a two-dimensional topography is considered. Coriolis effects are neglected. The cloud region is determined by the dynamics, and within that region the Brunt-Vaisala frequency takes on a value smaller than the outside value. In both the dry and cloudy regions the Brunt-Vaisala frequency is constant with height. The moist layer is considered to be either next to the mountain or at midlevels and to be deep enough so that an entire cloud forms in that layer. The nonlinearity in the flow and lower boundary affects the dynamics of these waves and wave drag. The latter is found to depend upon: (1) the location of the moist layer with respect to the ground, (2) the amount of moisture, (3) the degree of nonlinearity and (4) the departure from symmetry in the bottom topography.

  8. Simulation of wind wave growth with reference source functions

    NASA Astrophysics Data System (ADS)

    Badulin, Sergei I.; Zakharov, Vladimir E.; Pushkarev, Andrei N.

    2013-04-01

    We present results of extensive simulations of wind wave growth with the so-called reference source function in the right-hand side of the Hasselmann equation written as follows First, we use Webb's algorithm [8] for calculating the exact nonlinear transfer function Snl. Second, we consider a family of wind input functions in accordance with recent consideration [9] ( )s S = ?(k)N , ?(k) = ? ? ?- f (?). in k 0 ?0 in (2) Function fin(?) describes dependence on angle ?. Parameters in (2) are tunable and determine magnitude (parameters ?0, ?0) and wave growth rate s [9]. Exponent s plays a key role in this study being responsible for reference scenarios of wave growth: s = 4-3 gives linear growth of wave momentum, s = 2 - linear growth of wave energy and s = 8-3 - constant rate of wave action growth. Note, the values are close to ones of conventional parameterizations of wave growth rates (e.g. s = 1 for [7] and s = 2 for [5]). Dissipation function Sdiss is chosen as one providing the Phillips spectrum E(?) ~ ?5 at high frequency range [3] (parameter ?diss fixes a dissipation scale of wind waves) Sdiss = Cdissμ4w?N (k)θ(? - ?diss) (3) Here frequency-dependent wave steepness μ2w = E(?,?)?5-g2 makes this function to be heavily nonlinear and provides a remarkable property of stationary solutions at high frequencies: the dissipation coefficient Cdiss should keep certain value to provide the observed power-law tails close to the Phillips spectrum E(?) ~ ?-5. Our recent estimates [3] give Cdiss ? 2.0. The Hasselmann equation (1) with the new functions Sin, Sdiss (2,3) has a family of self-similar solutions of the same form as previously studied models [1,3,9] and proposes a solid basis for further theoretical and numerical study of wave evolution under action of all the physical mechanisms: wind input, wave dissipation and nonlinear transfer. Simulations of duration- and fetch-limited wind wave growth have been carried out within the above model setup to check its conformity with theoretical predictions, previous simulations [2,6,9], experimental parameterizations of wave spectra [1,4] and to specify tunable parameters of terms (2,3). These simulations showed realistic spatio-temporal scales of wave evolution and spectral shaping close to conventional parameterizations [e.g. 4]. An additional important feature of the numerical solutions is a saturation of frequency-dependent wave steepness μw in short-frequency range. The work was supported by the Russian government contract No.11.934.31.0035, Russian Foundation for Basic Research grant 11-05-01114-a and ONR grant N00014-10-1-0991. References [1] S. I. Badulin, A. V. Babanin, D. Resio, and V. Zakharov. Weakly turbulent laws of wind-wave growth. J. Fluid Mech., 591:339-378, 2007. [2] S. I. Badulin, A. N. Pushkarev, D. Resio, and V. E. Zakharov. Self-similarity of wind-driven seas. Nonl. Proc. Geophys., 12:891-946, 2005. [3] S. I. Badulin and V. E. Zakharov. New dissipation function for weakly turbulent wind-driven seas. ArXiv e-prints, (1212.0963), December 2012. [4] M. A. Donelan, J. Hamilton, and W. H. Hui. Directional spectra of wind-generated waves. Phil. Trans. Roy. Soc. Lond. A, 315:509-562, 1985. [5] M. A. Donelan and W. J. Pierson-jr. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92(C5):4971-5029, 1987. [6] E. Gagnaire-Renou, M. Benoit, and S. I. Badulin. On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. J. Fluid Mech., 669:178-213, 2011. [7] R. L. Snyder, F. W. Dobson, J. A. Elliot, and R. B. Long. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102:1-59, 1981. [8] D. J. Webb. Non-linear transfers between sea waves. Deep Sea Res., 25:279-298, 1978. [9] V. E. Zakharov, D. Resio, and A. N. Pushkarev. New wind input term consistent with experimental, theoretical and numerical considerations. ArXiv e-prints, (1212.1069), December 2012.

  9. A theoretical model of the influence of spray on the exchange of momentum, with storm and hurricane winds

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Ezhova, Ekaterina; Soustova, Irina

    2013-04-01

    A stochastic model of the "life cycle" of a droplet, the torn off the crest of a steep surface wave and then falling down to the water is constructed. The model includes the following constituents: i) a model of motion of a heavy particle in the forcing air flow (equation of motion), ii) a model of the wind flow (wind velocity, wave-induced disturbances, turbulent fluctuations), iii) a model of spray injection, iiii) the droplet statistics (size distribution, wind-speed dependence) The interaction of water droplets in the atmospheric boundary layer with turbulent fluctuations is described in terms of the Markovian chain. The mean wind field in the marine atmospheric boundary layer is determined by the momentum exchange associated with the turbulent and wave momentum transfer and by sprays. The wave and turbulent momentum exchange is parameterized by the Charnok expression for the roughness parameter. Wave disturbances induced in the air flow by waves at the surface, were calculated within the model of the marine atmospheric boundary suggested in [1]. The greatest uncertainty in this model is the mechanism of droplets injection. We consider two models for the injection of droplets in the air flow. In the first model the droplets formed by the development of the Kelvin-Helmholtz instability, are entered in the flow with the orbital velocity of the wave (Koga's model [2]), The second mechanism, investigated in many papers, considers droplets from the breakdown of a jet which rises at high speeds from the bottom of the collapsing air bubble cavity [3]. To determine the number of drops injected to the atmospheric boundary layer from the sea surface, the Spray generation function proposed in [4] was in use. Within the model the momentum acquired by every droplet in the interaction with the air flow was calculated. Depending on the particular field of air velocity, wave parameters and the radius of the droplet, it can both get and deliver momentum give impetus to the air flow during the life cycle from taking them off the water to fall into the water. Contribution of droplets to the momentum balance of air flow is determined by the total momentum balance of sea sprays. The calculations in the model showed that the momentum exchange with the spray can lead to either a weak (less than 10%) increase of the aerodynamic surface drag or to a weak reduction (within Koga's model [2]). Recommendations for the experiment on investigation of the "life cycle" of spray in the air flow are suggested. This work was supported by RFBR (project 11-05-12047-ofi-m, 13-05-00865-a, 12-05-33070 mol-a-ved, 12-05-31435 mol-a, 12-05-01064_A). References 1. Troitskaya, Y. I., D. A. Sergeev, A. A. Kandaurov, G. A. Baidakov, M. A. Vdovin, and V. I. Kazakov Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions J.Geophys. Res., 117, C00J21, doi:10.1029/2011JC007778. 2. Koga M. Direct production of droplets from breaking wind-waves - its observation by a multi-colored overlapping exposure photographing technique // Tellus. 1981. V.33. Issue 6. P. 552-563. 3. Spiel D.E. On the birth of jet drops from bubbles bursting on water surfaces // J. Geophys. Res. 1995. V.100. P. 4995-5006. 4. Andreas E. L., 1998: A new sea spray generation function for wind speeds up to 32 m s21. J. Phys. Oceanogr., 28, 2175-2184.

  10. Sub-Ionospheric Measurements of the Ocean, Atmosphere, and Ionosphere from the CARINA Satellites

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Montgomery, J. A., Jr.; Siefring, C. L.; Gatling, G.

    2016-12-01

    New satellites designed to fly between 150 and 250 km has been constructed to study a wide range of geophysical topics extending from the ocean to the topside ionosphere. The key features of the CARINA satellites are (1) the ability of sustain long duration (60 day) orbits below the F-Layer ionosphere, (2) download large quantities of data (10 GBytes) per pass over a ground station, and (3) a heritage instrument payload comprised of an Electric Field Instrument (EFI) with full range measurements from 3 to 13 MHz, a Ram Langmuir Probe (RLP) the measures ion density from 102 to 106 cm-3 with 10 kHz sample rate, an Orbiting GPS Receiver (OGR) providing overhead total electron content and satellite position and the Wake Retro Reflectors (WRR) that use laser ranging for precise orbit determination. Each letter in "CARINA" represents one of the science objectives. "Coastal" ocean wave remote sensing of the sea surface wave height spectrum derived from HF surface wave scatter to the satellite. Assimilation ionospheric models are supported by Global measurements of GPS total electron count (TEC) and in situ plasma density for updating data driven ionospheric models (GAIM, IDA3D, etc.). Radio wave propagation and interactions determine the impact of the bottomside ionosphere on HF ray trajectories, the effects of ionospheric irregularities that yield UHF/L-band scintillations and ionospheric modifications by high power HF waves. Ionospheric structures such are sporadic-E and intermediate layers, traveling ionospheric disturbances (TID's) and large scale bottomside fluctuations in the F-layer are directly measured by CARINA sensors. Neutral drag is studied along the orbit through reentry modeling of drag coefficients and neutral density model updates. Finally, Atmospherics and lightning knowledge is acquired through studies of lightning EM pulses and their impact on ionosphere. Two CARINA satellites separated by 2000 km flying above 50 degree inclination represents the baseline mission.

  11. Multiscale Study of Currents Affected by Topography

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Multiscale Study of Currents Affected by Topography ...the effects of topography on the ocean general and regional circulation with a focus on the wide range of scales of interactions. The small-scale...details of the topography and the waves, eddies, drag, and turbulence it generates (at spatial scales ranging from meters to mesoscale) interact in the

  12. On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016

    NASA Astrophysics Data System (ADS)

    Matthias, Vivien; Ern, Manfred

    2018-04-01

    The midwinter 2015/2016 was characterized by an unusually strong polar night jet (PNJ) and extraordinarily large stationary planetary wave (SPW) amplitudes in the subtropical mesosphere. The aim of this study is, therefore, to find the origin of these mesospheric SPWs in the midwinter 2015/2016 study period. The study duration is split into two periods: the first period runs from late December 2015 until early January 2016 (Period I), and the second period from early January until mid-January 2016 (Period II). While the SPW 1 dominates in the subtropical mesosphere in Period I, it is the SPW 2 that dominates in Period II. There are three possibilities explaining how SPWs can occur in the mesosphere: (1) they propagate upward from the stratosphere, (2) they are generated in situ by longitudinally variable gravity wave (GW) drag, or (3) they are generated in situ by barotropic and/or baroclinic instabilities. Using global satellite observations from the Microwave Limb Sounder (MLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) the origin of the mesospheric SPWs is investigated for both time periods. We find that due to the strong PNJ the SPWs were not able to propagate upward into the mesosphere northward of 50° N but were deflected upward and equatorward into the subtropical mesosphere. We show that the SPWs observed in the subtropical mesosphere are the same SPWs as in the mid-latitudinal stratosphere. Simultaneously, we find evidence that the mesospheric SPWs in polar latitudes were generated in situ by longitudinally variable GW drag and that there is a mixture of in situ generation by longitudinally variable GW drag and by instabilities at mid-latitudes. Our results, based on observations, show that the abovementioned three mechanisms can act at the same time which confirms earlier model studies. Additionally, the possible contribution from, or impact of, unusually strong SPWs in the subtropical mesosphere to the disruption of the quasi-biennial oscillation (QBO) in the same winter is discussed.

  13. Methods for use in detecting seismic waves in a borehole

    DOEpatents

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  14. Effects of the circularly polarized beam of linearized gravitational waves

    NASA Astrophysics Data System (ADS)

    Barker, W.

    2017-08-01

    Solutions of the linearized Einstein equations are found that describe a transversely confined beam of circularly polarized gravitational waves on a Minkowski backdrop. By evaluating the cycle-averaged stress-energy-momentum pseudotensor of Landau & Lifshitz it is found that the angular momentum density is concentrated in the ‘skin’ at the edge of the beam where the intensity falls, and that the ratio of angular momentum to energy per unit length of the beam is 2/ω , where ω is the wave frequency, as expected for a beam of spin-2 gravitons. For sharply-defined, uniform, axisymmetric beams, the induced background metric is shown to produce the gravitomagnetic field and frame-dragging effects of a gravitational solenoid, whilst the angular momentum current helically twists the space at infinite radius along the beam axis.

  15. Improved P-wave Tomography of the Lowermost Mantle and Consequences for Mantle and Core Dynamics

    NASA Astrophysics Data System (ADS)

    Tkalcic, H.; Young, M. K.; Muir, J. B.

    2014-12-01

    The core mantle boundary (CMB) separates the liquid iron core from the slowly-convecting solid mantle. The ~300 km thick barrier above the boundary has proven to be far more than a simple dividing layer; rather it is a complex region with a range of proposed phenomena such as thermal and compositional heterogeneity, partial melting and anisotropy. Characterizing the heterogeneity in the lowermost mantle through seismic tomography will prove crucial to accurately understanding key geodynamical processes within our planet, not just in the mantle above, but also a possible "mapping" onto the inner core boundary (ICB) through a thermochemical convection in the outer core, which in turn might control the growth of the inner core (e.g. Aubert et al., 2008; Gubbins et al., 2011). Here we obtain high-resolution compressional wave (P-wave) velocity images and uncertainty estimates for the lowermost mantle using travel time data collected by waveform cross-correlation. Strikingly, independent datasets of seismic phases that "see" the lowermost mantle in a different way yield similar P-wave velocity distributions at lower harmonic degrees. We also consider the effect of CMB topography. The images obtained are void of explicit model parameterization and regularization (through transdimensional Bayesian tomography) and contain features on multiple spatial scales. Subsequent spectral analyses reveal a power of heterogeneity three times larger than previous estimates. The P-wave tomograms of the lowermost mantle contain the harmonic degree 2-structure, similar to tomographic images derived from S-wave data (e.g. Ritsema et al. 2011), but with additional higher harmonic degrees (notably, 3-7). In other words, the heterogeneity size is uniformly distributed between about 500 and 6000 km. Inter alia, the resulting heterogeneity spectrum provides a bridge between the long-wavelength features of most global models and the very short-scale dimensions of scatterers mapped in independent studies. We argue that the new images of P-wave velocity in the lowermost mantle, void of explicit parameterization and damping, improve the imaging resolution and provide realistic boundary conditions at the CMB (due to a high sensitivity to heat flux) with important consequences for Earth dynamics.

  16. Velocity lag of solid particles in oscillating gases and in gases passing through normal shock waves

    NASA Technical Reports Server (NTRS)

    Maxwell, B. R.; Seasholtz, R. G.

    1974-01-01

    The velocity lag of micrometer size spherical particles is theoretically determined for gas particle mixtures passing through a stationary normal shock wave and also for particles embedded in an oscillating gas flow. The particle sizes and densities chosen are those considered important for laser Doppler velocimeter applications. The governing equations for each flow system are formulated. The deviation from Stokes flow caused by inertial, compressibility, and rarefaction effects is accounted for in both flow systems by use of an empirical drag coefficient. Graphical results are presented which characterize particle tracking as a function of system parameters.

  17. Effect of polarization force on the Jeans instability in collisional dusty plasmas

    NASA Astrophysics Data System (ADS)

    A, ABBASI; M, R. RASHIDIAN VAZIRI

    2018-03-01

    The Jeans instability in collisional dusty plasmas has been analytically investigated by considering the polarization force effect. Instabilities due to dust-neutral and ion-neutral drags can occur in electrostatic waves of collisional dusty plasmas with self-gravitating particles. In this study, the effect of gravitational force on heavy dust particles is considered in tandem with both the polarization and electrostatic forces. The theoretical framework has been developed and the dispersion relation and instability growth rate have been derived, assuming the plane wave approximation. The derived instability growth rate shows that, in collisional dusty plasmas, the Jeans instability strongly depends on the magnitude of the polarization force.

  18. A numerical analysis of the British Experimental Rotor Program blade

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.

    1989-01-01

    Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.

  19. Nonlinear optical conductivity and subharmonic instabilities of graphene in a strong electromagnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Basov, Dimitri; Fogler, Michael

    We study theoretically the second-order nonlinear optical conductivity σ (2) of graphene as a function of frequency and momentum. We distinguish two regimes. At frequencies ω higher than the temperature-dependent electron-electron collision rate γee- 1 , the conductivity σ (2) can be derived from the semiclassical kinetic equation. The calculation requires taking into account the photon drag (Lorentz force) due to the ac magnetic field. In the low-frequency hydrodynamic regime ω <<γee- 1 , the nonlinear conductivity has a different form and the photon drag effect is suppressed. As a consequence of the nonlinearity, a strong enough photoexcitation can cause spontaneous generation of collective modes in a graphene strip: plasmons in the high-frequency regime and energy waves (demons) in the hydrodynamic one. The dominant instability occurs at frequency ω / 2 .

  20. A three-dimensional simulation of the equatorial quasi-biennial oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, M.; Boville, B.A.

    1992-06-15

    A simulation of the equatorial quasi-biennial oscillation (QBO) has been obtained using a three-dimensional mechanistic model of the stratosphere. The model is a simplified form of the NCAR CCM (Community Climate Model) in which the troposphere has been replaced with a specified geopotential distribution near the tropical tropopause and most of the physical parameterizations have been removed. A Kelvin wave and a Rossby-gravity wave are forced at the bottom boundary as in previous one- and two-dimensional models. The model reproduces most of the principal features of the observed QBO, as do previous models with lower dimensionality. The principal difference betweenmore » the present model and previous QBO models is that the wave propagation is explicitly represented, allowing wave-wave interactions to take place. It is found that these interactions significantly affect the simulated oscillation. The interaction of the Rossby-gravity waves with the Kelvin waves results in about twice as much easterly compared to westerly forcing being required in order to obtain a QBO. 26 refs., 12 figs.« less

Top