Sample records for wave eeg trait

  1. Correlations between personality traits and specific groups of alpha waves in the human EEG.

    PubMed

    Johannisson, Tomas

    2016-01-01

    Background. Different individuals have alpha waves with different wavelengths. The distribution of the wavelengths is assumed to be bell-shaped and smooth. Although this view is generally accepted, it is still just an assumption and has never been critically tested. When exploring the relationship between alpha waves and personality traits, it makes a huge difference if the distribution of the alpha waves is smooth or if specific groups of alpha waves can be demonstrated. Previous studies have not considered the possibility that specific groups of alpha waves may exist. Methods. Computerized EEGs have become standard, but wavelength measurements are problematic when based on averaging procedures using the Fourier transformation because such procedures cause a large systematic error. If the actual wavelength is of interest, it is necessary to go back to basic physiology and use raw EEG signals. In the present study, measurements were made directly from sequences of alpha waves where every wave could be identified. Personality dimensions were measured using an inventory derived from the International Personality Item Pool. Results. Recordings from 200 healthy individuals revealed that there are three main groups of alpha waves. These groups had frequencies around 8, 10, and 12 waves per second. The middle group had a bimodal distribution, and a subdivision gave a total of four alpha groups. In the center of each group, the degree of extraversion was high and the degree of neuroticism was low. Many small differences in personality traits were found when the centers were compared with one another. This gave four personality profiles that resemble the four classical temperaments. When people in the surrounding zones were compared with those in the centers, relatively large differences in personality traits were found. Conclusions. Specific groups of alpha waves exist, and these groups have to be taken into account when correlations are made to personality dimensions and temperament types. There is a link between alpha waves and personality traits, and this link implies that there is an underlying relationship. To explain the nature of this relationship, there are two hypotheses that can be applied. One of these deals with the general organization of the forebrain and the other explains why the brain generates alpha waves.

  2. Linkage mapping of beta 2 EEG waves via non-parametric regression.

    PubMed

    Ghosh, Saurabh; Begleiter, Henri; Porjesz, Bernice; Chorlian, David B; Edenberg, Howard J; Foroud, Tatiana; Goate, Alison; Reich, Theodore

    2003-04-01

    Parametric linkage methods for analyzing quantitative trait loci are sensitive to violations in trait distributional assumptions. Non-parametric methods are relatively more robust. In this article, we modify the non-parametric regression procedure proposed by Ghosh and Majumder [2000: Am J Hum Genet 66:1046-1061] to map Beta 2 EEG waves using genome-wide data generated in the COGA project. Significant linkage findings are obtained on chromosomes 1, 4, 5, and 15 with findings at multiple regions on chromosomes 4 and 15. We analyze the data both with and without incorporating alcoholism as a covariate. We also test for epistatic interactions between regions of the genome exhibiting significant linkage with the EEG phenotypes and find evidence of epistatic interactions between a region each on chromosome 1 and chromosome 4 with one region on chromosome 15. While regressing out the effect of alcoholism does not affect the linkage findings, the epistatic interactions become statistically insignificant. Copyright 2003 Wiley-Liss, Inc.

  3. Spreading Photoparoxysmal EEG Response is Associated with an Abnormal Cortical Excitability Pattern

    ERIC Educational Resources Information Center

    Siniatchkin, Michael; Groppa, Sergey; Jerosch, Bettina; Muhle, Hiltrud; Kurth, Christoph; Shepherd, Alex J.; Siebner, Hartwig; Stephani, Ulrich

    2007-01-01

    Photosensitivity or photoparoxysmal response (PPR) is a highly heritable electroencephalographic trait characterized by an abnormal cortical response to intermittent photic stimulation (IPS). In PPR-positive individuals, IPS induces spikes, spike-waves or intermittent slow waves. The PPR may be restricted to posterior visual areas (i.e. local PPR…

  4. Developmental trajectories of EEG sleep slow wave activity as a marker for motor skill development during adolescence: a pilot study.

    PubMed

    Lustenberger, Caroline; Mouthon, Anne-Laure; Tesler, Noemi; Kurth, Salome; Ringli, Maya; Buchmann, Andreas; Jenni, Oskar G; Huber, Reto

    2017-01-01

    Reliable markers for brain maturation are important to identify neural deviations that eventually predict the development of mental illnesses. Recent studies have proposed topographical EEG-derived slow wave activity (SWA) during NREM sleep as a mirror of cortical development. However, studies about the longitudinal stability as well as the relationship with behavioral skills are needed before SWA topography may be considered such a reliable marker. We examined six subjects longitudinally (over 5.1 years) using high-density EEG and a visuomotor learning task. All subjects showed a steady increase of SWA at a frontal electrode and a decrease in central electrodes. Despite these large changes in EEG power, SWA topography was relatively stable within each subject during development indicating individual trait-like characteristics. Moreover, the SWA changes in the central cluster were related to the development of specific visuomotor skills. Taken together with the previous work in this domain, our results suggest that EEG sleep SWA represents a marker for motor skill development and further supports the idea that SWA mirrors cortical development during childhood and adolescence. © 2016 Wiley Periodicals, Inc.

  5. EEG in children with spelling disabilities.

    PubMed

    Byring, R F; Salmi, T K; Sainio, K O; Orn, H P

    1991-10-01

    A total of 23 13-year-old boys with spelling disabilities and 21 matched controls were studied. EEG was recorded for visual and quantitative analysis, including FFT band powers and normalized slope descriptors (NSD). Visual analysis showed general excess of slow activity, as well as an excess of temporal slow wave activity in the index group. Quantitative analysis showed low alpha and beta powers, and low "activity" and high "complexity" (NSD) in parieto-occipital derivations in the index group. Quantitative EEG (qEEG) parameter ratios between temporal and parieto-occipital derivations were increased in the index group, implying a lack of spatial differentiation in these EEGs. In covariance analysis the qEEG parameter differences between the index group and controls were partly explained by the neurotic traits made evident in psychological tests. This implies that psychopathological artifacts should be considered in qEEG examinations of children with cognitive handicaps. Differences in anterior/posterior qEEG ratios were, however, little affected by any confounding factors. Thus these qEEG ratios seem potentially useful in clinical assessments of children with learning disabilities.

  6. Shared Genetic Control of Brain Activity During Sleep and Insulin Secretion: A Laboratory-Based Family Study.

    PubMed

    Morselli, Lisa L; Gamazon, Eric R; Tasali, Esra; Cox, Nancy J; Van Cauter, Eve; Davis, Lea K

    2018-01-01

    Over the past 20 years, a large body of experimental and epidemiologic evidence has linked sleep duration and quality to glucose homeostasis, although the mechanistic pathways remain unclear. The aim of the current study was to determine whether genetic variation influencing both sleep and glucose regulation could underlie their functional relationship. We hypothesized that the genetic regulation of electroencephalographic (EEG) activity during non-rapid eye movement sleep, a highly heritable trait with fingerprint reproducibility, is correlated with the genetic control of metabolic traits including insulin sensitivity and β-cell function. We tested our hypotheses through univariate and bivariate heritability analyses in a three-generation pedigree with in-depth phenotyping of both sleep EEG and metabolic traits in 48 family members. Our analyses accounted for age, sex, adiposity, and the use of psychoactive medications. In univariate analyses, we found significant heritability for measures of fasting insulin sensitivity and β-cell function, for time spent in slow-wave sleep, and for EEG spectral power in the delta, theta, and sigma ranges. Bivariate heritability analyses provided the first evidence for a shared genetic control of brain activity during deep sleep and fasting insulin secretion rate. © 2017 by the American Diabetes Association.

  7. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man

    PubMed Central

    Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.

    2016-01-01

    Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987

  8. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.

    PubMed

    Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M

    2016-07-01

    Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.

  9. QEEG and LORETA in Teenagers With Conduct Disorder and Psychopathic Traits.

    PubMed

    Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell

    2017-05-01

    Few studies have investigated the impact of the psychopathic traits on the EEG of teenagers with conduct disorder (CD). To date, there is no other research studying low-resolution brain electromagnetic tomography (LORETA) technique using quantitative EEG (QEEG) analysis in adolescents with CD and psychopathic traits. To find electrophysiological differences specifically related to the psychopathic traits. The current investigation compares the QEEG and the current source density measures between adolescents with CD and psychopathic traits and adolescents with CD without psychopathic traits. The resting EEG activity and LORETA for the EEG fast spectral bands were evaluated in 42 teenagers with CD, 25 with and 17 without psychopathic traits according to the Antisocial Process Screening Device. All adolescents were assessed using the DSM-IV-TR criteria. The EEG visual inspection characteristics and the use of frequency domain quantitative analysis techniques (narrow band spectral parameters) are described. QEEG analysis showed a pattern of beta activity excess on the bilateral frontal-temporal regions and decreases of alpha band power on the left central-temporal and right frontal-central-temporal regions in the psychopathic traits group. Current source density calculated at 17.18 Hz showed an increase within fronto-temporo-striatal regions in the psychopathic relative to the nonpsychopathic traits group. These findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among teenagers with CD and psychopathic traits, which was not obvious to visual inspection. Taken together, these results suggest that abnormalities in a fronto-temporo-striatal network play a relevant role in the neurobiological basis of psychopathic behavior.

  10. Organization of brain networks governed by long-range connections index autistic traits in the general population

    PubMed Central

    2013-01-01

    Background The dimensional approach to autism spectrum disorder (ASD) considers ASD as the extreme of a dimension traversing through the entire population. We explored the potential utility of electroencephalography (EEG) functional connectivity as a biomarker. We hypothesized that individual differences in autistic traits of typical subjects would involve a long-range connectivity diminution within the delta band. Methods Resting-state EEG functional connectivity was measured for 74 neurotypical subjects. All participants also provided a questionnaire (Social Responsiveness Scale, SRS) that was completed by an informant who knows the participant in social settings. We conducted multivariate regression between the SRS score and functional connectivity in all EEG frequency bands. We explored modulations of network graph metrics characterizing the optimality of a network using the SRS score. Results Our results show a decay in functional connectivity mainly within the delta and theta bands (the lower part of the EEG spectrum) associated with an increasing number of autistic traits. When inspecting the impact of autistic traits on the global organization of the functional network, we found that the optimal properties of the network are inversely related to the number of autistic traits, suggesting that the autistic dimension, throughout the entire population, modulates the efficiency of functional brain networks. Conclusions EEG functional connectivity at low frequencies and its associated network properties may be associated with some autistic traits in the general population. PMID:23806204

  11. Alpha brain-wave neurofeedback training reduces psychopathology in a cohort of male and female Canadian aboriginals.

    PubMed

    Hardt, James V

    2012-01-01

    The study was conducted to determine if alpha brain-wave neurofeedback training can have positive psychological results by reducing anxiety and other psychopathology. The cohort participated in alpha brain-wave neurofeedback training for 76 minutes (day 1) to 120 or more minutes (days 5-7) daily for 7 days. Electroencephalogram (EEG) electrodes were attached to the head with conductive gel according to the 10-20 International Electrode Placement System. During training, participants were seated in a comfortable armchair within a soundproof and lightproof room. Brain-wave signals were amplified for processing by analog-to-digital converters and polygraphs, then filtered to the pure delta, theta, alpha, beta, and gamma bands as well as subbands of these bands of the EEG. For 2-minute epochs, trainees sat with their eyes closed in the dark listening to their feedback tones as the filtered alpha brain-wave EEG signals controlled the loudness of the tones. Then a "ding" sounded and the tones stopped. For 8 seconds, a monitor lit up with dimly illuminated, static numbers, indicating the strength of their alpha brain waves, after which the feedback tones resumed and the process was repeated. 40 adult volunteers were recruited from the aboriginal population (First Nations, Métis, and Inuit) of Canada. The cohort ranged in age from 25 to 60 years and included males and females. The study was conducted at Biocybernaut Institute of Canada in Victoria, British Columbia. Data was obtained to determine the effectiveness of this training by giving four psychological tests (Minnesota Multi-Phasic Personality Inventory, and the trait forms of the Multiple Affect Adjective Check List, Clyde Mood Scale, and Profile of Mood States) on the first day prior to commencing training and on the seventh day upon completion of the training. EEG data was also compiled throughout the training and analyzed as a factor of the training process. Postintervention data showed positive results with reduction of psychopathology when compared to the data from testing prior to the training. Analysis of this data showed improvement in several areas of psychopathology. Alpha brain-wave neurofeedback training daily for 7 days does have positive psychological results in adult male and female Canadian aboriginals as measured by data from four psychological tests on the participants.

  12. Resting and reactive frontal brain electrical activity (EEG) among a non-clinical sample of socially anxious adults: Does concurrent depressive mood matter?

    PubMed Central

    Beaton, Elliott A; Schmidt, Louis A; Ashbaugh, Andrea R; Santesso, Diane L; Antony, Martin M; McCabe, Randi E

    2008-01-01

    A number of studies have noted that the pattern of resting frontal brain electrical activity (EEG) is related to individual differences in affective style in healthy infants, children, and adults and some clinical populations when symptoms are reduced or in remission. We measured self-reported trait shyness and sociability, concurrent depressive mood, and frontal brain electrical activity (EEG) at rest and in anticipation of a speech task in a non-clinical sample of healthy young adults selected for high and low social anxiety. Although the patterns of resting and reactive frontal EEG asymmetry did not distinguish among individual differences in social anxiety, the pattern of resting frontal EEG asymmetry was related to trait shyness after controlling for concurrent depressive mood. Individuals who reported a higher degree of shyness were likely to exhibit greater relative right frontal EEG activity at rest. However, trait shyness was not related to frontal EEG asymmetry measured during the speech-preparation task, even after controlling for concurrent depressive mood. These findings replicate and extend prior work on resting frontal EEG asymmetry and individual differences in affective style in adults. Findings also highlight the importance of considering concurrent emotional states of participants when examining psychophysiological correlates of personality. PMID:18728822

  13. Scatterplot analysis of EEG slow-wave magnitude and heart rate variability: an integrative exploration of cerebral cortical and autonomic functions.

    PubMed

    Kuo, Terry B J; Yang, Cheryl C H

    2004-06-15

    To explore interactions between cerebral cortical and autonomic functions in different sleep-wake states. Active waking (AW), quiet sleep (QS), and paradoxical sleep (PS) of adult male Wistar-Kyoto rats (WKY) on their daytime sleep were compared. Ten WKY. All rats had electrodes implanted for polygraphic recordings. One week later, a 6-hour daytime sleep-wakefulness recording session was performed. A scatterplot analysis of electroencephalogram (EEG) slow-wave magnitude (0.5-4 Hz) and heart rate variability (HRV) was applied in each rat. The EEG slow-wave-RR interval scatterplot from all of the recordings revealed a propeller-like pattern. If the scatterplot was divided into AW, PS, and QS according to the corresponding EEG mean power frequency and nuchal electromyogram, the EEG slow wave-RR interval relationship became nil, negative, and positive for AW, PS, and QS, respectively. A significant negative relationship was found for EEG slow-wave and high-frequency power of HRV (HF) coupling during PS and for EEG slow wave and low-frequency power of HRV to HF ratio (LF/HF) coupling during QS. The optimal time lags for the slow wave-LF/HF relationship were different between PS and QS. Bradycardia noted in QS and PS was related to sympathetic suppression and vagal excitation, respectively. The EEG slow wave-HRV scatterplot may provide unique insights into studies of sleep, and such a relationship may delineate the sleep-state-dependent fluctuations in autonomic nervous system activity.

  14. Regional differences in trait-like characteristics of the waking EEG in early adolescence.

    PubMed

    Benz, Dominik C; Tarokh, Leila; Achermann, Peter; Loughran, Sarah P

    2013-10-09

    The human waking EEG spectrum shows high heritability and stability and, despite maturational cortical changes, high test-retest reliability in children and teens. These phenomena have also been shown to be region specific. We examined the stability of the morphology of the wake EEG spectrum in children aged 11 to 13 years recorded over weekly intervals and assessed whether the waking EEG spectrum in children may also be trait-like. Three minutes of eyes open and three minutes of eyes closed waking EEG was recorded in 22 healthy children once a week for three consecutive weeks. Eyes open and closed EEG power density spectra were calculated for two central (C3LM and C4LM) and two occipital (O1LM and O2LM) derivations. A hierarchical cluster analysis was performed to determine whether the morphology of the waking EEG spectrum between 1 and 20 Hz is trait-like. We also examined the stability of the alpha peak using an ANOVA. The morphology of the EEG spectrum recorded from central derivations was highly stable and unique to an individual (correctly classified in 85% of participants), while the EEG recorded from occipital derivations, while stable, was much less unique across individuals (correctly classified in 42% of participants). Furthermore, our analysis revealed an increase in alpha peak height concurrent with a decline in the frequency of the alpha peak across weeks for occipital derivations. No changes in either measure were observed in the central derivations. Our results indicate that across weekly recordings, power spectra at central derivations exhibit more "trait-like" characteristics than occipital derivations. These results may be relevant for future studies searching for links between phenotypes, such as psychiatric diagnoses, and the underlying genes (i.e., endophenotypes) by suggesting that such studies should make use of more anterior rather than posterior EEG derivations.

  15. Myoclonic Jerks and Schizophreniform Syndrome: Case Report and Literature Review.

    PubMed

    Endres, Dominique; Altenmüller, Dirk-M; Feige, Bernd; Maier, Simon J; Nickel, Kathrin; Hellwig, Sabine; Rausch, Jördis; Ziegler, Christiane; Domschke, Katharina; Doerr, John P; Egger, Karl; Tebartz van Elst, Ludger

    2018-01-01

    Background: Schizophreniform syndromes can be divided into primary idiopathic forms as well as different secondary organic subgroups (e.g., paraepileptic, epileptic, immunological, or degenerative). Secondary epileptic explanatory approaches have often been discussed in the past, due to the high rates of electroencephalography (EEG) alterations in patients with schizophrenia. In particular, temporal lobe epilepsy is known to be associated with schizophreniform symptoms in well-described constellations. In the literature, juvenile myoclonic epilepsy has been linked to emotionally unstable personality traits, depression, anxiety, and executive dysfunction; however, the association with schizophrenia is largely unclear. Case presentation: We present the case of a 28-year-old male student suffering from mild myoclonic jerks, mainly of the upper limbs, as well as a predominant paranoid-hallucinatory syndrome with attention deficits, problems with working memory, depressive-flat mood, reduced energy, fast stimulus satiation, delusional and audible thoughts, tactile hallucinations, thought inspirations, and severe sleep disturbances. Cerebral magnetic resonance imaging and cerebrospinal fluid analyses revealed no relevant abnormalities. The routine EEG and the first EEG after sleep deprivation (under treatment with oxazepam) also returned normal findings. Video telemetry over one night, which included a partial sleep-deprivation EEG, displayed short generalized spike-wave complexes and polyspikes, associated with myoclonic jerks, after waking in the morning. Video-EEG monitoring over 5 days showed over 100 myoclonic jerks of the upper limbs, frequently with generalized spike-wave complexes with left or right accentuation. Therefore, we diagnosed juvenile myoclonic epilepsy. Discussion: This case report illustrates the importance of extended EEG diagnostics in patients with schizophreniform syndromes and myoclonic jerks. The schizophreniform symptoms in the framework of epileptiform EEG activity can be interpreted as a (para)epileptic mechanism due to local area network inhibition (LANI). Following the LANI hypothesis, paranoid hallucinatory symptoms are not due to primary excitatory activity (as myoclonic jerks are) but rather to the secondary process of hyperinhibition triggered by epileptic activity. Identifying subgroups of schizophreniform patients with comorbid epilepsy is important because of the potential benefits of optimized pharmacological treatment.

  16. Juvenile myoclonic epilepsy locus in chromosome 6p21.2-p11: Linkage to convulsions and electroencephalography trait

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.W.; Delgado-Escueta, A.V.; Serratosa, J.M.

    1995-08-01

    Despite affecting 4 million Americans and 100-200 million persons worldwide, the precise molecular mechanisms of human epilepsies remain unknown. Juvenile myoclonic epilepsy (JME) is the most frequent and, hence, most important form of hereditary grand mal epilepsy. In this epilepsy, electroencephalographic (EEG) 15-30 Hz multispikes produce myoclonic and tonic-clonic convulsions beginning at 8-20 years of age. Moreover, EEG 3.5-6 Hz multispike wave complexes appear in clinically asymptomatic family members. We first studied 38 members of a four-generation LA-Belize family with classical JME but with no pyknoleptic absences. Five living members had JME; four clinically asymptomatic members had EEG multispike wavemore » complexes. Pairwise analysis tightly linked microsatellites centromeric to HLA, namely D6S272 (peak lod score [Z{sub max}]=3.564-3.560 at male-female recombination [{theta}{sub m=f}]=0-0.001) and D6S257 (Z{sub max}=3.672-3.6667 at {theta}{sub m=f}=0-0.001), spanning 7 cM, to convulsive seizures and EEG multispike wave complexes. A recombination between D6S276 and D6S273 in one affected member placed the JME locus within or below HLA. Pairwise, multipoint, and recombination analyses in this large family independently proved that a JME gene is located in chromsome 6p, centromeric to HLA. We next screened, with the same chromosome 6p21.2-p11 short tandem-repeat polymorphic markers, seven multiplex pedigrees with classic JME. When lod scores for small multiplex families are added to lod scores of the LA-Belize pedigree, Z{sub max} values for D6S294 and D6S257 are >7 ({theta}{sub m=f}=0.000). Our results prove that in chromosome 6p21.2-p11 an epilepsy locus exists whose phenotype consists of classic JME with convulsions and/or EEG rapid multispike wave complexes. 31 refs., 6 figs., 4 tabs.« less

  17. Classification of epileptiform and wicket spike of EEG pattern using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Puspita, Juni Wijayanti; Jaya, Agus Indra; Gunadharma, Suryani

    2017-03-01

    Epilepsy is characterized by recurrent seizures that is resulted by permanent brain abnormalities. One of tools to support the diagnosis of epilepsy is Electroencephalograph (EEG), which describes the recording of brain electrical activity. Abnormal EEG patterns in epilepsy patients consist of Spike and Sharp waves. While both waves, there is a normal pattern that sometimes misinterpreted as epileptiform by electroenchepalographer (EEGer), namely Wicket Spike. The main difference of the three waves are on the time duration that related to the frequency. In this study, we proposed a method to classify a EEG wave into Sharp wave, Spike wave or Wicket spike group using Backpropagation Neural Network based on the frequency and amplitude of each wave. The results show that the proposed method can classifies the three group of waves with good accuracy.

  18. Modalities of Thinking: State and Trait Effects on Cross-Frequency Functional Independent Brain Networks.

    PubMed

    Milz, Patricia; Pascual-Marqui, Roberto D; Lehmann, Dietrich; Faber, Pascal L

    2016-05-01

    Functional states of the brain are constituted by the temporally attuned activity of spatially distributed neural networks. Such networks can be identified by independent component analysis (ICA) applied to frequency-dependent source-localized EEG data. This methodology allows the identification of networks at high temporal resolution in frequency bands of established location-specific physiological functions. EEG measurements are sensitive to neural activity changes in cortical areas of modality-specific processing. We tested effects of modality-specific processing on functional brain networks. Phasic modality-specific processing was induced via tasks (state effects) and tonic processing was assessed via modality-specific person parameters (trait effects). Modality-specific person parameters and 64-channel EEG were obtained from 70 male, right-handed students. Person parameters were obtained using cognitive style questionnaires, cognitive tests, and thinking modality self-reports. EEG was recorded during four conditions: spatial visualization, object visualization, verbalization, and resting. Twelve cross-frequency networks were extracted from source-localized EEG across six frequency bands using ICA. RMANOVAs, Pearson correlations, and path modelling examined effects of tasks and person parameters on networks. Results identified distinct state- and trait-dependent functional networks. State-dependent networks were characterized by decreased, trait-dependent networks by increased alpha activity in sub-regions of modality-specific pathways. Pathways of competing modalities showed opposing alpha changes. State- and trait-dependent alpha were associated with inhibitory and automated processing, respectively. Antagonistic alpha modulations in areas of competing modalities likely prevent intruding effects of modality-irrelevant processing. Considerable research suggested alpha modulations related to modality-specific states and traits. This study identified the distinct electrophysiological cortical frequency-dependent networks within which they operate.

  19. Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study

    PubMed Central

    Castelnovo, Anna; Riedner, Brady A.; Smith, Richard F.; Tononi, Giulio; Boly, Melanie; Benca, Ruth M.

    2016-01-01

    Study Objectives: To examine scalp and source power topography in sleep arousals disorders (SADs) using high-density EEG (hdEEG). Methods: Fifteen adult subjects with sleep arousal disorders (SADs) and 15 age- and gender-matched good sleeping healthy controls were recorded in a sleep laboratory setting using a 256 channel EEG system. Results: Scalp EEG analysis of all night NREM sleep revealed a localized decrease in slow wave activity (SWA) power (1–4 Hz) over centro-parietal regions relative to the rest of the brain in SADs compared to good sleeping healthy controls. Source modelling analysis of 5-minute segments taken from N3 during the first half of the night revealed that the local decrease in SWA power was prominent at the level of the cingulate, motor, and sensori-motor associative cortices. Similar patterns were also evident during REM sleep and wake. These differences in local sleep were present in the absence of any detectable clinical or electrophysiological sign of arousal. Conclusions: Overall, results suggest the presence of local sleep differences in the brain of SADs patients during nights without clinical episodes. The persistence of similar topographical changes in local EEG power during REM sleep and wakefulness points to trait-like functional changes that cross the boundaries of NREM sleep. The regions identified by source imaging are consistent with the current neurophysiological understanding of SADs as a disorder caused by local arousals in motor and cingulate cortices. Persistent localized changes in neuronal excitability may predispose affected subjects to clinical episodes. Citation: Castelnovo A, Riedner BA, Smith RF, Tononi G, Boly M, Benca RM. Scalp and source power topography in sleepwalking and sleep terrors: a high-density EEG study. SLEEP 2016;39(10):1815–1825. PMID:27568805

  20. Effects of oral amines on the EEG.

    PubMed

    Scott, D F; Moffett, A M; Swash, M

    1977-02-01

    Oral tyramine activated pre-existing episodic EEG abnormalities--namely, sharp waves, spike and wave, and localised theta activity--in epileptic patients. Little change was found in the EEGs of migrainous subjects after chocolate or beta-phenylethylamine. The implications of the findings with tyramine are discussed.

  1. Changes in the electroencephalogram during anaesthesia and their physiological basis.

    PubMed

    Hagihira, S

    2015-07-01

    The use of EEG monitors to assess the level of hypnosis during anaesthesia has become widespread. Anaesthetists, however, do not usually observe the raw EEG data: they generally pay attention only to the Bispectral Index (BIS™) and other indices calculated by EEG monitors. This abstracted information only partially characterizes EEG features. To properly appreciate the availability and reliability of EEG-derived indices, it is necessary to understand how raw EEG changes during anaesthesia. With hemi-frontal lead EEGs obtained under volatile anaesthesia or propofol anaesthesia, the dominant EEG frequency decreases and the amplitude increases with increasing concentrations of anaesthetic. Looking more closely, the EEG changes are more complicated. At surgical concentrations of anaesthesia, spindle waves (alpha range) become dominant. At deeper levels, this activity decreases, and theta and delta waves predominate. At even deeper levels, EEG waveform changes into a burst and suppression pattern, and finally becomes flat. EEG waveforms vary in the presence of noxious stimuli (surgical skin incision), which is not always reflected in BIS™, or other processed EEG indices. Spindle waves are adequately sensitive, however, to noxious stimuli: under surgical anaesthesia they disappear when noxious stimuli are applied, and reappear when adequate analgesia is obtained. To prevent awareness during anaesthesia, I speculate that the most effective strategy is to administer anaesthetic agents in such a way as to maintain anaesthesia at a level where spindle waves predominate. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study.

    PubMed

    Castelnovo, Anna; Riedner, Brady A; Smith, Richard F; Tononi, Giulio; Boly, Melanie; Benca, Ruth M

    2016-10-01

    To examine scalp and source power topography in sleep arousals disorders (SADs) using high-density EEG (hdEEG). Fifteen adult subjects with sleep arousal disorders (SADs) and 15 age- and gender-matched good sleeping healthy controls were recorded in a sleep laboratory setting using a 256 channel EEG system. Scalp EEG analysis of all night NREM sleep revealed a localized decrease in slow wave activity (SWA) power (1-4 Hz) over centro-parietal regions relative to the rest of the brain in SADs compared to good sleeping healthy controls. Source modelling analysis of 5-minute segments taken from N3 during the first half of the night revealed that the local decrease in SWA power was prominent at the level of the cingulate, motor, and sensori-motor associative cortices. Similar patterns were also evident during REM sleep and wake. These differences in local sleep were present in the absence of any detectable clinical or electrophysiological sign of arousal. Overall, results suggest the presence of local sleep differences in the brain of SADs patients during nights without clinical episodes. The persistence of similar topographical changes in local EEG power during REM sleep and wakefulness points to trait-like functional changes that cross the boundaries of NREM sleep. The regions identified by source imaging are consistent with the current neurophysiological understanding of SADs as a disorder caused by local arousals in motor and cingulate cortices. Persistent localized changes in neuronal excitability may predispose affected subjects to clinical episodes. © 2016 Associated Professional Sleep Societies, LLC.

  3. Effects of oral amines on the EEG.

    PubMed Central

    Scott, D F; Moffett, A M; Swash, M

    1977-01-01

    Oral tyramine activated pre-existing episodic EEG abnormalities--namely, sharp waves, spike and wave, and localised theta activity--in epileptic patients. Little change was found in the EEGs of migrainous subjects after chocolate or beta-phenylethylamine. The implications of the findings with tyramine are discussed. Images PMID:864482

  4. Relationship of genetically transmitted alpha EEG traits to anxiety disorders and alcoholism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enoch, M.A.; Rohrbaugh, W.; Harris, C.R.

    We tested the hypothesis that a heritable EEG trait, the low voltage alpha (LV), is associated with psychiatric disorders. Modest to moderate evidence for genetic linkage of both panic disorder and the low voltage alpha trait to the same region of chromosome 20q has recently been reported, raising the issue of whether there is a phenotypic correlation between these traits. A total of 124 subjects including 50 unrelated index subjects and 74 relatives were studied. Alpha EEG power was measured and EEG phenotypes were impressionistically classified. Subjects were psychiatrically interviewed using the SADS-L and blind-rated by RDC criteria. Alcoholics weremore » four times more likely to be LV (including so-called borderline low voltage alpha) than were nonalcoholic, nonanxious subjects. Alcoholics with anxiety disorder are 10 times more likely to be LV. However, alcoholics without anxiety disorder were similar to nonalcoholics in alpha power. An anxiety disorder (panic disorder, phobia, or generalized anxiety) was found in 14/17 LV subjects as compared to 34/101 of the rest of the sample (P < 0.01). Support for these observations was found in the unrelated index subjects in whom no traits would be shared by familial clustering. Lower alpha power in anxiety disorders was not state-dependent, as indicated by the Spielberger Anxiety Scale. Familial covariance of alpha power was 0.25 (P < 0.01). These findings indicate there may be a shared factor underlying the transmissible low voltage alpha EEG variant and vulnerability to anxiety disorders with associated alcoholism. This factor is apparently not rare, because LV was found in approximately 10% of unrelated index subjects and 5% of subjects free of alcoholism and anxiety disorders. 43 refs., 1 fig., 3 tabs.« less

  5. Propofol Anesthesia and Sleep: A High-Density EEG Study

    PubMed Central

    Murphy, Michael; Bruno, Marie-Aurelie; Riedner, Brady A.; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C.; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Melanie

    2011-01-01

    Study Objectives: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. Design: 256-channel EEG recordings in humans during propofol anesthesia. Setting: Hospital operating room. Patients or Participants: 8 healthy subjects (4 males) Interventions: N/A Measurements and Results: Initially, propofol induced increases in EEG power from 12–25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25–40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Conclusions: Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity. Citation: Murphy M; Bruno MA; Riedner BA; Boveroux P; Noirhomme Q; Landsness EC; Brichant JF; Phillips C; Massimini M; Laureys S; Tononi G; Boly M. Propofol anesthesia and sleep: a high-density EEG study. SLEEP 2011;34(3):283-291. PMID:21358845

  6. The Positive Effects of Trait Emotional Intelligence during a Performance Review Discussion – A Psychophysiological Study

    PubMed Central

    Salminen, Mikko; Ravaja, Niklas

    2017-01-01

    Performance review discussions of real manager–subordinate pairs were examined in two studies to investigate the effects of trait emotional intelligence (EI) on dyad member’s felt and expressed emotions. Altogether there were 84 managers and 122 subordinates in two studies using 360 measured and self-reported trait EI. Facial electromyography, and frontal electroencephalography (EEG) asymmetry were collected continuously. Manager’s high trait EI was related to increased positive valence emotional facial expressions in the dyad during the discussions. The managers also had more EEG frontal asymmetry indicating approach motivation, than the subordinates. In addition, actor and partner effects and actor × partner interactions, and interactions between the role and actor or partner effect of trait EI were observed. Both actor and partner trait EI were related to more positive self-reported emotional valence. The results imply that trait EI has a role in organizational social interaction. PMID:28400747

  7. The Relation Between Trait Anger and Impulse Control in Forensic Psychiatric Patients: An EEG Study.

    PubMed

    Lievaart, Marien; van der Veen, Frederik M; Huijding, Jorg; Hovens, Johannes E; Franken, Ingmar H A

    2018-06-01

    Inhibitory control is considered to be one of the key factors in explaining individual differences in trait anger and reactive aggression. Yet, only a few studies have assessed electroencephalographic (EEG) activity with respect to response inhibition in high trait anger individuals. The main goal of this study was therefore to investigate whether individual differences in trait anger in forensic psychiatric patients are associated with individual differences in anger-primed inhibitory control using behavioral and electrophysiological measures of response inhibition. Thirty-eight forensic psychiatric patients who had a medium to high risk of recidivism of violent and/or non-violent behaviors performed an affective Go/NoGo task while EEG was recorded. On the behavioral level, we found higher scores on trait anger to be accompanied by lower accuracy on NoGo trials, especially when anger was primed. With respect to the physiological data we found, as expected, a significant inverse relation between trait anger and the error related negativity amplitudes. Contrary to expectation, trait anger was not related to the stimulus-locked event related potentials (i.e., N2/P3). The results of this study support the notion that in a forensic population trait anger is inversely related to impulse control, particularly in hostile contexts. Moreover, our data suggest that higher scores on trait anger are associated with deficits in automatic error-processing which may contribute the continuation of impulsive angry behaviors despite their negative consequences.

  8. Identifying the effects of microsaccades in tripolar EEG signals.

    PubMed

    Bellisle, Rachel; Steele, Preston; Bartels, Rachel; Lei Ding; Sunderam, Sridhar; Besio, Walter

    2017-07-01

    Microsaccades are tiny, involuntary eye movements that occur during fixation, and they are necessary to human sight to maintain a sharp image and correct the effects of other fixational movements. Researchers have theorized and studied the effects of microsaccades on electroencephalography (EEG) signals to understand and eliminate the unwanted artifacts from EEG. The tripolar concentric ring electrode (TCRE) sensors are used to acquire TCRE EEG (tEEG). The tEEG detects extremely focal signals from directly below the TCRE sensor. We have noticed a slow wave frequency found in some tEEG recordings. Therefore, we conducted the current work to determine if there was a correlation between the slow wave in the tEEG and the microsaccades. This was done by analyzing the coherence of the frequency spectrums of both tEEG and eye movement in recordings where microsaccades are present. Our preliminary findings show that there is a correlation between the two.

  9. Study on bayes discriminant analysis of EEG data.

    PubMed

    Shi, Yuan; He, DanDan; Qin, Fang

    2014-01-01

    In this paper, we have done Bayes Discriminant analysis to EEG data of experiment objects which are recorded impersonally come up with a relatively accurate method used in feature extraction and classification decisions. In accordance with the strength of α wave, the head electrodes are divided into four species. In use of part of 21 electrodes EEG data of 63 people, we have done Bayes Discriminant analysis to EEG data of six objects. Results In use of part of EEG data of 63 people, we have done Bayes Discriminant analysis, the electrode classification accuracy rates is 64.4%. Bayes Discriminant has higher prediction accuracy, EEG features (mainly αwave) extract more accurate. Bayes Discriminant would be better applied to the feature extraction and classification decisions of EEG data.

  10. Trait anxiety impact on posterior activation asymmetries at rest and during evoked negative emotions: EEG investigation.

    PubMed

    Aftanas, Ljubomir I; Pavlov, Sergey V

    2005-01-01

    The main objective of the present investigation was to examine how high trait anxiety would influence cortical EEG asymmetries under non-emotional conditions and while experiencing negative emotions. The 62-channel EEG was recorded in control (n=21) and high anxiety (HA, n=18) non-patient individuals. Results showed that in HA subjects, the lowest level of arousal (eyes closed) was associated with stronger right-sided parieto-temporal theta-1 (4-6 Hz) and beta-1 (12-18 Hz) activity, whereas increased non-emotional arousal (eyes open, viewing neutral movie clip) was marked by persisting favored right hemisphere beta-1 activity. In turn, viewing aversive movie clip by the HA group led to significant lateralized decrease of the right parieto-temporal beta-1 power, which was initially higher in the emotionally neutral conditions. The EEG data suggests that asymmetrical parieto-temporal theta-1 and beta-1 EEG activity might be better interpreted in terms of Gray's BAS and BIS theory.

  11. Midazolam or diazepam administration during electroencephalography helps to diagnose subacute sclerosing panencephalitis (SSPE).

    PubMed

    Yilmaz, Kutluhan; Sahin, Derya Aydin

    2010-08-01

    Although diagnostic contribution of intravenous diazepam administration during electroencephalography (EEG) recording in subacute sclerosing panencephalitis has been known, no another drug with less potential side effects has been studied in this procedure. In this study, diazepam is compared with midazolam in 25 subacute sclerosing panencephalitis-diagnosed children and 10 children with subacute sclerosing panencephalitis-suggesting symptoms, normal EEG findings and no certain diagnosis. Neither midazolam nor diazepam affected typical periodic slow-wave complexes. However, in the patients with atypical EEG abnormalities, midazolam, like diazepam, attenuated sharp or sharp-and-slow waves, and therefore made the identification of periodic slow-wave paroxysms easier. In the patients with normal EEGs, both midazolam and diazepam revealed typical periodic complexes on EEG recording in the same 3 patients. Cerebrospinal fluid examination verified the diagnosis of subacute sclerosing panencephalitis. The findings suggest that midazolam or diazepam administration increases the contribution of EEG recording in atypical cases with subacute sclerosing panencephalitis.

  12. Electroencephalographic characteristics of Iranian schizophrenia patients.

    PubMed

    Chaychi, Irman; Foroughipour, Mohsen; Haghir, Hossein; Talaei, Ali; Chaichi, Ashkan

    2015-12-01

    Schizophrenia is a prevalent psychiatric disease with heterogeneous causes that is diagnosed based on history and mental status examination. Applied electrophysiology is a non-invasive method to investigate the function of the involved brain areas. In a previously understudied population, we examined acute phase electroencephalography (EEG) records along with pertinent Positive and Negative Syndrome Scale (PANSS) and Mini Mental State Examination (MMSE) scores for each patient. Sixty-four hospitalized patients diagnosed to have schizophrenia in Ebn-e-Sina Hospital were included in this study. PANSS and MMSE were completed and EEG tracings for every patient were recorded. Also, EEG tracings were recorded for 64 matched individuals of the control group. Although the predominant wave pattern in both patients and controls was alpha, theta waves were almost exclusively found in eight (12.5 %) patients with schizophrenia. Pathological waves in schizophrenia patients were exclusively found in the frontal brain region, while identified pathological waves in controls were limited to the temporal region. No specific EEG finding supported laterality in schizophrenia patients. PANSS and MMSE scores were significantly correlated with specific EEG parameters (all P values <0.04). Patients with schizophrenia demonstrate specific EEG patterns and show a clear correlation between EEG parameters and PANSS and MMSE scores. These characteristics are not observed in all patients, which imply that despite an acceptable specificity, they are not applicable for the majority of schizophrenia patients. Any deduction drawn based on EEG and scoring systems is in need of larger studies incorporating more patients and using better functional imaging techniques for the brain.

  13. EEG Brain Wave Activity at Rest and during Evoked Attention in Children with Attention-Deficit/Hyperactivity Disorder and Effects of Methylphenidate.

    PubMed

    Thomas, Bianca Lee; Viljoen, Margaretha

    2016-01-01

    The aim of this study was to assess baseline EEG brain wave activity in children with attention-deficit/hyperactivity disorder (ADHD) and to examine the effects of evoked attention and methylphenidate on this activity. Children with ADHD (n = 19) were tested while they were stimulant free and during a period in which they were on stimulant (methylphenidate) medication. Control subjects (n = 18) were tested once. EEG brain wave activity was tested both at baseline and during focussed attention. Attention was evoked and EEG brain wave activity was determined by means of the BioGraph Infiniti biofeedback apparatus. The main finding of this study was that control subjects and stimulant-free children with ADHD exhibited the expected reactivity in high alpha-wave activity (11-12 Hz) from baseline to focussed attention; however, methylphenidate appeared to abolish this reactivity. Methylphenidate attenuates the normal cortical response to a cognitive challenge. © 2016 S. Karger AG, Basel.

  14. Regional Slow Waves and Spindles in Human Sleep

    PubMed Central

    Nir, Yuval; Staba, Richard J.; Andrillon, Thomas; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Fried, Itzhak; Tononi, Giulio

    2011-01-01

    SUMMARY The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions—are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions. PMID:21482364

  15. EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter waves.

    PubMed

    Xie, Taorong; Pei, Jian; Cui, Yibin; Zhang, Jie; Qi, Hongxing; Chen, Shude; Qiao, Dengjiang

    2011-06-01

    As the application of millimeter waves for civilian and military use increases, the possibility of overexposure to millimeter waves will also increase. This paper attempts to evaluate stress reactions evoked by 35 GHz millimeter waves. The stress reactions in Sprague-Dawley (SD) rats were quantitatively studied by analyzing electroencephalogram (EEG) changes induced by overexposure to 35 GHz millimeter waves. The relative changes in average energy of the EEG and its wavelet decompositions were used for extracting the stress reaction indicators. Incident average power densities (IAPDs) of 35 GHz millimeter waves from 0.5 W cm(-2) to 7.5 W cm(-2) were employed to investigate the relation between irradiation dose and the stress reactions in the rats. Different stress reaction periods evoked by irradiation were quantitatively evaluated by EEG results. The results illustrate that stress reactions are more intense during the first part of the irradiation than during the later part. The skin temperature increase produced by millimeter wave irradiation is the principle reason for stress reactions and skin injuries. As expected, at the higher levels of irradiation, the reaction time decreases and the reaction intensity increases.

  16. Statistical features of hypnagogic EEG measured by a new scoring system.

    PubMed

    Tanaka, H; Hayashi, M; Hori, T

    1996-11-01

    The purpose of this study was to examine the durations of individual occurrences of each of nine hypnagogic electroencephalographic (EEG) stages and the interchange relationship among these stages. Most of the alpha patterns (stages 1, 2, and 3), ripples (stage 5), and spindles (stage 9) tended to last > 2 minutes. On the other hand, histograms of the durations of time in EEG flattening (stage 4) and vertex sharp wave (stages 6, 7, and 8) patterns had peaks that lasted < 30 seconds. Analysis of the sequences of EEG stage changes demonstrated that shifts to adjacent stages were most common for all stages. A smooth change in EEG stage occurred in the downward or upward direction in the hypnagogic state. This was especially true for the first five stages. EEG stages with vertex sharp waves (stages 6, 7, and 8), however, showed less-smooth changes, with approximately 20% of all changes involving a jump of more than one stage. These results show that the basic EEG activities in the sleep onset period are the alpha, theta, and sleep spindles activities, whereas the activities of vertex sharp waves seem to have a secondary or enhancing role, instead of independent characteristics.

  17. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism.

    PubMed

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-11-01

    STUDY OBJECTIVIES: several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. the specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined.

  18. Preoperative EEG predicts memory and selective cognitive functions after temporal lobe surgery.

    PubMed Central

    Tuunainen, A; Nousiainen, U; Hurskainen, H; Leinonen, E; Pilke, A; Mervaala, E; Vapalahti, M; Partanen, J; Riekkinen, P

    1995-01-01

    Preoperative and postoperative cognitive and memory functions, psychiatric outcome, and EEGs were evaluated in 32 epileptic patients who underwent temporal lobe surgery. The presence and location of preoperative slow wave focus in routine EEG predicted memory functions of the non-resected side after surgery. Neuropsychological tests of the function of the frontal lobes also showed improvement. Moreover, psychiatric ratings showed that seizure free patients had significantly less affective symptoms postoperatively than those who were still exhibiting seizures. After temporal lobectomies, successful outcome in postoperative memory functions can be achieved in patients with unilateral slow wave activity in preoperative EEGs. This study suggests a new role for routine EEG in preoperative evaluation of patients with temporal lobe epilepsy. PMID:7608663

  19. Efficacy and safety of a video-EEG protocol for genetic generalized epilepsies.

    PubMed

    De Marchi, Luciana Rodrigues; Corso, Jeana Torres; Zetehaku, Ana Carolina; Uchida, Carina Gonçalves Pedroso; Guaranha, Mirian Salvadori Bittar; Yacubian, Elza Márcia Targas

    2017-05-01

    Video-EEG has been used to characterize genetic generalized epilepsies (GGE). For best performance, sleep recording, photic stimulation, hyperventilation, and neuropsychological protocols are added to the monitoring. However, risks and benefits of these video-EEG protocols are not well established. The aim of this study was to analyze the efficacy and safety of a video-EEG neuropsychological protocol (VNPP) tailored for GGE and compare its value with that of routine EEG (R-EEG). We reviewed the VNPP and R-EEG of patients with GGE. We considered confirmation of the clinical suspicion of a GGE syndrome and characterization of reflex traits as benefits; and falls, injuries, psychiatric and behavioral changes, generalized tonic-clonic (GTC) seizures, and status epilepticus (SE) as the main risks of the VNPP. The VNPPs of 113 patients were analyzed. The most common epileptic syndrome was juvenile myoclonic epilepsy (85.8%). The protocol confirmed a GGE syndrome in 97 patients and 62 had seizures. Sleep recording had a provocative effect in 51.2% of patients. The second task that showed highest efficacy was praxis (39.3%) followed by hyperventilation (31.3%). Among the risks, 1.8% had GTC seizures and another 1.8%, SE. Eighteen percent of patients had persistently normal R-EEG, 72.2% of them had discharges during VNPP. Generalized tonic-clonic seizures, myoclonic status epilepticus, and repeated seizures were the main risks of VNPP present in 6 (5.31%) patients while there were no complications during R-EEG. The VNPP in GGE is a useful tool in diagnosis and characterization of reflex traits, and is a safe procedure. Its use might preclude multiple R-EEG exams. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Analysis of Slow-Wave Activity and Slow-Wave Oscillations Prior to Somnambulism

    PubMed Central

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-01-01

    Study Objectivies: Several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. Participants: Twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. Results: Analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. Conclusions: The specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined. Citation: Jaar O; Pilon M; Carrier J; Montplaisir J; Zadra A. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism. SLEEP 2010;33(11):1511-1516. PMID:21102993

  1. Electroencephalography in the Diagnosis of Genetic Generalized Epilepsy Syndromes

    PubMed Central

    Seneviratne, Udaya; Cook, Mark J.; D’Souza, Wendyl Jude

    2017-01-01

    Genetic generalized epilepsy (GGE) consists of several syndromes diagnosed and classified on the basis of clinical features and electroencephalographic (EEG) abnormalities. The main EEG feature of GGE is bilateral, synchronous, symmetric, and generalized spike-wave complex. Other classic EEG abnormalities are polyspikes, epileptiform K-complexes and sleep spindles, polyspike-wave discharges, occipital intermittent rhythmic delta activity, eye-closure sensitivity, fixation-off sensitivity, and photoparoxysmal response. However, admixed with typical changes, atypical epileptiform discharges are also commonly seen in GGE. There are circadian variations of generalized epileptiform discharges. Sleep, sleep deprivation, hyperventilation, intermittent photic stimulation, eye closure, and fixation-off are often used as activation techniques to increase the diagnostic yield of EEG recordings. Reflex seizure-related EEG abnormalities can be elicited by the use of triggers such as cognitive tasks and pattern stimulation during the EEG recording in selected patients. Distinct electrographic abnormalities to help classification can be identified among different electroclinical syndromes. PMID:28993753

  2. Interictal Epileptiform Discharges (IEDs) classification in EEG data of epilepsy patients

    NASA Astrophysics Data System (ADS)

    Puspita, J. W.; Soemarno, G.; Jaya, A. I.; Soewono, E.

    2017-12-01

    Interictal Epileptiform Dischargers (IEDs), which consists of spike waves and sharp waves, in human electroencephalogram (EEG) are characteristic signatures of epilepsy. Spike waves are characterized by a pointed peak with a duration of 20-70 ms, while sharp waves has a duration of 70-200 ms. The purpose of the study was to classify spike wave and sharp wave of EEG data of epilepsy patients using Backpropagation Neural Network. The proposed method consists of two main stages: feature extraction stage and classification stage. In the feature extraction stage, we use frequency, amplitude and statistical feature, such as mean, standard deviation, and median, of each wave. The frequency values of the IEDs are very sensitive to the selection of the wave baseline. The selected baseline must contain all data of rising and falling slopes of the IEDs. Thus, we have a feature that is able to represent the type of IEDs, appropriately. The results show that the proposed method achieves the best classification results with the recognition rate of 93.75 % for binary sigmoid activation function and learning rate of 0.1.

  3. Electroencephalographic profiles for differentiation of disorders of consciousness

    PubMed Central

    2013-01-01

    Background Electroencephalography (EEG) is best suited for long-term monitoring of brain functions in patients with disorders of consciousness (DOC). Mathematical tools are needed to facilitate efficient interpretation of long-duration sleep-wake EEG recordings. Methods Starting with matching pursuit (MP) decomposition, we automatically detect and parametrize sleep spindles, slow wave activity, K-complexes and alpha, beta and theta waves present in EEG recordings, and automatically construct profiles of their time evolution, relevant to the assessment of residual brain function in patients with DOC. Results Above proposed EEG profiles were computed for 32 patients diagnosed as minimally conscious state (MCS, 20 patients), vegetative state/unresponsive wakefulness syndrome (VS/UWS, 11 patients) and Locked-in Syndrome (LiS, 1 patient). Their interpretation revealed significant correlations between patients’ behavioral diagnosis and: (a) occurrence of sleep EEG patterns including sleep spindles, slow wave activity and light/deep sleep cycles, (b) appearance and variability across time of alpha, beta, and theta rhythms. Discrimination between MCS and VS/UWS based upon prominent features of these profiles classified correctly 87% of cases. Conclusions Proposed EEG profiles offer user-independent, repeatable, comprehensive and continuous representation of relevant EEG characteristics, intended as an aid in differentiation between VS/UWS and MCS states and diagnostic prognosis. To enable further development of this methodology into clinically usable tests, we share user-friendly software for MP decomposition of EEG (http://braintech.pl/svarog) and scripts used for creation of the presented profiles (attached to this article). PMID:24143892

  4. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats☆

    PubMed Central

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416

  5. Characterization of ictal slow waves in epileptic spasms.

    PubMed

    Honda, Ryoko; Saito, Yoshiaki; Okumura, Akihisa; Abe, Shinpei; Saito, Takashi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki

    2015-12-01

    We characterized the clinico-neurophysiological features of epileptic spasms, particularly focusing on high-voltage slow waves during ictal EEG. We studied 22 patients with epileptic spasms recorded during digital video-scalp EEG, including five individuals who still had persistent spasms after callosotomy. We analysed the duration, amplitude, latency to onset of electromyographic bursts, and distribution of the highest positive and negative peaks of slow waves in 352 spasms. High-voltage positive slow waves preceded the identifiable muscle contractions of spasms. The mean duration of these positive waves was 569±228 m, and the mean latency to electromyographic onset was 182±127 m. These parameters varied markedly even within a patient. The highest peak of the positive component was distributed in variable regions, which was not consistent with the location of lesions on MRI. The peak of the negative component following the positivity was distributed in the neighbouring or opposite areas of the positive peak distribution. No changes were evident in the pre- or post-surgical distributions of the positive peak, or in the interhemispheric delay between both hemispheres, in individuals with callosotomy. Our data imply that ictal positive slow waves are the most common EEG changes during spasms associated with a massive motor component. Plausible explanations for these widespread positive slow waves include the notion that EEG changes possibly reflect involvement of both cortical and subcortical structures.

  6. Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis.

    PubMed

    Keune, Philipp M; Hansen, Sascha; Weber, Emily; Zapf, Franziska; Habich, Juliane; Muenssinger, Jana; Wolf, Sebastian; Schönenberg, Michael; Oschmann, Patrick

    2017-09-01

    Neurophysiologic monitoring parameters related to cognition in Multiple Sclerosis (MS) are sparse. Previous work reported an association between magnetoencephalographic (MEG) alpha-1 activity and information processing speed. While this remains to be replicated by more available electroencephalographic (EEG) methods, also other established EEG markers, e.g. the slow-wave/fast-wave ratio (theta/beta ratio), remain to be explored in this context. Performance on standard tests addressing information processing speed and attention (Symbol-Digit Modalities Test, SDMT; Test of Attention Performance, TAP) was examined in relation to resting-state EEG alpha-1 and alpha-2 activity and the theta/beta ratio in 25MS patients. Increased global alpha-1 and alpha-2 activity and an increased frontal theta/beta ratio (pronounced slow-wave relative to fast-wave activity) were associated with lower SDMT processing speed. In an exploratory analysis, clinically impaired attention was associated with a significantly increased frontal theta/beta ratio whereas alpha power did not show sensitivity to clinical impairment. EEG global alpha power and the frontal theta/beta ratio were both associated with attention. The theta/beta ratio involved potential clinical sensitivity. Resting-state EEG recordings can be obtained during the routine clinical process. The examined resting-state measures may represent feasible monitoring parameters in MS. This notion should be explored in future intervention studies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  7. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep.

    PubMed

    Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of "thermodynamic" equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium.

  8. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep

    PubMed Central

    Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of “thermodynamic” equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium. PMID:27445777

  9. Adolescent Changes in Homeostatic Regulation of EEG Activity in the Delta and Theta Frequency Bands during NREM Sleep

    PubMed Central

    Campbell, Ian G.; Darchia, Nato; Higgins, Lisa M.; Dykan, Igor V.; Davis, Nicole M.; de Bie, Evan; Feinberg, Irwin

    2011-01-01

    Study Objectives: Slow wave EEG activity in NREM sleep decreases by more than 60% between ages 10 and 20 years. Slow wave EEG activity also declines across NREM periods (NREMPs) within a night, and this decline is thought to represent the dynamics of sleep homeostasis. We used longitudinal data to determine whether these homeostatic dynamics change across adolescence. Design: All-night sleep EEG was recorded semiannually for 6 years. Setting: EEG was recorded with ambulatory recorders in the subjects' homes. Participants: Sixty-seven subjects in 2 cohorts, one starting at age 9 and one starting at age 12 years. Measurements and Results: For NREM delta (1-4 Hz) and theta (4-8 Hz) EEG, we tested whether the proportion of spectral energy contained in the first NREMP changes with age. We also tested for age changes in the parameters of the process S exponential decline. For both delta and theta, the proportion of energy in the first NREMP declined significantly across ages 9 to 18 years. Process S parameters SWA0 and TWA0, respectively, represent slow wave (delta) activity and theta wave activity at the beginning of the night. SWA0 and TWA0 declined significantly (P < 0.0001) across ages 9 to 18. Conclusions: These declines indicate that the intensity of the homeostatic or restorative processes at the beginning of sleep diminished across adolescence. We propose that this change in sleep regulation is caused by the synaptic pruning that occurs during adolescent brain maturation. Citation: Campbell IG; Darchia N; Higgins LM; Dykan IV; Davis NM; de Bie E; Feinberg I. Adolescent changes in homeostatic regulation of EEG activity in the delta and theta frequency bands during NREM sleep. SLEEP 2011;34(1):83-91. PMID:21203377

  10. Bradycardia from flash stimulation.

    PubMed

    Einspenner, Michael; Brunet, Donald G; Boissé Lomax, Lysa; Spiller, Allison E

    2015-12-01

    This case study documents a patient who experienced bradycardia brought on by flash stimulation during a routine outpatient EEG recording. The patient had known photosensitive seizures in the past. During this routine EEG, the patient's heart rate dropped to about 12 beats per minute with the EEG displaying slow-delta-frequency waves with no epileptiform spikes or sharp waves. During immediate follow-up, in our emergency department, the patient had a brief asystolic event, followed by bradycardia. Cardiology examinations were normal. We propose that this response was a photic-triggered reflex vasovagal reaction.

  11. Behavioural Inhibition System (BIS) sensitivity differentiates EEG theta responses during goal conflict in a continuous monitoring task.

    PubMed

    Moore, Roger A; Mills, Matthew; Marshman, Paul; Corr, Philip J

    2012-08-01

    Previous research has revealed that EEG theta oscillations are affected during goal conflict processing. This is consistent with the behavioural inhibition system (BIS) theory of anxiety (Gray & McNaughton, 2000). However, studies have not attempted to relate these BIS-related theta effects to BIS personality measures. Confirmation of such an association would provide further support for BIS theory, especially as it relates to trait differences. EEG was measured (32 electrodes) from extreme groups (low/high trait BIS) engaged in a target detection task. Goal conflicts were introduced throughout the task. Results show that the two groups did not differ in behavioural performance. The major EEG result was that a stepwise discriminant analysis indicated discrimination by 6 variables derived from coherence and power, with 5 of the 6 in the theta range as predicted by BIS theory and one in the beta range. Also, across the whole sample, EEG theta coherence increased at a variety of regions during primary goal conflict and showed a general increase during response execution; EEG theta power, in contrast, was primarily reactive to response execution. This is the first study to reveal a three-way relationship between the induction of goal conflict, the induction of theta power and coherence, and differentiation by psychometrically-defined low/high BIS status. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Quantitative EEG and its Correlation with Cardiovascular, Cognition and mood State: an Integrated Study in Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Zhang, Jianyuan; Hu, Bin; Chen, Wenjuan; Moore, Philip; Xu, Tingting; Dong, Qunxi; Liu, Zhenyu; Luo, Yuejia; Chen, Shanguang

    2014-12-01

    The focus of the study is the estimation of the effects of microgravity on the central nervous activity and its underlying influencing mechanisms. To validate the microgravity-induced physiological and psychological effects on EEG, quantitative EEG features, cardiovascular indicators, mood state, and cognitive performances data collection was achieved during a 45 day period using a -6°head-down bed rest (HDBR) integrated approach. The results demonstrated significant differences in EEG data, as an increased Theta wave, a decreased Beta wave and a reduced complexity of brain, accompanied with an increased heart rate and pulse rate, decreased positive emotion, and degraded emotion conflict monitoring performance. The canonical correlation analysis (CCA) based cardiovascular and cognitive related EEG model showed the cardiovascular effect on EEG mainly affected bilateral temporal region and the cognitive effect impacted parietal-occipital and frontal regions. The results obtained in the study support the use of an approach which combines a multi-factor influential mechanism hypothesis. The changes in the EEG data may be influenced by both cardiovascular and cognitive effects.

  13. Analyze the dynamic features of rat EEG using wavelet entropy.

    PubMed

    Feng, Zhouyan; Chen, Hang

    2005-01-01

    Wavelet entropy (WE), a new method of complexity measure for non-stationary signals, was used to investigate the dynamic features of rat EEGs under three vigilance states. The EEGs of the freely moving rats were recorded with implanted electrodes and were decomposed into four components of delta, theta, alpha and beta by using multi-resolution wavelet transform. Then, the wavelet entropy curves were calculated as a function of time. The results showed that there were significant differences among the average WEs of EEGs recorded under the vigilance states of waking, slow wave sleep (SWS) and rapid eye movement (REM) sleep. The changes of WE had different relationships with the four power components under different states. Moreover, there was evident rhythm in EEG WEs of SWS sleep for most experimental rats, which indicated a reciprocal relationship between slow waves and sleep spindles in the micro-states of SWS sleep. Therefore, WE can be used not only to distinguish the long-term changes in EEG complexity, but also to reveal the short-term changes in EEG micro-state.

  14. Analysis of bioelectric records and fabrication of phototype sleep analysis equipment

    NASA Technical Reports Server (NTRS)

    Kellaway, P.

    1972-01-01

    A computer-analysis technique was used to evaluate the changes in the waking EEGs of 5 normal subjects which occurred during the oral administration of flurazepam hydrochloride (Dalmane). While the subjects were receiving the drug, there was an increase in the amount of beta (14-38 c/sec) activity in fronto-central EEG leads in all 5 subjects. This increase in beta activity was characterized by a highly consistent increase in the number of waves that occurred during an EEG recording interval of fixed duration and by a less consistent increase in average wave amplitude. There was no detectable change in mean EEG wavelength (frequency) within the beta frequency range. The EEG patterns reverted to their baseline condition during 2-3 weeks after withdrawal of the drug. Analysis of the alpha, theta and delta components of the EEG indicated no changes during or following administration of the drug. This study clearly illustrates the usefulness of specific computer-analysis techniques in the characterization and quantification of sleep-promoting drugs upon the EEG of the normal young adults in the waking state. Two preamplifiers and 150 EEG monitoring caps with electrodes were delivered to MSC.

  15. EEG activation differences in the pre-motor cortex and supplementary motor area between normal individuals with high and low traits of autism.

    PubMed

    Puzzo, Ignazio; Cooper, Nicholas R; Vetter, Petra; Russo, Riccardo

    2010-06-25

    The human mirror neuron system (hMNS) is believed to provide a basic mechanism for social cognition. Event-related desynchronization (ERD) in alpha (8-12Hz) and low beta band (12-20Hz) over sensori-motor cortex has been suggested to index mirror neurons' activity. We tested whether autistic traits revealed by high and low scores on the Autistic Quotient (AQ) in the normal population are linked to variations in the electroencephalogram (EEG) over motor, pre-motor cortex and supplementary motor area (SMA) during action observation. Results revealed that in the low AQ group, the pre-motor cortex and SMA were more active during hand action than static hand observation whereas in the high AQ group the same areas were active both during static and hand action observation. In fact participants with high traits of autism showed greater low beta ERD while observing the static hand than those with low traits and this low beta ERD was not significantly different when they watched hand actions. Over primary motor cortex, the classical alpha and low beta ERD during hand actions relative to static hand observation was found across all participants. These findings suggest that the observation-execution matching system works differently according to the degree of autism traits in the normal population and that this is differentiated in terms of the EEG according to scalp site and bandwidth. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Epileptic encephalopathy with continuous spike-waves during sleep: the need for transition from childhood to adulthood medical care appears to be related to etiology.

    PubMed

    de Saint-Martin, Anne; Rudolf, Gabrielle; Seegmuller, Caroline; Valenti-Hirsch, Maria Paola; Hirsch, Edouard

    2014-08-01

    Epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) presents clinically with infrequent nocturnal focal seizures, atypical absences related to secondary bilateral synchrony, negative myoclonia, and atonic and rare generalized tonic-clonic seizures. The unique electroencephalography (EEG) pattern found in ECSWS consists of continuous, diffuse, bilateral spike-waves during slow-wave sleep. Despite the eventual disappearance of clinical seizures and EEG abnormalities by adolescence, the prognosis is guarded in most cases because of neuropsychological and behavioral deficits. ECSWS has a heterogeneous etiology (genetic, structural, and unknown). Because epilepsy and electroencephalography (EEG) abnormalities in epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) are self-limited and age related, the need for ongoing medical care and transition to adult care might be questioned. For adolescents in whom etiology remains unknown (possibly genetic) and who experience the disappearance of seizures and EEG abnormalities, there is rarely need for long-term neurologic follow-up, because often a relatively normal cognitive and social evolution follows. However, the majority of patients with structural and possibly "genetic syndromic" etiologies will have persistent cognitive deficits and will need suitable socioeducative care. Therefore, the transition process in ECSWS will depend mainly on etiology and its related features (epileptic active phase duration, and cognitive and behavioral evolution) and revolve around neuropsychological and social support rather than medical and pharmacologic follow-up. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  17. Comparison between psycho-acoustics and physio-acoustic measurement to determine optimum reverberation time of pentatonic angklung music concert hall

    NASA Astrophysics Data System (ADS)

    Sudarsono, Anugrah S.; Merthayasa, I. G. N.; Suprijanto

    2015-09-01

    This research tried to compare psycho-acoustics and Physio-acoustic measurement to find the optimum reverberation time of soundfield from angklung music. Psycho-acoustic measurement was conducted using a paired comparison method and Physio-acoustic measurement was conducted with EEG Measurement on T3, T4, FP1, and FP2 measurement points. EEG measurement was conducted with 5 persons. Pentatonic angklung music was used as a stimulus with reverberation time variation. The variation was between 0.8 s - 1.6 s with 0.2 s step. EEG signal was analysed using a Power Spectral Density method on Alpha Wave, High Alpha Wave, and Theta Wave. Psycho-acoustic measurement on 50 persons showed that reverberation time preference of pentatonic angklung music was 1.2 second. The result was similar to Theta Wave measurement on FP2 measurement point. High Alpha wave on T4 measurement gave different results, but had similar patterns with psycho-acoustic measurement

  18. Evaluation of an automated spike-and-wave complex detection algorithm in the EEG from a rat model of absence epilepsy.

    PubMed

    Bauquier, Sebastien H; Lai, Alan; Jiang, Jonathan L; Sui, Yi; Cook, Mark J

    2015-10-01

    The aim of this prospective blinded study was to evaluate an automated algorithm for spike-and-wave discharge (SWD) detection applied to EEGs from genetic absence epilepsy rats from Strasbourg (GAERS). Five GAERS underwent four sessions of 20-min EEG recording. Each EEG was manually analyzed for SWDs longer than one second by two investigators and automatically using an algorithm developed in MATLAB®. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for the manual (reference) versus the automatic (test) methods. The results showed that the algorithm had specificity, sensitivity, PPV and NPV >94%, comparable to published methods that are based on analyzing EEG changes in the frequency domain. This provides a good alternative as a method designed to mimic human manual marking in the time domain.

  19. Postictal psychosis and its electrophysiological correlates in invasive EEG: a case report study and literature review.

    PubMed

    Kuba, Robert; Brázdil, Milan; Rektor, Ivan

    2012-04-01

    We identified two patients with medically refractory temporal lobe epilepsy, from whom intracranial EEG recordings were obtained at the time of postictal psychosis. Both patients had mesial temporal epilepsy associated with hippocampal sclerosis. In both patients, the postictal psychosis was associated with a continual "epileptiform" EEG pattern that differed from their interictal and ictal EEG findings (rhythmical slow wave and "abortive" spike-slow wave complex activity in the right hippocampus and lateral temporal cortex in case 1 and a periodic pattern of triphasic waves in the contacts recording activity from the left anterior cingulate gyrus). Some cases of postictal psychosis might be caused by the transient impairment of several limbic system structures due to the "continual epileptiform discharge" in some brain regions. Case 2 is the first report of a patient with TLE in whom psychotic symptoms were associated with the epileptiform impairment of the anterior cingulate gyrus. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. [Effect of oxysophoridine on electric activities and its power spectrum of reticular formation in rats].

    PubMed

    Yu, Jianqiang; Li, Yuxiang; Zhao, Chengjun; Gong, Xin; Liu, Jianping; Wang, Feng; Jiang, Yuanxu

    2010-05-01

    To observe the effect of oxysophoridine (OSR) on the EEG and its power spectrum of reticulum formation in mesencephalon of anaesthetized rat. Utilizing the technique of brain stereotactic apparatus, electrodes were implanted into reticulum formation of mesencephalon. Monopolar lead and computerized FFT technique were employed to record and analyse the index of EEG, power spectrum and frequency distribution in order to study the effect of oxysophoridine on the bioelectricity change of mesencephalon reticulum formation in rats. After administrating(icy) with oxysophoridine at the dose of 2.5,5, 10 mg/rat, the EEG of mesencephalon reticulum formation mainly characterized with low amplitude and slow waves accompanied by spindle-formed sleeping waves with a significant decrease of total power of EEG (P < 0.05) while the ratio of theta, alpha waves increased in total frequency of rats (P < 0.05). Oxysophoridine possesses central inhibitory effects and its inhibitory mechanism may associate with the reduction of bioelectricity in mesencephalon reticulum formation. Mesencephalon reticulum formation may serve as one part of the structure serving as the circuit conducting the central inhibitory effect of oxysophoridine. [Key words] oxysophoridine; reticulum formation; electroencephalogram (EEG) ; rats

  1. Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters

    PubMed Central

    Palchykova, S.; Achermann, P.; Tobler, I.; Deboer, T.

    2017-01-01

    Abstract It has been shown previously in Djungarian hamsters that the initial electroencephalography (EEG) slow-wave activity (power in the 0.5–4.0 Hz band; SWA) in non-rapid eye movement (NREM) sleep following an episode of daily torpor is consistently enhanced, similar to the SWA increase after sleep deprivation (SD). However, it is unknown whether the network mechanisms underlying the SWA increase after torpor and SD are similar. EEG slow waves recorded in the neocortex during sleep reflect synchronized transitions between periods of activity and silence among large neuronal populations. We therefore set out to investigate characteristics of individual cortical EEG slow waves recorded during NREM sleep after 4 h SD and during sleep after emergence from an episode of daily torpor in adult male Djungarian hamsters. We found that during the first hour after both SD and torpor, the SWA increase was associated with an increase in slow-wave incidence and amplitude. However, the slopes of single slow waves during NREM sleep were steeper in the first hour after SD but not after torpor, and, in contrast to sleep after SD, the magnitude of change in slopes after torpor was unrelated to the changes in SWA. Furthermore, slow-wave slopes decreased progressively within the first 2 h after SD, while a progressive increase in slow-wave slopes was apparent during the first 2 h after torpor. The data suggest that prolonged waking and torpor have different effects on cortical network activity underlying slow-wave characteristics, while resulting in a similar homeostatic sleep response of SWA. We suggest that sleep plays an important role in network homeostasis after both waking and torpor, consistent with a recovery function for both states. PMID:28168294

  2. Temporal lobe deficits in murderers: EEG findings undetected by PET.

    PubMed

    Gatzke-Kopp, L M; Raine, A; Buchsbaum, M; LaCasse, L

    2001-01-01

    This study evaluates electroencephalography (EEG) and positron emission tomography (PET) in the same subjects. Fourteen murderers were assessed by using both PET (while they were performing the continuous performance task) and EEG during a resting state. EEG revealed significant increases in slow-wave activity in the temporal, but not frontal, lobe in murderers, in contrast to prior PET findings that showed reduced prefrontal, but not temporal, glucose metabolism. Results suggest that resting EEG shows empirical utility distinct from PET activation findings.

  3. Pulse Wave Amplitude Drops during Sleep are Reliable Surrogate Markers of Changes in Cortical Activity

    PubMed Central

    Delessert, Alexandre; Espa, Fabrice; Rossetti, Andrea; Lavigne, Gilles; Tafti, Mehdi; Heinzer, Raphael

    2010-01-01

    Background: During sleep, sudden drops in pulse wave amplitude (PWA) measured by pulse oximetry are commonly associated with simultaneous arousals and are thought to result from autonomic vasoconstriction. In the present study, we determine whether PWA drops were associated with changes in cortical activity as determined by EEG spectral analysis. Methods: A 20% decrease in PWA was chosen as a minimum for a drop. A total of 1085 PWA drops from 10 consecutive sleep recordings were analyzed. EEG spectral analysis was performed over 5 consecutive epochs of 5 seconds: 2 before, 1 during, and 2 after the PWA drop. EEG spectral analysis was performed over delta, theta, alpha, sigma, and beta frequency bands. Within each frequency band, power density was compared across the five 5-sec epochs. Presence or absence of visually scored EEG arousals were adjudicated by an investigator blinded to the PWA signal and considered associated with PWA drop if concomitant. Results: A significant increase in EEG power density in all EEG frequency bands was found during PWA drops (P < 0.001) compared to before and after drop. Even in the absence of visually scored arousals, PWA drops were associated with a significant increase in EEG power density (P < 0.001) in most frequency bands. Conclusions: Drops in PWA are associated with a significant increase in EEG power density, suggesting that these events can be used as a surrogate for changes in cortical activity during sleep. This approach may prove of value in scoring respiratory events on limited-channel (type III) portable monitors. Citation: Delessert A; Espa F; Rossetti A; Lavigne G; Tafti M; Heinzer R. Pulse wave amplitude drops during sleep are reliable surrogate markers of changes in cortical activity. SLEEP 2010;33(12):1687-1692. PMID:21120131

  4. [Influence of acupuncture of Zusanli (ST 36) on connectivity of brain functional network in healthy subjects].

    PubMed

    Li, Nuo; Wang, Pang; Deng, Bin; Wei, Xi-le; Che, Yan-qiu; Jia, Chen-hui; Guo, Yi; Chao, Wang

    2011-08-01

    To observe the effect of acupuncture of Zusanli (ST 36) on electroencephalogram (EEG) so as to probe into its law in regulating the interconnectivity of brain functional network. A total of 9 healthy young volunteer students (6 male, 3 female) participated in the present study. They were asked to take a dorsal position on a test-bed. EEG signals were acquired from 22 surface scalp electrodes (Fp1, Fp2, F7, F3, F2, F4, F8, A1, T3, C3, C2, C4, T4, A2, T5, P3, P2, P4, T6, O2, O1 and O2) fixed on the subject's head. Acupuncture stimulation was applied to the right Zusanli (ST 36) by manipulating the filiform needle with uniform reducing-reinforcing method and at a frequency of about 50 cycles/min for 2 min. Then the stimulation was stopped for 10 min, and repeated once again (needle-twirling frequency: 150 and 200 cycles/min), 3 times altogether. The acquired EEG data were analyzed by using coherence estimation method, average path length, average clustering coefficient, and the average degree of the articulation points (nodes) for analyzing the synchronization of EEG signals before, during and after acupuncture. In comparison with pre-acupuncture, the coherence amplitude values of EEG-delta (1-4 Hz) and y (31-47 Hz) waves were increased significantly after acupuncture of ST 36. No significant changes were found in the amplitude values of EEG-theta (5-8 Hz), -alpha (9-13 Hz) and-beta (14-30 Hz) waves after acupuncture stimulation. During and after acupuncture, the synchronism values of EEG-delta waves of different leads and numbers of interconnectivity between every two brain functional regions in majority of the 9 volunteers were increased clearly. In all volunteers, the degree values of all nodes except A1 and A2, the average clustering coefficients along with the increase of the threshold (r), and the average path lengths of the brain functional network of EEG-delta waves during and after acupuncture were also increased evidently (the latter two items, P < 0.05), suggesting an increase of the information exchange and functional connectivity of different brain regions. Acupuncture of Zusanli (ST 36) can increase the amplitude and synchronization of EEG-delta waves of different leads, and potentiate the functional interconnectivity of brain functional network.

  5. Paradoxical ictal EEG lateralization in children with unilateral encephaloclastic lesions.

    PubMed

    Garzon, Eliana; Gupta, Ajay; Bingaman, William; Sakamoto, Americo C; Lüders, Hans

    2009-09-01

    Describe an ictal EEG pattern of paradoxical lateralization in children with unilateral encephaloclastic hemispheric lesion acquired early in life. Of 68 children who underwent hemispherectomy during 2003-2005, scalp video-EEG and brain MRI of six children with an ictal scalp EEG pattern discordant to the clinical and imaging data were reanalyzed. Medical charts were reviewed for clinical findings and seizure outcome. Age of seizure onset was 1 day-4 years. The destructive MRI lesion was an ischemic stroke in 2, a post-infectious encephalomalacia in 2, and a perinatal trauma and hemiconvulsive-hemiplegic syndrome in one patient each. Ictal EEG pattern was characterized by prominent ictal rhythms with either 3-7 Hz spike and wave complexes or beta frequency sharp waves (paroxysmal fast) over the unaffected (contralesional) hemisphere. Scalp video-EEG was discordant, however, other findings of motor deficits (hemiparesis; five severe, one mild), seizure semiology (4/6), interictal EEG abnormalities (3/6), and unilateral burden of MRI lesion guided the decision for hemispherectomy. After 12-39 months of post-surgery follow up, five of six patients were seizure free and one has brief staring spells. We describe a paradoxical lateralization of the EEG to the "good" hemisphere in children with unihemispheric encephaloclastic lesions. This EEG pattern is compatible with seizure free outcome after surgery, provided other clinical findings and tests are concordant with origin from the abnormal hemisphere.

  6. Nonlinear dynamical systems effects of homeopathic remedies on multiscale entropy and correlation dimension of slow wave sleep EEG in young adults with histories of coffee-induced insomnia.

    PubMed

    Bell, Iris R; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R; Brooks, Audrey J

    2012-07-01

    Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stages 3 and 4 slow wave sleep EEG sampled in artifact-free 2-min segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. Copyright © 2012 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  7. Nonlinear Dynamical Systems Effects of Homeopathic Remedies on Multiscale Entropy and Correlation Dimension of Slow Wave Sleep EEG in Young Adults with Histories of Coffee-Induced Insomnia

    PubMed Central

    Bell, Iris R.; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R.; Brooks, Audrey J.

    2012-01-01

    Background Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Methods Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stage 3 and 4 slow wave sleep EEG sampled in artifact-free 2-minute segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. Results MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Conclusions Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. PMID:22818237

  8. Automatic interpretation and writing report of the adult waking electroencephalogram.

    PubMed

    Shibasaki, Hiroshi; Nakamura, Masatoshi; Sugi, Takenao; Nishida, Shigeto; Nagamine, Takashi; Ikeda, Akio

    2014-06-01

    Automatic interpretation of the EEG has so far been faced with significant difficulties because of a large amount of spatial as well as temporal information contained in the EEG, continuous fluctuation of the background activity depending on changes in the subject's vigilance and attention level, the occurrence of paroxysmal activities such as spikes and spike-and-slow-waves, contamination of the EEG with a variety of artefacts and the use of different recording electrodes and montages. Therefore, previous attempts of automatic EEG interpretation have been focussed only on a specific EEG feature such as paroxysmal abnormalities, delta waves, sleep stages and artefact detection. As a result of a long-standing cooperation between clinical neurophysiologists and system engineers, we report for the first time on a comprehensive, computer-assisted, automatic interpretation of the adult waking EEG. This system analyses the background activity, intermittent abnormalities, artefacts and the level of vigilance and attention of the subject, and automatically presents its report in written form. Besides, it also detects paroxysmal abnormalities and evaluates the effects of intermittent photic stimulation and hyperventilation on the EEG. This system of automatic EEG interpretation was formed by adopting the strategy that the qualified EEGers employ for the systematic visual inspection. This system can be used as a supplementary tool for the EEGer's visual inspection, and for educating EEG trainees and EEG technicians. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Electroencephalographic field influence on calcium momentum waves.

    PubMed

    Ingber, Lester; Pappalepore, Marco; Stesiak, Ronald R

    2014-02-21

    Macroscopic electroencephalographic (EEG) fields can be an explicit top-down neocortical mechanism that directly drives bottom-up processes that describe memory, attention, and other neuronal processes. The top-down mechanism considered is macrocolumnar EEG firings in neocortex, as described by a statistical mechanics of neocortical interactions (SMNI), developed as a magnetic vector potential A. The bottom-up process considered is Ca(2+) waves prominent in synaptic and extracellular processes that are considered to greatly influence neuronal firings. Here, the complimentary effects are considered, i.e., the influence of A on Ca(2+) momentum, p. The canonical momentum of a charged particle in an electromagnetic field, Π=p+qA (SI units), is calculated, where the charge of Ca(2+) is q=-2e, e is the magnitude of the charge of an electron. Calculations demonstrate that macroscopic EEG A can be quite influential on the momentum p of Ca(2+) ions, in both classical and quantum mechanics. Molecular scales of Ca(2+) wave dynamics are coupled with A fields developed at macroscopic regional scales measured by coherent neuronal firing activity measured by scalp EEG. The project has three main aspects: fitting A models to EEG data as reported here, building tripartite models to develop A models, and studying long coherence times of Ca(2+) waves in the presence of A due to coherent neuronal firings measured by scalp EEG. The SMNI model supports a mechanism wherein the p+qA interaction at tripartite synapses, via a dynamic centering mechanism (DCM) to control background synaptic activity, acts to maintain short-term memory (STM) during states of selective attention. © 2013 Published by Elsevier Ltd. All rights reserved.

  10. Kohlbergian Cosmic Perspective Responses, EEG Coherence and the TM and TM-Sidhi Programme.

    ERIC Educational Resources Information Center

    Nidich, Sanford I.; And Others

    1983-01-01

    This study compared the brain wave activity (EEG) of people who responded to the question "Why be moral?" with answers indicating a belief in the wholeness of man and nature with respondents who did not show a cosmic orientation. Results showed differences in EEG scores between groups. (Author/IS)

  11. EEG phase reset due to auditory attention: an inverse time-scale approach.

    PubMed

    Low, Yin Fen; Strauss, Daniel J

    2009-08-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.

  12. [Electroencephalographic effects of chlorphenesin carbamate, a new central muscle relaxant, in rabbits (author's transl)].

    PubMed

    Watanabe, S; Araki, H; Kawasaki, H; Ueki, S

    1977-05-01

    Electroencephalographic (EEG) effects of chlorphenesin carbamate were investigated in rabbits with chronic electrode implants, and compared with those of chlormezanone and methocarbamol. Chlorphenesin carbamate (50 mg/kg i.v., 100 mg/kg i.d.) induced a drowsy pattern of spontaneous EEG consisting of high voltage slow waves in the cortex and amygdala, and desynchronization of hippocampal theta waves. Chlormezanone also elicited similar EEG changes but such were much more potent than chlorphenesin carbamate. Methocarbamol showed no effect on spontaneous EEG. Chlorphenesin carbamate caused sedation in this period and muscle relaxation was more potent than that of chlormezanone. The EEG arousal response to auditory stimulation and to electric stimulation of the posterior hypothalamus, centromedian thalamus and mesencephalic reticular formation was slightly depressed by chlorphenesin carbamate. Chlorphenesin carbamate, as with chlormezanone, markedly depressed the limbic afterdischarges elicited by hippocampal stimulation. These EEG effects of chlorphenesin carbamate were qualitatively similar to but much weaker than those of chlormezanone, whereas the muscle relaxant effect of chlorphenesin carbamate was more potent than that of chlormezanone.

  13. Acute effect of carbamazepine on corticothalamic 5-9-Hz and thalamocortical spindle (10-16-Hz) oscillations in the rat.

    PubMed

    Zheng, Thomas W; O'Brien, Terence J; Kulikova, Sofya P; Reid, Christopher A; Morris, Margaret J; Pinault, Didier

    2014-03-01

    A major side effect of carbamazepine (CBZ), a drug used to treat neurological and neuropsychiatric disorders, is drowsiness, a state characterized by increased slow-wave oscillations with the emergence of sleep spindles in the electroencephalogram (EEG). We conducted cortical EEG and thalamic cellular recordings in freely moving or lightly anesthetized rats to explore the impact of CBZ within the intact corticothalamic (CT)-thalamocortical (TC) network, more specifically on CT 5-9-Hz and TC spindle (10-16-Hz) oscillations. Two to three successive 5-9-Hz waves were followed by a spindle in the cortical EEG. A single systemic injection of CBZ (20 mg/kg) induced a significant increase in the power of EEG 5-9-Hz oscillations and spindles. Intracellular recordings of glutamatergic TC neurons revealed 5-9-Hz depolarizing wave-hyperpolarizing wave sequences prolonged by robust, rhythmic spindle-frequency hyperpolarizing waves. This hybrid sequence occurred during a slow hyperpolarizing trough, and was at least 10 times more frequent under the CBZ condition than under the control condition. The hyperpolarizing waves reversed at approximately -70 mV, and became depolarizing when recorded with KCl-filled intracellular micropipettes, indicating that they were GABAA receptor-mediated potentials. In neurons of the GABAergic thalamic reticular nucleus, the principal source of TC GABAergic inputs, CBZ augmented both the number and the duration of sequences of rhythmic spindle-frequency bursts of action potentials. This indicates that these GABAergic neurons are responsible for the generation of at least the spindle-frequency hyperpolarizing waves in TC neurons. In conclusion, CBZ potentiates GABAA receptor-mediated TC spindle oscillations. Furthermore, we propose that CT 5-9-Hz waves can trigger TC spindles. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: A high density EEG investigation.

    PubMed

    Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J

    2016-02-01

    Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Changes in trait brainwave power and coherence, state and trait anxiety after three-month transcendental meditation (TM) practice.

    PubMed

    Tomljenović, Helena; Begić, Dražen; Maštrović, Zora

    2016-03-01

    The amount of studies showing different benefits of practicing meditation is growing. EEG brainwave patterns objectively reflect both the cognitive processes and objects of meditation. This study aimed to examine the effects of transcendental meditation (TM) practice on baseline EEG brainwave patterns (outside of meditation) and to examine weather TM reduces state and trait anxiety. Standard EEG recordings were conducted on volunteer participants (N=12), all students or younger employed people, before and after a three-month meditation training. Artifact-free 100-second epochs were selected and analyzed by Fast Fourier Transformation (FFT) analysis. Endlers Multidimensional Anxiety Scales (EMAS) were used to assess anxiety levels. Power (μV(2)) and coherence levels were compared in the alpha, beta, theta and delta frequency band. Changes in EEG patterns after meditation practice were found mostly in the theta band. An interaction effect was found on the left hemisphere (p<0.10). Theta power decreased on the left, but not on the right hemisphere. Increased theta coherence was found overall and in the central, temporal and occipital areas (p<0.10). Decrease in alpha power was found on channels T3 (p<0.10), O1 (p<0.05) and O2 (p<0.10). An interaction effect was found in the delta frequency band (p<0.06), too. A trend for power decreasing was found on the left, and a trend for power increasing on the right hemisphere. Also, power decreased on channel O1 (p<0.10). In the beta frequency band, a decrease was found on channel O2 (p<0.10). Trait anxiety did not differ, but a decrease in state anxiety and cognitive worry was found (p<0.05). Obtained results confirm the effects of TM on some baseline EEG brainwave patterns and state anxiety, suggesting that the left hemisphere is more sensitive to meditation practice. Most of the changes were found in the occipital and temporal areas, less in the central and frontal areas. State anxiety decreased after TM practice. Findings suggest TM practice could be helpful in treating different kinds of disorders, especially anxiety disorders.

  16. Topographic mapping of electroencephalography coherence in hypnagogic state.

    PubMed

    Tanaka, H; Hayashi, M; Hori, T

    1998-04-01

    The present study examined the topographic characteristics of hypnagogic electroencephalography (EEG), using topographic mapping of EEG power and coherence corresponding to nine EEG stages (Hori's hypnagogic EEG stages). EEG stages 1 and 2, the EEG stages 3-8, and the EEG stage 9 each correspond with standard sleep stage W, 1 and 2, respectively. The dominant topographic components of delta and theta activities increased clearly from the vertex sharp-wave stage (the EEG stages 6 and 7) in the anterior-central areas. The dominant topographic component of alpha 3 activities increased clearly from the EEG stage 9 in the anterior-central areas. The dominant topographic component of sigma activities increased clearly from the EEG stage 8 in the central-parietal area. These results suggested basic sleep process might start before the onset of sleep stage 2 or of the manually scored spindles.

  17. Functional Connectivity and Quantitative EEG in Women with Alcohol Use Disorders: A Resting-State Study.

    PubMed

    Herrera-Díaz, Adianes; Mendoza-Quiñones, Raúl; Melie-Garcia, Lester; Martínez-Montes, Eduardo; Sanabria-Diaz, Gretel; Romero-Quintana, Yuniel; Salazar-Guerra, Iraklys; Carballoso-Acosta, Mario; Caballero-Moreno, Antonio

    2016-05-01

    This study was aimed at exploring the electroencephalographic features associated with alcohol use disorders (AUD) during a resting-state condition, by using quantitative EEG and Functional Connectivity analyses. In addition, we explored whether EEG functional connectivity is associated with trait impulsivity. Absolute and relative powers and Synchronization Likelihood (SL) as a measure of functional connectivity were analyzed in 15 AUD women and fifteen controls matched in age, gender and education. Correlation analysis between self-report impulsivity as measured by the Barratt impulsiveness Scale (BIS-11) and SL values of AUD patients were performed. Our results showed increased absolute and relative beta power in AUD patients compared to matched controls, and reduced functional connectivity in AUD patients predominantly in the beta and alpha bands. Impaired connectivity was distributed at fronto-central and occipito-parietal regions in the alpha band, and over the entire scalp in the beta band. We also found that impaired functional connectivity particularly in alpha band at fronto-central areas was negative correlated with non-planning dimension of impulsivity. These findings suggest that functional brain abnormalities are present in AUD patients and a disruption of resting-state EEG functional connectivity is associated with psychopathological traits of addictive behavior.

  18. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    NASA Astrophysics Data System (ADS)

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-08-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.

  19. Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization

    PubMed Central

    Chiu, Hung-Chih; Lin, Yen-Hung; Lo, Men-Tzung; Tang, Sung-Chun; Wang, Tzung-Dau; Lu, Hung-Chun; Ho, Yi-Lwun; Ma, Hsi-Pin; Peng, Chung-Kang

    2015-01-01

    The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress. PMID:26286628

  20. Influence of trait behavioral inhibition and behavioral approach motivation systems on the LPP and frontal asymmetry to anger pictures.

    PubMed

    Gable, Philip A; Poole, Bryan D

    2014-02-01

    Behavioral approach and avoidance are fundamental to the experience of emotion and motivation, but the motivational system associated with anger is not well established. Some theories posit that approach motivational processes underlie anger, whereas others posit that avoidance motivational processes underlie anger. The current experiment sought to address whether traits related to behavioral approach or avoidance influence responses to anger stimuli using multiple measures: ERP, electroencephalographic (EEG) α-asymmetry and self-report. After completing the behavioral inhibition system/behavioral approach system (BIS/BAS) scales, participants viewed anger pictures and neutral pictures. BAS predicted larger late positive potentials (LPPs) to anger pictures, but not to neutral pictures. In addition, BAS predicted greater left-frontal asymmetry to anger pictures. Moreover, larger LPPs to anger pictures related to greater left-frontal EEG asymmetry during anger pictures. These results suggest that trait approach motivation relates to neurophysiological responses of anger.

  1. Influence of trait behavioral inhibition and behavioral approach motivation systems on the LPP and frontal asymmetry to anger pictures

    PubMed Central

    Poole, Bryan D.

    2014-01-01

    Behavioral approach and avoidance are fundamental to the experience of emotion and motivation, but the motivational system associated with anger is not well established. Some theories posit that approach motivational processes underlie anger, whereas others posit that avoidance motivational processes underlie anger. The current experiment sought to address whether traits related to behavioral approach or avoidance influence responses to anger stimuli using multiple measures: ERP, electroencephalographic (EEG) α-asymmetry and self-report. After completing the behavioral inhibition system/behavioral approach system (BIS/BAS) scales, participants viewed anger pictures and neutral pictures. BAS predicted larger late positive potentials (LPPs) to anger pictures, but not to neutral pictures. In addition, BAS predicted greater left-frontal asymmetry to anger pictures. Moreover, larger LPPs to anger pictures related to greater left-frontal EEG asymmetry during anger pictures. These results suggest that trait approach motivation relates to neurophysiological responses of anger. PMID:23175676

  2. Comparison of a single-channel EEG sleep study to polysomnography

    PubMed Central

    Lucey, Brendan P.; McLeland, Jennifer S.; Toedebusch, Cristina D.; Boyd, Jill; Morris, John C.; Landsness, Eric C.; Yamada, Kelvin; Holtzman, David M.

    2016-01-01

    Summary An accurate home sleep study to assess electroencephalography (EEG)-based sleep stages and EEG power would be advantageous for both clinical and research purposes, such as for longitudinal studies measuring changes in sleep stages over time. The purpose of this study was to compare sleep scoring of a single-channel EEG recorded simultaneously on the forehead against attended polysomnography. Participants were recruited from both a clinical sleep center and a longitudinal research study investigating cognitively-normal aging and Alzheimer's disease. Analysis for overall epoch-by-epoch agreement found strong and substantial agreement between the single-channel EEG compared to polysomnography (kappa=0.67). Slow wave activity in the frontal regions was also similar when comparing the single-channel EEG device to polysomnography. As expected, stage N1 showed poor agreement (sensitivity 0.2) due to lack of occipital electrodes. Other sleep parameters such as sleep latency and REM onset latency had decreased agreement. Participants with disrupted sleep consolidation, such as from obstructive sleep apnea, also had poor agreement. We suspect that disagreement in sleep parameters between the single-channel EEG and polysomnography is partially due to altered waveform morphology and/or poorer signal quality in the single-channel derivation. Our results show that single-channel EEG provides comparable results to polysomnography in assessing REM, combined stages N2 and N3 sleep, and several other parameters including frontal slow wave activity. The data establish that single-channel EEG can be a useful research tool. PMID:27252090

  3. EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory

    PubMed Central

    Wang, Kaier; Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, Marcus T.; Sleigh, Jamie W.

    2014-01-01

    The electroencephalogram (EEG) patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. (2013) proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing) and time (Hopf), modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing–Hopf balance (wake) to Hopf-dominated chaotic slow-waves (unconsciousness). Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05–1.5 Hz) slow-wave coherence between frontal, occipital, and frontal–occipital electrode pairs, with the most pronounced wake-vs.-unconscious coherence changes occurring at the frontal cortex. PMID:25400558

  4. Hilbert-Huang Transformation Based Analyses of FP1, FP2, and Fz Electroencephalogram Signals in Alcoholism.

    PubMed

    Lin, Chin-Feng; Su, Jiun-Yi; Wang, Hao-Min

    2015-09-01

    Chronic alcoholism may damage the central nervous system, causing imbalance in the excitation-inhibition homeostasis in the cortex, which may lead to hyper-arousal of the central nervous system, and impairments in cognitive function. In this paper, we use the Hilbert-Huang transformation (HHT) method to analyze the electroencephalogram (EEG) signals from control and alcoholic observers who watched two different pictures. We examined the intrinsic mode function (IMF) based energy distribution features of FP1, FP2, and Fz EEG signals in the time and frequency domains for alcoholics. The HHT-based characteristics of the IMFs, the instantaneous frequencies, and the time-frequency-energy distributions of the IMFs of the clinical FP1, FP2, and Fz EEG signals recorded from normal and alcoholic observers who watched two different pictures were analyzed. We observed that the number of peak amplitudes of the alcoholic subjects is larger than that of the control. In addition, the Pearson correlation coefficients of the IMFs, and the energy-IMF distributions of the clinical FP1, FP2, and Fz EEG signals recorded from normal and alcoholic observers were analyzed. The analysis results show that the energy ratios of IMF4, IMF5, and IMF7 waves of the normal observers to the refereed total energy were larger than 10 %, respectively. In addition, the energy ratios of IMF3, IMF4, and IMF5 waves of the alcoholic observers to the refereed total energy were larger than 10 %. The FP1 and FP2 waves of the normal observers, the FP1 and FP2 waves of the alcoholic observers, and the FP1 and Fz waves of the alcoholic observers demonstrated extremely high correlations. On the other hand, the FP1 waves of the normal and alcoholic observers, the FP1 wave of the normal observer and the FP2 wave of the alcoholic observer, the FP1 wave of the normal observer and the Fz wave of the alcoholic observer, the FP2 waves of the normal and alcoholic FP2 observers, and the FP2 wave of the normal observer and the Fz wave of the alcoholic observer demonstrated extremely low correlations. The IMF4 of the FP1 and FP2 signals of the normal observer, and the IMF5 of the FP1 and FP2 signals of the alcoholic observer were correlated. The IMF4 of the FP1 signal of the normal observer and that of the FP2 signal of the alcoholic observer as well as the IMF5 of the FP1 signal of the normal observer and that of the FP2 signal of the alcoholic observer exhibited extremely low correlations. In this manner, our experiment leads to a better understanding of the HHT-based IMFs features of FP1, FP2, and Fz EEG signals in alcoholism. The analysis results show that the energy ratios of the wave of an alcoholic observer to its refereed total energy for IMF4, and IMF5 in the δ band for FP1, FP2, and Fz channels were larger than those of the respective waves of the normal observer. The alcoholic EEG signals constitute more than 1 % of the total energy in the δ wave, and the reaction times were 0_4, 4_8, 8_12, and 12_16 s. For normal EEG signals, more than 1 % of the total energy is distributed in the δ wave, with a reaction time 0 to 4 s. We observed that the alcoholic subject reaction times were slower than those of the normal subjects, and the alcoholic subjects could have experienced a cognitive error. This phenomenon is due to the intoxicated central nervous systems of the alcoholic subjects.

  5. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.

    PubMed

    Ingber, Lester; Nunez, Paul L

    2011-02-01

    The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. [Predictors of epilepsy in children after ischemic stroke].

    PubMed

    Lvova, O A; Shalkevich, L V; Dron, A N; Lukaschuk, M Y; Orlova, E A; Gusev, V V; Suleymanova, E V; Sulimov, A V; Kudlatch, A I

    To determine clinical/instrumental predictors of symptomatic epilepsy after ischemic stroke in children. One hundred and thirty-six patients, aged 0-15 years, with the diagnosis of ischemic stroke (ICD-10 I63.0-I63.9) were examined. The duration of the study was 18 months - 12 years. Patients were stratified into post-stroke (n=22) and control (n=114) groups, the latter included patients without epilepsy regardless of the presence of convulsive seizures in the acute stage of stroke. Predictors were determined based on EEG and characteristics of convulsive syndrome in the acute stage of stroke. The following prognostic criteria were found: generalized type of seizures, focal type of seizures with secondary generalization, epileptiform (peak and/or peak-wave) activity, focal character of epileptiform activity, generalized type of seizures in the combination with slow wave background activity on EEG, generalized type of seizures in the combination with slow wave activity and disorganized activity on EEG.

  7. Resting EEG deficits in accused murderers with schizophrenia.

    PubMed

    Schug, Robert A; Yang, Yaling; Raine, Adrian; Han, Chenbo; Liu, Jianghong; Li, Liejia

    2011-10-31

    Empirical evidence continues to suggest a biologically distinct violent subtype of schizophrenia. The present study examined whether murderers with schizophrenia would demonstrate resting EEG deficits distinguishing them from both non-violent schizophrenia patients and murderers without schizophrenia. Resting EEG data were collected from five diagnostic groups (normal controls, non-murderers with schizophrenia, murderers with schizophrenia, murderers without schizophrenia, and murderers with psychiatric conditions other than schizophrenia) at a brain hospital in Nanjing, China. Murderers with schizophrenia were characterized by increased left-hemispheric fast-wave EEG activity relative to non-violent schizophrenia patients, while non-violent schizophrenia patients instead demonstrated increased diffuse slow-wave activity compared to all other groups. Results are discussed within the framework of a proposed left-hemispheric over-processing hypothesis specific to violent individuals with schizophrenia, involving left hemispheric hyperarousal deficits, which may lead to a homicidally violent schizophrenia outcome. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Phase-Locked Loop for Precisely Timed Acoustic Stimulation during Sleep

    PubMed Central

    Santostasi, Giovanni; Malkani, Roneil; Riedner, Brady; Bellesi, Michele; Tononi, Giulio; Paller, Ken A.; Zee, Phyllis C.

    2016-01-01

    Background A Brain-Computer Interface could potentially enhance the various benefits of sleep. New Method We describe a strategy for enhancing slow-wave sleep (SWS) by stimulating the sleeping brain with periodic acoustic stimuli that produce resonance in the form of enhanced slow-wave activity in the electroencephalogram (EEG). The system delivers each acoustic stimulus at a particular phase of an electrophysiological rhythm using a Phase-Locked Loop (PLL). Results The PLL is computationally economical and well suited to follow and predict the temporal behavior of the EEG during slow-wave sleep. Comparison with Existing Methods Acoustic stimulation methods may be able to enhance SWS without the risks inherent in electrical stimulation or pharmacological methods. The PLL method differs from other acoustic stimulation methods that are based on detecting a single slow wave rather than modeling slow-wave activity over an extended period of time. Conclusions By providing real-time estimates of the phase of ongoing EEG oscillations, the PLL can rapidly adjust to physiological changes, thus opening up new possibilities to study brain dynamics during sleep. Future application of these methods hold promise for enhancing sleep quality and associated daytime behavior and improving physiologic function. PMID:26617321

  9. Resting-state EEG, Impulsiveness, and Personality in Daily and Nondaily Smokers†

    PubMed Central

    Rass, Olga; Ahn, Woo-Young; O’Donnell, Brian F.

    2015-01-01

    Objectives Resting EEG is sensitive to transient, acute effects of nicotine administration and abstinence, but the chronic effects smoking on EEG are poorly characterized. This study measures the resting EEG profile of chronic smokers in a non-deprived, non-peak state to test whether differences in smoking behavior and personality traits affect pharmaco-EEG response. Methods Resting EEG, impulsiveness, and personality measures were collected from daily smokers (n=22), nondaily smokers (n=31), and non-smokers (n=30). Results Daily smokers had reduced resting delta and alpha EEG power and higher impulsiveness (Barratt Impulsiveness Scale) compared to nondaily smokers and non-smokers. Both daily and nondaily smokers discounted delayed rewards more steeply, reported lower conscientiousness (NEO-FFI) and reported greater disinhibition and experience seeking (Sensation Seeking Scale) than non-smokers. Nondaily smokers reported greater sensory hedonia than nonsmokers. Conclusions Altered resting EEG power in daily smokers demonstrates differences in neural signaling that correlated with greater smoking behavior and dependence. Although nondaily smokers share some characteristics with daily smokers that may predict smoking initiation and maintenance, they differ on measures of impulsiveness and resting EEG power. Significance Resting EEG in non-deprived chronic smokers provides a standard for comparison to peak and trough nicotine states and may serve as a biomarker for nicotine dependence, relapse risk, and recovery. PMID:26051750

  10. Correlation between perceived stigma and EEG paroxysmal abnormality in childhood epilepsy.

    PubMed

    Kanemura, Hideaki; Sano, Fumikazu; Ohyama, Tetsuo; Sugita, Kanji; Aihara, Masao

    2015-11-01

    We investigated the relationship between abnormal electroencephalogram (EEG) findings such as localized EEG paroxysmal abnormality (PA) and the perception of stigma to determine EEG factors associated with perceived stigma in childhood epilepsy. Participants comprised 40 patients (21 boys, 19 girls; mean age, 14.6 years) with epilepsy at enrollment. The criteria for inclusion were as follows: 1) age of 12-18 years, inclusive; 2) ≥6 months after epilepsy onset; 3) the ability to read and speak Japanese; and 4) the presence of EEG PA. Fifteen healthy seizure-free children were included as a control group. Participants were asked to rate how often they felt or acted in the ways described in the items of the Child Stigma Scale using a 5-point scale. Electroencephalogram paroxysms were classified based on the presence of spikes, sharp waves, or spike-wave complexes, whether focal or generalized. Participants showed significantly higher stigma scores than healthy subjects (p<0.01). A higher score reflects a greater perception of stigma. The average total scores of patients presenting with EEG PA at generalized, frontal, RD, midtemporal, and occipital regions were 2.3, 4.0, 2.4, 3.2, and 2.2, respectively. The scores of all questions were higher in the frontal group than those in other regions (p<0.01). Children presenting with frontal EEG PA perceived a greater stigma than children presenting with nonfrontal EEG PA (p<0.01). A relationship was identified between frontal EEG PA and a greater perception of stigma. Further studies are needed to confirm whether frontal EEG PA may function as a mediator of emotional responses such as perceived stigma in childhood epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Functional neurotoxicity evaluation of noribogaine using video-EEG in cynomolgus monkeys.

    PubMed

    Authier, Simon; Accardi, Michael V; Paquette, Dominique; Pouliot, Mylène; Arezzo, Joseph; Stubbs, R John; Gerson, Ronald J; Friedhoff, Lawrence T; Weis, Holger

    2016-01-01

    Continuous video-electroencephalographic (EEG) monitoring remains the gold standard for seizure liability assessments in preclinical drug safety assessments. EEG monitored by telemetry was used to assess the behavioral and EEG effects of noribogaine hydrochloride (noribogaine) in cynomolgus monkeys. Noribogaine is an iboga alkaloid being studied for the treatment of opioid dependence. Six cynomolgus monkeys (3 per gender) were instrumented with EEG telemetry transmitters. Noribogaine was administered to each monkey at both doses (i.e., 160 and 320mg/kg, PO) with an interval between dosing of at least 6days, and the resulting behavioral and EEG effects were evaluated. IV pentylenetetrazol (PTZ), served as a positive control for induced seizures. The administration of noribogaine at either of the doses evaluated was not associated with EEG evidence of seizure or with EEG signals known to be premonitory signs of increased seizure risk (e.g., sharp waves, unusual synchrony, shifts to high-frequency patterns). Noribogaine was associated with a mild reduction in activity levels, increased scratching, licking and chewing, and some degree of poor coordination and related clinical signs. A single monkey exhibited brief myoclonic movements that increased in frequency at the high dose, but which did not appear to generalize, cluster or to be linked with EEG abnormalities. Noribogaine was also associated with emesis and partial anorexia. In contrast, PTZ was associated with substantial pre-ictal EEG patterns including large amplitude, repetitive sharp waves leading to generalized seizures and to typical post-ictal EEG frequency attenuation. EEG patterns were within normal limits following administration of noribogaine at doses up to 320mg/kg with concurrent clinical signs that correlated with plasma exposures and resolved by the end of the monitoring period. PTZ was invariably associated with EEG paroxysmal activity leading to ictal EEG. In the current study, a noribogaine dose of 320mg/kg was considered to be the EEG no observed adverse effect level (NOAEL) in conscious freely moving cynomolgus monkeys. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Video Game Adapts To Brain Waves

    NASA Technical Reports Server (NTRS)

    Pope, Alan T.; Bogart, Edward H.

    1994-01-01

    Electronic training system based on video game developed to help children afflicted with attention-deficit disorder (ADD) learn to prolong their attention spans. Uses combination of electroencephalography (EEG) and adaptive control to encourage attentiveness. Monitors trainee's brain-wave activity: if EEG signal indicates attention is waning, system increases difficulty of game, forcing trainee to devote more attention to it. Game designed to make trainees want to win and, in so doing, learn to pay attention for longer times.

  13. Modulation of electroencephalograph activity by manual acupuncture stimulation in healthy subjects: An autoregressive spectral analysis

    NASA Astrophysics Data System (ADS)

    Yi, Guo-Sheng; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Han, Chun-Xiao

    2013-02-01

    To investigate whether and how manual acupuncture (MA) modulates brain activities, we design an experiment where acupuncture at acupoint ST36 of the right leg is used to obtain electroencephalograph (EEG) signals in healthy subjects. We adopt the autoregressive (AR) Burg method to estimate the power spectrum of EEG signals and analyze the relative powers in delta (0 Hz-4 Hz), theta (4 Hz-8 Hz), alpha (8 Hz-13 Hz), and beta (13 Hz-30 Hz) bands. Our results show that MA at ST36 can significantly increase the EEG slow wave relative power (delta band) and reduce the fast wave relative powers (alpha and beta bands), while there are no statistical differences in theta band relative power between different acupuncture states. In order to quantify the ratio of slow to fast wave EEG activity, we compute the power ratio index. It is found that the MA can significantly increase the power ratio index, especially in frontal and central lobes. All the results highlight the modulation of brain activities with MA and may provide potential help for the clinical use of acupuncture. The proposed quantitative method of acupuncture signals may be further used to make MA more standardized.

  14. Electroencephalograph (EEG) study on self-contemplating image formation

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2016-05-01

    Electroencephalography (EEG) is one of the most widely used electrophysiological monitoring methods and plays a significant role in studies of human brain electrical activities. Default mode network (DMN), is a functional connection of brain regions that are activated while subjects are not in task positive state or not focused on the outside world. In this study, EEG was used for human brain signals recording while all subjects were asked to sit down quietly on a chair with eyes closed and thinking about some parts of their own body, such as left and right hands, left and right ears, lips, nose, and the images of faces that they were familiar with as well as doing some simple mathematical calculation. The time is marker when the image is formed in the subject's mind. By analyzing brain activity maps 300ms right before the time marked instant for each of the 4 wave bands, Delta, Theta, Alpha and Beta waves. We found that for most EEG datasets during this 300ms, Delta wave activity would mostly locate at the frontal lobe or the visual cortex, and the change and movement of activities are slow. Theta wave activity tended to rotate along the edge of cortex either clockwise or counterclockwise. Beta wave behaved like inquiry types of oscillations between any two regions spread over the cortex. Alpha wave activity looks like a mix of the Theta and Beta activities but more close to Theta activity. From the observation we feel that Beta and high Alpha are playing utility role for information inquiry. Theta and low Alpha are likely playing the role of binding and imagination formation in DMN operations.

  15. Interhemispheric differences of the correlation dimension in a human sleep electroencephalogram.

    PubMed

    Kobayashi, Toshio; Madokoro, Shigeki; Misaki, Kiwamu; Murayama, Jyunichi; Nakagawa, Hiroki; Wada, Yuji

    2002-06-01

    The interhemispheric differences of the correlation dimension (D2) in the sleep electroencephalogram (EEG) of eight healthy right-handed students was investigated. During slow wave sleep (SWS) the D2 of the central EEG and the temporal left hemisphere (LH) EEG were significantly higher than those in the right hemisphere (RH) EEG; but during rapid eye movement (REM) sleep, the D2 of the central EEG and the occipital RH EEG were significantly higher. The D2 of EEG in the left temporal site during REM sleep were significantly higher than in the right during the first and third sleep cycles, but these were significantly lower during the fourth and fifth sleep cycles. During REM sleep, temporal brain activity may shift from the LH to the RH as morning approaches.

  16. Acquired auditory agnosia in childhood and normal sleep electroencephalography subsequently diagnosed as Landau-Kleffner syndrome: a report of three cases.

    PubMed

    van Bogaert, Patrick; King, Mary D; Paquier, Philippe; Wetzburger, Catherine; Labasse, Catherine; Dubru, Jean-Marie; Deonna, Thierry

    2013-06-01

      We report three cases of Landau-Kleffner syndrome (LKS) in children (two females, one male) in whom diagnosis was delayed because the sleep electroencephalography (EEG) was initially normal.   Case histories including EEG, positron emission tomography findings, and long-term outcome were reviewed.   Auditory agnosia occurred between the age of 2 years and 3 years 6 months, after a period of normal language development. Initial awake and sleep EEG, recorded weeks to months after the onset of language regression, during a nap period in two cases and during a full night of sleep in the third case, was normal. Repeat EEG between 2 months and 2 years later showed epileptiform discharges during wakefulness and strongly activated by sleep, with a pattern of continuous spike-waves during slow-wave sleep in two patients. Patients were diagnosed with LKS and treated with various antiepileptic regimens, including corticosteroids. One patient in whom EEG became normal on hydrocortisone is making significant recovery. The other two patients did not exhibit a sustained response to treatment and remained severely impaired.   Sleep EEG may be normal in the early phase of acquired auditory agnosia. EEG should be repeated frequently in individuals in whom a firm clinical diagnosis is made to facilitate early treatment. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  17. EEG Functional Connectivity Prior to Sleepwalking: Evidence of Interplay Between Sleep and Wakefulness

    PubMed Central

    Desjardins, Marie-Ève; Carrier, Julie; Lina, Jean-Marc; Fortin, Maxime; Gosselin, Nadia; Montplaisir, Jacques

    2017-01-01

    Abstract Study Objectives: Although sleepwalking (somnambulism) affects up to 4% of adults, its pathophysiology remains poorly understood. Sleepwalking can be preceded by fluctuations in slow-wave sleep EEG signals, but the significance of these pre-episode changes remains unknown and methods based on EEG functional connectivity have yet to be used to better comprehend the disorder. Methods: We investigated the sleep EEG of 27 adult sleepwalkers (mean age: 29 ± 7.6 years) who experienced a somnambulistic episode during slow-wave sleep. The 20-second segment of sleep EEG immediately preceding each patient’s episode was compared with the 20-second segment occurring 2 minutes prior to episode onset. Results: Results from spectral analyses revealed increased delta and theta spectral power in the 20 seconds preceding the episodes’ onset as compared to the 20 seconds occurring 2 minutes before the episodes. The imaginary part of the coherence immediately prior to episode onset revealed (1) decreased delta EEG functional connectivity in parietal and occipital regions, (2) increased alpha connectivity over a fronto-parietal network, and (3) increased beta connectivity involving symmetric inter-hemispheric networks implicating frontotemporal, parietal and occipital areas. Conclusions: Taken together, these modifications in EEG functional connectivity suggest that somnambulistic episodes are preceded by brain processes characterized by the co-existence of arousal and deep sleep. PMID:28204773

  18. Optimizing detection and analysis of slow waves in sleep EEG.

    PubMed

    Mensen, Armand; Riedner, Brady; Tononi, Giulio

    2016-12-01

    Analysis of individual slow waves in EEG recording during sleep provides both greater sensitivity and specificity compared to spectral power measures. However, parameters for detection and analysis have not been widely explored and validated. We present a new, open-source, Matlab based, toolbox for the automatic detection and analysis of slow waves; with adjustable parameter settings, as well as manual correction and exploration of the results using a multi-faceted visualization tool. We explore a large search space of parameter settings for slow wave detection and measure their effects on a selection of outcome parameters. Every choice of parameter setting had some effect on at least one outcome parameter. In general, the largest effect sizes were found when choosing the EEG reference, type of canonical waveform, and amplitude thresholding. Previously published methods accurately detect large, global waves but are conservative and miss the detection of smaller amplitude, local slow waves. The toolbox has additional benefits in terms of speed, user-interface, and visualization options to compare and contrast slow waves. The exploration of parameter settings in the toolbox highlights the importance of careful selection of detection METHODS: The sensitivity and specificity of the automated detection can be improved by manually adding or deleting entire waves and or specific channels using the toolbox visualization functions. The toolbox standardizes the detection procedure, sets the stage for reliable results and comparisons and is easy to use without previous programming experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. BNDF heterozygosity is associated with memory deficits and alterations in cortical and hippocampal EEG power.

    PubMed

    Geist, Phillip A; Dulka, Brooke N; Barnes, Abigail; Totty, Michael; Datta, Subimal

    2017-08-14

    Brain derived neurotrophic factor (BDNF) plays a pivotal role in structural plasticity, learning, and memory. Electroencephalogram (EEG) spectral power in the cortex and hippocampus has also been correlated with learning and memory. In this study, we investigated the effect of globally reduced BDNF levels on learning behavior and EEG power via BDNF heterozygous (KO) rats. We employed several behavioral tests that are thought to depend on cortical and hippocampal plasticity to varying degrees: novel object recognition, a test that is reliant on a variety of cognitive systems; contextual fear, which is highly hippocampal-dependent; and cued fear, which has been shown to be amygdala-dependent. We also examined the effects of BDNF reduction on cortical and hippocampal EEG spectral power via chronically implanted electrodes in the motor cortex and dorsal hippocampus. We found that BDNF KO rats were impaired in novelty recognition and fear memory retention, while hippocampal EEG power was decreased in slow waves and increased in fast waves. Interestingly, our results, for the first time, show sexual dimorphism in each of our tests. These results support the hypothesis that BDNF drives both cognitive plasticity and coordinates EEG activity patterns, potentially serving as a link between the two. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Electroencephalographic, behavioral and receptor binding correlates of phencyclinoids in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattia, A.; Marquis, K.L.; Leccese, A.P.

    1988-08-01

    The pharmacology and structure-activity relationship of phencyclidine (PCP)-like drugs (phencyclinoids) were studied using electroencephalographic (EEG), behavioral and receptor binding techniques. The effects of PCP, 1-phenylcyclohexylamine HCl, N-methyl-1-phenycyclohexylamine HCl, N-ethyl-1-phenylcyclohexylamine HCl, N-(s-butyl)-1-phenylcyclohexylamine HCL, 1-(1-phenylcyclo-hexyl)-pyrrolidine HCl, 1-(1-(2-thienyl)cyclohexyl) piperidine HCl, 1-(1-(2-thienyl)cyclohexyl)-pyrrolidine HCl, ketamine and (+/-)-SKF 10047 were evaluated on the direct EEG and EEG spectra after acute i.v. injections (0.1-17.8 mg/kg). Similarities and differences were noted in the EEG dose-response curves. At lower doses of PCP and its analogs, low-amplitude theta waves predominated; however, at higher doses, high-amplitude, lower-frequency waves predominated. Qualitatively, the N-piperidine derivatives were similar to PCP and differed primarily inmore » potency. The benzomorphan (+/-)-SKF 10047 produced only theta activity at doses up to 12.8 mg/kg. These EEG effects occurred in conjunction with overt behaviors including locomotion, stereotypy and ataxia, concurrently assessed via observer-based rating scales. A strong correlation (r = 0.98) was obtained between the EEG and behavioral effects and the IC50 values from (/sup 3/H)PCP displacement experiments using crude rat brain homogenates.« less

  1. Quantitative electroencephalographic changes due to middle cerebral artery occlusion by endothelin 1 in conscious rats.

    PubMed

    Moyanova, S; Kortenska, L; Kirov, R; Iliev, I

    1998-12-01

    The powerful vasoconstrictor peptide endothelin-1 (ET1) has been shown to reduce local cerebral blood flow in brain areas supplied by the middle cerebral artery (MCA) to a pathologically low level upon intracerebral injection adjacent to the MCA. This reduction manifests itself as an ischemic infarct, that is fully developed within 3 days after ET1 injection. The aim of the present study is to examine the effect of ET1 on electroencephalographic (EEG) activity. ET1 was microinjected unilaterally at a dose of 60 pmol in 3 microl of saline to the MCA in conscious rats. EEG signals were recorded from the frontoparietal cortical area, supplied by MCA, from the first up to the fourteenth day after ET1 injection. EEG activity was analyzed by the fast Fourier transformation. A significant shift to a lower EEG frequency, i.e., augmentation of slow waves and a reduction of alpha-like and faster EEG waves was found post-ET1. This effect was maximal after 3-7 days when the most severe destruction of neurons in this cortical area occurs, as has been previously demonstrated. The results suggest that the quantitative EEG analysis may provide useful additional information about the functional disturbances associated with focal cerebral ischemia.

  2. Acute effects of caffeine on threat-selective attention: moderation by anxiety and EEG theta/beta ratio.

    PubMed

    van Son, Dana; Schalbroeck, Rik; Angelidis, Angelos; van der Wee, Nic J A; van der Does, Willem; Putman, Peter

    2018-05-21

    Spontaneous EEG theta/beta ratio (TBR) probably marks prefrontal cortical (PFC) executive control, and its regulation of attentional threat-bias. Caffeine at moderate doses may strengthen executive control through increased PFC catecholamine action, dependent on basal PFC function. To test if caffeine affects threat-bias, moderated by baseline frontal TBR and trait-anxiety. A pictorial emotional Stroop task was used to assess threat-bias in forty female participants in a cross-over, double-blind study after placebo and 200 mg caffeine. At baseline and after placebo, comparable relations were observed for negative pictures: high TBR was related to low threat-bias in low trait-anxious people. Caffeine had opposite effects on threat-bias in low trait-anxious people with low and high TBR. This further supports TBR as a marker of executive control and highlights the importance of taking baseline executive function into consideration when studying effects of caffeine on executive functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Three-Dimensional Electroencephalographic Changes on Low-Resolution Brain Electromagnetic Tomography (LORETA) During the Sleep Onset Period.

    PubMed

    Park, Doo-Heum; Ha, Jee Hyun; Ryu, Seung-Ho; Yu, Jaehak; Shin, Chul-Jin

    2015-10-01

    Electroencephalographic (EEG) patterns during sleep are markedly different from those measured during the waking state, but the process of falling asleep is not fully understood in terms of biochemical and neurophysiological aspects. We sought to investigate EEG changes that occur during the transitional period from wakefulness to sleep in a 3-dimensional manner to gain a better understanding of the physiological meaning of sleep for the brain. We examined EEG 3-dimensionally using LORETA (low-resolution electromagnetic tomography), to localize the brain region associated with changes that occur during the sleep onset period (SOP). Thirty-channel EEG was recorded in 61 healthy subjects. EEG power spectra and intracortical standardized LORETA were compared between 4 types of 30-second states, including the wakeful stage, transition stage, early sleep stage 1, and late sleep stage 1. Sleep onset began with increased delta and theta power and decreased alpha-1 power in the occipital lobe, and increased theta power in the parietal lobe. Thereafter, global reductions of alpha-1 and alpha-2 powers and greater increases of theta power in the occipito-parietal lobe occurred. As sleep became deeper in sleep stage 1, beta-2 and beta-3, powers decreased mainly in the frontal lobe and some regions of the parieto-temporo-limbic area. These findings suggest that sleep onset includes at least 3 steps in a sequential manner, which include an increase in theta waves in the posterior region of the brain, a global decrease in alpha waves, and a decrease in beta waves in the fronto-central area. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  4. Topographical characteristics and principal component structure of the hypnagogic EEG.

    PubMed

    Tanaka, H; Hayashi, M; Hori, T

    1997-07-01

    The purpose of the present study was to identify the dominant topographic components of electroencephalographs (EEG) and their behavior during the waking-sleeping transition period. Somnography of nocturnal sleep was recorded on 10 male subjects. Each recording, from "lights-off" to 5 minutes after the appearance of the first sleep spindle, was analyzed. The typical EEG patterns during hypnagogic period were classified into nine EEG stages. Topographic maps demonstrated that the dominant areas of alpha-band activity moved from the posterior areas to anterior areas along the midline of the scalp. In delta-, theta-, and sigma-band activities, the differences of EEG amplitude between the focus areas (the dominant areas) and the surrounding areas increased as a function of EEG stage. To identify the dominant topographic components, a principal component analysis was carried out on a 12-channel EEG data set for each of six frequency bands. The dominant areas of alpha 2- (9.6-11.4 Hz) and alpha 3- (11.6-13.4 Hz) band activities moved from the posterior to anterior areas, respectively. The distribution of alpha 2-band activity on the scalp clearly changed just after EEG stage 3 (alpha intermittent, < 50%). On the other hand, alpha 3-band activity became dominant in anterior areas after the appearance of vertex sharp-wave bursts (EEG stage 7). For the sigma band, the amplitude of extensive areas from the frontal pole to the parietal showed a rapid rise after the onset of stage 7 (the appearance of vertex sharp-wave bursts). Based on the results, sleep onset process probably started before the onset of sleep stage 1 in standard criteria. On the other hand, the basic sleep process may start before the onset of sleep stage 2 or the manually scored spindles.

  5. EEG power as a biomarker to predict the outcome after cardiac arrest and cardiopulmonary resuscitation induced global ischemia.

    PubMed

    Weitzel, Lindsay-Rae; Sampath, Dayalan; Shimizu, Kaori; White, Andrew M; Herson, Paco S; Raol, Yogendra H

    2016-11-15

    Cardiac arrest (CA) is a major cause of mortality and survivors often develop neurologic deficits. The objective of this study was to determine the effect of CA and cardiopulmonary resuscitation (CPR) in mice on the EEG and neurologic outcomes, and identify biomarkers that can prognosticate poor outcomes. Video-EEG records were obtained at various periods following CA-CPR and examined manually to determine the presence of spikes and sharp-waves, and seizures. EEG power was calculated using a fast Fourier transform (FFT) algorithm. Fifty percent mice died within 72h following CA and successful CPR. Universal suppression of the background EEG was observed in all mice following CA-CPR, however, a more severe and sustained reduction in EEG power occurred in the mice that did not survive beyond 72h than those that survived until sacrificed. Spikes and sharp wave activity appeared in the cortex and hippocampus of all mice, but only one out of eight mice developed a purely electrographic seizure in the acute period after CA-CPR. Interestingly, none of the mice that died experienced any acute seizures. At 10days after the CA-CPR, 25% of the mice developed spontaneous convulsive and nonconvulsive seizures that remained restricted to the hippocampus. The frequency of nonconvulsive seizures was higher than that of convulsive seizures. A strong association between changes in EEG power and mortality following CA-CPR were observed in our study. Therefore, we suggest that the EEG power can be used to prognosticate mortality following CA-CPR induced global ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Resting-state EEG, impulsiveness, and personality in daily and nondaily smokers.

    PubMed

    Rass, Olga; Ahn, Woo-Young; O'Donnell, Brian F

    2016-01-01

    Resting EEG is sensitive to transient, acute effects of nicotine administration and abstinence, but the chronic effects of smoking on EEG are poorly characterized. This study measures the resting EEG profile of chronic smokers in a non-deprived, non-peak state to test whether differences in smoking behavior and personality traits affect pharmaco-EEG response. Resting EEG, impulsiveness, and personality measures were collected from daily smokers (n=22), nondaily smokers (n=31), and non-smokers (n=30). Daily smokers had reduced resting delta and alpha EEG power and higher impulsiveness (Barratt Impulsiveness Scale) compared to nondaily smokers and non-smokers. Both daily and nondaily smokers discounted delayed rewards more steeply, reported lower conscientiousness (NEO-FFI), and reported greater disinhibition and experience seeking (Sensation Seeking Scale) than non-smokers. Nondaily smokers reported greater sensory hedonia than nonsmokers. Altered resting EEG power in daily smokers demonstrates differences in neural signaling that correlated with greater smoking behavior and dependence. Although nondaily smokers share some characteristics with daily smokers that may predict smoking initiation and maintenance, they differ on measures of impulsiveness and resting EEG power. Resting EEG in non-deprived chronic smokers provides a standard for comparison to peak and trough nicotine states and may serve as a biomarker for nicotine dependence, relapse risk, and recovery. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. The antinociceptive effects of Monechma ciliatum and changes in EEG waves following oral and intrathecal administration in rats

    NASA Astrophysics Data System (ADS)

    Meraiyebu, Ajibola B.; Adelaiye, Alexander B.; O, Odeh S.

    2010-02-01

    The research work was carried out to study the effect of Oral and Intrathecal Monechma Ciliatum on antinociception and EEG readings in Wistar Rats. Traditionally the extract is given to women in labour believed to reduce pain and ease parturition, though past works show that it has oesteogenic and oxytotic effects. The rats were divided into 5 major groups. Group 1 served as oral control group while groups 2 and 3 served as oral experimental groups and were treated with 500mg/kg and 1000mg/kg monechma ciliatum respectively. Group 4 served as intrathecal control group treated with intrathecal dextrose and group 5 received 1000mg/kg Monechma Ciliatrum intrathecally. The antinociceptive effect was analysed using a Von Frey's aesthesiometer. Monechma Ciliatum showed significant antinociceptive effect both orally and intrathecally, although it had a greater effect orally and during the first 15 minutes of intrathecal administration. EEG readings were also taken for all the groups and there was a decrease in amplitude and an increase in frequency for high dose (1000mg/ml) experimental groups and the mid brain electrodes produced a change from theta waves (3.5 - 7 waves per second) to alpha waves (7.5 - 13 waves per second) as seen in relaxed persons and caused decreased amplitudes and change in distribution seen in beta waves. Properties similarly accentuated by sedativehypnotic drugs.

  8. A High-Density EEG Investigation into Steady State Binaural Beat Stimulation

    PubMed Central

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others. PMID:22496862

  9. A high-density EEG investigation into steady state binaural beat stimulation.

    PubMed

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carey, Anne-Marie; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others.

  10. Event-related wave activity in the EEG provides new marker of ADHD.

    PubMed

    Alexander, David M; Hermens, Daniel F; Keage, Hannah A D; Clark, C Richard; Williams, Leanne M; Kohn, Michael R; Clarke, Simon D; Lamb, Chris; Gordon, Evian

    2008-01-01

    This study examines the utility of new measures of event-related spatio-temporal waves in the EEG as a marker of ADHD, previously shown to be closely related to the P3 ERP in an adult sample. Wave activity in the EEG was assessed during both an auditory Oddball and a visual continuous performance task (CPT) for an ADHD group ranging in age from 6 to 18 years and comprising mostly Combined and Inattentive subtypes, and for an age and gender matched control group. The ADHD subjects had less wave activity at low frequencies ( approximately 1 Hz) during both tasks. For auditory Oddball targets, this effect was shown to be related to smaller P3 ERP amplitudes. During CPT, the approximately 1 Hz wave activity in the ADHD subjects was inversely related to clinical and behavioral measures of hyperactivity and impulsivity. CPT wave activity at approximately 1 Hz was seen to "normalise" following treatment with stimulant medication. The results identify a deficit in low frequency wave activity as a new marker for ADHD associated with levels of hyperactivity and impulsivity. The marker is evident across a range of tasks and may be specific to ADHD. While lower approximately 1 Hz activity partly accounts for reduced P3 ERPs in ADHD, the effect also arises for tasks that do not elicit a P3. Deficits in behavioral inhibition are hypothesized to arise from underlying dysregulation of cortical inhibition.

  11. EEG Functional Connectivity Prior to Sleepwalking: Evidence of Interplay Between Sleep and Wakefulness.

    PubMed

    Desjardins, Marie-Ève; Carrier, Julie; Lina, Jean-Marc; Fortin, Maxime; Gosselin, Nadia; Montplaisir, Jacques; Zadra, Antonio

    2017-04-01

    Although sleepwalking (somnambulism) affects up to 4% of adults, its pathophysiology remains poorly understood. Sleepwalking can be preceded by fluctuations in slow-wave sleep EEG signals, but the significance of these pre-episode changes remains unknown and methods based on EEG functional connectivity have yet to be used to better comprehend the disorder. We investigated the sleep EEG of 27 adult sleepwalkers (mean age: 29 ± 7.6 years) who experienced a somnambulistic episode during slow-wave sleep. The 20-second segment of sleep EEG immediately preceding each patient's episode was compared with the 20-second segment occurring 2 minutes prior to episode onset. Results from spectral analyses revealed increased delta and theta spectral power in the 20 seconds preceding the episodes' onset as compared to the 20 seconds occurring 2 minutes before the episodes. The imaginary part of the coherence immediately prior to episode onset revealed (1) decreased delta EEG functional connectivity in parietal and occipital regions, (2) increased alpha connectivity over a fronto-parietal network, and (3) increased beta connectivity involving symmetric inter-hemispheric networks implicating frontotemporal, parietal and occipital areas. Taken together, these modifications in EEG functional connectivity suggest that somnambulistic episodes are preceded by brain processes characterized by the co-existence of arousal and deep sleep. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. Quantum neural network-based EEG filtering for a brain-computer interface.

    PubMed

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  13. Changes in Resting EEG in Colombian Ex-combatants ith Antisocial Personality Disorder.

    PubMed

    Ramos, Claudia; Duque-Grajales, Jon; Rendón, Jorge; Montoya-Betancur, Alejandro; Baena, Ana; Pineda, David; Tobón, Carlos

    Although the social and economic consequences of Colombian internal conflicts mainly affected the civilian population, they also had other implications. The ex-combatants, the other side of the conflict, have been the subject of many studies that question their personality structures and antisocial features. Results suggest that ex-combatants usually have characteristics of an antisocial personality disorder (ASPD) that is related with their behaviour. Quantitative EEG (qEEG) was used to evaluate differences in cortical activity patterns between an ex-combatants group and a control group. The Psychopathy Checklist-Revised (PCL-R) was used to assess the presence of ASPD in the ex-combatants group, as well as the Diagnostic Interview for Genetic Studies (DIGS) for other mental disorders classified in the DCI-10. There are significant differences in psychopathy levels between groups, as well as in alpha-2 and beta waves, especially in left temporal and frontal areas for alpha-2 waves and left temporal-central regions for beta waves. qEEG measurements allow spectral resting potential to be differentiated between groups that are related with features typically involved in antisocial personality disorder, and to correlate them with patterns in the questionnaires and clinical interview. Copyright © 2017 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  14. Electroencephalographic and electromyographic changes during the use of detomidine and detomidine-butorphanol combination in standing horses.

    PubMed

    Kruluc, P; Nemec, Alenka

    2006-03-01

    Clinically, the use of detomidine and butorphanol is suitable for sedation and deepening of analgosedation. The aim of our study was to establish the influence of detomidine used alone and a butorphanol-detomidine combination on brain activity and to evaluate and compare brain responses (using electroencephalography, EEG) by recording SEF90 (spectral edge frequency 90%), individual brain wave fractions (beta, alpha, theta and delta) and electromyographic (EMG) changes in the left temporal muscle in standing horses. Ten clinically healthy cold-blooded horses were divided into two groups of five animals each. Group I received detomidine and Group II received detomidine followed by butorphanol 10 min later. SEF90, individual brain wave fractions and EMG were recorded with a pEEG (processed EEG) monitor using computerised processed electroencephalography and electromyography. The present study found that detomidine alone and the detomidine-butorphanol combination significantly reduced SEF90 and EMG, and they caused changes in individual brain wave fractions during sedation and particularly during analgosedation. The EMG results showed that the detomidine-butorphanol combination provided greater and longer muscle relaxation. Our EEG and EMG results confirmed that the detomidine-butorphanol combination is safer and more appropriate for painless and non-painless procedures on standing horses compared to detomidine alone.

  15. Mimickers of generalized spike and wave discharges.

    PubMed

    Azzam, Raed; Bhatt, Amar B

    2014-06-01

    Overinterpretation of benign EEG variants is a common problem that can lead to the misdiagnosis of epilepsy. We review four normal patterns that mimic generalized spike and wave discharges: phantom spike-and-wave, hyperventilation hypersynchrony, hypnagogic/ hypnopompic hypersynchrony, and mitten patterns.

  16. Modulatory effects of aromatherapy massage intervention on electroencephalogram, psychological assessments, salivary cortisol and plasma brain-derived neurotrophic factor.

    PubMed

    Wu, Jin-Ji; Cui, Yanji; Yang, Yoon-Sil; Kang, Moon-Seok; Jung, Sung-Cherl; Park, Hyeung Keun; Yeun, Hye-Young; Jang, Won Jung; Lee, Sunjoo; Kwak, Young Sook; Eun, Su-Yong

    2014-06-01

    Aromatherapy massage is commonly used for the stress management of healthy individuals, and also has been often employed as a therapeutic use for pain control and alleviating psychological distress, such as anxiety and depression, in oncological palliative care patients. However, the exact biological basis of aromatherapy massage is poorly understood. Therefore, we evaluated here the effects of aromatherapy massage interventions on multiple neurobiological indices such as quantitative psychological assessments, electroencephalogram (EEG) power spectrum pattern, salivary cortisol and plasma brain-derived neurotrophic factor (BDNF) levels. A control group without treatment (n = 12) and aromatherapy massage group (n = 13) were randomly recruited. They were all females whose children were diagnosed as attention deficit hyperactivity disorder and followed up in the Department of Psychiatry, Jeju National University Hospital. Participants were treated with aromatherapy massage for 40 min twice per week for 4 weeks (8 interventions). A 4-week-aromatherapy massage program significantly improved all psychological assessment scores in the Stat-Trait Anxiety Index, Beck Depression Inventory and Short Form of Psychosocial Well-being Index. Interestingly, plasma BDNF levels were significantly increased after a 4 week-aromatherapy massage program. Alpha-brain wave activities were significantly enhanced and delta wave activities were markedly reduced following the one-time aromatherapy massage treatment, as shown in the meditation and neurofeedback training. In addition, salivary cortisol levels were significantly reduced following the one-time aromatherapy massage treatment. These results suggest that aromatherapy massage could exert significant influences on multiple neurobiological indices such as EEG pattern, salivary cortisol and plasma BDNF levels as well as psychological assessments. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Neural activity based biofeedback therapy for Autism spectrum disorder through wearable wireless textile EEG monitoring system

    NASA Astrophysics Data System (ADS)

    Sahi, Ahna; Rai, Pratyush; Oh, Sechang; Ramasamy, Mouli; Harbaugh, Robert E.; Varadan, Vijay K.

    2014-04-01

    Mu waves, also known as mu rhythms, comb or wicket rhythms are synchronized patterns of electrical activity involving large numbers of neurons, in the part of the brain that controls voluntary functions. Controlling, manipulating, or gaining greater awareness of these functions can be done through the process of Biofeedback. Biofeedback is a process that enables an individual to learn how to change voluntary movements for purposes of improving health and performance through the means of instruments such as EEG which rapidly and accurately 'feedback' information to the user. Biofeedback is used for therapeutic purpose for Autism Spectrum Disorder (ASD) by focusing on Mu waves for detecting anomalies in brain wave patterns of mirror neurons. Conventional EEG measurement systems use gel based gold cup electrodes, attached to the scalp with adhesive. It is obtrusive and wires sticking out of the electrodes to signal acquisition system make them impractical for use in sensitive subjects like infants and children with ASD. To remedy this, sensors can be incorporated with skull cap and baseball cap that are commonly used for infants and children. Feasibility of Textile based Sensor system has been investigated here. Textile based multi-electrode EEG, EOG and EMG monitoring system with embedded electronics for data acquisition and wireless transmission has been seamlessly integrated into fabric of these items for continuous detection of Mu waves. Textile electrodes were placed on positions C3, CZ, C4 according to 10-20 international system and their capability to detect Mu waves was tested. The system is ergonomic and can potentially be used for early diagnosis in infants and planning therapy for ASD patients.

  18. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  19. EEG oscillations during sleep and dream recall: state- or trait-like individual differences?

    PubMed Central

    Scarpelli, Serena; D’Atri, Aurora; Gorgoni, Maurizio; Ferrara, Michele; De Gennaro, Luigi

    2015-01-01

    Dreaming represents a peculiar form of cognitive activity during sleep. On the basis of the well-known relationship between sleep and memory, there has been a growing interest in the predictive role of human brain activity during sleep on dream recall. Neuroimaging studies indicate that rapid eye movement (REM) sleep is characterized by limbic activation and prefrontal cortex deactivation. This pattern could explain the presence of emotional contents in dream reports. Furthermore, the morphoanatomical measures of amygdala and hippocampus predict some features of dream contents (bizarreness, vividness, and emotional load). More relevant for a general view of dreaming mechanisms, empirical data from neuropsychological and electroencephalographic (EEG) studies support the hypothesis that there is a sort of continuity between the neurophysiological mechanisms of encoding and retrieval of episodic memories across sleep and wakefulness. A notable overlap between the electrophysiological mechanisms underlying emotional memory formation and some peculiar EEG features of REM sleep has been suggested. In particular, theta (5–8 Hz) EEG oscillations on frontal regions in the pre-awakening sleep are predictive of dream recall, which parallels the predictive relation during wakefulness between theta activity and successful retrieval of episodic memory. Although some observations support an interpretation more in terms of an intraindividual than interindividual mechanism, the existing empirical evidence still precludes from definitely disentangling if this relation is explained by state- or trait-like differences. PMID:25999908

  20. EEG - A Valuable Biomarker of Brain Injury in Preterm Infants.

    PubMed

    Pavlidis, Elena; Lloyd, Rhodri O; Boylan, Geraldine B

    2017-01-01

    This review focuses on the role of electroencephalography (EEG) in monitoring abnormalities of preterm brain function. EEG features of the most common developmental brain injuries in preterm infants, including intraventricular haemorrhage, periventricular leukomalacia, and perinatal asphyxia, are described. We outline the most common EEG biomarkers associated with these injuries, namely seizures, positive rolandic sharp waves, EEG suppression/increased interburst intervals, mechanical delta brush activity, and other deformed EEG waveforms, asymmetries, and asynchronies. The increasing survival rate of preterm infants, in particular those that are very and extremely preterm, has led to a growing demand for a specific and shared characterization of the patterns related to adverse outcome in this unique population. This review includes abundant high-quality images of the EEG patterns seen in premature infants and will provide a valuable resource for everyone working in developmental neuroscience. © 2017 S. Karger AG, Basel.

  1. [Attention deficit hyperactivity disorder treated with scalp acupuncture and EEG biofeedback therapy in children: a randomized controlled trial].

    PubMed

    He, Cai-Di; Lang, Bo-Xu; Jin, Ling-Qing; Li, Bing

    2014-12-01

    To compare the difference in clinical efficacy on children attention deficit hyperactivity disorder (ADHD) between the combined therapy of scalp acupuncture and EGG biofeedback and the simple EEG biofeedback therapy so as to search the better therapeutic method for ADHD. One hundred patients were randomized into an observation group and a control group, 50 cases in each one. In the control group, the simple EEG biofeedback therapy was adopted. In the observation group, on the basis of biofeedback therapy, scalp acupuncture was added and applied to Dingzhongxian (MS 5), Dingpangyixian (MS 8), Baihui (GV 20), Sishencong (EX-HN 1), etc. The ten treatments made one session. After four sessions of treatment, FIQ value in Wechsler intelligence scale, CIH score in Conners children behavior questionnaire, the ratio of 0 wave and p wave in EEG, FRCQ and FAQ in the integrated visual and auditory continuous performance test (IVA-CPT) and clinical comprehensive efficacy were observed before and after treatment in the two groups separately. Three cases were dropped out in the observation group and 2 cases were out in the control group. In the two groups, FIQ, FRCQ and FAQ were all increased after treatment (P < 0.01, P < 0.05); the increases in the observation group were much more significant than those in the control group after treatment (all P < 0.05). In the two groups, CIH score and the ratio of 0 wave and p wave were all reduced after treatment (P < 0.01, P < 0.05); the reduction in the observation group were much more apparent as compared with those in the control group (both P< 0.05). The total effective rate was 91.5% (43/47) in the observation group and better than 83. 3% (40/48, P < 0.01) in the control group. The combined therapy of scalp acupuncture and EEG biofeedback achieves the superior efficacy on children ADHD as compared with the simple biofeedback therapy. This combined therapy rapidly relieves the essential symptoms of ADHD and improves EEG waveform in children patients. Importantly, this therapy obtains and consolidates the significant efficacy.

  2. Scale-Free Brain-Wave Music from Simultaneously EEG and fMRI Recordings

    PubMed Central

    Lu, Jing; Wu, Dan; Yang, Hua; Luo, Cheng; Li, Chaoyi; Yao, Dezhong

    2012-01-01

    In the past years, a few methods have been developed to translate human EEG to music. In 2009, PloS One 4 e5915, we developed a method to generate scale-free brainwave music where the amplitude of EEG was translated to music pitch according to the power law followed by both of them, the period of an EEG waveform is translated directly to the duration of a note, and the logarithm of the average power change of EEG is translated to music intensity according to the Fechner's law. In this work, we proposed to adopt simultaneously-recorded fMRI signal to control the intensity of the EEG music, thus an EEG-fMRI music is generated by combining two different and simultaneous brain signals. And most importantly, this approach further realized power law for music intensity as fMRI signal follows it. Thus the EEG-fMRI music makes a step ahead in reflecting the physiological process of the scale-free brain. PMID:23166768

  3. Uppermost synchronized generators of spike-wave activity are localized in limbic cortical areas in late-onset absence status epilepticus.

    PubMed

    Piros, Palma; Puskas, Szilvia; Emri, Miklos; Opposits, Gabor; Spisak, Tamas; Fekete, Istvan; Clemens, Bela

    2014-03-01

    Absence status (AS) epilepticus with generalized spike-wave pattern is frequently found in severely ill patients in whom several disease states co-exist. The cortical generators of the ictal EEG pattern and EEG functional connectivity (EEGfC) of this condition are unknown. The present study investigated the localization of the uppermost synchronized generators of spike-wave activity in AS. Seven patients with late-onset AS were investigated by EEG spectral analysis, LORETA (Low Resolution Electromagnetic Tomography) source imaging, and LSC (LORETA Source Correlation) analysis, which estimates cortico-cortical EEGfC among 23 ROIs (regions of interest) in each hemisphere. All the patients showed generalized ictal EEG activity. Maximum Z-scored spectral power was found in the 1-6 Hz and 12-14 Hz frequency bands. LORETA showed that the uppermost synchronized generators of 1-6 Hz band activity were localized in frontal and temporal cortical areas that are parts of the limbic system. For the 12-14 Hz band, abnormally synchronized generators were found in the antero-medial frontal cortex. Unlike the rather stereotyped spectral and LORETA findings, the individual EEGfC patterns were very dissimilar. The findings are discussed in the context of nonconvulsive seizure types and the role of the underlying cortical areas in late-onset AS. The diversity of the EEGfC patterns remains an enigma. Localizing the cortical generators of the EEG patterns contributes to understanding the neurophysiology of the condition. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. Effects of green and black tea consumption on brain wave activities in healthy volunteers as measured by a simplified Electroencephalogram (EEG): A feasibility study.

    PubMed

    Okello, Edward J; Abadi, Awatf M; Abadi, Saad A

    2016-06-01

    Tea has been associated with many mental benefits, such as attention enhancement, clarity of mind, and relaxation. These psychosomatic states can be measured in terms of brain activity using an electroencephalogram (EEG). Brain activity can be assessed either during a state of passive activity or when performing attention tasks and it can provide useful information about the brain's state. This study investigated the effects of green and black consumption on brain activity as measured by a simplified EEG, during passive activity. Eight healthy volunteers participated in the study. The EEG measurements were performed using a two channel EEG brain mapping instrument - HeadCoach™. Fast Fourier transform algorithm and EEGLAB toolbox using the Matlab software were used for data processing and analysis. Alpha, theta, and beta wave activities were all found to increase after 1 hour of green and black tea consumption, albeit, with very considerable inter-individual variations. Our findings provide further evidence for the putative beneficial effects of tea. The highly significant increase in theta waves (P < 0.004) between 30 minutes and 1 hour post-consumption of green tea may be an indication of its putative role in cognitive function, specifically alertness and attention. There were considerable inter-individual variations in response to the two teas which may be due genetic polymorphisms in metabolism and/or influence of variety/blend, dose and content of the selected products whose chemistry and therefore efficacy will have been influenced by 'from field to shelf practices'.

  5. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory.

    PubMed

    Vienne, Julie; Lecciso, Gianpaolo; Constantinescu, Irina; Schwartz, Sophie; Franken, Paul; Heinzer, Raphaël; Tafti, Mehdi

    2012-08-01

    Sodium oxybate (SO) is a GABAβ agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABAβ receptor agonist, to assess the role of GABAβ receptors in the SO response. As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABAβ receptors in REMS generation.

  6. EEG patterns in theta and gamma frequency range and their probable relation to human voluntary movement organization.

    PubMed

    Popivanov, D; Mineva, A; Krekule, I

    1999-05-21

    In experiments with EEG accompanying continuous slow goal-directed voluntary movements we found abrupt short-term transients (STs) of the coefficients of EEG time-varying autoregressive (TVAR) model. The onset of STs indicated (i) a positive EEG wave related to an increase of 3-7 Hz oscillations in time period before the movement start, (ii) synchronization of 35-40 Hz prior to movement start and during the movement when the target is nearly reached. Both these phenomena are expressed predominantly over supplementary motor area, premotor and parietal cortices. These patterns were detected after averaging of EEG segments synchronized to the abrupt changes of the TVAR coefficients computed in the time course of EEG single records. The results are discussed regarding the cognitive aspect of organization of goal-directed movements.

  7. EEG neurofeedback effects in the treatment of adolescent anorexia nervosa.

    PubMed

    Lackner, Nina; Unterrainer, Human-Friedrich; Skliris, Dimitris; Shaheen, Sandra; Dunitz-Scheer, Marguerite; Wood, Guilherme; Scheer, Peter Jaron Zwi; Wallner-Liebmann, Sandra Johanna; Neuper, Christa

    2016-01-01

    A pre-post design including 22 females was used to evaluate the effectiveness of neurofeedback in the treatment of adolescent anorexia nervosa. Resting EEG measures and a psychological test-battery assessing eating behavior traits, clinical symptoms, emotionality, and mood were obtained. While both the experimental (n = 10) and control group (n = 12) received their usual maintenance treatment, the experimental group received 10 sessions of individual alpha frequency training over a period of 5 weeks as additional treatment. Significant training effects were shown in eating behavior traits, emotion regulation, and in relative theta power in the eyes closed condition. Although the results are limited due to the small sample size, these are the first empirical data demonstrating the benefits of neurofeedback as a treatment adjunct in individuals with anorexia nervosa.

  8. Classification and determination of cerebral biovailability of psychotropic drugs by quantitative "pharmaco-EEG" and psychometric investigations (studies with AX-A411-BS).

    PubMed

    Saletu, B; Grünberger, J; Linzmayer, L

    1977-10-01

    Utilizing computerized quantitative analysis of the human scalp recorded electroencephalogram (EEG), it is possible to classify psychotropic drugs. While neuroleptic compounds produce an increase of slow and decrease of fast activities, anxiolytic substances induce an augmentation of fast waves, decrease of alpha waves and--according to the sedative properties of the drug--an increase or decrease of slow waves. Antidepressants produce a concomitant augmentation of slow and fast activities as well as an attenuation of alpha waves. Nootropic substances attenuate slow activities, augment alpha and slow beta waves and decrease fast beta waves. The latter alterations are quite opposite to age-related changes. Since the main psychopharmacological classes seem to have characteristic pharmaco-EEG profiles, the method proved to be useful for determination of psychoactivity and cerebral bioavailability of newly developed substances as for instance AX-A411-BS, a new benzodiazepine. The latter substance was found to be CNS-active and was classified as anxiolytic. It induced dosedependent changes, which were barely visible in the 2nd hour post-drug, became quite obvious in the 4th hour and increased until the 8th hour after oral administration of one single dose. In the higher dosage range, slow activities came to the fore, indicating aoditional sedative properties. Psychometric tests measuring attention, psychomotor activity. mood, vigilance, extroversion, concentration aith a long-lasting effect. The implications of these methods are discussed.

  9. Chess-playing epilepsy: a case report with video-EEG and back averaging.

    PubMed

    Mann, M W; Gueguen, B; Guillou, S; Debrand, E; Soufflet, C

    2004-12-01

    A patient suffering from juvenile myoclonic epilepsy experienced myoclonic jerks, fairly regularly, while playing chess. The myoclonus appeared particularly when he had to plan his strategy, to choose between two solutions or while raising the arm to move a chess figure. Video-EEG-polygraphy was performed, with back averaging of the myoclonus registered during a chess match and during neuropsychological testing with Kohs cubes. The EEG spike wave complexes were localised in the fronto-central region. [Published with video sequences].

  10. Neuroelectrical Correlates of Trustworthiness and Dominance Judgments Related to the Observation of Political Candidates

    PubMed Central

    Vecchiato, Giovanni; Toppi, Jlenia; Maglione, Anton Giulio; Olejarczyk, Elzbieta; Astolfi, Laura; Mattia, Donatella; Colosimo, Alfredo; Babiloni, Fabio

    2014-01-01

    The present research investigates the neurophysiological activity elicited by fast observations of faces of real candidates during simulated political elections. We used simultaneous recording of electroencephalographic (EEG) signals as well as galvanic skin response (GSR) and heart rate (HR) as measurements of central and autonomic nervous systems. Twenty healthy subjects were asked to give judgments on dominance, trustworthiness, and a preference of vote related to the politicians' faces. We used high-resolution EEG techniques to map statistical differences of power spectral density (PSD) cortical activity onto a realistic head model as well as partial directed coherence (PDC) and graph theory metrics to estimate the functional connectivity networks and investigate the role of cortical regions of interest (ROIs). Behavioral results revealed that judgment of dominance trait is the most predictive of the outcome of the simulated elections. Statistical comparisons related to PSD and PDC values highlighted an asymmetry in the activation of frontal cortical areas associated with the valence of the judged trait as well as to the probability to cast the vote. Overall, our results highlight the existence of cortical EEG features which are correlated with the prediction of vote and with the judgment of trustworthy and dominant faces. PMID:25214884

  11. Comparison of Brain Activity during Drawing and Clay Sculpting: A Preliminary qEEG Study

    ERIC Educational Resources Information Center

    Kruk, Kerry A.; Aravich, Paul F.; Deaver, Sarah P.; deBeus, Roger

    2014-01-01

    A preliminary experimental study examined brain wave frequency patterns of female participants (N = 14) engaged in two different art making conditions: clay sculpting and drawing. After controlling for nonspecific effects of movement, quantitative electroencephalographic (qEEG) recordings were made of the bilateral medial frontal cortex and…

  12. Sleep EEG Changes during Adolescence: An Index of a Fundamental Brain Reorganization

    ERIC Educational Resources Information Center

    Feinberg, Irwin; Campbell, Ian G.

    2010-01-01

    Delta (1-4 Hz) EEG power in non-rapid eye movement (NREM) sleep declines massively during adolescence. This observation stimulated the hypothesis that during adolescence the human brain undergoes an extensive reorganization driven by synaptic elimination. The parallel declines in synaptic density, delta wave amplitude and cortical metabolic rate…

  13. A Study on Analysis of EEG Caused by Grating Stimulation Imaging

    NASA Astrophysics Data System (ADS)

    Urakawa, Hiroshi; Nishimura, Toshihiro; Tsubai, Masayoshi; Itoh, Kenji

    Recently, many researchers have studied a visual perception. Focus is attended to studies of the visual perception phenomenon by using the grating stimulation images. The previous researches have suggested that a subset of retinal ganglion cells responds to motion in the receptive field center, but only if the wider surround moves with a different trajectory. We discuss the function of human retina, and measure and analysis EEG(electroencephalography) of a normal subject who looks on grating stimulation images. We confirmed the visual perception of human by EEG signal analysis. We also have obtained that a sinusoidal grating stimulation was given, asymmetry was observed the α wave element in EEG of the symmetric part in a left hemisphere and a right hemisphere of the brain. Therefore, it is presumed that projected image is even when the still picture is seen and the image projected onto retinas of right and left eyes is not even for the dynamic scene. It evaluated it by taking the envelope curve for the detected α wave, and using the average and standard deviation.

  14. Differential Effects of Sodium Oxybate and Baclofen on EEG, Sleep, Neurobehavioral Performance, and Memory

    PubMed Central

    Vienne, Julie; Lecciso, Gianpaolo; Constantinescu, Irina; Schwartz, Sophie; Franken, Paul; Heinzer, Raphaël; Tafti, Mehdi

    2012-01-01

    Study Objectives: Sodium oxybate (SO) is a GABAB agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. Design: SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABAB receptor agonist, to assess the role of GABAB receptors in the SO response. Measurements and Results: As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. Conclusions: The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABAB receptors in REMS generation. Citation: Vienne J; Lecciso G; Constantinescu I; Schwartz S; Franken P; Heinzer R; Tafti M. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory. SLEEP 2012;35(8):1071–1084. PMID:22851803

  15. On the Synchronization of EEG Spindle Waves

    NASA Astrophysics Data System (ADS)

    Long, Wen; Zhang, ChengFu; Zhao, SiLan; Shi, RuiHong

    2000-06-01

    Based on recently sleeping cellular substrates, a network model synaptically coupled by N three-cell circuits is provided. Simulation results show that: (i) the dynamic behavior of every circuit is chaotic; (ii) the synchronization of the network is incomplete; (iii) the incomplete synchronization can integrate burst firings of cortical cells into waxing-and-wanning EEG spindle waves. These results enlighten us that this kind of incomplete synchronization may integrate microscopic, electrical activities of neurons in billions into macroscopic, functional states in human brain. In addition, the effects of coupling strength, connectional mode and noise to the synchronization are discussed.

  16. EEG theta waves and psychological phenomena: a review and analysis.

    PubMed

    Schacter, D L

    1977-03-01

    In this paper, studies which have explored the relation between EEG theta waves and psychological phenomena in normal human subjects are reviewed. It is noted that increases in theta activity occur in conjunction with several kinds of psychological processes. The importance of ocnsidering properties of theta activity, such as amplitude, rhythmicity and scalp topography when analyzing the relation between theta and psychological processes is emphasized. Although there is some evidence for a relationship between theta and psychological processes, it is concluded that the degree to which properties of theta activity are systematically related to specific psychological processes is not yet known.

  17. Retinoic Acid Signaling Affects Cortical Synchrony During Sleep

    NASA Astrophysics Data System (ADS)

    Maret, Stéphanie; Franken, Paul; Dauvilliers, Yves; Ghyselinck, Norbert B.; Chambon, Pierre; Tafti, Mehdi

    2005-10-01

    Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.

  18. An Integrated Model of Emotional Problems, Beta Power of Electroencephalography, and Low Frequency of Heart Rate Variability after Childhood Trauma in a Non-Clinical Sample: A Path Analysis Study.

    PubMed

    Jin, Min Jin; Kim, Ji Sun; Kim, Sungkean; Hyun, Myoung Ho; Lee, Seung-Hwan

    2017-01-01

    Childhood trauma is known to be related to emotional problems, quantitative electroencephalography (EEG) indices, and heart rate variability (HRV) indices in adulthood, whereas directions among these factors have not been reported yet. This study aimed to evaluate pathway models in young and healthy adults: (1) one with physiological factors first and emotional problems later in adulthood as results of childhood trauma and (2) one with emotional problems first and physiological factors later. A total of 103 non-clinical volunteers were included. Self-reported psychological scales, including the Childhood Trauma Questionnaire (CTQ), State-Trait Anxiety Inventory, Beck Depression Inventory, and Affective Lability Scale were administered. For physiological evaluation, EEG record was performed during resting eyes closed condition in addition to the resting-state HRV, and the quantitative power analyses of eight EEG bands and three HRV components were calculated in the frequency domain. After a normality test, Pearson's correlation analysis to make path models and path analyses to examine them were conducted. The CTQ score was significantly correlated with depression, state and trait anxiety, affective lability, and HRV low-frequency (LF) power. LF power was associated with beta2 (18-22 Hz) power that was related to affective lability. Affective lability was associated with state anxiety, trait anxiety, and depression. Based on the correlation and the hypothesis, two models were composed: a model with pathways from CTQ score to affective lability, and a model with pathways from CTQ score to LF power. The second model showed significantly better fit than the first model (AIC model1  = 63.403 > AIC model2  = 46.003), which revealed that child trauma could affect emotion, and then physiology. The specific directions of relationships among emotions, the EEG, and HRV in adulthood after childhood trauma was discussed.

  19. An Integrated Model of Emotional Problems, Beta Power of Electroencephalography, and Low Frequency of Heart Rate Variability after Childhood Trauma in a Non-Clinical Sample: A Path Analysis Study

    PubMed Central

    Jin, Min Jin; Kim, Ji Sun; Kim, Sungkean; Hyun, Myoung Ho; Lee, Seung-Hwan

    2018-01-01

    Childhood trauma is known to be related to emotional problems, quantitative electroencephalography (EEG) indices, and heart rate variability (HRV) indices in adulthood, whereas directions among these factors have not been reported yet. This study aimed to evaluate pathway models in young and healthy adults: (1) one with physiological factors first and emotional problems later in adulthood as results of childhood trauma and (2) one with emotional problems first and physiological factors later. A total of 103 non-clinical volunteers were included. Self-reported psychological scales, including the Childhood Trauma Questionnaire (CTQ), State–Trait Anxiety Inventory, Beck Depression Inventory, and Affective Lability Scale were administered. For physiological evaluation, EEG record was performed during resting eyes closed condition in addition to the resting-state HRV, and the quantitative power analyses of eight EEG bands and three HRV components were calculated in the frequency domain. After a normality test, Pearson’s correlation analysis to make path models and path analyses to examine them were conducted. The CTQ score was significantly correlated with depression, state and trait anxiety, affective lability, and HRV low-frequency (LF) power. LF power was associated with beta2 (18–22 Hz) power that was related to affective lability. Affective lability was associated with state anxiety, trait anxiety, and depression. Based on the correlation and the hypothesis, two models were composed: a model with pathways from CTQ score to affective lability, and a model with pathways from CTQ score to LF power. The second model showed significantly better fit than the first model (AICmodel1 = 63.403 > AICmodel2 = 46.003), which revealed that child trauma could affect emotion, and then physiology. The specific directions of relationships among emotions, the EEG, and HRV in adulthood after childhood trauma was discussed. PMID:29403401

  20. Maternal care affects EEG properties of spike-wave seizures (including pre- and post ictal periods) in adult WAG/Rij rats with genetic predisposition to absence epilepsy.

    PubMed

    Sitnikova, Evgenia; Rutskova, Elizaveta M; Raevsky, Vladimir V

    2016-10-01

    WAG/Rij rats have a genetic predisposition to absence epilepsy and develop spontaneous spike-wave discharges in EEG during late ontogenesis (SWD, EEG manifestation of absence epilepsy). Changes in an environment during early postnatal ontogenesis can influence the genetically predetermined absence epilepsy. Here we examined the effect of maternal environment during weaning period on the EEG manifestation of absence epilepsy in adulthood. Experiments were performed in the offspring of WAG/Rij and Wistar rats. The newborn pups were fostered to dams of the same (in-fostering) or another strain (cross-fostering). Age-matched control WAG/Rij and Wistar rats were reared by their biological mothers. Absence seizures were uncommon in Wistar and were not aggravated in both in- and cross-fostered groups. In WAG/Rij rats, fewer SWD were found in the cross-fostered as compared to the in-fostered group. The cross-fostered WAG/Rij rats showed higher percentage of short-lasting SWD with duration <2s. The mean frequency of EEG at the beginning of SWD in the cross-fostered WAG/Rij rats was lower than in control (8.82 vs 9.25Hz), but it was higher in a period of 1.5s before and after SWD. It was concluded that a healthier maternal environment is able to alleviate genetically predetermined absence seizures in adulthood through changes in EEG rhythmic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effects of Parkinson's disease on brain-wave phase synchronisation and cross-modulation

    NASA Astrophysics Data System (ADS)

    Stumpf, K.; Schumann, A. Y.; Plotnik, M.; Gans, F.; Penzel, T.; Fietze, I.; Hausdorff, J. M.; Kantelhardt, J. W.

    2010-02-01

    We study the effects of Parkinson's disease (PD) on phase synchronisation and cross-modulation of instantaneous amplitudes and frequencies for brain waves during sleep. Analysing data from 40 full-night EEGs (electro-encephalograms) of ten patients with PD and ten age-matched healthy controls we find that phase synchronisation between the left and right hemisphere of the brain is characteristically reduced in patients with PD. Since there is no such difference in phase synchronisation for EEGs from the same hemisphere, our results suggest the possibility of a relation with problems in coordinated motion of left and right limbs in some patients with PD. Using the novel technique of amplitude and frequency cross-modulation analysis, relating oscillations in different EEG bands and distinguishing both positive and negative modulation, we observe an even more significant decrease in patients for several band combinations.

  2. Presleep relaxed 7-8 Hz EEG from left frontal region: marker of localised neuropsychological performance?

    PubMed

    Anderson, Clare; Horne, James A

    2004-06-01

    Others have shown that frontally dominant EEG activity of around 7-8 Hz is linked to ongoing cognitive performance. Interestingly, we have found that this EEG activity is particularly evident during the relatively artefact-free period following "lights out" at bedtime when people report "thinking" when lying relaxed in their own beds prior to the appearance of EEG-determined sleepiness. Here, we explore the extent to which this localised activity is indicative of 'trait' performance on left frontal neuropsychological tasks, as well as with less localised, more general tasks. Twelve right-handed young adults (mean age: 21.3 years) and 12 right-handed older adults (mean age: 67.2 years) underwent (i) morning, laboratory-based, waking EEGs comprising (eyes closed) contrived thinking tasks, and (ii) a home-based wake EEG at bedtime. EEGs divided the cortex into the four comparable quadrants: Fp1-F3; Fp2-F4; O1-P3; and O2-P4. From a wide frequency band of 3-10 Hz analysed in 1-Hz bins, only 7-8 Hz was associated with the neuropsychological performance (nonverbal planning, verbal fluency) for both younger and older participants. This was most evident during relaxed waking after 'lights out,' and from the left frontal EEG. Such associations were not apparent for the other EEG channels or for the nonspecific tasks. Laboratory-based daytime, frontal EEG recordings are problematic because of eye movement artefact and when participants are not fully relaxed. In contrast, the nighttime data are almost artefact-free and from fully relaxed participants. This particular EEG is useful for assessing cortically localised behaviour and indicates that a more traditional approach of using large bandwidths (e.g., the whole of "alpha" or "theta" ranges) may mask subfrequencies of functional importance.

  3. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Correlate With Electroencephalography Parameters Assessed by Exact Low-Resolution Electromagnetic Tomography (eLORETA).

    PubMed

    Hata, Masahiro; Tanaka, Toshihisa; Kazui, Hiroaki; Ishii, Ryouhei; Canuet, Leonides; Pascual-Marqui, Roberto D; Aoki, Yasunori; Ikeda, Shunichiro; Sato, Shunsuke; Suzuki, Yukiko; Kanemoto, Hideki; Yoshiyama, Kenji; Iwase, Masao

    2017-09-01

    Recently, cerebrospinal fluid (CSF) biomarkers related to Alzheimer's disease (AD) have garnered a lot of clinical attention. To explore neurophysiological traits of AD and parameters for its clinical diagnosis, we examined the association between CSF biomarkers and electroencephalography (EEG) parameters in 14 probable AD patients. Using exact low-resolution electromagnetic tomography (eLORETA), artifact-free 40-sesond EEG data were estimated with current source density (CSD) and lagged phase synchronization (LPS) as the EEG parameters. Correlations between CSF biomarkers and the EEG parameters were assessed. Patients with AD showed significant negative correlation between CSF beta-amyloid (Aβ)-42 concentration and the logarithms of CSD over the right temporal area in the theta band. Total tau concentration was negatively correlated with the LPS between the left frontal eye field and the right auditory area in the alpha-2 band in patients with AD. Our study results suggest that AD biomarkers, in particular CSF Aβ42 and total tau concentrations are associated with the EEG parameters CSD and LPS, respectively. Our results could yield more insights into the complicated pathology of AD.

  4. Eating Habits and Food Additive Intakes Are Associated with Emotional States Based on EEG and HRV in Healthy Korean Children and Adolescents.

    PubMed

    Kim, Jin Young; Kang, Hye Lim; Kim, Dae-Keun; Kang, Seung Wan; Park, Yoo Kyoung

    2017-07-01

    Recent study suggests that psychological issues and eating habits are closely related. In this study, we aimed to find the association between eating habits and intakes of artificial sweeteners with emotional states of schoolchildren using quantitatively analyzing objective biosignals. The study was conducted at the National Standard Reference Data Center for Korean EEG as a cross-sectional study. Three hundred eighteen healthy children who have not been diagnosed with neurologic or psychiatric disorders were evaluated (168 girls and 150 boys; mean age of 11.8 ± 3.6 years). Analysis indicators were a dietary intake checklist for children's nutrition-related behavior score (NBS), consisting of 19 items; food frequency questionnaires (FFQs), consisting of 76 items; the Child Depression Inventory (CDI); State-Trait Anxiety Inventory-State (STAI-S); State-Trait Anxiety Inventory-Trait (STAI-T); electroencephalograph (EEG); and heart rate variability (HRV). Higher scores on the CDI, STAI-S, and STAI-T indicate negative emotions, and these scores were significantly decreased from the first to the fourth quartiles. The HRV results showed that the standard deviation of all normal-to-normal (SDNN) intervals was significantly higher in the first quartile than in the fourth quartile (p < 0.05). The intakes of artificial sweeteners and processed foods such as hamburgers correlate with higher theta/beta ratios, and intakes of natural foods such as legumes and fruits correlate with lower theta/beta ratios (p < 0.05). From this result we confirmed a link between overall nutritional behavior, food additive intakes, and emotion in apparently healthy children and adolescents.

  5. Rewarming affects EEG background in term newborns with hypoxic-ischemic encephalopathy undergoing therapeutic hypothermia.

    PubMed

    Birca, Ala; Lortie, Anne; Birca, Veronica; Decarie, Jean-Claude; Veilleux, Annie; Gallagher, Anne; Dehaes, Mathieu; Lodygensky, Gregory A; Carmant, Lionel

    2016-04-01

    To investigate how rewarming impacts the evolution of EEG background in neonates with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). We recruited a retrospective cohort of 15 consecutive newborns with moderate (9) and severe (6) HIE monitored with a continuous EEG during TH and at least 12h after its end. EEG background was analyzed using conventional visual and quantitative EEG analysis methods including EEG discontinuity, absolute and relative spectral magnitudes. One patient with seizures on rewarming was excluded from analyses. Visual and quantitative analyses demonstrated significant changes in EEG background from pre- to post-rewarming, characterized by an increased EEG discontinuity, more pronounced in newborns with severe compared to moderate HIE. Neonates with moderate HIE also had an increase in the relative magnitude of slower delta and a decrease in higher frequency theta and alpha waves with rewarming. Rewarming affects EEG background in HIE newborns undergoing TH, which may represent a transient adaptive response or reflect an evolving brain injury. EEG background impairment induced by rewarming may represent a biomarker of evolving encephalopathy in HIE newborns undergoing TH and underscores the importance of continuously monitoring the brain health in critically ill neonates. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Patient prognosis based on feature extraction, selection and classification of EEG periodic activity.

    PubMed

    Sánchez-González, Alain; García-Zapirain, Begoña; Maestro Saiz, Iratxe; Yurrebaso Santamaría, Izaskun

    2015-01-01

    Periodic activity in electroencephalography (PA-EEG) is shown as comprising a series of repetitive wave patterns that may appear in different cerebral regions and are due to many different pathologies. The diagnosis based on PA-EEG is an arduous task for experts in Clinical Neurophysiology, being mainly based on other clinical features of patients. Considering this difficulty in the diagnosis it is also very complicated to establish the prognosis of patients who present PA-EEG. The goal of this paper is to propose a method capable of determining patient prognosis based on characteristics of the PA-EEG activity. The approach, based on a parallel classification architecture and a majority vote system has proven successful by obtaining a success rate of 81.94% in the classification of patient prognosis of our database.

  7. Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG.

    PubMed

    Shafi, Mouhsin M; Westover, M Brandon; Cole, Andrew J; Kilbride, Ronan D; Hoch, Daniel B; Cash, Sydney S

    2012-10-23

    To determine whether the absence of early epileptiform abnormalities predicts absence of later seizures on continuous EEG monitoring of hospitalized patients. We retrospectively reviewed 242 consecutive patients without a prior generalized convulsive seizure or active epilepsy who underwent continuous EEG monitoring lasting at least 18 hours for detection of nonconvulsive seizures or evaluation of unexplained altered mental status. The findings on the initial 30-minute screening EEG, subsequent continuous EEG recordings, and baseline clinical data were analyzed. We identified early EEG findings associated with absence of seizures on subsequent continuous EEG. Seizures were detected in 70 (29%) patients. A total of 52 patients had their first seizure in the initial 30 minutes of continuous EEG monitoring. Of the remaining 190 patients, 63 had epileptiform discharges on their initial EEG, 24 had triphasic waves, while 103 had no epileptiform abnormalities. Seizures were later detected in 22% (n = 14) of studies with epileptiform discharges on their initial EEG, vs 3% (n = 3) of the studies without epileptiform abnormalities on initial EEG (p < 0.001). In the 3 patients without epileptiform abnormalities on initial EEG but with subsequent seizures, the first epileptiform discharge or electrographic seizure occurred within the first 4 hours of recording. In patients without epileptiform abnormalities during the first 4 hours of recording, no seizures were subsequently detected. Therefore, EEG features early in the recording may indicate a low risk for seizures, and help determine whether extended monitoring is necessary.

  8. Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG

    PubMed Central

    Westover, M. Brandon; Cole, Andrew J.; Kilbride, Ronan D.; Hoch, Daniel B.; Cash, Sydney S.

    2012-01-01

    Objective: To determine whether the absence of early epileptiform abnormalities predicts absence of later seizures on continuous EEG monitoring of hospitalized patients. Methods: We retrospectively reviewed 242 consecutive patients without a prior generalized convulsive seizure or active epilepsy who underwent continuous EEG monitoring lasting at least 18 hours for detection of nonconvulsive seizures or evaluation of unexplained altered mental status. The findings on the initial 30-minute screening EEG, subsequent continuous EEG recordings, and baseline clinical data were analyzed. We identified early EEG findings associated with absence of seizures on subsequent continuous EEG. Results: Seizures were detected in 70 (29%) patients. A total of 52 patients had their first seizure in the initial 30 minutes of continuous EEG monitoring. Of the remaining 190 patients, 63 had epileptiform discharges on their initial EEG, 24 had triphasic waves, while 103 had no epileptiform abnormalities. Seizures were later detected in 22% (n = 14) of studies with epileptiform discharges on their initial EEG, vs 3% (n = 3) of the studies without epileptiform abnormalities on initial EEG (p < 0.001). In the 3 patients without epileptiform abnormalities on initial EEG but with subsequent seizures, the first epileptiform discharge or electrographic seizure occurred within the first 4 hours of recording. Conclusions: In patients without epileptiform abnormalities during the first 4 hours of recording, no seizures were subsequently detected. Therefore, EEG features early in the recording may indicate a low risk for seizures, and help determine whether extended monitoring is necessary. PMID:23054233

  9. Effect of bright light on EEG activities and subjective sleepiness to mental task during nocturnal sleep deprivation.

    PubMed

    Yokoi, Mari; Aoki, Ken; Shimomura, Yoshihiro; Iwanaga, Koichi; Katsuura, Tetsuo; Shiomura, Yoshihiro

    2003-11-01

    The purpose of this study was to investigate the effect of the exposure to bright light on EEG activity and subjective sleepiness at rest and at the mental task during nocturnal sleep deprivation. Eight male subjects lay awake in semi-supine in a reclining seat from 21:00 to 04:30 under the bright (BL; >2500 lux) or the dim (DL; <150 lux) light conditions. During the sleep deprivation, the mental task (Stroop color-word conflict test: CWT) was performed each 15 min in one hour. EEG, subjective sleepiness, rectal and mean skin temperatures and urinary melatonin concentrations were measured. The subjective sleepiness increased with time of sleep deprivation during both rest and CWT under the DL condition. The exposure to bright light delayed for 2 hours the increase in subjective sleepiness at rest and suppressed the increase in that during CWT. The bright light exposure also delayed the increase in the theta and alpha wave activities in EEG at rest. In contrast, the effect of the bright light exposure on the theta and alpha wave activities disappeared by CWT. Additionally, under the BL condition, the entire theta activity during CWT throughout nocturnal sleep deprivation increased significantly from that in a rest condition. Our results suggest that the exposure to bright light throughout nocturnal sleep deprivation influences the subjective sleepiness during the mental task and the EEG activity, as well as the subjective sleepiness at rest. However, the effect of the bright light exposure on the EEG activity at the mental task diminishes throughout nocturnal sleep deprivation.

  10. An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals

    PubMed Central

    Wu, Qunjian; Zeng, Ying; Zhang, Chi; Tong, Li; Yan, Bin

    2018-01-01

    The electroencephalogram (EEG) signal represents a subject’s specific brain activity patterns and is considered as an ideal biometric given its superior forgery prevention. However, the accuracy and stability of the current EEG-based person authentication systems are still unsatisfactory in practical application. In this paper, a multi-task EEG-based person authentication system combining eye blinking is proposed, which can achieve high precision and robustness. Firstly, we design a novel EEG-based biometric evoked paradigm using self- or non-self-face rapid serial visual presentation (RSVP). The designed paradigm could obtain a distinct and stable biometric trait from EEG with a lower time cost. Secondly, the event-related potential (ERP) features and morphological features are extracted from EEG signals and eye blinking signals, respectively. Thirdly, convolutional neural network and back propagation neural network are severally designed to gain the score estimation of EEG features and eye blinking features. Finally, a score fusion technology based on least square method is proposed to get the final estimation score. The performance of multi-task authentication system is improved significantly compared to the system using EEG only, with an increasing average accuracy from 92.4% to 97.6%. Moreover, open-set authentication tests for additional imposters and permanence tests for users are conducted to simulate the practical scenarios, which have never been employed in previous EEG-based person authentication systems. A mean false accepted rate (FAR) of 3.90% and a mean false rejected rate (FRR) of 3.87% are accomplished in open-set authentication tests and permanence tests, respectively, which illustrate the open-set authentication and permanence capability of our systems. PMID:29364848

  11. An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals.

    PubMed

    Wu, Qunjian; Zeng, Ying; Zhang, Chi; Tong, Li; Yan, Bin

    2018-01-24

    The electroencephalogram (EEG) signal represents a subject's specific brain activity patterns and is considered as an ideal biometric given its superior forgery prevention. However, the accuracy and stability of the current EEG-based person authentication systems are still unsatisfactory in practical application. In this paper, a multi-task EEG-based person authentication system combining eye blinking is proposed, which can achieve high precision and robustness. Firstly, we design a novel EEG-based biometric evoked paradigm using self- or non-self-face rapid serial visual presentation (RSVP). The designed paradigm could obtain a distinct and stable biometric trait from EEG with a lower time cost. Secondly, the event-related potential (ERP) features and morphological features are extracted from EEG signals and eye blinking signals, respectively. Thirdly, convolutional neural network and back propagation neural network are severally designed to gain the score estimation of EEG features and eye blinking features. Finally, a score fusion technology based on least square method is proposed to get the final estimation score. The performance of multi-task authentication system is improved significantly compared to the system using EEG only, with an increasing average accuracy from 92.4% to 97.6%. Moreover, open-set authentication tests for additional imposters and permanence tests for users are conducted to simulate the practical scenarios, which have never been employed in previous EEG-based person authentication systems. A mean false accepted rate (FAR) of 3.90% and a mean false rejected rate (FRR) of 3.87% are accomplished in open-set authentication tests and permanence tests, respectively, which illustrate the open-set authentication and permanence capability of our systems.

  12. Association of Electroencephalography (EEG) Power Spectra with Corneal Nerve Fiber Injury in Retinoblastoma Patients.

    PubMed

    Liu, Jianliang; Sun, Juanjuan; Diao, Yumei; Deng, Aijun

    2016-09-04

    BACKGROUND In our clinical experience we discovered that EEG band power may be correlated with corneal nerve injury in retinoblastoma patients. This study aimed to investigate biomarkers obtained from electroencephalography (EEG) recordings to reflect corneal nerve injury in retinoblastoma patients. MATERIAL AND METHODS Our study included 20 retinoblastoma patients treated at the Department of Ophthalmology, Affiliated Hospital of Weifang Medical University between 2010 and 2014. Twenty normal individuals were included in the control group. EEG activity was recorded continuously with 32 electrodes using standard EEG electrode placement for detecting EEG power. A cornea confocal microscope was used to examine corneal nerve injury in retinoblastoma patients and normal individuals. Spearman rank correlation analysis was used to analyze the correlation between corneal nerve injury and EEG power changes. The sensitivity and specificity of changed EEG power in diagnosis of corneal nerve injury were also analyzed. RESULTS The predominantly slow EEG oscillations changed gradually into faster waves in retinoblastoma patients. The EEG pattern in retinoblastoma patients was characterized by a distinct increase of delta (P<0.01) and significant decrease of theta power P<0.05). Corneal nerves were damaged in corneas of retinoblastoma patients. Corneal nerve injury was positively correlated with delta EEG spectra power and negatively correlated with theta EEG spectra power. The diagnostic sensitivity and specificity by compounding in the series were 60% and 67%, respectively. CONCLUSIONS Changes in delta and theta of EEG appear to be associated with occurrence of corneal nerve injury. Useful information can be provided for evaluating corneal nerve damage in retinoblastoma patients through analyzing EEG power bands.

  13. Assessing a novel polymer-wick based electrode for EEG neurophysiological research.

    PubMed

    Pasion, Rita; Paiva, Tiago O; Pedrosa, Paulo; Gaspar, Hugo; Vasconcelos, Beatriz; Martins, Ana C; Amaral, Maria H; Nóbrega, João M; Páscoa, Ricardo; Fonseca, Carlos; Barbosa, Fernando

    2016-07-15

    The EEG technique has decades of valid applications in clinical and experimental neurophysiology. EEG equipment and data analysis methods have been characterized by remarkable developments, but the skin-to-electrode signal transfer remains a challenge for EEG recording. A novel quasi-dry system - the polymer wick-based electrode - was developed to overcome the limitations of conventional dry and wet silver/silver-chloride (Ag/AgCl) electrodes for EEG recording. Nine participants completed an auditory oddball protocol with simultaneous EEG acquisition using both the conventional Ag/AgCl and the wick electrodes. Wick system successfully recorded the expected P300 modulation. Standard ERP analysis, residual random noise analysis, and single-trial analysis of the P300 wave were performed in order to compare signal acquired by both electrodes. It was found that the novel wick electrode performed similarly to the conventional Ag/AgCl electrodes. The developed wick electrode appears to be a reliable alternative for EEG research, representing a promising halfway alternative between wet and dry electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Method and apparatus for extraction of low-frequency artifacts from brain waves for alertness detection

    DOEpatents

    Clapp, Ned E.; Hively, Lee M.

    1997-01-01

    Methods and apparatus automatically detect alertness in humans by monitoring and analyzing brain wave signals. Steps include: acquiring the brain wave (EEG or MEG) data from the subject, digitizing the data, separating artifact data from raw data, and comparing trends in f-data to alertness indicators, providing notification of inadequate alertness.

  15. Assessing the depth of hypnosis of xenon anaesthesia with the EEG.

    PubMed

    Stuttmann, Ralph; Schultz, Arthur; Kneif, Thomas; Krauss, Terence; Schultz, Barbara

    2010-04-01

    Xenon was approved as an inhaled anaesthetic in Germany in 2005 and in other countries of the European Union in 2007. Owing to its low blood/gas partition coefficient, xenons effects on the central nervous system show a fast onset and offset and, even after long xenon anaesthetics, the wake-up times are very short. The aim of this study was to examine which electroencephalogram (EEG) stages are reached during xenon application and whether these stages can be identified by an automatic EEG classification. Therefore, EEG recordings were performed during xenon anaesthetics (EEG monitor: Narcotrend®). A total of 300 EEG epochs were assessed visually with regard to the EEG stages. These epochs were also classified automatically by the EEG monitor Narcotrend® using multivariate algorithms. There was a high correlation between visual and automatic classification (Spearman's rank correlation coefficient r=0.957, prediction probability Pk=0.949). Furthermore, it was observed that very deep stages of hypnosis were reached which are characterised by EEG activity in the low frequency range (delta waves). The burst suppression pattern was not seen. In deep hypnosis, in contrast to the xenon EEG, the propofol EEG was characterised by a marked superimposed higher frequency activity. To ensure an optimised dosage for the single patient, anaesthetic machines for xenon should be combined with EEG monitoring. To date, only a few anaesthetic machines for xenon are available. Because of the high price of xenon, new and further developments of machines focus on optimizing xenon consumption.

  16. Neural network classification of clinical neurophysiological data for acute care monitoring

    NASA Technical Reports Server (NTRS)

    Sgro, Joseph

    1994-01-01

    The purpose of neurophysiological monitoring of the 'acute care' patient is to allow the accurate recognition of changing or deteriorating neurological function as close to the moment of occurrence as possible, thus permitting immediate intervention. Results confirm that: (1) neural networks are able to accurately identify electroencephalogram (EEG) patterns and evoked potential (EP) wave components, and measuring EP waveform latencies and amplitudes; (2) neural networks are able to accurately detect EP and EEG recordings that have been contaminated by noise; (3) the best performance was obtained consistently with the back propagation network for EP and the HONN for EEG's; (4) neural network performed consistently better than other methods evaluated; and (5) neural network EEG and EP analyses are readily performed on multichannel data.

  17. EEG alpha frequency correlates of burnout and depression: The role of gender.

    PubMed

    Tement, Sara; Pahor, Anja; Jaušovec, Norbert

    2016-02-01

    EEG alpha frequency band biomarkers of depression are widely explored. Due to their trait-like features, they may help distinguish between depressive and burnout symptomatology, which is often referred to as "work-related depression". The present correlational study strived to examine whether individual alpha frequency (IAF), power, and coherence in the alpha band can provide evidence for establishing burnout as a separate diagnostic entity. Resting EEG (eyes closed) was recorded in 117 individuals (42 males). In addition, the participants filled-out questionnaires of burnout and depression. Regression analyses highlighted the differential value of IAF and power in predicting burnout and depression. IAF was significantly related to depressive symptomatology, whereas power was linked mostly to burnout. Moreover, seven out of twelve interactions between EEG indicators and gender were significant. Connectivity patterns were significant for depression displaying gender-related differences. The results offer tentative support for establishing burnout as a separate clinical syndrome. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Inflight loss of consciousness : a case report.

    DOT National Transportation Integrated Search

    1963-09-01

    A case of inflight vertigo and loss of consciousness in a private pilot, flying alone, is presented. The differential diagnosis and the significance of the findings of 5-7 per second theta waves in his resting EEG and high voltage slow waves during c...

  19. Comment on the Nanoparticle Conclusions in Crüts et al. (2008), "Exposure to diesel exhaust induces changes in EEG in human volunteers"

    PubMed Central

    Valberg, Peter A; Long, Christopher M; Hesterberg, Thomas W

    2008-01-01

    A recent publication in this journal reported interesting changes in electroencephalographic (EEG) waves that occurred in 10 young, male volunteers following inhalation for one hour of elevated levels of diesel-engine exhaust fumes [1]. The authors then proposed a chain of causal events that they hypothesized underlay their observed EEG changes. Their reasoning linked the observed results to nanoparticles in diesel-engine exhaust (DEE), and went on to suggest that associations between changes in ambient particulate matter (PM) levels and changes in health statistics might be due to the effects of diesel-engine exhaust (DEE) nanoparticles on EEG. We suggest that the extrapolations of the Crüts et al. EEG findings to casual mechanisms about how ambient levels of DEE particulate might affect electrical signals in the brain, and subsequently to how DEE particulate might alter disease risk, are premature. PMID:18652692

  20. Long-Range Correlation in alpha-Wave Predominant EEG in Human

    NASA Astrophysics Data System (ADS)

    Sharif, Asif; Chyan Lin, Der; Kwan, Hon; Borette, D. S.

    2004-03-01

    The background noise in the alpha-predominant EEG taken from eyes-open and eyes-closed neurophysiological states is studied. Scale-free characteristic is found in both cases using the wavelet approach developed by Simonsen and Nes [1]. The numerical results further show the scaling exponent during eyes-closed is consistently lower than eyes-open. We conjecture the origin of this difference is related to the temporal reconfiguration of the neural network in the brain. To further investigate the scaling structure of the EEG background noise, we extended the second order statistics to higher order moments using the EEG increment process. We found that the background fluctuation in the alpha-predominant EEG is predominantly monofractal. Preliminary results are given to support this finding and its implication in brain functioning is discussed. [1] A.H. Simonsen and O.M. Nes, Physical Review E, 58, 2779¡V2748 (1998).

  1. Proepileptic patterns in EEG of WAG/Rij rats

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Sitnikova, Evgenia Yu.; Nedaivozov, Vladimir O.; Koronovskii, Alexey A.

    2018-04-01

    In this paper we study specific oscillatory patterns on EEG signals of WAG/Rij rats. These patterns are known as proepileptic because they occur in time period during the development of absence-epilepsy before fully-formed epileptic seizures. In the paper we analyze EEG signals of WAG/Rij rats with continuous wavelet transform and empirical mode decomposition in order to find particular features of epileptic spike-wave discharges and nonepileptic sleep spindles. Then we introduce proepileptic activity as patterns that combine features of epileptic and non-epileptic activity. We analyze proepileptic activity in order to specify its features and time-frequency structure.

  2. Robot Control Through Brain Computer Interface For Patterns Generation

    NASA Astrophysics Data System (ADS)

    Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.

    2011-09-01

    A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.

  3. Long-term history and immediate preceding state affect EEG slow wave characteristics at NREM sleep onset in C57BL/6 mice.

    PubMed

    Cui, N; Mckillop, L E; Fisher, S P; Oliver, P L; Vyazovskiy, V V

    2014-01-01

    The dynamics of cortical activity across the 24-h day and at vigilance state transitions is regulated by an interaction between global subcortical neuromodulatory influences and local shifts in network synchrony and excitability. To address the role of long-term and immediate preceding history in local and global cortical dynamics, we investigated cortical EEG recorded from both frontal and occipital regions during an undisturbed 24-h recording in mice. As expected, at the beginning of the light period, under physiologically increased sleep pressure, EEG slow waves were more frequent and had higher amplitude and slopes, compared to the rest of the light period. Within discrete NREM sleep episodes, the incidence, amplitude and slopes of individual slow waves increased progressively after episode onset in both derivations by approximately 10-30%. Interestingly, at the beginning of NREM sleep episodes slow waves in the frontal and occipital derivations frequently occurred in isolation, as quantified by longer latencies between consecutive slow waves in the two regions. Notably, slow waves during the initial period of NREM sleep following REM sleep episodes were significantly less frequent, lower in amplitude and exhibited shallower slopes, compared to those that occurred in NREM episodes after prolonged waking. Moreover, the latencies between consecutive frontal and occipital NREM slow waves were substantially longer when they occurred directly after REM sleep compared to following consolidated wakefulness. Overall these data reveal a complex picture, where both time of day and preceding state contribute to the characteristics and dynamics of slow waves within NREM sleep. These findings suggest that NREM sleep initiates in a more "local" fashion when it occurs following REM sleep episodes as opposed to sustained waking bouts. While the mechanisms and functional significance of such a re-setting of brain state after individual REM sleep episodes remains to be investigated, we suggest that it may be an essential feature of physiological sleep regulation.

  4. Mu Wave Suppression during the Perception of Meaningless Syllables: EEG Evidence of Motor Recruitment

    ERIC Educational Resources Information Center

    Crawcour, Stephen; Bowers, Andrew; Harkrider, Ashley; Saltuklaroglu, Tim

    2009-01-01

    Motor involvement in speech perception has been recently studied using a variety of techniques. In the current study, EEG measurements from Cz, C3 and C4 electrodes were used to examine the relative power of the mu rhythm (i.e., 8-13 Hz) in response to various audio-visual speech and non-speech stimuli, as suppression of these rhythms is…

  5. The effect of rTMS over the inferior parietal lobule on EEG sensorimotor reactivity differs according to self-reported traits of autism in typically developing individuals.

    PubMed

    Puzzo, Ignazio; Cooper, Nicholas R; Cantarella, Simona; Fitzgerald, Paul B; Russo, Riccardo

    2013-12-06

    Previous research suggested that EEG markers of mirror neuron system activation may differ, in the normal population as a function of different levels of the autistic spectrum quotient; (AQ). The present study aimed at modulating the EEG sensorimotor reactivity induced by hand movement observation by means of repetitive transcranial magnetic stimulation (rTMS) applied to the inferior parietal lobule. We examined how the resulting rTMS modulation differed in relation to the self-reported autistic traits in the typically developing population. Results showed that during sham stimulation, all participants had significantly greater sensorimotor alpha reactivity (motor cortex-C electrodes) when observing hand movements compared to static hands. This sensorimotor alpha reactivity difference was reduced during active rTMS stimulation. Results also revealed that in the average AQ group at sham there was a significant increase in low beta during hand movement than static hand observation (pre-motor areas-FC electrodes) and that (like alpha over the C electrodes) this difference is abolished when active rTMS is delivered. Participants with high AQ scores showed no significant difference in low beta sensorimotor reactivity between active and sham rTMS during static hand or hand movement observation. These findings suggest that unlike sham, active rTMS over the IPL modulates the oscillatory activity of the low beta frequency of a distal area, namely the anterior sector of the sensorimotor cortex, when participants observe videos of static hand. Importantly, this modulation differs according to the degree of self-reported traits of autism in a typically developing population. © 2013 Elsevier B.V. All rights reserved.

  6. Method and apparatus for extraction of low-frequency artifacts from brain waves for alertness detection

    DOEpatents

    Clapp, N.E.; Hively, L.M.

    1997-05-06

    Methods and apparatus automatically detect alertness in humans by monitoring and analyzing brain wave signals. Steps include: acquiring the brain wave (EEG or MEG) data from the subject, digitizing the data, separating artifact data from raw data, and comparing trends in f-data to alertness indicators, providing notification of inadequate alertness. 4 figs.

  7. Effects of oral temazepam on slow waves during non-rapid eye movement sleep in healthy young adults: A high-density EEG investigation.

    PubMed

    Plante, D T; Goldstein, M R; Cook, J D; Smith, R; Riedner, B A; Rumble, M E; Jelenchick, L; Roth, A; Tononi, G; Benca, R M; Peterson, M J

    2016-03-01

    Slow waves are characteristic waveforms that occur during non-rapid eye movement (NREM) sleep that play an integral role in sleep quality and brain plasticity. Benzodiazepines are commonly used medications that alter slow waves, however, their effects may depend on the time of night and measure used to characterize slow waves. Prior investigations have utilized minimal scalp derivations to evaluate the effects of benzodiazepines on slow waves, and thus the topography of changes to slow waves induced by benzodiazepines has yet to be fully elucidated. This study used high-density electroencephalography (hdEEG) to evaluate the effects of oral temazepam on slow wave activity, incidence, and morphology during NREM sleep in 18 healthy adults relative to placebo. Temazepam was associated with significant decreases in slow wave activity and incidence, which were most prominent in the latter portions of the sleep period. However, temazepam was also associated with a decrease in the magnitude of high-amplitude slow waves and their slopes in the first NREM sleep episode, which was most prominent in frontal derivations. These findings suggest that benzodiazepines produce changes in slow waves throughout the night that vary depending on cortical topography and measures used to characterize slow waves. Further research that explores the relationships between benzodiazepine-induced changes to slow waves and the functional effects of these waveforms is indicated. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Urodynamic function during sleep-like brain states in urethane anesthetized rats.

    PubMed

    Crook, J; Lovick, T

    2016-01-28

    The aim was to investigate urodynamic parameters and functional excitability of the periaqueductal gray matter (PAG) during changes in sleep-like brain states in urethane anesthetized rats. Simultaneous recordings of detrusor pressure, external urethral sphincter (EUS) electromyogram (EMG), cortical electroencephalogram (EEG), and single-unit activity in the PAG were made during repeated voiding induced by continuous infusion of saline into the bladder. The EEG cycled between synchronized, high-amplitude slow wave activity (SWA) and desynchronized low-amplitude fast activity similar to slow wave and 'activated' sleep-like brain states. During (SWA, 0.5-1.5 Hz synchronized oscillation of the EEG waveform) voiding became more irregular than in the 'activated' brain state (2-5 Hz low-amplitude desynchronized EEG waveform) and detrusor void pressure threshold, void volume threshold and the duration of bursting activity in the external urethral sphincter EMG were raised. The spontaneous firing rate of 23/52 neurons recorded within the caudal PAG and adjacent tegmentum was linked to the EEG state, with the majority of responsive cells (92%) firing more slowly during SWA. Almost a quarter of the cells recorded (12/52) showed phasic changes in firing rate that were linked to the occurrence of voids. Inhibition (n=6), excitation (n=4) or excitation/inhibition (n=2) was seen. The spontaneous firing rate of 83% of the micturition-responsive cells was sensitive to changes in EEG state. In nine of the 12 responsive cells (75%) the responses were reduced during SWA. We propose that during different sleep-like brain states changes in urodynamic properties occur which may be linked to changing excitability of the micturition circuitry in the periaqueductal gray. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Dynamic timecourse of typical childhood absence seizures: EEG, behavior and fMRI

    PubMed Central

    Bai, X; Vestal, M; Berman, R; Negishi, M; Spann, M; Vega, C; Desalvo, M; Novotny, EJ; Constable, RT; Blumenfeld, H

    2010-01-01

    Absence seizures are 5–10 second episodes of impaired consciousness accompanied by 3–4Hz generalized spike-and-wave discharge on electroencephalography (EEG). The timecourse of functional magnetic resonance imaging (fMRI) changes in absence seizures in relation to EEG and behavior is not known. We acquired simultaneous EEG-fMRI in 88 typical childhood absence seizures from 9 pediatric patients. We investigated behavior concurrently using a continuous performance task (CPT) or simpler repetitive tapping task (RTT). EEG time-frequency analysis revealed abrupt onset and end of 3–4 Hz spike-wave discharges with a mean duration of 6.6 s. Behavioral analysis also showed rapid onset and end of deficits associated with electrographic seizure start and end. In contrast, we observed small early fMRI increases in the orbital/medial frontal and medial/lateral parietal cortex >5s before seizure onset, followed by profound fMRI decreases continuing >20s after seizure end. This timecourse differed markedly from the hemodynamic response function (HRF) model used in conventional fMRI analysis, consisting of large increases beginning after electrical event onset, followed by small fMRI decreases. Other regions, such as the lateral frontal cortex, showed more balanced fMRI increases followed by approximately equal decreases. The thalamus showed delayed increases after seizure onset followed by small decreases, most closely resembling the HRF model. These findings reveal a complex and long lasting sequence of fMRI changes in absence seizures, which are not detectible by conventional HRF modeling in many regions. These results may be important mechanistically for seizure initiation and termination and may also contribute to changes in EEG and behavior. PMID:20427649

  10. High Resolution Topography of Age-Related Changes in Non-Rapid Eye Movement Sleep Electroencephalography

    PubMed Central

    Sprecher, Kate E.; Riedner, Brady A.; Smith, Richard F.; Tononi, Giulio; Davidson, Richard J.; Benca, Ruth M.

    2016-01-01

    Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel) electroencephalography (EEG) during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18–65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson’s coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor. PMID:26901503

  11. Estimating mental fatigue based on electroencephalogram and heart rate variability

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Yu, Xiaolin

    2010-01-01

    The effects of long term mental arithmetic task on psychology are investigated by subjective self-reporting measures and action performance test. Based on electroencephalogram (EEG) and heart rate variability (HRV), the impacts of prolonged cognitive activity on central nervous system and autonomic nervous system are observed and analyzed. Wavelet packet parameters of EEG and power spectral indices of HRV are combined to estimate the change of mental fatigue. Then wavelet packet parameters of EEG which change significantly are extracted as the features of brain activity in different mental fatigue state, support vector machine (SVM) algorithm is applied to differentiate two mental fatigue states. The experimental results show that long term mental arithmetic task induces the mental fatigue. The wavelet packet parameters of EEG and power spectral indices of HRV are strongly correlated with mental fatigue. The predominant activity of autonomic nervous system of subjects turns to the sympathetic activity from parasympathetic activity after the task. Moreover, the slow waves of EEG increase, the fast waves of EEG and the degree of disorder of brain decrease compared with the pre-task. The SVM algorithm can effectively differentiate two mental fatigue states, which achieves the maximum classification accuracy (91%). The SVM algorithm could be a promising tool for the evaluation of mental fatigue. Fatigue, especially mental fatigue, is a common phenomenon in modern life, is a persistent occupational hazard for professional. Mental fatigue is usually accompanied with a sense of weariness, reduced alertness, and reduced mental performance, which would lead the accidents in life, decrease productivity in workplace and harm the health. Therefore, the evaluation of mental fatigue is important for the occupational risk protection, productivity, and occupational health.

  12. Clinical and electrographic features of sunflower syndrome.

    PubMed

    Baumer, Fiona M; Porter, Brenda E

    2018-05-01

    Sunflower Syndrome describes reflex seizures - typically eyelid myoclonia with or without absence seizures - triggered when patients wave their hands in front of the sun. While valproate has been recognized as the best treatment for photosensitive epilepsy, many clinicians now initially treat with newer medications; the efficacy of these medications in Sunflower Syndrome has not been investigated. We reviewed all cases of Sunflower Syndrome seen at our institution over 15 years to describe the clinical course, electroencephalogram (EEG), and treatment response in these patients. Search of the electronic medical record and EEG database, as well as survey of epilepsy providers at our institution, yielded 13 cases of Sunflower Syndrome between 2002 and 2017. We reviewed the records and EEG tracings. Patients were mostly young females, with an average age of onset of 5.5 years. Seven had intellectual, attentional or academic problems. Self-induced seizures were predominantly eyelid myoclonia ± absences and 6 subjects also had spontaneous seizures. EEG demonstrated a normal background with 3-4 Hz spike waves ± polyspike waves as well as a photoparoxysmal response. Based on both clinical and EEG response, valproate was the most effective treatment for reducing or eliminating seizures and improving the EEG; 9 patients tried valproate and 66% had significant improvement or resolution of seizures. None of the nine patients on levetiracetam or seven patients on lamotrigine monotherapy achieved seizure control, though three patients had improvement with polypharmacy. Valproate monotherapy continues to be the most effective treatment for Sunflower Syndrome and should be considered early. For patients who cannot tolerate valproate, higher doses of lamotrigine or polypharmacy should be considered. Levetiracetam monotherapy, even at high doses, is unlikely to be effective. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Authentication, privacy, security can exploit brainwave by biomarker

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffrey; Sweet, Charles; Sweet, James; Noel, Steven; Szu, Harold

    2014-05-01

    We seek to augment the current Common Access Control (CAC) card and Personal Identification Number (PIN) verification systems with an additional layer of classified access biometrics. Among proven devices such as fingerprint readers and cameras that can sense the human eye's iris pattern, we introduced a number of users to a sequence of 'grandmother images', or emotionally evoked stimuli response images from other users, as well as one of their own, for the purpose of authentication. We performed testing and evaluation of the Authenticity Privacy and Security (APS) brainwave biometrics, similar to the internal organ of the human eye's iris which cannot easily be altered. `Aha' recognition through stimulus-response habituation can serve as a biomarker, similar to keystroke dynamics analysis for inter and intra key fluctuation time of a memorized PIN number (FIST). Using a non-tethered Electroencephalogram (EEG) wireless smartphone/pc monitor interface, we explore the appropriate stimuli-response biomarker present in DTAB low frequency group waves. Prior to login, the user is shown a series of images on a computer display. They have been primed to click their mouse when the image is presented. DTAB waves are collected with a wireless EEG and are sent via Smartphone to a cloud based processing infrastructure. There, we measure fluctuations in DTAB waves from a wireless, non-tethered, single node EEG device between the Personal Graphic Image Number (PGIN) stimulus image and the response time from an individual's mental performance baseline. Towards that goal, we describe an infrastructure that supports distributed verification for web-based EEG authentication. The performance of machine learning on the relative Power Spectral Density EEG data may uncover features required for subsequent access to web or media content. Our approach provides a scalable framework wrapped into a robust Neuro-Informatics toolkit, viable for use in the Biomedical and mental health communities, as well as numerous consumer applications.

  14. Meditation States and Traits: EEG, ERP, and Neuroimaging Studies

    ERIC Educational Resources Information Center

    Cahn, B. Rael; Polich, John

    2006-01-01

    Neuroelectric and imaging studies of meditation are reviewed. Electroencephalographic measures indicate an overall slowing subsequent to meditation, with theta and alpha activation related to proficiency of practice. Sensory evoked potential assessment of concentrative meditation yields amplitude and latency changes for some components and…

  15. Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD).

    PubMed

    Yasuhara, Akihiro

    2010-11-01

    Children with ASD often suffer from epilepsy and paroxysmal EEG abnormality. Purposes of this study are the confirmation of incidence of epileptic seizures and EEG abnormalities in children with autism using a high performance digital EEG, to examine the nature of EEG abnormalities such as locus or modality, and to determine if the development of children with ASD, who have experienced developmental delay, improves when their epilepsy has been treated and maintained under control. A total of 1014 autistic children that have been treated and followed-up for more than 3 years at Yasuhara Children's Clinic in Osaka, Japan, were included in this study. Each participant's EEG had been recorded approximately every 6 months under sleep conditions. Epilepsy was diagnosed in 37% (375/1014) of the study participants. Almost all patients diagnosed with epilepsy presented with symptomatic epilepsy. The data showed that the participants with lower IQ had a higher incidence of epileptic seizures. Epileptic EEG discharges occurred in 85.8% (870/1014) of the patients. There was also a very high incidence of spike discharges in participants whose intellectual quotient was very low or low. Epileptic seizure waves most frequently developed from the frontal lobe (65.6%), including the front pole (Fp1 and Fp2), frontal part (F3, F4, F7 and F8) and central part (C3, Cz and C4). The occurrence rate of spike discharges in other locations, including temporal lobe (T3, T4, T5, T6), parietal lobe (P3, Pz, P4), occipital lobe (O1, O2) and multifocal spikes was less than 10%. These results support the notion that there is a relationship between ASD and dysfunction of the mirror neuron system. The management of seizure waves in children diagnosed with ASD may result in improves function and reduction of autistic symptoms. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations.

    PubMed

    Raizen, David M; Brooks-Kayal, Amy; Steinkrauss, Linda; Tennekoon, Gihan I; Stanley, Charles A; Kelly, Andrea

    2005-03-01

    To describe seizure phenotypes associated with the hyperinsulinism/hyperammonemia syndrome (HI/HA), which is caused by gain of function mutations in the enzyme glutamate dehydrogenase (GDH). A retrospective review of records of 14 patients with HI/HA. Nine patients had seizures as the first symptom of HI/HA, and six had seizures in the absence of hypoglycemia. No electroencephalogram (EEG) background abnormalities were identified. In four patients, EEG recordings during seizures in the setting of normal blood glucose contained generalized epileptiform discharges. EEGs of three of these patients showed 0.5- to 2-second generalized irregular spike-and-wave discharge at 3 to 6 Hz corresponding to eye blinks, eye rolling, or staring. The EEG of the fourth patient consisted of 20 seconds of generalized regular spike-and-wave discharge at 3 Hz in the clinical context of staring and unresponsiveness. In two patients, seizure control worsened with carbamezapine or oxcarbezapine treatment. In patients with HI/HA, generalized seizures are common and can occur in the absence of hypoglycemia. The drugs carbamazepine and oxcarbazepine should be used with caution for treatment. Pathogenesis of epilepsy in these patients may be related to effects of GDH mutations in the brain, perhaps in combination with effects of recurrent hypoglycemia and chronic hyperammonemia.

  17. Quantitative modeling of multiscale neural activity

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Rennie, Christopher J.

    2007-01-01

    The electrical activity of the brain has been observed for over a century and is widely used to probe brain function and disorders, chiefly through the electroencephalogram (EEG) recorded by electrodes on the scalp. However, the connections between physiology and EEGs have been chiefly qualitative until recently, and most uses of the EEG have been based on phenomenological correlations. A quantitative mean-field model of brain electrical activity is described that spans the range of physiological and anatomical scales from microscopic synapses to the whole brain. Its parameters measure quantities such as synaptic strengths, signal delays, cellular time constants, and neural ranges, and are all constrained by independent physiological measurements. Application of standard techniques from wave physics allows successful predictions to be made of a wide range of EEG phenomena, including time series and spectra, evoked responses to stimuli, dependence on arousal state, seizure dynamics, and relationships to functional magnetic resonance imaging (fMRI). Fitting to experimental data also enables physiological parameters to be infered, giving a new noninvasive window into brain function, especially when referenced to a standardized database of subjects. Modifications of the core model to treat mm-scale patchy interconnections in the visual cortex are also described, and it is shown that resulting waves obey the Schroedinger equation. This opens the possibility of classical cortical analogs of quantum phenomena.

  18. Positive temporal sharp waves in preterm infants with and without brain ultrasound lesions.

    PubMed

    Castro Conde, José Ramón; Martínez, Eduardo Doménech; Campo, Candelaria González; Pérez, Arturo Méndez; McLean, Michael Lee

    2004-11-01

    Clinical significance of neonatal positive temporal sharp waves (PTS) is controversial. The aim of this work is to study (1) PTS incidence in preterm infants with or without major ultrasound lesion (MUL) per gestational age (GA), and (2) the relationship between PTS in both sleep states and other electroencephalographic (EEG) findings with poor prognoses. 97 preterm infants of <27-36 weeks GA, and 12 full-term healthy infants were presented. Prospective study included (1) neurodevelopmental assessment at 40-42 weeks conceptional age (CA), (2) serial neurosonography, and (3) EEG recording at postnatal week 1, 2, 4 and at 40-42 weeks CA. In 50 neonates without MUL, peak PTS was at 31-32 weeks GA. In 47 neonates with MUL, PTS increased significantly from week 2 after birth, descending at the 4th. Neonates of <33 weeks GA with MUL showed significantly increased PTS at term. A significant relationship was found between PTS and other EEG abnormalities with poor neurologic prognoses. PTS incidence varied with sleep states, being predominant in indeterminate sleep in neonates with MUL. PTS increased significantly in infants with MUL, mainly at week 2 of postnatal life, persisting high until term CA, and correlated with other abnormal EEG findings. PTS are highly sensitive to MUL.

  19. Cortical activity during cued picture naming predicts individual differences in stuttering frequency

    PubMed Central

    Mock, Jeffrey R.; Foundas, Anne L.; Golob, Edward J.

    2016-01-01

    Objective Developmental stuttering is characterized by fluent speech punctuated by stuttering events, the frequency of which varies among individuals and contexts. Most stuttering events occur at the beginning of an utterance, suggesting neural dynamics associated with stuttering may be evident during speech preparation. Methods This study used EEG to measure cortical activity during speech preparation in men who stutter, and compared the EEG measures to individual differences in stuttering rate as well as to a fluent control group. Each trial contained a cue followed by an acoustic probe at one of two onset times (early or late), and then a picture. There were two conditions: a speech condition where cues induced speech preparation of the picture’s name and a control condition that minimized speech preparation. Results Across conditions stuttering frequency correlated to cue-related EEG beta power and auditory ERP slow waves from early onset acoustic probes. Conclusions The findings reveal two new cortical markers of stuttering frequency that were present in both conditions, manifest at different times, are elicited by different stimuli (visual cue, auditory probe), and have different EEG responses (beta power, ERP slow wave). Significance The cue-target paradigm evoked brain responses that correlated to pre-experimental stuttering rate. PMID:27472545

  20. Cortical activity during cued picture naming predicts individual differences in stuttering frequency.

    PubMed

    Mock, Jeffrey R; Foundas, Anne L; Golob, Edward J

    2016-09-01

    Developmental stuttering is characterized by fluent speech punctuated by stuttering events, the frequency of which varies among individuals and contexts. Most stuttering events occur at the beginning of an utterance, suggesting neural dynamics associated with stuttering may be evident during speech preparation. This study used EEG to measure cortical activity during speech preparation in men who stutter, and compared the EEG measures to individual differences in stuttering rate as well as to a fluent control group. Each trial contained a cue followed by an acoustic probe at one of two onset times (early or late), and then a picture. There were two conditions: a speech condition where cues induced speech preparation of the picture's name and a control condition that minimized speech preparation. Across conditions stuttering frequency correlated to cue-related EEG beta power and auditory ERP slow waves from early onset acoustic probes. The findings reveal two new cortical markers of stuttering frequency that were present in both conditions, manifest at different times, are elicited by different stimuli (visual cue, auditory probe), and have different EEG responses (beta power, ERP slow wave). The cue-target paradigm evoked brain responses that correlated to pre-experimental stuttering rate. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Source analysis of MEG activities during sleep (abstract)

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Iramina, K.

    1991-04-01

    The present study focuses on magnetic fields of the brain activities during sleep, in particular on K-complexes, vertex waves, and sleep spindles in human subjects. We analyzed these waveforms based on both topographic EEG (electroencephalographic) maps and magnetic fields measurements, called MEGs (magnetoencephalograms). The components of magnetic fields perpendicular to the surface of the head were measured using a dc SQUID magnetometer with a second derivative gradiometer. In our computer simulation, the head is assumed to be a homogeneous spherical volume conductor, with electric sources of brain activity modeled as current dipoles. Comparison of computer simulations with the measured data, particularly the MEG, suggests that the source of K-complexes can be modeled by two current dipoles. A source for the vertex wave is modeled by a single current dipole which orients along the body axis out of the head. By again measuring the simultaneous MEG and EEG signals, it is possible to uniquely determine the orientation of this dipole, particularly when it is tilted slightly off-axis. In sleep stage 2, fast waves of magnetic fields consistently appeared, but EEG spindles appeared intermittently. The results suggest that there exist sources which are undetectable by electrical measurement but are detectable by magnetic-field measurement. Such source can be described by a pair of opposing dipoles of which directions are oppositely oriented.

  2. Electroencephalograph (EEG) study of brain bistable illusion

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Bistable illusion reflects two different kinds of interpretations for a single image, which is currently known as a competition between two groups of antagonism of neurons. Recent research indicates that these two groups of antagonism of neurons express different comprehension, while one group is emitting a pulse, the other group will be restrained. On the other hand, when this inhibition mechanism becomes weaker, the other antagonism neurons group will take over the interpretation. Since attention plays key roles controlling cognition, is highly interesting to find the location and frequency band used by brain (with either top-down or bottom-up control) to reach deterministic visual perceptions. In our study, we used a 16-channel EEG system to record brain signals from subjects while conducting bistable illusion testing. An extra channel of the EEG system was used for temporal marking. The moment when subjects reach a perception switch, they click the channel and mark the time. The recorded data were presented in form of brain electrical activity map (BEAM) with different frequency bands for analysis. It was found that the visual cortex in the on the right side between parietal and occipital areas was controlling the switching of perception. In the periods with stable perception, we can constantly observe all the delta, theta, alpha and beta waves. While the period perception is switching, almost all theta, alpha, and beta waves were suppressed by delta waves. This result suggests that delta wave may control the processing of perception switching.

  3. EEG in Sarcoidosis Patients Without Neurological Findings.

    PubMed

    Bilgin Topçuoğlu, Özgür; Kavas, Murat; Öztaş, Selahattin; Arınç, Sibel; Afşar, Gülgün; Saraç, Sema; Midi, İpek

    2017-01-01

    Sarcoidosis is a multisystem granulomatous disease affecting nervous system in 5% to 10% of patients. Magnetic resonance imaging (MRI) is accepted as the most sensitive method for detecting neurosarcoidosis. However, the most common findings in MRI are the nonspecific white matter lesions, which may be unrelated to sarcoidosis and can occur because of hypertension, diabetes mellitus, smoking, and other inflammatory or infectious disorders, as well. Autopsy studies report more frequent neurological involvement than the ante mortem studies. The aim of this study is to assess electroencephalography (EEG) in sarcoidosis patients without neurological findings in order to display asymptomatic neurological dysfunction. We performed EEG on 30 sarcoidosis patients without diagnosis of neurosarcoidosis or prior neurological comorbidities. Fourteen patients (46.7%) showed intermittant focal and/or generalized slowings while awake and not mentally activated. Seven (50%) of these 14 patients with EEG slowings had nonspecific white matter changes while the other half showed EEG slowings in the absence of MRI changes. We conclude that EEG slowings, when normal variants (psychomotor variant, temporal theta of elderly, frontal theta waves) are eliminated, may be an indicator of dysfunction in brain activity even in the absence of MRI findings. Hence, EEG may contribute toward detecting asymptomatic neurological dysfunction or probable future neurological involvement in sarcoidosis patients. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  4. Meanings of Waves: Electroencephalography and Society in Mexico City, 1940-1950.

    PubMed

    Pérez, Nuria Valverde

    2016-12-01

    Argument This paper focuses on the uses of electroencephalograms (EEGs) in Mexico during their introductory decade from 1940 to 1950. Following Borck (2006), I argue that EEGs adapted to fit local circumstances and that this adjustment led to the consolidation of different ways of making science and the emergence of new objects of study and social types. I also maintain that the way EEGs were introduced into the institutional networks of Mexico entangled them in discussions about the objective and juridical definitions of social groups, thereby preempting concerns about their technical and epistemic limitations. This ultimately enabled the use of EEGs as normative machines and dispositifs. To this end, the paper follows the arrival of EEGs and the creation of institutional networks then analyzes the extent to which the styles of thinking behind the uses of EEGs and attempts to reify a notion of normal electrical brain behavior-particularly by applying EEGs to a community of Otomí Indians-correlated with the difficulties of defining the socio-anthropological notions that articulated legal and disciplinary projects of the time. Finally, it unveils the shortcomings of alternative attempts to define a brain model and to resist the production of ontological determinations.

  5. Heart rate calculation from ensemble brain wave using wavelet and Teager-Kaiser energy operator.

    PubMed

    Srinivasan, Jayaraman; Adithya, V

    2015-01-01

    Electroencephalogram (EEG) signal artifacts are caused by various factors, such as, Electro-oculogram (EOG), Electromyogram (EMG), Electrocardiogram (ECG), movement artifact and line interference. The relatively high electrical energy cardiac activity causes EEG artifacts. In EEG signal processing the general approach is to remove the ECG signal. In this paper, we introduce an automated method to extract the ECG signal from EEG using wavelet and Teager-Kaiser energy operator for R-peak enhancement and detection. From the detected R-peaks the heart rate (HR) is calculated for clinical diagnosis. To check the efficiency of our method, we compare the HR calculated from ECG signal recorded in synchronous with EEG. The proposed method yields a mean error of 1.4% for the heart rate and 1.7% for mean R-R interval. The result illustrates that, proposed method can be used for ECG extraction from single channel EEG and used in clinical diagnosis like estimation for stress analysis, fatigue, and sleep stages classification studies as a multi-model system. In addition, this method eliminates the dependence of additional synchronous ECG in extraction of ECG from EEG signal process.

  6. A Bayesian approach to the characterization of electroencephalographic recordings in premature infants

    NASA Astrophysics Data System (ADS)

    Mitchell, Timothy J.

    Preterm infants are particularly susceptible to cerebral injury, and electroencephalographic (EEG) recordings provide an important diagnostic tool for determining cerebral health. However, interpreting these EEG recordings is challenging and requires the skills of a trained electroencephalographer. Because these EEG specialists are rare, an automated interpretation of newborn EEG recordings would increase access to an important diagnostic tool for physicians. To automate this procedure, we employ a novel Bayesian approach to compute the probability of EEG features (waveforms) including suppression, delta brushes, and delta waves. The power of this approach lies not only in its ability to closely mimic the techniques used by EEG specialists, but also its ability to be generalized to identify other waveforms that may be of interest for future work. The results of these calculations are used in a program designed to output simple statistics related to the presence or absence of such features. Direct comparison of the software with expert human readers has indicated satisfactory performance, and the algorithm has shown promise in its ability to distinguish between infants with normal neurodevelopmental outcome and those with poor neurodevelopmental outcome.

  7. [A study of complexity and power spectrum of cortical EEG and hippocampal potential in rats under different behavioral states].

    PubMed

    Feng, Zhou-yan; Zheng, Xiao-xiang

    2002-08-01

    Objective. To study the complexity and the power spectrum of cortical EEG and hippocampal potential in rats under waking and sleep states. Method. Cortical EEG and hippocampal potential were collected by implanted electrodes in freely moving rats. Algorithmic complexity (Kc), approximate entropy (ApEn), power spectral density (PSD) and gravity frequency of PSD of the potential waves were calculated. Result. The complexity of hippocampal potential was higher than that of cortical EEG under every state. The complexity of cortical EEG was lowest under the state of non rapid eye movement (NREM) sleep. The complexity of hippocampal potential was highest under waking state. The total power of both potentials in 0.5- 30 Hz frequency band showed their highest values under NREM state. Conclusion. The values of Kc and ApEn are closely related to the distributions of PSD. When there are evident peaks in PSD, the complexities of signals will decrease. The complexities may be used to distinguish the difference between cortical EEG and hippocampal potential, or large differences between the same kind of potentials under different behavioral states.

  8. Rhythmic artifact of physiotherapy in intensive care unit EEG recordings.

    PubMed

    Young, Bryan; Raihan, Syed; Ladak, H; Kelly, Martin

    2007-06-01

    Intensive care unit EEG recordings are often contaminated by artifacts that are unseen elsewhere and are usually not documented. One is the rhythmic artifact of physiotherapy (RAP), which can follow the frequency of chest percussion or vibration with either fundamental or harmonic sinusoidal wave forms, affecting single or multiple channels. The occipital electrodes are the most commonly affected, but others can be involved separately or in combination. RAP can easily be mistaken for cerebrally originating rhythms, including seizures. RAP is most easily detected by examining the ECG channel, which usually captures the artifact, but video EEG provides another means, at least for chest percussion.

  9. Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle.

    PubMed

    Ferrara, Michele; De Gennaro, Luigi

    2011-01-01

    In the present paper, we reviewed a large body of evidence, mainly from quantitative EEG studies of our laboratory, supporting the notion that sleep is a local and use-dependent process. Quantitative analyses of sleep EEG recorded from multiple cortical derivations clearly indicate that every sleep phenomenon, from sleep onset to the awakening, is strictly local in nature. Sleep onset first occurs in frontal areas, and a frontal predominance of low-frequency power persists in the first part of the night, when the homeostatic processes mainly occur, and then it vanishes. Upon awakening, we showed an asynchronous EEG activation of different cortical areas, the more anterior ones being the first to wake up. During extended periods of wakefulness, the increase of sleepiness-related low-EEG frequencies is again evident over the frontal derivations. Similarly, experimental manipulations of sleep length by total sleep deprivation, partial sleep curtailment or even selective slow-wave sleep deprivation lead to a slow-wave activity rebound localized especially on the anterior derivations. Thus, frontal areas are crucially involved in sleep homeostasis. According to the local use-dependent theory, this would derive from a higher sleep need of the frontal cortex, which in turn is due to its higher levels of activity during wakefulness. The fact that different brain regions can simultaneously exhibit different sleep intensities indicates that sleep is not a spatially global and uniform state, as hypothesized in the theory. We have also reviewed recent evidence of localized effects of learning and plasticity on EEG sleep measures. These studies provide crucial support to a key concept in the theory, the one claiming that local sleep characteristics should be use-dependent. Finally, we have reported data corroborating the notion that sleep is not necessarily present simultaneously in the entire brain. Our stereo-EEG recordings clearly indicate that sleep and wakefulness can co-exist in different areas, suggesting that vigilance states are not necessarily temporally discrete states. We conclude that understanding local variations in sleep propensity and depth, especially as a result of brain plasticity, may provide in the near future insightful hints into the fundamental functions of sleep.

  10. Contribution of EEG in transient neurological deficits.

    PubMed

    Lozeron, Pierre; Tcheumeni, Nadine Carole; Turki, Sahar; Amiel, Hélène; Meppiel, Elodie; Masmoudi, Sana; Roos, Caroline; Crassard, Isabelle; Plaisance, Patrick; Benbetka, Houria; Guichard, Jean-Pierre; Houdart, Emmanuel; Baudoin, Hélène; Kubis, Nathalie

    2018-01-01

    Identification of stroke mimics and 'chameleons' among transient neurological deficits (TND) is critical. Diagnostic workup consists of a brain imaging study, for a vascular disease or a brain tumour and EEG, for epileptiform discharges. The precise role of EEG in this diagnostic workup has, however, never been clearly delineated. However, this could be crucial in cases of atypical or incomplete presentation with consequences on disease management and treatment. We analysed the EEG patterns on 95 consecutive patients referred for an EEG within 7 days of a TND with diagnostic uncertainty. Patients were classified at the discharge or the 3-month follow-up visit as: 'ischemic origin', 'migraine aura', 'focal seizure', and 'other'. All patients had a brain imaging study. EEG characteristics were correlated to the TND symptoms, imaging study, and final diagnosis. Sixty four (67%) were of acute onset. Median symptom duration was 45 min. Thirty two % were 'ischemic', 14% 'migraine aura', 19% 'focal seizure', and 36% 'other' cause. EEGs were recorded with a median delay of 1.6 day after symptoms onset. Forty EEGs (42%) were abnormal. Focal slow waves were the most common finding (43%), also in the ischemic group (43%), whether patients had a typical presentation or not. Epileptiform discharges were found in three patients, one with focal seizure and two with migraine aura. Non-specific EEG focal slowing is commonly found in TND, and may last several days. We found no difference in EEG presentation between stroke mimics and stroke chameleons, and between other diagnoses.

  11. Training working memory to improve attentional control in anxiety: A proof-of-principle study using behavioral and electrophysiological measures.

    PubMed

    Sari, Berna A; Koster, Ernst H W; Pourtois, Gilles; Derakshan, Nazanin

    2016-12-01

    Trait anxiety is associated with impairments in attentional control and processing efficiency (see Berggren & Derakshan, 2013, for a review). Working memory training using the adaptive dual n-back task has shown to improve attentional control in subclinical depression with transfer effects at the behavioral and neural level on a working memory task (Owens, Koster, & Derakshan, 2013). Here, we examined the beneficial effects of working memory training on attentional control in pre-selected high trait anxious individuals who underwent a three week daily training intervention using the adaptive dual n-back task. Pre and post outcome measures of attentional control were assessed using a Flanker task that included a stress induction and an emotional a Antisaccade task (with angry and neutral faces as target). Resting state EEG (theta/beta ratio) was recorded to as a neural marker of trait attentional control. Our results showed that adaptive working memory training improved attentional control with transfer effects on the Flanker task and resting state EEG, but effects of training on the Antisaccade task were less conclusive. Finally, training related gains were associated with lower levels of trait anxiety at post (vs pre) intervention. Our results demonstrate that adaptive working memory training in anxiety can have beneficial effects on attentional control and cognitive performance that may protect against emotional vulnerability in individuals at risk of developing clinical anxiety. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets

    NASA Astrophysics Data System (ADS)

    Grubov, V. V.; Sitnikova, E.; Pavlov, A. N.; Koronovskii, A. A.; Hramov, A. E.

    2017-11-01

    Epileptic activity in the form of spike-wave discharges (SWD) appears in the electroencephalogram (EEG) during absence seizures. This paper evaluates two approaches for detecting stereotypic rhythmic activities in EEG, i.e., the continuous wavelet transform (CWT) and the empirical mode decomposition (EMD). The CWT is a well-known method of time-frequency analysis of EEG, whereas EMD is a relatively novel approach for extracting signal's waveforms. A new method for pattern recognition based on combination of CWT and EMD is proposed. It was found that this combined approach resulted to the sensitivity of 86.5% and specificity of 92.9% for sleep spindles and 97.6% and 93.2% for SWD, correspondingly. Considering strong within- and between-subjects variability of sleep spindles, the obtained efficiency in their detection was high in comparison with other methods based on CWT. It is concluded that the combination of a wavelet-based approach and empirical modes increases the quality of automatic detection of stereotypic patterns in rat's EEG.

  13. Effect of low-level laser stimulation on EEG.

    PubMed

    Wu, Jih-Huah; Chang, Wen-Dien; Hsieh, Chang-Wei; Jiang, Joe-Air; Fang, Wei; Shan, Yi-Chia; Chang, Yang-Chyuan

    2012-01-01

    Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG) changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz) to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  14. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Foy, R.; Dijk, D. J.; Czeisler, C. A. (Principal Investigator)

    1999-01-01

    The effect of sleep deprivation (40 h) on topographic and temporal aspects of electroencephalographic (EEG) activity during sleep was investigated by all night spectral analysis in six young volunteers. The sleep-deprivation-induced increase of EEG power density in the delta and theta frequencies (1-7 Hz) during nonREM sleep, assessed along the antero-posterior axis (midline: Fz, Cz, Pz, Oz), was significantly larger in the more frontal derivations (Fz, Cz) than in the more parietal derivations (Pz, Oz). This frequency-specific frontal predominance was already present in the first 30 min of recovery sleep, and dissipated in the course of the 8-h sleep episode. The data demonstrate that the enhancement of slow wave EEG activity during sleep following extended wakefulness is most pronounced in frontal cortical areas.

  15. An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters

    PubMed Central

    Rempe, Michael J; Clegern, William C; Wisor, Jonathan P

    2015-01-01

    Introduction Rodent sleep research uses electroencephalography (EEG) and electromyography (EMG) to determine the sleep state of an animal at any given time. EEG and EMG signals, typically sampled at >100 Hz, are segmented arbitrarily into epochs of equal duration (usually 2–10 seconds), and each epoch is scored as wake, slow-wave sleep (SWS), or rapid-eye-movement sleep (REMS), on the basis of visual inspection. Automated state scoring can minimize the burden associated with state and thereby facilitate the use of shorter epoch durations. Methods We developed a semiautomated state-scoring procedure that uses a combination of principal component analysis and naïve Bayes classification, with the EEG and EMG as inputs. We validated this algorithm against human-scored sleep-state scoring of data from C57BL/6J and BALB/CJ mice. We then applied a general homeostatic model to characterize the state-dependent dynamics of sleep slow-wave activity and cerebral glycolytic flux, measured as lactate concentration. Results More than 89% of epochs scored as wake or SWS by the human were scored as the same state by the machine, whether scoring in 2-second or 10-second epochs. The majority of epochs scored as REMS by the human were also scored as REMS by the machine. However, of epochs scored as REMS by the human, more than 10% were scored as SWS by the machine and 18 (10-second epochs) to 28% (2-second epochs) were scored as wake. These biases were not strain-specific, as strain differences in sleep-state timing relative to the light/dark cycle, EEG power spectral profiles, and the homeostatic dynamics of both slow waves and lactate were detected equally effectively with the automated method or the manual scoring method. Error associated with mathematical modeling of temporal dynamics of both EEG slow-wave activity and cerebral lactate either did not differ significantly when state scoring was done with automated versus visual scoring, or was reduced with automated state scoring relative to manual classification. Conclusions Machine scoring is as effective as human scoring in detecting experimental effects in rodent sleep studies. Automated scoring is an efficient alternative to visual inspection in studies of strain differences in sleep and the temporal dynamics of sleep-related physiological parameters. PMID:26366107

  16. EEG Mu Rhythm and Imitation Impairments in Individuals with Autism Spectrum Disorder

    PubMed Central

    Bernier, R.; Dawson, G.; Webb, S.; Murias, M.

    2009-01-01

    Imitation ability has consistently been shown to be impaired in individuals with autism. A dysfunctional execution/observation matching system has been proposed to account for this impairment. The EEG mu rhythm is believed to reflect an underlying execution/observation matching system. This study investigated evidence of differential mu rhythm attenuation during the observation, execution, and imitation of movements and examined its relation to behaviorally assessed imitation abilities. Fourteen high-functioning adults with autism spectrum disorder (ASD) and 15 IQ- and age-matched typical adults participated. On the behavioral imitation task, adults with ASD demonstrated significantly poorer performance compared to typical adults in all domains of imitation ability. On the EEG task, both groups demonstrated significant attenuation of the mu rhythm when executing an action. However, when observing movement, the individuals with ASD showed significantly reduced attenuation of the mu wave. Behaviorally assessed imitation skills were correlated with degree of mu wave attenuation during observation of movement. These findings suggest that there is execution/observation matching system dysfunction in individuals with autism and that this matching system is related to degree of impairment in imitation abilities. PMID:17451856

  17. EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington's disease.

    PubMed

    Painold, Annamaria; Anderer, Peter; Holl, Anna K; Letmaier, Martin; Saletu-Zyhlarz, Gerda M; Saletu, Bernd; Bonelli, Raphael M

    2011-05-01

    Previous studies have shown abnormal electroencephalography (EEG) in Huntington's disease (HD). The aim of the present investigation was to compare quantitatively analyzed EEGs of HD patients and controls by means of low-resolution brain electromagnetic tomography (LORETA). Further aims were to delineate the sensitivity and utility of EEG LORETA in the progression of HD, and to correlate parameters of cognitive and motor impairment with neurophysiological variables. In 55 HD patients and 55 controls a 3-min vigilance-controlled EEG (V-EEG) was recorded during midmorning hours. Power spectra and intracortical tomography were computed by LORETA in seven frequency bands and compared between groups. Spearman rank correlations were based on V-EEG and psychometric data. Statistical overall analysis by means of the omnibus significance test demonstrated significant (p < 0.01) differences between HD patients and controls. LORETA theta, alpha and beta power were decreased from early to late stages of the disease. Only advanced disease stages showed a significant increase in delta power, mainly in the right orbitofrontal cortex. Correlation analyses revealed that a decrease of alpha and theta power correlated significantly with increasing cognitive and motor decline. LORETA proved to be a sensitive instrument for detecting progressive electrophysiological changes in HD. Reduced alpha power seems to be a trait marker of HD, whereas increased prefrontal delta power seems to reflect worsening of the disease. Motor function and cognitive function deteriorate together with a decrease in alpha and theta power. This data set, so far the largest in HD research, helps to elucidate remaining uncertainties about electrophysiological abnormalities in HD.

  18. A novel scheme for the validation of an automated classification method for epileptic spikes by comparison with multiple observers.

    PubMed

    Sharma, Niraj K; Pedreira, Carlos; Centeno, Maria; Chaudhary, Umair J; Wehner, Tim; França, Lucas G S; Yadee, Tinonkorn; Murta, Teresa; Leite, Marco; Vos, Sjoerd B; Ourselin, Sebastien; Diehl, Beate; Lemieux, Louis

    2017-07-01

    To validate the application of an automated neuronal spike classification algorithm, Wave_clus (WC), on interictal epileptiform discharges (IED) obtained from human intracranial EEG (icEEG) data. Five 10-min segments of icEEG recorded in 5 patients were used. WC and three expert EEG reviewers independently classified one hundred IED events into IED classes or non-IEDs. First, we determined whether WC-human agreement variability falls within inter-reviewer agreement variability by calculating the variation of information for each classifier pair and quantifying the overlap between all WC-reviewer and all reviewer-reviewer pairs. Second, we compared WC and EEG reviewers' spike identification and individual spike class labels visually and quantitatively. The overlap between all WC-human pairs and all human pairs was >80% for 3/5 patients and >58% for the other 2 patients demonstrating WC falling within inter-human variation. The average sensitivity of spike marking for WC was 91% and >87% for all three EEG reviewers. Finally, there was a strong visual and quantitative similarity between WC and EEG reviewers. WC performance is indistinguishable to that of EEG reviewers' suggesting it could be a valid clinical tool for the assessment of IEDs. WC can be used to provide quantitative analysis of epileptic spikes. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. [Wavelet packet extraction and entropy analysis of telemetry EEG from the prelimbic cortex of medial prefrontal cortex in morphine-induced CPP rats].

    PubMed

    Bai, Yu; Bai, Jia-Ming; Li, Jing; Li, Min; Yu, Ran; Pan, Qun-Wan

    2014-12-25

    The purpose of the present study is to analyze the relationship between the telemetry electroencephalogram (EEG) changes of the prelimbic (PL) cortex and the drug-seeking behavior of morphine-induced conditioned place preference (CPP) rats by using the wavelet packet extraction and entropy measurement. The recording electrode was stereotactically implanted into the PL cortex of rats. The animals were then divided randomly into operation-only control and morphine-induced CPP groups, respectively. A CPP video system in combination with an EEG wireless telemetry device was used for recording EEG of PL cortex when the rats shuttled between black-white or white-black chambers. The telemetry recorded EEGs were analyzed by wavelet packet extraction, Welch power spectrum estimate, normalized amplitude and Shannon entropy algorithm. The results showed that, compared with operation-only control group, the left PL cortex's EEG of morphine-induced CPP group during black-white chamber shuttling exhibited the following changes: (1) the amplitude of average EEG for each frequency bands extracted by wavelet packet was reduced; (2) the Welch power intensity was increased significantly in 10-50 Hz EEG band (P < 0.01 or P < 0.05); (3) Shannon entropy was increased in β, γ₁, and γ₂waves of the EEG (P < 0.01 or P < 0.05); and (4) the average information entropy was reduced (P < 0.01). The results suggest that above mentioned EEG changes in morphine-induced CPP group rat may be related to animals' drug-seeking motivation and behavior launching.

  20. A Removal of Eye Movement and Blink Artifacts from EEG Data Using Morphological Component Analysis

    PubMed Central

    Wagatsuma, Hiroaki

    2017-01-01

    EEG signals contain a large amount of ocular artifacts with different time-frequency properties mixing together in EEGs of interest. The artifact removal has been substantially dealt with by existing decomposition methods known as PCA and ICA based on the orthogonality of signal vectors or statistical independence of signal components. We focused on the signal morphology and proposed a systematic decomposition method to identify the type of signal components on the basis of sparsity in the time-frequency domain based on Morphological Component Analysis (MCA), which provides a way of reconstruction that guarantees accuracy in reconstruction by using multiple bases in accordance with the concept of “dictionary.” MCA was applied to decompose the real EEG signal and clarified the best combination of dictionaries for this purpose. In our proposed semirealistic biological signal analysis with iEEGs recorded from the brain intracranially, those signals were successfully decomposed into original types by a linear expansion of waveforms, such as redundant transforms: UDWT, DCT, LDCT, DST, and DIRAC. Our result demonstrated that the most suitable combination for EEG data analysis was UDWT, DST, and DIRAC to represent the baseline envelope, multifrequency wave-forms, and spiking activities individually as representative types of EEG morphologies. PMID:28194221

  1. High-accuracy user identification using EEG biometrics.

    PubMed

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  2. [Time-organization of EEG patterns' structure in anxiety and phobic disorders].

    PubMed

    Sviatogor, I A; Mokhovikova, I A

    2005-01-01

    Thirty-five patients, aged 19-48 years (mean age 38 years) with anxiety and phobic disorders were examined. According to ICD-10 criteria--social phobia (F40.1), panic disorder (F41.0), somatoform autonomic dysfunction (F45.3) were diagnosed. Using electroencephalography data, qualitative and quantitative characteristics of the time- and spatial-organization of brain EEG activity in anxiety and phobic disorders of different severity were established. It were determined 4 types of wave interactions between EEG components, which reflected a different extent of the regulatory mechanisms lesions: 2 structures with one core component (alpha or beta), a structure with two core components and a non-organized structure.

  3. Ballistocardiogram Artifact Removal with a Reference Layer and Standard EEG Cap

    PubMed Central

    Luo, Qingfei; Huang, Xiaoshan; Glover, Gary H.

    2014-01-01

    Background In simultaneous EEG-fMRI, the EEG recordings are severely contaminated by ballistocardiogram (BCG) artifacts, which are caused by cardiac pulsations. To reconstruct and remove the BCG artifacts, one promising method is to measure the artifacts in the absence of EEG signal by placing a group of electrodes (BCG electrodes) on a conductive layer (reference layer) insulated from the scalp. However, current BCG reference layer (BRL) methods either use a customized EEG cap composed of electrode pairs, or need to construct the custom reference layer through additional model-building experiments for each EEG-fMRI experiment. These requirements have limited the versatility and efficiency of BRL. The aim of this study is to propose a more practical and efficient BRL method and compare its performance with the most popular BCG removal method, the optimal basis sets (OBS) algorithm. New Method By designing the reference layer as a permanent and reusable cap, the new BRL method is able to be used with a standard EEG cap, and no extra experiments and preparations are needed to use the BRL in an EEG-fMRI experiment. Results The BRL method effectively removed the BCG artifacts from both oscillatory and evoked potential scalp recordings and recovered the EEG signal. Comparison with Existing Method Compared to the OBS, this new BRL method improved the contrast-to-noise ratios of the alpha-wave, visual, and auditory evoked potential signals by 101%, 76%, and 75% respectively, employing 160 BCG electrodes. Using only 20 BCG electrodes, the BRL improved the EEG signal by 74%/26%/41% respectively. Conclusion The proposed method can substantially improve the EEG signal quality compared with traditional methods. PMID:24960423

  4. Understanding the pathophysiology of reflex epilepsy using simultaneous EEG-fMRI.

    PubMed

    Sandhya, Manglore; Bharath, Rose Dawn; Panda, Rajanikant; Chandra, S R; Kumar, Naveen; George, Lija; Thamodharan, A; Gupta, Arun Kumar; Satishchandra, P

    2014-03-01

    Measuring neuro-haemodynamic correlates in the brain of epilepsy patients using EEG-fMRI has opened new avenues in clinical neuroscience, as these are two complementary methods for understanding brain function. In this study, we investigated three patients with drug-resistant reflex epilepsy using EEG-fMRI. Different types of reflex epilepsy such as eating, startle myoclonus, and hot water epilepsy were included in the study. The analysis of EEG-fMRI data was based on the visual identification of interictal epileptiform discharges on scalp EEG. The convolution of onset time and duration of these epilepsy spikes was estimated, and using these condition-specific effects in a general linear model approach, we evaluated activation of fMRI. Patients with startle myoclonus epilepsy experienced epilepsy in response to sudden sound or touch, in association with increased delta and theta activity with a spike-and-slow-wave pattern of interictal epileptiform discharges on EEG and fronto-parietal network activation pattern on SPECT and EEG-fMRI. Eating epilepsy was triggered by sight or smell of food and fronto-temporal discharges were noted on video-EEG (VEEG). Similarly, fronto-temporo-parietal involvement was noted on SPECT and EEG-fMRI. Hot water epilepsy was triggered by contact with hot water either in the bath or by hand immersion, and VEEG showed fronto-parietal involvement. SPECT and EEG fMRI revealed a similar fronto-parietal-occipital involvement. From these results, we conclude that continuous EEG recording can improve the modelling of BOLD changes related to interictal epileptic activity and this can thus be used to understand the neuro-haemodynamic substrates involved in reflex epilepsy.

  5. How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep.

    PubMed

    Spiess, Mathilde; Bernardi, Giulio; Kurth, Salome; Ringli, Maya; Wehrle, Flavia M; Jenni, Oskar G; Huber, Reto; Siclari, Francesca

    2018-05-17

    Slow waves, the hallmarks of non-rapid eye-movement (NREM) sleep, are thought to reflect maturational changes that occur in the cerebral cortex throughout childhood and adolescence. Recent work in adults has revealed evidence for two distinct synchronization processes involved in the generation of slow waves, which sequentially come into play in the transition to sleep. In order to understand how these two processes are affected by developmental changes, we compared slow waves between children and young adults in the falling asleep period. The sleep onset period (starting 30s before end of alpha activity and ending at the first slow wave sequence) was extracted from 72 sleep onset high-density EEG recordings (128 electrodes) of 49 healthy subjects (age 8-25). Using an automatic slow wave detection algorithm, the number, amplitude and slope of slow waves were analyzed and compared between children (age 8-11) and young adults (age 20-25). Slow wave number and amplitude increased linearly in the falling asleep period in children, while in young adults, isolated high-amplitude slow waves (type I) dominated initially and numerous smaller slow waves (type II) with progressively increasing amplitude occurred later. Compared to young adults, children displayed faster increases in slow wave amplitude and number across the falling asleep period in central and posterior brain regions, respectively, and also showed larger slow waves during wakefulness immediately prior to sleep. Children do not display the two temporally dissociated slow wave synchronization processes in the falling asleep period observed in adults, suggesting that maturational factors underlie the temporal segregation of these two processes. Our findings provide novel perspectives for studying how sleep-related behaviors and dreaming differ between children and adults. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Systemic lupus erythematosus with organic brain syndrome: serial electroencephalograms accurately evaluate therapeutic efficacy.

    PubMed

    Kato, Takashi; Shiratori, Kyoji; Kobashigawa, Tsuyoshi; Hidaka, Yuji

    2006-01-01

    A 48-year-old man with systemic lupus erythematosus developed organic brain syndrome. High-dose prednisolone was ineffective, and somnolence without focal signs rapidly developed. Electroencephalogram (EEG) demonstrated a slow basic rhythm (3 Hz), but brain magnetic resonance imaging was normal. Somnolence resolved soon after performing plasma exchange (two sessions). However, memory dysfunction persisted, with EEG demonstrating mild abnormalities (7-8 Hz basic rhythm). Double-filtration plasmapheresis (three sessions) was done, followed by intravenous cyclophosphamide. Immediately after the first plasmapheresis session, memory dysfunction began to improve. After the second dose of cyclophosphamide, intellectual function resolved completely and EEG findings also normalized (basic rhythm of 10 Hz waves). Serial EEG findings precisely reflected the neurological condition and therapeutic efficacy in this patient. In contrast, protein levels in cerebrospinal fluid remained high and did not seem to appropriately reflect the neurological condition in this patient.

  7. Wireless system for long-term EEG monitoring of absence epilepsy

    NASA Astrophysics Data System (ADS)

    Whitchurch, Ashwin K.; Ashok, B. H.; Kumaar, R. V.; Saurkesi, K.; Varadan, Vijay K.

    2002-11-01

    Absence epilepsy is a form of epilepsy common mostly in children. The most common manifestations of Absence epilepsy are staring and transient loss of responsiveness. Also, subtle motor activities may occur. Due to the subtle nature of these symptoms, episodes of absence epilepsy may often go unrecognized for long periods of time or be mistakenly attributed to attention deficit disorder or daydreaming. Spells of absence epilepsy may last about 10 seconds and occur hundreds of times each day. Patients have no recollections of the events that occurred during those seizures and will resume normal activity without any postictal symptoms. The EEG during such episodes of Absence epilepsy shows intermittent activity of 3 Hz generalized spike and wave complexes. As EEG is the only way of detecting such symptoms, it is required to monitor the EEG of the patient for a long time and thus remain only in bed. So, effectively the EEG is being monitored only when the patient is stationary. The wireless monitoring sys tem described in this paper aims at eliminating this constraint and enables the physicial to monitor the EEG when the patient resumes his normal activities. This approach could even help the doctor identify possible triggers of absence epilepsy.

  8. Characteristic changes in the physiological components of cybersickness.

    PubMed

    Kim, Young Youn; Kim, Hyun Ju; Kim, Eun Nam; Ko, Hee Dong; Kim, Hyun Taek

    2005-09-01

    We investigated the characteristic changes in the physiology of cybersickness when subjects were exposed to virtual reality. Sixty-one participants experienced a virtual navigation for a total of 9.5 min, and were required to detect specific virtual objects. Three questionnaires for sickness susceptibility and immersive tendency were obtained before the navigation. Sixteen electrophysiological signals were recorded before, during, and after the navigation. The severity of cybersickness experienced by participants was reported from a simulator sickness questionnaire after the navigation. The total severity of cybersickness had a significant positive correlation with gastric tachyarrhythmia, eyeblink rate, heart period, and EEG delta wave and a negative correlation with EEG beta wave. These results suggest that cybersickness accompanies the pattern changes in the activities of the central and the autonomic nervous systems.

  9. [The noncoherent components of evoked brain activity].

    PubMed

    Kovalev, V P; Novototskiĭ-Vlasov, V Iu

    1998-01-01

    Poststimulus spectral EEG changes and their correlation with evoked potential (EP) were analyzed. The non-stationary components of the brain evoked activity were revealed in 32 volunteers during simple motor reaction and choice reaction to visual stimuli. This nonstationary activity was manifested in poststimulus changes in the mean wave half-period duration (MWHPD) and mean wave half-period power of the delta- and beta-frequency oscillations computed in the EEG realizations after the EP subtraction. The latencies of high-frequency EP components fell into the intervals of the MWHPD decrease and increase in the power of beta-oscillations, and the latencies of low-frequency EP components coincided with the intervals of the MWHPD increase and decrease in the power of delta and beta-oscillations, which pointed to correlation of these changes with the EP.

  10. Psychopathic Traits Mediate the Association of Serotonin Transporter Genotype and Child Externalizing Behavior

    PubMed Central

    Brammer, Whitney A.; Jezior, Kristen L.; Lee, Steve S.

    2016-01-01

    Although the promoter polymorphism of the serotonin transporter (5-HTTLPR) gene is associated with externalizing behavior, its mediating pathways are unknown. Given their sensitivity to serotonin neurotransmission and unique association with attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD), we tested callous-unemotional (CU) traits and narcissism as separate mediators of the association of 5-HTTLPR with ADHD and ODD. We evaluated 209 5–9 year-old children with and without ADHD at baseline; approximately two years later (i.e., Wave 2), parents and teachers separately rated ADHD and ODD symptoms and youth self-reported antisocial behavior. Controlling for race-ethnicity and baseline ADHD/ODD, narcissism uniquely mediated predictions of multi-informant rated Wave 2 ADHD and ODD from variation in 5-HTTLPR; CU traits mediated predictions of Wave 2 ADHD from variations in 5-HTTLPR, but did not mediate the associations of 5-HTTLPR with ODD or youth self-reported antisocial behavior. Specifically, the number of 5-HTTLPR long alleles positively predicted CU traits and narcissism; narcissism was positively associated with Wave 2 ADHD and ODD symptoms, whereas CU traits were positively associated with Wave 2 ADHD. Child sex also moderated indirect effects of CU traits and narcissism, such that narcissism mediated predictions of ADHD/ODD in girls but not boys. Psychopathic traits may represent a relevant pathway underlying predictions of prospective change in ADHD and ODD from 5-HTTLPR, particularly in girls. We consider the role of psychopathic traits as a potential intermediate phenotype in genetically-sensitive studies of child psychopathology. PMID:26990675

  11. Prediction of rhythmic and periodic EEG patterns and seizures on continuous EEG with early epileptiform discharges.

    PubMed

    Koren, J; Herta, J; Draschtak, S; Pötzl, G; Pirker, S; Fürbass, F; Hartmann, M; Kluge, T; Baumgartner, C

    2015-08-01

    Continuous EEG (cEEG) is necessary to document nonconvulsive seizures (NCS), nonconvulsive status epilepticus (NCSE), as well as rhythmic and periodic EEG patterns of 'ictal-interictal uncertainty' (RPPIIU) including periodic discharges, rhythmic delta activity, and spike-and-wave complexes in neurological intensive care patients. However, cEEG is associated with significant recording and analysis efforts. Therefore, predictors from short-term routine EEG with a reasonably high yield are urgently needed in order to select patients for evaluation with cEEG. The aim of this study was to assess the prognostic significance of early epileptiform discharges (i.e., within the first 30 min of EEG recording) on the following: (1) incidence of ictal EEG patterns and RPPIIU on subsequent cEEG, (2) occurrence of acute convulsive seizures during the ICU stay, and (3) functional outcome after 6 months of follow-up. We conducted a separate analysis of the first 30 min and the remaining segments of prospective cEEG recordings according to the ACNS Standardized Critical Care EEG Terminology as well as NCS criteria and review of clinical data of 32 neurological critical care patients. In 17 patients with epileptiform discharges within the first 30 min of EEG (group 1), electrographic seizures were observed in 23.5% (n = 4), rhythmic or periodic EEG patterns of 'ictal-interictal uncertainty' in 64.7% (n = 11), and neither electrographic seizures nor RPPIIU in 11.8% (n = 2). In 15 patients with no epileptiform discharges in the first 30 min of EEG (group 2), no electrographic seizures were recorded on subsequent cEEG, RPPIIU were seen in 26.7% (n = 4), and neither electrographic seizures nor RPPIIU in 73.3% (n = 11). The incidence of EEG patterns on cEEG was significantly different between the two groups (p = 0.008). Patients with early epileptiform discharges developed acute seizures more frequently than patients without early epileptiform discharges (p = 0.009). Finally, functional outcome six months after discharge was significantly worse in patients with early epileptiform discharges (p=0.01). Epileptiform discharges within the first 30 min of EEG recording are predictive for the occurrence of ictal EEG patterns and for RPPIIU on subsequent cEEG, for acute convulsive seizures during the ICU stay, and for a worse functional outcome after 6 months of follow-up. This article is part of a Special Issue entitled Status Epilepticus. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. [Determination of irreversibility of clinical brain death. Electroencephalography and evoked potentials].

    PubMed

    Buchner, H; Ferbert, A

    2016-02-01

    Principally, in the fourth update of the rules for the procedure to finally determine the irreversible cessation of function of the cerebrum, the cerebellum and the brainstem, the importance of an electroencephalogram (EEG), somatosensory evoked potentials (SEP) and brainstem auditory evoked potentials (BAEP) are confirmed. This paper presents the reliability and validity of the electrophysiological diagnosis, discusses the amendments in the fourth version of the guidelines and introduces the practical application, problems and sources of error.An EEG is the best established supplementary diagnostic method for determining the irreversibility of clinical brain death syndrome. It should be noted that residual brain activity can often persist for many hours after the onset of brain death syndrome, particularly in patients with primary brainstem lesions. The derivation and analysis of an EEG requires a high level of expertise to be able to safely distinguish artefacts from primary brain activity. The registration of EEGs to demonstrate the irreversibility of clinical brain death syndrome is extremely time consuming.The BAEPs can only be used to confirm the irreversibility of brain death syndrome in serial examinations or in the rare cases of a sustained wave I or sustained waves I and II. Very often, an investigation cannot be reliably performed because of existing sound conduction disturbances or failure of all potentials even before the onset of clinical brain death syndrome. This explains why BAEPs are only used in exceptional cases.The SEPs of the median nerve can be very reliably derived, are technically simple and with few sources of error. A serial investigation is not required and the time needed for examination is short. For these reasons SEPs are given preference over EEGs and BAEPs for establishing the irreversibility of clinical brain death syndrome.

  13. Video-EEG recordings in full-term neonates of diabetic mothers: observational study.

    PubMed

    Castro Conde, José Ramón; González González, Nieves Luisa; González Barrios, Desiré; González Campo, Candelaria; Suárez Hernández, Yaiza; Sosa Comino, Elena

    2013-11-01

    To determine whether full-term newborn infants of diabetic mothers (IDM) present immature/disorganised EEG patterns in the immediate neonatal period, and whether there was any relationship with maternal glycaemic control. Cohort study with an incidental sample performed in a tertiary hospital neonatal unit. 23 IDM and 22 healthy newborns born between 2010 and 2013. All underwent video-EEG recording lasting >90 min at 48-72 h of life. We analysed the percentage of indeterminate sleep, transient sharp waves per hour and mature-for-gestational age EEG patterns (discontinuity, maximum duration of interburst interval (IBI), asynchrony, asymmetry, δ brushes, encoches frontales and α/θ rolandic activity). The group of IDM was divided into two subgroups according to maternal HbA1c: (1) HbA1c≥6% and (2) HbA1c<6%. Compared with healthy newborns, IDM presented significantly higher percentage of indeterminate sleep (57% vs 25%; p<0.001), discontinuity (2.5% vs 0%; p=0.044) and δ brushes in the bursts (6% vs 3%; p=0.024); higher duration of IBI (0.3 s vs 0 s; p=0.017); fewer encoches frontales (7/h vs 35/h; p<0.001), reduced θ/α rolandic activity (3/h vs 9/h; p<0.001); and more transient sharp waves (25/h vs 5/h; p<0.001). IDM with maternal HbA1c≥6% showed greater percentage of δ brushes in the burst (14% vs 4%; p=0.007). Full-term IDM newborns showed video-EEG features of abnormal development of brain function. Maternal HbA1c levels<6% during pregnancy could minimise the risk of cerebral dysmaturity.

  14. The Antiepileptic Drug Levetiracetam Suppresses Non-Convulsive Seizure Activity and Reduces Ischemic Brain Damage in Rats Subjected to Permanent Middle Cerebral Artery Occlusion

    PubMed Central

    Cuomo, Ornella; Rispoli, Vincenzo; Leo, Antonio; Politi, Giovanni Bosco; Vinciguerra, Antonio; di Renzo, Gianfranco; Cataldi, Mauro

    2013-01-01

    The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug. PMID:24236205

  15. Restricting Time in Bed in Early Adolescence Reduces Both NREM and REM Sleep but Does Not Increase Slow Wave EEG

    PubMed Central

    Campbell, Ian G.; Kraus, Amanda M.; Burright, Christopher S.; Feinberg, Irwin

    2016-01-01

    Study Objectives: School night total sleep time decreases across adolescence (9–18 years) by 10 min/year. This decline is comprised entirely of a selective decrease in NREM sleep; REM sleep actually increases slightly. Decreasing sleep duration across adolescence is often attributed to insufficient time in bed. Here we tested whether sleep restriction in early adolescence produces the same sleep stage changes observed on school nights across adolescence. Methods: All-night sleep EEG was recorded in 76 children ranging in age from 9.9 to 14.0 years. Each participant kept 3 different sleep schedules that consisted of 3 nights of 8.5 h in bed followed by 4 nights of either 7, 8.5, or 10 h in bed. Sleep stage durations and NREM delta EEG activity were compared across the 3 time in bed conditions. Results: Shortening time in bed from 10 to 7 hours reduced sleep duration by approximately 2 hours, roughly equal to the decrease in sleep duration we recorded longitudinally across adolescence. However, sleep restriction significantly reduced both NREM (by 83 min) and REM (by 47 min) sleep. Sleep restriction did not affect NREM delta EEG activity. Conclusions: Our findings suggest that the selective NREM reduction and the small increase in REM we observed longitudinally across 9–18 years are not produced by sleep restriction. We hypothesize that the selective NREM decline reflects adolescent brain maturation (synaptic elimination) that reduces the need for the restorative processes of NREM sleep. Citation: Campbell IG, Kraus AM, Burright CS, Feinberg I. Restricting time in bed in early adolescence reduces both NREM and REM sleep but does not increase slow wave EEG. SLEEP 2016;39(9):1663–1670. PMID:27397569

  16. Identifying stereotypic evolving micro-scale seizures (SEMS) in the hypoxic-ischemic EEG of the pre-term fetal sheep with a wavelet type-II fuzzy classifier.

    PubMed

    Abbasi, Hamid; Bennet, Laura; Gunn, Alistair J; Unsworth, Charles P

    2016-08-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) around the time of birth due to lack of oxygen can lead to debilitating neurological conditions such as epilepsy and cerebral palsy. Experimental data have shown that brain injury evolves over time, but during the first 6-8 hours after HIE the brain has recovered oxidative metabolism in a latent phase, and brain injury is reversible. Treatments such as therapeutic cerebral hypothermia (brain cooling) are effective when started during the latent phase, and continued for several days. Effectiveness of hypothermia is lost if started after the latent phase. Post occlusion monitoring of particular micro-scale transients in the hypoxic-ischemic (HI) Electroencephalogram (EEG), from an asphyxiated fetal sheep model in utero, could provide precursory evidence to identify potential biomarkers of injury when brain damage is still treatable. In our studies, we have reported how it is possible to automatically detect HI EEG transients in the form of spikes and sharp waves during the latent phase of the HI EEG of the preterm fetal sheep. This paper describes how to identify stereotypic evolving micro-scale seizures (SEMS) which have a relatively abrupt onset and termination in a frequency range of 1.8-3Hz (Delta waves) superimposed on a suppressed EEG amplitude background post occlusion. This research demonstrates how a Wavelet Type-II Fuzzy Logic System (WT-Type-II-FLS) can be used to automatically identify subtle abnormal SEMS that occur during the latent phase with a preliminary average validation overall performance of 78.71%±6.63 over the 390 minutes of the latent phase, post insult, using in utero pre-term hypoxic fetal sheep models.

  17. Computational Electromagnetic Analysis in a Human Head Model with EEG Electrodes and Leads Exposed to RF-Field Sources at 915 MHz and 1748 MHz

    PubMed Central

    Angelone, Leonardo M.; Bit-Babik, Giorgi; Chou, Chung-Kwang

    2010-01-01

    An electromagnetic analysis of a human head with EEG electrodes and leads exposed to RF-field sources was performed by means of Finite-Difference Time-Domain simulations on a 1-mm3 MRI-based human head model. RF-field source models included a half-wave dipole, a patch antenna, and a realistic CAD-based mobile phone at 915 MHz and 1748 MHz. EEG electrodes/leads models included two configurations of EEG leads, both a standard 10–20 montage with 19 electrodes and a 32-electrode cap, and metallic and high resistive leads. Whole-head and peak 10-g average SAR showed less than 20% changes with and without leads. Peak 1-g and 10-g average SARs were below the ICNIRP and IEEE guideline limits. Conversely, a comprehensive volumetric assessment of changes in the RF field with and without metallic EEG leads showed an increase of two orders of magnitude in single-voxel power absorption in the epidermis and a 40-fold increase in the brain during exposure to the 915 MHz mobile phone. Results varied with the geometry and conductivity of EEG electrodes/leads. This enhancement confirms the validity of the question whether any observed effects in studies involving EEG recordings during RF-field exposure are directly related to the RF fields generated by the source or indirectly to the RF-field-induced currents due to the presence of conductive EEG leads. PMID:20681803

  18. Behavioral preference in sequential decision-making and its association with anxiety.

    PubMed

    Zhang, Dandan; Gu, Ruolei

    2018-06-01

    In daily life, people often make consecutive decisions before the ultimate goal is reached (i.e., sequential decision-making). However, this kind of decision-making has been largely overlooked in the literature. The current study investigated whether behavioral preference would change during sequential decisions, and the neural processes underlying the potential changes. For this purpose, we revised the classic balloon analogue risk task and recorded the electroencephalograph (EEG) signals associated with each step of decision-making. Independent component analysis performed on EEG data revealed that four EEG components elicited by periodic feedback in the current step predicted participants' decisions (gamble vs. no gamble) in the next step. In order of time sequence, these components were: bilateral occipital alpha rhythm, bilateral frontal theta rhythm, middle frontal theta rhythm, and bilateral sensorimotor mu rhythm. According to the information flows between these EEG oscillations, we proposed a brain model that describes the temporal dynamics of sequential decision-making. Finally, we found that the tendency to gamble (as well as the power intensity of bilateral frontal theta rhythms) was sensitive to the individual level of trait anxiety in certain steps, which may help understand the role of emotion in decision-making. © 2018 Wiley Periodicals, Inc.

  19. Therapeutic effects of antimotion sickness medications on the secondary symptoms of motion sickness

    NASA Technical Reports Server (NTRS)

    Wood, C. D.; Stewart, J. J.; Wood, M. J.; Manno, J. E.; Manno, B. R.

    1990-01-01

    In addition to nausea and vomiting, motion sickness involves slowing of brain waves, loss of performance, inhibition of gastric motility and the Sopite Syndrome. The therapeutic effects of antimotion sickness drugs on these reactions were evaluated. The subjects were rotated to the M-III end-point of motion sickness. Intramuscular (IM) medications were then administered. Side effects before and after rotation were reported on the Cornell Medical Index. Brain waves were recorded on a Grass Model 6 Electroencephalograph (EEG), and gastric emptying was studied after an oral dose of 1 mCi Technetium 99m DTPA in 10 oz. isotonic saline. An increase in dizziness and drowsiness was reported with placebo after rotation. This was not prevented by IM scopolamine 0.1 mg or ephedrine 25 mg. EEG recordings indicated a slowing of alpha waves with some thea and delta waves from the frontal areas after rotation. IM ephedine and dimenhydrinate counteracted the slowing while 0.3 mg scopolamine had an additive effect. Alterations of performance on the pursuit meter correlated with the brain wave changes. Gastric emptying was restored by IM metoclopramide. Ephedrine IM but not scopolamine is effective for some of the secondary effects of motion sickness after it is established.

  20. Aspects of Complexity in Sleep Analysis

    NASA Astrophysics Data System (ADS)

    Leitão, José M. N.; Da Rosa, Agostinho C.

    The paper presents a selection of sleep analysis problems where some aspects and concepts of complexity come about. Emphasis is given to the electroencephalogram (EEG) as the most important sleep related variable. The conception of the EEG as a message to be deciphered stresses the importance of the communication and information theories in this field. An optimal detector of K complexes and vertex sharp waves based on a stochastic model of sleep EEG is considered. Besides detecting, the algorithm is also able to follow the evolution of the basic ongoing activity. It is shown that both the ostructure and microstructure of sleep can be described in terms of symbols and interpreted as sentences of a language. Syntactic models and Markov chain representations play in this context an important role.

  1. Effets des radiofréquences sur le système nerveux central chez lʼhomme : EEG, sommeil, cognition, vascularisation

    NASA Astrophysics Data System (ADS)

    Ghosn, Rania; Villégier, Anne-Sophie; Selmaoui, Brahim; Thuróczy, Georges; de Sèze, René

    2013-05-01

    Most of clinical studies on radiofrequency electromagnetic fields (RF) were directed at mobile phone-related exposures, usually at the level of the head, at their effect on some physiological functions including sleep, brain electrical activity (EEG), cognitive processes, brain vascularisation, and more generally on the cardiovascular and endocrine systems. They were frequently carried out on healthy adults. Effects on the amplitude of EEG alpha waves, mainly during sleep, look reproducible. It would however be important to define more precisely whether and how the absence of electromagnetic disturbance between RF exposure and the recording systems is checked. No consensus arises about cognitive effects. Some effects on cerebral vascularisation need complementary work.

  2. Design of an online EEG based neurofeedback game for enhancing attention and memory.

    PubMed

    Thomas, Kavitha P; Vinod, A P; Guan, Cuntai

    2013-01-01

    Brain-Computer Interface (BCI) is an alternative communication and control channel between brain and computer which finds applications in neuroprosthetics, brain wave controlled computer games etc. This paper proposes an Electroencephalogram (EEG) based neurofeedback computer game that allows the player to control the game with the help of attention based brain signals. The proposed game protocol requires the player to memorize a set of numbers in a matrix, and to correctly fill the matrix using his attention. The attention level of the player is quantified using sample entropy features of EEG. The statistically significant performance improvement of five healthy subjects after playing a number of game sessions demonstrates the effectiveness of the proposed game in enhancing their concentration and memory skills.

  3. [Electroencephalographic characteristics of the deja vu phenomenon].

    PubMed

    Vlasov, P N; Cherviakov, A V; Gnezdinsiĭ, V V

    2013-01-01

    Déjà vu (DV, from French "already seen") is an aberration of psychic activity associated with transitory erroneous perception of novel circumstances, objects, or people as already known. An aim of the study was to investigate EEG characteristics of DV in patients with epilepsy. We studied 166 people (63.2% women, mean age 25.17±9.19 years). The DV phenomenon was studied in patients (27 people) and in a control group (139 healthy people). Patients were interviewed for DV characteristics and underwent a long (12-16 h) ambulatory EEG-monitoring study. In EEG, DV episodes in patients began with polyspike activity in the right temporal lobe and, in some cases, ended with the slow-wave theta-delta activity in the right hemisphere.

  4. Wavelet analysis of epileptic spikes

    NASA Astrophysics Data System (ADS)

    Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-05-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  5. Behavioural, brain and cardiac responses to hypobaric hypoxia in broiler chickens.

    PubMed

    Martin, Jessica E; Christensen, Karen; Vizzier-Thaxton, Yvonne; Mitchell, Malcolm A; McKeegan, Dorothy E F

    2016-09-01

    A novel approach to pre-slaughter stunning of chickens has been developed in which birds are rendered unconscious by progressive hypobaric hypoxia. Termed Low Atmospheric Pressure Stunning (LAPS), this approach involves application of gradual decompression lasting 280s according to a prescribed curve. We examined responses to LAPS by recording behaviour, electroencephalogram (EEG) and electrocardiogram (ECG) in individual male chickens, and interpreted these with regard to the welfare impact of the process. We also examined the effect of two temperature adjusted pressure curves on these responses. Broiler chickens were exposed to LAPS in 30 triplets (16 and 14 triplets assigned to each pressure curve). In each triplet, one bird was instrumented for recording of EEG and ECG while the behaviour of all three birds was observed. Birds showed a consistent sequence of behaviours during LAPS (ataxia, loss of posture, clonic convulsions and motionless) which were observed in all birds. Leg paddling, tonic convulsions, slow wing flapping, mandibulation, head shaking, open bill breathing, deep inhalation, jumping and vocalisation were observed in a proportion of birds. Spectral analysis of EEG responses at 2s intervals throughout LAPS revealed progressive decreases in median frequency at the same time as corresponding progressive increases in total power, followed later by decreases in total power as all birds exhibited isoelectric EEG and died. There was a very pronounced increase in total power at 50-60s into the LAPS cycle, which corresponded to dominance of the signal by high amplitude slow waves, indicating loss of consciousness. Slow wave EEG was seen early in the LAPS process, before behavioural evidence of loss of consciousness such as ataxia and loss of posture, almost certainly due to the fact that it was completely dark in the LAPS chamber. ECG recordings showed a pronounced bradycardia (starting on average 49.6s into LAPS), often associated with arrhythmia, until around 60s into LAPS when heart rate levelled off. There was a good correlation between behavioural, EEG and cardiac measures in relation to loss of consciousness which collectively provide a loss of consciousness estimate of around 60s. There were some effects of temperature adjusted pressure curves on behavioural latencies and ECG responses, but in general responses were consistent and very similar to those reported in previous research on controlled atmosphere stunning with inert gases. The results suggest that the process is humane (slaughter without avoidable fear, anxiety, pain, suffering and distress). In particular, the maintenance of slow wave EEG patterns in the early part of LAPS (while birds are still conscious) is strongly suggestive that LAPS is non-aversive, since we would expect this to be interrupted by pain or discomfort. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Association of EEG alpha variants and alpha power with alcohol dependence in Mexican American young adults.

    PubMed

    Ehlers, Cindy L; Phillips, Evelyn

    2007-02-01

    Several studies support an association between electroencephalogram (EEG) voltage and alcohol dependence. However, the distribution of EEG variants also appears to differ depending on an individual's ethnic heritage, suggesting significant genetic stratification of this EEG phenotype. The present study's aims were to investigate the incidence of EEG alpha variants and spectral power in the alpha frequency range in Mexican American young adults based on gender, and personal and family history of alcohol dependence. Clinical ratings (high-, medium-, and low alpha voltage variants) and spectral characteristics of the EEG in the alpha frequency range (7.5-12 Hz) were investigated in young adult (age 18-25 years) Mexican American men (n=98) and women (n=138) who were recruited from the community. Nineteen percent (n=45) of the participants had a low-voltage alpha EEG variant, 18% had a high-voltage variant, and 63% had a medium-voltage variant. There were no significant differences in the distribution of the EEG variants based on family history of alcohol dependence. There was a significant relationship between gender and the three alpha variants (chi2=9.7; df=2; P<.008), and there were no male participants with alcohol dependence with high alpha variants (chi2=5.8; df=2; P<.056). Alcohol dependence, but not a family history of alcohol dependence, was associated with lower spectral power in the alpha frequency range in the right (F=4.4; df=1,96; P<.04) and left (F=5.3; df=1.96; P<.02) occipital areas in the men but not in the women. In conclusion, in this select population of Mexican American young adults, male gender and alcohol dependence are associated with an absence of high-voltage alpha variants and lower alpha power in the EEG. These data suggest that EEG low voltage, a highly heritable trait, may represent an important endophenotype in male Mexican Americans that may aid in linking brain function with genetic factors underlying alcohol dependence in this ethnic group.

  7. Different quantitative EEG alterations induced by TBI among patients with different APOE genotypes.

    PubMed

    Jiang, Li; Yin, Xiaohong; Yin, Cheng; Zhou, Shuai; Dan, Wei; Sun, Xiaochuan

    2011-11-14

    Although several studies have revealed the EEG alterations in AD and TBI patients, the influence of APOE (apolipoprotein E) genotype in EEG at the early stage of TBI has not been reported yet. We have previously studied EEG alterations caused by TBI among different APOE genotype carriers. In this study, we firstly investigated the relationship between APOE polymorphisms and quantitative EEG (QEEG) changes after TBI. A total of 118 consecutive TBI patients with a Glasgow Coma Scale (GCS) of 9 or higher were recruited, and 40 normal adults were also included as a control group. APOE genotype was determined by PCR-RFLP for each subject, and QEEG recordings were performed in rest, relaxed, awake and with eyes closed in normal subjects and TBI patients during 1-3 days after TBI. In the normal control group, both APOEɛ4 carriers and non-carriers had normal EEG, and no significant difference of QEEG data was found between APOEɛ4 carriers and non-carriers. But in the TBI group, APOEɛ4 carriers had more focal or global irregular slow wave activities than APOEɛ4 non-carriers. APOE gene did not influence brain electrical activity under normal conditions, but TBI can induce different alterations among different APOE gene carriers, and APOEɛ4 allele enhances the EEG abnormalities at the early stage of TBI. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing

    PubMed Central

    Jauk, Emanuel; Benedek, Mathias; Neubauer, Aljoscha C.

    2012-01-01

    The distinction between convergent and divergent cognitive processes given by Guilford (1956) had a strong influence on the empirical research on creative thinking. Neuroscientific studies typically find higher event-related synchronization in the EEG alpha rhythm for individuals engaged in creative ideation tasks compared to intelligence-related tasks. This study examined, whether these neurophysiological effects can also be found when both cognitive processing modes (convergent vs. divergent) are assessed by means of the same task employing a simple variation of instruction. A sample of 55 participants performed the alternate uses task as well as a more basic word association task while EEG was recorded. On a trial-by-trial basis, participants were either instructed to find a most common solution (convergent condition) or a most uncommon solution (divergent condition). The answers given in the divergent condition were in both tasks significantly more original than those in the convergent condition. Moreover, divergent processing was found to involve higher task-related EEG alpha power than convergent processing in both the alternate uses task and the word association task. EEG alpha synchronization can hence explicitly be associated with divergent cognitive processing rather than with general task characteristics of creative ideation tasks. Further results point to a differential involvement of frontal and parietal cortical areas by individuals of lower versus higher trait creativity. PMID:22390860

  9. Landau-Kleffner Syndrome, Electrical Status Epilepticus in Slow Wave Sleep, and Language Regression in Children

    ERIC Educational Resources Information Center

    McVicar, Kathryn A.; Shinnar, Shlomo

    2004-01-01

    The Landau-Kleffner syndrome (LKS) and electrical status epilepticus in slow wave sleep (ESES) are rare childhood-onset epileptic encephalopathies in which loss of language skills occurs in the context of an epileptiform EEG activated in sleep. Although in LKS the loss of function is limited to language, in ESES there is a wider spectrum of…

  10. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.

    PubMed

    Leicht, Katja; Seppälä, Katri; Seppälä, Otto

    2017-06-15

    On-going global climate change poses a serious threat for natural populations unless they are able to evolutionarily adapt to changing environmental conditions (e.g. increasing average temperatures, occurrence of extreme weather events). A prerequisite for evolutionary change is within-population heritable genetic variation in traits subject to selection. In relation to climate change, mainly phenological traits as well as heat and desiccation resistance have been examined for such variation. Therefore, it is important to investigate adaptive potential under climate change conditions across a broader range of traits. This is especially true for life-history traits and defences against natural enemies (e.g. parasites) since they influence organisms' fitness both directly and through species interactions. We examined the adaptive potential of fitness-related traits and their responses to heat waves in a population of a freshwater snail, Lymnaea stagnalis. We estimated family-level variation and covariation in life history (size, reproduction) and constitutive immune defence traits [haemocyte concentration, phenoloxidase (PO)-like activity, antibacterial activity of haemolymph] in snails experimentally exposed to typical (15 °C) and heat wave (25 °C) temperatures. We also assessed variation in the reaction norms of these traits between the treatments. We found that at the heat wave temperature, snails were larger and reproduced more, while their immune defence was reduced. Snails showed high family-level variation in all examined traits within both temperature treatments. The only negative genetic correlation (between reproduction and antibacterial activity) appeared at the high temperature. However, we found no family-level variation in the responses of most examined traits to the experimental heat wave (i.e. largely parallel reaction norms between the treatments). Only the reduction of PO-like activity when exposed to the high temperature showed family-level variation, suggesting that the cost of heat waves may be lower for some families and could evolve under selection. Our results suggest that there is genetic potential for adaptation within both thermal environments and that trait evolution may not be strongly affected by trade-offs between them. However, rare differences in thermal reaction norms across families indicate limited evolutionary potential in the responses of snails to changing temperatures during extreme weather events.

  11. Studying frequency processing of the brain to enhance long-term memory and develop a human brain protocol.

    PubMed

    Friedrich, Wernher; Du, Shengzhi; Balt, Karlien

    2015-01-01

    The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.

  12. EEG asymmetry at 10 months of age: are temperament trait predictors different for boys and girls?

    PubMed

    Gartstein, Maria A; Bell, Martha Ann; Calkins, Susan D

    2014-09-01

    Frontal EEG asymmetry patterns represent markers of individual differences in emotion reactivity and regulation, with right hemisphere activation linked with withdrawal behaviors/emotions (e.g., fear), and activation of the left hemisphere associated with approach (e.g., joy, anger). In the present study, gender was examined as a potential moderator of links between infant temperament at 5 months, and frontal EEG asymmetry patterns recorded during an Arm Restraint procedure at 10 months of age. Positive Affectivity/Surgency (PAS), Negative Emotionality (NE), and Orienting/Regulatory Capacity (ORC) were considered as predictors, with PAS emerging as significant for males; higher levels translating into greater right-frontal activation later in infancy. For females, ORC accounted for a significant portion of the frontal asymmetry scores, with higher ORC being associated with greater right-frontal activation. The moderating influence of gender noted in this study is discussed in the context of implications for discrepancies in rates/symptoms of psychopathology later in childhood. © 2014 Wiley Periodicals, Inc.

  13. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  14. Screening EEG in Aircrew Selection: Clinical Aerospace Neurology Perspective

    NASA Technical Reports Server (NTRS)

    Clark, Jonathan B.; Riley, Terrence

    2001-01-01

    As clinical aerospace neurologists we do not favor using screening EEG in pilot selection on unselected and otherwise asymptomatic individuals. The role of EEG in aviation screening should be as an adjunct to diagnosis, and the decision to disqualify a pilot should never be based solely on the EEG. Although a policy of using a screening EEG in an unselected population might detect an individual with a potentially increased relative risk, it would needlessly exclude many applicants who would probably never have a seizure. A diagnostic test performed on an asymptomatic individual without clinical indications, in a population with a low prevalence of disease (seizure) may be of limited or possibly detrimental value. We feel that rather than do EEGs on all candidates, a better approach would be to perform an EEG for a specific indication, such as family history of seizure, single convulsion (seizure) , history of unexplained loss of consciousness or head injury. Routine screening EEGs in unselected aviation applications are not done without clinical indication in the U.S. Air Force, Navy, or NASA. The USAF discontinued routine screening EEGs for selection in 1978, the U.S. Navy discontinued it in 1981 , and NASA discontinued it in 1995. EEG as an aeromedical screening tool in the US Navy dates back to 1939. The US Navy routinely used EEGs to screen all aeromedical personnel from 1961 to 1981. The incidence of epileptiform activity on EEG in asymptomatic flight candidates ranges from 0.11 to 2.5%. In 3 studies of asymptomatic flight candidates with epileptiform activity on EEG followed for 2 to 15 years, 1 of 31 (3.2%), 1 of 30 (3.3%), and 0 of 14 (0%) developed a seizure, for a cumulative risk of an individual with an epileptiform EEG developing a seizure of 2.67% (2 in 75). Of 28,658 student naval aviation personnel screened 31 had spikes and/or slow waves on EEG, and only 1 later developed a seizure. Of the 28,627 who had a normal EEG, 4 later developed seizures, or .0139% (4/28627). After review of the value of the EEG as a screening tool, the US Navy now uses EEG only for certain clinical indications (head injury, unexplained loss of consciousness, family history of epilepsy, and abnormal neurological exam). Currently the US Navy does not use EEG for screening for any flight applicant without a neurologic indication. In the US Navy, an electroencephalographic pattern is determined to be epileptiform by a neurologist.

  15. Integrating EEG and fMRI in epilepsy.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Bertoldo, Alessandra; Manganotti, Paolo; Fiaschi, Antonio; Toffolo, Gianna Maria

    2011-02-14

    Integrating electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies enables to non-invasively investigate human brain function and to find the direct correlation of these two important measures of brain activity. Presurgical evaluation of patients with epilepsy is one of the areas where EEG and fMRI integration has considerable clinical relevance for localizing the brain regions generating interictal epileptiform activity. The conventional analysis of EEG-fMRI data is based on the visual identification of the interictal epileptiform discharges (IEDs) on scalp EEG. The convolution of these EEG events, represented as stick functions, with a model of the fMRI response, i.e. the hemodynamic response function, provides the regressor for general linear model (GLM) analysis of fMRI data. However, the conventional analysis is not automatic and suffers of some subjectivity in IEDs classification. Here, we present an easy-to-use and automatic approach for combined EEG-fMRI analysis able to improve IEDs identification based on Independent Component Analysis and wavelet analysis. EEG signal due to IED is reconstructed and its wavelet power is used as a regressor in GLM. The method was validated on simulated data and then applied on real data set consisting of 2 normal subjects and 5 patients with partial epilepsy. In all continuous EEG-fMRI recording sessions a good quality EEG was obtained allowing the detection of spontaneous IEDs and the analysis of the related BOLD activation. The main clinical finding in EEG-fMRI studies of patients with partial epilepsy is that focal interictal slow-wave activity was invariably associated with increased focal BOLD responses in a spatially related brain area. Our study extends current knowledge on epileptic foci localization and confirms previous reports suggesting that BOLD activation associated with slow activity might have a role in localizing the epileptogenic region even in the absence of clear interictal spikes. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. EEG Negativity in Fixations Used for Gaze-Based Control: Toward Converting Intentions into Actions with an Eye-Brain-Computer Interface

    PubMed Central

    Shishkin, Sergei L.; Nuzhdin, Yuri O.; Svirin, Evgeny P.; Trofimov, Alexander G.; Fedorova, Anastasia A.; Kozyrskiy, Bogdan L.; Velichkovsky, Boris M.

    2016-01-01

    We usually look at an object when we are going to manipulate it. Thus, eye tracking can be used to communicate intended actions. An effective human-machine interface, however, should be able to differentiate intentional and spontaneous eye movements. We report an electroencephalogram (EEG) marker that differentiates gaze fixations used for control from spontaneous fixations involved in visual exploration. Eight healthy participants played a game with their eye movements only. Their gaze-synchronized EEG data (fixation-related potentials, FRPs) were collected during game's control-on and control-off conditions. A slow negative wave with a maximum in the parietooccipital region was present in each participant's averaged FRPs in the control-on conditions and was absent or had much lower amplitude in the control-off condition. This wave was similar but not identical to stimulus-preceding negativity, a slow negative wave that can be observed during feedback expectation. Classification of intentional vs. spontaneous fixations was based on amplitude features from 13 EEG channels using 300 ms length segments free from electrooculogram contamination (200–500 ms relative to the fixation onset). For the first fixations in the fixation triplets required to make moves in the game, classified against control-off data, a committee of greedy classifiers provided 0.90 ± 0.07 specificity and 0.38 ± 0.14 sensitivity. Similar (slightly lower) results were obtained for the shrinkage Linear Discriminate Analysis (LDA) classifier. The second and third fixations in the triplets were classified at lower rate. We expect that, with improved feature sets and classifiers, a hybrid dwell-based Eye-Brain-Computer Interface (EBCI) can be built using the FRP difference between the intended and spontaneous fixations. If this direction of BCI development will be successful, such a multimodal interface may improve the fluency of interaction and can possibly become the basis for a new input device for paralyzed and healthy users, the EBCI “Wish Mouse.” PMID:27917105

  17. Beta event-related desynchronization as an index of individual differences in processing human facial expression: further investigations of autistic traits in typically developing adults

    PubMed Central

    Cooper, Nicholas R.; Simpson, Andrew; Till, Amy; Simmons, Kelly; Puzzo, Ignazio

    2013-01-01

    The human mirror neuron system (hMNS) has been associated with various forms of social cognition and affective processing including vicarious experience. It has also been proposed that a faulty hMNS may underlie some of the deficits seen in the autism spectrum disorders (ASDs). In the present study we set out to investigate whether emotional facial expressions could modulate a putative EEG index of hMNS activation (mu suppression) and if so, would this differ according to the individual level of autistic traits [high versus low Autism Spectrum Quotient (AQ) score]. Participants were presented with 3 s films of actors opening and closing their hands (classic hMNS mu-suppression protocol) while simultaneously wearing happy, angry, or neutral expressions. Mu-suppression was measured in the alpha and low beta bands. The low AQ group displayed greater low beta event-related desynchronization (ERD) to both angry and neutral expressions. The high AQ group displayed greater low beta ERD to angry than to happy expressions. There was also significantly more low beta ERD to happy faces for the low than for the high AQ group. In conclusion, an interesting interaction between AQ group and emotional expression revealed that hMNS activation can be modulated by emotional facial expressions and that this is differentiated according to individual differences in the level of autistic traits. The EEG index of hMNS activation (mu suppression) seems to be a sensitive measure of the variability in facial processing in typically developing individuals with high and low self-reported traits of autism. PMID:23630489

  18. Beta event-related desynchronization as an index of individual differences in processing human facial expression: further investigations of autistic traits in typically developing adults.

    PubMed

    Cooper, Nicholas R; Simpson, Andrew; Till, Amy; Simmons, Kelly; Puzzo, Ignazio

    2013-01-01

    The human mirror neuron system (hMNS) has been associated with various forms of social cognition and affective processing including vicarious experience. It has also been proposed that a faulty hMNS may underlie some of the deficits seen in the autism spectrum disorders (ASDs). In the present study we set out to investigate whether emotional facial expressions could modulate a putative EEG index of hMNS activation (mu suppression) and if so, would this differ according to the individual level of autistic traits [high versus low Autism Spectrum Quotient (AQ) score]. Participants were presented with 3 s films of actors opening and closing their hands (classic hMNS mu-suppression protocol) while simultaneously wearing happy, angry, or neutral expressions. Mu-suppression was measured in the alpha and low beta bands. The low AQ group displayed greater low beta event-related desynchronization (ERD) to both angry and neutral expressions. The high AQ group displayed greater low beta ERD to angry than to happy expressions. There was also significantly more low beta ERD to happy faces for the low than for the high AQ group. In conclusion, an interesting interaction between AQ group and emotional expression revealed that hMNS activation can be modulated by emotional facial expressions and that this is differentiated according to individual differences in the level of autistic traits. The EEG index of hMNS activation (mu suppression) seems to be a sensitive measure of the variability in facial processing in typically developing individuals with high and low self-reported traits of autism.

  19. The effect of alpha rhythm sleep on EEG activity and individuals' attention.

    PubMed

    Kim, Seon Chill; Lee, Myoung Hee; Jang, Chel; Kwon, Jung Won; Park, Joo Wan

    2013-12-01

    [Purpose] This study examined whether the alpha rhythm sleep alters the EEG activity and response time in the attention and concentration tasks. [Subjects and Methods] The participants were 30 healthy university students, who were randomly and equally divided into two groups, the experimental and control groups. They were treated using the Happy-sleep device or a sham device, respectively. All participants had a one-week training period. Before and after training sessions, a behavioral task test was performed and EEG alpha waves were measured to confirm the effectiveness of training on cognitive function. [Results] In terms of the behavioral task test, reaction time (RT) variations in the experimental group were significantly larger than in the control group for the attention item. Changes in the EEG alpha power in the experimental group were also significantly larger than those of the control group. [Conclusions] These findings suggest that sleep induced using the Happy-sleep device modestly enhances the ability to pay attention and focus during academic learning.

  20. Nonlinear Recurrent Dynamics and Long-Term Nonstationarities in EEG Alpha Cortical Activity: Implications for Choosing Adequate Segment Length in Nonlinear EEG Analyses.

    PubMed

    Cerquera, Alexander; Vollebregt, Madelon A; Arns, Martijn

    2018-03-01

    Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.

  1. Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors

    NASA Astrophysics Data System (ADS)

    Fujiwara, Kosuke; Oogane, Mikihiko; Kanno, Akitake; Imada, Masahiro; Jono, Junichi; Terauchi, Takashi; Okuno, Tetsuo; Aritomi, Yuuji; Morikawa, Masahiro; Tsuchida, Masaaki; Nakasato, Nobukazu; Ando, Yasuo

    2018-02-01

    Magnetocardiography (MCG) and magnetoencephalography (MEG) signals were detected at room temperature using tunnel magneto-resistance (TMR) sensors. TMR sensors developed with low-noise amplifier circuits detected the MCG R wave without averaging, and the QRS complex was clearly observed with averaging at a high signal-to-noise ratio. Spatial mapping of the MCG was also achieved. Averaging of MEG signals triggered by electroencephalography (EEG) clearly observed the phase inversion of the alpha rhythm with a correlation coefficient as high as 0.7 between EEG and MEG.

  2. Epileptic seizure prediction by non-linear methods

    DOEpatents

    Hively, Lee M.; Clapp, Ned E.; Daw, C. Stuart; Lawkins, William F.

    1999-01-01

    Methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming.

  3. Neurobiological Correlates of Coping through Emotional Approach

    PubMed Central

    Master, Sarah L.; Amodio, David M.; Stanton, Annette L.; Yee, Cindy M.; Hilmert, Clayton J.; Taylor, Shelley E.

    2008-01-01

    This investigation considered possible health-related neurobiological processes associated with “emotional approach coping” (EAC), or intentional efforts to identify, process, and express emotions surrounding stressors. It was hypothesized that higher dispositional use of EAC strategies would be related to neural activity indicative of greater trait approach motivational orientation and to lower proinflammatory cytokine and cortisol responses to stress. To assess these relationships, 46 healthy participants completed a questionnaire assessing the two components of EAC (i.e., emotional processing and emotional expression), and their resting frontal cortical asymmetry was measured using electroencephalography (EEG). A subset (N = 22) of these participants’ levels of the soluble receptor for tumor necrosis factor-alpha (sTNFαRII), interleukin-6 (IL-6), and cortisol (all obtained from oral fluids) were also assessed before and after exposure to an acute laboratory stressor. Consistent with predictions, higher reported levels of emotional expression were significantly associated with greater relative left-sided frontal EEG asymmetry, indicative of greater trait approach motivation. Additionally, people who scored higher on EAC, particularly the emotional processing component, tended to show a less-pronounced TNF-α stress response. EAC was unrelated to levels of IL-6 and cortisol. Greater left-sided frontal EEG asymmetry was significantly related to lower baseline levels of IL-6 and to lower stress-related levels of sTNFαRII, and was marginally related to lower stress-related levels of IL-6. The findings suggest that the salubrious effects of EAC strategies for managing stress may be linked to an approach-oriented neurocognitive profile and to well-regulated proinflammatory cytokine responses to stress. PMID:18558470

  4. An experimental heat wave changes immune defense and life history traits in a freshwater snail.

    PubMed

    Leicht, Katja; Jokela, Jukka; Seppälä, Otto

    2013-12-01

    The predicted increase in frequency and severity of heat waves due to climate change is expected to alter disease dynamics by reducing hosts' ability to resist infections. This could take place via two different mechanisms: (1) through general reduction in hosts' performance under harsh environmental conditions and/or (2) through altered resource allocation that reduces expression of defense traits in order to maintain other traits. We tested these alternative hypotheses by measuring the effect of an experimental heat wave (25 vs. 15°C) on the constitutive level of immune defense (hemocyte concentration, phenoloxidase [PO]-like activity, antibacterial activity of hemolymph), and life history traits (growth and number of oviposited eggs) of the great pond snail Lymnaea stagnalis. We also manipulated the exposure time to high temperature (1, 3, 5, 7, 9, or 11 days). We found that if the exposure to high temperature lasted <1 week, immune function was not affected. However, when the exposure lasted longer than that, the level of snails' immune function (hemocyte concentration and PO-like activity) was reduced. Snails' growth and reproduction increased within the first week of exposure to high temperature. However, longer exposures did not lead to a further increase in cumulative reproductive output. Our results show that short experimental heat waves do not alter immune function but lead to plastic responses that increase snails' growth and reproduction. Thus, although the relative expression of traits changes, short experimental heat waves do not impair snails' defenses. Negative effects on performance get pronounced when the heat waves are prolonged suggesting that high performance cannot be maintained over long time periods. This ultimately reduces the levels of defense traits.

  5. Continuous EEG-fMRI in Pre-Surgical Evaluation of a Patient with Symptomatic Seizures: Bold Activation Linked to Interictal Epileptic Discharges Caused by Cavernoma.

    PubMed

    Avesani, M; Formaggio, E; Milanese, F; Baraldo, A; Gasparini, A; Cerini, R; Bongiovanni, L G; Pozzi Mucelli, R; Fiaschi, A; Manganotti, P

    2008-04-07

    We used continuous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) to identify the linkage between the "epileptogenic" and the "irritative" area in a patient with symptomatic epilepsy (cavernoma, previously diagnosed and surgically treated), i.e. a patient with a well known "epileptogenic area", and to increase the possibility of a non invasive pre-surgical evaluation of drug-resistant epilepsies. A compatible MRI system was used (EEG with 29 scalp electrodes and two electrodes for ECG and EMG) and signals were recorded with a 1.5 Tesla MRI scanner. After the recording session and MRI artifact removal, EEG data were analyzed offline and used as paradigms in fMRI study. Activation (EEG sequences with interictal slow-spiked-wave activity) and rest (sequences of normal EEG) conditions were compared to identify the potential resulting focal increase in BOLD signal and to consider if this is spatially linked to the interictal focus used as a paradigm and to the lesion. We noted an increase in the BOLD signal in the left neocortical temporal region, laterally and posteriorly to the poro-encephalic cavity (residual of cavernoma previously removed), that is around the "epileptogenic area". In our study "epileptogenic" and "irritative" areas were connected with each other. Combined EEG-fMRI may become routine in clinical practice for a better identification of an irritative and lesional focus in patients with symptomatic drug-resistant epilepsy.

  6. Bispectral index monitoring during electroconvulsive therapy under propofol anaesthesia.

    PubMed

    Gunawardane, P O; Murphy, P A; Sleigh, J W

    2002-02-01

    The accuracy of the bispectral index (BIS) as a monitor of consciousness has not been well studied in patients who have abnormal electroencephalograms (EEG). We studied the changes in BIS, its subparameters, and spectral entropy of the EEG during 18 electroconvulsive treatments under propofol and succinylcholine anaesthesia. A single bifrontal EEG, and second subocular channel (for eye movement estimation) was recorded. The median (interquartile range) BIS value at re-awakening was only 57 (47-78)--thus more than a quarter of the patients woke at BIS values of less than 50. The changes in spectral entropy values were similar: 0.84 (0.68-0.99) at the start, 0.65 (0.42-0.88) at the point of loss-of-consciousness, 0.63 (0.47-0.79) during the seizures, and 0.58 (0.31-0.85) at awakening. Post-ictal slow-wave activity in the EEG (acting via the SynchFastSlow subparameter) may cause low BIS values that do not correspond to the patient's clinical level of consciousness. This may be important in the interpretation of the BIS in other groups of patients who have increased delta-band power in their EEG.

  7. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Rowe, D. L.

    2002-04-01

    Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.

  8. Altered slow wave activity in major depressive disorder with hypersomnia: a high density EEG pilot study

    PubMed Central

    Plante, David T.; Landsness, Eric C.; Peterson, Michael J.; Goldstein, Michael R.; Wanger, Tim; Guokas, Jeff J.; Tononi, Giulio; Benca, Ruth M.

    2012-01-01

    Hypersomnolence in major depressive disorder (MDD) plays an important role in the natural history of the disorder, but the basis of hypersomnia in MDD is poorly understood. Slow wave activity (SWA) has been associated with sleep homeostasis, as well as sleep restoration and maintenance, and may be altered in MDD. Therefore, we conducted a post-hoc study that utilized high density electroencephalography (hdEEG) to test the hypothesis that MDD subjects with hypersomnia (HYS+) would have decreased SWA relative to age and sex-matched MDD subjects without hypersomnia (HYS−) and healthy controls (n=7 for each group). After correcting for multiple comparisons using statistical non-parametric mapping, HYS+ subjects demonstrated significantly reduced parieto-occipital all-night SWA relative to HYS− subjects. Our results suggest hypersomnolence may be associated with topographic reductions in SWA in MDD. Further research using adequately powered prospective design is indicated to confirm these findings. PMID:22512951

  9. Anti-deception: reliable EEG-based biometrics with real-time capability from the neural response of face rapid serial visual presentation.

    PubMed

    Wu, Qunjian; Yan, Bin; Zeng, Ying; Zhang, Chi; Tong, Li

    2018-05-03

    The electroencephalogram (EEG) signal represents a subject's specific brain activity patterns and is considered as an ideal biometric given its superior invisibility, non-clonality, and non-coercion. In order to enhance its applicability in identity authentication, a novel EEG-based identity authentication method is proposed based on self- or non-self-face rapid serial visual presentation. In contrast to previous studies that extracted EEG features from rest state or motor imagery, the designed paradigm could obtain a distinct and stable biometric trait with a lower time cost. Channel selection was applied to select specific channels for each user to enhance system portability and improve discriminability between users and imposters. Two different imposter scenarios were designed to test system security, which demonstrate the capability of anti-deception. Fifteen users and thirty imposters participated in the experiment. The mean authentication accuracy values for the two scenarios were 91.31 and 91.61%, with 6 s time cost, which illustrated the precision and real-time capability of the system. Furthermore, in order to estimate the repeatability and stability of our paradigm, another data acquisition session is conducted for each user. Using the classification models generated from the previous sessions, a mean false rejected rate of 7.27% has been achieved, which demonstrates the robustness of our paradigm. Experimental results reveal that the proposed paradigm and methods are effective for EEG-based identity authentication.

  10. CAP, epilepsy and motor events during sleep: the unifying role of arousal.

    PubMed

    Parrino, Liborio; Halasz, Peter; Tassinari, Carlo Alberto; Terzano, Mario Giovanni

    2006-08-01

    Arousal systems play a topical neurophysiologic role in protecting and tailoring sleep duration and depth. When they appear in NREM sleep, arousal responses are not limited to a single EEG pattern but are part of a continuous spectrum of EEG modifications ranging from high-voltage slow rhythms to low amplitude fast activities. The hierarchic features of arousal responses are reflected in the phase A subtypes of CAP (cyclic alternating pattern) including both slow arousals (dominated by the <1Hz oscillation) and fast arousals (ASDA arousals). CAP is an infraslow oscillation with a periodicity of 20-40s that participates in the dynamic organization of sleep and in the activation of motor events. Physiologic, paraphysiologic and pathologic motor activities during NREM sleep are always associated with a stereotyped arousal pattern characterized by an initial increase in EEG delta power and heart rate, followed by a progressive activation of faster EEG frequencies. These findings suggest that motor patterns are already written in the brain codes (central pattern generators) embraced with an automatic sequence of EEG-vegetative events, but require a certain degree of activation (arousal) to become visibly apparent. Arousal can appear either spontaneously or be elicited by internal (epileptic burst) or external (noise, respiratory disturbance) stimuli. Whether the outcome is a physiologic movement, a muscle jerk or a major epileptic attack will depend on a number of ongoing factors (sleep stage, delta power, neuro-motor network) but all events share the common trait of arousal-activated phenomena.

  11. Genome-wide association identifies candidate genes that influence the human electroencephalogram

    PubMed Central

    Hodgkinson, Colin A.; Enoch, Mary-Anne; Srivastava, Vibhuti; Cummins-Oman, Justine S.; Ferrier, Cherisse; Iarikova, Polina; Sankararaman, Sriram; Yamini, Goli; Yuan, Qiaoping; Zhou, Zhifeng; Albaugh, Bernard; White, Kenneth V.; Shen, Pei-Hong; Goldman, David

    2010-01-01

    Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnostic for any of them. EEG traits for an individual are stable, variable between individuals, and moderately to highly heritable. Such intermediate phenotypes appear to be closer to underlying molecular processes than are clinical symptoms, and represent an alternative approach for the identification of genetic variation that underlies complex psychiatric disorders. We performed a whole-genome association study on alpha (α), beta (β), and theta (θ) EEG power in a Native American cohort of 322 individuals to take advantage of the genetic and environmental homogeneity of this population isolate. We identified three genes (SGIP1, ST6GALNAC3, and UGDH) with nominal association to variability of θ or α power. SGIP1 was estimated to account for 8.8% of variance in θ power, and this association was replicated in US Caucasians, where it accounted for 3.5% of the variance. Bayesian analysis of prior probability of association based upon earlier linkage to chromosome 1 and enrichment for vesicle-related transport proteins indicates that the association of SGIP1 with θ power is genuine. We also found association of SGIP1 with alcoholism, an effect that may be mediated via the same brain mechanisms accessed by θ EEG, and which also provides validation of the use of EEG as an endophenotype for alcoholism. PMID:20421487

  12. Comparison of EEG propagation speeds under emotional stimuli on smartphone between the different anxiety states

    PubMed Central

    Asakawa, Tetsuya; Muramatsu, Ayumi; Hayashi, Takuto; Urata, Tatsuya; Taya, Masato; Mizuno-Matsumoto, Yuko

    2014-01-01

    The current study evaluated the effect of different anxiety states on information processing as measured by an electroencephalography (EEG) using emotional stimuli on a smartphone. Twenty-three healthy subjects were assessed for their anxiety states using The State Trait Anxiety Inventory (STAI) and divided into two groups: low anxiety (I, II) or high anxiety (III and IV, V). An EEG was performed while the participant was presented with emotionally laden audiovisual stimuli (resting, pleasant, and unpleasant sessions) and emotionally laden sentence stimuli (pleasant sentence, unpleasant sentence sessions) and EEG data was analyzed using propagation speed analysis. The propagation speed of the low anxiety group at the medial coronal for resting stimuli for all time segments was higher than those of high anxiety group. The low anxiety group propagation speeds at the medial sagittal for unpleasant stimuli in the 0–30 and 60–150 s time frames were higher than those of high anxiety group. The propagation speeds at 150 s for all stimuli in the low anxiety group were significantly higher than the correspondent propagation speeds of the high anxiety group. These events suggest that neural information processes concerning emotional stimuli differ based on current anxiety state. PMID:25540618

  13. Automatic reference selection for quantitative EEG interpretation: identification of diffuse/localised activity and the active earlobe reference, iterative detection of the distribution of EEG rhythms.

    PubMed

    Wang, Bei; Wang, Xingyu; Ikeda, Akio; Nagamine, Takashi; Shibasaki, Hiroshi; Nakamura, Masatoshi

    2014-01-01

    EEG (Electroencephalograph) interpretation is important for the diagnosis of neurological disorders. The proper adjustment of the montage can highlight the EEG rhythm of interest and avoid false interpretation. The aim of this study was to develop an automatic reference selection method to identify a suitable reference. The results may contribute to the accurate inspection of the distribution of EEG rhythms for quantitative EEG interpretation. The method includes two pre-judgements and one iterative detection module. The diffuse case is initially identified by pre-judgement 1 when intermittent rhythmic waveforms occur over large areas along the scalp. The earlobe reference or averaged reference is adopted for the diffuse case due to the effect of the earlobe reference depending on pre-judgement 2. An iterative detection algorithm is developed for the localised case when the signal is distributed in a small area of the brain. The suitable averaged reference is finally determined based on the detected focal and distributed electrodes. The presented technique was applied to the pathological EEG recordings of nine patients. One example of the diffuse case is introduced by illustrating the results of the pre-judgements. The diffusely intermittent rhythmic slow wave is identified. The effect of active earlobe reference is analysed. Two examples of the localised case are presented, indicating the results of the iterative detection module. The focal and distributed electrodes are detected automatically during the repeating algorithm. The identification of diffuse and localised activity was satisfactory compared with the visual inspection. The EEG rhythm of interest can be highlighted using a suitable selected reference. The implementation of an automatic reference selection method is helpful to detect the distribution of an EEG rhythm, which can improve the accuracy of EEG interpretation during both visual inspection and automatic interpretation. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. The additional lateralizing and localizing value of the postictal EEG in frontal lobe epilepsy.

    PubMed

    Whitehead, Kimberley; Gollwitzer, Stephanie; Millward, Helen; Wehner, Tim; Scott, Catherine; Diehl, Beate

    2016-03-01

    The aim of this study was to describe the additional lateralizing and localizing value of the postictal EEG in frontal lobe epilepsy (FLE). The ictal EEG in FLE is frequently challenging to localize. We identified patients investigated for epilepsy surgery with unilateral FLE based on consistent semiology, a clear lesion and/or with frontal onset on intracranial EEG. A one hour section of postictal EEG was analyzed by two raters for new or activated EEG features and it was assessed whether these features offered additional information when compared to the ictal EEG. Postictal features assessed included asymmetrical return of the posterior dominant rhythm and potentiated lateralized or regional frontal slowing, spikes or sharp waves. Thirty-eight patients were included who had a combined total of ninety-six seizures. 47/96 (49%) postictal periods contained correctly lateralizing or localizing information. The sensitivity for asymmetrical return of the posterior dominant rhythm was 24%. The sensitivity for regional frontal slow and frontal spikes was 23% and 20% respectively. Further analysis showed that in 14/38 (39%) patients, at least one seizure with an unhelpful ictal EEG was followed by postictal EEG features that added new localizing or lateralizing information. A subgroup of 11 patients who were ⩾1 year seizure-free (ILAE class 1) and thus classified as having a 'gold-standard' FLE diagnosis were analyzed separately and it was found that 14/30 of their seizures (47%) had extra postictal information. The new postictal information was always concordant with the ultimate diagnosis, except for asymmetric postictal return of background activity ipsilateral to the epileptogenic zone in three patients. This study shows that a close examination of the postictal EEG can offer additional information which can contribute to the identification of a potentially resectable epileptogenic zone. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Recording brain waves at the supermarket: what can we learn from a shopper's brain?

    PubMed

    Sands, Stephen F; Sands, J Andrew

    2012-01-01

    Communication and marketing campaigns have traditionally been divided into two lines: above the line (ATL) and below the line (BTL). ATL campaigns refer to communications such as TV, print, and outdoor displays that are intended to reach large audiences. The effects of ATL are inherently difficult to measure; we do not see the direct consequences of viewing an advertisement (i.e., a talking baby giving financial advice) and actual purchase of the product. ATL is intended to indirectly improve the impression of a brand. BTL campaigns refer to promotions and in-store displays and are designed to affect the point-of-purchase behavior. The effects of BTL are easier to measure; we see direct consequences of viewing a display (i.e., “Today Only, Two for the Price of One”) and eventual purchase of the product. BTL is intended to directly improve the impression of a brand. Neuroscience plays an important role in measuring the effects of marketing campaigns. Traditional methods of measurement (such as surveys and interviews) depend on the verbal ability of the consumer to articulate their motivations for purchasing a product. It is well known that participants are poor at introspective reasoning, leading to an eventual purchase that omits emotional elements. Recently, methods normally employed in cognitive neuroscience have been adapted for use in the evaluation of campaign effectiveness. These methods have increased our understanding of factors leading to economic decisions. The application of neuroscience in ATL campaigns is relatively straightforward. Participants view TV commercials, for example, seated in a comfortable setting with minimal movement while electroencephalogram (EEG) measures are monitored. These brain waves reveal cognitive events related to the media. Participants are exposed to a functional magnetic resonance imaging (fMRI) scanner to monitor changes in blood flow in various regions of the brain. Both of these methods are sensitive to underlying cognitive and emotional activity and are complimentary. EEG is more sensitive to time-locked events (i.e., story lines), whereas fMRI is more sensitive to the brain regions involved. The application of neuroscience in BTL campaigns is significantly more difficult to achieve. Participants move unconstrained in a shopping environment while EEG and eye movements are monitored. In this scenario, fMRI is not possible. fMRI can be used with virtual store mock-ups, but it is expensive and seldom used. We have developed a technology that allows for the measurement of EEG in an unobtrusive manner. The intent is to record the brain waves of participants during their day-to-day shopping experience. A miniaturized video recorder, EEG amplifiers, and eye-tracking systems are used. Digital signal processing is employed to remove the substantial artifact generated by eye movements and motion. Eye fixations identify specific viewings of products and displays, and they are used for synchronizing the behavior with EEG response. The location of EEG sources is determined by the use of a source reconstruction software.

  16. Voluntary Sleep Loss in Rats.

    PubMed

    Oonk, Marcella; Krueger, James M; Davis, Christopher J

    2016-07-01

    Animal sleep deprivation (SDEP), in contrast to human SDEP, is involuntary and involves repeated exposure to aversive stimuli including the inability of the animal to control the waking stimulus. Therefore, we explored intracranial self-stimulation (ICSS), an operant behavior, as a method for voluntary SDEP in rodents. Male Sprague-Dawley rats were implanted with electroencephalography/electromyography (EEG/EMG) recording electrodes and a unilateral bipolar electrode into the lateral hypothalamus. Rats were allowed to self-stimulate, or underwent gentle handling-induced SDEP (GH-SDEP), during the first 6 h of the light phase, after which they were allowed to sleep. Other rats performed the 6 h ICSS and 1 w later were subjected to 6 h of noncontingent stimulation (NCS). During NCS the individual stimulation patterns recorded during ICSS were replayed. After GH-SDEP, ICSS, or NCS, time in nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep increased. Further, in the 24 h after SDEP, rats recovered all of the REM sleep lost during SDEP, but only 75% to 80% of the NREM sleep lost, regardless of the SDEP method. The magnitude of EEG slow wave responses occurring during NREM sleep also increased after SDEP treatments. However, NREM sleep EEG slow wave activity (SWA) responses were attenuated following ICSS, compared to GH-SDEP and NCS. We conclude that ICSS and NCS can be used to sleep deprive rats. Changes in rebound NREM sleep EEG SWA occurring after ICSS, NCS, and GH-SDEP suggest that nonspecific effects of the SDEP procedure differentially affect recovery sleep phenotypes. © 2016 Associated Professional Sleep Societies, LLC.

  17. Longitudinal sleep EEG trajectories indicate complex patterns of adolescent brain maturation.

    PubMed

    Feinberg, Irwin; Campbell, Ian G

    2013-02-15

    New longitudinal sleep data spanning ages 6-10 yr are presented and combined with previous data to analyze maturational trajectories of delta and theta EEG across ages 6-18 yr in non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM delta power (DP) increased from age 6 to age 8 yr and then declined. Its highest rate of decline occurred between ages 12 and 16.5 yr. We attribute the delta EEG trajectories to changes in synaptic density. Whatever their neuronal underpinnings, these age curves can guide research into the molecular-genetic mechanisms that underlie adolescent brain development. The DP trajectories in NREM and REM sleep differed strikingly. DP in REM did not initially increase but declined steadily from age 6 to age 16 yr. We hypothesize that the DP decline in REM reflects maturation of the same brain arousal systems that eliminate delta waves in waking EEG. Whereas the DP age curves differed in NREM and REM sleep, theta age curves were similar in both, roughly paralleling the age trajectory of REM DP. The different maturational curves for NREM delta and theta indicate that they serve different brain functions despite having similar within-sleep dynamics and responses to sleep loss. Period-amplitude analysis of NREM and REM delta waveforms revealed that the age trends in DP were driven more by changes in wave amplitude rather than incidence. These data further document the powerful and complex link between sleep and brain maturation. Understanding this relationship would shed light on both brain development and the function of sleep.

  18. Prediction of advertisement preference by fusing EEG response and sentiment analysis.

    PubMed

    Gauba, Himaanshu; Kumar, Pradeep; Roy, Partha Pratim; Singh, Priyanka; Dogra, Debi Prosad; Raman, Balasubramanian

    2017-08-01

    This paper presents a novel approach to predict rating of video-advertisements based on a multimodal framework combining physiological analysis of the user and global sentiment-rating available on the internet. We have fused Electroencephalogram (EEG) waves of user and corresponding global textual comments of the video to understand the user's preference more precisely. In our framework, the users were asked to watch the video-advertisement and simultaneously EEG signals were recorded. Valence scores were obtained using self-report for each video. A higher valence corresponds to intrinsic attractiveness of the user. Furthermore, the multimedia data that comprised of the comments posted by global viewers, were retrieved and processed using Natural Language Processing (NLP) technique for sentiment analysis. Textual contents from review comments were analyzed to obtain a score to understand sentiment nature of the video. A regression technique based on Random forest was used to predict the rating of an advertisement using EEG data. Finally, EEG based rating is combined with NLP-based sentiment score to improve the overall prediction. The study was carried out using 15 video clips of advertisements available online. Twenty five participants were involved in our study to analyze our proposed system. The results are encouraging and these suggest that the proposed multimodal approach can achieve lower RMSE in rating prediction as compared to the prediction using only EEG data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Epileptic seizure prediction by non-linear methods

    DOEpatents

    Hively, L.M.; Clapp, N.E.; Day, C.S.; Lawkins, W.F.

    1999-01-12

    This research discloses methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming. 76 figs.

  20. Cannabis Essential Oil: A Preliminary Study for the Evaluation of the Brain Effects

    PubMed Central

    Loiacono, Idalba; Lanzo, Giovanni; Gori, Luigi; Macchi, Claudio; Epifani, Francesco

    2018-01-01

    We examined the effects of essential oil from legal (THC <0.2% w/v) hemp variety on the nervous system in 5 healthy volunteers. GC/EIMS and GC/FID analysis of the EO showed that the main components were myrcene and β-caryophyllene. The experiment consisted of measuring autonomic nervous system (ANS) parameters; evaluations of the mood state; and electroencephalography (EEG) recording before treatment, during treatment, and after hemp inhalation periods as compared with control conditions. The results revealed decreased diastolic blood pressure, increased heart rate, and significant increased skin temperature. The subjects described themselves as more energetic, relaxed, and calm. The analysis EEG showed a significant increase in the mean frequency of alpha (8–13 Hz) and significant decreased mean frequency and relative power of beta 2 (18,5–30 Hz) waves. Moreover, an increased power, relative power, and amplitude of theta (4–8 Hz) and alpha brain waves activities and an increment in the delta wave (0,5–4 Hz) power and relative power was recorded in the posterior region of the brain. These results suggest that the brain wave activity and ANS are affected by the inhalation of the EO of Cannabis sativa suggesting a neuromodular activity in cases of stress, depression, and anxiety. PMID:29576792

  1. Cannabis Essential Oil: A Preliminary Study for the Evaluation of the Brain Effects.

    PubMed

    Gulluni, Nadia; Re, Tania; Loiacono, Idalba; Lanzo, Giovanni; Gori, Luigi; Macchi, Claudio; Epifani, Francesco; Bragazzi, Nicola; Firenzuoli, Fabio

    2018-01-01

    We examined the effects of essential oil from legal (THC <0.2% w/v) hemp variety on the nervous system in 5 healthy volunteers. GC/EIMS and GC/FID analysis of the EO showed that the main components were myrcene and β -caryophyllene. The experiment consisted of measuring autonomic nervous system (ANS) parameters; evaluations of the mood state; and electroencephalography (EEG) recording before treatment, during treatment, and after hemp inhalation periods as compared with control conditions. The results revealed decreased diastolic blood pressure, increased heart rate, and significant increased skin temperature. The subjects described themselves as more energetic, relaxed, and calm. The analysis EEG showed a significant increase in the mean frequency of alpha (8-13 Hz) and significant decreased mean frequency and relative power of beta 2 (18,5-30 Hz) waves. Moreover, an increased power, relative power, and amplitude of theta (4-8 Hz) and alpha brain waves activities and an increment in the delta wave (0,5-4 Hz) power and relative power was recorded in the posterior region of the brain. These results suggest that the brain wave activity and ANS are affected by the inhalation of the EO of Cannabis sativa suggesting a neuromodular activity in cases of stress, depression, and anxiety.

  2. Change in the electroencephalogram delta wave in the frontal cranial region of rats with the hyperventilation.

    PubMed

    Kim, Young Sik; An, Sun Joung; Lee, Hu Jang; Choi, Hyun Ju

    2012-04-30

    Hyperventilation is one way to cause activation on the electroencephalogram (EEG) to diagnose brain disorders. The hyperventilation is also known to affect on the delta power in EEG. This study divided the total delta wave into low, middle, and high bands corresponding to the wave frequency. The power in these three delta wave bands was examined in the frontal cranial region of adult male Sprague-Dawley rats hyperventilated with ventilation (VE) of 360, 540, and 720 ml/min for 5 min. The control group was ventilated normally with a volume of 160 ml/min. The results show that the relative power of the low delta band in the rats hyperventilated at 360 ml/min VE was significantly increased compared with powers of pre-hyperventilation (p<0.05). The relative power of the middle delta band was not significantly affected by hyperventilation at any VE, and in the high delta band, all of the relative powers were decreased significantly in all hyperventilated rats compared with powers of pre-hyperventilation (p<0.05). We concluded that hyperventilation affects the frontal cranial region, by increasing the low delta band and decreasing the high delta band. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. An 8-year old boy with continuous spikes and waves during slow sleep presenting with positive onconeuronal antibodies.

    PubMed

    Hu, Lin-Yan; Shi, Xiu-Yu; Feng, Chen; Wang, Jian-Wen; Yang, Guan; Lammers, Stephen H T; Yang, Xiao Fan; Ebrahimi-Fakhari, Darius; Zou, Li-Ping

    2015-03-01

    To determine the etiology of epilepsy with continuous spikes and waves during slow sleep (CSWS)/electrical status epilepticus during sleep (ESES) in an 8-year old boy with a history of neuroblastoma and opsoclonus-myoclonus. A combination of clinical characterization and follow-up, video EEG and laboratory investigations. We report the case of an 8-year old boy with a history of neuroblastoma and opsoclonus-myoclonus, who presented with intellectual disability, pharmacotherapy-resistant epilepsy and CSWS/ESES. Although the patient's neuroblastoma had been successfully treated 8 years prior to presentation and an extensive workup did not show a tumor reoccurrence, testing for onconeuronal antibodies was positive for anti-Ma2 and anti-CV2/CRMP5 antibodies. High-dose intravenous methylprednisolone and a taper of oral methylprednisolone were given, leading to a significant clinical improvement. During the taper the patient's condition and EEG manifestations deteriorated again necessitating another cycle of steroid therapy, which lead to a stable improvement. During a 6-month follow-up no CSWS/ESES was seen on EEG and anti-Ma2 and anti-CV2/CRMP5 antibodies remained undetectable. This case suggests that onconeuronal antibodies may be involved in the pathogenesis of CSWS/ESES. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. Changes in sleep quality of athletes under normobaric hypoxia equivalent to 2,000-m altitude: a polysomnographic study.

    PubMed

    Hoshikawa, Masako; Uchida, Sunao; Sugo, Takayuki; Kumai, Yasuko; Hanai, Yoshiteru; Kawahara, Takashi

    2007-12-01

    This study evaluated the sleep quality of athletes in normobaric hypoxia at a simulated altitude of 2,000 m. Eight male athletes slept in normoxic condition (NC) and hypoxic conditions equivalent to those at 2,000-m altitude (HC). Polysomnographic recordings of sleep included the electroencephalogram (EEG), electrooculogram, chin surface electromyogram, and electrocardiogram. Thoracic and abdominal motion, nasal and oral airflow, and arterial blood oxygen saturation (Sa(O(2))) were also recorded. Standard visual sleep stage scoring and fast Fourier transformation analyses of the EEG were performed on 30-s epochs. Subjective sleepiness and urinary catecholamines were also monitored. Mean Sa(O(2)) decreased and respiratory disturbances increased with HC. The increase in respiratory disturbances was significant, but the increase was small and subclinical. The duration of slow-wave sleep (stage 3 and 4) and total delta power (<3 Hz) of the all-night non-rapid eye movement sleep EEG decreased for HC compared with NC. Subjective sleepiness and amounts of urinary catecholamines did not differ between the conditions. These results indicate that acute exposure to normobaric hypoxia equivalent to that at 2,000-m altitude decreased slow-wave sleep in athletes, but it did not change subjective sleepiness or amounts of urinary catecholamines.

  5. Non-convulsive seizures and electroencephalography findings as predictors of clinical outcomes at a tertiary intensive care unit in Saudi Arabia.

    PubMed

    Al-Said, Youssef A; Baeesa, Saleh S; Shivji, Zaitoon; Kayyali, Husam; Alqadi, Khalid; Kadi, Ghada; Cupler, Edward J; Abuzinadah, Ahmad R

    2018-06-05

    Electroencephalography (EEG) in the intensive care unit (ICU) is often done to detect non-convulsive seizures (NCS). The outcome of ICU patients with NCS strongly depends on the underlying etiology. The implication of NCS and other EEG findings on clinical outcome independent from their etiology is not well understood and our aim to investigate it. We retrospectively identified all adult patients in the ICU who underwent EEG monitoring between January 2008 and December 2011. The main goals were to define the rate of NCS or non-convulsive status epilepticus (NCSE) occurrence in our center among patients who underwent EEG monitoring and to examine if NCS/NCSE are associated with poor outcome [defined as death or dependence] with and without adjustment for underlying etiology. The rate of poor outcome among different EEG categories were also investigated. During the study period, 177 patients underwent EEG monitoring in our ICU. The overall outcome was poor in 62.7% of those undergoing EEG. The rate of occurrence of NCS/NCSE was 8.5% and was associated with poor outcome in 86.7% with an odds ratio (OR) of 5.1 (95% confidence interval [CI] 1.09-23.8). This association was maintained after adjusting for underlying etiologies with OR 5.6 (95% CI 1.05-29.6). The rate of poor outcome was high in the presence of periodic discharges and sharp and slow waves of 75% and 61.5%, respectively. Our cohort of ICU patients undergoing EEGs had a poor outcome. Those who developed NCS/NCSE experienced an even worse outcome regardless of the underlying etiology. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effects of Marijuana on Ictal and Interictal EEG Activities in Idiopathic Generalized Epilepsy.

    PubMed

    Sivakumar, Sanjeev; Zutshi, Deepti; Seraji-Bozorgzad, Navid; Shah, Aashit K

    2017-01-01

    Marijuana-based treatment for refractory epilepsy shows promise in surveys, case series, and clinical trials. However, literature on their EEG effects is sparse. Our objective is to analyze the effect of marijuana on EEG in a 24-year-old patient with idiopathic generalized epilepsy treated with cannabis. We blindly reviewed 3 long-term EEGs-a 24-hour study while only on antiepileptic drugs, a 72-hour EEG with Cannabis indica smoked on days 1 and 3 in addition to antiepileptic drugs, and a 48-hour EEG with combination C indica/sativa smoked on day 1 plus antiepileptic drugs. Generalized spike-wave discharges and diffuse paroxysmal fast activity were categorized as interictal and ictal, based on duration of less than 10 seconds or greater, respectively. Data from three studies concatenated into contiguous time series, with usage of marijuana modeled as time-dependent discrete variable while interictal and ictal events constituted dependent variables. Analysis of variance as initial test for significance followed by time series analysis using Generalized Autoregressive Conditional Heteroscedasticity model was performed. Statistical significance for lower interictal events (analysis of variance P = 0.001) was seen during C indica use, but not for C indica/sativa mixture (P = 0.629) or ictal events (P = 0.087). However, time series analysis revealed a significant inverse correlation between marijuana use, with interictal (P < 0.0004) and ictal (P = 0.002) event rates. Using a novel approach to EEG data, we demonstrate a decrease in interictal and ictal electrographic events during marijuana use. Larger samples of patients and EEG, with standardized cannabinoid formulation and dosing, are needed to validate our findings.

  7. [Correlations of central nervous system and thyroid function under chronic emotional stress].

    PubMed

    Amiragova, M G; Arkhangel'skaia, M I

    1982-06-01

    Experiments on cats exposed to chronic emotional stress induced during one week by 4-hour immobilization of the animals in conjunction with aperiodic electrocutaneous stimulation were made to study correlations of the time course of changes in the EEG of the cortical and subcortical structures and the content of thyroxin in the peripheral blood at varying time of the experiments. It was demonstrated that in the course of stress, the EEG manifests the cycles of "burst" activity of slow waves, which are first recorded in the posterior hypothalamus and then get generalized. This is accompanied by a significantly high thyroxin secretion. As the stress exposures are repeated, the EEG changes become dominant, also corresponding with high thyroxin secretion. After the experiments are over, the cycles of "burst" activity accompanied by enhanced thyroid function are still recordable over several days.

  8. The Sleep EEG as a Marker of Intellectual Ability in School Age Children

    PubMed Central

    Geiger, Anja; Huber, Reto; Kurth, Salomé; Ringli, Maya; Jenni, Oskar G.; Achermann, Peter

    2011-01-01

    Study Objectives: To investigate the within-subject stability in the sleep EEG and the association between the sleep EEG and intellectual abilities in 9- to 12-year-old children. Design: Intellectual ability (WISC-IV, full scale, fluid, and verbal IQ, working memory, speed of processing) were examined and all-night polysomnography was performed (2 nights per subject). Setting: Sleep laboratory. Participants: Fourteen healthy children (mean age 10.5 ± 1.0 years; 6 girls). Measurements and Results: Spectral analysis was performed on artifact-free NREM sleep epochs (C3/A2). To determine intra-individual stability and inter-individual variability of the sleep EEG, power spectra were used as feature vectors for the estimation of Euclidean distances, and intraclass correlation coefficients (ICC) were calculated for the 2 nights. Sleep spindle peaks were identified for each individual and individual sigma band power was determined. Trait-like aspects of the sleep EEG were observed for sleep stage variables and spectral power. Within-subject distances were smaller than between-subject distances and ICC values ranged from 0.72 to 0.96. Correlations between spectral power in individual frequency bins and intelligence scores revealed clusters of positive associations in the alpha, sigma, and beta range for full scale IQ, fluid IQ, and working memory. Similar to adults, sigma power correlated with full scale (r = 0.67) and fluid IQ (r = 0.65), but not with verbal IQ. Spindle peak frequency was negatively related to full scale IQ (r = −0.56). Conclusions: The sleep EEG during childhood shows high within-subject stability and may be a marker for intellectual ability. Citation: Geiger A; Huber R; Kurth S; Ringli M; Jenni OG; Achermann P. The sleep EEG as a marker of intellectual ability in school age children. SLEEP 2011;34(2):181-189. PMID:21286251

  9. Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention.

    PubMed

    Kundu, Bornali; Sutterer, David W; Emrich, Stephen M; Postle, Bradley R

    2013-05-15

    Although long considered a natively endowed and fixed trait, working memory (WM) ability has recently been shown to improve with intensive training. What remains controversial and poorly understood, however, are the neural bases of these training effects and the extent to which WM training gains transfer to other cognitive tasks. Here we present evidence from human electrophysiology (EEG) and simultaneous transcranial magnetic stimulation and EEG that the transfer of WM training to other cognitive tasks is supported by changes in task-related effective connectivity in frontoparietal and parieto-occipital networks that are engaged by both the trained and transfer tasks. One consequence of this effect is greater efficiency of stimulus processing, as evidenced by changes in EEG indices of individual differences in short-term memory capacity and in visual search performance. Transfer to search-related activity provides evidence that something more fundamental than task-specific strategy or stimulus-specific representations has been learned. Furthermore, these patterns of training and transfer highlight the role of common neural systems in determining individual differences in aspects of visuospatial cognition.

  10. The role of frontal EEG asymmetry in post-traumatic stress disorder.

    PubMed

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W E M; Smulders, Fren T Y; Meijer, Ewout H; Merckelbach, Harald L G J

    2015-05-01

    Frontal alpha asymmetry, a biomarker derived from electroencephalography (EEG) recordings, has often been associated with psychological adjustment, with more left-sided frontal activity predicting approach motivation and lower levels of depression and anxiety. This suggests high relevance to post-traumatic stress disorder (PTSD), a disorder comprising anxiety and dysphoria symptoms. We review this relationship and show that frontal asymmetry can be plausibly linked to neuropsychological abnormalities seen in PTSD. However, surprisingly few studies (k = 8) have directly addressed frontal asymmetry in PTSD, mostly reporting that trait frontal asymmetry has little (if any) predictive value. Meanwhile, preliminary evidence suggest that state-dependent asymmetry during trauma-relevant stimulation distinguishes PTSD patients from resilient individuals. Thus, exploring links between provocation-induced EEG asymmetry and PTSD appears particularly promising. Additionally, we recommend more fine-grained analyses into PTSD symptom clusters in relation to frontal asymmetry. Finally, we highlight hypotheses that may guide future research and help to fully apprehend the practical and theoretical relevance of this biological marker. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Is running away right? The behavioral activation-behavioral inhibition model of anterior asymmetry.

    PubMed

    Wacker, Jan; Chavanon, Mira-Lynn; Leue, Anja; Stemmler, Gerhard

    2008-04-01

    The measurement of anterior electroencephalograph (EEG) asymmetries has become an important standard paradigm for the investigation of affective states and traits. Findings in this area are typically interpreted within the motivational direction model, which suggests a lateralization of approach and withdrawal motivational systems to the left and right anterior region, respectively. However, efforts to compare this widely adopted model with an alternative account-which relates the left anterior region to behavioral activation independent of the direction of behavior (approach or withdrawal) and the right anterior region to goal conflict-induced behavioral inhibition-are rare and inconclusive. Therefore, the authors measured the EEG in a sample of 93 young men during emotional imagery designed to provide a critical test between the 2 models. The results (e.g., a correlation between left anterior activation and withdrawal motivation) favor the alternative model on the basis of the concepts of behavioral activation and behavioral inhibition. In addition, the present study also supports an association of right parietal activation with physiological arousal and the conceptualization of parietal EEG asymmetry as a mediator of emotion-related physiological arousal. (Copyright) 2008 APA.

  12. Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention

    PubMed Central

    Kundu, Bornali; Sutterer, David W.; Emrich, Stephen M.; Postle, Bradley R.

    2013-01-01

    Although long considered a natively endowed and fixed trait, working memory (WM) ability has recently been shown to improve with intensive training. What remains controversial and poorly understood, however, are the neural bases of these training effects, and the extent to which WM training gains transfer to other cognitive tasks. Here we present evidence from human electrophysiology (EEG) and simultaneous transcranial magnetic stimulation (TMS) and EEG that the transfer of WM training to other cognitive tasks is supported by changes in task-related effective connectivity in frontoparietal and parietooccipital networks that are engaged by both the trained and transfer tasks. One consequence of this effect is greater efficiency of stimulus processing, as evidenced by changes in EEG indices of individual differences in short-term memory capacity and in visual search performance. Transfer to search-related activity provides evidence that something more fundamental than task-specific strategy or stimulus-specific representations have been learned. Furthermore, these patterns of training and transfer highlight the role of common neural systems in determining individual differences in aspects of visuospatial cognition. PMID:23678114

  13. Early and Later Life Stress Alter Brain Activity and Sleep in Rats

    PubMed Central

    Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2013-01-01

    Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857

  14. Analyzing large data sets acquired through telemetry from rats exposed to organophosphorous compounds: an EEG study.

    PubMed

    de Araujo Furtado, Marcio; Zheng, Andy; Sedigh-Sarvestani, Madineh; Lumley, Lucille; Lichtenstein, Spencer; Yourick, Debra

    2009-10-30

    The organophosphorous compound soman is an acetylcholinesterase inhibitor that causes damage to the brain. Exposure to soman causes neuropathology as a result of prolonged and recurrent seizures. In the present study, long-term recordings of cortical EEG were used to develop an unbiased means to quantify measures of seizure activity in a large data set while excluding other signal types. Rats were implanted with telemetry transmitters and exposed to soman followed by treatment with therapeutics similar to those administered in the field after nerve agent exposure. EEG, activity and temperature were recorded continuously for a minimum of 2 days pre-exposure and 15 days post-exposure. A set of automatic MATLAB algorithms have been developed to remove artifacts and measure the characteristics of long-term EEG recordings. The algorithms use short-time Fourier transforms to compute the power spectrum of the signal for 2-s intervals. The spectrum is then divided into the delta, theta, alpha, and beta frequency bands. A linear fit to the power spectrum is used to distinguish normal EEG activity from artifacts and high amplitude spike wave activity. Changes in time spent in seizure over a prolonged period are a powerful indicator of the effects of novel therapeutics against seizures. A graphical user interface has been created that simultaneously plots the raw EEG in the time domain, the power spectrum, and the wavelet transform. Motor activity and temperature are associated with EEG changes. The accuracy of this algorithm is also verified against visual inspection of video recordings up to 3 days after exposure.

  15. [EEG alpha indices in dependence on the menstrual cycle phase and salivary progesterone].

    PubMed

    Bazanova, O M; Kondratenko, A V; Kuz'minova, O I; Muravleva, K B; Petrova, S E

    2014-01-01

    The effects of the neurohumoral status on the EEG alpha - activity indices were studied in a within-subject design with 78 women aged 18-27 years during 1-2 menstrual cycle. Psychometric and EEG indices of alpha waves basal body temperature, saliva progesterone and cortisol level were monitored every 2-3 days. Menstrual and follicular recording sessions occurred before the ovulatory temperature rise, luteal recording session--after increasing progesterone level more than 20% respect to previous day and premenstrual sessions after decreasing progesterone level more that 20% respect to previous day. The design consisted of rest and task periods EEG, EMG and ECG recordings. Half the subjects began during their menstrual phase and half began during their luteal phase. All 5 phases were compared for differences between psychometric features EEG alpha activity, EMG and ECG baseline resting levels, as well as for reactivity to cognitive task. The results showed menstrual phase differences in all psychometric and alpha EEG indices. The cognitive fluency, alpha peak frequency, alpha band width, power in alpha-2 frequency range are maximal at luteal, alpha visual activation and reactivity to cognitive task performance--at follicular phase. The hypothesis that the EEG alpha activity depends on the hormonal status supported by the positive association salivary progesterone level with the alpha peak frequency, power in the alpha-2 band and negative--with the power of the alpha-1 band. According these results, we conclude that psycho-physiological recording sessions with women might be provided with a glance to phase of menstrual cycle.

  16. Electroencephalography Amplitude Modulation Analysis for Automated Affective Tagging of Music Video Clips

    PubMed Central

    Clerico, Andrea; Tiwari, Abhishek; Gupta, Rishabh; Jayaraman, Srinivasan; Falk, Tiago H.

    2018-01-01

    The quantity of music content is rapidly increasing and automated affective tagging of music video clips can enable the development of intelligent retrieval, music recommendation, automatic playlist generators, and music browsing interfaces tuned to the users' current desires, preferences, or affective states. To achieve this goal, the field of affective computing has emerged, in particular the development of so-called affective brain-computer interfaces, which measure the user's affective state directly from measured brain waves using non-invasive tools, such as electroencephalography (EEG). Typically, conventional features extracted from the EEG signal have been used, such as frequency subband powers and/or inter-hemispheric power asymmetry indices. More recently, the coupling between EEG and peripheral physiological signals, such as the galvanic skin response (GSR), have also been proposed. Here, we show the importance of EEG amplitude modulations and propose several new features that measure the amplitude-amplitude cross-frequency coupling per EEG electrode, as well as linear and non-linear connections between multiple electrode pairs. When tested on a publicly available dataset of music video clips tagged with subjective affective ratings, support vector classifiers trained on the proposed features were shown to outperform those trained on conventional benchmark EEG features by as much as 6, 20, 8, and 7% for arousal, valence, dominance and liking, respectively. Moreover, fusion of the proposed features with EEG-GSR coupling features showed to be particularly useful for arousal (feature-level fusion) and liking (decision-level fusion) prediction. Together, these findings show the importance of the proposed features to characterize human affective states during music clip watching. PMID:29367844

  17. Human Brain Activity Patterns beyond the Isoelectric Line of Extreme Deep Coma

    PubMed Central

    Kroeger, Daniel; Florea, Bogdan; Amzica, Florin

    2013-01-01

    The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma. PMID:24058669

  18. Methods for using a biometric parameter in the identification of persons

    DOEpatents

    Hively, Lee M [Philadelphia, TN

    2011-11-22

    Brain waves are used as a biometric parameter to provide for authentication and identification of personnel. The brain waves are sampled using EEG equipment and are processed using phase-space distribution functions to compare digital signature data from enrollment of authorized individuals to data taken from a test subject to determine if the data from the test subject matches the signature data to a degree to support positive identification.

  19. Apparatus and method for epileptic seizure detection using non-linear techniques

    DOEpatents

    Hively, Lee M.; Clapp, Ned E.; Daw, C. Stuart; Lawkins, William F.

    1998-01-01

    Methods and apparatus for automatically detecting epileptic seizures by monitoring and analyzing brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; determining that one or more trends in the nonlinear measures indicate a seizure, and providing notification of seizure occurrence.

  20. Effect of essential oil and supercritical carbon dioxide extract from the root of Angelica gigas on human EEG activity.

    PubMed

    Sowndhararajan, Kandhasamy; Seo, Min; Kim, Minju; Kim, Heeyeon; Kim, Songmun

    2017-08-01

    The present study aimed to investigate the effect of inhalation of essential oil (EO) and supercritical carbon dioxide extract (SC-CO 2 ) from the root of A. gigas on human electroencephalographic (EEG) activity. For this purpose, the EO was obtained from the root of A. gigas by steam distillation and SC-CO 2 was obtained at 50 °C and 400 bar for 1 h. The EEG readings were recorded using the QEEG-8 system from 8 electrode sites according to the International 10-20 system. In the EEG study, the absolute low beta (left temporal and left parietal) activity significantly increased during the inhalation of EO. In the case of SC-CO 2 inhalation, there was no significant change in absolute waves. The results revealed that the EO of A. gigas root produced significant changes in the absolute low beta activity and these changes may enhance the language learning abilities of human brain. Copyright © 2017. Published by Elsevier Ltd.

  1. Alteration in Memory and Electroencephalogram Waves with Sub-acute Noise Stress in Albino Rats and Safeguarded by Scoparia dulcis.

    PubMed

    Loganathan, Sundareswaran; Rathinasamy, Sheeladevi

    2016-01-01

    Noise stress has different effects on memory and novelty and the link between them with an electroencephalogram (EEG) has not yet been reported. To find the effect of sub-acute noise stress on the memory and novelty along with EEG and neurotransmitter changes. Eight-arm maze (EAM) and Y-maze to analyze the memory and novelty by novel object test. Four groups of rats were used: Control, control treated with Scoparia dulcis extract, noise exposed, and noise exposed which received Scoparia extract. The results showed no marked difference observed between control and control treated with Scoparia extract on EAM, Y-maze, novel object test, and EEG in both prefrontal and occipital region, however, noise stress exposed rats showed significant increase in the reference memory and working memory error in EAM and latency delay, triad errors in Y-maze, and prefrontal and occipital EEG frequency rate with the corresponding increase in plasma corticosterone and epinephrine, and significant reduction in the novelty test, and significant reduction in the novelty test, amplitude of prefrontal, occipital EEG, and acetylcholine. These noise stress induced changes in EAM, Y-maze, novel object test, and neurotransmitters were significantly prevented when treated with Scoparia extract and these changes may be due to the normalizing action of Scoparia extract on the brain, which altered due to noise stress. Noise stress exposure causes EEG, behavior, and neurotransmitter alteration in the frontoparietal and occipital regions mainly involved in planning and recognition memoryOnly the noise stress exposed animals showed the significant alteration in the EEG, behavior, and neurotransmittersHowever, these noise stress induced changes in EEG behavior and neurotransmitters were significantly prevented when treated with Scoparia extractThese changes may be due to the normalizing action of Scoparia dulcis (adoptogen) on the brain which altered by noise stress. Abbreviations used: EEG: Electroencephalogram, dB: Decibel, EPI: Epinephrine, ACH: Acetylcholine, EAM: Eight-arm maze.

  2. Alteration in Memory and Electroencephalogram Waves with Sub-acute Noise Stress in Albino Rats and Safeguarded by Scoparia dulcis

    PubMed Central

    Loganathan, Sundareswaran; Rathinasamy, Sheeladevi

    2016-01-01

    Background: Noise stress has different effects on memory and novelty and the link between them with an electroencephalogram (EEG) has not yet been reported. Objective: To find the effect of sub-acute noise stress on the memory and novelty along with EEG and neurotransmitter changes. Materials and Methods: Eight-arm maze (EAM) and Y-maze to analyze the memory and novelty by novel object test. Four groups of rats were used: Control, control treated with Scoparia dulcis extract, noise exposed, and noise exposed which received Scoparia extract. Results: The results showed no marked difference observed between control and control treated with Scoparia extract on EAM, Y-maze, novel object test, and EEG in both prefrontal and occipital region, however, noise stress exposed rats showed significant increase in the reference memory and working memory error in EAM and latency delay, triad errors in Y-maze, and prefrontal and occipital EEG frequency rate with the corresponding increase in plasma corticosterone and epinephrine, and significant reduction in the novelty test, and significant reduction in the novelty test, amplitude of prefrontal, occipital EEG, and acetylcholine. Conclusion: These noise stress induced changes in EAM, Y-maze, novel object test, and neurotransmitters were significantly prevented when treated with Scoparia extract and these changes may be due to the normalizing action of Scoparia extract on the brain, which altered due to noise stress. SUMMARY Noise stress exposure causes EEG, behavior, and neurotransmitter alteration in the frontoparietal and occipital regions mainly involved in planning and recognition memoryOnly the noise stress exposed animals showed the significant alteration in the EEG, behavior, and neurotransmittersHowever, these noise stress induced changes in EEG behavior and neurotransmitters were significantly prevented when treated with Scoparia extractThese changes may be due to the normalizing action of Scoparia dulcis (adoptogen) on the brain which altered by noise stress. Abbreviations used: EEG: Electroencephalogram, dB: Decibel, EPI: Epinephrine, ACH: Acetylcholine, EAM: Eight-arm maze PMID:27041862

  3. The N400 as an index of racial stereotype accessibility.

    PubMed

    Hehman, Eric; Volpert, Hannah I; Simons, Robert F

    2014-04-01

    The current research examined the viability of the N400, an event-related potential (ERP) related to the detection of semantic incongruity, as an index of both stereotype accessibility and interracial prejudice. Participants' EEG was recorded while they completed a sequential priming task, in which negative or positive, stereotypically black (African American) or white (Caucasian American) traits followed the presentation of either a black or white face acting as a prime. ERP examination focused on the N400, but additionally examined N100 and P200 reactivity. Replicating and extending previous N400 stereotype research, results indicated that the N400 can indeed function as an index of stereotype accessibility in an interracial domain, as greater N400 reactivity was elicited by trials in which the face prime was incongruent with the target trait than when primes and traits matched. Furthermore, N400 activity was moderated by participants' self-reported explicit bias. More explicitly biased participants demonstrated greater N400 reactivity to stereotypically white traits following black faces than black traits following black faces. P200 activity was additionally associated with participants' implicit biases, as more implicitly biased participants similarly demonstrated greater P200 reactivity to stereotypically white traits following black faces than black traits following black faces.

  4. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits.

    PubMed

    Heuner, Maike; Silinski, Alexandra; Schoelynck, Jonas; Bouma, Tjeerd J; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species--known as ecosystem engineers--are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced.

  5. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits

    PubMed Central

    Schoelynck, Jonas; Bouma, Tjeerd J.; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species—known as ecosystem engineers—are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced. PMID:26367004

  6. The Multidimensional Aspects of Sleep Spindles and Their Relationship to Word-Pair Memory Consolidation.

    PubMed

    Lustenberger, Caroline; Wehrle, Flavia; Tüshaus, Laura; Achermann, Peter; Huber, Reto

    2015-07-01

    Several studies proposed a link between sleep spindles and sleep dependent memory consolidation in declarative learning tasks. In addition to these state-like aspects of sleep spindles, they have also trait-like characteristics, i.e., were related to general cognitive performance, an important distinction that has often been neglected in correlative studies. Furthermore, from the multitude of different sleep spindle measures, often just one specific aspect was analyzed. Thus, we aimed at taking multidimensional aspects of sleep spindles into account when exploring their relationship to word-pair memory consolidation. Each subject underwent 2 study nights with all-night high-density electroencephalographic (EEG) recordings. Sleep spindles were automatically detected in all EEG channels. Subjects were trained and tested on a word-pair learning task in the evening, and retested in the morning to assess sleep related memory consolidation (overnight retention). Trait-like aspects refer to the mean of both nights and state-like aspects were calculated as the difference between night 1 and night 2. Sleep laboratory. Twenty healthy male subjects (age: 23.3 ± 2.1 y). Overnight retention was negatively correlated with trait-like aspects of fast sleep spindle density and positively with slow spindle density on a global level. In contrast, state-like aspects were observed for integrated slow spindle activity, which was positively related to the differences in overnight retention in specific regions. Our results demonstrate the importance of a multidimensional approach when investigating the relationship between sleep spindles and memory consolidation and thereby provide a more complete picture explaining divergent findings in the literature. © 2015 Associated Professional Sleep Societies, LLC.

  7. Uncovering clinical and radiological associations of triphasic waves in acute encephalopathy: a case-control study.

    PubMed

    Sutter, R; Kaplan, P W

    2014-04-01

    Triphasic waves (TWs) are archetypal waveforms seen on electroencephalography (EEG) in some forms of encephalopathy. Their particular underlying pathological substrates are largely unexplored. This case-control study was designed to identify and quantify specific clinical and neuroradiological associations underlying TWs and to determine if TWs predicate outcome. From 2004 to 2012, adult encephalopathic patients with TWs (cases) were matched 1:1 with encephalopathic patients without TWs (controls) by Glasgow Coma Scale (GCS) and the frequency range of EEG background activity. Clinical characteristics, neuroimaging and outcomes were assessed. The mean age of 190 patients (95 with and 95 without TWs) was 66.6 years (±15.6). In multivariable analyses, patients with TWs had significantly higher odds for liver insufficiency [odds ratio (OR) = 8.10, 95% confidence interval (CI) 1.98-33.08], alcohol abuse (OR = 3.65, 95% CI 1.25-10.63), subcortical brain atrophy (OR = 2.82, 95% CI 1.39-5.71) and respiratory tract infections (OR = 1.28, 95% CI 1.01-4.71). With each additional independent predictor, the odds increased for the occurrence of TWs (1 predictor, OR = 2.40, 95% CI 1.16-5.13; ≥2 predictors, OR = 9.20, 95% CI 3.27-25.62). Mortality was 15% and tended to be higher in patients with TWs (19% with vs. 11% without TWs). Alcohol abuse, liver insufficiency, infections and subcortical brain atrophy were independently associated with TWs in patients matched for clinical and EEG features of encephalopathy. These associations strengthen the hypothesis that TWs evolve from an interplay of pathological neurostructural, metabolic and toxic conditions. When matched for EEG background activity and GCS, TWs were not associated with death. © 2014 The Author(s) European Journal of Neurology © 2014 EFNS.

  8. Voluntary Sleep Loss in Rats

    PubMed Central

    Oonk, Marcella; Krueger, James M.; Davis, Christopher J.

    2016-01-01

    Study Objectives: Animal sleep deprivation (SDEP), in contrast to human SDEP, is involuntary and involves repeated exposure to aversive stimuli including the inability of the animal to control the waking stimulus. Therefore, we explored intracranial self-stimulation (ICSS), an operant behavior, as a method for voluntary SDEP in rodents. Methods: Male Sprague-Dawley rats were implanted with electroencephalography/electromyography (EEG/EMG) recording electrodes and a unilateral bipolar electrode into the lateral hypothalamus. Rats were allowed to self-stimulate, or underwent gentle handling-induced SDEP (GH-SDEP), during the first 6 h of the light phase, after which they were allowed to sleep. Other rats performed the 6 h ICSS and 1 w later were subjected to 6 h of noncontingent stimulation (NCS). During NCS the individual stimulation patterns recorded during ICSS were replayed. Results: After GH-SDEP, ICSS, or NCS, time in nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep increased. Further, in the 24 h after SDEP, rats recovered all of the REM sleep lost during SDEP, but only 75% to 80% of the NREM sleep lost, regardless of the SDEP method. The magnitude of EEG slow wave responses occurring during NREM sleep also increased after SDEP treatments. However, NREM sleep EEG slow wave activity (SWA) responses were attenuated following ICSS, compared to GH-SDEP and NCS. Conclusions: We conclude that ICSS and NCS can be used to sleep deprive rats. Changes in rebound NREM sleep EEG SWA occurring after ICSS, NCS, and GH-SDEP suggest that nonspecific effects of the SDEP procedure differentially affect recovery sleep phenotypes. Citation: Oonk M, Krueger JM, Davis CJ. Voluntary sleep loss in rats. SLEEP 2016;39(7):1467–1479. PMID:27166236

  9. The contribution of posterior circulation to memory function during the intracarotid amobarbital procedure.

    PubMed

    Zijlmans, M; Huibers, C J A; Huiskamp, G J; de Kort, G A P; Alpherts, W C J; Leijten, F S S; Hendrikse, J

    2012-08-01

    The purpose of this study was to evaluate the contribution of posterior circulation to memory function by comparing memory scores between patients with and without a foetal-type posterior cerebral artery (FTP) during the intracarotid amobarbital procedure (IAP) in epilepsy patients. Patients undergoing bilateral IAP between January 2004 and January 2010 were retrospectively included. Pre-test angiograms were assessed for the presence of a FTP. Memory function scores (% correct) after right and left injections were obtained. Functional significance of FTP was affirmed by relative occipital versus parietal EEG slow-wave increase during IAP. Memory and EEG scores were compared between patients with and without FTP (Mann-Whitney U test). A total of 106 patients were included, 73 with posterior cerebral arteries (PCA) without FTP ('non-FTP'), 28 patients with unilateral FTP and 5 with a bilateral FTP. Memory scores were lower when amytal was injected to the hemisphere contralateral to the presumed seizure focus (on the right decreasing from 98.3 to 59.1, and on the left decreasing from 89.1 to 72.4; p < 0.001). When IAP was performed on the side of FTP memory scores were significantly lower (70.8) compared to non-FTP (82.0; p = 0.02). Relative occipital EEG changes were 0.44 for FTP cases and 0.36 for non-FTP patients (p = 0.01). A relationship between vasculature and brain function was demonstrated by lower memory scores and more slow-wave activity on occipital EEG during IAP in patients with foetal-type PCA compared to patients with non-FTP. This suggests an important contribution of brain areas supplied by the PCA to memory function.

  10. EEG Differences in Two Clinically Similar Rapid Dementias: Voltage-Gated Potassium Channel Complex-Associated Autoimmune Encephalitis and Creutzfeldt-Jakob Disease.

    PubMed

    Freund, Brin; Probasco, John C; Cervenka, Mackenzie C; Sutter, Raoul; Kaplan, Peter W

    2018-05-01

    Distinguishing treatable causes for rapidly progressive dementia from those that are incurable is vital. Creutzfeldt-Jakob disease (CJD) and voltage-gated potassium channel complex-associated autoimmune encephalitis (VGKC AE) are 2 such conditions with disparate outcomes and response to treatment. To determine the differences in electroencephalography between CJD and VGKC AE, we performed a retrospective review of medical records and examined clinical data, neuroimaging, and electroencephalographs performed in patients admitted for evaluation for rapidly progressive dementia diagnosed with CJD and VGKC AE at the Johns Hopkins Hospital and Bayview Medical Center between January 1, 2007 and December 31, 2015. More patients in the VGKC AE group had seizures (12/17) than those with CJD (3/14; P = .008). Serum sodium levels were lower in those with VGKC AE ( P = .001). Cerebrospinal fluid (CSF) white blood cell count was higher in VGKC AE ( P = .008). CSF protein 14-3-3 ( P = .018) was more commonly detected in CJD, and tau levels were higher in those with CJD ( P < .006). On neuroimaging, diffusion restriction in the cortex ( P = .001), caudate ( P < .001), and putamen ( P = .001) was more frequent in CJD. Periodic sharp wave complexes ( P = .001) and generalized suppressed activity ( P = .008) were more common on initial EEG in CJD. On serial EEGs, generalized periodic discharges ( P = .004), generalized suppressed activity (P=0.008), and periodic sharp wave complexes ( P < .001) were detected more in CJD. This study shows that there are a number of differentiating features between CJD and VGKC AE, and electroencephalography can aid in their diagnoses. Performing serial EEGs better delineates these conditions.

  11. A Girl with Idiopathic Epilepsy Showing Forced Normalization after Levetiracetam Administration.

    PubMed

    Kawakami, Yasuhiko; Okazaki, Tetsuya; Takase, Masato; Fujino, Osamu; Itoh, Yasuhiko

    2015-01-01

    Forced normalization has been reported in association with almost all anti-epileptic drugs. We report on a 9-year-old girl with idiopathic epilepsy who showed forced normalization after administration of levetiracetam (LEV). She initially presented with generalized tonic-clonic seizures when she was 4 years old. Diffuse sharp and slow wave complexes (SWCs) were observed on electroencephalography (EEG). We prescribed sodium valproate (VPA) and benzodiazepines, but the seizures and EEG findings worsened gradually. Although subsequent administration of LEV stopped the seizures, the patient became subject to episodes of rage and violent behavior. Forced normalization was confirmed by the disappearance of SWCs on EEG. We reduced the dose of LEV and tried in various ways to resolve the situation, but finally we had to abandon LEV. To the best of our knowledge, this is the first report of a patient with idiopathic epilepsy but without disabilities in everyday life showing forced normalization associated with LEV administration.

  12. Night and day variations of sleep in patients with disorders of consciousness.

    PubMed

    Wislowska, Malgorzata; Del Giudice, Renata; Lechinger, Julia; Wielek, Tomasz; Heib, Dominik P J; Pitiot, Alain; Pichler, Gerald; Michitsch, Gabriele; Donis, Johann; Schabus, Manuel

    2017-03-21

    Brain injuries substantially change the entire landscape of oscillatory dynamics and render detection of typical sleep patterns difficult. Yet, sleep is characterized not only by specific EEG waveforms, but also by its circadian organization. In the present study we investigated whether brain dynamics of patients with disorders of consciousness systematically change between day and night. We recorded ~24 h EEG at the bedside of 18 patients diagnosed to be vigilant but unaware (Unresponsive Wakefulness Syndrome) and 17 patients revealing signs of fluctuating consciousness (Minimally Conscious State). The day-to-night changes in (i) spectral power, (ii) sleep-specific oscillatory patterns and (iii) signal complexity were analyzed and compared to 26 healthy control subjects. Surprisingly, the prevalence of sleep spindles and slow waves did not systematically vary between day and night in patients, whereas day-night changes in EEG power spectra and signal complexity were revealed in minimally conscious but not unaware patients.

  13. Effect of immobilization on the EEG of the baboon. Comparison with telemetry results from unrestricted animals

    NASA Technical Reports Server (NTRS)

    Bert, J.; Collomb, H.

    1980-01-01

    The EEG of the baboon was studied under two very different sets of conditions: 37 were totally immobolized while 12 were studied in their free movements with 4 channel telemetry. For the immobilzed, 3 stages were described: (1) activation, record desynchronized; (2) rest with 13-15 cm/sec rhythm, like the human alpha rhythm stage but with eyes open or closed; (3)relaxation with a decrease in 13-15 rhythm and the appearance of 5-7 cm/sec theta waves, eyelids closed, animal apparently sleeping. For the free animals the rest stage appeared when the animal's attention was not directed anywhere and there was no relaxation stage. It is concluded that the EEG pattern of the immobilized animal that was described as the "relaxation" stage really represents a special functional state which one must distinguish clearly from the physiological stages of sleep.

  14. [Extraction of evoked related potentials by using the combination of independent component analysis and wavelet analysis].

    PubMed

    Zou, Ling; Chen, Shuyue; Sun, Yuqiang; Ma, Zhenghua

    2010-08-01

    In this paper we present a new method of combining Independent Component Analysis (ICA) and Wavelet de-noising algorithm to extract Evoked Related Potentials (ERPs). First, the extended Infomax-ICA algorithm is used to analyze EEG signals and obtain the independent components (Ics); Then, the Wave Shrink (WS) method is applied to the demixed Ics as an intermediate step; the EEG data were rebuilt by using the inverse ICA based on the new Ics; the ERPs were extracted by using de-noised EEG data after being averaged several trials. The experimental results showed that the combined method and ICA method could remove eye artifacts and muscle artifacts mixed in the ERPs, while the combined method could retain the brain neural activity mixed in the noise Ics and could extract the weak ERPs efficiently from strong background artifacts.

  15. Microsensors and wireless system for monitoring epilepsy

    NASA Astrophysics Data System (ADS)

    Whitchurch, Ashwin K.; Ashok, B. H.; Kumaar, Raman V.; Sarukesi, K.; Jose, K. A.; Varadan, Vijay K.

    2003-07-01

    Epilepsy is a form of brain disorder caused by abnormal discharges of neurons. The most common manifestations of epilepsy are seizures which could affect visual, aural and motor abilities of a person. Absence epilepsy is a form of epilepsy common mostly in children. The most common manifestations of absence epilepsy are staring and transient loss of responsiveness. Also, subtle motor activities may occur. Due to the subtle nature of these symptoms, episodes of absence epilepsy may often go unrecognized for long periods of time or be mistakenly attributed to attention deficit disorder or daydreaming. Spells of absence epilepsy may last about 10 seconds and occur hundreds of times each day. Patients have no recollections of the events occurred during those seizures and will resume normal activity without any postictal symptoms. The EEG during such episodes of Absence epilepsy shows intermittent activity of 3 Hz generalized spike and wave complexes. As EEG is the only way of detecting such symptoms, it is required to monitor the EEG of the patient for a long time, usually the whole day. This requires that the patient be connected to the EEG recorder all the time and thus remain only in the bed. So, effectively the EEG is being monitored only when the patient is stationary. The wireless monitoring system described in this paper aims at eliminating this constraint and enables the physician to monitor the EEG when the patient resumes his normal activities. This approach could even help the doctor identify possible triggers of absence epilepsy.

  16. The Effects of Fifa 2015 Computer Games on Changes in Cognitive, Hormonal and Brain Waves Functions of Young Men Volunteers

    PubMed Central

    Aliyari, Hamed; Kazemi, Masoomeh; Tekieh, Elaheh; Salehi, Maryam; Sahraei, Hedayat; Daliri, Mohammad Reza; Agaei, Hassan; Minaei-Bidgoli, Behrouz; Lashgari, Reza; Srahian, Nahid; Hadipour, Mohammad Mehdi; Salehi, Mostafa; Ranjbar Aghdam, Asghar

    2015-01-01

    Introduction: Computer games have attracted remarkable attentions in general publics with different cultures and their effects are subject of research by cognitive neuroscientists. In the present study, possible effects of the game Fifa 2015 on cognitive performance, hormonal levels, and electroencephalographic (EEG) signals were evaluated in young male volunteers. Methods: Thirty two subjects aged 20 years on average participated mutually in playing computer game Fifa 2015. Identification information and general knowledge about the game were collected. Saliva samples from the contestants were obtained before and after the competition. Perceptive and cognitive performance including the general cognitive health, response delay, attention maintenance, and mental fatigue were measured using PASAT test. EEG were recorded during the play using EEG device and analyzed later using QEEG. Simultaneously, the players’ behavior were recorded using a video camera. Saliva cortisol levels were assessed by ELISA kit. Data were analyzed by SPSS program. Results: The impact of playing computer games on cortisol concentration of saliva before and after the game showed that the amount of saliva plasma after playing the game has dropped significantly. Also the impact of playing computer games on mental health, before and after the game indicated that the number of correct answers has not changed significantly. This indicates that sustained attention has increased in participants after the game in comparison with before that. Also it is shown that mental fatigue measured by PASAT test, did not changed significantly after the game in comparison to before that. The impact of game on changes in brain waves showed that the subjects in high activity state during playing the game had higher power of the EEG signals in most of the channels in lower frequency bands in compared to normal state. Discussion: The present study showed that computer games can positively affect the stress system and the perceptual-cognitive system. Even though this impact was not significant in most cases, the changes in cognitive and hormonal test and also in brain waves were visible. Hence, due to the importance of this matter, it is necessary to create control systems in selecting the types of games for playing. PMID:26904177

  17. The Effects of Fifa 2015 Computer Games on Changes in Cognitive, Hormonal and Brain Waves Functions of Young Men Volunteers.

    PubMed

    Aliyari, Hamed; Kazemi, Masoomeh; Tekieh, Elaheh; Salehi, Maryam; Sahraei, Hedayat; Daliri, Mohammad Reza; Agaei, Hassan; Minaei-Bidgoli, Behrouz; Lashgari, Reza; Srahian, Nahid; Hadipour, Mohammad Mehdi; Salehi, Mostafa; Ranjbar Aghdam, Asghar

    2015-07-01

    Computer games have attracted remarkable attentions in general publics with different cultures and their effects are subject of research by cognitive neuroscientists. In the present study, possible effects of the game Fifa 2015 on cognitive performance, hormonal levels, and electroencephalographic (EEG) signals were evaluated in young male volunteers. Thirty two subjects aged 20 years on average participated mutually in playing computer game Fifa 2015. Identification information and general knowledge about the game were collected. Saliva samples from the contestants were obtained before and after the competition. Perceptive and cognitive performance including the general cognitive health, response delay, attention maintenance, and mental fatigue were measured using PASAT test. EEG were recorded during the play using EEG device and analyzed later using QEEG. Simultaneously, the players' behavior were recorded using a video camera. Saliva cortisol levels were assessed by ELISA kit. Data were analyzed by SPSS program. The impact of playing computer games on cortisol concentration of saliva before and after the game showed that the amount of saliva plasma after playing the game has dropped significantly. Also the impact of playing computer games on mental health, before and after the game indicated that the number of correct answers has not changed significantly. This indicates that sustained attention has increased in participants after the game in comparison with before that. Also it is shown that mental fatigue measured by PASAT test, did not changed significantly after the game in comparison to before that. The impact of game on changes in brain waves showed that the subjects in high activity state during playing the game had higher power of the EEG signals in most of the channels in lower frequency bands in compared to normal state. The present study showed that computer games can positively affect the stress system and the perceptual-cognitive system. Even though this impact was not significant in most cases, the changes in cognitive and hormonal test and also in brain waves were visible. Hence, due to the importance of this matter, it is necessary to create control systems in selecting the types of games for playing.

  18. Wearable electroencephalography. What is it, why is it needed, and what does it entail?

    PubMed

    Casson, Alexander; Yates, David; Smith, Shelagh; Duncan, John; Rodriguez-Villegas, Esther

    2010-01-01

    The electroencephalogram (EEG) is a classic noninvasive method for measuring a person's brain waves and is used in a large number of fields: from epilepsy and sleep disorder diagnosis to brain-computer interfaces (BCIs). Electrodes are placed on the scalp to detect the microvolt-sized signals that result from synchronized neuronal activity within the brain. Current long-term EEG monitoring is generally either carried out as an inpatient in combination with video recording and long cables to an amplifier and recording unit or is ambulatory. In the latter, the EEG recorder is portable but bulky, and in principle, the subject can go about their normal daily life during the recording. In practice, however, this is rarely the case. It is quite common for people undergoing ambulatory EEG monitoring to take time off work and stay at home rather than be seen in public with such a device. Wearable EEG is envisioned as the evolution of ambulatory EEG units from the bulky, limited lifetime devices available today to small devices present only on the head that can record EEG for days, weeks, or months at a time. Such miniaturized units could enable prolonged monitoring of chronic conditions such as epilepsy and greatly improve the end-user acceptance of BCI systems. In this article, we aim to provide a review and overview of wearable EEG technology, answering the questions: What is it, why is it needed, and what does it entail? We first investigate the requirements of portable EEG systems and then link these to the core applications of wearable EEG technology: epilepsy diagnosis, sleep disorder diagnosis, and BCIs. As a part of our review, we asked 21 neurologists (as a key user group) for their views on wearable EEG. This group highlighted that wearable EEG will be an essential future tool. Our descriptions here will focus mainly on epilepsy and the medical applications of wearable EEG, as this is the historical background of the EEG, our area of expertise, and a core motivating area in itself, but we will also discuss the other application areas. We continue by considering the forthcoming research challenges, principally new electrode technology and lower power electronics, and we outline our approach for dealing with the electronic power issues. We believe that the optimal approach to realizing wearable EEG technology is not to optimize any one part but to find the best set of tradeoffs at both the system and implementation level. In this article, we discuss two of these tradeoffs in detail: investigating the online compression of EEG data to reduce the system power consumption and the optimal method for providing this data compression.

  19. Cultural hitchhiking on the wave of advance of beneficial technologies.

    PubMed

    Ackland, Graeme J; Signitzer, Markus; Stratford, Kevin; Cohen, Morrel H

    2007-05-22

    The wave-of-advance model was introduced to describe the spread of advantageous genes in a population. It can be adapted to model the uptake of any advantageous technology through a population, such as the arrival of neolithic farmers in Europe, the domestication of the horse, and the development of the wheel, iron tools, political organization, or advanced weaponry. Any trait that preexists alongside the advantageous one could be carried along with it, such as genetics or language, regardless of any intrinsic superiority. Decoupling of the advantageous trait from other "hitchhiking" traits depends on its adoption by the preexisting population. Here, we adopt a similar wave-of-advance model based on food production on a heterogeneous landscape with multiple populations. Two key results arise from geographic inhomogeneity: the "subsistence boundary," land so poor that the wave of advance is halted, and the temporary "diffusion boundary" where the wave cannot move into poorer areas until its gradient becomes sufficiently large. At diffusion boundaries, farming technology may pass to indigenous people already in those poorer lands, allowing their population to grow and resist encroachment by farmers. Ultimately, this adoption of technology leads to the halt in spread of the hitchhiking trait and establishment of a permanent "cultural boundary" between distinct cultures with equivalent technology.

  20. Cultural hitchhiking on the wave of advance of beneficial technologies

    PubMed Central

    Ackland, Graeme J.; Signitzer, Markus; Stratford, Kevin; Cohen, Morrel H.

    2007-01-01

    The wave-of-advance model was introduced to describe the spread of advantageous genes in a population. It can be adapted to model the uptake of any advantageous technology through a population, such as the arrival of neolithic farmers in Europe, the domestication of the horse, and the development of the wheel, iron tools, political organization, or advanced weaponry. Any trait that preexists alongside the advantageous one could be carried along with it, such as genetics or language, regardless of any intrinsic superiority. Decoupling of the advantageous trait from other “hitchhiking” traits depends on its adoption by the preexisting population. Here, we adopt a similar wave-of-advance model based on food production on a heterogeneous landscape with multiple populations. Two key results arise from geographic inhomogeneity: the “subsistence boundary,” land so poor that the wave of advance is halted, and the temporary “diffusion boundary” where the wave cannot move into poorer areas until its gradient becomes sufficiently large. At diffusion boundaries, farming technology may pass to indigenous people already in those poorer lands, allowing their population to grow and resist encroachment by farmers. Ultimately, this adoption of technology leads to the halt in spread of the hitchhiking trait and establishment of a permanent “cultural boundary” between distinct cultures with equivalent technology. PMID:17517663

  1. Evaluation of blue light exposure to beta brainwaves on simulated night driving

    NASA Astrophysics Data System (ADS)

    Purawijaya, Dandri Aly; Fitri, Lulu Lusianti; Suprijanto

    2015-09-01

    Numbers of night driving accident in Indonesia since 2010 are exponentially rising each year with total of loss more than 50 billion rupiah. One of the causes that contribute to night driving accident is drowsiness. Drowsiness is affected by circadian rhythm resulted from the difference of blue light quality and quantity between night and day. Blue light may effect on human physiology through non-visual pathway by suppressing melatonin hormone suppression that influence drowsiness. Meanwhile, the production of hormones and other activities in brain generate bioelectrical activity such as brainwaves and can be recorded using Electroencephalograph (EEG). Therefore, this research objective is to evaluate the effect of blue light exposure to beta brainwave emergence during night driving simulation to a driver. This research was conducted to 4 male subjects who are able to drive and have a legitimate car driving license. The driving simulator was done using SCANIA Truck Driving Simulator on freeform driving mode in dark environment. Subjects drove for total 32 minutes. The data collections were taken in 2 days with 16 minutes for each day. The 16 minutes were divided again into 8 minutes adaptation in dark and 8 minutes for driving either in blue light exposure or in total darkness. While driving the simulation, subjects' brainwaves were recorded using EEG EMOTIV 14 Channels, exposed by LED monochromatic blue light with 160 Lux from source and angle 45o and sat 1 m in front of the screen. Channels used on this research were for visual (O1; O2), cognition (F3; F4; P7; P8), and motor (FC5; FC6). EEG brainwave result was filtered with EEGLab to obtain beta waves at 13 - 30 Hz frequencies. Results showed that beta waves response to blue light varied for each subject. Blue light exposure either increased or decreased beta waves in 2 minutes pattern and maintaining beta waves on cognition and motor area in 3 out of 4 subjects. Meanwhile, blue light exposure did not maintain and induce beta waves fluctuation on visual area of another 2 subjects. The conclusion of this research is that blue light exposure affected the pattern of beta waves on frontal, parietal, premotor cortex and visual lobes.

  2. CDKL5 gene-related epileptic encephalopathy: electroclinical findings in the first year of life.

    PubMed

    Melani, Federico; Mei, Davide; Pisano, Tiziana; Savasta, Salvatore; Franzoni, Emilio; Ferrari, Anna Rita; Marini, Carla; Guerrini, Renzo

    2011-04-01

    Cyclin-dependent kinase-like 5 (CDKL5) gene abnormalities cause an early-onset epileptic encephalopathy. We performed video-electroencephalography (video-EEG) monitoring early in the course of CDKL5-related epileptic encephalopathy in order to examine the early electroclinical characteristics of the condition. We used video-EEG to monitor six infants (five females, one male) with CDKL5-related epileptic encephalopathy (five mutations; one deletion), at ages 45 days to 12 months and followed them up to the ages of 14 months to 5 years (mean age 23 mo). We focused our analysis on the first year of life. The results were evaluated against those of a comparison group of nine infants (aged below 1y) with epileptic encephalography who had tested negative for CDKL5 mutations and deletions. One infant exhibited normal background activity, three exhibited moderate slowing, and two exhibited a suppression burst pattern. Two participants had epileptic spasms and four had a stereotyped complex seizure pattern, which we defined as a 'prolonged' generalized tonic-clonic event consisting of a tonic-tonic/vibratory contraction, followed by a clonic phase with series of spasms, gradually translating into repetitive distal myoclonic jerks. Seizure duration ranged from 2 to 4 minutes. The EEG correlate of each clinical phase included an initial electrodecremental event (tonic vibratory phase), irregular series of sharp waves and spike slow waves (clonic phase with series of spasms), and bilateral rhythmic sharp waves (time locked with myoclonus). Infants with CDKL5-related early epileptic encephalopathy can present in the first year of life with an unusual electroclinical pattern of 'prolonged' generalized tonic-clonic seizures. © The Authors. Journal compilation © Mac Keith Press 2011.

  3. Physiological signal analysis for fatigue level of experienced and inexperienced drivers.

    PubMed

    Li, Rui; Su, Wencheng; Lu, Zhangping

    2017-02-17

    We studied the changes in driving fatigue levels of experienced and inexperienced drivers at 3 periods of the day: 9:00 a.m.-12:00 p.m., 12:00 p.m.-2:00 p.m., and 4:00 p.m.-6:00 p.m. Thirty drivers were involved in 120-min real-car driving, and sleepiness ratings (Stanford Sleepiness Scale, SSS; Hoddes et al. 1973 ), electroencephalogram (EEG) signals, and heart rates (HRs) were recorded. Together with principal component analysis, the relationship between EEG signals and HR was explored and used to determine a comprehensive indicator of driving fatigue. Then the comprehensive indicator was assessed via paired t test. Experienced and inexperienced drivers behaved significantly differently in terms of subjective fatigue during preliminary trials. At the beginning of trials and after termination, subjective fatigue level was aggravated with prolonged continuous driving. Moreover, we discussed the changing rules of EEG signals and HR and found that with prolonged time, the ratios of δ and β waves significantly declined, whereas that of the θ wave significantly rose. The ratio of (α + θ)/β significantly rose both before trials and after termination, but HR dropped significantly. However, one-factor analysis of variance shows that driving experience significantly affects the θ wave, (α + θ)/β ratio, and HR. We found that in a monotonous road environment, fatigue symptoms occurred in inexperienced drivers and experienced drivers after about 60 and 80 min of continuous driving, respectively. Therefore, as for drivers with different experiences, restriction on continuous driving time would avoid fatigued driving and thereby eliminate traffic accidents. We find that the comprehensive indicator changes significantly with fatigue level. The integration of different indicators improves the recognition accuracy of different driving fatigue levels.

  4. Social cognition and neural substrates of face perception: implications for neurodevelopmental and neuropsychiatric disorders.

    PubMed

    Lazar, Steven M; Evans, David W; Myers, Scott M; Moreno-De Luca, Andres; Moore, Gregory J

    2014-04-15

    Social cognition is an important aspect of social behavior in humans. Social cognitive deficits are associated with neurodevelopmental and neuropsychiatric disorders. In this study we examine the neural substrates of social cognition and face processing in a group of healthy young adults to examine the neural substrates of social cognition. Fifty-seven undergraduates completed a battery of social cognition tasks and were assessed with electroencephalography (EEG) during a face-perception task. A subset (N=22) were administered a face-perception task during functional magnetic resonance imaging. Variance in the N170 EEG was predicted by social attribution performance and by a quantitative measure of empathy. Neurally, face processing was more bilateral in females than in males. Variance in fMRI voxel count in the face-sensitive fusiform gyrus was predicted by quantitative measures of social behavior, including the Social Responsiveness Scale (SRS) and the Empathizing Quotient. When measured as a quantitative trait, social behaviors in typical and pathological populations share common neural pathways. The results highlight the importance of viewing neurodevelopmental and neuropsychiatric disorders as spectrum phenomena that may be informed by studies of the normal distribution of relevant traits in the general population. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. [Neurofeedback in the Treatment of Anorexia Nervosa: a Case Report].

    PubMed

    Lackner, N; Unterrainer, H F; Skliris, D; Wood, G; Dunitz-Scheer, M; Wallner-Liebmann, S J; Scheer, P J Z; Neuper, C

    2016-02-01

    Anorexia nervosa has been related to alterations in brain activity in terms of hyperactive EEG patterns. This case report illustrates the principles and results of a five-week neurofeedback treatment in a 29-year-old woman suffering from anorexia nervosa. A neurofeedback protocol to enhance alpha activity (8 - 12 Hz) was developed and conducted additionally to the standardized treatment for eating disorders in training sessions twice a week. Pre- and post-test measurements included resting state EEG measurements and a psychological test battery. The results show improvements from pre- to post-test in eating disorder psychopathology including psychological wellbeing, emotional competence, and eating behavior traits. In addition, a decrease in theta power (4 - 7 Hz), a well-known trait marker of anorexia nervosa, was measured. However, our data should be interpreted with caution because this is a single case study. Nevertheless, this report documents the practicability and method of neurofeedback as treatment adjunct in eating disorders from the clinical perspective. Although the use of neurofeedback in the treatment of anorexia nervosa is recommended in literature, empirical studies are still lacking. Randomized controlled trials to evaluate short- and long-term effects of neurofeedback are needed. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Extending the Trait-State-Occasion Model: How Important Is Within-Wave Measurement Equivalence?

    ERIC Educational Resources Information Center

    Ciesla, Jeffrey A.; Cole, David A.; Steiger, James H.

    2007-01-01

    Trait-State-Occasion (TSO) covariance models represent an important advance in methods for studying the longitudinal stability of latent constructs. Such models have only been examined under fairly restricted conditions (e.g., having only 2 tau-equivalent indicators per wave). In this study, Monte Carlo simulations revealed the effects of having 2…

  7. Interrater agreement in the interpretation of neonatal electroencephalography in hypoxic-ischemic encephalopathy.

    PubMed

    Wusthoff, Courtney J; Sullivan, Joseph; Glass, Hannah C; Shellhaas, Renée A; Abend, Nicholas S; Chang, Taeun; Tsuchida, Tammy N

    2017-03-01

    Research using neonatal electroencephalography (EEG) has been limited by a lack of a standardized classification system and interpretation terminology. In 2013, the American Clinical Neurophysiology Society (ACNS) published a guideline for standardized terminology and categorization in the description of continuous EEG in neonates. We sought to assess interrater agreement for this neonatal EEG categorization system as applied by a group of pediatric neurophysiologists. A total of 60 neonatal EEG studies were collected from three institutions. All EEG segments were from term neonates with hypoxic-ischemic encephalopathy. Three pediatric neurophysiologists independently reviewed each record using the ACNS standardized scoring system. Unweighted kappa values were calculated for interrater agreement of categorical data across multiple observers. Interrater agreement was very good for identification of seizures (κ = 0.93, p < 0.001), with perfect agreement in 95% of records (57 of 60). Interrater agreement was moderate for classifying records as normal or having any abnormality (κ = 0.49, p < 0.001), with perfect agreement in 78% of records (47 of 60). Interrater agreement was good in classifying EEG backgrounds on a 5-category scale (normal, excessively discontinuous, burst suppression, status epilepticus, or electrocerebral inactivity) (κ = 0.70, p < 0.001), with perfect agreement in 72% of records (43 of 60). Other specific background features had lower agreement, including voltage (κ = 0.41, p < 0.001), variability (κ = 0.35, p < 0.001), symmetry (κ = 0.18, p = 0.01), presence of abnormal sharp waves (κ < 0.20, p < 0.05), and presence of brief rhythmic discharges (κ < 0.20, p < 0.05). We found good or very good interrater agreement applying the ACNS system for identification of seizures and classification of EEG background. Other specific EEG features showed limited interrater agreement. Of importance to both clinicians and researchers, our findings support using the ACNS system in identifying seizures and classifying backgrounds of neonatal EEG recordings, but also suggest limited reproducibility for certain other EEG features. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  8. Apparatus and method for epileptic seizure detection using non-linear techniques

    DOEpatents

    Hively, L.M.; Clapp, N.E.; Daw, C.S.; Lawkins, W.F.

    1998-04-28

    Methods and apparatus are disclosed for automatically detecting epileptic seizures by monitoring and analyzing brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; determining that one or more trends in the nonlinear measures indicate a seizure, and providing notification of seizure occurrence. 76 figs.

  9. Donders is dead: cortical traveling waves and the limits of mental chronometry in cognitive neuroscience.

    PubMed

    Alexander, David M; Trengove, Chris; van Leeuwen, Cees

    2015-11-01

    An assumption nearly all researchers in cognitive neuroscience tacitly adhere to is that of space-time separability. Historically, it forms the basis of Donders' difference method, and to date, it underwrites all difference imaging and trial-averaging of cortical activity, including the customary techniques for analyzing fMRI and EEG/MEG data. We describe the assumption and how it licenses common methods in cognitive neuroscience; in particular, we show how it plays out in signal differencing and averaging, and how it misleads us into seeing the brain as a set of static activity sources. In fact, rather than being static, the domains of cortical activity change from moment to moment: Recent research has suggested the importance of traveling waves of activation in the cortex. Traveling waves have been described at a range of different spatial scales in the cortex; they explain a large proportion of the variance in phase measurements of EEG, MEG and ECoG, and are important for understanding cortical function. Critically, traveling waves are not space-time separable. Their prominence suggests that the correct frame of reference for analyzing cortical activity is the dynamical trajectory of the system, rather than the time and space coordinates of measurements. We illustrate what the failure of space-time separability implies for cortical activation, and what consequences this should have for cognitive neuroscience.

  10. Detection of nonlinear interactions of EEG alpha waves in the brain by a new coherence measure and its application to epilepsy and anti-epileptic drug therapy.

    PubMed

    Sherman, David; Zhang, Ning; Garg, Shikha; Thakor, Nitish V; Mirski, Marek A; White, Mirinda Anderson; Hinich, Melvin J

    2011-04-01

    EEG and field potential rhythms established in the cortex and thalamus may accommodate the propagation of seizures. This article describes the interaction between thalamus and cortex during pentylenetetrazol (PTZ) seizures in rats with and without prior treatment with ethosuximide (ESM), a well-known antiepileptic drug (AED) that raises the threshold for seizures, was given before PTZ. The AED was given before PTZ convulsant administration. We track this thalamo-cortical association with a novel measure we have called the cross-bicoherence gain, or BISCOH. This quantity allows us to measure the spectral coherence in a purely higher order spectralmethodology. BISCOH is able to track the formation of nonlinearities at specific frequencies in the recorded EEG. BISCOH showed a strong increase in low alpha wave harmonic generationat 10 and 12.5 Hz after ESM treatment (p < 0.02 and p < 0.007, respectively). Conventional coherence failed to show distinctive and significant changes in thalamo-cortical coupling after ESM treatment at those frequencies and instead showed changes at 5 Hz. This rise in cortical rhythms is evidence of harmonic generation or new frequency formation in the thalamo-cortical system withAED therapy. BISCOH could become a powerful tool in unraveling changes in coherence due to neuroelectric modulation resulting from drug treatment or electrical stimulation.

  11. EEG spectral power density profiles during NREM sleep for gaboxadol and zolpidem in patients with primary insomnia.

    PubMed

    Lundahl, Jonas; Deacon, Steve; Maurice, Damien; Staner, Luc

    2012-08-01

    There is significant interest in the functional significance and the therapeutic value of slow-wave sleep (SWS)-enhancing drugs. A prerequisite for studies of the functional differences is characterization of the electroencephalography (EEG) spectra following treatment in relevant patients. We evaluate for the first time gaboxadol and zolpidem treatments in insomniac patients using power spectra analysis. We carried out two randomized, double-blind, crossover studies. Study 1, 38 patients received gaboxadol 10 mg and 20 mg and zolpidem 10 mg; study 2, 23 patients received gaboxadol 5 mg and 15 mg. Treatments were administered during two nights and compared with placebo. Gaboxadol 10, 15 and 20 mg enhanced slow-wave activity (SWA) and theta power. In 1 Hz bins gaboxadol 10 and 20 mg enhanced power up to 9 Hz. In study 2, 15 mg gaboxadol showed a similar effect pattern. Zolpidem suppressed theta and alpha power, and increased sigma power, with no effect on SWA. In the 1 Hz bins zolpidem suppressed power between 5-10 Hz. Gaboxadol dose-dependently increased SWA and theta power in insomniac patients. In contrast, zolpidem did not affect SWA, reduced theta and alpha activity and enhanced sigma power. EEG spectral power differences may be consequences of the different mechanisms of action for zolpidem and the SWS-enhancing agent, gaboxadol.

  12. Quantitative analysis of sleep EEG microstructure in the time-frequency domain.

    PubMed

    De Carli, Fabrizio; Nobili, Lino; Beelke, Manolo; Watanabe, Tsuyoshi; Smerieri, Arianna; Parrino, Liborio; Terzano, Mario Giovanni; Ferrillo, Franco

    2004-06-30

    A number of phasic events influence sleep quality and sleep macrostructure. The detection of arousals and the analysis of cyclic alternating patterns (CAP) support the evaluation of sleep fragmentation and instability. Sixteen polygraphic overnight recordings were visually inspected for conventional Rechtscaffen and Kales scoring, while arousals were detected following the criteria of the American Sleep Disorders Association (ASDA). Three electroencephalograph (EEG) segments were associated to each event, corresponding to background activity, pre-arousal period and arousal. The study was supplemented by the analysis of time-frequency distribution of EEG within each subtype of phase A in the CAP. The arousals were characterized by the increase of alpha and beta power with regard to background. Within NREM sleep most of the arousals were preceded by a transient increase of delta power. The time-frequency evolution of the phase A of the CAP sequence showed a strong prevalence of delta activity during the whole A1, but high amplitude delta waves were found also in the first 2/3 s of A2 and A3, followed by desynchronization. Our results underline the strict relationship between the ASDA arousals, and the subtype A2 and A3 within the CAP: in both the association between a short sequence of transient slow waves and the successive increase of frequency and decrease of amplitude characterizes the arousal response.

  13. Neuropsychological and neurophysiological evaluation in cirrhotic patients with minimal hepatic encephalopathy undergoing liver transplantation.

    PubMed

    Senzolo, M; Amodio, P; D'Aloiso, M C; Fagiuoli, S; Del Piccolo, F; Canova, D; Masier, A; Bassanello, M; Zanus, G; Burra, P

    2005-03-01

    Cirrhotic patients without overt hepatic encephalopathy may have cerebral function alterations called minimal hepatic encephalopathy (MHE). Our goal was to evaluate the role of partial pressure of ammonia (pNH3), neuropsychological, and neurophysiological assessment in detecting cognitive changes in cirrhotic patients awaiting liver transplantation. Fourteen cirrhotic patients listed for liver transplant were studied. All patients underwent the neuropsychological battery called PSE. Neurophysiological assessment including spectral EEG (sEEG), evoked potential P300 and pNH3 and venous and arterial ammonia levels was performed in all patients. Four patients were transplanted. Liver disease etiology was alcoholic in four patients, viral in six mixed in two, and cryptogenic in two. PSE scores revealed MHE in 8 patients; sEEG was altered in 6, and P300 in 1. No correlations were detected between P300, sEEG, and PSE. pNH3 and arterial ammonia levels were significantly higher in the subgroup of patients with altered sEEG and were correlated with theta band increase in sEEG but not with pathological PSE scores or P300 wave abnormalities. The combination of sEEG and PSE, and possibly also pNH3 and arterial ammonia, is useful in detecting cerebral function alterations in cirrhotic patients with no apparent encephalopathy, whereas P300 is not. The diagnosis of MHE obtained using the multimodal approach adopted in this study may enable the adequate treatment of these patients prior to surgery, which includes advising them not to drive and adjusting their priority on the waiting list for OLTx in the light of a condition that cannot be evaluated by Child Pugh score and MELD score.

  14. A Comparative Study of Standardized Infinity Reference and Average Reference for EEG of Three Typical Brain States

    PubMed Central

    Zheng, Gaoxing; Qi, Xiaoying; Li, Yuzhu; Zhang, Wei; Yu, Yuguo

    2018-01-01

    The choice of different reference electrodes plays an important role in deciphering the functional meaning of electroencephalography (EEG) signals. In recent years, the infinity zero reference using the reference electrode standard technique (REST) has been increasingly applied, while the average reference (AR) was generally advocated as the best available reference option in previous classical EEG studies. Here, we designed EEG experiments and performed a direct comparison between the influences of REST and AR on EEG-revealed brain activity features for three typical brain behavior states (eyes-closed, eyes-open and music-listening). The analysis results revealed the following observations: (1) there is no significant difference in the alpha-wave-blocking effect during the eyes-open state compared with the eyes-closed state for both REST and AR references; (2) there was clear frontal EEG asymmetry during the resting state, and the degree of lateralization under REST was higher than that under AR; (3) the global brain functional connectivity density (FCD) and local FCD have higher values for REST than for AR under different behavior states; and (4) the value of the small-world network characteristic in the eyes-closed state is significantly (in full, alpha, beta and gamma frequency bands) higher than that in the eyes-open state, and the small-world effect under the REST reference is higher than that under AR. In addition, the music-listening state has a higher small-world network effect than the eyes-closed state. The above results suggest that typical EEG features might be more clearly presented by applying the REST reference than by applying AR when using a 64-channel recording. PMID:29593490

  15. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample.

    PubMed

    Mazzotti, Diego Robles; Guindalini, Camila; de Souza, Altay Alves Lino; Sato, João Ricardo; Santos-Silva, Rogério; Bittencourt, Lia Rita Azeredo; Tufik, Sergio

    2012-01-01

    Slow wave oscillations in the electroencephalogram (EEG) during sleep may reflect both sleep need and intensity, which are implied in homeostatic regulation. Adenosine is strongly implicated in sleep homeostasis, and a single nucleotide polymorphism in the adenosine deaminase gene (ADA G22A) has been associated with deeper and more efficient sleep. The present study verified the association between the ADA G22A polymorphism and changes in sleep EEG spectral power (from C3-A2, C4-A1, O1-A2, and O2-A1 derivations) in the Epidemiologic Sleep Study (EPISONO) sample from São Paulo, Brazil. Eight-hundred individuals were subjected to full-night polysomnography and ADA G22A genotyping. Spectral analysis of the EEG was carried out in all individuals using fast Fourier transformation of the signals from each EEG electrode. The genotype groups were compared in the whole sample and in a subsample of 120 individuals matched according to ADA genotype for age, gender, body mass index, caffeine intake status, presence of sleep disturbance, and sleep-disturbing medication. When compared with homozygous GG genotype carriers, A allele carriers showed higher delta spectral power in Stage 1 and Stages 3+4 of sleep, and increased theta spectral power in Stages 1, 2 and REM sleep. These changes were seen both in the whole sample and in the matched subset. The higher EEG spectral power indicates that the sleep of individuals carrying the A allele may be more intense. Therefore, this polymorphism may be an important source of variation in sleep homeostasis in humans, through modulation of specific components of the sleep EEG.

  16. Localization of Asymmetric Brain Function in Emotion and Depression

    PubMed Central

    Herrington, John D.; Heller, Wendy; Mohanty, Aprajita; Engels, Anna S.; Banich, Marie T.; Webb, Andrew G.; Miller, Gregory A.

    2011-01-01

    Although numerous EEG studies have shown that depression is associated with abnormal functional asymmetries in frontal cortex, fMRI and PET studies have largely failed to identify specific brain areas showing this effect. The present study tested the hypothesis that emotion processes are related to asymmetric patterns of fMRI activity, particularly within dorsolateral prefrontal cortex (DLPFC). Eleven depressed and 18 control participants identified the color in which pleasant, neutral, and unpleasant words were printed. Both groups showed a leftward lateralization for pleasant words in DLPFC. In a neighboring DLPFC area, the depression group showed more right-lateralized activation than controls, replicating EEG findings. These data confirm that emotional stimulus processing and trait depression are associated with asymmetric brain functions in distinct subregions of the DLPFC that may go undetected unless appropriate analytic procedures are used. PMID:20070577

  17. Localization of asymmetric brain function in emotion and depression.

    PubMed

    Herrington, John D; Heller, Wendy; Mohanty, Aprajita; Engels, Anna S; Banich, Marie T; Webb, Andrew G; Miller, Gregory A

    2010-05-01

    Although numerous EEG studies have shown that depression is associated with abnormal functional asymmetries in frontal cortex, fMRI and PET studies have largely failed to identify specific brain areas showing this effect. The present study tested the hypothesis that emotion processes are related to asymmetric patterns of fMRI activity, particularly within dorsolateral prefrontal cortex (DLPFC). Eleven depressed and 18 control participants identified the color in which pleasant, neutral, and unpleasant words were printed. Both groups showed a leftward lateralization for pleasant words in DLPFC. In a neighboring DLPFC area, the depression group showed more right-lateralized activation than controls, replicating EEG findings. These data confirm that emotional stimulus processing and trait depression are associated with asymmetric brain functions in distinct subregions of the DLPFC that may go undetected unless appropriate analytic procedures are used.

  18. Impact of playing American professional football on long-term brain function.

    PubMed

    Amen, Daniel G; Newberg, Andrew; Thatcher, Robert; Jin, Yi; Wu, Joseph; Keator, David; Willeumier, Kristen

    2011-01-01

    The authors recruited 100 active and former National Football League players, representing 27 teams and all positions. Players underwent a clinical history, brain SPECT imaging, qEEG, and multiple neuropsychological measures, including MicroCog. Relative to a healthy-comparison group, players showed global decreased perfusion, especially in the prefrontal, temporal, parietal, and occipital lobes, and cerebellar regions. Quantitative EEG findings were consistent, showing elevated slow waves in the frontal and temporal regions. Significant decreases from normal values were found in most neuropsychological tests. This is the first large-scale brain-imaging study to demonstrate significant differences consistent with a chronic brain trauma pattern in professional football players.

  19. Detection of Drug Effects on Brain Activity using EEG-P300 with Similar Stimuli

    NASA Astrophysics Data System (ADS)

    Turnip, Arjon; Dwi Esti, K.; Faizal Amri, M.; Simbolon, Artha I.; Agung Suhendra, M.; IsKandar, Shelly; Wirakusumah, Firman F.

    2017-07-01

    Drug addiction poses a serious problem to our species. The worry that our significant family might be involved in drug use and are concerned to know how to detect drug use. Examinations of thirty taped EEG recordings were performed. The subjects consist of three group: addictive, methadone treatment (rehabilitation), and control (normal) which 10 subjects for each group. Statistical analysis was performed for the relative frequency of wave bands. The higher average amplitude is obtained from the addiction subjects. In the comparison with the signals source, channels P3 provide slightly higher average amplitude than other channels for all of subjects.

  20. Atypical clinical course subacute sclerosing panencephalitis presenting as acute Encephalitis

    PubMed Central

    Komur, Mustafa; Arslankoylu, Ali E; Okuyaz, Cetin; Kuyucu, Necdet

    2012-01-01

    We report a 14-year-old boy who presented with loss of consciousness and gait instability. The electroencephalogram (EEG) showed generalized slowing with irregular activity and cerebral magnetic imaging revealed asymmetrical nonspecific signals on basal ganglia. His second electroencephalogram revealed periodical generalized high-voltage slow wave complexes which did not disappear with diazepam induction. Subacute sclerosing panencephalitis (SSPE) was considered and the diagnosis was confirmed with the identification of measles antibodies in cerebrospinal fluid. Our findings show that SSPE should be in mind in the differential diagnosis of meningoencephalitis and acute disseminated encephalomyelitis and highlight the significance of EEG in the diagnosis of unidentified cases. PMID:23248691

  1. Scale-Free Music of the Brain

    PubMed Central

    Wu, Dan; Li, Chao-Yi; Yao, De-Zhong

    2009-01-01

    Background There is growing interest in the relation between the brain and music. The appealing similarity between brainwaves and the rhythms of music has motivated many scientists to seek a connection between them. A variety of transferring rules has been utilized to convert the brainwaves into music; and most of them are mainly based on spectra feature of EEG. Methodology/Principal Findings In this study, audibly recognizable scale-free music was deduced from individual Electroencephalogram (EEG) waveforms. The translation rules include the direct mapping from the period of an EEG waveform to the duration of a note, the logarithmic mapping of the change of average power of EEG to music intensity according to the Fechner's law, and a scale-free based mapping from the amplitude of EEG to music pitch according to the power law. To show the actual effect, we applied the deduced sonification rules to EEG segments recorded during rapid-eye movement sleep (REM) and slow-wave sleep (SWS). The resulting music is vivid and different between the two mental states; the melody during REM sleep sounds fast and lively, whereas that in SWS sleep is slow and tranquil. 60 volunteers evaluated 25 music pieces, 10 from REM, 10 from SWS and 5 from white noise (WN), 74.3% experienced a happy emotion from REM and felt boring and drowsy when listening to SWS, and the average accuracy for all the music pieces identification is 86.8%(κ = 0.800, P<0.001). We also applied the method to the EEG data from eyes closed, eyes open and epileptic EEG, and the results showed these mental states can be identified by listeners. Conclusions/Significance The sonification rules may identify the mental states of the brain, which provide a real-time strategy for monitoring brain activities and are potentially useful to neurofeedback therapy. PMID:19526057

  2. Comparison of simultaneously recorded [H2(15)O]-PET and LORETA during cognitive and pharmacological activation.

    PubMed

    Gamma, Alex; Lehmann, Dietrich; Frei, Edi; Iwata, Kazuki; Pascual-Marqui, Roberto D; Vollenweider, Franz X

    2004-06-01

    The complementary strengths and weaknesses of established functional brain imaging methods (high spatial, low temporal resolution) and EEG-based techniques (low spatial, high temporal resolution) make their combined use a promising avenue for studying brain processes at a more fine-grained level. However, this strategy requires a better understanding of the relationship between hemodynamic/metabolic and neuroelectric measures of brain activity. We investigated possible correspondences between cerebral blood flow (CBF) as measured by [H2O]-PET and intracerebral electric activity computed by Low Resolution Brain Electromagnetic Tomography (LORETA) from scalp-recorded multichannel EEG in healthy human subjects during cognitive and pharmacological stimulation. The two imaging modalities were compared by descriptive, correlational, and variance analyses, the latter carried out using statistical parametric mapping (SPM99). Descriptive visual comparison showed a partial overlap between the sets of active brain regions detected by the two modalities. A number of exclusively positive correlations of neuroelectric activity with regional CBF were found across the whole EEG frequency range, including slow wave activity, the latter finding being in contrast to most previous studies conducted in patients. Analysis of variance revealed an extensive lack of statistically significant correspondences between brain activity changes as measured by PET vs. EEG-LORETA. In general, correspondences, to the extent they were found, were dependent on experimental condition, brain region, and EEG frequency. Copyright 2004 Wiley-Liss, Inc.

  3. [Electrophysiological correlates of efficacy of nootropic drugs in the treatment of consequences of traumatic brain injury in adolescents].

    PubMed

    Iznak, E V; Iznak, A F; Pankratova, E A; Zavadenko, N N; Guzilova, L S; Guzilova, Iu I

    2010-01-01

    To assess objectively a dynamics of brain functional state, EEG spectral power and peak latency of the P300 component of cognitive auditory evoked potentials have been analyzed in adolescents during the course of nootropic therapy of residual asthenic consequences of traumatic brain injury (ICD-10 F07.2). The study included 76 adolescents, aged 12-18 years, who have undergone severe closed head trauma with brain commotion 1/2--5 years ago. Patients have been divided into 3 groups treated during one month with cerebrolysin, piracetam or magne-B6, respectively. After the end of the nootropic therapy, 77% of patients treated with cerebrolysin as well as 50% of patients treated with piracetam and magne-B6 have demonstrated the positive dynamics of their brain functional state that manifested itself in the appearance of occipital EEG alpha rhythm or in the increase of its spectral power; in the normalization of alpha rhythm frequency; in the decrease in the spectral power of slow wave (theta and delta) EEG activity, in the amount (up to the disappearance) of paroxysmal EEG activity, in the EEG response to hyperventilation and in the shortening of the P300 peak latency. Such positive changes of neurophysiological parameters have been associated with the improvement of clinical conditions of patients and correlated significantly with the dynamics of psychometric scores of attention and memory.

  4. Electroencephalographic Recordings During Withdrawal of Life-Sustaining Therapy Until 30 Minutes After Declaration of Death.

    PubMed

    Norton, Loretta; Gibson, Raechelle M; Gofton, Teneille; Benson, Carolyn; Dhanani, Sonny; Shemie, Sam D; Hornby, Laura; Ward, Roxanne; Young, G Bryan

    2017-03-01

    The timing of the circulatory determination of death for organ donation presents a medical and ethical challenge. Concerns have been raised about the timing of electrocerebral inactivity in relation to the cessation of circulatory function in organ donation after cardio-circulatory death. Nonprocessed electroencephalographic (EEG) measures have not been characterized and may provide insight into neurological function during this process. We assessed electrocortical data in relation to cardiac function after withdrawal of life-sustaining therapy and in the postmortem period after cardiac arrest for four patients in a Canadian intensive care unit. Subhairline EEG and cardio-circulatory monitoring including electrocardiogram, arterial blood pressure (ABP), and oxygen saturation were captured. Electrocerebral inactivity preceded the cessation of the cardiac rhythm and ABP in three patients. In one patient, single delta wave bursts persisted following the cessation of both the cardiac rhythm and ABP. There was a significant difference in EEG amplitude between the 30-minute period before and the 5-minute period following ABP cessation for the group, but we did not observe any well-defined EEG states following the early cardiac arrest period. In a case series of four patients, EEG inactivity preceded electrocardiogram and ABP inactivity during the dying process in three patients. Further study of the electroencephalogram during the withdrawal of life sustaining therapies will add clarity to medical, ethical, and legal concerns for donation after circulatory determined death.

  5. A neural network method for detection of obstructive sleep apnea and narcolepsy based on pupil size and EEG.

    PubMed

    Liu, D; Pang, Z; Lloyd, S R

    2008-02-01

    Electroencephalogram (EEG) is able to indicate states of mental activity ranging from concentrated cognitive efforts to sleepiness. Such mental activity can be reflected by EEG energy. In particular, intrusion of EEG theta wave activity into the beta activity of active wakefulness has been interpreted as ensuing sleepiness. Pupil behavior can also provide information regarding alertness. This paper develops an innovative signal classification method that is capable of differentiating subjects with sleep disorders which cause excessive daytime sleepiness (EDS) from normal control subjects who do not have a sleep disorder based on EEG and pupil size. Subjects with sleep disorders include persons with untreated obstructive sleep apnea (OSA) and narcolepsy. The Yoss pupil staging rule is used to scale levels of wakefulness and at the same time theta energy ratios are calculated from the same 2-s sliding windows by Fourier or wavelet transforms. Then, an artificial neural network (NN) of modified adaptive resonance theory (ART2) is utilized to identify the two groups within a combined group of subjects including those with OSA and healthy controls. This grouping from the NN is then compared with the actual diagnostic classification of subjects as OSA or controls and is found to be 91% accurate in differentiating between the two groups. The same algorithm results in 90% correct differentiation between narcoleptic and control subjects.

  6. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording.

    PubMed

    Chen, Yun-Hsuan; Op de Beeck, Maaike; Vanderheyden, Luc; Carrette, Evelien; Mihajlović, Vojkan; Vanstreels, Kris; Grundlehner, Bernard; Gadeyne, Stefanie; Boon, Paul; Van Hoof, Chris

    2014-12-10

    Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This paper presents dry electrodes offering high user comfort, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication. The electrode impedance is measured on phantoms and human skin. After optimization of the polymer composition, the skin-electrode impedance is only ~10 times larger than that of gel electrodes. Therefore, these electrodes are directly capable of recording strong biopotential signals such as ECG while for low-amplitude signals such as EEG, the electrodes need to be coupled with an active circuit. EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results: alpha waves can be clearly observed when subjects close their eyes, and correlation and coherence analyses reveal high similarity between dry and gel electrode signals. Moreover, all subjects reported that our polymer electrodes did not cause discomfort. Hence, the polymer-based dry electrodes are promising alternatives to either rigid dry electrodes or conventional gel electrodes.

  7. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients.

    PubMed

    Ebrahimi, Farideh; Mikaeili, Mohammad; Estrada, Edson; Nazeran, Homer

    2008-01-01

    Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage 1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage 1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 +/- 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 +/- 4.0%.

  8. Electroencephalographic Variation during End Maintenance and Emergence from Surgical Anesthesia

    PubMed Central

    MacColl, Jono N.; Illing, Sam; Sleigh, Jamie W.

    2014-01-01

    The re-establishment of conscious awareness after discontinuing general anesthesia has often been assumed to be the inverse of loss of consciousness. This is despite the obvious asymmetry in the initiation and termination of natural sleep. In order to characterize the restoration of consciousness after surgery, we recorded frontal electroencephalograph (EEG) from 100 patients in the operating room during maintenance and emergence from general anesthesia. We have defined, for the first time, 4 steady-state patterns of anesthetic maintenance based on the relative EEG power in the slow-wave (<14 Hz) frequency bands that dominate sleep and anesthesia. Unlike single-drug experiments performed in healthy volunteers, we found that surgical patients exhibited greater electroencephalographic heterogeneity while re-establishing conscious awareness after drug discontinuation. Moreover, these emergence patterns could be broadly grouped according to the duration and rapidity of transitions amongst these slow-wave dominated brain states that precede awakening. Most patients progressed gradually from a pattern characterized by strong peaks of delta (0.5–4 Hz) and alpha/spindle (8–14 Hz) power (‘Slow-Wave Anesthesia’) to a state marked by low delta-spindle power (‘Non Slow-Wave Anesthesia’) before awakening. However, 31% of patients transitioned abruptly from Slow-Wave Anesthesia to waking; they were also more likely to express pain in the post-operative period. Our results, based on sleep-staging classification, provide the first systematized nomenclature for tracking brain states under general anesthesia from maintenance to emergence, and suggest that these transitions may correlate with post-operative outcomes such as pain. PMID:25264892

  9. Impact of dronabinol on quantitative electroencephalogram (qEEG) measures of sleep in obstructive sleep apnea syndrome.

    PubMed

    Farabi, Sarah S; Prasad, Bharati; Quinn, Lauretta; Carley, David W

    2014-01-15

    To determine the effects of dronabinol on quantitative electroencephalogram (EEG) markers of the sleep process, including power distribution and ultradian cycling in 15 patients with obstructive sleep apnea (OSA). EEG (C4-A1) relative power (% total) in the delta, theta, alpha, and sigma bands was quantified by fast Fourier transformation (FFT) over 28-second intervals. An activation ratio (AR = [alpha + sigma] / [delta + theta]) also was computed for each interval. To assess ultradian rhythms, the best-fitting cosine wave was determined for AR and each frequency band in each polysomnogram (PSG). Fifteen subjects were included in the analysis. Dronabinol was associated with significantly increased theta power (p = 0.002). During the first half of the night, dronabinol decreased sigma power (p = 0.03) and AR (p = 0.03), and increased theta power (p = 0.0006). At increasing dronabinol doses, ultradian rhythms accounted for a greater fraction of EEG power variance in the delta band (p = 0.04) and AR (p = 0.03). Females had higher amplitude ultradian rhythms than males (theta: p = 0.01; sigma: p = 0.01). Decreasing AHI was associated with increasing ultradian rhythm amplitudes (sigma: p < 0.001; AR: p = 0.02). At the end of treatment, lower relative power in the theta band (p = 0.02) and lower AHI (p = 0.05) correlated with a greater decrease in sleepiness from baseline. This exploratory study demonstrates that in individuals with OSA, dronabinol treatment may yield a shift in EEG power toward delta and theta frequencies and a strengthening of ultradian rhythms in the sleep EEG.

  10. Design of a 32-Channel EEG System for Brain Control Interface Applications

    PubMed Central

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design. PMID:22778545

  11. Design of a 32-channel EEG system for brain control interface applications.

    PubMed

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design.

  12. Sleep EEG Provides Evidence that Cortical Changes Persist into Late Adolescence

    PubMed Central

    Tarokh, Leila; Van Reen, Eliza; LeBourgeois, Monique; Seifer, Ronald; Carskadon, Mary A.

    2011-01-01

    Study Objectives: To examine developmental changes in the human sleep electroencephalogram (EEG) during late adolescence. Setting: A 4-bed sleep laboratory. Participants: Fourteen adolescents (5 boys) were studied at ages 15 or 16 (initial) and again at ages 17 to 19 (follow-up). Interventions: N/A Measurements and Results: All-night polysomnography was recorded at each assessment and scored according to the criteria of Rechtschaffen and Kales. A 27% decline in duration of slow wave sleep, and a 22% increase of stage 2 sleep was observed from the initial to the follow-up session. All-night spectral analysis of 2 central and 2 occipital leads revealed a significant decline of NREM and REM sleep EEG power with increasing age across frequencies in both states. Time-frequency analysis revealed that the decline in power was consistent across the night for all bands except the delta band. The decreases in power were most pronounced over the left central (C3/A2) and right occipital (O2/A1) derivations. Conclusions: Using longitudinal data, we show that the developmental changes to the sleeping EEG that begin in early adolescence continue into late adolescence. As with early adolescents, we observed hemispheric asymmetry in the decline of sleep EEG power. This decline was state and frequency nonspecific, suggesting that it may be due to the pruning of synapses known to occur during adolescence. Citation: Tarokh L; Van Reen E; LeBourgeois M; Seifer R; Carskadon MA. Sleep EEG provides evidence that cortical changes persist into late adolescence. SLEEP 2011;34(10):1385–1393. PMID:21966070

  13. Effects of intravenous temazepam. II. A study of the long-term reproducibility of pharmacokinetics, pharmacodynamics, and concentration-effect parameters.

    PubMed

    van Steveninck, A L; Schoemaker, H C; den Hartigh, J; Pieters, M S; Breimer, D D; Cohen, A F

    1994-05-01

    To evaluate the long-term reproducibility of pharmacokinetic, pharmacodynamic, and concentration-effect parameters after intravenous administration of temazepam. Nine healthy volunteers were studied. Temazepam, 0.4 mg/kg, was infused intravenously for 30 minutes on two occasions 6 months apart. Venous plasma concentrations of temazepam were measured by HPLC in samples obtained between 0 and 24 hours. Pharmacodynamic effects were evaluated up to 8 hours for saccadic peak velocity and electroencephalogram (EEG) beta amplitudes. Subjects' state and trait anxiety were assessed by use of the Spielberger anxiety inventory. Significant correlations between occasions were found for area under the plasma concentration-time curve (AUC) values (r = 0.91; p < 0.01) but not for maximum concentration and half-life. Significant correlations were also found for area under the effect-time curve (AUEC) values of peak velocity (r = 0.88; p < 0.01) but not for peak velocity (r = 0.48; p > 0.05). Significant differences between the slopes of concentration effect plots on different occasions were observed in two subjects for EEG beta and in three subjects for peak velocity, with one subject showing a similar change for both parameters. Trait anxiety scores were higher on the first occasion (33 +/- 7) than on the second occasion (29 +/- 7; p < 0.01). A negative correlation was found between trait anxiety scores and the slopes of concentration-effect plots for peak velocity (r = -0.63; p < 0.01). For AUC and AUEC values the results indicate a reasonable long-term reproducibility of differences between subjects in the pharmacokinetics and pharmacodynamics of temazepam. However, there were limitations to the predictive value of derived concentration-effect parameters.

  14. Prognostic value of EEG in different etiological types of coma.

    PubMed

    Khaburzania, M; Beridze, M

    2013-06-01

    Study aimed at evaluation of prognostic value of standard EEG in different etiology of coma and the influence of etiological factor on the EEG patterns and coma outcome. Totally 175 coma patients were investigated. Patients were evaluated by Glasgow Coma Scale (GCS), clinically and by 16 channel electroencephalography. Auditory evoked potentials studied by EEG -regime for evoked potentials in patients with vegetative state (VS). Patients divided in 8 groups according to coma etiology. All patients were studied for photoreaction, brainstem reflexes, localization of sound and pain, length of coma state and outcome. Brain injury visualized by conventional CT. Outcome defined as death, VS, recovery with disability and without disability. Disability was rated by Disability Rating Scale (DRS). Recovered patients assessed by Mini Mental State Examination (MMSE) scale. Statistics performed by SPSS-11.0. From 175 coma patients 55 patients died, 23 patients found in VS, 97 patients recovered with and without disability. In all etiological groups of coma the background EEG patterns were established. Correspondence analysis of all investigated factors revealed that sound localization had the significant association with EEG delta and theta rhythms and with recovery from coma state (Chi-sqr. =31.10493; p= 0.000001). Among 23 VS patients 9 patients had the signs of MCS and showed the long latency waves (p300) after binaural stimulation. The high amplitude theta frequencies in frontal and temporal lobes significantly correlated with prolongation of latency of cognitive evoked potentials (r=+0.47; p<0.01). Etiological factor had the significant effect on EEG patterns' association with coma outcome only in hemorrhagic and traumatic coma (chi-sqr.=12.95; p<0.005; chi-sqr.=7.92; p<0.03 respectively). Significant correlations established between the delta and theta EEG patterns and coma outcome. Low amplitude decreased power delta and theta frequencies correlated with SND in survived coma patients (r=+0.21; p<0.001; r=+0.27; p<0.001 respectively). Standard EEG is the useful tool for elucidation of coma patients with a high probability to recover as well as those patients, who are at high risk of SND in case of recovery from coma state.

  15. Detection of artifacts from high energy bursts in neonatal EEG.

    PubMed

    Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar

    2013-11-01

    Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the feature subset producing highest classification accuracy. The suggested feature based classification method is executed using our recorded neonatal EEG dataset, consisting of burst and artifact segments. We obtain 78% sensitivity and 72% specificity as the accuracy measures. The accuracy obtained using the proposed method is found to be about 20% higher than that of the reference approaches. Joint use of the proposed method with our previous work on burst detection outperforms reference methods on simultaneous burst and artifact detection. As the proposed method supports detection of a wide range of artifact patterns, it can be improved to incorporate the detection of artifacts within other seizure patterns and background EEG information as well. © 2013 Elsevier Ltd. All rights reserved.

  16. Detection of changes of high-frequency activity by statistical time-frequency analysis in epileptic spikes

    PubMed Central

    Kobayashi, Katsuhiro; Jacobs, Julia; Gotman, Jean

    2013-01-01

    Objective A novel type of statistical time-frequency analysis was developed to elucidate changes of high-frequency EEG activity associated with epileptic spikes. Methods The method uses the Gabor Transform and detects changes of power in comparison to background activity using t-statistics that are controlled by the false discovery rate (FDR) to correct type I error of multiple testing. The analysis was applied to EEGs recorded at 2000 Hz from three patients with mesial temporal lobe epilepsy. Results Spike-related increase of high-frequency oscillations (HFOs) was clearly shown in the FDR-controlled t-spectra: it was most dramatic in spikes recorded from the hippocampus when the hippocampus was the seizure onset zone (SOZ). Depression of fast activity was observed immediately after the spikes, especially consistently in the discharges from the hippocampal SOZ. It corresponded to the slow wave part in case of spike-and-slow-wave complexes, but it was noted even in spikes without apparent slow waves. In one patient, a gradual increase of power above 200 Hz preceded spikes. Conclusions FDR-controlled t-spectra clearly detected the spike-related changes of HFOs that were unclear in standard power spectra. Significance We developed a promising tool to study the HFOs that may be closely linked to the pathophysiology of epileptogenesis. PMID:19394892

  17. Neurocognitive and neurobehavioral disabilities in Epilepsy with Electrical Status Epilepticus in slow sleep (ESES) and related syndromes.

    PubMed

    Raha, Sarbani; Shah, Urvashi; Udani, Vrajesh

    2012-11-01

    The aims of this study were to assess the cognitive and behavioral problems of patients with Epilepsy with Electrical Status Epilepticus in slow sleep (ESES) and related syndromes and to review their EEG (electroencephalography) findings and treatment options. Fourteen patients with ESES were evaluated and treated in 2010. Nine children had continuous spike and wave during slow-wave sleep (CSWS)/ESES syndrome, 3 had Atypical BECTS (benign epilepsy with centrotemporal spikes), 1 had Opercular syndrome, and 1 had Landau-Kleffner syndrome. The duration of ESES ranged from 6 to 52 months. Eleven (91%) children had behavioral issues, most prominent being hyperactivity. Seven of the 13 children (53%) showed evidence of borderline to moderate cognitive impairment. A total of 28 EEG findings of ESES were analyzed for SWI (spike-wave index). Antiepileptic drugs received by the patients included valproate, clobazam, levetiracetam, and others. Eleven patients had been treated with oral steroids and it was found to be efficacious in seven (63%). Disabilities caused by ESES affect multiple domains. Patients with an SWI>50% should be followed up frequently with neuropsychological assessments. Steroids appear to be effective, although there is a need to standardize the dose and duration of treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Concurrent and prospective relationships between social engagement and personality traits in older adulthood.

    PubMed

    Lodi-Smith, Jennifer; Roberts, Brent W

    2012-09-01

    The current research examined the longitudinal relationship between social engagement and personality traits in older adults. Specifically, the present research examined how engagement in family and community roles related to conscientiousness, agreeableness, and emotional stability in a sample of 100 Illinois residents age 60-86 years assessed twice over a period of 2.5 years. Social engagement and personality traits were related in three ways. First, concurrent relationships during Wave 1 suggested that agreeable older adults are more socially engaged. Next, Wave 1 standing on both personality traits and social engagement predicted respective change over time. In addition, changes in engagement and personality traits covaried over time. The specific patterns presented in this study suggest that although some relationships were consistent with research findings in young adulthood and midlife, role investment in old age may have a distinctly different meaning than role investment earlier in the life span. These patterns suggest that personality traits can both inform our understanding of engagement during older adulthood and that personality traits may be meaningful outcomes of the aging experience in their own right.

  19. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system.

    PubMed

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng

    2011-01-01

    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  20. A case of temporal lobe epilepsy with improvement of clinical symptoms and single photon emission computed tomography findings after treatment with clonazepam.

    PubMed

    Ide, M; Mizukami, K; Suzuki, T; Shiraishi, H

    2000-10-01

    A 26-year-old female presented psychomotor seizures, deja vu and amnestic syndrome after meningitis at the age of 14 years. Repeated electroencephalograms (EEG) demonstrated occasional spikes localized in the right temporal region in addition to a considerable amount of theta waves mainly in the right fronto-temporal region. Single photon emission computed tomography (SPECT) showed a marked hypoperfusion corresponding to the region in which the EEG showed abnormal findings, although magnetic resonance imaging (MRI) demonstrated no abnormal findings associated with the clinical features. Treatment with clonazepam in addition to sodium valproate resulted in a remarkable improvement of clinical symptoms (i.e. psychomotor seizures and deja vu), as well as of the EEG and SPECT findings. The present study suggests that SPECT is a useful method not only to determine the localization of regions associated with temporal lobe epilepsy but also to evaluate the effect of treatment in temporal lobe epilepsy.

  1. Déjà vu phenomenon-related EEG pattern. Case report.

    PubMed

    Vlasov, P N; Chervyakov, A V; Gnezditskii, V V

    2013-01-01

    Déjà vu (DV, from French déjà vu - "already seen") is an aberration of psychic activity associated with transitory erroneous perception of novel circumstances, objects, or people as already known. This study aimed to record the EEG pattern of déjà vu. The subjects participated in a survey concerning déjà vu characteristics and underwent ambulatory EEG monitoring (12-16 h). In patients with epilepsy, DV episodes began with polyspike activity in the right temporal lobe region and, in some cases, ended with slow-wave theta-delta activity over the right hemisphere. There were no epileptic discharges in healthy respondents during DV. Two types of déjà vu are suggested to exist: "pathological-epileptic" déjà vu, characteristic of patients with epilepsy and equivalent to an epileptic seizure, and "nonpathological-nonepileptic" déjà vu, which is characteristic of healthy people and psychological phenomenon.

  2. Déjà vu phenomenon-related EEG pattern. Case report☆

    PubMed Central

    Vlasov, P.N.; Chervyakov, A.V.; Gnezditskii, V.V.

    2013-01-01

    Background Déjà vu (DV, from French déjà vu — “already seen”) is an aberration of psychic activity associated with transitory erroneous perception of novel circumstances, objects, or people as already known. Objective This study aimed to record the EEG pattern of déjà vu. Methods The subjects participated in a survey concerning déjà vu characteristics and underwent ambulatory EEG monitoring (12–16 h). Results In patients with epilepsy, DV episodes began with polyspike activity in the right temporal lobe region and, in some cases, ended with slow-wave theta–delta activity over the right hemisphere. There were no epileptic discharges in healthy respondents during DV. Conclusion Two types of déjà vu are suggested to exist: “pathological-epileptic” déjà vu, characteristic of patients with epilepsy and equivalent to an epileptic seizure, and “nonpathological-nonepileptic” déjà vu, which is characteristic of healthy people and psychological phenomenon. PMID:25667847

  3. Syndrome of transient headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL): A case report with serial electroencephalography (EEG) recordings.. Is there an association with human herpes virus type 7 (HHV-7) infection?

    PubMed

    Stelten, Bianca Ml; Venhovens, Jeroen; van der Velden, Lieven Bj; Meulstee, Jan; Verhagen, Wim Im

    2016-11-01

    Introduction The syndrome of transient headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL) is a diagnosis made by exclusion. In the literature, different etiological explanations are proposed for HaNDL, including an immune-mediated reaction after a viral infection. Case description We present a case of a 23-year-old woman with several episodes of transient headache, neurological deficits and cerebrospinal fluid lymphocytosis. All diagnostic criteria for the HaNDL syndrome were fulfilled; however, additional cerebrospinal fluid analysis showed a positive polymerase chain reaction (PCR) for human herpes virus type 7 (HHV-7). Discussion The possible role of a (prodromal) viral infection in the etiology of HaNDL is discussed. Also the role of electroencephalography (EEG) recordings is discussed. Serial EEG recordings showed generalized slowing, frontal intermittent rhythmic delta activity (FIRDA) and symmetric triphasic frontal waves with a dilation lag.

  4. Confused or not Confused?: Disentangling Brain Activity from EEG Data Using Bidirectional LSTM Recurrent Neural Networks.

    PubMed

    Ni, Zhaoheng; Yuksel, Ahmet Cem; Ni, Xiuyan; Mandel, Michael I; Xie, Lei

    2017-08-01

    Brain fog, also known as confusion, is one of the main reasons for low performance in the learning process or any kind of daily task that involves and requires thinking. Detecting confusion in a human's mind in real time is a challenging and important task that can be applied to online education, driver fatigue detection and so on. In this paper, we apply Bidirectional LSTM Recurrent Neural Networks to classify students' confusion in watching online course videos from EEG data. The results show that Bidirectional LSTM model achieves the state-of-the-art performance compared with other machine learning approaches, and shows strong robustness as evaluated by cross-validation. We can predict whether or not a student is confused in the accuracy of 73.3%. Furthermore, we find the most important feature to detecting the brain confusion is the gamma 1 wave of EEG signal. Our results suggest that machine learning is a potentially powerful tool to model and understand brain activity.

  5. Transient Effect of the Noise of Passing Trucks on Sleep Eeg

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Kawada, T.; Kiryu, Y.; Sasazawa, Y.; Tamura, Y.

    1997-08-01

    Twelve subjects were exposed to the noise of passing trucks at peak levels of 45, 50, 55 and 60 dB(A) for 15 min intervals throughout the night each for seven to 12 nights. Effects of the noise were observed by sleep electroencephalography (EEG). Three EEG parameters were affected by the noise event during stage 2. The number of spindles per epoch was depressed on average from 1·78 to 1·02 spindles per epoch or to 57% by the noise event of 60 dB(A), which lasted for only one minute. The threshold level for inducing the decrease was 32 dB(A), as assessed by a regression equation. Time % delta wave was depressed for six minutes, with a threshold level of 41 dB(A). The integral EMG increased in response to the noise event for one minute, and the threshold level for the integral EMG was 34 dB(A).

  6. Power of theta waves in the EEG of human subjects increases during recall of haptic information.

    PubMed

    Grunwald, M; Weiss, T; Krause, W; Beyer, L; Rost, R; Gutberlet, I; Gertz, H J

    1999-02-05

    Several studies have reported a functional relationship between spectral power within the theta-band of the EEG (theta-power) and memory load while processing visual or semantic information. We investigated theta power during the processing of different complex haptic stimuli using a delayed recall design. The haptic explorations consisted of palpating the structure of twelve sunken reliefs with closed eyes. Subjects had to reproduce each relief by drawing it 10 s after the end of the exploration. The relationship between mean theta power and mean exploration time was analysed using a regression model. A linear relationship was found between the exploration time and theta power over fronto-central regions (Fp1, Fp2, F3, F7, F8, Fz, C3) directly before the recall of the relief. This result is interpreted in favour of the hypothesis that fronto-central theta power of the EEG correlates with the load of working memory independent of stimulus modality.

  7. Predictable internal brain dynamics in EEG and its relation to conscious states

    PubMed Central

    Yoo, Jaewook; Kwon, Jaerock; Choe, Yoonsuck

    2014-01-01

    Consciousness is a complex and multi-faceted phenomenon defying scientific explanation. Part of the reason why this is the case is due to its subjective nature. In our previous computational experiments, to avoid such a subjective trap, we took a strategy to investigate objective necessary conditions of consciousness. Our basic hypothesis was that predictive internal dynamics serves as such a condition. This is in line with theories of consciousness that treat retention (memory), protention (anticipation), and primary impression as the tripartite temporal structure of consciousness. To test our hypothesis, we analyzed publicly available sleep and awake electroencephalogram (EEG) data. Our results show that EEG signals from awake or rapid eye movement (REM) sleep states have more predictable dynamics compared to those from slow-wave sleep (SWS). Since awakeness and REM sleep are associated with conscious states and SWS with unconscious or less consciousness states, these results support our hypothesis. The results suggest an intricate relationship among prediction, consciousness, and time, with potential applications to time perception and neurorobotics. PMID:24917813

  8. Generalized onset seizures with focal evolution (GOFE) - A unique seizure type in the setting of generalized epilepsy.

    PubMed

    Linane, Avriel; Lagrange, Andre H; Fu, Cary; Abou-Khalil, Bassel

    2016-01-01

    We report clinical and electrographic features of generalized onset seizures with focal evolution (GOFE) and present arguments for the inclusion of this seizure type in the seizure classification. The adult and pediatric Epilepsy Monitoring Unit databases at Vanderbilt Medical Center and Children's Hospital were screened to identify generalized onset seizures with focal evolution. We reviewed medical records for epilepsy characteristics, epilepsy risk factors, MRI abnormalities, neurologic examination, antiepileptic medications before and after diagnosis, and response to medications. We also reviewed ictal and interictal EEG tracings, as well as video-recorded semiology. Ten patients were identified, 7 males and 3 females. All of the patients developed generalized epilepsy in childhood or adolescence (ages 3-15years). Generalized onset seizures with focal evolution developed years after onset in 9 patients, with a semiology concerning for focal seizures or nonepileptic events. Ictal discharges had a generalized onset on EEG, described as either generalized spike-and-wave and/or polyspike-and-wave discharges, or generalized fast activity. This electrographic activity then evolved to focal rhythmic activity most commonly localized to one temporal or frontal region; five patients had multiple seizures evolving to focal activity in different regions of both hemispheres. The predominant interictal epileptiform activity included generalized spike-and-wave and/or polyspike-and-wave discharges in all patients. Taking into consideration all clinical and EEG data, six patients were classified with genetic (idiopathic) generalized epilepsy, and four were classified with structural/metabolic (symptomatic) generalized epilepsy. All of the patients had modifications to their medications following discharge, with three becoming seizure-free and five responding with >50% reduction in seizure frequency. Generalized onset seizures may occasionally have focal evolution with semiology suggestive of focal seizures, leading to a misdiagnosis of focal onset. This unique seizure type may occur with genetic as well as structural/metabolic forms of epilepsy. The identification of this seizure type may help clinicians choose appropriate medications, avoiding narrow spectrum agents known to aggravate generalized onset seizures. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effects of GF-015535-00, a novel α1 GABA A receptor ligand, on the sleep-wake cycle in mice, with reference to zolpidem.

    PubMed

    Anaclet, Christelle; Zhang, Mei; Zhao, Chunmei; Buda, Colette; Seugnet, Laurent; Lin, Jian-Sheng

    2012-01-01

    Novel, safe, and efficient hypnotic compounds capable of enhancing physiological sleep are still in great demand in the therapy of insomnia. This study compares the sleep-wake effects of a new α1 GABA(A) receptor subunit ligand, GF-015535-00, with those of zolpidem, the widely utilized hypnotic compound. Nine C57Bl6/J male mice were chronically implanted with electrodes for EEG and sleep-wake monitoring. Each mouse received 3 doses of GF-015535-00 and zolpidem. Time spent in sleep-wake states and cortical EEG power spectra were analyzed. Both zolpidem and GF-015535-00 prominently enhanced slow wave sleep and paradoxical sleep in the mouse. However, as compared with zolpidem, GF-015535-00 showed several important differences: (1) a comparable sleep-enhancing effect was obtained with a 10 fold smaller dose; (2) the induced sleep was less fragmented; (3) the risk of subsequent wake rebound was less prominent; and (4) the cortical EEG power ratio between slow wave sleep and wake was similar to that of natural sleep and thus compatible with physiological sleep. The characteristics of the sleep-wake effects of GF-015535-00 in mice could be potentially beneficial for its use as a therapeutic compound in the treatment of insomnia. Further investigations are required to assess whether the same characteristics are conserved in other animal models and humans.

  10. [The electroencephalographic correlates of neurological disorders in the late periods of exposure to ionizing radiation (the aftereffects of the accident at the Chernobyl Atomic Electric Power Station)].

    PubMed

    Zhavoronkova, L A; Kholodova, N B; Zubovskiĭ, G A; Smirnov, Iu N; Koptelov, Iu M; Ryzhov, N I

    1994-01-01

    EEG mapping and three-dimensional localization of epileptic activity sources together with a neurological analysis were carried out in subjects having taken part in 1986-1987 in the liquidation of consequences of the Chernobyl accident. Experimental group included 40 right-handed 25-45 years-old men having received a radiation dose of 15-51 Ber stated officially. Control group consisted of 20 healthy men. Neurological examination of the patients revealed vegetative-vascular and endocrine dysfunctions as well as diffuse neurological symptoms. EEG of one group of patients (25 persons) was characterized by slow alpha- and theta-band foci and epileptic waves in the central-frontal regions; epileptic sources were localized at the diencephalic level mainly in the midline being shifted to the right hemisphere. In the EEG of another group (15 persons) delta-waves were recorded in the frontal regions at the background of diffuse beta-activity. The sources of epileptic activity of a diffuse character were localized at the basal level of the brain and in the cortex (predominantly) in the left hemisphere. The results obtained together with SPECT mapping and CT data permit to suppose the organic damage of different brain structures (at the cortical and the midline levels) in the patients, with participation of diencephalic structures in the pathological process hypothalamic-hypophysial system being probably connected with adaptive processes in the CNS.

  11. Anxious gambling: Anxiety is associated with higher frontal midline theta predicting less risky decisions.

    PubMed

    Schmidt, Barbara; Kanis, Hannah; Holroyd, Clay B; Miltner, Wolfgang H R; Hewig, Johannes

    2018-06-20

    In this study, we address the effect of anxiety measured with the State-Trait Anxiety Inventory (STAI) on EEG and risk decisions. We selected 20 high and 20 low anxious participants based on their STAI trait scores in the upper or lower quartile of the norm distribution and implemented a risk game developed in our laboratory. We investigate if high anxious individuals exert more cognitive control, reflected in higher frontal midline theta (FMT) power when they make a risky decision, and if they act less risky compared to low anxious individuals. Participants played a risk game while we recorded their brain responses via EEG. High anxious participants played less risky compared to low anxious participants. Further, high anxious participants showed higher FMT power immediately before they chose one of two risk options, suggesting higher cognitive control during the decision time compared to low anxious participants. Via a mediation analysis, we show that the effect of anxiety on risk behavior is fully mediated by FMT power. Further, questionnaire responses revealed that high anxious participants rated risk situations as riskier compared to low anxious participants. We conclude that anxious individuals perceive risky situations as riskier and thus exert more cognitive control during their risk choices, reflected in higher FMT power, which leads to less risky decisions. © 2018 Society for Psychophysiological Research.

  12. The Transliminal Brain at Rest: Baseline EEG, Unusual Experiences, and Access to Unconscious Mental Activity

    PubMed Central

    Fleck, Jessica I.; Green, Deborah L.; Stevenson, Jennifer L.; Payne, Lisa; Bowden, Edward M.; Jung-Beeman, Mark; Kounios, John

    2008-01-01

    Transliminality reflects individual differences in the threshold at which unconscious processes or external stimuli enter into consciousness. Individuals high in transliminality possess characteristics such as magical ideation, belief in the paranormal, and creative personality traits, and also report the occurrence of manic/mystic experiences. The goal of the present research was to determine if resting brain activity differs for individuals high versus low in transliminality. We compared baseline EEG recordings (eyes-closed) between individuals high versus low in transliminality, assessed using The Revised Transliminality Scale of Lange et al. (2000). Identifying reliable differences at rest between high- and low-transliminality individuals would support a predisposition for transliminality-related traits. Individuals high in transliminality exhibited lower alpha, beta, and gamma power than individuals low in transliminality over left posterior association cortex and lower high alpha, low beta, and gamma power over the right superior temporal region. In contrast, when compared to individuals low in transliminality, individuals high in transliminality exhibited greater gamma power over the frontal-midline region. These results are consistent with prior research reporting reductions in left temporal/parietal activity, as well as the desynchronization of right temporal activity in schizotypy and related schizophrenia spectrum disorders. Further, differences between high- and low-transliminality groups extend existing theories linking altered hemispheric asymmetries in brain activity to a predisposition toward schizophrenia, paranormal beliefs, and unusual experiences. PMID:18814870

  13. Rectal diazepam in the treatment of absence status: a pharmacodynamic study

    PubMed Central

    Milligan, Norman; Dhillon, Soraya; Richens, Alan; Oxley, Jolyon

    1981-01-01

    Rectal administration of diazepam is highly effective in terminating absence status as judged by reduction of spike-wave activity in the EEG. Pharmacokinetic studies indicate that diazepam can have antiepileptic properties at serum levels well below those previously reported as being necessary to achieve a therapeutic effect. PMID:7310409

  14. EEG Alpha and Beta Activity in Normal and Deaf Subjects.

    ERIC Educational Resources Information Center

    Waldron, Manjula; And Others

    Electroencephalogram and task performance data were collected from three groups of young adult males: profoundly deaf Ss who signed from an early age, profoundly deaf Ss who only used oral (speech and speedreading) methods of communication, and normal hearing Ss. Alpha and Beta brain wave patterns over the Wernicke's area were compared across…

  15. Designing EEG Neurofeedback Procedures to Enhance Open-Ended versus Closed-Ended Creative Potentials

    ERIC Educational Resources Information Center

    Lin, Wei-Lun; Shih, Yi-Ling

    2016-01-01

    Recent empirical evidence demonstrated that open-ended creativity (which refers to creativity measures that require various and numerous responses, such as divergent thinking) correlated with alpha brain wave activation, whereas closed-ended creativity (which refers to creativity measures that ask for one final correct answer, such as insight…

  16. myBrain: a novel EEG embedded system for epilepsy monitoring.

    PubMed

    Pinho, Francisco; Cerqueira, João; Correia, José; Sousa, Nuno; Dias, Nuno

    2017-10-01

    The World Health Organisation has pointed that a successful health care delivery, requires effective medical devices as tools for prevention, diagnosis, treatment and rehabilitation. Several studies have concluded that longer monitoring periods and outpatient settings might increase diagnosis accuracy and success rate of treatment selection. The long-term monitoring of epileptic patients through electroencephalography (EEG) has been considered a powerful tool to improve the diagnosis, disease classification, and treatment of patients with such condition. This work presents the development of a wireless and wearable EEG acquisition platform suitable for both long-term and short-term monitoring in inpatient and outpatient settings. The developed platform features 32 passive dry electrodes, analogue-to-digital signal conversion with 24-bit resolution and a variable sampling frequency from 250 Hz to 1000 Hz per channel, embedded in a stand-alone module. A computer-on-module embedded system runs a Linux ® operating system that rules the interface between two software frameworks, which interact to satisfy the real-time constraints of signal acquisition as well as parallel recording, processing and wireless data transmission. A textile structure was developed to accommodate all components. Platform performance was evaluated in terms of hardware, software and signal quality. The electrodes were characterised through electrochemical impedance spectroscopy and the operating system performance running an epileptic discrimination algorithm was evaluated. Signal quality was thoroughly assessed in two different approaches: playback of EEG reference signals and benchmarking with a clinical-grade EEG system in alpha-wave replacement and steady-state visual evoked potential paradigms. The proposed platform seems to efficiently monitor epileptic patients in both inpatient and outpatient settings and paves the way to new ambulatory clinical regimens as well as non-clinical EEG applications.

  17. Sleep in the domestic hen (Gallus domesticus).

    PubMed

    van Luijtelaar, E L; van der Grinten, C P; Blokhuis, H J; Coenen, A M

    1987-01-01

    Electrophysiological recordings were made of five closely observed hens, all permanently implanted with both EEG and EMG electrodes. Five behavioural postures were distinguished and percentages of wakefulness, sleep and presumably paradoxical sleep (PS) were determined during the third and sixth hour of the dark period. Substantial agreement was generally found between behaviour and sleep with the exception of sitting or standing motionless with at least one eye open. During two thirds of this behavioural posture, the EEG showed large amplitude slow waves undistinguishable from slow wave sleep. Characteristics of PS were determined: periods were short, whereas its percentage increased during the night. Furthermore, EMG atonia was never found. An all night recording was made, and delta activity (2-5 Hz) was filtered and plotted against time for three of the hens. A significant decrease in delta activity across the night was found. Differences and similarities between sleep in hens and in mammals are discussed. Although large similarities exist it is concluded that some properties of birds' sleep make it unique and are a challenge for further study.

  18. Physiological responses to low atmospheric pressure stunning and the implications for welfare.

    PubMed

    McKeegan, D E F; Sandercock, D A; Gerritzen, M A

    2013-04-01

    In low atmospheric pressure stunning (LAPS), poultry are rendered unconscious before slaughter by gradually reducing oxygen tension in the atmosphere to achieve a progressive anoxia. The effects of LAPS are not instantaneous, so there are legitimate welfare concerns around the experience of birds before loss of consciousness. Using self-contained telemetry logging units, high-quality continuous electroencephalogram (EEG) and electrocardiogram (EKG) recordings were obtained from 28 broiler chickens during exposure to LAPS in a commercial poultry processing plant. Application of LAPS was associated with changes in the EEG pattern in the form of increases in total power, decreases in mean frequency, and in particular, increases in slow-wave (delta) activity, indicating a gradual loss of consciousness. Increased delta wave activity was seen within 10 s of LAPS onset and consistently thereafter, peaking at 30 s into LAPS at which point the EEG signal shared characteristics with that of birds in a surgical plane of anesthesia. During LAPS, heart rate consistently decreased, with more pronounced bradycardia and arrhythmia observed after 30 s. No heart rate increases were observed in the period when the birds were potentially conscious. After an initial quiescent period, brief body movements (presumed to be ataxia/loss of posture) were seen on average at 39 s into the LAPS process. Later (after 120 s on average), artifacts related to clonic (wing flapping) and tonic (muscle spasms) convulsions were observed in the EKG recordings. Based on EEG analysis and body movement responses, a conservative estimate of time to loss of consciousness is approximately 40 s. The lack of behavioral responses indicating aversion or escape and absence of heart rate elevation in the conscious period strongly suggest that birds do not find LAPS induction distressing. Collectively, the results suggest that LAPS is a humane approach that has the potential to improve the welfare of poultry at slaughter by gradually inducing unconsciousness without distress, eliminating live shackling and ensuring every bird is adequately stunned before exansguination.

  19. Right-frontal cortical asymmetry predicts increased proneness to nostalgia.

    PubMed

    Tullett, Alexa M; Wildschut, Tim; Sedikides, Constantine; Inzlicht, Michael

    2015-08-01

    Nostalgia is often triggered by feelings-such as sadness, loneliness, or meaninglessness-that are typically associated with withdrawal motivation. Here, we examined whether a trait tendency to experience withdrawal motivation is associated with nostalgia proneness. Past work indicates that baseline right-frontal cortical asymmetry is a neural correlate of withdrawal-related motivation. We therefore hypothesized that higher baseline levels of right-frontal asymmetry would predict increased proneness to nostalgia. We assessed participants' baseline levels of frontal cortical activity using EEG. Results supported the hypothesis and demonstrated that the association between relative right-frontal asymmetry and increased nostalgia remained significant when controlling for the Big Five personality traits. Overall, these findings indicate that individuals with a stronger dispositional tendency to experience withdrawal-related motivation are more prone to nostalgia. © 2015 Society for Psychophysiological Research.

  20. Neurofeedback training aimed to improve focused attention and alertness in children with ADHD: a study of relative power of EEG rhythms using custom-made software application.

    PubMed

    Hillard, Brent; El-Baz, Ayman S; Sears, Lonnie; Tasman, Allan; Sokhadze, Estate M

    2013-07-01

    Neurofeedback is a nonpharmacological treatment for attention-deficit hyperactivity disorder (ADHD). We propose that operant conditioning of electroencephalogram (EEG) in neurofeedback training aimed to mitigate inattention and low arousal in ADHD, will be accompanied by changes in EEG bands' relative power. Patients were 18 children diagnosed with ADHD. The neurofeedback protocol ("Focus/Alertness" by Peak Achievement Trainer) has a focused attention and alertness training mode. The neurofeedback protocol provides one for Focus and one for Alertness. This does not allow for collecting information regarding changes in specific EEG bands (delta, theta, alpha, low and high beta, and gamma) power within the 2 to 45 Hz range. Quantitative EEG analysis was completed on each of twelve 25-minute-long sessions using a custom-made MatLab application to determine the relative power of each of the aforementioned EEG bands throughout each session, and from the first session to the last session. Additional statistical analysis determined significant changes in relative power within sessions (from minute 1 to minute 25) and between sessions (from session 1 to session 12). Analysis was of relative power of theta, alpha, low and high beta, theta/alpha, theta/beta, and theta/low beta and theta/high beta ratios. Additional secondary measures of patients' post-neurofeedback outcomes were assessed, using an audiovisual selective attention test (IVA + Plus) and behavioral evaluation scores from the Aberrant Behavior Checklist. Analysis of data computed in the MatLab application, determined that theta/low beta and theta/alpha ratios decreased significantly from session 1 to session 12, and from minute 1 to minute 25 within sessions. The findings regarding EEG changes resulting from brain wave self-regulation training, along with behavioral evaluations, will help elucidate neural mechanisms of neurofeedback aimed to improve focused attention and alertness in ADHD.

  1. Impact of Dronabinol on Quantitative Electroencephalogram (qEEG) Measures of Sleep in Obstructive Sleep Apnea Syndrome

    PubMed Central

    Farabi, Sarah S.; Prasad, Bharati; Quinn, Lauretta; Carley, David W.

    2014-01-01

    Study Objectives: To determine the effects of dronabinol on quantitative electroencephalogram (EEG) markers of the sleep process, including power distribution and ultradian cycling in 15 patients with obstructive sleep apnea (OSA). Methods: EEG (C4-A1) relative power (% total) in the delta, theta, alpha, and sigma bands was quantified by fast Fourier transformation (FFT) over 28-second intervals. An activation ratio (AR = [alpha + sigma] / [delta + theta]) also was computed for each interval. To assess ultradian rhythms, the best-fitting cosine wave was determined for AR and each frequency band in each polysomnogram (PSG). Results: Fifteen subjects were included in the analysis. Dronabinol was associated with significantly increased theta power (p = 0.002). During the first half of the night, dronabinol decreased sigma power (p = 0.03) and AR (p = 0.03), and increased theta power (p = 0.0006). At increasing dronabinol doses, ultradian rhythms accounted for a greater fraction of EEG power variance in the delta band (p = 0.04) and AR (p = 0.03). Females had higher amplitude ultradian rhythms than males (theta: p = 0.01; sigma: p = 0.01). Decreasing AHI was associated with increasing ultradian rhythm amplitudes (sigma: p < 0.001; AR: p = 0.02). At the end of treatment, lower relative power in the theta band (p = 0.02) and lower AHI (p = 0.05) correlated with a greater decrease in sleepiness from baseline. Conclusions: This exploratory study demonstrates that in individuals with OSA, dronabinol treatment may yield a shift in EEG power toward delta and theta frequencies and a strengthening of ultradian rhythms in the sleep EEG. Citation: Farabi SS; Prasad B; Quinn L; Carley DW. Impact of dronabinol on quantitative electroencephalogram (qEEG) measures of sleep in obstructive sleep apnea syndrome. J Clin Sleep Med 2014;10(1):49-56. PMID:24426820

  2. [Changes in the EEG spectral power during perception of neutral and emotionally salient words in schizophrenic patients, their relatives and healthy individuals from the general population].

    PubMed

    Alfimova, M V; Uvarova, L G

    2007-01-01

    To search for EEG-correlates of emotional processing that might be indicators of genetic predisposition to schizophrenia, changes in EEG spectral power during perception of neutral and emotionally salient words were examined in 36 schizophrenic patients, 50 of their unaffected first-degree relatives, and 47 healthy individuals without any family history of psychoses. In healthy persons, passive listening to neutral words induced minimum changes in cortical rhythmical activity, predominantly in the form of synchronization of slow and fast waves, whereas perception of emotional words was followed by a generalized depression of the alpha and beta1 activity and a locally specific decrease in the power of theta and beta2 frequency bands. The patients and their relatives showed a decrease in the alpha and beta1 activity simultaneously with an increase in the power of delta activity in response to both groups of words. Thus, in the patients and their relatives, reactions to neutral and emotional words were ulterior as a result of augmented reactions to the neutral words. These findings suggest that the EEG changes reflect familial and possibly hereditable abnormal involuntary attention. No prominent decrease in reactivity to emotional stimuli was revealed in schizophrenic families.

  3. Changes in EEG spectral power on perception of neutral and emotional words in patients with schizophrenia, their relatives, and healthy subjects from the general population.

    PubMed

    Alfimova, M V; Uvarova, L G

    2008-06-01

    EEG correlates of impairments in the processing of emotiogenic information which might reflect a genetic predisposition to schizophrenia were sought by studying the dynamics of EEG rhythm powers on presentation of neutral and emotional words in 36 patients with schizophrenia, 50 of their unaffected first-degree relatives, and 47 healthy subjects without any inherited predisposition to psychoses. In controls, passive hearing of neutral words produced minimal changes in cortical rhythms, predominantly in the form of increases in the power levels of slow and fast waves, while perception of emotional words was accompanied by generalized reductions in the power of the alpha and beta(1) rhythms and regionally specific suppression of theta and beta(2) activity. Patients and their relatives demonstrated reductions in power of alpha and beta(1) activity, with an increase in delta power on hearing both groups of words. Thus, differences in responses to neutral and emotional words in patients and their relatives were weaker, because of increased reactions to neutral words. These results may identify EEG reflections of pathology of involuntary attention, which is familial and, evidently, inherited in nature. No reduction in reactions to emotiogenic stimuli was seen in patients' families.

  4. Opioid system of the brain and ethanol.

    PubMed

    Gogichadze, M; Mgaloblishvili-Nemsadze, M; Oniani, N; Emukhvary, N; Basishvili, T

    2009-04-01

    Influence of blocking of opioid receptors with concomitant intraperitoneal injections of Naloxone (20 mg/kg) (non-selective antagonist of opioid system) on the outcomes of anesthetic dose of ethanol (4,25 ml /kg 25% solution) was investigated in the rats. The sleep-wakefulness cycle (SWC) was used as a model for identification of the effects. Alterations of the SWC structure adequately reflect the neuro-chemical changes, which may develop during pharmacological and non-pharmacological impact. Administration of anesthetic dose of ethanol evoked considerable modification of spontaneous EEG activity of the neocortex. The EEG activity was depressed and full inhibition of spinal reflexes and somatic muscular relaxation did occur. During EEG depression regular SWC did not develop. All phases of SWC were reduced. The disturbances of SWC, such as decrease of slow wave sleep and paradoxical sleep duration and increase of wakefulness, remained for several days. At concomitant administration of Naloxone and ethanol, duration of EEG depression decreased significantly. Generation of normal SWC was observed on the same experimental day. However, it should be noted that complete abolishment of ethanol effects by Naloxone was not observed. The results obtained suggest that Naloxone partially blocks ethanol depressogenic effects and duration of this effect is mediated by GABA-ergic system of the brain.

  5. A review of electroencephalographic changes in diabetes mellitus in relation to major depressive disorder.

    PubMed

    Baskaran, Anusha; Milev, Roumen; McIntyre, Roger S

    2013-01-01

    A bidirectional relationship exists between diabetes mellitus (DM) and major depressive disorder (MDD), with depression commonly reported in both type 1 DM (T1DM) and type 2 DM (T2DM), and depressive symptoms associated with a higher incidence of diabetes. However, how the two conditions are pathologically connected is not completely understood. Similar neurophysiological abnormalities have been reported in both DM and MDD, including elevated electroencephalographic (EEG) activity in low-frequency slow waves and increased latency and/or reduced amplitude of event-related potentials. It is possible that this association reflects some common underlying pathology, and it has been proposed that diabetes may place patients at risk for depression through a biological mechanism linking the metabolic changes of DM to changes in the central nervous system. In this review we will discuss EEG abnormalities in DM, as well as the biological mechanisms underlying various EEG parameters, in order to evaluate whether or not a common EEG biosignature exists between DM and MDD. Identifying such commonalities could significantly inform the current understanding of the mechanisms that subserve the development of the two conditions. Moreover, this new insight may provide the basis for informing new drug discovery capable of mitigating and possibly even preventing both conditions.

  6. Electroencephalographic features of benign adult familial myoclonic epilepsy.

    PubMed

    Toyota, Tomoko; Akamatsu, Naoki; Tanaka, Akihiro; Tsuji, Sadatoshi; Uozumi, Takenori

    2014-02-01

    To investigate electroencephalographic (EEG) features of benign adult familial myoclonic epilepsy (BAFME). We reviewed interictal EEG features in patients with BAFME treated between April 2005 and November 2012 at a tertiary referral center. The diagnostic criteria for BAFME were the presence of infrequent generalized tonic-clonic seizures, myoclonus or myoclonic seizures, and autosomal dominant inheritance. Interictal EEG findings of epilepsy with generalized tonic-clonic seizure only (EGTCS) were reviewed for comparison. We randomly selected 10 generalized spike/polyspike and wave complexes (GSW) for each BAFME patient and measured the duration of them. Photic stimulation and hyperventilation were performed in all. Nineteen (eight men, 11 women) patients with BAFME were included in this study. The mean frequency of GSW was 4.3±1.0Hz (mean±SD, n=14) in BAFME and 3.2±0.8Hz (n=10) in EGTCS. There was a statistically significant difference (p=0.008) between the two. Photoparoxysmal responses (PPR) were noted in 18 (95%) patients with BAFME but 1 (10%) with EGTCS. Faster frequency of GSW, compared with that in EGTCS, accompanied by PPR may be characteristic EEG features of BAFME. These findings may lead the diagnosis of BAFME. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Soft, Comfortable Polymer Dry Electrodes for High Quality ECG and EEG Recording

    PubMed Central

    Chen, Yun-Hsuan; de Beeck, Maaike Op; Vanderheyden, Luc; Carrette, Evelien; Mihajlović, Vojkan; Vanstreels, Kris; Grundlehner, Bernard; Gadeyne, Stefanie; Boon, Paul; Van Hoof, Chris

    2014-01-01

    Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This paper presents dry electrodes offering high user comfort, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication. The electrode impedance is measured on phantoms and human skin. After optimization of the polymer composition, the skin-electrode impedance is only ∼10 times larger than that of gel electrodes. Therefore, these electrodes are directly capable of recording strong biopotential signals such as ECG while for low-amplitude signals such as EEG, the electrodes need to be coupled with an active circuit. EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results: alpha waves can be clearly observed when subjects close their eyes, and correlation and coherence analyses reveal high similarity between dry and gel electrode signals. Moreover, all subjects reported that our polymer electrodes did not cause discomfort. Hence, the polymer-based dry electrodes are promising alternatives to either rigid dry electrodes or conventional gel electrodes. PMID:25513825

  8. Slower EEG alpha generation, synchronization and "flow"-possible biomarkers of cognitive impairment and neuropathology of minor stroke.

    PubMed

    Petrovic, Jelena; Milosevic, Vuk; Zivkovic, Miroslava; Stojanov, Dragan; Milojkovic, Olga; Kalauzi, Aleksandar; Saponjic, Jasna

    2017-01-01

    We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. We included 10 patients with right middle cerebral artery (MCA) ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS), whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA) and MoCA memory index (MoCA-MIS). The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8), and corresponding lateral posterior (P3, P4, T5, T6) electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG), the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure), the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs). Statistical analysis was done using a Kruskal-Wallis ANOVA with a post-hoc Mann-Whitney U two-tailed test, and Spearman's correlation. We demonstrated transient cognitive impairment alongside a slower alpha frequency ( α AVG) in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered "alpha flow", indicating the sustained augmentation of inter-hemispheric interactions. Although the stroke induced slower alpha was a transient phenomenon, the increased alpha intra-hemispheric synchronization, overlying the ipsi-lesional hemisphere, the increased alpha F3-F4 inter-hemispheric synchronization, the delayed alpha waves, and the newly established inter-hemispheric "alpha flow" within the frontal cortex, remained as a permanent consequence of the minor stroke. This newly established frontal inter-hemispheric "alpha flow" represented a permanent consequence of the "hidden" stroke neuropathology, despite the fact that cognitive impairment has been returned to the control values. All the detected permanent changes at the EEG level with no cognitive impairment after a minor stroke could be a way for the brain to compensate for the lesion and restore the lost function. Our study indicates slower EEG alpha generation, synchronization and "flow" as potential biomarkers of cognitive impairment onset and/or compensatory post-stroke re-organizational processes.

  9. EEG Dynamics of a Go/Nogo Task in Children with ADHD

    PubMed Central

    Baijot, Simon; Zarka, David; Leroy, Axelle; Slama, Hichem; Colin, Cecile; Deconinck, Nicolas; Dan, Bernard; Cheron, Guy

    2017-01-01

    Background: Studies investigating event-related potential (ERP) evoked in a Cue-Go/NoGo paradigm have shown lower frontal N1, N2 and central P3 in children with attention-deficit/hyperactivity disorder (ADHD) compared to typically developing children (TDC). However, the electroencephalographic (EEG) dynamics underlying these ERPs remain largely unexplored in ADHD. Methods: We investigate the event-related spectral perturbation and inter-trial coherence linked to the ERP triggered by visual Cue-Go/NoGo stimuli, in 14 children (7 ADHD and 7 TDC) aged 8 to 12 years. Results: Compared to TDC, the EEG dynamics of children with ADHD showed a lower theta-alpha ITC concomitant to lower occipito-parietal P1-N2 and frontal N1-P2 potentials in response to Cue, Go and Nogo stimuli; an upper alpha power preceding lower central Go-P3; a lower theta-alpha power and ITC were coupled to a lower frontal Nogo-N3; a lower low-gamma power overall scalp at 300 ms after Go and Nogo stimuli. Conclusion: These findings suggest impaired ability in children with ADHD to conserve the brain oscillations phase associated with stimulus processing. This physiological trait might serve as a target for therapeutic intervention or be used as monitoring of their effects. PMID:29261133

  10. Neuroticism, depressive symptoms and white-matter integrity in the Lothian Birth Cohort 1936.

    PubMed

    McIntosh, A M; Bastin, M E; Luciano, M; Maniega, S Muñoz; Del C Valdés Hernández, M; Royle, N A; Hall, J; Murray, C; Lawrie, S M; Starr, J M; Wardlaw, J M; Deary, I J

    2013-06-01

    Clinical depression is associated with reductions in white-matter integrity in several long tracts of the brain. The extent to which these findings are localized or related to depressive symptoms or personality traits linked to disease risk remains unclear. Method Members of the Lothian Birth Cohort 1936 (LBC936) were assessed in two waves at mean ages of 70 and 73 years. At wave 1, they underwent assessments of depressive symptoms and the personality traits of neuroticism and extraversion. Brain diffusion magnetic resonance imaging (MRI) data were obtained at the second wave and mood assessments were repeated. We tested whether depressive symptoms were related to reduced white-matter tract fractional anisotropy (FA), a measure of integrity, and then examined whether high neuroticism or low extraversion mediated this relationship. Six hundred and sixty-eight participants provided useable data. Bilateral uncinate fasciculus FA was significantly negatively associated with depressive symptoms at both waves (standardized β=0.12-0.16). Higher neuroticism and lower extraversion were also significantly associated with lower uncinate FA bilaterally (standardized β=0.09-0.15) and significantly mediated the relationship between FA and depressive symptoms. Trait liability to depression and depressive symptoms are associated with reduced structural connectivity in tracts connecting the prefrontal cortex with the amygdala and anterior temporal cortex. These effects suggest that frontotemporal disconnection is linked to the etiology of depression, in part through personality trait differences.

  11. Brain wave correlates of attentional states: Event related potentials and quantitative EEG analysis during performance of cognitive and perceptual tasks

    NASA Technical Reports Server (NTRS)

    Freeman, Frederick G.

    1993-01-01

    The increased use of automation in the cockpits of commercial planes has dramatically decreased the workload requirements of pilots, enabling them to function more efficiently and with a higher degree of safety. Unfortunately, advances in technology have led to an unexpected problem: the decreased demands on pilots have increased the probability of inducing 'hazardous states of awareness.' A hazardous state of awareness is defined as a decreased level of alertness or arousal which makes an individual less capable of reacting to unique or emergency types of situations. These states tend to be induced when an individual is not actively processing information. Under such conditions a person is likely to let his/her mind wander, either to internal states or to irrelevant external conditions. As a result, they are less capable of reacting quickly to emergency situations. Since emergencies are relatively rare, and since the high automated cockpit requires progressively decreasing levels of engagement, the probability of being seduced into a lowered state of awareness is increasing. This further decreases the readiness of the pilot to react to unique circumstances such as system failures. The HEM Lab at NASA-Langley Research Center has been studying how these states of awareness are induced and what the physiological correlates of these different states are. Specifically, they have been interested in studying electroencephalographic (EEG) measures of different states of alertness to determine if such states can be identified and, hopefully, avoided. The project worked on this summer involved analyzing the EEG and the event related potentials (ERP) data collected while subjects performed under two conditions. Each condition required subjects to perform a relatively boring vigilance task. The purpose of using these tasks was to induce a decreased state of awareness while still requiring the subject to process information. Each task involved identifying an infrequently presented target stimulus. In addition to the task requirements, irrelevant tones were presented in the background. Research has shown that even though these stimuli are not attended, ERP's to them can still be elicited. The amplitude of the ERP waves has been shown to change as a function of a person's level of alertness. ERP's were also collected and analyzed for the target stimuli for each task. Brain maps were produced based on the ERP voltages for the different stimuli. In addition to the ERP's, a quantitative EEG (QEEG) was performed on the data using a fast Fourier technique to produce a power spectral analysis of the EEG. This analysis was conducted on the continuous EEG while the subjects were performing the tasks. Finally, a QEEG was performed on periods during the task when subjects indicated that they were in an altered state of awareness. During the tasks, subjects were asked to indicate by pressing a button when they realized their level of task awareness had changed. EEG epochs were collected for times just before and just after subjects made this reponse. The purpose of this final analysis was to determine whether or not subjective indices of level of awareness could be correlated with different patterns of EEG.

  12. Outcomes of patients with altered level of consciousness and abnormal electroencephalogram: A retrospective cohort study

    PubMed Central

    Ferrari-Marinho, Taissa; Naves, Pedro Vicente Ferreira; Ladeia-Frota, Carol; Caboclo, Luís Otávio

    2017-01-01

    Introduction Nonconvulsive seizures (NCS) are frequent in hospitalized patients and may further aggravate injury in the already damaged brain, potentially worsening outcomes in encephalopathic patients. Therefore, both early seizure recognition and treatment have been advocated to prevent further neurological damage. Objective Evaluate the main EEG patterns seen in patients with impaired consciousness and address the effect of treatment with antiepileptic drugs (AEDs), continuous intravenous anesthetic drugs (IVADs), or the combination of both, on outcomes. Methods This was a single center retrospective cohort study conducted in a private, tertiary care hospital. Consecutive adult patients with altered consciousness submitted to a routine EEG between January 2008 and February 2011 were included in this study. Based on EEG pattern, patients were assigned to one of three groups: Group Interictal Patterns (IP; EEG showing only interictal epileptiform discharges or triphasic waves), Group Rhythmic and Periodic Patterns (RPP; at least one EEG with rhythmic or periodic patterns), and Group Ictal (Ictal; at least one EEG showing ictal pattern). Groups were compared in terms of administered antiepileptic treatment and frequency of unfavorable outcomes (modified Rankin scale ≥3 and in-hospital mortality). Results Two hundred and six patients (475 EEGs) were included in this analysis. Interictal pattern was observed in 35.4% (73/206) of patients, RPP in 53.4% (110/206) and ictal in 11.2% (23/206) of patients. Treatment with AEDs, IVADs or a combination of both was administered in half of the patients. While all Ictal group patients received treatment (AEDs or IVADs), only 24/73 (32.9%) IP group patients and 55/108 (50.9%) RPP group patients were treated (p<0.001). Hospital length of stay (LOS) and frequency of unfavorable outcomes did not differ among the groups. In-hospital mortality was higher in IVADs treated RPP patients compared to AEDs treated RPP patients [11/19 (57.9%) vs. 11/36 (30.6%) patients, respectively, p = 0.049]. Hospital LOS, in-hospital mortality and frequency of unfavorable outcomes did not differ between Ictal patients treated exclusively with AEDs or IVADs. Conclusion In patients with acute altered consciousness and abnormal routine EEG, antiepileptic treatment did not improve outcomes regardless of the presence of periodic, rhythmic or ictal EEG patterns. PMID:28886073

  13. Outcomes of patients with altered level of consciousness and abnormal electroencephalogram: A retrospective cohort study.

    PubMed

    Sanches, Paula Rodrigues; Corrêa, Thiago Domingos; Ferrari-Marinho, Taissa; Naves, Pedro Vicente Ferreira; Ladeia-Frota, Carol; Caboclo, Luís Otávio

    2017-01-01

    Nonconvulsive seizures (NCS) are frequent in hospitalized patients and may further aggravate injury in the already damaged brain, potentially worsening outcomes in encephalopathic patients. Therefore, both early seizure recognition and treatment have been advocated to prevent further neurological damage. Evaluate the main EEG patterns seen in patients with impaired consciousness and address the effect of treatment with antiepileptic drugs (AEDs), continuous intravenous anesthetic drugs (IVADs), or the combination of both, on outcomes. This was a single center retrospective cohort study conducted in a private, tertiary care hospital. Consecutive adult patients with altered consciousness submitted to a routine EEG between January 2008 and February 2011 were included in this study. Based on EEG pattern, patients were assigned to one of three groups: Group Interictal Patterns (IP; EEG showing only interictal epileptiform discharges or triphasic waves), Group Rhythmic and Periodic Patterns (RPP; at least one EEG with rhythmic or periodic patterns), and Group Ictal (Ictal; at least one EEG showing ictal pattern). Groups were compared in terms of administered antiepileptic treatment and frequency of unfavorable outcomes (modified Rankin scale ≥3 and in-hospital mortality). Two hundred and six patients (475 EEGs) were included in this analysis. Interictal pattern was observed in 35.4% (73/206) of patients, RPP in 53.4% (110/206) and ictal in 11.2% (23/206) of patients. Treatment with AEDs, IVADs or a combination of both was administered in half of the patients. While all Ictal group patients received treatment (AEDs or IVADs), only 24/73 (32.9%) IP group patients and 55/108 (50.9%) RPP group patients were treated (p<0.001). Hospital length of stay (LOS) and frequency of unfavorable outcomes did not differ among the groups. In-hospital mortality was higher in IVADs treated RPP patients compared to AEDs treated RPP patients [11/19 (57.9%) vs. 11/36 (30.6%) patients, respectively, p = 0.049]. Hospital LOS, in-hospital mortality and frequency of unfavorable outcomes did not differ between Ictal patients treated exclusively with AEDs or IVADs. In patients with acute altered consciousness and abnormal routine EEG, antiepileptic treatment did not improve outcomes regardless of the presence of periodic, rhythmic or ictal EEG patterns.

  14. Classification of EEG abnormalities in partial epilepsy with simultaneous EEG-fMRI recordings.

    PubMed

    Pedreira, C; Vaudano, A E; Thornton, R C; Chaudhary, U J; Vulliemoz, S; Laufs, H; Rodionov, R; Carmichael, D W; Lhatoo, S D; Guye, M; Quian Quiroga, R; Lemieux, L

    2014-10-01

    Scalp EEG recordings and the classification of interictal epileptiform discharges (IED) in patients with epilepsy provide valuable information about the epileptogenic network, particularly by defining the boundaries of the "irritative zone" (IZ), and hence are helpful during pre-surgical evaluation of patients with severe refractory epilepsies. The current detection and classification of epileptiform signals essentially rely on expert observers. This is a very time-consuming procedure, which also leads to inter-observer variability. Here, we propose a novel approach to automatically classify epileptic activity and show how this method provides critical and reliable information related to the IZ localization beyond the one provided by previous approaches. We applied Wave_clus, an automatic spike sorting algorithm, for the classification of IED visually identified from pre-surgical simultaneous Electroencephalogram-functional Magnetic Resonance Imagining (EEG-fMRI) recordings in 8 patients affected by refractory partial epilepsy candidate for surgery. For each patient, two fMRI analyses were performed: one based on the visual classification and one based on the algorithmic sorting. This novel approach successfully identified a total of 29 IED classes (compared to 26 for visual identification). The general concordance between methods was good, providing a full match of EEG patterns in 2 cases, additional EEG information in 2 other cases and, in general, covering EEG patterns of the same areas as expert classification in 7 of the 8 cases. Most notably, evaluation of the method with EEG-fMRI data analysis showed hemodynamic maps related to the majority of IED classes representing improved performance than the visual IED classification-based analysis (72% versus 50%). Furthermore, the IED-related BOLD changes revealed by using the algorithm were localized within the presumed IZ for a larger number of IED classes (9) in a greater number of patients than the expert classification (7 and 5, respectively). In contrast, in only one case presented the new algorithm resulted in fewer classes and activation areas. We propose that the use of automated spike sorting algorithms to classify IED provides an efficient tool for mapping IED-related fMRI changes and increases the EEG-fMRI clinical value for the pre-surgical assessment of patients with severe epilepsy. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Relations among EEG-alpha asymmetry and positivity personality trait.

    PubMed

    Alessandri, Guido; Caprara, Gian Vittorio; De Pascalis, Vilfredo

    2015-07-01

    The present study investigates cortical structures associated with personality dimension of positivity (POS) by using a standardized low-resolution brain electromagnetic tomography (sLORETA), which provides EEG localization measures that are independent of the recording reference. Resting EEG and self-report measures of positivity, self-esteem, life satisfaction, and optimism were collected from 51 female undergraduates. EEG was recorded across 29 scalp sites. Anterior and posterior source alpha asymmetries of cortical activation were obtained by using sLORETA. Based on previous research findings, 10 frontal and 6 parietal regions of interest (ROI) were derived. Alpha asymmetry in the posterior cingulate (i.e., BA23 and BA31) was uniquely associated with both POS scores. These areas are, hypothetically, part of a complex default-mode neural network (DMN). The activity in the DMN usually increases during tasks that invoke self-referential processing, such as responding to statements describing one's personality, attitudes, or preferences. Importantly, the cortical structures associated with POS were different from those associated with indicators. Indeed, measures of "optimism" failed to maintain a significant correlation with any of the previously significant ROI, but "self-esteem" and "life satisfaction" revealed robust associations with alpha asymmetry at the precuneus (i.e., BA7), after controlling for POS residual scores. Present findings support the assumption that POS is a basic disposition that reflects the concerted activity of brain structures that are essential for integrating self-referential thought and autobiographical memories and for assigning a positive valence to one's experience and attitude toward the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Creutzfeldt-Jakob Disease-Like Periodic Sharp Wave Complexes in Voltage-Gated Potassium Channel-Complex Antibodies Encephalitis: A Case Report.

    PubMed

    Savard, Martin; Irani, Sarosh R; Guillemette, Annie; Gosselin-Lefebvre, Stéphanie; Geschwind, Michael; Jansen, Gerard H; Gould, Peter V; Laforce, Robert

    2016-02-01

    Voltage-gated potassium channel-complex antibodies (VGKC-cAbs) encephalitis, a treatable autoantibody encephalopathy, has been previously reported to clinically mimic sporadic Creutzfeldt-Jakob disease. Among available clinical clues to distinguish them, periodic sharp wave complexes, a typical finding in sporadic Creutzfeldt-Jakob disease, have never been reported in association with VGKC-cAbs encephalitis. A 76-year-old man was transferred to a tertiary neurology center with a clinical history of 6-month weight loss, cognitive disturbance, and nonspecific generalized weakness. He had two seizures the month before transfer and then evolved to severe encephalopathy, requiring mechanical ventilation. Periodic sharp wave complexes every 1 to 2 seconds over slowed background were found on EEG, and MRI showed cerebellar and bifrontal cortical T2/FLAIR/DWI hypersignal without restricted diffusion on ADC mapping. Pancorporal positron emission tomography scan was negative. An immunotherapy trial did not improve the patient condition. Therefore, he died after life support withdrawal. Brain autopsy revealed mononuclear neocortex infiltrate without significant spongiosis, and the anti-VGKC test showed a seropositivity of 336 pmol/L (normal, 0-31), 3 month after the patient deceased. This is the first reported case of VGKC-cAbs encephalitis associated with periodic sharp wave complexes on EEG, which further confuse the differential diagnosis with sporadic Creutzfeldt-Jakob disease. However, the cortical DWI hypersignal without restriction seems to remain a way to discriminate these two entities appropriately, when present. These clues are of paramount importance because VGKC-cAbs encephalitis is a treatable disease.

  17. Brain-computer interface design using alpha wave

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-bin; Wang, Hong; Liu, Chong; Li, Chun-sheng

    2010-01-01

    A brain-computer interface (BCI) is a novel communication system that translates brain activity into commands for a computer or other electronic devices. BCI system based on non-invasive scalp electroencephalogram (EEG) has become a hot research area in recent years. BCI technology can help improve the quality of life and restore function for people with severe motor disabilities. In this study, we design a real-time asynchronous BCI system using Alpha wave. The basic theory of this BCI system is alpha wave-block phenomenon. Alpha wave is the most prominent wave in the whole realm of brain activity. This system includes data acquisition, feature selection and classification. The subject can use this system easily and freely choose anyone of four commands with only short-time training. The results of the experiment show that this BCI system has high classification accuracy, and has potential application for clinical engineering and is valuable for further research.

  18. Holocaust survivors: three waves of resilience research.

    PubMed

    Greene, Roberta R; Hantman, Shira; Sharabi, Adi; Cohen, Harriet

    2012-01-01

    Three waves of resilience research have resulted in resilience-enhancing educational and therapeutic interventions. In the first wave of inquiry, researchers explored the traits and environmental characteristics that enabled people to overcome adversity. In the second wave, researchers investigated the processes related to stress and coping. In the third wave, studies examined how people grow and are transformed following adverse events, often leading to self-actualize, client creativity and spirituality. In this article the authors examined data from a study, "Forgiveness, Resiliency, and Survivorship among Holocaust Survivors" funded by the John Templeton Foundation ( Greene, Armour, Hantman, Graham, & Sharabi, 2010 ). About 65% of the survivors scored on the high side for resilience traits. Of the survivors, 78% engaged in processes considered resilient and felt they were transcendent or had engaged in behaviors that help them grow and change over the years since the Holocaust, including leaving a legacy and contributing to the community.

  19. Sleep spindles in humans: insights from intracranial EEG and unit recordings

    PubMed Central

    Andrillon, Thomas; Nir, Yuval; Staba, Richard J.; Ferrarelli, Fabio; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2012-01-01

    Sleep spindles are an electroencephalographic (EEG) hallmark of non-rapid eye movement (NREM) sleep and are believed to mediate many sleep-related functions, from memory consolidation to cortical development. Spindles differ in location, frequency, and association with slow waves, but whether this heterogeneity may reflect different physiological processes and potentially serve different functional roles remains unclear. Here we utilized a unique opportunity to record intracranial depth EEG and single-unit activity in multiple brain regions of neurosurgical patients to better characterize spindle activity in human sleep. We find that spindles occur across multiple neocortical regions, and less frequently also in the parahippocampal gyrus and hippocampus. Most spindles are spatially restricted to specific brain regions. In addition, spindle frequency is topographically organized with a sharp transition around the supplementary motor area between fast (13-15Hz) centroparietal spindles often occurring with slow wave up-states, and slow (9-12Hz) frontal spindles occurring 200ms later on average. Spindle variability across regions may reflect the underlying thalamocortical projections. We also find that during individual spindles, frequency decreases within and between regions. In addition, deeper sleep is associated with a reduction in spindle occurrence and spindle frequency. Frequency changes between regions, during individual spindles, and across sleep may reflect the same phenomenon, the underlying level of thalamocortical hyperpolarization. Finally, during spindles neuronal firing rates are not consistently modulated, although some neurons exhibit phase-locked discharges. Overall, anatomical considerations can account well for regional spindle characteristics, while variable hyperpolarization levels can explain differences in spindle frequency. PMID:22159098

  20. Epileptic spasms and early-onset photosensitive epilepsy in Patau syndrome: An EEG study.

    PubMed

    Spagnoli, Carlotta; Kugathasan, Umaiyal; Brittain, Helen; Boyd, Stewart G

    2015-08-01

    Patau syndrome, trisomy 13, is the third commonest autosomal trisomy. It is associated with a 25-50% prevalence of epilepsy, but detailed electroclinical descriptions are rare. The occurrence of early-onset photosensitivity has recently been reported in single patients. We collected electroclinical data on 8 infants (age range from 2 months to 3 years and 9 months, median: 17 months) with Patau syndrome referred for an EEG in our Clinical Neurophysiology Department between 1991 and 2011. All EEGs, case-notes, cytogenetic diagnosis and neuroimaging when available were reviewed; data on the occurrence of seizures, epileptiform discharges, photoparoxysmal response and their characteristics in terms of positive frequencies, latencies, grade and duration were noted and analysed. Two patients had been previously diagnosed with epilepsy (one with tonic spasms and one with multiple seizure types). We found 3 patients with photosensitive myoclonic epilepsy (37.5%), and one with non-photosensitive myoclonic epilepsy. We also recorded non-epileptic myoclonic jerks in one patient known to suffer from epileptic spasms. Among photosensitive patients we found self-limited, Waltz's grade 2-4, spike-wave/polyspike-wave discharges in low, medium and high frequency ranges in two patients and in the high frequency range in the third patient, with latencies and duration from less than 1s to a maximum of 9s. In our cohort of Patau syndrome patients, we found a high prevalence of spasms and photic-induced myoclonic jerks. Photosensitivity shows an unusual early age of onset. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Time course of EEG slow-wave activity in pre-school children with sleep disordered breathing: a possible mechanism for daytime deficits?

    PubMed

    Biggs, Sarah N; Walter, Lisa M; Nisbet, Lauren C; Jackman, Angela R; Anderson, Vicki; Nixon, Gillian M; Davey, Margot J; Trinder, John; Hoffmann, Robert; Armitage, Roseanne; Horne, Rosemary S C

    2012-09-01

    Daytime deficits in children with sleep disordered breathing (SDB) are theorized to result from hypoxic insult to the developing brain or fragmented sleep. Yet, these do not explain why deficits occur in primary snorers (PS). The time course of slow wave EEG activity (SWA), a proxy of homeostatic regulation and cortical maturation, may provide insight. Clinical and control subjects (N=175: mean age 4.3±0.9 y: 61% male) participated in overnight polysomnography (PSG). Standard sleep scoring and power spectral analyses were conducted on EEG (C4/A1; 0.5-<3.9Hz). Univariate ANOVA's evaluated group differences in sleep stages and respiratory parameters. Repeated-measures ANCOVA evaluated group differences in the time course of SWA. Four groups were classified: controls (OAHI ≤ 1 event/h; no clinical history); PS (OAHI ≤ 1 event/h; clinical history); mild OSA (OAHI=1-5 events/h); and moderate to severe OSA (MS OSA: OAHI>5 events/h). Group differences were found in the percentage of time spent in NREM Stages 1 and 4 (p<0.001) and in the time course of SWA. PS and Mild OSA children had higher SWA in the first NREM period than controls (p<0.05). All SDB groups had higher SWA in the fourth NREM period (p<0.01). These results suggest enhanced sleep pressure but impaired restorative sleep function in pre-school children with SDB, providing new insights into the possible mechanism for daytime deficits observed in all severities of SDB. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Long-term follow-up of cognitive functions in patients with continuous spike-waves during sleep (CSWS).

    PubMed

    Maltoni, Lucia; Posar, Annio; Parmeggiani, Antonia

    2016-07-01

    Continuous spike-waves during sleep (CSWS) are associated with several cognitive, neurological, and psychiatric disorders, which sometimes persist after CSWS disappearance. The purpose of this retrospective study was to investigate the correlation between general (clinical and instrumental) and neuropsychological findings in CSWS, to identify variables that predispose patients to a poorer long-term neuropsychological outcome. Patients with spikes and waves during sleep with a frequency ≥25/min (spikes and waves frequency index - SWFI) were enrolled. There were patients presenting abnormal EEG activity corresponding to the classic CSWS and patients with paroxysmal abnormalities during sleep <85% with SWFI ≥25/min that was defined as excessive spike-waves during sleep (ESWS). Clinical and instrumental features and neuropsychological findings during and after the spike and wave active phase period were considered. A statistical analysis was performed utilizing the Spearman correlation test and multivariate analysis. The study included 61 patients; the mean follow-up (i.e., the period between SWFI ≥25 first recording and last observation) was 7years and 4months. The SWFI correlated inversely with full and performance IQ during CSWS/ESWS. Longer-lasting SWFI ≥25 was related to worse results in verbal IQ and performance IQ after CSWS/ESWS disappearance. Other variables may influence the neuropsychological outcome, like age at SWFI ≥25 first recording, perinatal distress, pathologic neurologic examination, and antiepileptic drug resistance. This confirms that CSWS/ESWS are a complex pathology and that many variables contribute to its outcome. The SWFI value above all during CSWS/ESWS and long-lasting SWFI ≥25 after CSWS/ESWS disappearance are the most significant indexes that appear mostly to determine cognitive evolution. This finding underscores the importance of EEG recordings during sleep in children with a developmental disorder, even if seizures are not reported, as well as the importance of using therapy with an early efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. High-voltage electroencephalogram spindles in rats, aging and 5-HT2 antagonism.

    PubMed

    Moyanova, S; Kortenska, L; Kirov, R

    1998-03-09

    We examined the effects of serotonin-2 (5-hydroxytryptamine-2, 5-HT2) receptor antagonists on the so-called high-voltage spindles (HVS, electroencephalographic patterns, characterized by large amplitude rhythmic waves mainly in the alpha band), recorded from the frontal cortex of young, middle-aged and old freely-moving rats during waking immobility. The study was based on the assumption that the effects of 5-HT2 receptor antagonists on the HVS activity depend on the age of rats, because there is evidence for an age-related decrease in the 5-HT2 binding sites density. Four parameters of the electroencephalogram (EEG) were used to characterize the HVS activity: the square root-transformed EEG peak power in the alpha band, the frequency corresponding to this peak (both measured from the EEG power spectra using the fast Fourier transform), the HVS mean duration, and the HVS incidence (both measured from the EEG records). The EEG parameters were analyzed after i.p. administration of three 5-HT2 receptor antagonists: ketanserin, ritanserin and cyproheptadine. In young rats, the three drugs increased the alpha power, but did not change the alpha peak-corresponding frequency. Ketanserin and ritanserin did not change the HVS mean duration and HVS incidence, while cyproheptadine increased both these parameters in young rats. In middle-aged and old untreated rats, the HVS activity was significantly increased. The three 5-HT2 antagonists did not change the HVS activity in aged rats, which could be due to age-related suppression of the 5-HT2 receptor functions. Copyright 1998 Elsevier Science B.V.

  4. Long term impairment of cognitive functions and alterations of NMDAR subunits after continuous microwave exposure.

    PubMed

    Wang, Hui; Tan, Shengzhi; Xu, Xinping; Zhao, Li; Zhang, Jing; Yao, Binwei; Gao, Yabing; Zhou, Hongmei; Peng, Ruiyun

    2017-11-01

    The long term effects of continuous microwave exposure cannot be ignored for the simulation of the real environment and increasing concerns about the negative cognitive effects of microwave exposure. In this study, 220 male Wistar rats were exposed by a 2.856GHz radiation source with the average power density of 0, 2.5, 5 and 10mW/cm 2 for 6min/day, 5days/week and up to 6weeks. The MWM task, the EEG analysis, the hippocampus structure observation and the western blot were applied until the 12months after microwave exposure to detect the spatial learning and memory abilities, the cortical electrical activity, changes of hippocampal structure and the NMDAR subunits expressions. Results found that the rats in the 10mW/cm 2 group showed the decline of spatial learning and memory abilities and EEG disorders (the decrease of EEG frequencies, and increase of EEG amplitudes and delta wave powers). Moreover, changes of basic structure and ultrastructure of hippocampus also found in the 10 and 5mW/cm 2 groups. The decrease of NR 2A, 2B and p-NR2B might contribute to the impairment of cognitive functions. Our findings suggested that the continuous microwave exposure could cause the dose-dependent long term impairment of spatial learning and memory, the abnormalities of EEG and the hippocampal structure injuries. The decrease of NMDAR key subunits and phosphorylation of NR 2B might contribute to the cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Evaluation of nonlinear properties of epileptic activity using largest Lyapunov exponent

    NASA Astrophysics Data System (ADS)

    Medvedeva, Tatiana M.; Lüttjohann, Annika; van Luijtelaar, Gilles; Sysoev, Ilya V.

    2016-04-01

    Absence seizures are known to be highly non-linear large amplitude oscillations with a well pronounced main time scale. Whilst the appearance of the main frequency is usually considered as a transition from noisy complex dynamics of baseline EEG to more regular absence activity, the dynamical properties of this type of epileptiformic activity in genetic absence models was not studied precisely. Here, the estimation of the largest Lyapunov exponent from intracranial EEGs of 10 WAG/Rij rats (genetic model of absence epilepsy) was performed. Fragments of 10 seizures and 10 episodes of on-going EEG each of 4 s length were used for each animal, 3 cortical and 2 thalamic channels were analysed. The method adapted for short noisy data was implemented. The positive values of the largest Lyapunov exponent were found as for baseline as for spike wave discharges (SWDs), with values for SWDs being significantly less than for on-going activity. Current findings may indicate that SWD is a chaotic process with a well pronounced main timescale rather than a periodic regime. Also, the absence activity was shown to be less chaotic than the baseline one.

  6. The EEG Split Alpha Peak: Phenomenological Origins and Methodological Aspects of Detection and Evaluation.

    PubMed

    Olejarczyk, Elzbieta; Bogucki, Piotr; Sobieszek, Aleksander

    2017-01-01

    Electroencephalographic (EEG) patterns were analyzed in a group of ambulatory patients who ranged in age and sex using spectral analysis as well as Directed Transfer Function, a method used to evaluate functional brain connectivity. We tested the impact of window size and choice of reference electrode on the identification of two or more peaks with close frequencies in the spectral power distribution, so called "split alpha." Together with the connectivity analysis, examination of spatiotemporal maps showing the distribution of amplitudes of EEG patterns allowed for better explanation of the mechanisms underlying the generation of split alpha peaks. It was demonstrated that the split alpha spectrum can be generated by two or more independent and interconnected alpha wave generators located in different regions of the cerebral cortex, but not necessarily in the occipital cortex. We also demonstrated the importance of appropriate reference electrode choice during signal recording. In addition, results obtained using the original data were compared with results obtained using re-referenced data, using average reference electrode and reference electrode standardization techniques.

  7. Design of Embedded System for Multivariate Classification of Finger and Thumb Movements Using EEG Signals for Control of Upper Limb Prosthesis.

    PubMed

    Rashid, Nasir; Iqbal, Javaid; Javed, Amna; Tiwana, Mohsin I; Khan, Umar Shahbaz

    2018-01-01

    Brain Computer Interface (BCI) determines the intent of the user from a variety of electrophysiological signals. These signals, Slow Cortical Potentials, are recorded from scalp, and cortical neuronal activity is recorded by implanted electrodes. This paper is focused on design of an embedded system that is used to control the finger movements of an upper limb prosthesis using Electroencephalogram (EEG) signals. This is a follow-up of our previous research which explored the best method to classify three movements of fingers (thumb movement, index finger movement, and first movement). Two-stage logistic regression classifier exhibited the highest classification accuracy while Power Spectral Density (PSD) was used as a feature of the filtered signal. The EEG signal data set was recorded using a 14-channel electrode headset (a noninvasive BCI system) from right-handed, neurologically intact volunteers. Mu (commonly known as alpha waves) and Beta Rhythms (8-30 Hz) containing most of the movement data were retained through filtering using "Arduino Uno" microcontroller followed by 2-stage logistic regression to obtain a mean classification accuracy of 70%.

  8. EEG microstates of wakefulness and NREM sleep.

    PubMed

    Brodbeck, Verena; Kuhn, Alena; von Wegner, Frederic; Morzelewski, Astrid; Tagliazucchi, Enzo; Borisov, Sergey; Michel, Christoph M; Laufs, Helmut

    2012-09-01

    EEG-microstates exploit spatio-temporal EEG features to characterize the spontaneous EEG as a sequence of a finite number of quasi-stable scalp potential field maps. So far, EEG-microstates have been studied mainly in wakeful rest and are thought to correspond to functionally relevant brain-states. Four typical microstate maps have been identified and labeled arbitrarily with the letters A, B, C and D. We addressed the question whether EEG-microstate features are altered in different stages of NREM sleep compared to wakefulness. 32-channel EEG of 32 subjects in relaxed wakefulness and NREM sleep was analyzed using a clustering algorithm, identifying the most dominant amplitude topography maps typical of each vigilance state. Fitting back these maps into the sleep-scored EEG resulted in a temporal sequence of maps for each sleep stage. All 32 subjects reached sleep stage N2, 19 also N3, for at least 1 min and 45 s. As in wakeful rest we found four microstate maps to be optimal in all NREM sleep stages. The wake maps were highly similar to those described in the literature for wakefulness. The sleep stage specific map topographies of N1 and N3 sleep showed a variable but overall relatively high degree of spatial correlation to the wake maps (Mean: N1 92%; N3 87%). The N2 maps were the least similar to wake (mean: 83%). Mean duration, total time covered, global explained variance and transition probabilities per subject, map and sleep stage were very similar in wake and N1. In wake, N1 and N3, microstate map C was most dominant w.r.t. global explained variance and temporal presence (ratio total time), whereas in N2 microstate map B was most prominent. In N3, the mean duration of all microstate maps increased significantly, expressed also as an increase in transition probabilities of all maps to themselves in N3. This duration increase was partly--but not entirely--explained by the occurrence of slow waves in the EEG. The persistence of exactly four main microstate classes in all NREM sleep stages might speak in favor of an in principle maintained large scale spatial brain organization from wakeful rest to NREM sleep. In N1 and N3 sleep, despite spectral EEG differences, the microstate maps and characteristics were surprisingly close to wakefulness. This supports the notion that EEG microstates might reflect a large scale resting state network architecture similar to preserved fMRI resting state connectivity. We speculate that the incisive functional alterations which can be observed during the transition to deep sleep might be driven by changes in the level and timing of activity within this architecture. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Unearthing the Phylogenetic Roots of Sleep

    PubMed Central

    Allada, Ravi; Siegel, Jerome M.

    2010-01-01

    Why we sleep remains one of the enduring unanswered questions in biology. At its core, sleep can be defined behaviorally as a homeostatically regulated state of reduced movement and sensory responsiveness. The cornerstone of sleep studies in terrestrial mammals, including humans, has been the measurement of coordinated changes in brain activity during sleep measured using the electroencephalogram (EEG). Yet among a diverse set of animals, these EEG sleep traits can vary widely and, in some cases, are absent, raising questions as to whether they define a universal, or even essential, feature of sleep. Over the past decade, behaviorally defined sleep-like states have been identified in a series of genetic model organisms, including fish, flies and worms. Genetic analyses in these systems are revealing a remarkable conservation in the underlying mechanisms controlling sleep behavior. Taken together, these studies suggest an ancient origin for sleep and raise the possibility that model organism genetics may reveal the molecular mechanisms that guide sleep and wake. PMID:18682212

  10. Increased Gamma Brainwave Amplitude Compared to Control in Three Different Meditation Traditions.

    PubMed

    Braboszcz, Claire; Cahn, B Rael; Levy, Jonathan; Fernandez, Manuel; Delorme, Arnaud

    2017-01-01

    Despite decades of research, effects of different types of meditation on electroencephalographic (EEG) activity are still being defined. We compared practitioners of three different meditation traditions (Vipassana, Himalayan Yoga and Isha Shoonya) with a control group during a meditative and instructed mind-wandering (IMW) block. All meditators showed higher parieto-occipital 60-110 Hz gamma amplitude than control subjects as a trait effect observed during meditation and when considering meditation and IMW periods together. Moreover, this gamma power was positively correlated with participants meditation experience. Independent component analysis was used to show that gamma activity did not originate in eye or muscle artifacts. In addition, we observed higher 7-11 Hz alpha activity in the Vipassana group compared to all the other groups during both meditation and instructed mind wandering and lower 10-11 Hz activity in the Himalayan yoga group during meditation only. We showed that meditation practice is correlated to changes in the EEG gamma frequency range that are common to a variety of meditation practices.

  11. Brief Report: Examining the Link between Autistic Traits and Compulsive Internet Use in a Non-Clinical Sample

    ERIC Educational Resources Information Center

    Finkenauer, Catrin; Pollmann, Monique M. H.; Begeer, Sander; Kerkhof, Peter

    2012-01-01

    Individuals with autism spectrum disorders or autistic traits may profit from Internet and computer-mediated interactions, but there is concern about their Internet use becoming compulsive. This study investigated the link between autistic traits and Internet use in a 2-wave longitudinal study with a non-clinical community sample (n = 390). As…

  12. Psychometric Assessment of the Mindful Attention Awareness Scale (MAAS) Among Chinese Adolescents

    PubMed Central

    Black, David S.; Sussman, Steve; Johnson, C. Anderson; Milam, Joel

    2013-01-01

    The Mindful Attention Awareness Scale (MAAS) has the longest empirical track record as a valid measure of trait mindfulness. Most of what is understood about trait mindfulness comes from administering the MAAS to relatively homogenous samples of Caucasian adults. This study rigorously evaluates the psychometric properties of the MAAS among Chinese adolescents attending high school in Chengdu, China. Classrooms from 24 schools were randomly selected to participate in the study. Three waves of longitudinal data (N = 5,287 students) were analyzed. MAAS construct, nomological, and incremental validity were evaluated as well as its measurement invariance across gender using latent factor analyses. Participants’ mean age was 16.2 years (SD = 0.7), and 51% were male. The 15-item MAAS had adequate fit to the one-dimensional factor structure at Wave 1, and this factor structure was replicated at Wave 2. A 6-item short scale of the MAAS fit well to the data at Wave 3. The MAAS maintained reliability (Cronbach’s α = .89–.93; test–restest r = .35–.52), convergent/discriminant validity, and explained additional variance in mental health measures beyond other psychosocial constructs. Both the 15- and 6-item MAAS scales displayed at least partial factorial invariance across gender. The findings suggest that the MAAS is a sound measure of trait mindfulness among Chinese adolescents. To reduce respondent burden, the MAAS 6-item short-scale provides an option to measure trait mindfulness. PMID:21816857

  13. Heart-Brain Interactions in the MR Environment: Characterization of the Ballistocardiogram in EEG Signals Collected During Simultaneous fMRI.

    PubMed

    Marino, Marco; Liu, Quanying; Del Castello, Mariangela; Corsi, Cristiana; Wenderoth, Nicole; Mantini, Dante

    2018-05-01

    The ballistocardiographic (BCG) artifact is linked to cardiac activity and occurs in electroencephalographic (EEG) recordings acquired inside the magnetic resonance (MR) environment. Its variability in terms of amplitude, waveform shape and spatial distribution over subject's scalp makes its attenuation a challenging task. In this study, we aimed to provide a detailed characterization of the BCG properties, including its temporal dependency on cardiac events and its spatio-temporal dynamics. To this end, we used high-density EEG data acquired during simultaneous functional MR imaging in six healthy volunteers. First, we investigated the relationship between cardiac activity and BCG occurrences in the EEG recordings. We observed large variability in the delay between ECG and subsequent BCG events (ECG-BCG delay) across subjects and non-negligible epoch-by-epoch variations at the single subject level. The inspection of spatial-temporal variations revealed a prominent non-stationarity of the BCG signal. We identified five main BCG waves, which were common across subjects. Principal component analysis revealed two spatially distinct patterns to explain most of the variance (85% in total). These components are possibly related to head rotation and pulse-driven scalp expansion, respectively. Our results may inspire the development of novel, more effective methods for the removal of the BCG, capable of isolating and attenuating artifact occurrences while preserving true neuronal activity.

  14. The Nature and Process of Development in Averaged Visually Evoked Potentials: Discussion on Pattern Structure.

    ERIC Educational Resources Information Center

    Izawa, Shuji; Mizutani, Tohru

    This paper examines the development of visually evoked EEG patterns in retarded and normal subjects. The paper focuses on the averaged visually evoked potentials (AVEP) in the central and occipital regions of the brain in eyes closed and eyes open conditions. Wave pattern, amplitude, and latency are examined. The first section of the paper reviews…

  15. Can the Brain Be Trained? Comparing the Literature on the Use of EEG Biofeedback/Neurofeedback as an Alternative or Complementary Therapy for Attention Deficit Hyperactivity Disorder (ADHD)

    ERIC Educational Resources Information Center

    Stankus, Tony

    2008-01-01

    Psychologists, social workers, and school counselors are increasingly adding neurofeedback (NFT), a controversial alternative or complementary therapy to their treatment plans for patients with Attention Deficit Hyperactivity Disorder. NFT involves training the patient in self-regulation of brain wave patterns, employing a standard diagnostic…

  16. Increased Alpha (8-12 Hz) Activity during Slow Wave Sleep as a Marker for the Transition from Implicit Knowledge to Explicit Insight

    ERIC Educational Resources Information Center

    Yordanova, Juliana; Kolev, Vasil; Wagner, Ullrich; Born, Jan; Verleger, Rolf

    2012-01-01

    The number reduction task (NRT) allows us to study the transition from implicit knowledge of hidden task regularities to explicit insight into these regularities. To identify sleep-associated neurophysiological indicators of this restructuring of knowledge representations, we measured frequency-specific power of EEG while participants slept during…

  17. The Perspectives of Primary Mathematics Teacher Candidates about Equal Sign: The EEG Case

    ERIC Educational Resources Information Center

    Ayvaz,Ülkü; Yaman, Hakan; Mersin, Nazan; Yilmaz, Yasemin; Durmus, Soner

    2017-01-01

    In this study, it was aimed to investigate the primary mathematics teacher candidates' perceptions about the equal sign within the scope of neuroscience studies. To reveal their perceptions about the equal sign, three types of addition operations were asked to the participants: a+b=[], []=a+b, a+b=[]+c. Their brain waves were recorded by EEG…

  18. Ultradian rhythms in pituitary and adrenal hormones: their relations to sleep.

    PubMed

    Gronfier, C; Brandenberger, G

    1998-02-01

    Sleep and circadian rhythmicity both influence the 24-h profiles of the main pituitary and adrenal hormones. From studies using experimental strategies including complete and partial sleep deprivation, acute and chronic shifts in the sleep period, or complete sleep-wake reversal as occurs with transmeridian travel or shift-work, it appears that prolactin (PRL) and growth hormone (GH) profiles are mainly sleep related, while cortisol profile is mainly controlled by the circadian clock with a weak influence of sleep processes. Thyrotropin (TSH) profile is under the dual influence of sleep and circadian rhythmicity. Recent studies, in which we used spectral analysis of sleep electroencephalogram (EEG) rather than visual scoring of sleep stages, have evaluated the temporal associations between pulsatile hormonal release and the variations in sleep EEG activity. Pulses in PRL and in GH are positively linked to increases in delta wave activity, whereas TSH and cortisol pulses are related to decreases in delta wave activity. It is yet not clear whether sleep influences endocrine secretion, or conversely, whether hormone secretion affects sleep structure. These well-defined relationships raise the question of their physiological significance and of their clinical implications.

  19. Interobserver variability in recognizing arousal in respiratory sleep disorders.

    PubMed

    Drinnan, M J; Murray, A; Griffiths, C J; Gibson, G J

    1998-08-01

    Daytime sleepiness is a common consequence of repeated arousal in obstructive sleep apnea (OSA). Arousal indices are sometimes used to make decisions on treatment, but there is no evidence that arousals are detected similarly even by experienced observers. Using the American Sleep Disorders Association (ASDA) definition of arousal in terms of the accompanying electroencephalogram (EEG) changes, we have quantified interobserver agreement for arousal scoring and identified factors affecting it. Ten patients with suspected OSA were studied; three representative EEG events during each of light, slow-wave, and rapid-eye-movement (REM) sleep were extracted from each record (90 events total) and evaluated by experts in 14 sleep laboratories. Observers differed (ANOVA, p < 0.001) in the number of events scored as arousal (totals ranged from 23 to 53 of the 90 events). Overall agreement was moderate (kappa = 0.47), but it was best for events during slow-wave sleep, moderate for REM, and poor for light sleep (kappa = 0.60, 0.52, and 0.28, respectively). Agreement was unrelated to arousal duration. We conclude that the ASDA definition of arousal is only moderately repeatable. Account should be taken of this variability when results from different centers are compared.

  20. Performance and brain electrical activity during prolonged confinement.

    PubMed

    Lorenz, B; Lorenz, J; Manzey, D

    1996-01-01

    A subset of the AGARD-STRES battery including memory search, unstable tracking, and a combination of both tasks (dual-task), was applied repeatedly to the four chamber crew members before, during, and after the 60-day isolation period of EXEMSI. Five ground control group members served as a control group. A subjective state questionnaire was also included. The results were subjected to a quantitative single-subject analysis. Electroencephalograms (EEG) were recorded to permit correlation of changes in task performance with changes in the physiological state. Evaluation of the EEG focused on spectral parameters of spontaneous EEG waves. No physiological data were collected from the control group. Significant decrements in tracking ability were observed in the chamber crew. The time course of these effects followed a triphasic pattern with initial deterioration, intermediate recovery to pre-isolation baseline scores after the first half of the isolation period, and a second deterioration towards the end. None of the control group subjects displayed such an effect. Memory search (speed and accuracy) was only occasionally impaired during isolation, but the control group displayed a similar pattern of changes. It is suggested that a state of decreased alertness causes tracking deterioration, which leads to a reduced efficiency of sustained cue utilization. The assumption of low alertness was further substantiated by higher fatigue ratings by the chamber crew compared to those of the control group. Analysis of the continuous EEG recordings revealed that only two subjects produced reliable alpha wave activity (8-12 Hz) over Pz and, to a much smaller extent, Fz-theta wave activity (5-7 Hz) during task performance. In both subjects Pz-alpha power decreased consistently under task conditions involving single-task and dual-task tracking. Fz-theta activity was increased more by single-task and dual-task memory search than by single-task tracking. The alpha attenuation appears to be associated with an increasing demand on perceptual cue utilization required by the tracking performance. In one subject marked attenuation of alpha power occurred during the first half of the confinement period, where he also scored the highest fatigue ratings. A striking increase in fronto-central theta activity was observed in the same subject after six weeks of isolation. The change was associated with an efficient rather than a degraded task performance, and a high rating of the item "concentrated" and a low rating of the item "fatigued." This finding supports the hypothesis that the activation state associated with increased fronto-central theta activity accompanies efficient performance of demanding mental tasks. The usefulness of standardized laboratory tasks as monitoring instruments is demonstrated by the direct comparability with results of studies obtained from other relevant research applications using the same tasks. The feasibility of a self-administered integrated psychophysiological assessment of the individual state was illustrated by the nearly complete collection of data. The large number of individual data collected over the entire period permitted application of quantitative single-subject analysis, allowing reliable determination of changes in the individual state in the course of time. It thus appears that this assessment technique can be adapted for in-flight monitoring of astronauts during prolonged spaceflights. Parallel EEG recording can provide relevant supplementary information for diagnosing the individual activation state associated with task performance. The existence of large individual differences in the generation of task-sensitive EEG rhythms forms an important issue for further studies.

  1. The Multidimensional Aspects of Sleep Spindles and Their Relationship to Word-Pair Memory Consolidation

    PubMed Central

    Lustenberger, Caroline; Wehrle, Flavia; Tüshaus, Laura; Achermann, Peter; Huber, Reto

    2015-01-01

    Study Objectives: Several studies proposed a link between sleep spindles and sleep dependent memory consolidation in declarative learning tasks. In addition to these state-like aspects of sleep spindles, they have also trait-like characteristics, i.e., were related to general cognitive performance, an important distinction that has often been neglected in correlative studies. Furthermore, from the multitude of different sleep spindle measures, often just one specific aspect was analyzed. Thus, we aimed at taking multidimensional aspects of sleep spindles into account when exploring their relationship to word-pair memory consolidation. Design: Each subject underwent 2 study nights with all-night high-density electroencephalographic (EEG) recordings. Sleep spindles were automatically detected in all EEG channels. Subjects were trained and tested on a word-pair learning task in the evening, and retested in the morning to assess sleep related memory consolidation (overnight retention). Trait-like aspects refer to the mean of both nights and state-like aspects were calculated as the difference between night 1 and night 2. Setting: Sleep laboratory. Participants: Twenty healthy male subjects (age: 23.3 ± 2.1 y) Measurements and Results: Overnight retention was negatively correlated with trait-like aspects of fast sleep spindle density and positively with slow spindle density on a global level. In contrast, state-like aspects were observed for integrated slow spindle activity, which was positively related to the differences in overnight retention in specific regions. Conclusion: Our results demonstrate the importance of a multidimensional approach when investigating the relationship between sleep spindles and memory consolidation and thereby provide a more complete picture explaining divergent findings in the literature. Citation: Lustenberger C, Wehrle F, Tüshaus L, Achermann P, Huber R. The multidimensional aspects of sleep spindles and their relationship to word-pair memory consolidation. SLEEP 2015;38(7):1093–1103. PMID:25845686

  2. INDUCED EEG GAMMA OSCILLATION ALIGNMENT IMPROVES DIFFERENTIATION BETWEEN AUTISM AND ADHD GROUP RESPONSES IN A FACIAL CATEGORIZATION TASK

    PubMed Central

    Gross, Eric; El-Baz, Ayman S.; Sokhadze, Guela E.; Sears, Lonnie; Casanova, Manuel F.; Sokhadze, Estate M.

    2012-01-01

    Introduction Children diagnosed with an autism spectrum disorder (ASD) often lack the ability to recognize and properly respond to emotional stimuli. Emotional deficits also characterize children with attention deficit/hyperactivity disorder (ADHD), in addition to exhibiting limited attention span. These abnormalities may effect a difference in the induced EEG gamma wave burst (35–45 Hz) peaked approximately 300–400 milliseconds following an emotional stimulus. Because induced gamma oscillations are not fixed at a definite point in time post-stimulus, analysis of averaged EEG data with traditional methods may result in an attenuated gamma burst power. Methods We used a data alignment technique to improve the averaged data, making it a better representation of the individual induced EEG gamma oscillations. A study was designed to test the response of a subject to emotional stimuli, presented in the form of emotional facial expression images. In a four part experiment, the subjects were instructed to identify gender in the first two blocks of the test, followed by differentiating between basic emotions in the final two blocks (i.e. anger vs. disgust). EEG data was collected from ASD (n=10), ADHD (n=9), and control (n=11) subjects via a 128 channel EGI system, and processed through a continuous wavelet transform and bandpass filter to isolate the gamma frequencies. A custom MATLAB code was used to align the data from individual trials between 200–600 ms post-stimulus, EEG site, and condition by maximizing the Pearson product-moment correlation coefficient between trials. The gamma power for the 400 ms window of maximum induced gamma burst was then calculated and compared between subject groups. Results and Conclusion Condition (anger/disgust recognition, gender recognition) × Alignment × Group (ADHD, ASD, Controls) interaction was significant at most of parietal topographies (e.g., P3–P4, P7–P8). These interactions were better manifested in the aligned data set. Our results show that alignment of the induced gamma oscillations improves sensitivity of this measure in differentiation of EEG responses to emotional facial stimuli in ADHD and ASD. PMID:22754277

  3. INDUCED EEG GAMMA OSCILLATION ALIGNMENT IMPROVES DIFFERENTIATION BETWEEN AUTISM AND ADHD GROUP RESPONSES IN A FACIAL CATEGORIZATION TASK.

    PubMed

    Gross, Eric; El-Baz, Ayman S; Sokhadze, Guela E; Sears, Lonnie; Casanova, Manuel F; Sokhadze, Estate M

    2012-01-01

    INTRODUCTION: Children diagnosed with an autism spectrum disorder (ASD) often lack the ability to recognize and properly respond to emotional stimuli. Emotional deficits also characterize children with attention deficit/hyperactivity disorder (ADHD), in addition to exhibiting limited attention span. These abnormalities may effect a difference in the induced EEG gamma wave burst (35-45 Hz) peaked approximately 300-400 milliseconds following an emotional stimulus. Because induced gamma oscillations are not fixed at a definite point in time post-stimulus, analysis of averaged EEG data with traditional methods may result in an attenuated gamma burst power. METHODS: We used a data alignment technique to improve the averaged data, making it a better representation of the individual induced EEG gamma oscillations. A study was designed to test the response of a subject to emotional stimuli, presented in the form of emotional facial expression images. In a four part experiment, the subjects were instructed to identify gender in the first two blocks of the test, followed by differentiating between basic emotions in the final two blocks (i.e. anger vs. disgust). EEG data was collected from ASD (n=10), ADHD (n=9), and control (n=11) subjects via a 128 channel EGI system, and processed through a continuous wavelet transform and bandpass filter to isolate the gamma frequencies. A custom MATLAB code was used to align the data from individual trials between 200-600 ms post-stimulus, EEG site, and condition by maximizing the Pearson product-moment correlation coefficient between trials. The gamma power for the 400 ms window of maximum induced gamma burst was then calculated and compared between subject groups. RESULTS AND CONCLUSION: Condition (anger/disgust recognition, gender recognition) × Alignment × Group (ADHD, ASD, Controls) interaction was significant at most of parietal topographies (e.g., P3-P4, P7-P8). These interactions were better manifested in the aligned data set. Our results show that alignment of the induced gamma oscillations improves sensitivity of this measure in differentiation of EEG responses to emotional facial stimuli in ADHD and ASD.

  4. Intracranial EEG fluctuates over months after implanting electrodes in human brain

    NASA Astrophysics Data System (ADS)

    Ung, Hoameng; Baldassano, Steven N.; Bink, Hank; Krieger, Abba M.; Williams, Shawniqua; Vitale, Flavia; Wu, Chengyuan; Freestone, Dean; Nurse, Ewan; Leyde, Kent; Davis, Kathryn A.; Cook, Mark; Litt, Brian

    2017-10-01

    Objective. Implanting subdural and penetrating electrodes in the brain causes acute trauma and inflammation that affect intracranial electroencephalographic (iEEG) recordings. This behavior and its potential impact on clinical decision-making and algorithms for implanted devices have not been assessed in detail. In this study we aim to characterize the temporal and spatial variability of continuous, prolonged human iEEG recordings. Approach. Intracranial electroencephalography from 15 patients with drug-refractory epilepsy, each implanted with 16 subdural electrodes and continuously monitored for an average of 18 months, was included in this study. Time and spectral domain features were computed each day for each channel for the duration of each patient’s recording. Metrics to capture post-implantation feature changes and inflexion points were computed on group and individual levels. A linear mixed model was used to characterize transient group-level changes in feature values post-implantation and independent linear models were used to describe individual variability. Main results. A significant decline in features important to seizure detection and prediction algorithms (mean line length, energy, and half-wave), as well as mean power in the Berger and high gamma bands, was observed in many patients over 100 d following implantation. In addition, spatial variability across electrodes declines post-implantation following a similar timeframe. All selected features decreased by 14-50% in the initial 75 d of recording on the group level, and at least one feature demonstrated this pattern in 13 of the 15 patients. Our findings indicate that iEEG signal features demonstrate increased variability following implantation, most notably in the weeks immediately post-implant. Significance. These findings suggest that conclusions drawn from iEEG, both clinically and for research, should account for spatiotemporal signal variability and that properly assessing the iEEG in patients, depending upon the application, may require extended monitoring.

  5. Neuronal Networks during Burst Suppression as Revealed by Source Analysis

    PubMed Central

    Reinicke, Christine; Moeller, Friederike; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Pressler, Ronit; Deuschl, Günther; Stephani, Ulrich; Siniatchkin, Michael

    2015-01-01

    Introduction Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG. Material/Methods Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources. Results/Conclusion Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of children with these encephalopathies. PMID:25927439

  6. EEG Subspace Analysis and Classification Using Principal Angles for Brain-Computer Interfaces

    NASA Astrophysics Data System (ADS)

    Ashari, Rehab Bahaaddin

    Brain-Computer Interfaces (BCIs) help paralyzed people who have lost some or all of their ability to communicate and control the outside environment from loss of voluntary muscle control. Most BCIs are based on the classification of multichannel electroencephalography (EEG) signals recorded from users as they respond to external stimuli or perform various mental activities. The classification process is fraught with difficulties caused by electrical noise, signal artifacts, and nonstationarity. One approach to reducing the effects of similar difficulties in other domains is the use of principal angles between subspaces, which has been applied mostly to video sequences. This dissertation studies and examines different ideas using principal angles and subspaces concepts. It introduces a novel mathematical approach for comparing sets of EEG signals for use in new BCI technology. The success of the presented results show that principal angles are also a useful approach to the classification of EEG signals that are recorded during a BCI typing application. In this application, the appearance of a subject's desired letter is detected by identifying a P300-wave within a one-second window of EEG following the flash of a letter. Smoothing the signals before using them is the only preprocessing step that was implemented in this study. The smoothing process based on minimizing the second derivative in time is implemented to increase the classification accuracy instead of using the bandpass filter that relies on assumptions on the frequency content of EEG. This study examines four different ways of removing outliers that are based on the principal angles and shows that the outlier removal methods did not help in the presented situations. One of the concepts that this dissertation focused on is the effect of the number of trials on the classification accuracies. The achievement of the good classification results by using a small number of trials starting from two trials only, should make this approach more appropriate for online BCI applications. In order to understand and test how EEG signals are different from one subject to another, different users are tested in this dissertation, some with motor impairments. Furthermore, the concept of transferring information between subjects is examined by training the approach on one subject and testing it on the other subject using the training subject's EEG subspaces to classify the testing subject's trials.

  7. Insights into sleep's role for insight: Studies with the number reduction task

    PubMed Central

    Verleger, Rolf; Rose, Michael; Wagner, Ullrich; Yordanova, Juliana; Kolev, Vasil

    2013-01-01

    In recent years, vibrant research has developed on “consolidation” during sleep: To what extent are newly experienced impressions reprocessed or even restructured during sleep? We used the number reduction task (NRT) to study if and how sleep does not only reiterate new experiences but may even lead to new insights. In the NRT, covert regularities may speed responses. This implicit acquisition of regularities may become explicitly conscious at some point, leading to a qualitative change in behavior which reflects this insight. By applying the NRT at two consecutive sessions separated by an interval, we investigated the role of sleep in this interval for attaining insight at the second session. In the first study, a night of sleep was shown to triple the number of participants attaining insight above the base rate of about 20%. In the second study, this hard core of 20% discoverers differed from other participants in their task-related EEG potentials from the very beginning already. In the third study, the additional role of sleep was specified as an effect of the deep-sleep phase of slow-wave sleep on participants who had implicitly acquired the covert regularity before sleep. It was in these participants that a specific increase of EEG during slow-wave sleep in the 10-12 Hz band was obtained. These results support the view that neuronal memory reprocessing during slow-wave sleep restructures task-related representations in the brain, and that such restructuring promotes the gain of explicit knowledge. PMID:24605175

  8. Long-term meditation training induced changes in the operational synchrony of default mode network modules during a resting state.

    PubMed

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Kallio-Tamminen, Tarja

    2016-02-01

    Using theoretical analysis of self-consciousness concept and experimental evidence on the brain default mode network (DMN) that constitutes the neural signature of self-referential processes, we hypothesized that the anterior and posterior subnets comprising the DMN should show differences in their integrity as a function of meditation training. Functional connectivity within DMN and its subnets (measured by operational synchrony) has been measured in ten novice meditators using an electroencephalogram (EEG) recording in a pre-/post-meditation intervention design. We have found that while the whole DMN was clearly suppressed, different subnets of DMN responded differently after 4 months of meditation training: The strength of EEG operational synchrony in the right and left posterior modules of the DMN decreased in resting post-meditation condition compared to a pre-meditation condition, whereas the frontal DMN module on the contrary exhibited an increase in the strength of EEG operational synchrony. These findings combined with published data on functional-anatomic heterogeneity within the DMN and on trait subjective experiences commonly found following meditation allow us to propose that the first-person perspective and the sense of agency (the witnessing observer) are presented by the frontal DMN module, while the posterior modules of the DMN are generally responsible for the experience of the continuity of 'I' as embodied and localized within bodily space. Significance of these findings is discussed.

  9. A biopsychological review of gambling disorder

    PubMed Central

    Quintero, Gabriel C

    2017-01-01

    The present review is an overview of previous experimental work on biopsychological aspects of gambling disorder. It includes the topics 1) gambling disorder from the neuroimaging and electroencephalography (EEG) perspective, 2) cognitive, executive functioning, and neuropsychological aspects of gambling disorder, and 3) rodent models of gambling disorder. Penalties and losses in gambling can differ in terms of brain activity. Also, specific patterns of brain activity, brain anatomical traits, EEG responses, and cognitive and executive performance can discriminate pathological gamblers from nonpathological gamblers. Also, pathological gamblers can display dysfunction in such brain areas as the insula, frontal lobe, and orbitofrontal cortex. Pathological gambling is a heterogeneous disorder that can vary depending on the severity of cognition, the style of gambling (strategic or not), the prospect of recovery, proneness to relapse, and proneness to treatment withdrawal. Finally, based on rodent models of gambling, the appropriateness of gambling decision is influenced by the presence of cues, the activity of dopamine receptors, and the activity of some brain areas (infralimbic, prelimbic, or rostral agranular insular cortex). Pathological gamblers differed in terms of frontoparietal brain activation compared to nonpathological gamblers (if winning or losing a game). Pathological gamblers had dysfunctional EEG activity. The severity of gambling was linked to the magnification and content of cognitive distortions. The insula was fundamental in the distortion of cognitions linked to result analysis during gambling activity. PMID:28096672

  10. Processing of emotional words measured simultaneously with steady-state visually evoked potentials and near-infrared diffusing-wave spectroscopy.

    PubMed

    Koban, Leonie; Ninck, Markus; Li, Jun; Gisler, Thomas; Kissler, Johanna

    2010-07-27

    Emotional stimuli are preferentially processed compared to neutral ones. Measuring the magnetic resonance blood-oxygen level dependent (BOLD) response or EEG event-related potentials, this has also been demonstrated for emotional versus neutral words. However, it is currently unclear whether emotion effects in word processing can also be detected with other measures such as EEG steady-state visual evoked potentials (SSVEPs) or optical brain imaging techniques. In the present study, we simultaneously performed SSVEP measurements and near-infrared diffusing-wave spectroscopy (DWS), a new optical technique for the non-invasive measurement of brain function, to measure brain responses to neutral, pleasant, and unpleasant nouns flickering at a frequency of 7.5 Hz. The power of the SSVEP signal was significantly modulated by the words' emotional content at occipital electrodes, showing reduced SSVEP power during stimulation with pleasant compared to neutral nouns. By contrast, the DWS signal measured over the visual cortex showed significant differences between stimulation with flickering words and baseline periods, but no modulation in response to the words' emotional significance. This study is the first investigation of brain responses to emotional words using simultaneous measurements of SSVEPs and DWS. Emotional modulation of word processing was detected with EEG SSVEPs, but not by DWS. SSVEP power for emotional, specifically pleasant, compared to neutral words was reduced, which contrasts with previous results obtained when presenting emotional pictures. This appears to reflect processing differences between symbolic and pictorial emotional stimuli. While pictures prompt sustained perceptual processing, decoding the significance of emotional words requires more internal associative processing. Reasons for an absence of emotion effects in the DWS signal are discussed.

  11. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation.

    PubMed

    Plante, David T; Landsness, Eric C; Peterson, Michael J; Goldstein, Michael R; Riedner, Brady A; Wanger, Timothy; Guokas, Jeffrey J; Tononi, Giulio; Benca, Ruth M

    2012-09-18

    Sleep disturbance plays an important role in major depressive disorder (MDD). Prior investigations have demonstrated that slow wave activity (SWA) during sleep is altered in MDD; however, results have not been consistent across studies, which may be due in part to sex-related differences in SWA and/or limited spatial resolution of spectral analyses. This study sought to characterize SWA in MDD utilizing high-density electroencephalography (hdEEG) to examine the topography of SWA across the cortex in MDD, as well as sex-related variation in SWA topography in the disorder. All-night recordings with 256 channel hdEEG were collected in 30 unipolar MDD subjects (19 women) and 30 age and sex-matched control subjects. Spectral analyses of SWA were performed to determine group differences. SWA was compared between MDD and controls, including analyses stratified by sex, using statistical non-parametric mapping to correct for multiple comparisons of topographic data. As a group, MDD subjects demonstrated significant increases in all-night SWA primarily in bilateral prefrontal channels. When stratified by sex, MDD women demonstrated global increases in SWA relative to age-matched controls that were most consistent in bilateral prefrontal regions; however, MDD men showed no significant differences relative to age-matched controls. Further analyses demonstrated increased SWA in MDD women was most prominent in the first portion of the night. Women, but not men with MDD demonstrate significant increases in SWA in multiple cortical areas relative to control subjects. Further research is warranted to investigate the role of SWA in MDD, and to clarify how increased SWA in women with MDD is related to the pathophysiology of the disorder.

  12. Deep sleep after social stress: NREM sleep slow-wave activity is enhanced in both winners and losers of a conflict.

    PubMed

    Kamphuis, Jeanine; Lancel, Marike; Koolhaas, Jaap M; Meerlo, Peter

    2015-07-01

    Sleep is considered to be a recovery process of prior wakefulness. Not only duration of the waking period affects sleep architecture and sleep EEG, the quality of wakefulness is also highly important. Studies in rats have shown that social defeat stress, in which experimental animals are attacked and defeated by a dominant conspecific, is followed by an acute increase in NREM sleep EEG slow wave activity (SWA). However, it is not known whether this effect is specific for the stress of social defeat or a result of the conflict per se. In the present experiment, we examined how sleep is affected in both the winners and losers of a social conflict. Sleep-wake patterns and sleep EEG were recorded in male wild-type Groningen rats that were subjected to 1h of social conflict in the middle of the light phase. All animals were confronted with a conspecific of similar aggression level and the conflict took place in a neutral arena where both individuals had an equal chance to either win or lose the conflict. NREM sleep SWA was significantly increased after the social conflict compared to baseline values and a gentle stimulation control condition. REM sleep was significantly suppressed in the first hours after the conflict. Winners and losers did not differ significantly in NREM sleep time, NREM sleep SWA and REM sleep time immediately after the conflict. Losers tended to have slightly more NREM sleep later in the recovery period. This study shows that in rats a social conflict with an unpredictable outcome has quantitatively and qualitatively largely similar acute effects on subsequent sleep in winners and losers. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Sleep-EEG in dizygotic twins discordant for Williams syndrome.

    PubMed

    Bódizs, Róbert; Gombos, Ferenc; Szocs, Katalin; Réthelyi, János M; Gerván, Patrícia; Kovács, Ilona

    2014-01-30

    Reports on twin pairs concordant and discordant for Williams syndrome were published before, but no study unravelled sleep physiology in these cases yet. We aim to fill this gap by analyzing sleep records of a twin pair discordant for Williams syndrome extending our focus on presleep wakefulness and sleep spindling. We performed multiplex ligation-dependent probe amplification of the 7q11.23 region of a 17 years old dizygotic opposite-sex twin pair discordant for Williams syndrome. Polysomnography of laboratory sleep at this age was analyzed and followed-up after 1.5 years by ambulatory polysomnography. Sleep stages scoring, EEG power spectra and sleep spindle analyses were carried out. The twin brother showed reduced levels of amplification for all of the probes in the 7q11.23 region indicating a typical deletion spanning at least 1.038 Mb between FKBP6 and CLIP2. The results of the twin sister showed normal copy numbers in the investigated region. Lower sleep times and efficiencies, as well as higher slow wave sleep percents of the twin brother were evident during both recordings. Roughly equal NREM, Stage 2 and REM sleep percents were found. EEG analyses revealed state and derivation-independent decreases in alpha power, lack of an alpha spectral peak in presleep wakefulness, as well as higher NREM sleep sigma peak frequency in the twin brother. Faster sleep spindles with lower amplitude and shorter duration characterized the records of the twin brother. Spectra show a striking reliability and correspondence between the two situations (laboratory vs. home records). Alterations in sleep and specific neural oscillations including the alpha/sigma waves are inherent aspects of Williams syndrome.

  14. Application of reminiscence treatment on older people with dementia: a case study in Pingtung, Taiwan.

    PubMed

    Huang, Song-Lin; Li, Chih-Ming; Yang, Chiu-Yen; Chen, Jia-Jin J

    2009-06-01

    Reminiscence therapy has been utilized for many years in the treatment of dementia in older people. Purposes of the research included examining different methods of promoting interactivity, social participation, cognitive function improvement in those with dementia, and the effectiveness in reducing symptoms of depression following group treatment. This study used pretest and posttest electroencephalography (EEG) measurements to test reminiscence therapy efficacy on participants. This research organized a social group work with 12 elderly clients with dementia (mild to moderate stage) selected from among 90 residents of an older persons care facility in Pingtung. Eleven agreed to join the study, and 10 completed successfully all treatment sessions. Eight sessions of reminiscence cooking lessons were conducted. The effectiveness of interventions was evaluated by comparing presession and postsession EEG, mental health status, depression scale, and feeling of participation scale scores. Significant differences in values, particularly for EEG, were found between the two sets of scores. The average value of participants' fast waves rose from 43.88 to 55.12, whereas average slow-wave values fell from 56.12 to 44.13. After analysis using the Wilcoxon matched paired signed rank test, significant differences were noted. Findings and suggestions include the following: (a) The rise in Mini-Mental State Examination and reduction in depression scale scores, although noted, were not significant, and (b) the self-achievement, emotional stability, family atmosphere, and physical needs of participants were met. The authors recommend that reminiscence group work be promoted in the home for older persons and that childhood cooking sessions twice each week may be the ideal format for reminiscence group work.

  15. Substance P and the neurokinin-1 receptor regulate electroencephalogram non-rapid eye movement sleep slow-wave activity locally

    PubMed Central

    Zielinski, Mark R.; Karpova, Svetlana A.; Yang, Xiaomei; Gerashchenko, Dmitry

    2014-01-01

    The neuropeptide substance P is an excitatory neurotransmitter produced by various cells including neurons and microglia that is involved in regulating inflammation and cerebral blood flow—functions that affect sleep and slow-wave activity (SWA). Substance P is the major ligand for the neurokinin-1 receptor (NK-1R), which is found throughout the brain including the cortex. The NK-1R is found on sleep-active cortical neurons expressing neuronal nitric oxide synthase whose activity is associated with SWA. We determined the effects of local cortical administration of a NK-1R agonist (substance P-fragment 1, 7) and a NK-1R antagonist (CP96345) on sleep and SWA in mice. The NK-1R agonist significantly enhanced SWA for several hours when applied locally to the cortex of the ipsilateral hemisphere as the electroencephalogram (EEG) electrode but not after application to the contralateral hemisphere when compared to saline vehicle control injections. In addition, a significant compensatory reduction in SWA was found after the NK-1R agonist-induced enhancements in SWA. Conversely, injections of the NK-1R antagonist into the cortex of the ipsilateral hemisphere of the EEG electrode attenuated SWA compared to vehicle injections but this effect was not found after injections of the NK-1R antagonist into contralateral hemisphere as the EEG electrode. Non-rapid eye movement sleep and rapid eye movement sleep duration responses after NK-1R agonist and antagonist injections were not significantly different from the responses to the vehicle. Our findings indicate that the substance P and the NK-1R are involved in regulating SWA locally. PMID:25301750

  16. When a Social Experimenter Overwrites Effects of Salient Objects in an Individual Go/No-Go Simon Task - An ERP Study.

    PubMed

    Michel, René; Bölte, Jens; Liepelt, Roman

    2018-01-01

    When two persons share a Simon task, a joint Simon effect occurs. The task co-representation account assumes that the joint Simon effect is the product of a vicarious representation of the co-actor's task. In contrast, recent studies show that even (non-human) event-producing objects could elicit a Simon effect in an individual go/no-go Simon task arguing in favor of the referential coding account. For the human-induced Simon effect, a modulation of the P300 component in Electroencephalography (EEG) is typically considered as a neural indicator of the joint Simon effect and task co-representation. Showing that the object-induced Simon effects also modulates the P300 would lead to a re-evaluation of the interpretation of the P300 in individual go/no-go and joint Simon task contexts. To do so, the present study conceptually replicated Experiment 1 from Dolk et al. (2013a) adding EEG recordings and an experimenter controlling the EEG computer to test whether a modulation of the P300 can also be elicited by adding a Japanese waving cat to the task context. Subjects performed an individual go/no-go Simon task with or without a cat placed next to them. Results show an overall Simon effect regardless of the cat's presence and no modulatory influence of the cat on the P300 (Experiment 1), even when conceivably interfering context factors are diminished (Experiment 2). These findings may suggest that the presence of a spatially aligned experimenter in the laboratory may produce an overall Simon effect overwriting a possible modulation of the Japanese waving cat.

  17. Sustained Sleep Fragmentation Induces Sleep Homeostasis in Mice

    PubMed Central

    Baud, Maxime O.; Magistretti, Pierre J.; Petit, Jean-Marie

    2015-01-01

    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1–4 Hz) and other frequencies as well (4–40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF. Citation: Baud MO, Magistretti PJ, Petit JM. Sustained sleep fragmentation induces sleep homeostasis in mice. SLEEP 2015;38(4):567–579. PMID:25325477

  18. Response Rates to Anticonvulsant Trials in Patients with Triphasic-Wave EEG Patterns of Uncertain Significance.

    PubMed

    O'Rourke, Deirdre; Chen, Patrick M; Gaspard, Nicolas; Foreman, Brandon; McClain, Lauren; Karakis, Ioannis; Mahulikar, Advait; Westover, M Brandon

    2016-04-01

    Generalized triphasic waves (TPWs) occur in both metabolic encephalopathies and non-convulsive status epilepticus (NCSE). Empiric trials of benzodiazepines (BZDs) or non-sedating AED (NSAEDs) are commonly used to differentiate the two, but the utility of such trials is debated. The goal of this study was to assess response rates of such trials and investigate whether metabolic profile differences affect the likelihood of a response. Three institutions within the Critical Care EEG Monitoring Research Consortium retrospectively identified patients with unexplained encephalopathy and TPWs who had undergone a trial of BZD and/or NSAEDs to differentiate between ictal and non-ictal patterns. We assessed responder rates and compared metabolic profiles of responders and non-responders. Response was defined as resolution of the EEG pattern and either unequivocal improvement in encephalopathy or appearance of previously absent normal EEG patterns, and further categorized as immediate (within <2 h of trial initiation) or delayed (>2 h from trial initiation). We identified 64 patients with TPWs who had an empiric trial of BZD and/or NSAED. Most patients (71.9%) were admitted with metabolic derangements and/or infection. Positive clinical responses occurred in 10/53 (18.9%) treated with BZDs. Responses to NSAEDs occurred in 19/45 (42.2%), being immediate in 6.7%, delayed but definite in 20.0%, and delayed but equivocal in 15.6%. Overall, 22/64 (34.4%) showed a definite response to either BZDs or NSAEDs, and 7/64 (10.9%) showed a possible response. Metabolic differences of responders versus non-responders were statistically insignificant, except that the 48-h low value of albumin in the BZD responder group was lower than in the non-responder group. Similar metabolic profiles in patients with encephalopathy and TPWs between responders and non-responders to anticonvulsants suggest that predicting responders a priori is difficult. The high responder rate suggests that empiric trials of anticonvulsants indeed provide useful clinical information. The more than twofold higher response rate to NSAEDs suggests that this strategy may be preferable to BZDs. Further prospective investigation is warranted.

  19. Response Rates to Anticonvulsant Trials in Patients with Triphasic-Wave EEG Patterns of Uncertain Significance

    PubMed Central

    O’Rourke, Deirdre; Chen, Patrick M.; Gaspard, Nicolas; Foreman, Brandon; McClain, Lauren; Karakis, Ioannis; Mahulikar, Advait

    2016-01-01

    Background Generalized triphasic waves (TPWs) occur in both metabolic encephalopathies and non-convulsive status epilepticus (NCSE). Empiric trials of benzodiazepines (BZDs) or non-sedating AED (NSAEDs) are commonly used to differentiate the two, but the utility of such trials is debated. The goal of this study was to assess response rates of such trials and investigate whether metabolic profile differences affect the likelihood of a response. Methods Three institutions within the Critical Care EEG Monitoring Research Consortium retrospectively identified patients with unexplained encephalopathy and TPWs who had undergone a trial of BZD and/or NSAEDs to differentiate between ictal and non-ictal patterns. We assessed responder rates and compared metabolic profiles of responders and non-responders. Response was defined as resolution of the EEG pattern and either unequivocal improvement in encephalopathy or appearance of previously absent normal EEG patterns, and further categorized as immediate (within <2 h of trial initiation) or delayed (>2 h from trial initiation). Results We identified 64 patients with TPWs who had an empiric trial of BZD and/or NSAED. Most patients (71.9 %) were admitted with metabolic derangements and/or infection. Positive clinical responses occurred in 10/53 (18.9 %) treated with BZDs. Responses to NSAEDs occurred in 19/45 (42.2 %), being immediate in 6.7 %, delayed but definite in 20.0 %, and delayed but equivocal in 15.6 %. Overall, 22/64 (34.4 %) showed a definite response to either BZDs or NSAEDs, and 7/64 (10.9 %) showed a possible response. Metabolic differences of responders versus non-responders were statistically insignificant, except that the 48-h low value of albumin in the BZD responder group was lower than in the non-responder group. Conclusions Similar metabolic profiles in patients with encephalopathy and TPWs between responders and non-responders to anticonvulsants suggest that predicting responders a priori is difficult. The high responder rate suggests that empiric trials of anticonvulsants indeed provide useful clinical information. The more than twofold higher response rate to NSAEDs suggests that this strategy may be preferable to BZDs. Further prospective investigation is warranted. PMID:26013921

  20. [Expressive language disorder and focal paroxysmal activity].

    PubMed

    Valdizán, José R; Rodríguez-Mena, Diego; Díaz-Sardi, Mauricio

    2011-03-01

    In cases of expressive language disorder (ELD), the child is unable to put his or her thoughts into words. Comorbidity is present with difficulties in repeating, imitating or naming. There are no problems with pronunciation, as occurs in phonological disorder, it may present before the age of three years and is crucial between four and seven years of age. Electroencephalogram (EEG) studies have been carried out not only in ELD, but also in clinical pictures where the language disorder was the main symptom or was associated to another neurodevelopmental pathology. We conducted a retrospective study involving a review of 100 patient records, with patients (25 girls and 75 boys) aged between two and six years old who had been diagnosed with ELD (according to the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, text revised) and were free of seizures and not receiving treatment. They were submitted to an EEG and received treatment with valproic acid if EEG findings were positive. Only six patients (males) presented localised spike-wave paroxysmal EEG activity in the frontotemporal region. This 6% is a percentage that is higher than the one found in the normal children's population (2%), but lower than the value indicated in the literature for language disorders, which ranges between 20% and 50%. These patients responded positively to the treatment and both expressive language and EEG findings improved. It is possible that in ELD without paroxysms there may be a dysfunction in the circuit made up of the motor cortex-neostriatum prior to grammatical learning, whereas if there are paroxysms then this would point to neuronal hyperactivity, perhaps associated to this dysfunction or not, in cortical areas. In our cases valproic acid, together with speech therapy, helped the children to recover their language abilities.

  1. The convulsive and electroencephalographic changes produced by nonpeptidic delta-opioid agonists in rats: comparison with pentylenetetrazol.

    PubMed

    Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H

    2006-06-01

    delta-Opioid agonists produce convulsions and antidepressant-like effects in rats. It has been suggested that the antidepressant-like effects are produced through a convulsant mechanism of action either through overt convulsions or nonconvulsive seizures. This study evaluated the convulsive and seizurogenic effects of nonpeptidic delta-opioid agonists at doses that previously were reported to produce antidepressant-like effects. In addition, delta-opioid agonist-induced electroencephalographic (EEG) and behavioral changes were compared with those produced by the chemical convulsant pentylenetetrazol (PTZ). For these studies, EEG changes were recorded using a telemetry system before and after injections of the delta-opioid agonists [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenz (SNC80) and [(+)-4-[alpha(R)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide [(+)-BW373U86]. Acute administration of nonpeptidic delta-opioid agonists produced bilateral ictal and paroxysmal spike and/or sharp wave discharges. delta-Opioid agonists produced brief changes in EEG recordings, and tolerance rapidly developed to these effects; however, PTZ produced longer-lasting EEG changes that were exacerbated after repeated administration. Studies with antiepileptic drugs demonstrated that compounds used to treat absence epilepsy blocked the convulsive effects of nonpeptidic delta-opioid agonists. Overall, these data suggest that delta-opioid agonist-induced EEG changes are not required for the antidepressant-like effects of these compounds and that neural circuitry involved in absence epilepsy may be related to delta-opioid agonist-induced convulsions. In terms of therapeutic development, these data suggest that it may be possible to develop delta-opioid agonists devoid of convulsive properties.

  2. Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation.

    PubMed

    Becher, Ann-Katrin; Höhne, Marlene; Axmacher, Nikolai; Chaieb, Leila; Elger, Christian E; Fell, Juergen

    2015-01-01

    Auditory stimulation with monaural or binaural auditory beats (i.e. sine waves with nearby frequencies presented either to both ears or to each ear separately) represents a non-invasive approach to influence electrical brain activity. It is still unclear exactly which brain sites are affected by beat stimulation. In particular, an impact of beat stimulation on mediotemporal brain areas could possibly provide new options for memory enhancement or seizure control. Therefore, we examined how electroencephalography (EEG) power and phase synchronization are modulated by auditory stimulation with beat frequencies corresponding to dominant EEG rhythms based on intracranial recordings in presurgical epilepsy patients. Monaural and binaural beat stimuli with beat frequencies of 5, 10, 40 and 80 Hz and non-superposed control signals were administered with low amplitudes (60 dB SPL) and for short durations (5 s). EEG power was intracranially recorded from mediotemporal, temporo-basal and temporo-lateral and surface sites. Evoked and total EEG power and phase synchronization during beat vs. control stimulation were compared by the use of Bonferroni-corrected non-parametric label-permutation tests. We found that power and phase synchronization were significantly modulated by beat stimulation not only at temporo-basal, temporo-lateral and surface sites, but also at mediotemporal sites. Generally, more significant decreases than increases were observed. The most prominent power increases were seen after stimulation with monaural 40-Hz beats. The most pronounced power and synchronization decreases resulted from stimulation with monaural 5-Hz and binaural 80-Hz beats. Our results suggest that beat stimulation offers a non-invasive approach for the modulation of intracranial EEG characteristics. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Wang, Yijun; Nakanishi, Masaki; Wang, Yu-Te; Qi, Hongzhi; Jung, Tzyy-Ping; Ming, Dong

    2016-12-01

    Objective. Detecting the shift of covert visuospatial attention (CVSA) is vital for gaze-independent brain-computer interfaces (BCIs), which might be the only communication approach for severely disabled patients who cannot move their eyes. Although previous studies had demonstrated that it is feasible to use CVSA-related electroencephalography (EEG) features to control a BCI system, the communication speed remains very low. This study aims to improve the speed and accuracy of CVSA detection by fusing EEG features of N2pc and steady-state visual evoked potential (SSVEP). Approach. A new paradigm was designed to code the left and right CVSA with the N2pc and SSVEP features, which were then decoded by a classification strategy based on canonical correlation analysis. Eleven subjects were recruited to perform an offline experiment in this study. Temporal waves, amplitudes, and topographies for brain responses related to N2pc and SSVEP were analyzed. The classification accuracy derived from the hybrid EEG features (SSVEP and N2pc) was compared with those using the single EEG features (SSVEP or N2pc). Main results. The N2pc could be significantly enhanced under certain conditions of SSVEP modulations. The hybrid EEG features achieved significantly higher accuracy than the single features. It obtained an average accuracy of 72.9% by using a data length of 400 ms after the attention shift. Moreover, the average accuracy reached ˜80% (peak values above 90%) when using 2 s long data. Significance. The results indicate that the combination of N2pc and SSVEP is effective for fast detection of CVSA. The proposed method could be a promising approach for implementing a gaze-independent BCI.

  4. Visualization of Whole-Night Sleep EEG From 2-Channel Mobile Recording Device Reveals Distinct Deep Sleep Stages with Differential Electrodermal Activity.

    PubMed

    Onton, Julie A; Kang, Dae Y; Coleman, Todd P

    2016-01-01

    Brain activity during sleep is a powerful marker of overall health, but sleep lab testing is prohibitively expensive and only indicated for major sleep disorders. This report demonstrates that mobile 2-channel in-home electroencephalogram (EEG) recording devices provided sufficient information to detect and visualize sleep EEG. Displaying whole-night sleep EEG in a spectral display allowed for quick assessment of general sleep stability, cycle lengths, stage lengths, dominant frequencies and other indices of sleep quality. By visualizing spectral data down to 0.1 Hz, a differentiation emerged between slow-wave sleep with dominant frequency between 0.1-1 Hz or 1-3 Hz, but rarely both. Thus, we present here the new designations, Hi and Lo Deep sleep, according to the frequency range with dominant power. Simultaneously recorded electrodermal activity (EDA) was primarily associated with Lo Deep and very rarely with Hi Deep or any other stage. Therefore, Hi and Lo Deep sleep appear to be physiologically distinct states that may serve unique functions during sleep. We developed an algorithm to classify five stages (Awake, Light, Hi Deep, Lo Deep and rapid eye movement (REM)) using a Hidden Markov Model (HMM), model fitting with the expectation-maximization (EM) algorithm, and estimation of the most likely sleep state sequence by the Viterbi algorithm. The resulting automatically generated sleep hypnogram can help clinicians interpret the spectral display and help researchers computationally quantify sleep stages across participants. In conclusion, this study demonstrates the feasibility of in-home sleep EEG collection, a rapid and informative sleep report format, and novel deep sleep designations accounting for spectral and physiological differences.

  5. Seizure threshold increases can be predicted by EEG quality in right unilateral ultrabrief ECT.

    PubMed

    Gálvez, Verònica; Hadzi-Pavlovic, Dusan; Waite, Susan; Loo, Colleen K

    2017-12-01

    Increases in seizure threshold (ST) over a course of brief pulse ECT can be predicted by decreases in EEG quality, informing ECT dose adjustment to maintain adequate supra-threshold dosing. ST increases also occur over a course of right unilateral ultrabrief (RUL UB) ECT, but no data exist on the relationship between ST increases and EEG indices. This study (n = 35) investigated if increases in ST over RUL UB ECT treatments could be predicted by a decline in seizure quality. ST titration was performed at ECT session one and seven, with treatment dosing maintained stable (at 6-8 times ST) in intervening sessions. Seizure quality indices (slow-wave onset, mid-ictal amplitude, regularity, stereotypy, and post-ictal suppression) were manually rated at the first supra-threshold treatment, and last supra-threshold treatment before re-titration, using a structured rating scale, by a single trained rater blinded to the ECT session being rated. Twenty-one subjects (60%) had a ST increase. The association between ST changes and EEG quality indices was analysed by logistic regression, yielding a significant model (p < 0.001). Initial ST (p < 0.05) and percentage change in mid-ictal amplitude (p < 0.05) were significant predictors of change in ST. Percentage change in post-ictal suppression reached trend level significance (p = 0.065). Increases in ST over a RUL UB ECT course may be predicted by decreases in seizure quality, specifically decline in mid-ictal amplitude and potentially in post-ictal suppression. Such EEG indices may be able to inform when dose adjustments are necessary to maintain adequate supra-threshold dosing in RUL UB ECT.

  6. Sleep-Related Electrophysiology and Behavior of Tinamous (Eudromia elegans): Tinamous Do Not Sleep Like Ostriches.

    PubMed

    Tisdale, Ryan K; Vyssotski, Alexei L; Lesku, John A; Rattenborg, Niels C

    2017-01-01

    The functions of slow wave sleep (SWS) and rapid eye movement (REM) sleep, distinct sleep substates present in both mammals and birds, remain unresolved. One approach to gaining insight into their function is to trace the evolution of these states through examining sleep in as many taxonomic groups as possible. The mammalian and avian clades are each composed of two extant groups, i.e., the monotremes (echidna and platypus) and therian (marsupial and eutherian [or placental]) mammals, and Palaeognaths (cassowaries, emus, kiwi, ostriches, rheas, and tinamous) and Neognaths (all other birds) among birds. Previous electrophysiological studies of monotremes and ostriches have identified a unique "mixed" sleep state combining features of SWS and REM sleep unlike the well-delineated sleep states observed in all therian mammals and Neognath birds. In the platypus this state is characterized by periods of REM sleep-related myoclonic twitching, relaxed skeletal musculature, and rapid eye movements, occurring in conjunction with SWS-related slow waves in the forebrain electroencephalogram (EEG). A similar mixed state was also observed in ostriches; although in addition to occurring during periods with EEG slow waves, reduced muscle tone and rapid eye movements also occurred in conjunction with EEG activation, a pattern typical of REM sleep in Neognath birds. Collectively, these studies suggested that REM sleep occurring exclusively as an integrated state with forebrain activation might have evolved independently in the therian and Neognath lineages. To test this hypothesis, we examined sleep in the elegant crested tinamou (Eudromia elegans), a small Palaeognath bird that more closely resembles Neognath birds in size and their ability to fly. A 24-h period was scored for sleep state based on electrophysiology and behavior. Unlike ostriches, but like all of the Neognath birds examined, all indicators of REM sleep usually occurred in conjunction with forebrain activation in tinamous. The absence of a mixed REM sleep state in tinamous calls into question the idea that this state is primitive among Palaeognath birds and therefore birds in general. © 2017 S. Karger AG, Basel.

  7. Genetic and environmental influences on personality trait stability and growth during the transition to adulthood: A three wave longitudinal study

    PubMed Central

    Hopwood, Christopher J.; Donnellan, M. Brent; Blonigen, Daniel M.; Krueger, Robert F.; McGue, Matt; Iacono, William G.; Burt, S. Alexandra

    2010-01-01

    During the transition to adulthood individuals typically settle into adult roles in love and work. This transition also involves significant changes in personality traits that are generally in the direction of greater maturity and increased stability. Competing hypotheses have been offered to account for these personality changes: the intrinsic maturation hypothesis suggests that change trajectories are endogenous, whereas the life-course hypothesis suggests that these changes occur because of transactions with the social environment. This study investigated the patterns and origins of personality trait changes from ages 17 to 29 using 3 waves of Multidimensional Personality Questionnaire data provided by twins. Results suggest that a) trait changes were more profound in the first relative to the second half of the transition to adulthood; b) traits tend to become more stable during the second half of this transition, with all the traits yielding retest correlations between .74 and .78; c) negative affectivity declined over time and constraint increased over time; minimal change was observed on agentic or communal aspects of positive affectivity; and d) both genetic and non-shared environmental factors accounted for personality changes. Overall, these genetically-informed results support a life-course perspective on personality development during the transition to adulthood. PMID:21244174

  8. Genetic and environmental influences on personality trait stability and growth during the transition to adulthood: a three-wave longitudinal study.

    PubMed

    Hopwood, Christopher J; Donnellan, M Brent; Blonigen, Daniel M; Krueger, Robert F; McGue, Matt; Iacono, William G; Burt, S Alexandra

    2011-03-01

    During the transition to adulthood individuals typically settle into adult roles in love and work. This transition also involves significant changes in personality traits that are generally in the direction of greater maturity and increased stability. Competing hypotheses have been offered to account for these personality changes: The intrinsic maturation hypothesis suggests that change trajectories are endogenous, whereas the life-course hypothesis suggests that these changes occur because of transactions with the social environment. This study investigated the patterns and origins of personality trait changes from ages 17 to 29 using 3 waves of Multidimensional Personality Questionnaire data provided by twins. Results suggest that (a) trait changes were more profound in the first relative to the second half of the transition to adulthood; (b) traits tend to become more stable during the second half of this transition, with all the traits yielding retest correlations between .74 and .78; (c) Negative Affectivity declined over time, and Constraint increased over time; minimal change was observed on agentic or communal aspects of Positive Emotionality; and (d) both genetic and nonshared environmental factors accounted for personality changes. Overall, these genetically informed results support a life-course perspective on personality development during the transition to adulthood. (c) 2011 APA, all rights reserved

  9. Reduced Theta-Band Power and Phase Synchrony during Explicit Verbal Memory Tasks in Female, Non-Clinical Individuals with Schizotypal Traits.

    PubMed

    Choi, Jeong Woo; Jang, Kyoung-Mi; Jung, Ki-Young; Kim, Myung-Sun; Kim, Kyung Hwan

    2016-01-01

    The study of non-clinical individuals with schizotypal traits has been considered to provide a promising endophenotypic approach to understanding schizophrenia, because schizophrenia is highly heterogeneous, and a number of confounding factors may affect neuropsychological performance. Here, we investigated whether deficits in explicit verbal memory in individuals with schizotypal traits are associated with abnormalities in the local and inter-regional synchrony of brain activity. Memory deficits have been recognized as a core problem in schizophrenia, and previous studies have consistently shown explicit verbal memory impairment in schizophrenic patients. However, the mechanism of this impairment has not been fully revealed. Seventeen individuals with schizotypal traits and 17 age-matched, normal controls participated. Multichannel event-related electroencephalograms (EEGs) were recorded while the subjects performed a continuous recognition task. Event-related spectral perturbations (ERSPs) and inter-regional theta-band phase locking values (TPLVs) were investigated to determine the differences in local and global neural synchrony between the two subject groups. Additionally, the connection patterns of the TPLVs were quantitatively analyzed using graph theory measures. An old/new effect was found in the induced theta-band ERSP in both groups. However, the difference between the old and new was larger in normal controls than in schizotypal trait group. The tendency of elevated old/new effect in normal controls was observed in anterior-posterior theta-band phase synchrony as well. Our results suggest that explicit memory deficits observed in schizophrenia patients can also be found in non-clinical individuals with psychometrically defined schizotypal traits.

  10. [Nootropics and antioxidants in the complex therapy of symptomatic posttraumatic epilepsy].

    PubMed

    Savenkov, A A; Badalian, O L; Avakian, G N

    2013-01-01

    To study the possibility of application of nootropics and antioxidants in the complex antiepileptic therapy, we examined 75 patients with symptomatic focal posttraumatic epilepsy. A statistically significant reduction in the number of epileptic seizures, improvement of cognitive function and quality of life of the patients as well as a decrease in the severity of depression and epileptic changes in the EEG were identified. The potentiation of antiepileptic activity of basic drugs, normalization of brain's electrical activity and reduction in EEG epileptiform activity, in particular coherent indicators of slow-wave activity, were noted after treatment with the antioxidant mexidol. A trend towards the improvement of neuropsychological performance and quality of life was observed. There was a lack of seizure aggravation typical of many nootropic drugs. Thus, phenotropil and mexidol can be recommended for complex treatment of symptomatic posttraumatic epilepsy.

  11. Relationships between menopausal and mood symptoms and EEG sleep measures in a multi-ethnic sample of middle-aged women: the SWAN sleep study.

    PubMed

    Kravitz, Howard M; Avery, Elizabeth; Sowers, Maryfran; Bromberger, Joyce T; Owens, Jane F; Matthews, Karen A; Hall, Martica; Zheng, Huiyong; Gold, Ellen B; Buysse, Daniel J

    2011-09-01

    Examine associations of vasomotor and mood symptoms with visually scored and computer-generated measures of EEG sleep. Cross-sectional analysis. Community-based in-home polysomnography (PSG). 343 African American, Caucasian, and Chinese women; ages 48-58 years; pre-, peri- or post-menopausal; participating in the Study of Women's Health Across the Nation Sleep Study (SWAN Sleep Study). None. Measures included PSG-assessed sleep duration, continuity, and architecture, delta sleep ratio (DSR) computed from automated counts of delta wave activity, daily diary-assessed vasomotor symptoms (VMS), questionnaires to collect mood (depression, anxiety) symptoms, medication, and lifestyle information, and menopausal status using bleeding criteria. Sleep outcomes were modeled using linear regression. Nocturnal VMS were associated with longer sleep time. Higher anxiety symptom scores were associated with longer sleep latency and lower sleep efficiency, but only in women reporting nocturnal VMS. Contrary to expectations, VMS and mood symptoms were unrelated to either DSR or REM latency. Vasomotor symptoms moderated associations of anxiety with EEG sleep measures of sleep latency and sleep efficiency and was associated with longer sleep duration in this multi-ethnic sample of midlife women.

  12. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG

    NASA Astrophysics Data System (ADS)

    Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.

    2016-03-01

    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.

  13. Non-auditory, electrophysiological potentials preceding dolphin biosonar click production.

    PubMed

    Finneran, James J; Mulsow, Jason; Jones, Ryan; Houser, Dorian S; Accomando, Alyssa W; Ridgway, Sam H

    2018-03-01

    The auditory brainstem response to a dolphin's own emitted biosonar click can be measured by averaging epochs of the instantaneous electroencephalogram (EEG) that are time-locked to the emitted click. In this study, averaged EEGs were measured using surface electrodes placed on the head in six different configurations while dolphins performed an echolocation task. Simultaneously, biosonar click emissions were measured using contact hydrophones on the melon and a hydrophone in the farfield. The averaged EEGs revealed an electrophysiological potential (the pre-auditory wave, PAW) that preceded the production of each biosonar click. The largest PAW amplitudes occurred with the non-inverting electrode just right of the midline-the apparent side of biosonar click generation-and posterior of the blowhole. Although the source of the PAW is unknown, the temporal and spatial properties rule out an auditory source. The PAW may be a neural or myogenic potential associated with click production; however, it is not known if muscles within the dolphin nasal system can be actuated at the high rates reported for dolphin click production, or if sufficiently coordinated and fast motor endplates of nasal muscles exist to produce a PAW detectable with surface electrodes.

  14. Infantile spasms.

    PubMed

    Hrachovy, Richard A; Frost, James D

    2013-01-01

    Infantile spasms are a unique disorder of infancy and early childhood. The average age at onset of infantile spasms is 6 months and the average incidence of the disorder is approximately 0.31 per 1000 live births. Approximately one-quarter of patients will spontaneously stop having spasms within 1 year of onset. There are three main types of epileptic spasms: flexor, extensor, and mixed flexor-extensor. Spasms frequently occur in clusters and commonly occur upon arousal from sleep. The motor spasms are frequently confused with other normal and abnormal infant behaviors. Typically, the interictal EEG reveals hypsarrhythmia or one of its variants. A variety of ictal EEG patterns may be seen, the most common of which is a generalized slow-wave transient followed by an attenuation of the background activity in all regions. The primary treatment objective is to improve the EEG and stop the spasms as soon as possible and to avoid prolonged treatment durations with any form of therapy. Currently, there is no conclusive evidence that medical or surgical treatment of infantile spasms significantly alters long-term outcome. Although the pathophysiological mechanism underlying infantile spasms is unknown, several animal models of infantile spasms have been developed in recent years. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Nonlinear analysis of EEG for epileptic seizures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, L.M.; Clapp, N.E.; Daw, C.S.

    1995-04-01

    We apply chaotic time series analysis (CTSA) to human electroencephalogram (EEG) data. Three epoches were examined: epileptic seizure, non-seizure, and transition from non-seizure to seizure. The CTSA tools were applied to four forms of these data: raw EEG data (e-data), artifact data (f-data) via application of a quadratic zero-phase filter of the raw data, artifact-filtered data (g- data) and that was the residual after subtracting f-data from e-data, and a low-pass-filtered version (h-data) of g-data. Two different seizures were analyzed for the same patient. Several nonlinear measures uniquely indicate an epileptic seizure in both cases, including an abrupt decrease inmore » the time per wave cycle in f-data, an abrupt increase in the Kolmogorov entropy and in the correlation dimension for e-h data, and an abrupt increase in the correlation dimension for e-h data. The transition from normal to seizure state also is characterized by distinctly different trends in the nonlinear measures for each seizure and may be potential seizure predictors for this patient. Surrogate analysis of e-data shows that statistically significant nonlinear structure is present during the non-seizure, transition , and seizure epoches.« less

  16. Design of Embedded System for Multivariate Classification of Finger and Thumb Movements Using EEG Signals for Control of Upper Limb Prosthesis

    PubMed Central

    Javed, Amna; Tiwana, Mohsin I.; Khan, Umar Shahbaz

    2018-01-01

    Brain Computer Interface (BCI) determines the intent of the user from a variety of electrophysiological signals. These signals, Slow Cortical Potentials, are recorded from scalp, and cortical neuronal activity is recorded by implanted electrodes. This paper is focused on design of an embedded system that is used to control the finger movements of an upper limb prosthesis using Electroencephalogram (EEG) signals. This is a follow-up of our previous research which explored the best method to classify three movements of fingers (thumb movement, index finger movement, and first movement). Two-stage logistic regression classifier exhibited the highest classification accuracy while Power Spectral Density (PSD) was used as a feature of the filtered signal. The EEG signal data set was recorded using a 14-channel electrode headset (a noninvasive BCI system) from right-handed, neurologically intact volunteers. Mu (commonly known as alpha waves) and Beta Rhythms (8–30 Hz) containing most of the movement data were retained through filtering using “Arduino Uno” microcontroller followed by 2-stage logistic regression to obtain a mean classification accuracy of 70%. PMID:29888252

  17. The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20-60 years old)

    NASA Technical Reports Server (NTRS)

    Carrier, J.; Land, S.; Buysse, D. J.; Kupfer, D. J.; Monk, T. H.

    2001-01-01

    The effects of age and gender on sleep EEG power spectral density were assessed in a group of 100 subjects aged 20 to 60 years. We propose a new statistical strategy (mixed-model using fixed-knot regression splines) to analyze quantitative EEG measures. The effect of gender varied according to frequency, but no interactions emerged between age and gender, suggesting that the aging process does not differentially influence men and women. Women had higher power density than men in delta, theta, low alpha, and high spindle frequency range. The effect of age varied according to frequency and across the night. The decrease in power with age was not restricted to slow-wave activity, but also included theta and sigma activity. With increasing age, the attenuation over the night in power density between 1.25 and 8.00 Hz diminished, and the rise in power between 12.25 and 14.00 Hz across the night decreased. Increasing age was associated with higher power in the beta range. These results suggest that increasing age may be related to an attenuation of homeostatic sleep pressure and to an increase in cortical activation during sleep.

  18. Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation.

    PubMed

    Marcel, Sébastien; Millán, José Del R

    2007-04-01

    In this paper, we investigate the use of brain activity for person authentication. It has been shown in previous studies that the brain-wave pattern of every individual is unique and that the electroencephalogram (EEG) can be used for biometric identification. EEG-based biometry is an emerging research topic and we believe that it may open new research directions and applications in the future. However, very little work has been done in this area and was focusing mainly on person identification but not on person authentication. Person authentication aims to accept or to reject a person claiming an identity, i.e., comparing a biometric data to one template, while the goal of person identification is to match the biometric data against all the records in a database. We propose the use of a statistical framework based on Gaussian Mixture Models and Maximum A Posteriori model adaptation, successfully applied to speaker and face authentication, which can deal with only one training session. We perform intensive experimental simulations using several strict train/test protocols to show the potential of our method. We also show that there are some mental tasks that are more appropriate for person authentication than others.

  19. Brain waves-based index for workload estimation and mental effort engagement recognition

    NASA Astrophysics Data System (ADS)

    Zammouri, A.; Chraa-Mesbahi, S.; Ait Moussa, A.; Zerouali, S.; Sahnoun, M.; Tairi, H.; Mahraz, A. M.

    2017-10-01

    The advent of the communication systems and considering the complexity that some impose in their use, it is necessary to incorporate and equip these systems with a certain intelligence which takes into account the cognitive and mental capacities of the human operator. In this work, we address the issue of estimating the mental effort of an operator according to the cognitive tasks difficulty levels. Based on the Electroencephalogram (EEG) measurements, the proposed approach analyzes the user’s brain activity from different brain regions while performing cognitive tasks with several levels of difficulty. At a first time, we propose a variances comparison-based classifier (VCC) that makes use of the Power Spectral Density (PSD) of the EEG signal. The aim of using such a classifier is to highlight the brain regions that enter into interaction according to the cognitive task difficulty. In a second time, we present and describe a new EEG-based index for the estimation of mental efforts. The designed index is based on information recorded from two EEG channels. Results from the VCC demonstrate that powers of the Theta [4-7 Hz] (θ) and Alpha [8-12 Hz] (α) oscillations decrease while increasing the cognitive task difficulty. These decreases are mainly located in parietal and temporal brain regions. Based on the Kappa coefficients, decisions of the introduced index are compared to those obtained from an existing index. This performance assessment method revealed strong agreements. Hence the efficiency of the introduced index.

  20. Evaluation of a Low-cost and Low-noise Active Dry Electrode for Long-term Biopotential Recording

    PubMed Central

    Pourahmad, Ali; Mahnam, Amin

    2016-01-01

    Wet Ag/AgCl electrodes, although very popular in clinical diagnosis, are not appropriate for expanding applications of wearable biopotential recording systems which are used repetitively and for a long time. Here, the development of a low-cost and low-noise active dry electrode is presented. The performance of the new electrodes was assessed for recording electrocardiogram (ECG) and electroencephalogram (EEG) in comparison with that of typical gel-based electrodes in a series of long-term recording experiments. The ECG signal recorded by these electrodes was well comparable with usual Ag/AgCl electrodes with a correlation up to 99.5% and mean power line noise below 6.0 μVRMS. The active electrodes were also used to measure alpha wave and steady state visual evoked potential by recording EEG. The recorded signals were comparable in quality with signals recorded by standard gel electrodes, suggesting that the designed electrodes can be employed in EEG-based rehabilitation systems and brain-computer interface applications. The mean power line noise in EEG signals recorded by the active electrodes (1.3 μVRMS) was statistically lower than when conventional gold cup electrodes were used (2.0 μVRMS) with a significant level of 0.05, and the new electrodes appeared to be more resistant to the electromagnetic interferences. These results suggest that the developed low-cost electrodes can be used to develop wearable monitoring systems for long-term biopotential recording. PMID:28028495

  1. Emotional processing and psychopathic traits in male college students: An event-related potential study.

    PubMed

    Medina, Amy L; Kirilko, Elvira; Grose-Fifer, Jillian

    2016-08-01

    Emotional processing deficits are often considered a hallmark of psychopathy. However, there are relatively few studies that have investigated how the late positive potential (LPP) elicited by both positive and negative emotional stimuli is modulated by psychopathic traits, especially in undergraduates. Attentional deficits have also been posited to be associated with emotional blunting in psychopathy, consequently, results from previous studies may have been influenced by task demands. Therefore, we investigated the relationship between the neural correlates of emotional processing and psychopathic traits by measuring event-related potentials (ERPs) during a task with a relatively low cognitive load. A group of male undergraduates were classified as having either high or low levels of psychopathic traits according to their total scores on the Psychopathic Personality Inventory - Revised (PPI-R). A subgroup of these participants then passively viewed complex emotional and neutral images from the International Affective Picture System (IAPS) while their EEGs were recorded. As hypothesized, in general the late LPP elicited by emotional pictures was found to be significantly reduced for participants with high Total PPI-R scores relative to those with low scores, especially for pictures that were rated as less emotionally arousing. Our data suggest that male undergraduates with high, but subclinical levels of psychopathic traits did not maintain continued higher-order processing of affective information, especially when it was perceived to be less arousing in nature. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. [A case of Creutzfeldt-Jakob in the Mexican north-east and review of current concepts on prion disease].

    PubMed

    Calderón-Garcidueñas, A L; Sagastegui-Rodríguez, J A; Canales-Ibarra, C; Farías-García, R

    2001-01-01

    The case reported here is that of a 50-year-old man from Saltillo, Coahuila, Mexico, who during the previous 15 months developed a demential syndrome and myoclonia. The brain biopsy led to establish a diagnosis of spongiform encephalopathy. The EEG showed periodic sharp wave complexes over the right hemisphere. A review on about prion diseases is included.

  3. Effects of joint attention on long-term memory in 9-month-old infants: an event-related potentials study.

    PubMed

    Kopp, Franziska; Lindenberger, Ulman

    2011-07-01

    Joint attention develops during the first year of life but little is known about its effects on long-term memory. We investigated whether joint attention modulates long-term memory in 9-month-old infants. Infants were familiarized with visually presented objects in either of two conditions that differed in the degree of joint attention (high versus low). EEG indicators in response to old and novel objects were probed directly after the familiarization phase (immediate recognition), and following a 1-week delay (delayed recognition). In immediate recognition, the amplitude of positive slow-wave activity was modulated by joint attention. In the delayed recognition, the amplitude of the Pb component differentiated between high and low joint attention. In addition, the positive slow-wave amplitude during immediate and delayed recognition correlated with the frequency of infants' looks to the experimenter during familiarization. Under both high- and low-joint-attention conditions, the processing of unfamiliar objects was associated with an enhanced Nc component. Our results show that the degree of joint attention modulates EEG during immediate and delayed recognition. We conclude that joint attention affects long-term memory processing in 9-month-old infants by enhancing the relevance of attended items. © 2010 Blackwell Publishing Ltd.

  4. β oscillation during slow wave sleep and rapid eye movement sleep in the electroencephalogram of a transgenic mouse model of Huntington's disease.

    PubMed

    Jeantet, Yannick; Cayzac, Sebastien; Cho, Yoon H

    2013-01-01

    To search for early abnormalities in electroencephalogram (EEG) during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington's disease (HD). In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease. Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours), beginning at 9-11 weeks (presymptomatic period) through 6-7 months (symptomatic period). Recording data revealed a unique β rhythm (20-35 Hz), present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS) and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM) sleep. In addition to providing a new in vivo biomarker and insight into Huntington's disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep.

  5. Frequent sleep-related bitemporal focal seizures in transient epileptic amnesia syndrome: Evidence from ictal video-EEG.

    PubMed

    Burkholder, David B; Jones, Amy L; Jones, David T; Fabris, Rachel R; Britton, Jeffrey W; Lagerlund, Terrence D; So, Elson L; Cascino, Gregory D; Worrell, Gregory A; Shin, Cheolsu; St Louis, Erik K

    2017-06-01

    Two patients who shared similar presenting clinical features of anterograde and retrograde autobiographical amnesia typical of transient epileptic amnesia (TEA) underwent prolonged video electroencephalogram (VEEG) monitoring and were found to have sleep-activated epileptiform activity and frequent subclinical bitemporal seizures predominantly during sleep. Case 1 is a 59-year-old woman whose presenting complaint was memory impairment. Over 18 months, she had three distinct 8-h-long episodes of confusion and disorientation with persistent anterograde and retrograde autobiographical amnesia. VEEG recorded frequent interictal bitemporal sharp waves confined to sleep, and 14 subclinical seizures, also mostly during sleep. Case 2 is a 50-year-old woman with known focal epilepsy also presented with memory complaints. Over the course of 1 year, she had two discrete 2-h-long episodes of amnesia, with ongoing anterograde and retrograde autobiographical amnesia. VEEG recorded independent bitemporal sharp waves, and 14 subclinical seizures during sleep and drowsiness. Memory impairment improved in both patients with successful treatment of their seizures. Although the etiology of accelerated long-term forgetting (ALF) and remote memory impairment (RMI) in transient epileptic amnesia (TEA) is unknown, these cases suggest frequent sleep-related seizures may contribute, and they highlight the importance of video-EEG monitoring.

  6. Variable outcome for epilepsy after neonatal hypoglycaemia.

    PubMed

    Fong, Choong Yi; Harvey, A Simon

    2014-11-01

    To evaluate the electroclinical features of epilepsy secondary to neonatal hypoglycaemia. This was a retrospective study of children who had seizures beyond infancy after neonatal hypoglycaemia treated at The Royal Children's Hospital, Melbourne between 1996 and 2012. Patients with perinatal asphyxia were excluded. Clinical details were obtained from medical records. Digital electroencephalography (EEG) and brain magnetic resonance imaging (MRI) were reviewed. Eleven patients met the inclusion criteria (six males, five females; mean age 10y 5mo, range 4-18y at the time of review). Age at seizure onset ranged from 4 months to 5 years. Seizures were focal occipital in nine and generalized tonic in two patients. MRI showed gliosis with or without cortical atrophy in the occipital lobe with or without parietal lobe in all. Predominant EEG findings were stereotyped occipital sharp-slow discharges in five, polymorphic occipital spike-wave or paroxysmal fast activity in three, and generalized slow spike-wave and fast activity in two. Seizures were infrequent or remitted in six of the nine children with focal occipital seizures, and frequent and refractory in both children with generalized seizures. Despite the common antecedent and bilateral occipital lobe injury, the seizure manifestations and course of epilepsy after neonatal hypoglycaemia were variable, with mild occipital, refractory occipital, and symptomatic generalized epilepsy recognized. © 2014 Mac Keith Press.

  7. The impact of blackcurrant juice on attention, mood and brain wave spectral activity in young healthy volunteers.

    PubMed

    Watson, A W; Okello, E J; Brooker, H J; Lester, S; McDougall, G J; Wesnes, K A

    2018-01-17

    There is a growing body of evidence from randomized controlled trials which indicates that consumption of berries has a positive effect upon the cognitive function of healthy adults. It has been recommended that studies combining cognitive and physiological measures be undertaken in order to strengthen the evidence base for the putative effects of flavonoid consumption on cognitive outcomes. This pilot study utilized a randomized, double-blind and placebo controlled crossover design to assess the influence of the acute administration of anthocyanin-rich blackcurrant juice, standardized at 500 mg of polyphenols, on mood and attention. Additionally, this trial used electroencephalography (EEG) to assess if any changes in cognitive performance are associated with changes in localized prefrontal cortex neuronal activity in nine healthy young adults. Outcomes from the pilot EEG data highlight an anxiolytic effect of the consumption of a single serve blackcurrant juice, as indexed by a suppression of α spectral power, and an increase in the slow wave δ and θ spectral powers. There was also an indication of greater alertness and lower fatigue, as indexed by an increase in β power and suppression of α spectral power. Outcomes from the CogTrack™ system indicated a small acute increase in reaction times during the digit vigilance task.

  8. Does arousal interfere with operant conditioning of spike-wave discharges in genetic epileptic rats?

    PubMed

    Osterhagen, Lasse; Breteler, Marinus; van Luijtelaar, Gilles

    2010-06-01

    One of the ways in which brain computer interfaces can be used is neurofeedback (NF). Subjects use their brain activation to control an external device, and with this technique it is also possible to learn to control aspects of the brain activity by operant conditioning. Beneficial effects of NF training on seizure occurrence have been described in epileptic patients. Little research has been done about differentiating NF effectiveness by type of epilepsy, particularly, whether idiopathic generalized seizures are susceptible to NF. In this experiment, seizures that manifest themselves as spike-wave discharges (SWDs) in the EEG were reinforced during 10 sessions in 6 rats of the WAG/Rij strain, an animal model for absence epilepsy. EEG's were recorded before and after the training sessions. Reinforcing SWDs let to decreased SWD occurrences during training; however, the changes during training were not persistent in the post-training sessions. Because behavioural states are known to have an influence on the occurrence of SWDs, it is proposed that the reinforcement situation increased arousal which resulted in fewer SWDs. Additional tests supported this hypothesis. The outcomes have implications for the possibility to train SWDs with operant learning techniques. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Chaotic time series analysis of vision evoked EEG

    NASA Astrophysics Data System (ADS)

    Zhang, Ningning; Wang, Hong

    2010-01-01

    To investigate the human brain activities for aesthetic processing, beautiful woman face picture and ugly buffoon face picture were applied. Twelve subjects were assigned the aesthetic processing task while the electroencephalogram (EEG) was recorded. Event-related brain potential (ERP) was required from the 32 scalp electrodes and the ugly buffoon picture produced larger amplitudes for the N1, P2, N2, and late slow wave components. Average ERP from the ugly buffoon picture were larger than that from the beautiful woman picture. The ERP signals shows that the ugly buffoon elite higher emotion waves than the beautiful woman face, because some expression is on the face of the buffoon. Then, chaos time series analysis was carried out to calculate the largest Lyapunov exponent using small data set method and the correlation dimension using G-P algorithm. The results show that the largest Lyapunov exponents of the ERP signals are greater than zero, which indicate that the ERP signals may be chaotic. The correlations dimensions coming from the beautiful woman picture are larger than that from the ugly buffoon picture. The comparison of the correlations dimensions shows that the beautiful face can excite the brain nerve cells. The research in the paper is a persuasive proof to the opinion that cerebrum's work is chaotic under some picture stimuli.

  10. Shaping the Development of Prejudice: Latent Growth Modeling of the Influence of Social Dominance Orientation on Outgroup Affect in Youth.

    PubMed

    Bratt, Christopher; Sidanius, Jim; Sheehy-Skeffington, Jennifer

    2016-12-01

    Social dominance orientation (SDO) has been theorized as a stable, early-emerging trait influencing outgroup evaluations, a view supported by evidence from cross-sectional and two-wave longitudinal research. Yet, the limitations of identifying causal paths with cross-sectional and two-wave designs are increasingly being acknowledged. This article presents the first use of multi-wave data to test the over-time relationship between SDO and outgroup affect among young people. We use cross-lagged and latent growth modeling (LGM) of a three-wave data set employing Norwegian adolescents (over 2 years, N = 453) and a five-wave data set with American university students (over 4 years, N = 748). Overall, SDO exhibits high temporal rank-order stability and predicts changes in outgroup affect. This research represents the strongest test to date of SDO's role as a stable trait that influences the development of prejudice, while highlighting LGM as a valuable tool for social and political psychology. © 2016 by the Society for Personality and Social Psychology, Inc.

  11. Increased Gamma Brainwave Amplitude Compared to Control in Three Different Meditation Traditions

    PubMed Central

    Cahn, B. Rael; Levy, Jonathan; Fernandez, Manuel; Delorme, Arnaud

    2017-01-01

    Despite decades of research, effects of different types of meditation on electroencephalographic (EEG) activity are still being defined. We compared practitioners of three different meditation traditions (Vipassana, Himalayan Yoga and Isha Shoonya) with a control group during a meditative and instructed mind-wandering (IMW) block. All meditators showed higher parieto-occipital 60–110 Hz gamma amplitude than control subjects as a trait effect observed during meditation and when considering meditation and IMW periods together. Moreover, this gamma power was positively correlated with participants meditation experience. Independent component analysis was used to show that gamma activity did not originate in eye or muscle artifacts. In addition, we observed higher 7–11 Hz alpha activity in the Vipassana group compared to all the other groups during both meditation and instructed mind wandering and lower 10–11 Hz activity in the Himalayan yoga group during meditation only. We showed that meditation practice is correlated to changes in the EEG gamma frequency range that are common to a variety of meditation practices. PMID:28118405

  12. Spotting psychopaths using technology.

    PubMed

    Hulbert, Sarah; Adeli, Hojjat

    2015-01-01

    For the past three and a half decades, the Psychopathy Checklist-Revised (PCL-R) and the self-report Psychopathic Personality Inventory-Revised (PPI-R) have been the standard measures for the diagnosis of psychopathy. Technological approaches can enhance these diagnostic methodologies. The purpose of this paper is to present a state-of-the-art review of various technological approaches for spotting psychopathy, such as electroencephalogram (EEG), magnetic resonance imaging (MRI), functional MRI (fMRI), transcranial magnetic stimulation (TMS), and other measures. Results of EEG event-related potential (ERP) experiments support the theory that impaired amygdala function may be responsible for abnormal fear processing in psychopathy, which can ultimately manifest as psychopathic traits, as outlined by the PCL-R or PPI-R. Imaging studies, in general, point to reduced fear processing capabilities in psychopathic individuals. While the human element, introduced through researcher/participant interactions, can be argued as unequivocally necessary for diagnosis, these purely objective technological approaches have proven to be useful in conjunction with the subjective interviewing and questionnaire methods for differentiating psychopaths from non-psychopaths. Furthermore, these technologies are more robust than behavioral measures, which have been shown to fail.

  13. A longitudinal, population-based twin study of avoidant and obsessive-compulsive personality disorder traits from early to middle adulthood

    PubMed Central

    Gjerde, L. C.; Czajkowski, N.; Røysamb, E.; Ystrom, E.; Tambs, K.; Aggen, S. H.; Ørstavik, R. E.; Kendler, K. S.; Reichborn-Kjennerud, T.; Knudsen, G. P.

    2015-01-01

    Background The phenotypic stability of avoidant personality disorder (AVPD) and obsessive-compulsive personality disorder (OCPD) has previously been found to be moderate. However, little is known about the longitudinal structure of genetic and environmental factors for these disorders separately and jointly, and to what extent genetic and environmental factors contribute to their stability. Method AVPD and OCPD criteria were assessed using the Structured Interview for DSM-IV Personality in 2793 young adult twins (1385 pairs, 23 singletons) from the Norwegian Institute of Public Health Twin Panel at wave 1 and 2282 (986 pairs, 310 singletons) of these on average 10 years later at wave 2. Longitudinal biometric models were fitted to AVPD and OCPD traits. Results For twins who participated at both time-points, the number of endorsed sub-threshold criteria for both personality disorders (PDs) decreased 31% from wave 1 to wave 2. Phenotypic correlations between waves were 0.54 and 0.37 for AVPD and OCPD, respectively. The heritability estimates of the stable PD liabilities were 0.67 for AVPD and 0.53 for OCPD. The genetic correlations were 1.00 for AVPD and 0.72 for OCPD, while the unique environmental influences correlated 0.26 and 0.23, respectively. The correlation between the stable AVPD and OCPD liabilities was 0.39 of which 63% was attributable to genetic influences. Shared environmental factors did not significantly contribute to PD variance at either waves 1 or 2. Conclusion Phenotypic stability was moderate for AVPD and OCPD traits, and genetic factors contributed more than unique environmental factors to the stability both within and across phenotypes. PMID:26273730

  14. A longitudinal, population-based twin study of avoidant and obsessive-compulsive personality disorder traits from early to middle adulthood.

    PubMed

    Gjerde, L C; Czajkowski, N; Røysamb, E; Ystrom, E; Tambs, K; Aggen, S H; Ørstavik, R E; Kendler, K S; Reichborn-Kjennerud, T; Knudsen, G P

    2015-12-01

    The phenotypic stability of avoidant personality disorder (AVPD) and obsessive-compulsive personality disorder (OCPD) has previously been found to be moderate. However, little is known about the longitudinal structure of genetic and environmental factors for these disorders separately and jointly, and to what extent genetic and environmental factors contribute to their stability. AVPD and OCPD criteria were assessed using the Structured Interview for DSM-IV Personality in 2793 young adult twins (1385 pairs, 23 singletons) from the Norwegian Institute of Public Health Twin Panel at wave 1 and 2282 (986 pairs, 310 singletons) of these on average 10 years later at wave 2. Longitudinal biometric models were fitted to AVPD and OCPD traits. For twins who participated at both time-points, the number of endorsed sub-threshold criteria for both personality disorders (PDs) decreased 31% from wave 1 to wave 2. Phenotypic correlations between waves were 0.54 and 0.37 for AVPD and OCPD, respectively. The heritability estimates of the stable PD liabilities were 0.67 for AVPD and 0.53 for OCPD. The genetic correlations were 1.00 for AVPD and 0.72 for OCPD, while the unique environmental influences correlated 0.26 and 0.23, respectively. The correlation between the stable AVPD and OCPD liabilities was 0.39 of which 63% was attributable to genetic influences. Shared environmental factors did not significantly contribute to PD variance at either waves 1 or 2. Phenotypic stability was moderate for AVPD and OCPD traits, and genetic factors contributed more than unique environmental factors to the stability both within and across phenotypes.

  15. The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.

    PubMed

    Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter

    2011-10-13

    A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.

  16. Epilepsy surgery for epileptic encephalopathy as a sequela of herpes simplex encephalitis: case report.

    PubMed

    Taskin, Birce Dilge; Tanji, Kurenai; Feldstein, Neil A; McSwiggan-Hardin, Maureen; Akman, Cigdem I

    2017-07-01

    Herpes simplex virus (HSV) encephalitis can manifest with different clinical presentations, including acute monophasic illness and biphasic chronic granulomatous HSV encephalitis. Chronic encephalitis is much less common, and very rare late relapses are associated with intractable epilepsy and progressive neurological deficits with or without evidence of HSV in the cerebrospinal fluid. The authors report on an 8-year-old girl with a history of treated HSV-1 encephalitis when she was 13 months of age and focal epilepsy when she was 2 years old. Although free of clinical seizures, when she was 5, she experienced behavioral and academic dysfunction, which was later attributed to electrographic focal seizures and worsening electroencephalography (EEG) findings with electrical status epilepticus during slow-wave sleep (ESES). Following a right temporal lobectomy, chronic granulomatous encephalitis was diagnosed. The patient's clinical course improved with the resolution of seizures and EEG abnormalities.

  17. [Reflexotherapy and carbon dioxide baths in the complex treatment of patients with circulatory encephalopathy of arteriosclerotic etiology].

    PubMed

    Manucharian, G G; Melikian, T V; Markosian, G K

    1992-01-01

    Overall 106 patients with atherosclerotic cccccccirculatory encephalopathy (DE) were examined for changes in the EEG, REG and in certain psychological parameters (attention, memory, "associative" thinking) before and after acupuncture and carbon dioxide baths. In patients with stage I and stage II DE (in 93 and 80%, respectively), the clinical improvement was accompanied by positive changes such as a rise of alpha-activity, decrease of pathological waves and frequencies on the EEG, decline of the vascular tone and improvement of the blood content on the REG in addition to the shortening of the time required for the search for numbers according to Schulte's tables, a decrease of errors made during calculation, an increase of words and the family of words in the memorization and "associative" thinking tests. The data obtained may attest to the amelioration of cerebral function and hemodynamics because of the rehabilitation treatment.

  18. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    PubMed

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  19. Spousal Dissimilarity, Race, and Marital Dissolution

    ERIC Educational Resources Information Center

    Clarkwest, Andrew

    2007-01-01

    I test the claims that spousal differences in ideational, behavioral, and other traits contribute to elevated rates of marital dissolution among African Americans. Using data from 3 waves of the National Survey of Families and Households (N = 5,424), I find that African American spouses experience high levels of dissimilarity in traits that may…

  20. Violent peer influence: The roles of self-esteem and psychopathic traits.

    PubMed

    Van Zalk, Maarten Herman Walter; Van Zalk, Nejra

    2015-11-01

    Evidence for the risks of psychopathic personality traits for adolescent antisocial behavior are well documented in the literature. Little is known, however, about who the peers of adolescents with these traits are and to what extent they influence one another. In the current study, three dimensions of psychopathic traits were distinguished: grandiose-manipulative traits, callous-unemotional traits, and impulsive-irresponsible traits. A dynamic social network approach was used with three waves of longitudinal data from 1,772 adolescents (51.1% girls, M age = 13.03 at first measurement). Results showed that adolescents with grandiose-manipulative and callous-unemotional traits formed peer relationships with adolescents who had low self-esteem. Furthermore, peers' violence predicted stronger increases in violence for adolescents with low self-esteem than for other adolescents, and peers' violence predicted stronger increases in adolescent violence for peers with high psychopathic traits than for other peers. Thus, findings indicate that adolescents with low self-esteem are vulnerable to deviant peer influence from peers with psychopathic traits.

  1. Determining the degree of synchronism for intermittent phase synchronization in human electroencephalography data

    NASA Astrophysics Data System (ADS)

    Koloskova, A. D.; Moskalenko, O. I.

    2017-05-01

    The phenomenon of intermittent phase synchronization during development of epileptic activity in human beings has been discovered based on EEG data. The presence of synchronous behavior phases has been detected both during spike-wave discharges and in the regions of background activity of the brain. The degree of synchronism in the intermittent phase-synchronization regime in both cases has been determined, and it has been established that spike-wave discharges are characterized by a higher degree of synchronism than exists in the regions of background activity of the brain. To determine the degree of synchronism, a modified method of evaluating zero conditional Lyapunov exponents from time series is proposed.

  2. Brain-computer interface for alertness estimation and improving

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina

    2018-02-01

    Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.

  3. Cocaine action on peripheral, non-monoamine neural substrates as a trigger of EEG desynchronization and EMG activation following intravenous administration in freely moving rats

    PubMed Central

    Smirnov, Michael S.; Kiyatkin, Eugene A.

    2009-01-01

    Many important physiological, behavioral and subjective effects of intravenous (iv) cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed EEG and EMG recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of iv COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by iv COC methiodide, a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC methiodide had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by iv procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, iv saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, iv COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such an action might play a crucial role in the sensory effects of COC, thus contributing to the learning and development of drug-taking behavior. PMID:19861149

  4. Quantitative EEG in Children and Adults With Attention Deficit Hyperactivity Disorder: Comparison of Absolute and Relative Power Spectra and Theta/Beta Ratio.

    PubMed

    Markovska-Simoska, Silvana; Pop-Jordanova, Nada

    2017-01-01

    In recent decades, resting state electroencephalographic (EEG) measures have been widely used to document underlying neurophysiological dysfunction in attention deficit hyperactivity disorder (ADHD). Although most EEG studies focus on children, there is a growing interest in adults with ADHD too. The aim of this study was to objectively assess and compare the absolute and relative EEG power as well as the theta/beta ratio in children and adults with ADHD. The evaluated sample comprised 30 male children and 30 male adults with ADHD diagnosed according to DSM-IV criteria. They were compared with 30 boys and 30 male adults matched by age. The mean age (±SD) of the children's group was 9 (±2.44) years and the adult group 35.8 (±8.65) years. EEG was recorded during an eyes-open condition. Spectral analysis of absolute (μV 2 ) and relative power (%) was carried out for 4 frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-21 Hz). The findings obtained for ADHD children are increased absolute power of slow waves (theta and delta), whereas adults exhibited no differences compared with normal subjects. For the relative power spectra there were no differences between the ADHD and control groups. Across groups, the children showed greater relative power than the adults in the delta and theta bands, but for the higher frequency bands (alpha and beta) the adults showed more relative power than children. Only ADHD children showed greater theta/beta ratio compared to the normal group. Classification analysis showed that ADHD children could be differentiated from the control group by the absolute theta values and theta/beta ratio at Cz, but this was not the case with ADHD adults. The question that should be further explored is if these differences are mainly due to maturation processes or if there is a core difference in cortical arousal between ADHD children and adults. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  5. A method for the topographical identification and quantification of high frequency oscillations in intracranial electroencephalography recordings

    PubMed Central

    Waldman, Zachary J.; Shimamoto, Shoichi; Song, Inkyung; Orosz, Iren; Bragin, Anatol; Fried, Itzhak; Engel, Jerome; Staba, Richard; Sperling, Michael R.; Weiss, Shennan A.

    2018-01-01

    Objective To develop a reliable software method using a topographic analysis of time-frequency plots to distinguish ripple (80–200 Hz) oscillations that are often associated with EEG sharp waves or spikes (RonS) from sinusoid-like waveforms that appear as ripples but correspond with digital filtering of sharp transients contained in the wide bandwidth EEG. Methods A custom algorithm distinguished true from false ripples in one second intracranial EEG (iEEG) recordings using wavelet convolution, identifying contours of isopower, and categorizing these contours into sets of open or closed loop groups. The spectral and temporal features of candidate groups were used to classify the ripple, and determine its duration, frequency, and power. Verification of detector accuracy was performed on the basis of simulations, and visual inspection of the original and band-pass filtered signals. Results The detector could distinguish simulated true from false ripple on spikes (RonS). Among 2934 visually verified trials of iEEG recordings and spectrograms exhibiting RonS the accuracy of the detector was 88.5% with a sensitivity of 81.8% and a specificity of 95.2%. The precision was 94.5% and the negative predictive value was 84.0% (N = 12). Among, 1,370 trials of iEEG recording exhibiting RonS that were reviewed blindly without spectrograms the accuracy of the detector was 68.0%, with kappa equal to 0.01 ± 0.03. The detector successfully distinguished ripple from high spectral frequency ‘fast ripple’ oscillations (200–600 Hz), and characterize ripple duration and spectral frequency and power. The detector was confounded by brief bursts of gamma (30–80 Hz) activity in 7.31 ± 6.09% of trials, and in 30.2 ± 14.4% of the true RonS detections ripple duration was underestimated. Conclusions Characterizing the topographic features of a time-frequency plot generated by wavelet convolution is useful for distinguishing true oscillations from false oscillations generated by filter ringing. Significance Categorizing ripple oscillations and characterizing their properties can improve the clinical utility of the biomarker. PMID:29122445

  6. Metabolic Predictors of Change in Vascular Function: Prospective Associations From a Community-Based Cohort.

    PubMed

    Zachariah, Justin P; Rong, Jian; Larson, Martin G; Hamburg, Naomi M; Benjamin, Emelia J; Vasan, Ramachandran S; Mitchell, Gary F

    2018-02-01

    Vascular function varies with age because of physiological and pathological factors. We examined relations of longitudinal change in vascular function with change in metabolic traits. Longitudinal changes in vascular function and metabolic traits were examined in 5779 participants (mean age, 49.8±14.5 years; 54% women) who attended sequential examinations of the Framingham Offspring, Third Generation, and Omni-1 and Omni-2 cohorts. Multivariable regression analysis related changes in vascular measures (dependent variables), including carotid-femoral pulse wave velocity (CFPWV), forward pressure wave amplitude, characteristic impedance, central pulse pressure, and mean arterial pressure (MAP), with change in body mass index, fasting total:high-density lipoprotein cholesterol ratio, serum triglycerides, and blood glucose. Analyses accounted for baseline value of each vascular and metabolic measure, MAP change, and multiple comparisons. On follow-up (mean, 5.9±0.6 years), aortic stiffness (CFPWV, 0.2±1.6 m/s), and pressure pulsatility (forward pressure wave, 1.2±12.4 mm Hg; characteristic impedance, 23±73 dyne×sec/cm 5 ; central pulse pressure, 2.6±14.7 mm Hg; all P <0.0001) increased, whereas MAP fell (-3±10 mm Hg; P <0.0001). Worsening of each metabolic trait was associated with increases in CFPWV and MAP ( P <0.0001 for all associations) and an increase in MAP was associated with an increase in CFPWV. Overall, worsening metabolic traits were associated with worsening aortic stiffness and MAP. Opposite net change in aortic stiffness and MAP suggests that factors other than distending pressure contributed to the observed increase in aortic stiffness. Change in metabolic traits explained a greater proportion of the change in CFPWV and MAP than baseline metabolic values. © 2017 American Heart Association, Inc.

  7. Evaluation of Wireless Vital Signs Monitor in Trauma Patients

    DTIC Science & Technology

    2014-06-01

    p=NS These data show that the R wave detection and pulse oximeter in the MWVSM finger probe are more accurate and follow changes better than those... oximeter signal failed to register with the thready pulse characteristic of hemorrhagic shock. This observation suggests that using a forehead and...would be more useful to measure from the forehead (e.g. near infrared spectroscopy (NIRS) or Bispectral EEG (BIS)) or extremity? 2) Does pulse

  8. The Brain and Learning: Examining the Connection between Brain Activity, Spatial Intelligence, and Learning Outcomes in Online Visual Instruction

    ERIC Educational Resources Information Center

    Lee, Hyangsook

    2013-01-01

    The purpose of the study was to compare 2D and 3D visual presentation styles, both still frame and animation, on subjects' brain activity measured by the amplitude of EEG alpha wave and on their recall to see if alpha power and recall differ significantly by depth and movement of visual presentation style and by spatial intelligence. In addition,…

  9. Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting.

    PubMed

    Helfrich, Randolph F; Mander, Bryce A; Jagust, William J; Knight, Robert T; Walker, Matthew P

    2018-01-03

    The coupled interaction between slow-wave oscillations and sleep spindles during non-rapid-eye-movement (NREM) sleep has been proposed to support memory consolidation. However, little evidence in humans supports this theory. Moreover, whether such dynamic coupling is impaired as a consequence of brain aging in later life, contributing to cognitive and memory decline, is unknown. Combining electroencephalography (EEG), structural MRI, and sleep-dependent memory assessment, we addressed these questions in cognitively normal young and older adults. Directional cross-frequency coupling analyses demonstrated that the slow wave governs a precise temporal coordination of sleep spindles, the quality of which predicts overnight memory retention. Moreover, selective atrophy within the medial frontal cortex in older adults predicted a temporal dispersion of this slow wave-spindle coupling, impairing overnight memory consolidation and leading to forgetting. Prefrontal-dependent deficits in the spatiotemporal coordination of NREM sleep oscillations therefore represent one pathway explaining age-related memory decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Respiratory cycle-related electroencephalographic changes during sleep in healthy children and in children with sleep disordered breathing.

    PubMed

    Immanuel, Sarah A; Pamula, Yvonne; Kohler, Mark; Martin, James; Kennedy, Declan; Saint, David A; Baumert, Mathias

    2014-08-01

    To investigate respiratory cycle-related electroencephalographic changes (RCREC) in healthy children and in children with sleep disordered breathing (SDB) during scored event-free (SEF) breathing periods of sleep. Interventional case-control repeated measurements design. Paediatric sleep laboratory in a hospital setting. Forty children with SDB and 40 healthy, age- and sex-matched children. Adenotonsillectomy in children with SDB and no intervention in controls. Overnight polysomnography; electroencephalography (EEG) power variations within SEF respiratory cycles in the overall and frequency band-specific EEG within stage 2 nonrapid eye movement (NREM) sleep, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Within both groups there was a decrease in EEG power during inspiration compared to expiration across all sleep stages. Compared to controls, RCREC in children with SDB in the overall EEG were significantly higher during REM and frequency band specific RCRECs were higher in the theta band of stage 2 and REM sleep, alpha band of SWS and REM sleep, and sigma band of REM sleep. This between-group difference was not significant postadenotonsillectomy. The presence of nonrandom respiratory cycle-related electroencephalographic changes (RCREC) in both healthy children and in children with sleep disordered breathing (SDB) during NREM and REM sleep has been demonstrated. The RCREC values were higher in children with SDB, predominantly in REM sleep and this difference reduced after adenotonsillectomy. Immanuel SA, Pamula Y, Kohler M, Martin J, Kennedy D, Saint DA, Baumert M. Respiratory cycle-related electroencephalographic changes during sleep in healthy children and in children with sleep disordered breathing.

  11. Blood-Brain Barrier Breakdown Following Traumatic Brain Injury: A Possible Role in Posttraumatic Epilepsy

    PubMed Central

    Tomkins, Oren; Feintuch, Akiva; Benifla, Moni; Cohen, Avi; Friedman, Alon; Shelef, Ilan

    2011-01-01

    Recent animal experiments indicate a critical role for opening of the blood-brain barrier (BBB) in the pathogenesis of post-traumatic epilepsy (PTE). This study aimed to investigate the frequency, extent, and functional correlates of BBB disruption in epileptic patients following mild traumatic brain injury (TBI). Thirty-seven TBI patients were included in this study, 19 of whom suffered from PTE. All underwent electroencephalographic (EEG) recordings and brain magnetic resonance imaging (bMRI). bMRIs were evaluated for BBB disruption using novel quantitative techniques. Cortical dysfunction was localized using standardized low-resolution brain electromagnetic tomography (sLORETA). TBI patients displayed significant EEG slowing compared to controls with no significant differences between PTE and nonepileptic patients. BBB disruption was found in 82.4% of PTE compared to 25% of non-epileptic patients (P = .001) and could be observed even years following the trauma. The volume of cerebral cortex with BBB disruption was significantly larger in PTE patients (P = .001). Slow wave EEG activity was localized to the same region of BBB disruption in 70% of patients and correlated to the volume of BBB disrupted cortex. We finally present a patient suffering from early cortical dysfunction and BBB breakdown with a gradual and parallel resolution of both pathologies. Our findings demonstrate that BBB pathology is frequently found following mild TBI. Lasting BBB breakdown is found with increased frequency and extent in PTE patients. Based on recent animal studies and the colocalization found between the region of disrupted BBB and abnormal EEG activity, we suggest a role for a vascular lesion in the pathogenesis of PTE. PMID:21436875

  12. Plastic changes following imitation-based speech and language therapy for aphasia: a high-density sleep EEG study.

    PubMed

    Sarasso, Simone; Määttä, Sara; Ferrarelli, Fabio; Poryazova, Rositsa; Tononi, Giulio; Small, Steven L

    2014-02-01

    BACKGROUND OBJECTIVE: measurement of plastic brain changes induced by a novel rehabilitative approach is a key requirement for validating its biological rationale linking the potential therapeutic gains to the changes in brain physiology. Based on an emerging notion linking cortical plastic changes to EEG sleep slow-wave activity (SWA) regulation, we aimed to assess the acute plastic changes induced by an imitation-based speech therapy in individuals with aphasia by comparing sleep SWA changes before and after therapy. A total of 13 left-hemispheric stroke patients underwent language assessment with the Western Aphasia Battery (WAB) before and after 2 consecutive high-density (hd) EEG sleep recordings interleaved by a daytime session of imitation-based speech therapy (Intensive Mouth Imitation and Talking for Aphasia Therapeutic Effects [IMITATE]). This protocol is thought to stimulate bilateral connections between the inferior parietal lobule and the ventral premotor areas. A single exposure to IMITATE resulted in increases in local EEG SWA during subsequent sleep over the same regions predicted by the therapeutic rationale, particularly over the right hemisphere (unaffected by the lesion). Furthermore, changes in SWA over the left-precentral areas predicted changes in WAB repetition scores in our group, supporting the role of perilesional areas in predicting positive functional responses. Our results suggest that SWA changes occurring in brain areas activated during imitation-based aphasia therapy may reflect the acute plastic changes induced by this intervention. Further testing will be needed to evaluate SWA as a non-invasive assessment of changes induced by the therapy and as a predictor of positive long-term clinical outcome.

  13. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep.

    PubMed

    Huupponen, E; Maksimow, A; Lapinlampi, P; Särkelä, M; Saastamoinen, A; Snapir, A; Scheinin, H; Scheinin, M; Meriläinen, P; Himanen, S-L; Jääskeläinen, S

    2008-02-01

    Dexmedetomidine, a selective alpha(2)-adrenoceptor agonist, induces a unique, sleep-like state of sedation. The objective of the present work was to study human electroencephalogram (EEG) sleep spindles during dexmedetomidine sedation and compare them with spindles during normal physiological sleep, to test the hypothesis that dexmedetomidine exerts its effects via normal sleep-promoting pathways. EEG was continuously recorded from a bipolar frontopolar-laterofrontal derivation with Entropy Module (GE Healthcare) during light and deep dexmedetomidine sedation (target-controlled infusions set at 0.5 and 3.2 ng/ml) in 11 healthy subjects, and during physiological sleep in 10 healthy control subjects. Sleep spindles were visually scored and quantitatively analyzed for density, duration, amplitude (band-pass filtering) and frequency content (matching pursuit approach), and compared between the two groups. In visual analysis, EEG activity during dexmedetomidine sedation was similar to physiological stage 2 (S2) sleep with slight to moderate amount of slow-wave activity and abundant sleep spindle activity. In quantitative EEG analyses, sleep spindles were similar during dexmedetomidine sedation and normal sleep. No statistically significant differences were found in spindle density, amplitude or frequency content, but the spindles during dexmedetomidine sedation had longer duration (mean 1.11 s, SD 0.14 s) than spindles in normal sleep (mean 0.88 s, SD 0.14 s; P=0.0014). Analysis of sleep spindles shows that dexmedetomidine produces a state closely resembling physiological S2 sleep in humans, which gives further support to earlier experimental evidence for activation of normal non-rapid eye movement sleep-promoting pathways by this sedative agent.

  14. Sleep homeostasis in the female rat during the estrous cycle.

    PubMed

    Schwierin, B; Borbély, A A; Tobler, I

    1998-11-16

    To investigate whether sleep homeostasis in the female rat is modulated by the estrous cycle, the vigilance states, EEG power spectra and cortical temperature (TCRT) were assessed on the basis of 4-day continuous recordings. A regulatory response was elicited by 6-h sleep deprivation (SD) during the proestrous (PRO) and the estrous (EST) day and compared to the baseline recordings. The vigilance states varied across the estrous cycle. In the PRO dark period the amount of sleep was reduced. The decrease in rapid-eye-movement (REM) sleep was already evident towards the end of the preceding light period, and an increased fragmentation of sleep was present throughout PRO. Compared to the other days of the estrous cycle, slow-wave activity (SWA; EEG power density 0.75-4.75 Hz) in nonREM (NREM) sleep was lower in PRO at the end of the light period and in the beginning of the dark period. High-frequency activity (HFA; EEG power density 10.25-25.0 Hz) was increased in the dark period of PRO. The SD performed during the first 6 h of the light period of PRO and EST enhanced SWA in NREM sleep and reduced sleep fragmentation during the subsequent 6 h. The extent and time course of the response to SD did not differ between the two phases of the estrous cycle. It is concluded that despite the marked baseline variations of the vigilance states and the EEG, homeostatic regulation is little affected by the estrous cycle. Copyright 1998 Elsevier Science B.V.

  15. Automatic characterization of sleep need dissipation dynamics using a single EEG signal.

    PubMed

    Garcia-Molina, Gary; Bellesi, Michele; Riedner, Brady; Pastoor, Sander; Pfundtner, Stefan; Tononi, Giulio

    2015-01-01

    In the two-process model of sleep regulation, slow-wave activity (SWA, i.e. the EEG power in the 0.5-4 Hz frequency band) is considered a direct indicator of sleep need. SWA builds up during non-rapid eye movement (NREM) sleep, declines before the onset of rapid-eye-movement (REM) sleep, remains low during REM and the level of increase in successive NREM episodes gets progressively lower. Sleep need dissipates with a speed that is proportional to SWA and can be characterized in terms of the initial sleep need, and the decay rate. The goal in this paper is to automatically characterize sleep need from a single EEG signal acquired at a frontal location. To achieve this, a highly specific and reasonably sensitive NREM detection algorithm is proposed that leverages the concept of a single-class Kernel-based classifier. Using automatic NREM detection, we propose a method to estimate the decay rate and the initial sleep need. This method was tested on experimental data from 8 subjects who recorded EEG during three nights at home. We found that on average the estimates of the decay rate and the initial sleep need have higher values when automatic NREM detection was used as compared to manual NREM annotation. However, the average variability of these estimates across multiple nights of the same subject was lower when the automatic NREM detection classifier was used. While this method slightly over estimates the sleep need parameters, the reduced variability across subjects makes it more effective for within subject statistical comparisons of a given sleep intervention.

  16. Restricting Time in Bed in Early Adolescence Reduces Both NREM and REM Sleep but Does Not Increase Slow Wave EEG.

    PubMed

    Campbell, Ian G; Kraus, Amanda M; Burright, Christopher S; Feinberg, Irwin

    2016-09-01

    School night total sleep time decreases across adolescence (9-18 years) by 10 min/year. This decline is comprised entirely of a selective decrease in NREM sleep; REM sleep actually increases slightly. Decreasing sleep duration across adolescence is often attributed to insufficient time in bed. Here we tested whether sleep restriction in early adolescence produces the same sleep stage changes observed on school nights across adolescence. All-night sleep EEG was recorded in 76 children ranging in age from 9.9 to 14.0 years. Each participant kept 3 different sleep schedules that consisted of 3 nights of 8.5 h in bed followed by 4 nights of either 7, 8.5, or 10 h in bed. Sleep stage durations and NREM delta EEG activity were compared across the 3 time in bed conditions. Shortening time in bed from 10 to 7 hours reduced sleep duration by approximately 2 hours, roughly equal to the decrease in sleep duration we recorded longitudinally across adolescence. However, sleep restriction significantly reduced both NREM (by 83 min) and REM (by 47 min) sleep. Sleep restriction did not affect NREM delta EEG activity. Our findings suggest that the selective NREM reduction and the small increase in REM we observed longitudinally across 9-18 years are not produced by sleep restriction. We hypothesize that the selective NREM decline reflects adolescent brain maturation (synaptic elimination) that reduces the need for the restorative processes of NREM sleep. © 2016 Associated Professional Sleep Societies, LLC.

  17. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    PubMed Central

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  18. ACTH has beneficial effects on stuttering in ADHD and ASD patients with ESES: A retrospective study.

    PubMed

    Altunel, Attila; Sever, Ali; Altunel, Emine Özlem

    2017-02-01

    Etiology of stuttering remains unknown and no pharmacologic intervention has been approved for treatment. We aimed to evaluate EEG parameters and the effect of adrenocorticotropic hormone (ACTH) therapy in stuttering. In this retrospective study, 25 patients with attention deficit and hyperactivity (ADHD) or autism spectrum disorder (ASD), and comorbid stuttering were followed and treated with ACTH for electrical status epilepticus in sleep (ESES). Sleep EEGs were recorded at referral and follow-up visits and short courses of ACTH were administered when spike-wave index (SWI) was ⩾15%. The assessment of treatment effectiveness was based on reduction in SWI, and the clinician-reported improvement in stuttering, and ADHD or ASD. Statistical analyses were conducted in order to investigate the relationship between the clinical and EEG parameters. Following treatment with ACTH, a reduction in SWI in all the patients was accompanied by a 72% improvement in ADHD or ASD, and 83.8% improvement in stuttering. Twelve of the 25 patients with stuttering showed complete treatment response. Linear regressions established that SWI at final visit significantly predicted improvement in ADHD or ASD, and in stuttering. If symptoms had recurred, improvement was once again achieved with repeated ACTH therapies. Stuttering always improved prior to, and recurred following ADHD or ASD. The underlying etiology leading to ESES may play a significant role in the pathophysiology of stuttering and connect stuttering to other developmental disorders. ACTH therapy has beneficial effects on stuttering and improves EEG parameters. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  19. Juvenile myoclonic epilepsy in chromosome 6p12-p11: Locus heterogeneity and recombinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.W.; Delgado-Escueta, A.V.; Serratosa, J.M.

    1996-06-14

    We recently analyzed under homogeneity a large pedigree from Belize with classic juvenile myoclonic epilepsy (JME). After a genome-wide search with 146 microsatellites, we obtained significant linkage between chromosome 6p markers, D6S257 and D6S272, and both convulsive and EEG traits of JME. Recombinations in two affected members defined a 40 cM JME region flanked by D6S313 and D6S258. In the present communication, we explored if the same chromosome 6p11 microsatellites also have a role in JME mixed with pyknoleptic absences. We allowed for heterogeneity during linkage analyses. We tested for heterogeneity by the admixture test and looked for more recombinations.more » D6S272, D6S466, D6S294, and D6S257 were significantly linked (Z{sub max} > 3.5) to the clinical and EEG traits of 22 families, assuming autosomal dominant inheritance with 70% penetrance. Pairwise Z{sub max} were 4.230 for D6S294 ({theta}{sub m=f} at 0.133) and 4.442 for D6S466 ({theta}{sub m=f} at 0.111). Admixture test (H{sub 2} vs. H{sub 1}) was significant (P = 0.0234 for D6S294 and 0.0128 for D6S272) supporting the hypotheses of linkage with heterogeneity. Estimated proportion of linked families, {alpha}, was 0.50 (95% confidence interval 0.05-0.99) for D6S294 and D6S272. Multipoint analyses and recombinations in three new families narrowed the JME locus to a 7 cM interval flanked by D6S272 and D6S257. 44 refs., 3 figs., 4 tabs.« less

  20. Attachment Representations and Brain Asymmetry during the Processing of Autobiographical Emotional Memories in Late Adolescence

    PubMed Central

    Kungl, Melanie T.; Leyh, Rainer; Spangler, Gottfried

    2016-01-01

    Frontal and parietal asymmetries have repeatedly been shown to be related to specific functional mechanisms involved in emotion regulation. From a developmental perspective, attachment representations based on experiences with the caregiver are theorized to serve regulatory functions and influence how individuals deal with emotionally challenging situations throughout the life span. This study aimed to investigate neural substrates of emotion regulation by assessing state- and trait dependent EEG asymmetries in secure, insecure-dismissing and insecure-preoccupied subjects. The sample consisted of 40 late adolescents. The Adult Attachment Interview was administered and they were asked to report upon personally highly salient emotional memories related to anger, happiness and sadness. EEG was recorded at rest and during the retrieval of each of these emotional memories, and frontal and parietal hemispheric asymmetry were analyzed. We found attachment representations to differentially affect both the frontal and parietal organization of hemispheric asymmetry at rest and (for parietal region only) during the retrieval of emotional memories. During rest, insecure-dismissing subjects showed an elevated right-frontal brain activity and a reduced right-parietal brain activity. We interpret this finding in light of a disposition to use withdrawal strategies and low trait arousal in insecure-dismissing subjects. Emotional memory retrieval did not affect frontal asymmetry. However, both insecure groups showed an increase in right-sided parietal activity indicating increased arousal during the emotional task as compared to the resting state suggesting that their emotion regulation capability was especially challenged by the retrieval of emotional memories while securely attached subjects maintained a state of moderate arousal. The specific neurophysiological pattern of insecure-dismissing subjects is discussed with regard to a vulnerability to affective disorders. PMID:28082880

  1. Reconstruction of gastric slow wave from finger photoplethysmographic signal using radial basis function neural network.

    PubMed

    Mohamed Yacin, S; Srinivasa Chakravarthy, V; Manivannan, M

    2011-11-01

    Extraction of extra-cardiac information from photoplethysmography (PPG) signal is a challenging research problem with significant clinical applications. In this study, radial basis function neural network (RBFNN) is used to reconstruct the gastric myoelectric activity (GMA) slow wave from finger PPG signal. Finger PPG and GMA (measured using Electrogastrogram, EGG) signals were acquired simultaneously at the sampling rate of 100 Hz from ten healthy subjects. Discrete wavelet transform (DWT) was used to extract slow wave (0-0.1953 Hz) component from the finger PPG signal; this slow wave PPG was used to reconstruct EGG. A RBFNN is trained on signals obtained from six subjects in both fasting and postprandial conditions. The trained network is tested on data obtained from the remaining four subjects. In the earlier study, we have shown the presence of GMA information in finger PPG signal using DWT and cross-correlation method. In this study, we explicitly reconstruct gastric slow wave from finger PPG signal by the proposed RBFNN-based method. It was found that the network-reconstructed slow wave provided significantly higher (P < 0.0001) correlation (≥ 0.9) with the subject's EGG slow wave than the correlation obtained (≈0.7) between the PPG slow wave from DWT and the EEG slow wave. Our results showed that a simple finger PPG signal can be used to reconstruct gastric slow wave using RBFNN method.

  2. Age-Dependency of Location of Epileptic Foci in "Continuous Spike-and-Waves during Sleep": A Parallel to the Posterior-Anterior Trajectory of Slow Wave Activity.

    PubMed

    Bölsterli Heinzle, Bigna Katrin; Bast, Thomas; Critelli, Hanne; Huber, Reto; Schmitt, Bernhard

    2017-02-01

    Epileptic encephalopathy with continuous spike-and-waves during sleep (CSWS) occurs during childhood and is characterized by an activation of spike wave complexes during slow wave sleep. The location of epileptic foci is variable, as is etiology. A relationship between the epileptic focus and age has been shown in various focal epilepsies following a posterior-anterior trajectory, and a link to brain maturation has been proposed. We hypothesize that in CSWS, maximal spike wave activity, corresponding to the epileptic focus, is related to age and shows a posterior-anterior evolution. In a retrospective cross-sectional study on CSWS (22 EEGs of 22 patients aged 3.1–13.5 years), the location of the epileptic focus is related to age and follows a posterior-anterior course. Younger patients are more likely to have posterior foci than older ones. We propose that the posterior-anterior trajectory of maximal spike waves in CSWS might reflect maturational changes of maximal expression of sleep slow waves, which follow a comparable course. Epileptic spike waves, that is, “hyper-synchronized slow waves” may occur at the place where the highest and therefore most synchronized slow waves meet brain tissue with an increased susceptibility to synchronization. Georg Thieme Verlag KG Stuttgart · New York.

  3. ERPLAB: an open-source toolbox for the analysis of event-related potentials

    PubMed Central

    Lopez-Calderon, Javier; Luck, Steven J.

    2014-01-01

    ERPLAB toolbox is a freely available, open-source toolbox for processing and analyzing event-related potential (ERP) data in the MATLAB environment. ERPLAB is closely integrated with EEGLAB, a popular open-source toolbox that provides many EEG preprocessing steps and an excellent user interface design. ERPLAB adds to EEGLAB’s EEG processing functions, providing additional tools for filtering, artifact detection, re-referencing, and sorting of events, among others. ERPLAB also provides robust tools for averaging EEG segments together to create averaged ERPs, for creating difference waves and other recombinations of ERP waveforms through algebraic expressions, for filtering and re-referencing the averaged ERPs, for plotting ERP waveforms and scalp maps, and for quantifying several types of amplitudes and latencies. ERPLAB’s tools can be accessed either from an easy-to-learn graphical user interface or from MATLAB scripts, and a command history function makes it easy for users with no programming experience to write scripts. Consequently, ERPLAB provides both ease of use and virtually unlimited power and flexibility, making it appropriate for the analysis of both simple and complex ERP experiments. Several forms of documentation are available, including a detailed user’s guide, a step-by-step tutorial, a scripting guide, and a set of video-based demonstrations. PMID:24782741

  4. ERPLAB: an open-source toolbox for the analysis of event-related potentials.

    PubMed

    Lopez-Calderon, Javier; Luck, Steven J

    2014-01-01

    ERPLAB toolbox is a freely available, open-source toolbox for processing and analyzing event-related potential (ERP) data in the MATLAB environment. ERPLAB is closely integrated with EEGLAB, a popular open-source toolbox that provides many EEG preprocessing steps and an excellent user interface design. ERPLAB adds to EEGLAB's EEG processing functions, providing additional tools for filtering, artifact detection, re-referencing, and sorting of events, among others. ERPLAB also provides robust tools for averaging EEG segments together to create averaged ERPs, for creating difference waves and other recombinations of ERP waveforms through algebraic expressions, for filtering and re-referencing the averaged ERPs, for plotting ERP waveforms and scalp maps, and for quantifying several types of amplitudes and latencies. ERPLAB's tools can be accessed either from an easy-to-learn graphical user interface or from MATLAB scripts, and a command history function makes it easy for users with no programming experience to write scripts. Consequently, ERPLAB provides both ease of use and virtually unlimited power and flexibility, making it appropriate for the analysis of both simple and complex ERP experiments. Several forms of documentation are available, including a detailed user's guide, a step-by-step tutorial, a scripting guide, and a set of video-based demonstrations.

  5. Audio-Visual and Autogenic Relaxation Alter Amplitude of Alpha EEG Band, Causing Improvements in Mental Work Performance in Athletes.

    PubMed

    Mikicin, Mirosław; Kowalczyk, Marek

    2015-09-01

    The aim of the present study was to investigate the effect of regular audio-visual relaxation combined with Schultz's autogenic training on: (1) the results of behavioral tests that evaluate work performance during burdensome cognitive tasks (Kraepelin test), (2) changes in classical EEG alpha frequency band, neocortex (frontal, temporal, occipital, parietal), hemisphere (left, right) versus condition (only relaxation 7-12 Hz). Both experimental (EG) and age-and skill-matched control group (CG) consisted of eighteen athletes (ten males and eight females). After 7-month training EG demonstrated changes in the amplitude of mean electrical activity of the EEG alpha bend at rest and an improvement was significantly changing and an improvement in almost all components of Kraepelin test. The same examined variables in CG were unchanged following the period without the intervention. Summing up, combining audio-visual relaxation with autogenic training significantly improves athlete's ability to perform a prolonged mental effort. These changes are accompanied by greater amplitude of waves in alpha band in the state of relax. The results suggest usefulness of relaxation techniques during performance of mentally difficult sports tasks (sports based on speed and stamina, sports games, combat sports) and during relax of athletes.

  6. Recording of amplitude-integrated electroencephalography, oxygen saturation, pulse rate, and cerebral blood flow during massage of premature infants.

    PubMed

    Rudnicki, Jacek; Boberski, Marek; Butrymowicz, Ewa; Niedbalski, Paweł; Ogniewski, Paweł; Niedbalski, Marek; Niedbalski, Zbigniew; Podraza, Wojciech; Podraza, Hanna

    2012-08-01

    Stimulation of the nervous system plays an important role in brain function and psychomotor development of children. Massage can benefit premature infants, but has limitations. The authors conducted a study to verify the direct effects of massage on amplitude-integrated electroencephalography (aEEG), oxygen saturation (SaO(2)), and pulse analyzed by color cerebral function monitor (CCFM) and cerebral blood flow assessed by the Doppler technique. The amplitude of the aEEG trend during massage significantly increased. Massage also impacted the dominant frequency δ waves. Frequency significantly increased during the massage and return to baseline after treatment. SaO(2) significantly decreased during massage. In four premature infants, massage was discontinued due to desaturation below 85%. Pulse frequency during the massage decreased but remained within physiological limits of greater than 100 beats per minute in all infants. Doppler flow values in the anterior cerebral artery measured before and after massage did not show statistically significant changes. Resistance index after massage decreased, which might provide greater perfusion of the brain, but this difference was not statistically significant. Use of the CCFM device allows for monitoring of three basic physiologic functions, namely aEEG, SaO(2), and pulse, and increases the safety of massage in preterm infants. Copyright © 2012 by Thieme Medical Publishers

  7. [Features of seasonal reorganizations of the central mechanisms of regulation in children northerners with different level of social risk].

    PubMed

    Soroko, S I; Rozhkov, V P; Bekshaev, S S

    2013-12-01

    The paper presents a comparative analysis of frequency, spatial-temporal parameters and three-dimensional localization of EEG sources that characterize changes of cortical-subcortical interactions processes in autumn and spring periods at northern schoolchildren living in satisfactory and disadvantaged (risk group) conditions of the social (family) environment. Seasonal rearrangement of interaction between wave components of main EEG rhythms was revealed. School students present regressive changes in the EEG pattern temporal organization in spring compared to autumn, and this effect was more expressed at adolescents from group of risk. Data EEDS-tomography showed increased activity in the prefrontal, cingular and subcallosal areas of the cortex in the autumn period that could be related to the mechanisms of season depression caused by the significant reduction of the day length in the North. The increased activity of the limbic system structures which is persisted in the spring in adolescents from risk group narrows the range of regulation of adaptive reactions. Unfavorable conditions of the family environment are an additional stress factor to increased load on the regulatory mechanisms that have a negative impact on the emotional-motivation behavior of children and adolescents, thus increasing the risk of the school and of social disadaptation.

  8. Robust estimation of event-related potentials via particle filter.

    PubMed

    Fukami, Tadanori; Watanabe, Jun; Ishikawa, Fumito

    2016-03-01

    In clinical examinations and brain-computer interface (BCI) research, a short electroencephalogram (EEG) measurement time is ideal. The use of event-related potentials (ERPs) relies on both estimation accuracy and processing time. We tested a particle filter that uses a large number of particles to construct a probability distribution. We constructed a simple model for recording EEG comprising three components: ERPs approximated via a trend model, background waves constructed via an autoregressive model, and noise. We evaluated the performance of the particle filter based on mean squared error (MSE), P300 peak amplitude, and latency. We then compared our filter with the Kalman filter and a conventional simple averaging method. To confirm the efficacy of the filter, we used it to estimate ERP elicited by a P300 BCI speller. A 400-particle filter produced the best MSE. We found that the merit of the filter increased when the original waveform already had a low signal-to-noise ratio (SNR) (i.e., the power ratio between ERP and background EEG). We calculated the amount of averaging necessary after applying a particle filter that produced a result equivalent to that associated with conventional averaging, and determined that the particle filter yielded a maximum 42.8% reduction in measurement time. The particle filter performed better than both the Kalman filter and conventional averaging for a low SNR in terms of both MSE and P300 peak amplitude and latency. For EEG data produced by the P300 speller, we were able to use our filter to obtain ERP waveforms that were stable compared with averages produced by a conventional averaging method, irrespective of the amount of averaging. We confirmed that particle filters are efficacious in reducing the measurement time required during simulations with a low SNR. Additionally, particle filters can perform robust ERP estimation for EEG data produced via a P300 speller. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits.

    PubMed

    Grønli, Janne; Clegern, William C; Schmidt, Michelle A; Nemri, Rahmi S; Rempe, Michael J; Gallitano, Amelia L; Wisor, Jonathan P

    2016-12-01

    The expression of the immediate early gene early growth response 3 ( Egr3 ) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3 -/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Egr3 -/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1-3 Hz power) and in quiet wakefulness (elevated 3-8 Hz and 15-35 Hz power) differed in comparison to WT-mice. Egr3 -/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1-4 Hz power) relative to WT-mice. Egr3 -/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3 -/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3 -/- mice. Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors. © 2016 Associated Professional Sleep Societies, LLC.

  10. De novo status epilepticus with isolated aphasia.

    PubMed

    Flügel, Dominique; Kim, Olaf Chan-Hi; Felbecker, Ansgar; Tettenborn, Barbara

    2015-08-01

    Sudden onset of aphasia is usually due to stroke. Rapid diagnostic workup is necessary if reperfusion therapy is considered. Ictal aphasia is a rare condition but has to be excluded. Perfusion imaging may differentiate acute ischemia from other causes. In dubious cases, EEG is required but is time-consuming and laborious. We report a case where we considered de novo status epilepticus as a cause of aphasia without any lesion even at follow-up. A 62-year-old right-handed woman presented to the emergency department after nurses found her aphasic. She had undergone operative treatment of varicosis 3 days earlier. Apart from hypertension and obesity, no cardiovascular risk factors and no intake of medication other than paracetamol were reported. Neurological examination revealed global aphasia and right pronation in the upper extremity position test. Computed tomography with angiography and perfusion showed no abnormalities. Electroencephalogram performed after the CT scan showed left-sided slowing with high-voltage rhythmic 2/s delta waves but no clear ictal pattern. Intravenous lorazepam did improve EEG slightly, while aphasia did not change. Lumbar puncture was performed which likely excluded encephalitis. Magnetic resonance imaging showed cortical pathological diffusion imaging (restriction) and cortical hyperperfusion in the left parietal region. Intravenous anticonvulsant therapy under continuous EEG resolved neurological symptoms. The patient was kept on anticonvulsant therapy. Magnetic resonance imaging after 6 months showed no abnormalities along with no clinical abnormalities. Magnetic resonance imaging findings were only subtle, and EEG was without clear ictal pattern, so the diagnosis of aphasic status remains with some uncertainty. However, status epilepticus can mimic stroke symptoms and has to be considered in patients with aphasia even when no previous stroke or structural lesions are detectable and EEG shows no epileptic discharges. Epileptic origin is favored when CT or MR imaging reveal no hypoperfusion. In this case, MRI was superior to CT in detecting hyperperfusion. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Relationship between delta power and the electrocardiogram-derived cardiopulmonary spectrogram: possible implications for assessing the effectiveness of sleep.

    PubMed

    Thomas, Robert Joseph; Mietus, Joseph E; Peng, Chung-Kang; Guo, Dan; Gozal, David; Montgomery-Downs, Hawley; Gottlieb, Daniel J; Wang, Cheng-Yen; Goldberger, Ary L

    2014-01-01

    The physiologic relationship between slow-wave activity (SWA) (0-4 Hz) on the electroencephalogram (EEG) and high-frequency (0.1-0.4 Hz) cardiopulmonary coupling (CPC) derived from electrocardiogram (ECG) sleep spectrograms is not known. Because high-frequency CPC appears to be a biomarker of stable sleep, we tested the hypothesis that that slow-wave EEG power would show a relatively fixed-time relationship to periods of high-frequency CPC. Furthermore, we speculated that this correlation would be independent of conventional nonrapid eye movement (NREM) sleep stages. We analyzed selected datasets from an archived polysomnography (PSG) database, the Sleep Heart Health Study I (SHHS-I). We employed the cross-correlation technique to measure the degree of which 2 signals are correlated as a function of a time lag between them. Correlation analyses between high-frequency CPC and delta power (computed both as absolute and normalized values) from 3150 subjects with an apnea-hypopnea index (AHI) of ≤5 events per hour of sleep were performed. The overall correlation (r) between delta power and high-frequency coupling (HFC) power was 0.40±0.18 (P=.001). Normalized delta power provided improved correlation relative to absolute delta power. Correlations were somewhat reduced in the second half relative to the first half of the night (r=0.45±0.20 vs r=0.34±0.23). Correlations were only affected by age in the eighth decade. There were no sex differences and only small racial or ethnic differences were noted. These results support a tight temporal relationship between slow wave power, both within and outside conventional slow wave sleep periods, and high frequency cardiopulmonary coupling, an ECG-derived biomarker of "stable" sleep. These findings raise mechanistic questions regarding the cross-system integration of neural and cardiopulmonary control during sleep. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Real-Time Optical Diagnosis of the Rat Brain Exposed to a Laser-Induced Shock Wave: Observation of Spreading Depolarization, Vasoconstriction and Hypoxemia-Oligemia

    PubMed Central

    Sato, Shunichi; Kawauchi, Satoko; Okuda, Wataru; Nishidate, Izumi; Nawashiro, Hiroshi; Tsumatori, Gentaro

    2014-01-01

    Despite many efforts, the pathophysiology and mechanism of blast-induced traumatic brain injury (bTBI) have not yet been elucidated, partially due to the difficulty of real-time diagnosis and extremely complex factors determining the outcome. In this study, we topically applied a laser-induced shock wave (LISW) to the rat brain through the skull, for which real-time measurements of optical diffuse reflectance and electroencephalogram (EEG) were performed. Even under conditions showing no clear changes in systemic physiological parameters, the brain showed a drastic light scattering change accompanied by EEG suppression, which indicated the occurrence of spreading depression, long-lasting hypoxemia and signal change indicating mitochondrial energy impairment. Under the standard LISW conditions examined, hemorrhage and contusion were not apparent in the cortex. To investigate events associated with spreading depression, measurement of direct current (DC) potential, light scattering imaging and stereomicroscopic observation of blood vessels were also conducted for the brain. After LISW application, we observed a distinct negative shift in the DC potential, which temporally coincided with the transit of a light scattering wave, showing the occurrence of spreading depolarization and concomitant change in light scattering. Blood vessels in the brain surface initially showed vasodilatation for 3–4 min, which was followed by long-lasting vasoconstriction, corresponding to hypoxemia. Computer simulation based on the inverse Monte Carlo method showed that hemoglobin oxygen saturation declined to as low as ∼35% in the long-term hypoxemic phase. Overall, we found that topical application of a shock wave to the brain caused spreading depolarization/depression and prolonged severe hypoxemia-oligemia, which might lead to pathological conditions in the brain. Although further study is needed, our findings suggest that spreading depolarization/depression is one of the key events determining the outcome in bTBI. Furthermore, a rat exposed to an LISW(s) can be a reliable laboratory animal model for blast injury research. PMID:24416150

  13. Neurobehavioral consequences of continuous spike and waves during slow sleep (CSWS) in a pediatric population: A pattern of developmental hindrance.

    PubMed

    De Giorgis, Valentina; Filippini, Melissa; Macasaet, Joyce Ann; Masnada, Silvia; Veggiotti, Pierangelo

    2017-09-01

    Continuous spike and waves during slow sleep (CSWS) is a typical EEG pattern defined as diffuse, bilateral and recently also unilateral or focal localization spike-wave occurring in slow sleep or non-rapid eye movement sleep. Literature results so far point out a progressive deterioration and decline of intellectual functioning in CSWS patients, i.e. a loss of previously normally acquired skills, as well as persistent neurobehavioral disorders, beyond seizure and EEG control. The objective of this study was to shed light on the neurobehavioral impact of CSWS and to identify the potential clinical risk factors for development. We conducted a retrospective study involving a series of 16 CSWS idiopathic patients age 3-16years, considering the entire duration of epilepsy from the onset to the outcome, i.e. remission of CSWS pattern. All patients were longitudinally assessed taking into account clinical (sex, age at onset, lateralization and localization of epileptiform abnormalities, spike wave index, number of antiepileptic drugs) and behavioral features. Intelligent Quotient (IQ) was measured in the whole sample, whereas visuo-spatial attention, visuo-motor skills, short term memory and academic abilities (reading and writing) were tested in 6 out of 16 patients. Our results showed that the most vulnerable from an intellectual point of view were those children who had an early-onset of CSWS whereas those with later onset resulted less affected (p=0.004). Neuropsychological outcome was better than the behavioral one and the lexical-semantic route in reading and writing resulted more severely affected compared to the phonological route. Cognitive deterioration is one but not the only consequence of CSWS. Especially with respect to verbal skills, CSWS is responsible of a pattern of consequences in terms of developmental hindrance, including slowing of development and stagnation, whereas deterioration is rare. Behavioral and academic problems tend to persist beyond epilepsy resolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Mutual information analysis and detection of interictal morphological differences in interictal epileptiform discharges of patients with partial epilepsies.

    PubMed

    Varma, N K; Kushwaha, R; Beydoun, A; Williams, W J; Drury, I

    1997-10-01

    The purpose of this paper is to compare the morphological features of interictal epileptiform discharges (IED) in patients with benign epilepsy of childhood with centrotemporal spikes to IED of those with symptomatic localization related epilepsies using information theory. Three patients from each clinical group were selected. Two-second epochs centered at the peak negativity of the sharp waves were analyzed from a referential montage during stage I sleep. The epochs from the two groups were compared using parametric and information theory analysis. Information analysis determined the likelihood of correctly identifying the clinical group based on the IED. Standard parametric, morphological and spectral analyses were also performed. We found no significant difference in the morphology of the sharp wave between the two groups. The after-going slow wave contained the greatest information that separated the two groups. This result was supported by morphological and spectral differences in the after-going slow wave. Greater distinguishing information is held in the after-going slow wave than the sharp wave for the identification of clinical groups. Information analysis may assist in differentiating clinical syndromes from EEG signals.

  15. Ascent to moderate altitude impairs overnight memory improvements.

    PubMed

    Tesler, Noemi; Latshang, Tsogyal D; Lo Cascio, Christian M; Stadelmann, Katrin; Stoewhas, Anne-Christin; Kohler, Malcolm; Bloch, Konrad E; Achermann, Peter; Huber, Reto

    2015-02-01

    Several studies showed beneficial effects of sleep on memory performance. Slow waves, the electroencephalographic characteristic of deep sleep, reflected on the neuronal level by synchronous slow oscillations, seem crucial for these benefits. Traveling to moderate altitudes decreases deep sleep. In a randomized cross-over design healthy male subjects performed a visuo-motor learning task in Zurich (490 m) and at Davos Jakobshorn (2590 m) in random order. Memory performance was assessed immediately after learning, before sleep, and in the morning after a night of sleep. Sleep EEG recordings were performed during the nights. Our findings show an altitude induced reduction of sleep dependent memory performance. Moreover, this impaired sleep dependent memory performance was associated with reduced slow wave derived measures of neuronal synchronization. Our results are consistent with a critical role of slow waves for the beneficial effects of sleep on memory that is susceptible to natural environmental influences. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Heinrich Hertz, the father of frequency.

    PubMed

    Ramsay, Patricia Spieth

    2013-03-01

    Modernity stands on the shoulders of ancestors. Their historical foundations support and inspire our today. In 19th century Germany, Heinrich Rudolf Hertz was such a historical person. Hertz, a brilliant physicist, had the ability to integrate theoretical book knowledge with fundamental bench experimentation. Hertz's eclectic talents and research accomplishments ranged from drafting in architecture to meticulous manipulation of standard laboratory equipment often redesigned for his relentless curiosity (Buchwald 1994). He was the first to conclusively prove the existence of electromagnetic waves with precise experimental procedures and instrumentation he engineered to generate and detect waves (radio pulses) across space. His touchstone research verified Maxwell's theory and proved that all forms of electromagnetic radiation are propagated as waves at a finite velocity--the speed of light (Heinrich Hertz 2012). In recognition of his pivotal discoveries, Hertz's name is the universal synonym for frequency. Categorizing electroencephalographic (EEG) patterns by frequency is the primary emphasis of an EEG recording. The distribution of frequencies, amplitude, and polarity of electrocerebral potentials as recorded on the computer screen and/or graph paper result from numerous electrical fields of neuronal dipoles. Hertz's images drawn as the paper dipole remain the standard method for describing electrocerebral dipoles and the electrical fields of epileptiform activity recorded on a patient's electroencephalograph. Hertz's intended and inadvertent discoveries became the launch pad for numerous medical and media technologies. His former student Philipp Lenard won the 1905 Nobel Prize for Physics when he developed a version of the cathode tube and studied penetration by x-rays based on Herts'z cathode ray experiments in 1892. Additionally, Hertz did not pursure his ancillary discovery of the photoelectric effect in 1887. Albert Einstein would later explain features of the phenomenon and earn the Nobel Prize in physics in 1921 (Photoelectric effect 2012). The gestation of Hertz's scientific discoverries has developed the comforts and pleasures of 21st century life. The electromagnetic spectrum spans from longest wavelenght to shortest: radio waves, microwaves, infrared, optical, ultraviolet, x-ray, and gamma-rays--all measured in Hz (Electromagnetic waves 2000.

  17. Enhanced Slow-Wave EEG Activity and Thermoregulatory Impairment following the Inhibition of the Lateral Hypothalamus in the Rat

    PubMed Central

    Cerri, Matteo; Vecchio, Flavia Del; Mastrotto, Marco; Luppi, Marco; Martelli, Davide; Perez, Emanuele; Tupone, Domenico; Zamboni, Giovanni; Amici, Roberto

    2014-01-01

    Neurons within the lateral hypothalamus (LH) are thought to be able to evoke behavioural responses that are coordinated with an adequate level of autonomic activity. Recently, the acute pharmacological inhibition of LH has been shown to depress wakefulness and promote NREM sleep, while suppressing REM sleep. These effects have been suggested to be the consequence of the inhibition of specific neuronal populations within the LH, i.e. the orexin and the MCH neurons, respectively. However, the interpretation of these results is limited by the lack of quantitative analysis of the electroencephalographic (EEG) activity that is critical for the assessment of NREM sleep quality and the presence of aborted NREM-to-REM sleep transitions. Furthermore, the lack of evaluation of the autonomic and thermoregulatory effects of the treatment does not exclude the possibility that the wake-sleep changes are merely the consequence of the autonomic, in particular thermoregulatory, changes that may follow the inhibition of LH neurons. In the present study, the EEG and autonomic/thermoregulatory effects of a prolonged LH inhibition provoked by the repeated local delivery of the GABAA agonist muscimol were studied in rats kept at thermoneutral (24°C) and at a low (10°C) ambient temperature (Ta), a condition which is known to depress sleep occurrence. Here we show that: 1) at both Tas, LH inhibition promoted a peculiar and sustained bout of NREM sleep characterized by an enhancement of slow-wave activity with no NREM-to-REM sleep transitions; 2) LH inhibition caused a marked transitory decrease in brain temperature at Ta 10°C, but not at Ta 24°C, suggesting that sleep changes induced by LH inhibition at thermoneutrality are not caused by a thermoregulatory impairment. These changes are far different from those observed after the short-term selective inhibition of either orexin or MCH neurons, suggesting that other LH neurons are involved in sleep-wake modulation. PMID:25398141

  18. Neocortical dynamics due to axon propagation delays in cortico-cortical fibers: EEG traveling and standing waves with implications for top-down influences on local networks and white matter disease

    PubMed Central

    Nunez, Paul L.; Srinivasan, Ramesh

    2013-01-01

    The brain is treated as a nested hierarchical complex system with substantial interactions across spatial scales. Local networks are pictured as embedded within global fields of synaptic action and action potentials. Global fields may act top-down on multiple networks, acting to bind remote networks. Because of scale-dependent properties, experimental electrophysiology requires both local and global models that match observational scales. Multiple local alpha rhythms are embedded in a global alpha rhythm. Global models are outlined in which cm-scale dynamic behaviors result largely from propagation delays in cortico-cortical axons and cortical background excitation level, controlled by neuromodulators on long time scales. The idealized global models ignore the bottom-up influences of local networks on global fields so as to employ relatively simple mathematics. The resulting models are transparently related to several EEG and steady state visually evoked potentials correlated with cognitive states, including estimates of neocortical coherence structure, traveling waves, and standing waves. The global models suggest that global oscillatory behavior of self-sustained (limit-cycle) modes lower than about 20 Hz may easily occur in neocortical/white matter systems provided: Background cortical excitability is sufficiently high; the strength of long cortico-cortical axon systems is sufficiently high; and the bottom-up influence of local networks on the global dynamic field is sufficiently weak. The global models provide "entry points" to more detailed studies of global top-down influences, including binding of weakly connected networks, modulation of gamma oscillations by theta or alpha rhythms, and the effects of white matter deficits. PMID:24505628

  19. Blindfolding during wakefulness causes decrease in sleep slow wave activity.

    PubMed

    Korf, Eva Magdalena; Mölle, Matthias; Born, Jan; Ngo, Hong-Viet V

    2017-04-01

    Slow wave activity (SWA, 0.5-4 Hz) represents the predominant EEG oscillatory activity during slow wave sleep (SWS). Its amplitude is considered in part a reflection of synaptic potentiation in cortical networks due to encoding of information during prior waking, with higher amplitude indicating stronger potentiation. Previous studies showed that increasing and diminishing specific motor behaviors produced corresponding changes in SWA in the respective motor cortical areas during subsequent SWS Here, we tested whether this relationship can be generalized to the visual system, that is, whether diminishing encoding of visual information likewise leads to a localized decrease in SWA over the visual cortex. Experiments were performed in healthy men whose eyes on two different days were or were not covered for 10.5 h before bedtime. The subject's EEG was recorded during sleep and, after sleep, visual evoked potentials (VEPs) were recorded. SWA during nonrapid eye movement sleep (NonREM sleep) was lower after blindfolding than after eyes open ( P  < 0.01). The decrease in SWA that was most consistent during the first 20 min of NonREM sleep, did not remain restricted to visual cortex regions, with changes over frontal and parietal cortical regions being even more pronounced. In the morning after sleep, the N75-P100 peak-to-peak-amplitude of the VEP was significantly diminished in the blindfolded condition. Our findings confirm a link between reduced wake encoding and diminished SWA during ensuing NonREM sleep, although this link appears not to be restricted to sensory cortical areas. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Changes in processing of masked stimuli across early- and late-night sleep: a study on behavior and brain potentials.

    PubMed

    Verleger, Rolf; Schuknecht, Simon-Vitus; Jaśkowski, Piotr; Wagner, Ullrich

    2008-11-01

    Sleep has proven to support the memory consolidation in many tasks including learning of perceptual skills. Explicit, conscious types of memory have been demonstrated to benefit particularly from slow-wave sleep (SWS), implicit, non-conscious types particularly from rapid eye movement (REM) sleep. By comparing the effects of early-night sleep, rich in SWS, and late-night sleep, rich in REM sleep, we aimed to separate the contribution of these two sleep stages in a metacontrast masking paradigm in which explicit and implicit aspects in perceptual learning could be assessed separately by stimulus identification and priming, respectively. We assumed that early sleep intervening between two sessions of task performance would specifically support stimulus identification, while late sleep would specifically support priming. Apart from overt behavior, event-related EEG potentials (ERPs) were measured to record the cortical mechanisms associated with behavioral changes across sleep. In contrast to our hypothesis, late-night sleep appeared to be more important for changes of behavior, both for stimulus identification, which tended to improve across late-night sleep, and for priming, with the increase of errors induced by masked stimuli correlating with the duration of REM sleep. ERP components proved sensitive to presence of target shapes in the masked stimuli and to their priming effects. Of these components, the N2 component, indicating processing of conflict, became larger across early-night sleep and was related to the duration of S4 sleep, the deepest substage of SWS containing particularly high portions of EEG slow waves. These findings suggest that sleep promotes perceptual learning primarily by its REM sleep portion, but indirectly also by way of improved action monitoring supported by deep slow-wave sleep.

Top