Alfvén wave interactions in the solar wind
NASA Astrophysics Data System (ADS)
Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.
2012-11-01
Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.
Optimization of one-way wave equations.
Lee, M.W.; Suh, S.Y.
1985-01-01
The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors
High-order rogue waves of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Liu, Wei
2017-10-01
High-order rogue wave solutions of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation are derived by employing the bilinear method, which are expressed by simple polynomials. Typical dynamics of these high-order rogue waves are studied by analytical and graphical ways. For the Benjamin-Ono equation, there are two types of rogue waves, namely, bright rogue waves and dark rogue waves. In particular, the fundamental rogue wave pattern is different from the usual fundamental rogue wave patterns in other soliton equations. For the nonlocal nonlinear Schrödinger equation, the exact explicit rogue wave solutions up to the second order are presented. Typical rogue wave patterns such as Peregrine-type, triple and fundamental rogue waves are put forward. These high-order rogue wave patterns have not been shown before in the nonlocal Schrödinger equation.
Evolution of basic equations for nearshore wave field
ISOBE, Masahiko
2013-01-01
In this paper, a systematic, overall view of theories for periodic waves of permanent form, such as Stokes and cnoidal waves, is described first with their validity ranges. To deal with random waves, a method for estimating directional spectra is given. Then, various wave equations are introduced according to the assumptions included in their derivations. The mild-slope equation is derived for combined refraction and diffraction of linear periodic waves. Various parabolic approximations and time-dependent forms are proposed to include randomness and nonlinearity of waves as well as to simplify numerical calculation. Boussinesq equations are the equations developed for calculating nonlinear wave transformations in shallow water. Nonlinear mild-slope equations are derived as a set of wave equations to predict transformation of nonlinear random waves in the nearshore region. Finally, wave equations are classified systematically for a clear theoretical understanding and appropriate selection for specific applications. PMID:23318680
New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.; Manafian, Jalil
2018-03-01
This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.
NASA Astrophysics Data System (ADS)
Dong, Min-Jie; Tian, Shou-Fu; Yan, Xue-Wei; Zou, Li; Li, Jin
2017-10-01
We study a (2 + 1)-dimensional generalized Kadomtsev-Petviashvili (gKP) equation, which characterizes the formation of patterns in liquid drops. By using Bell’s polynomials, an effective way is employed to succinctly construct the bilinear form of the gKP equation. Based on the resulting bilinear equation, we derive its solitary waves, rogue waves and homoclinic breather waves, respectively. Our results can help enrich the dynamical behavior of the KP-type equations.
Liu, Wei; Zhang, Jing; Li, Xiliang
2018-01-01
In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota's bilinear method. Like the nonlocal NLS equation, these solutions may have singularities. However, by suitable constraints of parameters, nonsingular breather solutions are generated. Besides, by taking a long wave limit of these obtained soliton solutions, rogue wave solutions and semi-rational solutions are derived. For the two dimensional NLS equation, rogue wave solutions are line rogue waves, which arise from a constant background with a line profile and then disappear into the same background. The semi-rational solutions shows intriguing dynamical behaviours: line rogue wave and line breather arise from a constant background together and then disappear into the constant background again uniformly. For the coupled nonlocal Klein-Gordon equation, rogue waves are localized in both space and time, semi-rational solutions are composed of rogue waves, breathers and periodic line waves. These solutions are demonstrated analytically to exist for special classes of nonlocal equations relevant to optical waveguides.
Zhang, Jing; Li, Xiliang
2018-01-01
In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota’s bilinear method. Like the nonlocal NLS equation, these solutions may have singularities. However, by suitable constraints of parameters, nonsingular breather solutions are generated. Besides, by taking a long wave limit of these obtained soliton solutions, rogue wave solutions and semi-rational solutions are derived. For the two dimensional NLS equation, rogue wave solutions are line rogue waves, which arise from a constant background with a line profile and then disappear into the same background. The semi-rational solutions shows intriguing dynamical behaviours: line rogue wave and line breather arise from a constant background together and then disappear into the constant background again uniformly. For the coupled nonlocal Klein-Gordon equation, rogue waves are localized in both space and time, semi-rational solutions are composed of rogue waves, breathers and periodic line waves. These solutions are demonstrated analytically to exist for special classes of nonlocal equations relevant to optical waveguides. PMID:29432495
Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere
NASA Astrophysics Data System (ADS)
Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud
2010-07-01
We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.
A numerical study of the 3-periodic wave solutions to KdV-type equations
NASA Astrophysics Data System (ADS)
Zhang, Yingnan; Hu, Xingbiao; Sun, Jianqing
2018-02-01
In this paper, by using the direct method of calculating periodic wave solutions proposed by Akira Nakamura, we present a numerical process to calculate the 3-periodic wave solutions to several KdV-type equations: the Korteweg-de Vries equation, the Sawada-Koterra equation, the Boussinesq equation, the Ito equation, the Hietarinta equation and the (2 + 1)-dimensional Kadomtsev-Petviashvili equation. Some detailed numerical examples are given to show the existence of the three-periodic wave solutions numerically.
Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing
2015-12-01
The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.
Nonlinear acoustic wave equations with fractional loss operators.
Prieur, Fabrice; Holm, Sverre
2011-09-01
Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations. © 2011 Acoustical Society of America
Classifying bilinear differential equations by linear superposition principle
NASA Astrophysics Data System (ADS)
Zhang, Lijun; Khalique, Chaudry Masood; Ma, Wen-Xiu
2016-09-01
In this paper, we investigate the linear superposition principle of exponential traveling waves to construct a sub-class of N-wave solutions of Hirota bilinear equations. A necessary and sufficient condition for Hirota bilinear equations possessing this specific sub-class of N-wave solutions is presented. We apply this result to find N-wave solutions to the (2+1)-dimensional KP equation, a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation, a (3+1)-dimensional generalized BKP equation and the (2+1)-dimensional BKP equation. The inverse question, i.e., constructing Hirota Bilinear equations possessing N-wave solutions, is considered and a refined 3-step algorithm is proposed. As examples, we construct two very general kinds of Hirota bilinear equations of order 4 possessing N-wave solutions among which one satisfies dispersion relation and another does not satisfy dispersion relation.
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
NASA Astrophysics Data System (ADS)
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.
Jiang, H; Liu, F; Meerschaert, M M; McGough, R J
2013-01-01
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n ) ( n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko's Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi-term time-space fractional models including fractional Laplacian.
Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael
2005-03-21
Based on an acoustic assumption (shear wave velocity is zero) and a dispersion relation, we derive an acoustic wave equation for P-waves in tilted transversely isotropic (TTI) media (transversely isotropic media with a tilted symmetry axis). This equation has fewer parameters than an elastic wave equation in TTI media and yields an accurate description of P-wave traveltimes and spreading-related attenuation. Our TTI acoustic wave equation is a fourth-order equation in time and space. We demonstrate that the acoustic approximation allows the presence of shear waves in the solution. The substantial differences in traveltime and amplitude between data created using VTImore » and TTI assumptions is illustrated in examples.« less
True amplitude wave equation migration arising from true amplitude one-way wave equations
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhang, Guanquan; Bleistein, Norman
2003-10-01
One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition to these newly defined wavefields in heterogeneous media leads to the Kirchhoff inversion formula for common-shot data when the one-way wavefields are replaced by their ray theoretic approximations. This extension enhances the original WEM method. The objective of that technique was a reflector map, only. The underlying theory did not address amplitude issues. Computer output obtained using numerically generated data confirms the accuracy of this inversion method. However, there are practical limitations. The observed data must be a solution of the wave equation. Therefore, the data over the entire survey area must be collected from a single common-shot experiment. Multi-experiment data, such as common-offset data, cannot be used with this method as currently formulated. Research on extending the method is ongoing at this time.
Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus
2014-01-01
Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.
An approach to rogue waves through the cnoidal equation
NASA Astrophysics Data System (ADS)
Lechuga, Antonio
2014-05-01
Lately it has been realized the importance of rogue waves in some events happening in open seas. Extreme waves and extreme weather could explain some accidents, but not all of them. Every now and then inflicted damages on ships only can be reported to be caused by anomalous and elusive waves, such as rogue waves. That's one of the reason why they continue attracting considerable interest among researchers. In the frame of the Nonlinear Schrödinger equation(NLS), Witham(1974) and Dingemans and Otta (2001)gave asymptotic solutions in moving coordinates that transformed the NLS equation in a ordinary differential equation that is the Duffing or cnoidal wave equation. Applying the Zakharov equation, Stiassnie and Shemer(2004) and Shemer(2010)got also a similar equation. It's well known that this ordinary equation can be solved in elliptic functions. The main aim of this presentation is to sort out the domains of the solutions of this equation, that, of course, are linked to the corresponding solutions of the partial differential equations(PDEs). That being, Lechuga(2007),a simple way to look for anomalous waves as it's the case with some "chaotic" solutions of the Duffing equation.
Wave equations in conformal gravity
NASA Astrophysics Data System (ADS)
Du, Juan-Juan; Wang, Xue-Jing; He, You-Biao; Yang, Si-Jiang; Li, Zhong-Heng
2018-05-01
We study the wave equation governing massless fields of all spins (s = 0, 1 2, 1, 3 2 and 2) in the most general spherical symmetric metric of conformal gravity. The equation is separable, the solution of the angular part is a spin-weighted spherical harmonic, and the radial wave function may be expressed in terms of solutions of the Heun equation which has four regular singular points. We also consider various special cases of the metric and find that the angular wave functions are the same for all cases, the actual shape of the metric functions affects only the radial wave function. It is interesting to note that each radial equation can be transformed into a known ordinary differential equation (i.e. Heun equation, or confluent Heun equation, or hypergeometric equation). The results show that there are analytic solutions for all the wave equations of massless spin fields in the spacetimes of conformal gravity. This is amazing because exact solutions are few and far between for other spacetimes.
Rogue periodic waves of the modified KdV equation
NASA Astrophysics Data System (ADS)
Chen, Jinbing; Pelinovsky, Dmitry E.
2018-05-01
Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine’s breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.
NASA Astrophysics Data System (ADS)
Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid
2018-06-01
Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.
Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.
Whitfield, A J; Johnson, E R
2015-05-01
The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.
Convective wave breaking in the KdV equation
NASA Astrophysics Data System (ADS)
Brun, Mats K.; Kalisch, Henrik
2018-03-01
The KdV equation is a model equation for waves at the surface of an inviscid incompressible fluid, and it is well known that the equation describes the evolution of unidirectional waves of small amplitude and long wavelength fairly accurately if the waves fall into the Boussinesq regime. The KdV equation allows a balance of nonlinear steepening effects and dispersive spreading which leads to the formation of steady wave profiles in the form of solitary waves and cnoidal waves. While these wave profiles are solutions of the KdV equation for any amplitude, it is shown here that there for both the solitary and the cnoidal waves, there are critical amplitudes for which the horizontal component of the particle velocity matches the phase velocity of the wave. Solitary or cnoidal solutions of the KdV equation which surpass these amplitudes feature incipient wave breaking as the particle velocity exceeds the phase velocity near the crest of the wave, and the model breaks down due to violation of the kinematic surface boundary condition. The condition for breaking can be conveniently formulated as a convective breaking criterion based on the local Froude number at the wave crest. This breaking criterion can also be applied to time-dependent situations, and one case of interest is the development of an undular bore created by an influx at a lateral boundary. It is shown that this boundary forcing leads to wave breaking in the leading wave behind the bore if a certain threshold is surpassed.
Wave propagation problem for a micropolar elastic waveguide
NASA Astrophysics Data System (ADS)
Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.
2018-04-01
A propagation problem for coupled harmonic waves of translational displacements and microrotations along the axis of a long cylindrical waveguide is discussed at present study. Microrotations modeling is carried out within the linear micropolar elasticity frameworks. The mathematical model of the linear (or even nonlinear) micropolar elasticity is also expanded to a field theory model by variational least action integral and the least action principle. The governing coupled vector differential equations of the linear micropolar elasticity are given. The translational displacements and microrotations in the harmonic coupled wave are decomposed into potential and vortex parts. Calibrating equations providing simplification of the equations for the wave potentials are proposed. The coupled differential equations are then reduced to uncoupled ones and finally to the Helmholtz wave equations. The wave equations solutions for the translational and microrotational waves potentials are obtained for a high-frequency range.
Symmetry Reductions and Group-Invariant Radial Solutions to the n-Dimensional Wave Equation
NASA Astrophysics Data System (ADS)
Feng, Wei; Zhao, Songlin
2018-01-01
In this paper, we derive explicit group-invariant radial solutions to a class of wave equation via symmetry group method. The optimal systems of one-dimensional subalgebras for the corresponding radial wave equation are presented in terms of the known point symmetries. The reductions of the radial wave equation into second-order ordinary differential equations (ODEs) with respect to each symmetry in the optimal systems are shown. Then we solve the corresponding reduced ODEs explicitly in order to write out the group-invariant radial solutions for the wave equation. Finally, several analytical behaviours and smoothness of the resulting solutions are discussed.
NASA Astrophysics Data System (ADS)
Hu, Wen-Qiang; Gao, Yi-Tian; Jia, Shu-Liang; Huang, Qian-Min; Lan, Zhong-Zhou
2016-11-01
In this paper, a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation is investigated, which has been presented as a model for the shallow water wave in fluids or the electrostatic wave potential in plasmas. By virtue of the binary Bell polynomials, the bilinear form of this equation is obtained. With the aid of the bilinear form, N -soliton solutions are obtained by the Hirota method, periodic wave solutions are constructed via the Riemann theta function, and breather wave solutions are obtained according to the extended homoclinic test approach. Travelling waves are constructed by the polynomial expansion method as well. Then, the relations between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure. Furthermore, we obtain some new solutions of this equation by the standard extended homoclinic test approach. Finally, we give a generalized form of this equation, and find that similar analytical solutions can be obtained from the generalized equation with arbitrary coefficients.
Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation
NASA Technical Reports Server (NTRS)
Spangler, Steven R.
1990-01-01
A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.
Ankiewicz, Adrian; Wang, Yan; Wabnitz, Stefan; Akhmediev, Nail
2014-01-01
We consider an extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms with variable coefficients. The resulting equation has soliton solutions and approximate rogue wave solutions. We present these solutions up to second order. Moreover, specific constraints on the parameters of higher-order terms provide integrability of the resulting equation, providing a corresponding Lax pair. Particular cases of this equation are the Hirota and the Lakshmanan-Porsezian-Daniel equations. The resulting integrable equation admits exact rogue wave solutions. In particular cases, mentioned above, these solutions are reduced to the rogue wave solutions of the corresponding equations.
Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions
NASA Astrophysics Data System (ADS)
Yang, Bo; Chen, Yong
2018-05-01
A study of rogue-wave solutions in the reverse-time nonlocal nonlinear Schrödinger (NLS) and nonlocal Davey-Stewartson (DS) equations is presented. By using Darboux transformation (DT) method, several types of rogue-wave solutions are constructed. Dynamics of these rogue-wave solutions are further explored. It is shown that the (1 + 1)-dimensional fundamental rogue-wave solutions in the reverse-time NLS equation can be globally bounded or have finite-time blowing-ups. It is also shown that the (2 + 1)-dimensional line rogue waves in the reverse-time nonlocal DS equations can be bounded for all space and time or develop singularities in critical time. In addition, the multi- and higher-order rogue waves exhibit richer structures, most of which have no counterparts in the corresponding local nonlinear equations.
Multiple branches of travelling waves for the Gross–Pitaevskii equation
NASA Astrophysics Data System (ADS)
Chiron, David; Scheid, Claire
2018-06-01
Explicit solitary waves are known to exist for the Kadomtsev–Petviashvili-I (KP-I) equation in dimension 2. We first address numerically the question of their Morse index. The results confirm that the lump solitary wave has Morse index one and that the other explicit solutions correspond to excited states. We then turn to the 2D Gross–Pitaevskii (GP) equation, which in some long wave regime converges to the KP-I equation. Numerical simulations have already shown that a branch of travelling waves of GP converges to a ground state of KP-I, expected to be the lump. In this work, we perform numerical simulations showing that other explicit solitary waves solutions to the KP-I equation give rise to new branches of travelling waves of GP corresponding to excited states.
NASA Astrophysics Data System (ADS)
Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen
2018-05-01
The aim of this article is to construct some new traveling wave solutions and investigate localized structures for fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) water wave dynamical equation. The simple equation method (SEM) and the modified simple equation method (MSEM) are applied in this paper to construct the analytical traveling wave solutions of AKNS equation. The different waves solutions are derived by assigning special values to the parameters. The obtained results have their importance in the field of physics and other areas of applied sciences. All the solutions are also graphically represented. The constructed results are often helpful for studying several new localized structures and the waves interaction in the high-dimensional models.
Shock Waves in a Bose-Einstein Condensate
NASA Technical Reports Server (NTRS)
Kulikov, Igor; Zak, Michail
2005-01-01
A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.
Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves
NASA Astrophysics Data System (ADS)
Grava, T.; Klein, C.; Pitton, G.
2018-02-01
A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.
Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems
NASA Astrophysics Data System (ADS)
Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru
2017-11-01
This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2 + 1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2 + 1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.
NASA Astrophysics Data System (ADS)
Zou, Li; Tian, Shou-Fu; Feng, Lian-Li
2017-12-01
In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.
Rogue-wave solutions of the Zakharov equation
NASA Astrophysics Data System (ADS)
Rao, Jiguang; Wang, Lihong; Liu, Wei; He, Jingsong
2017-12-01
Using the bilinear transformation method, we derive general rogue-wave solutions of the Zakharov equation. We present these Nth-order rogue-wave solutions explicitly in terms of Nth-order determinants whose matrix elements have simple expressions. We show that the fundamental rogue wave is a line rogue wave with a line profile on the plane ( x, y) arising from a constant background at t ≪ 0 and then gradually tending to the constant background for t ≫ 0. Higher-order rogue waves arising from a constant background and later disappearing into it describe the interaction of several fundamental line rogue waves. We also consider different structures of higher-order rogue waves. We present differences between rogue waves of the Zakharov equation and of the first type of the Davey-Stewartson equation analytically and graphically.
NASA Astrophysics Data System (ADS)
Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Zou, Li
2017-12-01
In this paper, the generalized variable-coefficient forced Kadomtsev-Petviashvili (gvcfKP) equation is investigated, which can be used to characterize the water waves of long wavelength relating to nonlinear restoring forces. Using a dependent variable transformation and combining the Bell’s polynomials, we accurately derive the bilinear expression for the gvcfKP equation. By virtue of bilinear expression, its solitary waves are computed in a very direct method. By using the Riemann theta function, we derive the quasiperiodic solutions for the equation under some limitation factors. Besides, an effective way can be used to calculate its homoclinic breather waves and rogue waves, respectively, by using an extended homoclinic test function. We hope that our results can help enrich the dynamical behavior of the nonlinear wave equations with variable-coefficient.
Nonlinear modes of the tensor Dirac equation and CPT violation
NASA Technical Reports Server (NTRS)
Reifler, Frank J.; Morris, Randall D.
1993-01-01
Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.
NASA Astrophysics Data System (ADS)
Paliathanasis, A.; Tsamparlis, M.; Mustafa, M. T.
2018-02-01
A complete classification of the Lie and Noether point symmetries for the Klein-Gordon and the wave equation in pp-wave spacetimes is obtained. The classification analysis is carried out by reducing the problem of the determination of the point symmetries to the problem of existence of conformal killing vectors on the pp-wave spacetimes. Employing the existing results for the isometry classes of the pp-wave spacetimes, the functional form of the potential is determined for which the Klein-Gordon equation admits point symmetries and Noetherian conservation law. Finally the Lie and Noether point symmetries of the wave equation are derived.
Weierstrass traveling wave solutions for dissipative Benjamin, Bona, and Mahony (BBM) equation
NASA Astrophysics Data System (ADS)
Mancas, Stefan C.; Spradlin, Greg; Khanal, Harihar
2013-08-01
In this paper the effect of a small dissipation on waves is included to find exact solutions to the modified Benjamin, Bona, and Mahony (BBM) equation by viscosity. Using Lyapunov functions and dynamical systems theory, we prove that when viscosity is added to the BBM equation, in certain regions there still exist bounded traveling wave solutions in the form of solitary waves, periodic, and elliptic functions. By using the canonical form of Abel equation, the polynomial Appell invariant makes the equation integrable in terms of Weierstrass ℘ functions. We will use a general formalism based on Ince's transformation to write the general solution of dissipative BBM in terms of ℘ functions, from which all the other known solutions can be obtained via simplifying assumptions. Using ODE (ordinary differential equations) analysis we show that the traveling wave speed is a bifurcation parameter that makes transition between different classes of waves.
Alternative stable qP wave equations in TTI media with their applications for reverse time migration
NASA Astrophysics Data System (ADS)
Zhou, Yang; Wang, Huazhong; Liu, Wenqing
2015-10-01
Numerical instabilities may arise if the spatial variation of symmetry axis is handled improperly when implementing P-wave modeling and reverse time migration in heterogeneous tilted transversely isotropic (TTI) media, especially in the cases where fast changes exist in TTI symmetry axis’ directions. Based on the pseudo-acoustic approximation to anisotropic elastic wave equations in Cartesian coordinates, alternative second order qP (quasi-P) wave equations in TTI media are derived in this paper. Compared with conventional stable qP wave equations, the proposed equations written in stress components contain only spatial derivatives of wavefield variables (stress components) and are free from spatial derivatives involving media parameters. These lead to an easy and efficient implementation for stable P-wave modeling and imaging. Numerical experiments demonstrate the stability and computational efficiency of the presented equations in complex TTI media.
Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.
2009-09-01
Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.
Orbital stability of solitary waves for Kundu equation
NASA Astrophysics Data System (ADS)
Zhang, Weiguo; Qin, Yinghao; Zhao, Yan; Guo, Boling
In this paper, we consider the Kundu equation which is not a standard Hamiltonian system. The abstract orbital stability theory proposed by Grillakis et al. (1987, 1990) cannot be applied directly to study orbital stability of solitary waves for this equation. Motivated by the idea of Guo and Wu (1995), we construct three invariants of motion and use detailed spectral analysis to obtain orbital stability of solitary waves for Kundu equation. Since Kundu equation is more complex than the derivative Schrödinger equation, we utilize some techniques to overcome some difficulties in this paper. It should be pointed out that the results obtained in this paper are more general than those obtained by Guo and Wu (1995). We present a sufficient condition under which solitary waves are orbitally stable for 2c+sυ<0, while Guo and Wu (1995) only considered the case 2c+sυ>0. We obtain the results on orbital stability of solitary waves for the derivative Schrödinger equation given by Colin and Ohta (2006) as a corollary in this paper. Furthermore, we obtain orbital stability of solitary waves for Chen-Lee-Lin equation and Gerdjikov-Ivanov equation, respectively.
Wen, Xiao-Yong; Yang, Yunqing; Yan, Zhenya
2015-07-01
In this paper, a simple and constructive method is presented to find the generalized perturbation (n,M)-fold Darboux transformations (DTs) of the modified nonlinear Schrödinger (MNLS) equation in terms of fractional forms of determinants. In particular, we apply the generalized perturbation (1,N-1)-fold DTs to find its explicit multi-rogue-wave solutions. The wave structures of these rogue-wave solutions of the MNLS equation are discussed in detail for different parameters, which display abundant interesting wave structures, including the triangle and pentagon, etc., and may be useful to study the physical mechanism of multirogue waves in optics. The dynamical behaviors of these multi-rogue-wave solutions are illustrated using numerical simulations. The same Darboux matrix can also be used to investigate the Gerjikov-Ivanov equation such that its multi-rogue-wave solutions and their wave structures are also found. The method can also be extended to find multi-rogue-wave solutions of other nonlinear integrable equations.
NASA Astrophysics Data System (ADS)
Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.
2013-09-01
Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-01-01
The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.
Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N
2013-07-01
The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.
Local energy decay for linear wave equations with variable coefficients
NASA Astrophysics Data System (ADS)
Ikehata, Ryo
2005-06-01
A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].
Pure quasi-P wave equation and numerical solution in 3D TTI media
NASA Astrophysics Data System (ADS)
Zhang, Jian-Min; He, Bing-Shou; Tang, Huai-Gu
2017-03-01
Based on the pure quasi-P wave equation in transverse isotropic media with a vertical symmetry axis (VTI media), a quasi-P wave equation is obtained in transverse isotropic media with a tilted symmetry axis (TTI media). This is achieved using projection transformation, which rotates the direction vector in the coordinate system of observation toward the direction vector for the coordinate system in which the z-component is parallel to the symmetry axis of the TTI media. The equation has a simple form, is easily calculated, is not influenced by the pseudo-shear wave, and can be calculated reliably when δ is greater than ɛ. The finite difference method is used to solve the equation. In addition, a perfectly matched layer (PML) absorbing boundary condition is obtained for the equation. Theoretical analysis and numerical simulation results with forward modeling prove that the equation can accurately simulate a quasi-P wave in TTI medium.
Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves
NASA Astrophysics Data System (ADS)
Tobita, Miwa; Omura, Yoshiharu
2018-03-01
We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.
On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes
ERIC Educational Resources Information Center
Chandran, Pallath
2004-01-01
The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…
High-frequency homogenization for travelling waves in periodic media.
Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V
2016-07-01
We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 2 . We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω 1 = ω 2 and [Formula: see text] where Λ =(λ 1 λ 2 …λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a ⊙ b is defined to be the vector ( a 1 b 1 , a 2 b 2 ,…, a d b d ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.
Prieur, Fabrice; Vilenskiy, Gregory; Holm, Sverre
2012-10-01
A corrected derivation of nonlinear wave propagation equations with fractional loss operators is presented. The fundamental approach is based on fractional formulations of the stress-strain and heat flux definitions but uses the energy equation and thermodynamic identities to link density and pressure instead of an erroneous fractional form of the entropy equation as done in Prieur and Holm ["Nonlinear acoustic wave equations with fractional loss operators," J. Acoust. Soc. Am. 130(3), 1125-1132 (2011)]. The loss operator of the obtained nonlinear wave equations differs from the previous derivations as well as the dispersion equation, but when approximating for low frequencies the expressions for the frequency dependent attenuation and velocity dispersion remain unchanged.
Multi-Hamiltonian structure of equations of hydrodynamic type
NASA Astrophysics Data System (ADS)
Gümral, H.; Nutku, Y.
1990-11-01
The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.
Nonparaxial wave beams and packets with general astigmatism
NASA Astrophysics Data System (ADS)
Kiselev, A. P.; Plachenov, A. B.; Chamorro-Posada, P.
2012-04-01
We present exact solutions of the wave equation involving an arbitrary wave form with a phase closely similar to the general astigmatic phase of paraxial wave optics. Special choices of the wave form allow general astigmatic beamlike and pulselike waves with a Gaussian-type unrestricted localization in space and time. These solutions are generalizations of the known Bateman-type waves obtained from the connection existing between beamlike solutions of the paraxial parabolic equation and relatively undistorted wave solutions of the wave equation. As a technical tool, we present a full description of parametrizations of 2×2 symmetric matrices with positive imaginary part, which arise in the theory of Gaussian beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sardar, Sankirtan; Bandyopadhyay, Anup, E-mail: abandyopadhyay1965@gmail.com; Das, K. P.
A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KPmore » and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.« less
A unifying fractional wave equation for compressional and shear waves.
Holm, Sverre; Sinkus, Ralph
2010-01-01
This study has been motivated by the observed difference in the range of the power-law attenuation exponent for compressional and shear waves. Usually compressional attenuation increases with frequency to a power between 1 and 2, while shear wave attenuation often is described with powers less than 1. Another motivation is the apparent lack of partial differential equations with desirable properties such as causality that describe such wave propagation. Starting with a constitutive equation which is a generalized Hooke's law with a loss term containing a fractional derivative, one can derive a causal fractional wave equation previously given by Caputo [Geophys J. R. Astron. Soc. 13, 529-539 (1967)] and Wismer [J. Acoust. Soc. Am. 120, 3493-3502 (2006)]. In the low omegatau (low-frequency) case, this equation has an attenuation with a power-law in the range from 1 to 2. This is consistent with, e.g., attenuation in tissue. In the often neglected high omegatau (high-frequency) case, it describes attenuation with a power-law between 0 and 1, consistent with what is observed in, e.g., dynamic elastography. Thus a unifying wave equation derived properly from constitutive equations can describe both cases.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2004-01-01
The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the -correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorranian, Davoud; Sabetkar, Akbar
The nonlinear dust acoustic solitary waves in a dusty plasma with two nonthermal ion species at different temperatures is studied analytically. Using reductive perturbation method, the Kadomtsev-Petviashivili (KP) equation is derived, and the effects of nonthermal coefficient, ions temperature, and ions number density on the amplitude and width of soliton in dusty plasma are investigated. It is shown that the amplitude of solitary wave of KP equation diverges at critical points of plasma parameters. The modified KP equation is also derived, and from there, the soliton like solutions of modified KP equation with finite amplitude is extracted. Results show thatmore » generation of rarefactive or compressive solitary waves strongly depends on the number and temperature of nonthermal ions. Results of KP equation confirm that for different magnitudes of ions temperature (mass) and number density, mostly compressive solitary waves are generated in a dusty plasma. In this case, the amplitude of solitary wave is decreased, while the width of solitary waves is increased. According to the results of modified KP equation for some certain magnitudes of parameters, there is a condition for generation of an evanescent solitary wave in a dusty plasma.« less
Evolution of nonlinear waves in a blood-filled artery with an aneurysm
NASA Astrophysics Data System (ADS)
Nikolova, E. V.; Jordanov, I. P.; Dimitrova, Z. I.; Vitanov, N. K.
2017-10-01
We discuss propagation of traveling waves in a blood-filled hyper-elastic artery with a local dilatation (an aneurysm). The processes in the injured artery are modeled by an equation of the motion of the arterial wall and by equations of the motion of the fluid (the blood). Taking into account the specific arterial geometry and applying the reductive perturbation method in long-wave approximation we reduce the model equations to a version of the perturbed Korteweg-de Vries kind equation with variable coefficients. Exact traveling-wave solutions of this equation are obtained by the modified method of simplest equation where the differential equation of Abel is used as a simplest equation. A particular case of the obtained exact solution is numerically simulated and discussed from the point of view of arterial disease mechanics.
Multi-Periodic Waves in Shallow Water
1992-09-01
models-the Kadomtsev - Petviashvili (KP) equation . The KP equation describes the evolu- tion of weakly nonlinear, weakly two-dimensional waves on water of...experimentally. The analytical model is a family of periodic solutions of the Kadomtsev -Petviashuili equation . The experiments demonstrate the accuracy... Petviashvili Equation (with Norman Schef- fner & Harvey Segur). Proceedings, Nonlinear Water Waves Workshop, University of Bristol. England, 1991. Resonant
NASA Astrophysics Data System (ADS)
Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.
2012-01-01
This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.
Simple equations guide high-frequency surface-wave investigation techniques
Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.
2006-01-01
We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.
Pure quasi-P-wave calculation in transversely isotropic media using a hybrid method
NASA Astrophysics Data System (ADS)
Wu, Zedong; Liu, Hongwei; Alkhalifah, Tariq
2018-07-01
The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because Pwaves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulae tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artefacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artefacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constraint ɛ ≥ δ. Numerical tests demonstrate the effectiveness of the approach.
NASA Astrophysics Data System (ADS)
Kinoshita, T.; Sato, K.
2016-12-01
The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.
Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account.
On the exact solutions of high order wave equations of KdV type (I)
NASA Astrophysics Data System (ADS)
Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet
2014-12-01
In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-09-01
Nonlinear two-dimensional Kadomtsev-Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the two-dimensional nonlinear KP equation by implementing sech-tanh, sinh-cosh, extended direct algebraic and fraction direct algebraic methods. We found the electrostatic field potential and electric field in the form travelling wave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of Mathematica program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.
Jiao, Fengyu; Wei, Peijun; Li, Li
2017-01-01
Wave propagation through a gradient slab sandwiched by the piezoelectric and the piezomagnetic half spaces are studied in this paper. First, the secular equations in the transverse isotropic piezoelectric/piezomagnetic half spaces are derived from the general dynamic equation. Then, the state vectors at piezoelectric and piezomagnetic half spaces are related to the amplitudes of various possible waves. The state transfer equation of the functionally graded slab is derived from the equations of motion by the reduction of order, and the transfer matrix of the functionally gradient slab is obtained by solving the state transfer equation with the spatial-varying coefficient. Finally, the continuous interface conditions are used to lead to the resultant algebraic equations. The algebraic equations are solved to obtain the amplitude ratios of various waves which are further used to obtain the energy reflection and transmission coefficients of various waves. The numerical results are shown graphically and are validated by the energy conservation law. Based on the numerical results on the fives of gradient profiles, the influences of the graded slab on the wave propagation are discussed. It is found that the reflection and transmission coefficients are obviously dependent upon the gradient profile. The various surface waves are more sensitive to the gradient profile than the bulk waves. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tam, Sunny W. Y.; Chang, Tom
1995-01-01
The existence of localized regions of intense lower hybrid waves in the auroral ionosphere recently observed by rocket and satellite experiments can be understood by the study of a non-linear two-timescale coupling process. In this Letter, we demonstrate that the leading non-linear term in the standard Musher-Sturman equation vanishes identically in strict two-dimensions (normal to the magnetic field). Instead, the new two-dimensional equation is characterized by a much weaker non-linear term which arises from the ponderomotive force perpendicular to the magnetic field, particularly that due to the ions. The old and new equations are compared by means of time-evolution calculations of wave fields. The results exhibit a remarkable difference in the evolution of the waves as governed by the two equations. Such dissimilar outcomes motivate our investigation of the limitation of Musher-Sturman equation in quasi-two-dimensions. Only within all these limits can Musher-Sturman equation adequately describe the collapse of lower hybrid waves.
Selima, Ehab S; Yao, Xiaohua; Wazwaz, Abdul-Majid
2017-06-01
In this research, the surface waves of a horizontal fluid layer open to air under gravity field and vertical temperature gradient effects are studied. The governing equations of this model are reformulated and converted to a nonlinear evolution equation, the perturbed Korteweg-de Vries (pKdV) equation. We investigate the latter equation, which includes dispersion, diffusion, and instability effects, in order to examine the evolution of long surface waves in a convective fluid. Dispersion relation of the pKdV equation and its properties are discussed. The Painlevé analysis is applied not only to check the integrability of the pKdV equation but also to establish the Bäcklund transformation form. In addition, traveling wave solutions and a general form of the multiple-soliton solutions of the pKdV equation are obtained via Bäcklund transformation, the simplest equation method using Bernoulli, Riccati, and Burgers' equations as simplest equations, and the factorization method.
Dynamic response of a riser under excitation of internal waves
NASA Astrophysics Data System (ADS)
Lou, Min; Yu, Chenglong; Chen, Peng
2015-12-01
In this paper, the dynamic response of a marine riser under excitation of internal waves is studied. With the linear approximation, the governing equation of internal waves is given. Based on the rigid-lid boundary condition assumption, the equation is solved by Thompson-Haskell method. Thus the velocity field of internal waves is obtained by the continuity equation. Combined with the modified Morison formula, using finite element method, the motion equation of riser is solved in time domain with Newmark-β method. The computation programs are compiled to solve the differential equations in time domain. Then we get the numerical results, including riser displacement and transfiguration. It is observed that the internal wave will result in circular shear flow, and the first two modes have a dominant effect on dynamic response of the marine riser. In the high mode, the response diminishes rapidly. In different modes of internal waves, the deformation of riser has different shapes, and the location of maximum displacement shifts. Studies on wave parameters indicate that the wave amplitude plays a considerable role in response displacement of riser, while the wave frequency contributes little. Nevertheless, the internal waves of high wave frequency will lead to a high-frequency oscillation of riser; it possibly gives rise to fatigue crack extension and partial fatigue failure.
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-06-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.
Asymptotic analysis of numerical wave propagation in finite difference equations
NASA Technical Reports Server (NTRS)
Giles, M.; Thompkins, W. T., Jr.
1983-01-01
An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.
Formation of wave packets in the Ostrovsky equation for both normal and anomalous dispersion
Grimshaw, Roger; Stepanyants, Yury; Alias, Azwani
2016-01-01
It is well known that the Ostrovsky equation with normal dispersion does not support steady solitary waves. An initial Korteweg–de Vries solitary wave decays adiabatically through the radiation of long waves and is eventually replaced by an envelope solitary wave whose carrier wave and envelope move with different velocities (phase and group velocities correspondingly). Here, we examine the same initial condition for the Ostrovsky equation with anomalous dispersion, when the wave frequency increases with wavenumber in the limit of very short waves. The essential difference is that now there exists a steady solitary wave solution (Ostrovsky soliton), which in the small-amplitude limit can be described asymptotically through the solitary wave solution of a nonlinear Schrödinger equation, based at that wavenumber where the phase and group velocities coincide. Long-time numerical simulations show that the emergence of this steady envelope solitary wave is a very robust feature. The initial Korteweg–de Vries solitary wave transforms rapidly to this envelope solitary wave in a seemingly non-adiabatic manner. The amplitude of the Ostrovsky soliton strongly correlates with the initial Korteweg–de Vries solitary wave. PMID:26997887
Spatiotemporal optical dark X solitary waves.
Baronio, Fabio; Chen, Shihua; Onorato, Miguel; Trillo, Stefano; Wabnitz, Stefan; Kodama, Yuji
2016-12-01
We introduce spatiotemporal optical dark X solitary waves of the (2+1)D hyperbolic nonlinear Schrödinger equation (NLSE), which rules wave propagation in a self-focusing and normally dispersive medium. These analytical solutions are derived by exploiting the connection between the NLSE and a well-known equation of hydrodynamics, namely the type II Kadomtsev-Petviashvili (KP-II) equation. As a result, families of shallow water X soliton solutions of the KP-II equation are mapped into optical dark X solitary wave solutions of the NLSE. Numerical simulations show that optical dark X solitary waves may propagate for long distances (tens of nonlinear lengths) before they eventually break up, owing to the modulation instability of the continuous wave background. This finding opens a novel path for the excitation and control of X solitary waves in nonlinear optics.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.
2002-01-01
Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.
Dirac and Klein-Gordon-Fock equations in Grumiller’s spacetime
NASA Astrophysics Data System (ADS)
Al-Badawi, A.; Sakalli, I.
We study the Dirac and the chargeless Klein-Gordon-Fock equations in the geometry of Grumiller’s spacetime that describes a model for gravity of a central object at large distances. The Dirac equation is separated into radial and angular equations by adopting the Newman-Penrose formalism. The angular part of the both wave equations are analytically solved. For the radial equations, we managed to reduce them to one dimensional Schrödinger-type wave equations with their corresponding effective potentials. Fermions’s potentials are numerically analyzed by serving their some characteristic plots. We also compute the quasinormal frequencies of the chargeless and massive scalar waves. With the aid of those quasinormal frequencies, Bekenstein’s area conjecture is tested for the Grumiller black hole. Thus, the effects of the Rindler acceleration on the waves of fermions and scalars are thoroughly analyzed.
A comparative study of diffraction of shallow-water waves by high-level IGN and GN equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, B.B.; Ertekin, R.C.; College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin
2015-02-15
This work is on the nonlinear diffraction analysis of shallow-water waves, impinging on submerged obstacles, by two related theories, namely the classical Green–Naghdi (GN) equations and the Irrotational Green–Naghdi (IGN) equations, both sets of equations being at high levels and derived for incompressible and inviscid flows. Recently, the high-level Green–Naghdi equations have been applied to some wave transformation problems. The high-level IGN equations have also been used in the last decade to study certain wave propagation problems. However, past works on these theories used different numerical methods to solve these nonlinear and unsteady sets of differential equations and at differentmore » levels. Moreover, different physical problems have been solved in the past. Therefore, it has not been possible to understand the differences produced by these two sets of theories and their range of applicability so far. We are thus motivated to make a direct comparison of the results produced by these theories by use of the same numerical method to solve physically the same wave diffraction problems. We focus on comparing these two theories by using similar codes; only the equations used are different but other parts of the codes, such as the wave-maker, damping zone, discretion method, matrix solver, etc., are exactly the same. This way, we eliminate many potential sources of differences that could be produced by the solution of different equations. The physical problems include the presence of various submerged obstacles that can be used for example as breakwaters or to represent the continental shelf. A numerical wave tank is created by placing a wavemaker on one end and a wave absorbing beach on the other. The nonlinear and unsteady sets of differential equations are solved by the finite-difference method. The results are compared with different equations as well as with the available experimental data.« less
A comparative study of diffraction of shallow-water waves by high-level IGN and GN equations
NASA Astrophysics Data System (ADS)
Zhao, B. B.; Ertekin, R. C.; Duan, W. Y.
2015-02-01
This work is on the nonlinear diffraction analysis of shallow-water waves, impinging on submerged obstacles, by two related theories, namely the classical Green-Naghdi (GN) equations and the Irrotational Green-Naghdi (IGN) equations, both sets of equations being at high levels and derived for incompressible and inviscid flows. Recently, the high-level Green-Naghdi equations have been applied to some wave transformation problems. The high-level IGN equations have also been used in the last decade to study certain wave propagation problems. However, past works on these theories used different numerical methods to solve these nonlinear and unsteady sets of differential equations and at different levels. Moreover, different physical problems have been solved in the past. Therefore, it has not been possible to understand the differences produced by these two sets of theories and their range of applicability so far. We are thus motivated to make a direct comparison of the results produced by these theories by use of the same numerical method to solve physically the same wave diffraction problems. We focus on comparing these two theories by using similar codes; only the equations used are different but other parts of the codes, such as the wave-maker, damping zone, discretion method, matrix solver, etc., are exactly the same. This way, we eliminate many potential sources of differences that could be produced by the solution of different equations. The physical problems include the presence of various submerged obstacles that can be used for example as breakwaters or to represent the continental shelf. A numerical wave tank is created by placing a wavemaker on one end and a wave absorbing beach on the other. The nonlinear and unsteady sets of differential equations are solved by the finite-difference method. The results are compared with different equations as well as with the available experimental data.
Waves and instabilities in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.
Modeling RF Fields in Hot Plasmas with Parallel Full Wave Code
NASA Astrophysics Data System (ADS)
Spencer, Andrew; Svidzinski, Vladimir; Zhao, Liangji; Galkin, Sergei; Kim, Jin-Soo
2016-10-01
FAR-TECH, Inc. is developing a suite of full wave RF plasma codes. It is based on a meshless formulation in configuration space with adapted cloud of computational points (CCP) capability and using the hot plasma conductivity kernel to model the nonlocal plasma dielectric response. The conductivity kernel is calculated by numerically integrating the linearized Vlasov equation along unperturbed particle trajectories. Work has been done on the following calculations: 1) the conductivity kernel in hot plasmas, 2) a monitor function based on analytic solutions of the cold-plasma dispersion relation, 3) an adaptive CCP based on the monitor function, 4) stencils to approximate the wave equations on the CCP, 5) the solution to the full wave equations in the cold-plasma model in tokamak geometry for ECRH and ICRH range of frequencies, and 6) the solution to the wave equations using the calculated hot plasma conductivity kernel. We will present results on using a meshless formulation on adaptive CCP to solve the wave equations and on implementing the non-local hot plasma dielectric response to the wave equations. The presentation will include numerical results of wave propagation and absorption in the cold and hot tokamak plasma RF models, using DIII-D geometry and plasma parameters. Work is supported by the U.S. DOE SBIR program.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2004-01-01
The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.
The Shock and Vibration Digest. Volume 16, Number 11
1984-11-01
wave [19], a secular equation for Rayleigh waves on ing, seismic risk, and related problems are discussed. the surface of an anisotropic half-space...waves in an !so- tive equation of an elastic-plastic rack medium was....... tropic linear elastic half-space with plane material used; the coefficient...pair of semi-linear hyperbolic partial differential -- " Conditions under which the equations of motion equations governing slow variations in amplitude
Nonlinear and linear wave equations for propagation in media with frequency power law losses
NASA Astrophysics Data System (ADS)
Szabo, Thomas L.
2003-10-01
The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adcock, T. A. A.; Taylor, P. H.
2016-01-15
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest whichmore » leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.« less
The picosecond structure of ultra-fast rogue waves
NASA Astrophysics Data System (ADS)
Klein, Avi; Shahal, Shir; Masri, Gilad; Duadi, Hamootal; Sulimani, Kfir; Lib, Ohad; Steinberg, Hadar; Kolpakov, Stanislav A.; Fridman, Moti
2018-02-01
We investigated ultrafast rogue waves in fiber lasers and found three different patterns of rogue waves: single- peaks, twin-peaks, and triple-peaks. The statistics of the different patterns as a function of the pump power of the laser reveals that the probability for all rogue waves patterns increase close to the laser threshold. We developed a numerical model which prove that the ultrafast rogue waves patterns result from both the polarization mode dispersion in the fiber and the non-instantaneous nature of the saturable absorber. This discovery reveals that there are three different types of rogue waves in fiber lasers: slow, fast, and ultrafast, which relate to three different time-scales and are governed by three different sets of equations: the laser rate equations, the nonlinear Schrodinger equation, and the saturable absorber equations, accordingly. This discovery is highly important for analyzing rogue waves and other extreme events in fiber lasers and can lead to realizing types of rogue waves which were not possible so far such as triangular rogue waves.
Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation
NASA Technical Reports Server (NTRS)
Karney, C. F. F.
1977-01-01
Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.
Handapangoda, Chintha C; Premaratne, Malin; Paganin, David M; Hendahewa, Priyantha R D S
2008-10-27
A novel algorithm for mapping the photon transport equation (PTE) to Maxwell's equations is presented. Owing to its accuracy, wave propagation through biological tissue is modeled using the PTE. The mapping of the PTE to Maxwell's equations is required to model wave propagation through foreign structures implanted in biological tissue for sensing and characterization of tissue properties. The PTE solves for only the magnitude of the intensity but Maxwell's equations require the phase information as well. However, it is possible to construct the phase information approximately by solving the transport of intensity equation (TIE) using the full multigrid algorithm.
The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*
NASA Astrophysics Data System (ADS)
Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok
2017-09-01
Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.
Analytic solutions for Long's equation and its generalization
NASA Astrophysics Data System (ADS)
Humi, Mayer
2017-12-01
Two-dimensional, steady-state, stratified, isothermal atmospheric flow over topography is governed by Long's equation. Numerical solutions of this equation were derived and used by several authors. In particular, these solutions were applied extensively to analyze the experimental observations of gravity waves. In the first part of this paper we derive an extension of this equation to non-isothermal flows. Then we devise a transformation that simplifies this equation. We show that this simplified equation admits solitonic-type solutions in addition to regular gravity waves. These new analytical solutions provide new insights into the propagation and amplitude of gravity waves over topography.
Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system
NASA Astrophysics Data System (ADS)
Tang, Xiao-yan; Liang, Zu-feng; Hao, Xia-zhi
2018-07-01
A new general nonlocal modified KdV equation is derived from the nonlinear inviscid dissipative and equivalent barotropic vorticity equation in a β-plane. The nonlocal property is manifested in the shifted parity and delayed time reversal symmetries. Exact solutions of the nonlocal modified KdV equation are obtained including periodic waves, kink waves, solitary waves, kink- and/or anti-kink-cnoidal periodic wave interaction solutions, which can be utilized to describe various two-place and time-delayed correlated events. As an illustration, a special approximate solution is applied to theoretically capture the salient features of two correlated dipole blocking events in atmospheric dynamical systems.
NASA Astrophysics Data System (ADS)
Yuan, Na
2018-04-01
With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.
NASA Astrophysics Data System (ADS)
Britt, S.; Tsynkov, S.; Turkel, E.
2018-02-01
We solve the wave equation with variable wave speed on nonconforming domains with fourth order accuracy in both space and time. This is accomplished using an implicit finite difference (FD) scheme for the wave equation and solving an elliptic (modified Helmholtz) equation at each time step with fourth order spatial accuracy by the method of difference potentials (MDP). High-order MDP utilizes compact FD schemes on regular structured grids to efficiently solve problems on nonconforming domains while maintaining the design convergence rate of the underlying FD scheme. Asymptotically, the computational complexity of high-order MDP scales the same as that for FD.
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
The Equal-Width and Modified Equal-Width equations are used as a model in partial differential equations for the simulation of one-dimensional wave transmission in nonlinear media with dispersion processes. In this article we have employed extend simple equation method and the exp(-varphi(ξ)) expansion method to construct the exact traveling wave solutions of equal width and modified equal width equations. The obtained results are novel and have numerous applications in current areas of research in mathematical physics. It is exposed that our method, with the help of symbolic computation, provides a effective and powerful mathematical tool for solving different kind nonlinear wave problems.
Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation.
Hu, Xiao-Rui; Lou, Sen-Yue; Chen, Yong
2012-05-01
In nonlinear science, it is very difficult to find exact interaction solutions among solitons and other kinds of complicated waves such as cnoidal waves and Painlevé waves. Actually, even if for the most well-known prototypical models such as the Kortewet-de Vries (KdV) equation and the Kadomtsev-Petviashvili (KP) equation, this kind of problem has not yet been solved. In this paper, the explicit analytic interaction solutions between solitary waves and cnoidal waves are obtained through the localization procedure of nonlocal symmetries which are related to Darboux transformation for the well-known KdV equation. The same approach also yields some other types of interaction solutions among different types of solutions such as solitary waves, rational solutions, Bessel function solutions, and/or general Painlevé II solutions.
Time dependent wave envelope finite difference analysis of sound propagation
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1984-01-01
A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.
The stability of freak waves with regard to external impact and perturbation of initial data
NASA Astrophysics Data System (ADS)
Smirnova, Anna; Shamin, Roman
2014-05-01
We investigate solutions of the equations, describing freak waves, in perspective of stability with regard to external impact and perturbation of initial data. The modeling of freak waves is based on numerical solution of equations describing a non-stationary potential flow of the ideal fluid with a free surface. We consider the two-dimensional infinitely deep flow. For waves modeling we use the equations in conformal variables. The variant of these equations is offered in [1]. Mathematical correctness of these equations was discussed in [2]. These works establish the uniqueness of solutions, offer the effective numerical solution calculation methods, prove the numerical convergence of these methods. The important aspect of numerical modeling of freak waves is the stability of solutions, describing these waves. In this work we study the questions of stability with regards to external impact and perturbation of initial data. We showed the stability of freak waves numerical model, corresponding to the external impact. We performed series of computational experiments with various freak wave initial data and random external impact. This impact means the power density on free surface. In each experiment examine two waves: the wave that was formed by external impact and without one. In all the experiments we see the stability of equation`s solutions. The random external impact practically does not change the time of freak wave formation and its form. Later our work progresses to the investigation of solution's stability under perturbations of initial data. We take the initial data that provide a freak wave and get the numerical solution. In common we take the numerical solution of equation with perturbation of initial data. The computing experiments showed that the freak waves equations solutions are stable under perturbations of initial data.So we can make a conclusion that freak waves are stable relatively external perturbation and perturbation of initial data both. 1. Zakharov V.E., Dyachenko A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface// Eur. J.~Mech. B Fluids. 2002. V. 21. P. 283-291. 2. R.V. Shamin. Dynamics of an Ideal Liquid with a Free Surface in Conformal Variables // Journal of Mathematical Sciences, Vol. 160, No. 5, 2009. P. 537-678. 3. R.V. Shamin, V.E. Zakharov, A.I. Dyachenko. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y
NASA Astrophysics Data System (ADS)
Angulo Pava, Jaime; Natali, Fábio M. Amorin
2009-04-01
In this paper we establish new results about the existence, stability, and instability of periodic travelling wave solutions related to the critical Korteweg-de Vries equation ut+5u4ux+u=0, and the critical nonlinear Schrödinger equation ivt+v+|v=0. The periodic travelling wave solutions obtained in our study tend to the classical solitary wave solutions in the infinite wavelength scenario. The stability approach is based on the theory developed by Angulo & Natali in [J. Angulo, F. Natali, Positivity properties of the Fourier transform and the stability of periodic travelling wave solutions, SIAM J. Math. Anal. 40 (2008) 1123-1151] for positive periodic travelling wave solutions associated to dispersive evolution equations of Korteweg-de Vries type. The instability approach is based on an extension to the periodic setting of arguments found in Bona & Souganidis & Strauss [J.L. Bona, P.E. Souganidis, W.A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A 411 (1987) 395-412]. Regarding the critical Schrödinger equation stability/instability theories similar to the critical Korteweg-de Vries equation are obtained by using the classical Grillakis & Shatah & Strauss theory in [M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94 (1990) 308-348; M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987) 160-197]. The arguments presented in this investigation have prospects for the study of the stability of periodic travelling wave solutions of other nonlinear evolution equations.
NASA Astrophysics Data System (ADS)
Wu, Zedong; Alkhalifah, Tariq
2018-07-01
Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.
Mass, Energy, Space And Time Systemic Theory---MEST
NASA Astrophysics Data System (ADS)
Cao, Dayong
2010-03-01
Things have their physical system of the mass, energy, space and time of themselves-MEST. The matter have the physical systemic moel like that the mass-energy is center and the space-time is around. The time is from the frequency of wave, the space is from the amplitude of wave. What is the physical effection of the wave. The gravity and inertial force is from the wave. Not only the planets have the mass and the kinetic energy, but also it have the wave and the wave energy. According to the equivalence principle of the general relativity, there is the equation: ma=mg and mv^2 /2= δmc^2. The energy equation of the planets: E=mv^2=mgr (v is velocity) be bring put forward. In quantum mechanics, according to the quantum light theory and the de Broglie's theory , there are the equation of the wave: E=hν, p=h/λ (h is Planck constant, p is momentum, λ is the wavelengh), and there is the equation of the wave: E=mc^2. So the energy equation of the planets: E=mv^2 = mv^2 /2 + δmc^2 (mv^2 /2= δmc^2 ) be bring put forward. The equation: δmc^2 show that the planets have the wave of itself, and the wave give the planets the energy. So it do not fall from the heaven. When the matter go into the heaven, it need get the wave energy (like the potential energy). So we can make a new light-flight with the light-driving force.
NASA Astrophysics Data System (ADS)
Seadawy, A. R.; El-Rashidy, K.
2018-03-01
The Kadomtsev-Petviashvili (KP) and modified KP equations are two of the most universal models in nonlinear wave theory, which arises as a reduction of system with quadratic nonlinearity which admit weakly dispersive waves. The generalized extended tanh method and the F-expansion method are used to derive exact solitary waves solutions of KP and modified KP equations. The region of solutions are displayed graphically.
Circularly polarized few-cycle optical rogue waves: rotating reduced Maxwell-Bloch equations.
Xu, Shuwei; Porsezian, K; He, Jingsong; Cheng, Yi
2013-12-01
The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.
Exact finite difference schemes for the non-linear unidirectional wave equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.
An algorithm for solving the perturbed gas dynamic equations
NASA Technical Reports Server (NTRS)
Davis, Sanford
1993-01-01
The present application of a compact, higher-order central-difference approximation to the linearized Euler equations illustrates the multimodal character of these equations by means of computations for acoustic, vortical, and entropy waves. Such dissipationless central-difference methods are shown to propagate waves exhibiting excellent phase and amplitude resolution on the basis of relatively large time-steps; they can be applied to wave problems governed by systems of first-order partial differential equations.
Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar
2014-01-01
In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.
Generalization of the Euler-type solution to the wave equation
NASA Astrophysics Data System (ADS)
Borisov, Victor V.
2001-08-01
Generalization of the Euler-type solution to the wave equation is given. Peculiarities of the space-time structure of obtained waves are considered. For some particular cases interpretation of these waves as `subliminal' and `superluminal' is discussed. The possibility of description of electromagnetic waves by means of the scalar solutions is shown.
On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation.
Khusnutdinova, K R; Klein, C; Matveev, V B; Smirnov, A O
2013-03-01
There exist two versions of the Kadomtsev-Petviashvili (KP) equation, related to the Cartesian and cylindrical geometries of the waves. In this paper, we derive and study a new version, related to the elliptic cylindrical geometry. The derivation is given in the context of surface waves, but the derived equation is a universal integrable model applicable to generic weakly nonlinear weakly dispersive waves. We also show that there exist nontrivial transformations between all three versions of the KP equation associated with the physical problem formulation, and use them to obtain new classes of approximate solutions for water waves.
Two dimensional cylindrical fast magnetoacoustic solitary waves in a dust plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Haifeng; Wang Shiqing; Engineering and Technical College of Chengdu University of Technology, Leshan 614000
2011-04-15
The nonlinear fast magnetoacoustic solitary waves in a dust plasma with the combined effects of bounded cylindrical geometry and transverse perturbation are investigated in a new equation. In this regard, cylindrical Kadomtsev-Petviashvili (CKP) equation is derived using the small amplitude perturbation expansion method. Under a suitable coordinate transformation, the CKP equation can be solved analytically. It is shown that the dust cylindrical fast magnetoacoustic solitary waves can exist in the CKP equation. The present investigation may have relevance in the study of nonlinear electromagnetic soliton waves both in laboratory and astrophysical plasmas.
Dispersion relations with crossing symmetry for {pi}{pi}D- and F1-wave amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, R.
Results of implementation of dispersion relations with imposed crossing symmetry condition to description of {pi}{pi}D and F1 wave amplitudes are presented. We use relations with only one subtraction what leads to small uncertainties of results and to strong constraints for tested {pi}{pi} amplitudes. Presented equations are similar to those with one subtraction (so called GKPY equations) and to those with two subtractions (the Roy's equations) for the S and P waves. Numerical calculations are done with the S and P wave input amplitudes tested already with use of the Roy's and GKPY equations.
Wave-current interactions in three dimensions: why 3D radiation stresses are not practical
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice
2017-04-01
The coupling of ocean circulation and wave models is based on a wave-averaged mass and momentum conservation equations. Whereas several equivalent equations for the evolution of the current momentum have been proposed, implemented, and used, the possibility to formulate practical equations for the total momentum, which is the sum of the current and wave momenta, has been obscured by a series of publications. In a recent update on previous derivations, Mellor (J. Phys. Oceanogr. 2015) proposed a new set of wave-forced total momentum equations. Here we show that this derivation misses a term that integrates to zero over the vertical. This is because he went from his depth-integrated eq. (28) to the 3D equation (30) by simply removing the integral, but any extra zero-integrating term can be added. Corrected for this omission, the equations of motion are equivalent to the earlier equations by Mellor (2003) which are correct when expressed in terms of wave-induced pressure, horizontal velocity and vertical displacement. Namely the total momentum evolution is driven by the horizontal divergence of a horizontal momentum flux, ----- --- ∂^s- Sαβ = ^uα^uβ + δαβ ∂ς (^p- g^s) (1) and the vertical divergence of a vertical flux, Sαz = (p^-g^s)∂^s/∂xα, (2) where p is the wave-induced non-hydrostatic pressure, s is the wave-induced vertical displacement, and u^ α is the horizontal wave-induced velocity in direction α. So far, so good. Problems arise when p and s are evaluated. Indeend, Ardhuin et al. (J. Phys. Oceanogr. 2008) showed that, over a sloping bottom ∂Sαβ/∂xβ is of order of the slope, hence a consistent wave forcing requires an estimation of Sαz that must be estimated to first order in the bottom slope. For this, Airy wave theory, i.e. cosh(kz-+-kh) p ≃ ga cosh (kD ) cosψ, (3) is not enough. Ardhuin et al. (2008) has shown that using an exact solution of the Laplace equations the vertical flux can indeed be computed. The alternative of neglecting completely Sαz, as suggested by Mellor (2011) for small slopes, will always generate spurious currents because of the unbalanced forcing ∂Sαβ/∂xβ. Fortunately, there are many explicit versions of the wave-averaged equations without the wave momentum in them (Suzuki and Fox-Kemper 2016), with or without vortex force which are all consistent with the exact 3D equations of Andrews and McIntyre (1978). There is thus no need to stumble again and again on this fundamental problem of vertical momentum flux, which is a flux of wave momentum. The problem simply goes away by writing the equations for the current momentum only, without the problematic wave momentum. The current and wave momentum are coupled by forcing terms, and the wave momentum can be solved in 2D, the vertical distribution of momentum being maintained by the complex flux Sαz.
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay K.
2011-03-01
We discuss the class of equations ∑i,j=0mAij(u){∂iu}/{∂ti}∂+∑k,l=0nBkl(u){∂ku}/{∂xk}∂=C(u) where Aij( u), Bkl( u) and C( u) are functions of u( x, t) as follows: (i) Aij, Bkl and C are polynomials of u; or (ii) Aij, Bkl and C can be reduced to polynomials of u by means of Taylor series for small values of u. For these two cases the above-mentioned class of equations consists of nonlinear PDEs with polynomial nonlinearities. We show that the modified method of simplest equation is powerful tool for obtaining exact traveling-wave solution of this class of equations. The balance equations for the sub-class of traveling-wave solutions of the investigated class of equations are obtained. We illustrate the method by obtaining exact traveling-wave solutions (i) of the Swift-Hohenberg equation and (ii) of the generalized Rayleigh equation for the cases when the extended tanh-equation or the equations of Bernoulli and Riccati are used as simplest equations.
NASA Astrophysics Data System (ADS)
Denli, H.; Huang, L.
2008-12-01
Quantitative monitoring of reservoir property changes is essential for safe geologic carbon sequestration. Time-lapse seismic surveys have the potential to effectively monitor fluid migration in the reservoir that causes geophysical property changes such as density, and P- and S-wave velocities. We introduce a novel method for quantitative estimation of seismic velocity changes using time-lapse seismic data. The method employs elastic sensitivity wavefields, which are the derivatives of elastic wavefield with respect to density, P- and S-wave velocities of a target region. We derive the elastic sensitivity equations from analytical differentiations of the elastic-wave equations with respect to seismic-wave velocities. The sensitivity equations are coupled with the wave equations in a way that elastic waves arriving in a target reservoir behave as a secondary source to sensitivity fields. We use a staggered-grid finite-difference scheme with perfectly-matched layers absorbing boundary conditions to simultaneously solve the elastic-wave equations and the elastic sensitivity equations. By elastic-wave sensitivities, a linear relationship between relative seismic velocity changes in the reservoir and time-lapse seismic data at receiver locations can be derived, which leads to an over-determined system of equations. We solve this system of equations using a least- square method for each receiver to obtain P- and S-wave velocity changes. We validate the method using both surface and VSP synthetic time-lapse seismic data for a multi-layered model and the elastic Marmousi model. Then we apply it to the time-lapse field VSP data acquired at the Aneth oil field in Utah. A total of 10.5K tons of CO2 was injected into the oil reservoir between the two VSP surveys for enhanced oil recovery. The synthetic and field data studies show that our new method can quantitatively estimate changes in seismic velocities within a reservoir due to CO2 injection/migration.
NASA Astrophysics Data System (ADS)
Lee, Gibbeum; Cho, Yeunwoo
2017-11-01
We present an almost analytical new approach to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of solving this matrix eigenvalue problem purely numerically, which may suffer from the computational inaccuracy for big data, first, we consider a pair of integral and differential equations, which are related to the so-called prolate spheroidal wave functions (PSWF). For the PSWF differential equation, the pair of the eigenvectors (PSWF) and eigenvalues can be obtained from a relatively small number of analytical Legendre functions. Then, the eigenvalues in the PSWF integral equation are expressed in terms of functional values of the PSWF and the eigenvalues of the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data; ordinary irregular waves and rogue waves. We found that the present almost analytical method is better than the conventional data-independent Fourier representation and, also, the conventional direct numerical K-L representation in terms of both accuracy and computational cost. This work was supported by the National Research Foundation of Korea (NRF). (NRF-2017R1D1A1B03028299).
Three-dimensional wave-induced current model equations and radiation stresses
NASA Astrophysics Data System (ADS)
Xia, Hua-yong
2017-08-01
After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy's wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.
NASA Astrophysics Data System (ADS)
Khusnutdinova, K. R.; Stepanyants, Y. A.; Tranter, M. R.
2018-02-01
We study solitary wave solutions of the fifth-order Korteweg-de Vries equation which contains, besides the traditional quadratic nonlinearity and third-order dispersion, additional terms including cubic nonlinearity and fifth order linear dispersion, as well as two nonlinear dispersive terms. An exact solitary wave solution to this equation is derived, and the dependence of its amplitude, width, and speed on the parameters of the governing equation is studied. It is shown that the derived solution can represent either an embedded or regular soliton depending on the equation parameters. The nonlinear dispersive terms can drastically influence the existence of solitary waves, their nature (regular or embedded), profile, polarity, and stability with respect to small perturbations. We show, in particular, that in some cases embedded solitons can be stable even with respect to interactions with regular solitons. The results obtained are applicable to surface and internal waves in fluids, as well as to waves in other media (plasma, solid waveguides, elastic media with microstructure, etc.).
Propagation and attenuation of Rayleigh waves in generalized thermoelastic media
NASA Astrophysics Data System (ADS)
Sharma, M. D.
2014-01-01
This study considers the propagation of Rayleigh waves in a generalized thermoelastic half-space with stress-free plane boundary. The boundary has the option of being either isothermal or thermally insulated. In either case, the dispersion equation is obtained in the form of a complex irrational expression due to the presence of radicals. This dispersion equation is rationalized into a polynomial equation, which is solvable, numerically, for exact complex roots. The roots of the dispersion equation are obtained after removing the extraneous zeros of this polynomial equation. Then, these roots are filtered out for the inhomogeneous propagation of waves decaying with depth. Numerical examples are solved to analyze the effects of thermal properties of elastic materials on the dispersion of existing surface waves. For these thermoelastic Rayleigh waves, the behavior of elliptical particle motion is studied inside and at the surface of the medium. Insulation of boundary does play a significant role in changing the speed, amplitude, and polarization of Rayleigh waves in thermoelastic media.
Nonlinear coherent structures of Alfvén wave in a collisional plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Sayanee; Chakrabarti, Nikhil; Ghosh, Samiran
2016-07-15
The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödingermore » equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.« less
Prediction of Skin Temperature Distribution in Cosmetic Laser Surgery
NASA Astrophysics Data System (ADS)
Ting, Kuen; Chen, Kuen-Tasnn; Cheng, Shih-Feng; Lin, Wen-Shiung; Chang, Cheng-Ren
2008-01-01
The use of lasers in cosmetic surgery has increased dramatically in the past decade. To achieve minimal damage to tissues, the study of the temperature distribution of skin in laser irradiation is very important. The phenomenon of the thermal wave effect is significant due to the highly focused light energy of lasers in very a short time period. The conventional Pennes equation does not take the thermal wave effect into account, which the thermal relaxation time (τ) is neglected, so it is not sufficient to solve instantaneous heating and cooling problem. The purpose of this study is to solve the thermal wave equation to determine the realistic temperature distribution during laser surgery. The analytic solutions of the thermal wave equation are compared with those of the Pennes equation. Moreover, comparisons are made between the results of the above equations and the results of temperature measurement using an infrared thermal image instrument. The thermal wave equation could likely to predict the skin temperature distribution in cosmetic laser surgery.
NASA Astrophysics Data System (ADS)
Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee
In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.
Optical Kerr spatiotemporal dark extreme waves
NASA Astrophysics Data System (ADS)
Wabnitz, Stefan; Kodama, Yuji; Baronio, Fabio
2018-02-01
We study the existence and propagation of multidimensional dark non-diffractive and non-dispersive spatiotemporal optical wave-packets in nonlinear Kerr media. We report analytically and confirm numerically the properties of spatiotemporal dark lines, X solitary waves and lump solutions of the (2 + 1)D nonlinear Schr odinger equation (NLSE). Dark lines, X waves and lumps represent holes of light on a continuous wave background. These solitary waves are derived by exploiting the connection between the (2 + 1)D NLSE and a well-known equation of hydrodynamics, namely the (2+1)D Kadomtsev-Petviashvili (KP) equation. This finding opens a novel path for the excitation and control of spatiotemporal optical solitary and rogue waves, of hydrodynamic nature.
Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Six, N. Frank (Technical Monitor)
2002-01-01
Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account. The time dependent part of the ponderomotive force is discussed.
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.
Electromagnetic Ion Cyclotron Wavefields in a Realistic Dipole Field
NASA Astrophysics Data System (ADS)
Denton, R. E.
2018-02-01
The latitudinal distribution and properties of electromagnetic ion cyclotron (EMIC) waves determine the total effect of those waves on relativistic electrons. Here we describe the latitudinal variation of EMIC waves simulated self-consistently in a dipole magnetic field for a plasmasphere or plume-like plasma at geostationary orbit with cold H+, He+, and O+ and hot protons with temperature anisotropy. The waves grow as they propagate away from the magnetic equator to higher latitude, while the wave vector turns outward radially and the polarization becomes linear. We calculate the detailed wave spectrum in four latitudinal ranges varying from magnetic latitude (MLAT) close to 0° (magnetic equator) up to 21°. The strongest waves are propagating away from the magnetic equator, but some wave power propagating toward the magnetic equator is observed due to local generation (especially close to the magnetic equator) or reflection. The He band waves, which are generated relatively high up on their dispersion surface, are able to propagate all the way to MLAT = 21°, but the H band waves experience frequency filtering, with no equatorial waves propagating to MLAT = 21° and only the higher-frequency waves propagating to MLAT = 14°. The result is that the wave power averaged k∥, which determines the relativistic electron minimum resonance energy, scales like the inverse of the local magnetic field for the He mode, whereas it is almost constant for the H mode. While the perpendicular wave vector turns outward, it broadens. These wavefields should be useful for simulations of radiation belt particle dynamics.
Nearshore Wave and Circulation Modelling
1998-02-01
1995), "The unified Kadomtsev - Petviashvili equation for interfacial waves," J. Fluid Mech., 288, 383-408. Chen, Y. and Liu, P. L.-F. (1996), "On...modified Kadomtsev - Petviashvili equation for interfacial wave propagation near the critical depth level," Wave Motion (to appear). Cox, D. T. and Kobayashi...94-13. Chen, Y. and Liu, P.L.-F. (1995), "Numerical Study of the Unified Kadomtsev - Petviashvili Equation ," CACR-95-04. Chen, Y. and Liu, P.L.-F
Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc
2012-12-11
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
Nonlinear extraordinary wave in dense plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.
2013-10-15
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. Themore » possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.« less
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps
NASA Astrophysics Data System (ADS)
Yi, Taishan; Chen, Yuming
2017-12-01
In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.
Helical localized wave solutions of the scalar wave equation.
Overfelt, P L
2001-08-01
A right-handed helical nonorthogonal coordinate system is used to determine helical localized wave solutions of the homogeneous scalar wave equation. Introducing the characteristic variables in the helical system, i.e., u = zeta - ct and v = zeta + ct, where zeta is the coordinate along the helical axis, we can use the bidirectional traveling plane wave representation and obtain sets of elementary bidirectional helical solutions to the wave equation. Not only are these sets bidirectional, i.e., based on a product of plane waves, but they may also be broken up into right-handed and left-handed solutions. The elementary helical solutions may in turn be used to create general superpositions, both Fourier and bidirectional, from which new solutions to the wave equation may be synthesized. These new solutions, based on the helical bidirectional superposition, are members of the class of localized waves. Examples of these new solutions are a helical fundamental Gaussian focus wave mode, a helical Bessel-Gauss pulse, and a helical acoustic directed energy pulse train. Some of these solutions have the interesting feature that their shape and localization properties depend not only on the wave number governing propagation along the longitudinal axis but also on the normalized helical pitch.
Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing
NASA Astrophysics Data System (ADS)
Vorontsov, Mikhail A.; Kolosov, Valeriy
2005-01-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.
Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.
Vorontsov, Mikhail A; Kolosov, Valeriy
2005-01-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.
1988-02-01
in Multi- dimensions II, P.M. Santini and A.S. Fokas, preprint INS#67, 1986. The Recursion Operator of the Kadomtsev - Petviashvili Equation and the...solitons, multidimensional inverse problems, Painleve equations , direct linearizations of certain nonlinear wave equations , DBAR problems, Riemann...the Navy is (a) the recent discovery that many of the equations describing ship hydrodynamics in channels of finite depth obey nonlinear equations
Model Parameterization and P-wave AVA Direct Inversion for Young's Impedance
NASA Astrophysics Data System (ADS)
Zong, Zhaoyun; Yin, Xingyao
2017-05-01
AVA inversion is an important tool for elastic parameters estimation to guide the lithology prediction and "sweet spot" identification of hydrocarbon reservoirs. The product of the Young's modulus and density (named as Young's impedance in this study) is known as an effective lithology and brittleness indicator of unconventional hydrocarbon reservoirs. Density is difficult to predict from seismic data, which renders the estimation of the Young's impedance inaccurate in conventional approaches. In this study, a pragmatic seismic AVA inversion approach with only P-wave pre-stack seismic data is proposed to estimate the Young's impedance to avoid the uncertainty brought by density. First, based on the linearized P-wave approximate reflectivity equation in terms of P-wave and S-wave moduli, the P-wave approximate reflectivity equation in terms of the Young's impedance is derived according to the relationship between P-wave modulus, S-wave modulus, Young's modulus and Poisson ratio. This equation is further compared to the exact Zoeppritz equation and the linearized P-wave approximate reflectivity equation in terms of P- and S-wave velocities and density, which illustrates that this equation is accurate enough to be used for AVA inversion when the incident angle is within the critical angle. Parameter sensitivity analysis illustrates that the high correlation between the Young's impedance and density render the estimation of the Young's impedance difficult. Therefore, a de-correlation scheme is used in the pragmatic AVA inversion with Bayesian inference to estimate Young's impedance only with pre-stack P-wave seismic data. Synthetic examples demonstrate that the proposed approach is able to predict the Young's impedance stably even with moderate noise and the field data examples verify the effectiveness of the proposed approach in Young's impedance estimation and "sweet spots" evaluation.
Consistent three-equation model for thin films
NASA Astrophysics Data System (ADS)
Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul
2017-11-01
Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.
FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.; Torrisi, M.; Tracinà, R.
2010-11-01
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.
Wave equations on anti self dual (ASD) manifolds
NASA Astrophysics Data System (ADS)
Bashingwa, Jean-Juste; Kara, A. H.
2017-11-01
In this paper, we study and perform analyses of the wave equation on some manifolds with non diagonal metric g_{ij} which are of neutral signatures. These include the invariance properties, variational symmetries and conservation laws. In the recent past, wave equations on the standard (space time) Lorentzian manifolds have been performed but not on the manifolds from metrics of neutral signatures.
Hand-Held Calculator Algorithms for Coastal Engineering.
1982-01-01
and water depth at the structure toe, ds. The development of the equation is derived on the solution sheet included with program 104R. Algorithm uses...Limited Design Breaking Wave Height at Structure (AOS logic)... .... ....... ......... .54 6. 105R Wave Transmission - Fuchs’ Equation (RPN logic...58 105A Wave Transmission - Fuchs’ Equation (AOS logic). . . . 61 APPENDIX BLANK PROGRAM FORMS ........ ....................... ... 67 4
Alam, Md Nur; Akbar, M Ali
2013-01-01
The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.
High-frequency sound waves to eliminate a horizon in the mixmaster universe.
NASA Technical Reports Server (NTRS)
Chitre, D. M.
1972-01-01
From the linear wave equation for small-amplitude sound waves in a curved space-time, there is derived a geodesiclike differential equation for sound rays to describe the motion of wave packets. These equations are applied in the generic, nonrotating, homogeneous closed-model universe (the 'mixmaster universe,' Bianchi type IX). As for light rays described by Doroshkevich and Novikov (DN), these sound rays can circumnavigate the universe near the singularity to remove particle horizons only for a small class of these models and in special directions. Although these results parallel those of DN, different Hamiltonian methods are used for treating the Einstein equations.
Unstable solitary-wave solutions of the generalized Benjamin-Bona-Mahony equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinney, W.R.; Restrepo, J.M.; Bona, J.L.
1994-06-01
The evolution of solitary waves of the gBBM equation is investigated computationally. The experiments confirm previously derived theoretical stability estimates and, more importantly, yield insights into their behavior. For example, highly energetic unstable solitary waves when perturbed are shown to evolve into several stable solitary waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabchoub, A., E-mail: achabchoub@swin.edu.au; Kibler, B.; Finot, C.
2015-10-15
The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. amore » nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.« less
KP Equation in a Three-Dimensional Unmagnetized Warm Dusty Plasma with Variable Dust Charge
NASA Astrophysics Data System (ADS)
El-Shorbagy, Kh. H.; Mahassen, Hania; El-Bendary, Atef Ahmed
2017-12-01
In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-Coulomb waves in an unmagnetized warm dusty plasma consisting of electrons, ions, and charged dust particles. The grain charge fluctuation is incorporated through the current balance equation. Using the perturbation method, a Kadomtsev-Petviashvili (KP) equation is obtained. It has been shown that the charge fluctuation would modify the wave structures, and the waves in such systems are unstable due to high-order long wave perturbations.
Secondary Bifurcation and Change of Type for Three Dimensional Standing Waves in Shallow Water.
1986-02-01
field of standing K-P waves. A set of two non-interacting (to first order) solutions of the K-P equation ( Kadomtsev - Petviashvili 1970). The K-P equation ...P equation was first derived by Kadomtsev & Petviashvili (1970) in their study of the stability of solitary waves to transverse perturbations. A...Scientists, Springer-Verlag 6. B.A. Dubrovin (1981), "Theta Functions and Non-linear Equations ", Russian Mat. Surveys, 36, 11-92 7 B.B. Kadomtsev
Soliton and quasi-periodic wave solutions for b-type Kadomtsev-Petviashvili equation
NASA Astrophysics Data System (ADS)
Singh, Manjit; Gupta, R. K.
2017-11-01
In this paper, truncated Laurent expansion is used to obtain the bilinear equation of a nonlinear evolution equation. As an application of Hirota's method, multisoliton solutions are constructed from the bilinear equation. Extending the application of Hirota's method and employing multidimensional Riemann theta function, one and two-periodic wave solutions are also obtained in a straightforward manner. The asymptotic behavior of one and two-periodic wave solutions under small amplitude limits is presented, and their relations with soliton solutions are also demonstrated.
A Numerical Method for Predicting Rayleigh Surface Wave Velocity in Anisotropic Crystals (Postprint)
2017-09-05
generalized version of the equations are very difficult to derive, even in symbolic math languages such as Mathematica. As a result, the equations are...formalism, Math . Mech. Solids 9 (1) (2004) 5–15. [8] M. Destrade, The explicit secular equation for surface acoustic waves in monoclinic elastic crystals...Q. J. Mech. Appl. Math . 55 (2) (2002) 297–311. [10] D. Taylor, Surface waves in anisotropic media: the secular equation and its numerical solution
NASA Astrophysics Data System (ADS)
Batool, Fiza; Akram, Ghazala
2018-01-01
In this article the solitary wave solutions of generalized fractional Zakharov-Kuznetsov (GZK) equation which appear in the electrical transmission line model are investigated. The (G'/G)-expansion method is used to obtain the solitary solutions of fractional GZK equation via local fractional derivative. Three classes of solutions, hyperbolic, trigonometric and rational wave solutions of the associated equation are characterized with some free parameters. The obtained solutions reveal that the proposed technique is effective and powerful.
Statistics of extreme waves in the framework of one-dimensional Nonlinear Schrodinger Equation
NASA Astrophysics Data System (ADS)
Agafontsev, Dmitry; Zakharov, Vladimir
2013-04-01
We examine the statistics of extreme waves for one-dimensional classical focusing Nonlinear Schrodinger (NLS) equation, iΨt + Ψxx + |Ψ |2Ψ = 0, (1) as well as the influence of the first nonlinear term beyond Eq. (1) - the six-wave interactions - on the statistics of waves in the framework of generalized NLS equation accounting for six-wave interactions, dumping (linear dissipation, two- and three-photon absorption) and pumping terms, We solve these equations numerically in the box with periodically boundary conditions starting from the initial data Ψt=0 = F(x) + ?(x), where F(x) is an exact modulationally unstable solution of Eq. (1) seeded by stochastic noise ?(x) with fixed statistical properties. We examine two types of initial conditions F(x): (a) condensate state F(x) = 1 for Eq. (1)-(2) and (b) cnoidal wave for Eq. (1). The development of modulation instability in Eq. (1)-(2) leads to formation of one-dimensional wave turbulence. In the integrable case the turbulence is called integrable and relaxes to one of infinite possible stationary states. Addition of six-wave interactions term leads to appearance of collapses that eventually are regularized by the dumping terms. The energy lost during regularization of collapses in (2) is restored by the pumping term. In the latter case the system does not demonstrate relaxation-like behavior. We measure evolution of spectra Ik =< |Ψk|2 >, spatial correlation functions and the PDFs for waves amplitudes |Ψ|, concentrating special attention on formation of "fat tails" on the PDFs. For the classical integrable NLS equation (1) with condensate initial condition we observe Rayleigh tails for extremely large waves and a "breathing region" for middle waves with oscillations of the frequency of waves appearance with time, while nonintegrable NLS equation with dumping and pumping terms (2) with the absence of six-wave interactions α = 0 demonstrates perfectly Rayleigh PDFs without any oscillations with time. In case of the cnoidal wave initial condition we observe severely non-Rayleigh PDFs for the classical NLS equation (1) with the regions corresponding to 2-, 3- and so on soliton collisions clearly seen of the PDFs. Addition of six-wave interactions in Eq. (2) for condensate initial condition results in appearance of non-Rayleigh addition to the PDFs that increase with six-wave interaction constant α and disappears with the absence of six-wave interactions α = 0. References: [1] D.S. Agafontsev, V.E. Zakharov, Rogue waves statistics in the framework of one-dimensional Generalized Nonlinear Schrodinger Equation, arXiv:1202.5763v3.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.
2007-01-01
It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.
Rogue-wave bullets in a composite (2+1)D nonlinear medium.
Chen, Shihua; Soto-Crespo, Jose M; Baronio, Fabio; Grelu, Philippe; Mihalache, Dumitru
2016-07-11
We show that nonlinear wave packets localized in two dimensions with characteristic rogue wave profiles can propagate in a third dimension with significant stability. This unique behavior makes these waves analogous to light bullets, with the additional feature that they propagate on a finite background. Bulletlike rogue-wave singlet and triplet are derived analytically from a composite (2+1)D nonlinear wave equation. The latter can be interpreted as the combination of two integrable (1+1)D models expressed in different dimensions, namely, the Hirota equation and the complex modified Korteweg-de Vries equation. Numerical simulations confirm that the generation of rogue-wave bullets can be observed in the presence of spontaneous modulation instability activated by quantum noise.
Analytical and numerical solution for wave reflection from a porous wave absorber
NASA Astrophysics Data System (ADS)
Magdalena, Ikha; Roque, Marian P.
2018-03-01
In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.
Temporal evolutions and stationary waves for dissipative Benjamin-Ono equation
NASA Astrophysics Data System (ADS)
Feng, Bao-Feng; Kawahara, Takuji
2000-05-01
Initial value problems as well as stationary solitary and periodic waves are investigated for dissipative Benjamin-Ono (DBO) equation. Multi-hump stationary waves and their structures are identified numerically and the stability regions of stationary periodic waves are also examined numerically. These results elucidate a close relation between irregular behaviours in the initial value problem and the multiplicity of stationary waves.
Wave equation datuming applied to S-wave reflection seismic data
NASA Astrophysics Data System (ADS)
Tinivella, U.; Giustiniani, M.; Nicolich, R.
2018-05-01
S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.
Li, Li; Yu, Fajun
2017-09-06
We investigate non-autonomous multi-rogue wave solutions in a three-component(spin-1) coupled nonlinear Gross-Pitaevskii(GP) equation with varying dispersions, higher nonlinearities, gain/loss and external potentials. The similarity transformation allows us to relate certain class of multi-rogue wave solutions of the spin-1 coupled nonlinear GP equation to the solutions of integrable coupled nonlinear Schrödinger(CNLS) equation. We study the effect of time-dependent quadratic potential on the profile and dynamic of non-autonomous rogue waves. With certain requirement on the backgrounds, some non-autonomous multi-rogue wave solutions exhibit the different shapes with two peaks and dip in bright-dark rogue waves. Then, the managements with external potential and dynamic behaviors of these solutions are investigated analytically. The results could be of interest in such diverse fields as Bose-Einstein condensates, nonlinear fibers and super-fluids.
A new mathematical approach for shock-wave solution in a dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, G.C.; Dwivedi, C.B.; Talukdar, M.
1997-12-01
The problem of nonlinear Burger equation in a plasma contaminated with heavy dust grains has been revisited. As discussed earlier [C. B. Dwivedi and B. P. Pandey, Phys. Plasmas {bold 2}, 9 (1995)], the Burger equation originates due to dust charge fluctuation dynamics. A new alternate mathematical approach based on a simple traveling wave formalism has been applied to find out the solution of the derived Burger equation, and the method recovers the known shock-wave solution. This technique, although having its own limitation, predicts successfully the salient features of the weak shock-wave structure in a dusty plasma with dust chargemore » fluctuation dynamics. It is emphasized that this approach of the traveling wave formalism is being applied for the first time to solve the nonlinear wave equation in plasmas. {copyright} {ital 1997 American Institute of Physics.}« less
A phase space approach to wave propagation with dispersion.
Ben-Benjamin, Jonathan S; Cohen, Leon; Loughlin, Patrick J
2015-08-01
A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.
NASA Technical Reports Server (NTRS)
Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Schriver, David; Solomon, Sean C.
2012-01-01
We summarize observations by the MESSENGER spacecraft of highly coherent waves at frequencies between 0.4 and 5 Hz in Mercury's inner magnetosphere. This survey covers the time period from 24 March to 25 September 2011, or 2.1 Mercury years. These waves typically exhibit banded harmonic structure that drifts in frequency as the spacecraft traverses the magnetic equator. The waves are seen at all magnetic local times, but their observed rate of occurrence is much less on the dayside, at least in part the result of MESSENGER's orbit. On the nightside, on average, wave power is maximum near the equator and decreases with increasing magnetic latitude, consistent with an equatorial source. When the spacecraft traverses the plasma sheet during its equatorial crossings, wave power is a factor of 2 larger than for equatorial crossings that do not cross the plasma sheet. The waves are highly transverse at large magnetic latitudes but are more compressional near the equator. However, at the equator the transverse component of these waves increases relative to the compressional component as the degree of polarization decreases. Also, there is a substantial minority of events that are transverse at all magnetic latitudes, including the equator. A few of these latter events could be interpreted as ion cyclotron waves. In general, the waves tend to be strongly linear and characterized by values of the ellipticity less than 0.3 and wave-normal angles peaked near 90 deg. Their maxima in wave power at the equator coupled with their narrow-band character suggests that these waves might be generated locally in loss cone plasma characterized by high values of the ratio beta of plasma pressure to magnetic pressure. Presumably both electromagnetic ion cyclotron waves and electromagnetic ion Bernstein waves can be generated by ion loss cone distributions. If proton beta decreases with increasing magnetic latitude along a field line, then electromagnetic ion Bernstein waves are predicted to transition from compressional to transverse, a pattern consistent with our observations. We hypothesize that these local instabilities can lead to enhanced ion precipitation and directly feed field-line resonances.
Localized light waves: Paraxial and exact solutions of the wave equation (a review)
NASA Astrophysics Data System (ADS)
Kiselev, A. P.
2007-04-01
Simple explicit localized solutions are systematized over the whole space of a linear wave equation, which models the propagation of optical radiation in a linear approximation. Much attention has been paid to exact solutions (which date back to the Bateman findings) that describe wave beams (including Bessel-Gauss beams) and wave packets with a Gaussian localization with respect to the spatial variables and time. Their asymptotics with respect to free parameters and at large distances are presented. A similarity between these exact solutions and harmonic in time fields obtained in the paraxial approximation based on the Leontovich-Fock parabolic equation has been studied. Higher-order modes are considered systematically using the separation of variables method. The application of the Bateman solutions of the wave equation to the construction of solutions to equations with dispersion and nonlinearity and their use in wavelet analysis, as well as the summation of Gaussian beams, are discussed. In addition, solutions localized at infinity known as the Moses-Prosser “acoustic bullets”, as well as their harmonic in time counterparts, “ X waves”, waves from complex sources, etc., have been considered. Everywhere possible, the most elementary mathematical formalism is used.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Yong; Zhang, Guoqiang
2018-01-01
Under investigation in this paper is the Kundu equation, which may be used to describe the propagation process of ultrashort optical pulses in nonlinear optics. The modulational instability of the plane-wave for the possible reason of the formation of the rogue wave (RW) is studied for the system. Based on our proposed generalized perturbation (n,N - n)-fold Darboux transformation (DT), some new higher-order implicit RW solutions in terms of determinants are obtained by means of the generalized perturbation (1,N - 1)-fold DT, when choosing different special parameters, these results will reduce to the RW solutions of the Kaup-Newell (KN) equation, Chen-Lee-Liu (CLL) equation and Gerjikov-Ivanov (GI) equation, respectively. The relevant wave structures are shown graphically, which display abundant interesting wave structures. The dynamical behaviors and propagation stability of the first-order and second-order RW solutions are discussed by using numerical simulations, the higher-order nonlinear terms for the Kundu equation have an impact on the propagation instability of the RW. The method can also be extended to find the higher-order RW or rational solutions of other integrable nonlinear equations.
NASA Astrophysics Data System (ADS)
Araneda, Bernardo
2018-04-01
We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace–de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing–Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.
A boundary integral approach to the scattering of nonplanar acoustic waves by rigid bodies
NASA Technical Reports Server (NTRS)
Gallman, Judith M.; Myers, M. K.; Farassat, F.
1990-01-01
The acoustic scattering of an incident wave by a rigid body can be described by a singular Fredholm integral equation of the second kind. This equation is derived by solving the wave equation using generalized function theory, Green's function for the wave equation in unbounded space, and the acoustic boundary condition for a perfectly rigid body. This paper will discuss the derivation of the wave equation, its reformulation as a boundary integral equation, and the solution of the integral equation by the Galerkin method. The accuracy of the Galerkin method can be assessed by applying the technique outlined in the paper to reproduce the known pressure fields that are due to various point sources. From the analysis of these simpler cases, the accuracy of the Galerkin solution can be inferred for the scattered pressure field caused by the incidence of a dipole field on a rigid sphere. The solution by the Galerkin technique can then be applied to such problems as a dipole model of a propeller whose pressure field is incident on a rigid cylinder. This is the groundwork for modeling the scattering of rotating blade noise by airplane fuselages.
Traveling wave solutions and conservation laws for nonlinear evolution equation
NASA Astrophysics Data System (ADS)
Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa
2018-02-01
In this work, the Riccati-Bernoulli sub-ordinary differential equation and modified tanh-coth methods are used to reach soliton solutions of the nonlinear evolution equation. We acquire new types of traveling wave solutions for the governing equation. We show that the equation is nonlinear self-adjoint by obtaining suitable substitution. Therefore, we construct conservation laws for the equation using new conservation theorem. The obtained solutions in this work may be used to explain and understand the physical nature of the wave spreads in the most dispersive medium. The constraint condition for the existence of solitons is stated. Some three dimensional figures for some of the acquired results are illustrated.
Diffusion phenomenon for linear dissipative wave equations in an exterior domain
NASA Astrophysics Data System (ADS)
Ikehata, Ryo
Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.
Nonlinear Waves and Inverse Scattering
1990-09-18
to be published Proceedings: conference Chaos in Australia (February 1990). 5. On the Kadomtsev Petviashvili Equation and Associated Constraints by...Scattering Transfoni (IST). IST is a method which alows one to’solve nonlinear wave equations by solving certain related direct and inverse scattering...problems. We use these results to find solutions to nonlinear wave equations much like one uses Fourier analysis for linear problems. Moreover the
NASA Astrophysics Data System (ADS)
Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal
2012-06-01
Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.
Influence of optical activity on rogue waves propagating in chiral optical fibers.
Temgoua, D D Estelle; Kofane, T C
2016-06-01
We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.
Ginzburg-Landau equation as a heuristic model for generating rogue waves
NASA Astrophysics Data System (ADS)
Lechuga, Antonio
2016-04-01
Envelope equations have many applications in the study of physical systems. Particularly interesting is the case 0f surface water waves. In steady conditions, laboratory experiments are carried out for multiple purposes either for researches or for practical problems. In both cases envelope equations are useful for understanding qualitative and quantitative results. The Ginzburg-Landau equation provides an excellent model for systems of that kind with remarkable patterns. Taking into account the above paragraph the main aim of our work is to generate waves in a water tank with almost a symmetric spectrum according to Akhmediev (2011) and thus, to produce a succession of rogue waves. The envelope of these waves gives us some patterns whose model is a type of Ginzburg-Landau equation, Danilov et al (1988). From a heuristic point of view the link between the experiment and the model is achieved. Further, the next step consists of changing generating parameters on the water tank and also the coefficients of the Ginzburg-Landau equation, Lechuga (2013) in order to reach a sufficient good approach.
Explicit Solutions and Bifurcations for a Class of Generalized Boussinesq Wave Equation
NASA Astrophysics Data System (ADS)
Ma, Zhi-Min; Sun, Yu-Huai; Liu, Fu-Sheng
2013-03-01
In this paper, the generalized Boussinesq wave equation utt — uxx + a(um)xx + buxxxx = 0 is investigated by using the bifurcation theory and the method of phase portraits analysis. Under the different parameter conditions, the exact explicit parametric representations for solitary wave solutions and periodic wave solutions are obtained.
Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents.
Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan
2014-04-08
Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves.
Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents
Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan
2014-01-01
Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves. PMID:24711719
Solitary-wave solutions of the Benjamin equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, J.P.; Bona, J.L.; Restrepo, J.M.
1999-10-01
Considered here is a model equation put forward by Benjamin that governs approximately the evolution of waves on the interface of a two-fluid system in which surface-tension effects cannot be ignored. The principal focus is the traveling-wave solutions called solitary waves, and three aspects will be investigated. A constructive proof of the existence of these waves together with a proof of their stability is developed. Continuation methods are used to generate a scheme capable of numerically approximating these solitary waves. The computer-generated approximations reveal detailed aspects of the structure of these waves. They are symmetric about their crests, but unlikemore » the classical Korteqeg-de Vries solitary waves, they feature a finite number of oscillations. The derivation of the equation is also revisited to get an idea of whether or not these oscillatory waves might actually occur in a natural setting.« less
Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic.more » A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.« less
On the solution of the generalized wave and generalized sine-Gordon equations
NASA Technical Reports Server (NTRS)
Ablowitz, M. J.; Beals, R.; Tenenblat, K.
1986-01-01
The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.
Kataoka; Tsutahara; Akuzawa
2000-02-14
We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.
Twisted rogue-wave pairs in the Sasa-Satsuma equation.
Chen, Shihua
2013-08-01
Exact explicit rogue wave solutions of the Sasa-Satsuma equation are obtained by use of a Darboux transformation. In addition to the double-peak structure and an analog of the Peregrine soliton, the rogue wave can exhibit an intriguing twisted rogue-wave pair that involves four well-defined zero-amplitude points. This exotic structure may enrich our understanding on the nature of rogue waves.
Influence of a weak gravitational wave on a bound system of two point-masses. [of binary stars
NASA Technical Reports Server (NTRS)
Turner, M. S.
1979-01-01
The problem of a weak gravitational wave impinging upon a nonrelativistic bound system of two point masses is considered. The geodesic equation for each mass is expanded in terms of two small parameters, v/c and dimensionless wave amplitude, in a manner similar to the post-Newtonian expansion; the geodesic equations are resolved into orbital and center-of-mass equations of motion. The effect of the wave on the orbit is determined by using Lagrange's planetary equations to calculate the time evolution of the orbital elements. The gauge properties of the solutions and, in particular, the gauge invariance of the secular effects are discussed.
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Curtis, Christopher W.
2011-05-01
The Benney-Luke equation, which arises as a long wave asymptotic approximation of water waves, contains the Kadomtsev-Petviashvilli (KP) equation as a leading-order maximal balanced approximation. The question analyzed is how the Benney-Luke equation modifies the so-called web solutions of the KP equation. It is found that the Benney-Luke equation introduces dispersive radiation which breaks each of the symmetric soliton-like humps well away from the interaction region of the KP web solution into a tail of multi-peaked oscillating profiles behind the main solitary hump. Computation indicates that the wave structure is modified near the center of the interaction region. Both analytical and numerical techniques are employed for working with non-periodic, non-decaying solutions on unbounded domains.
Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations.
Islam, S M Rayhanul; Khan, Kamruzzaman; Akbar, M Ali
2015-01-01
In this paper, we implement the exp(-Φ(ξ))-expansion method to construct the exact traveling wave solutions for nonlinear evolution equations (NLEEs). Here we consider two model equations, namely the Korteweg-de Vries (KdV) equation and the time regularized long wave (TRLW) equation. These equations play significant role in nonlinear sciences. We obtained four types of explicit function solutions, namely hyperbolic, trigonometric, exponential and rational function solutions of the variables in the considered equations. It has shown that the applied method is quite efficient and is practically well suited for the aforementioned problems and so for the other NLEEs those arise in mathematical physics and engineering fields. PACS numbers: 02.30.Jr, 02.70.Wz, 05.45.Yv, 94.05.Fq.
Progressive wave expansions and open boundary problems
NASA Technical Reports Server (NTRS)
Hagstrom, T.; Hariharan, S. I.
1995-01-01
In this paper we construct progressive wave expansions and asymptotic boundary conditions for wave-like equations in exterior domains, including applications to electromagnetics, compressible flows and aero-acoustics. The development of the conditions will be discussed in two parts. The first part will include derivations of asymptotic conditions based on the well-known progressive wave expansions for the two-dimensional wave equations. A key feature in the derivations is that the resulting family of boundary conditions involves a single derivative in the direction normal to the open boundary. These conditions are easy to implement and an application in electromagnetics will be presented. The second part of the paper will discuss the theory for hyperbolic systems in two dimensions. Here, the focus will be to obtain the expansions in a general way and to use them to derive a class of boundary conditions that involve only time derivatives or time and tangential derivatives. Maxwell's equations and the compressible Euler equations are used as examples. Simulations with the linearized Euler equations are presented to validate the theory.
On critical behaviour in generalized Kadomtsev-Petviashvili equations
NASA Astrophysics Data System (ADS)
Dubrovin, B.; Grava, T.; Klein, C.
2016-10-01
An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev-Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the dispersive shock waves.
Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations
NASA Astrophysics Data System (ADS)
Novruzov, Emil
2017-11-01
This paper is concerned with blow-up phenomena for the nonlinear dispersive wave equation on the real line, ut -uxxt +[ f (u) ] x -[ f (u) ] xxx +[ g (u) + f″/(u) 2 ux2 ] x = 0 that includes the Camassa-Holm equation as well as the hyperelastic-rod wave equation (f (u) = ku2 / 2 and g (u) = (3 - k) u2 / 2) as special cases. We establish some a local-in-space blow-up criterion (i.e., a criterion involving only the properties of the data u0 in a neighborhood of a single point) simplifying and precising earlier blow-up criteria for this equation.
The Weyl-Lanczos equations and the Lanczos wave equation in four dimensions as systems in involution
NASA Astrophysics Data System (ADS)
Dolan, P.; Gerber, A.
2003-07-01
The Weyl-Lanczos equations in four dimensions form a system in involution. We compute its Cartan characters explicitly and use Janet-Riquier theory to confirm the results in the case of all space-times with a diagonal metric tensor and for the plane wave limit of space-times. We write the Lanczos wave equation as an exterior differential system and, with assistance from Janet-Riquier theory, we compute its Cartan characters and find that it forms a system in involution. We compare these Cartan characters with those of the Weyl-Lanczos equations. All results hold for the real analytic case.
NASA Astrophysics Data System (ADS)
Olano, C. A.
2009-11-01
Context: Using certain simplifications, Kompaneets derived a partial differential equation that states the local geometrical and kinematical conditions that each surface element of a shock wave, created by a point blast in a stratified gaseous medium, must satisfy. Kompaneets could solve his equation analytically for the case of a wave propagating in an exponentially stratified medium, obtaining the form of the shock front at progressive evolutionary stages. Complete analytical solutions of the Kompaneets equation for shock wave motion in further plane-parallel stratified media were not found, except for radially stratified media. Aims: We aim to analytically solve the Kompaneets equation for the motion of a shock wave in different plane-parallel stratified media that can reflect a wide variety of astrophysical contexts. We were particularly interested in solving the Kompaneets equation for a strong explosion in the interstellar medium of the Galactic disk, in which, due to intense winds and explosions of stars, gigantic gaseous structures known as superbubbles and supershells are formed. Methods: Using the Kompaneets approximation, we derived a pair of equations that we call adapted Kompaneets equations, that govern the propagation of a shock wave in a stratified medium and that permit us to obtain solutions in parametric form. The solutions provided by the system of adapted Kompaneets equations are equivalent to those of the Kompaneets equation. We solved the adapted Kompaneets equations for shock wave propagation in a generic stratified medium by means of a power-series method. Results: Using the series solution for a shock wave in a generic medium, we obtained the series solutions for four specific media whose respective density distributions in the direction perpendicular to the stratification plane are of an exponential, power-law type (one with exponent k=-1 and the other with k =-2) and a quadratic hyperbolic-secant. From these series solutions, we deduced exact solutions for the four media in terms of elemental functions. The exact solution for shock wave propagation in a medium of quadratic hyperbolic-secant density distribution is very appropriate to describe the growth of superbubbles in the Galactic disk. Member of the Carrera del Investigador Científico del CONICET, Argentina.
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Tian, Yu; Zeng, Zhi-Fang
2017-10-01
In this paper, we aim to introduce a new form of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation for the long waves of small amplitude with slow dependence on the transverse coordinate. By using the Hirota's bilinear form and the extended homoclinic test approach, new exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation are presented. Moreover, the properties and characteristics for these new exact periodic solitary-wave solutions are discussed with some figures.
NASA Astrophysics Data System (ADS)
Simbanefayi, Innocent; Khalique, Chaudry Masood
2018-03-01
In this work we study the Korteweg-de Vries-Benjamin-Bona-Mahony (KdV-BBM) equation, which describes the two-way propagation of waves. Using Lie symmetry method together with Jacobi elliptic function expansion and Kudryashov methods we construct its travelling wave solutions. Also, we derive conservation laws of the KdV-BBM equation using the variational derivative approach. In this method, we begin by computing second-order multipliers for the KdV-BBM equation followed by a derivation of the respective conservation laws for each multiplier.
Analytical studies on the Benney-Luke equation in mathematical physics
NASA Astrophysics Data System (ADS)
Islam, S. M. Rayhanul; Khan, Kamruzzaman; Woadud, K. M. Abdul Al
2018-04-01
The enhanced (G‧/G)-expansion method presents wide applicability to handling nonlinear wave equations. In this article, we find the new exact traveling wave solutions of the Benney-Luke equation by using the enhanced (G‧/G)-expansion method. This method is a useful, reliable, and concise method to easily solve the nonlinear evaluation equations (NLEEs). The traveling wave solutions have expressed in term of the hyperbolic and trigonometric functions. We also have plotted the 2D and 3D graphics of some analytical solutions obtained in this paper.
A nonlinear wave equation in nonadiabatic flame propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booty, M.R.; Matalon, M.; Matkowsky, B.J.
1988-06-01
The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time.
1984-08-01
the Kadomtsev - • . Petviashvili (1) equations . A derivation of Eq. (1) in the case of . " * internal waves is given in reference (2). An important...second statement is demonstrated to be false. The% Kadomtsev -.1etviashvile equation relevant to Internal Waves is shown not to have SOliL -solutions. This...more than one space dimension. The second statement is demonstrated to be false. The Kadomtsev -Petviashvile equation relevant to Internal Waves Is
Jiao, Fengyu; Wei, Peijun; Li, Yueqiu
2018-01-01
Reflection and transmission of plane waves through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces are studied in this paper. The secular equations in the flexoelectric piezoelectric material are first derived from the general governing equation. Different from the classical piezoelectric medium, there are five kinds of coupled elastic waves in the piezoelectric material with the microstructure effects taken into consideration. The state vectors are obtained by the summation of contributions from all possible partial waves. The state transfer equation of flexoelectric piezoelectric slab is derived from the motion equation by the reduction of order, and the transfer matrix of flexoelectric piezoelectric slab is obtained by solving the state transfer equation. By using the continuous conditions at the interface and the approach of partition matrix, we get the resultant algebraic equations in term of the transfer matrix from which the reflection and transmission coefficients can be calculated. The amplitude ratios and further the energy flux ratios of various waves are evaluated numerically. The numerical results are shown graphically and are validated by the energy conservation law. Based on these numerical results, the influences of two characteristic lengths of microstructure and the flexoelectric coefficients on the wave propagation are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kim, H.; Crawford, F. W.
1977-01-01
It is pointed out that the conventional iterative analysis of nonlinear plasma wave phenomena, which involves a direct use of Maxwell's equations and the equations describing the particle dynamics, leads to formidable theoretical and algebraic complexities, especially for warm plasmas. As an effective alternative, the Lagrangian method may be applied. It is shown how this method may be used in the microscopic description of small-signal wave propagation and in the study of nonlinear wave interactions. The linear theory is developed for an infinite, homogeneous, collisionless, warm magnetoplasma. A summary is presented of a perturbation expansion scheme described by Galloway and Kim (1971), and Lagrangians to third order in perturbation are considered. Attention is given to the averaged-Lagrangian density, the action-transfer and coupled-mode equations, and the general solution of the coupled-mode equations.
Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger-Boussinesq system
NASA Astrophysics Data System (ADS)
Sun, Baonan; Lian, Zhan
2018-02-01
By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrödinger-Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel'nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger-Boussinesq system are generated.
Some new traveling wave exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli equations.
Qi, Jian-ming; Zhang, Fu; Yuan, Wen-jun; Huang, Zi-feng
2014-01-01
We employ the complex method to obtain all meromorphic exact solutions of complex (2+1)-dimensional Boiti-Leon-Pempinelli equations (BLP system of equations). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic traveling wave exact solutions of the equations (BLP) are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions ur,2 (z) and simply periodic solutions us,2-6(z) which are not only new but also not degenerated successively by the elliptic function solutions. We believe that this method should play an important role for finding exact solutions in the mathematical physics. For these new traveling wave solutions, we give some computer simulations to illustrate our main results.
Rogue waves and unbounded solutions of the NLSE
NASA Astrophysics Data System (ADS)
Lechuga, Antonio
2017-04-01
Since the pioneering work of Zakharov has been generally admitted that rogue waves can be studied in the framework of the Nonlinear Schrödinger Equation (NLSE). Many researchers, Akhmediev, Peregrine, Matveev among others gave different solutions to this equation that, in some way, could be linked to rogue waves and also to its more important characteristic: its unexpectedness. Janssen (2003, 2004), Onorato (2004, 2006) and Waseda (2006) linked the coefficient of the nonlinear term of the Schrödinger equation with the Benjamin-Feir index (BFI) that, we know, is a measure of the modulational instability of the waves. From this point of view the value of this coefficient of the NLSE could be known from statistics. Thus the relationship between sea states and the mechanism of generation of rogue waves could be found out. Following the well-known Lie group theory researchers have been studying the Lie point symmetries of the NLSE: the scaling transformations, Galilean transformations and phase transformations. Basically these transformations turn the NLSE into a nonlinear ordinary differential equation called Duffing equation (also called eikonal equation). There are different ways to do this, but in most of them the independent variable that could be seen as a space variable is a kind of moving frame with the time incorporated in this way. The main aim of this work is to classify solutions of the Duffing equation (periodic and nonperiodic waves and also bounded and unbounded waves) bearing in mind that the coefficient of the nonlinear term in the NLSE is left unaltered in the process of the transformation.
Generation of long subharmonic internal waves by surface waves
NASA Astrophysics Data System (ADS)
Tahvildari, Navid; Kaihatu, James M.; Saric, William S.
2016-10-01
A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.
Equivalent equations of motion for gravity and entropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel
We demonstrate an equivalence between the wave equation obeyed by the entanglement entropy of CFT subregions and the linearized bulk Einstein equation in Anti-de Sitter space. In doing so, we make use of the formalism of kinematic space and fields on this space. We show that the gravitational dynamics are equivalent to a gauge invariant wave-equation on kinematic space and that this equation arises in natural correspondence to the conformal Casimir equation in the CFT.
Equivalent equations of motion for gravity and entropy
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...
2017-02-01
We demonstrate an equivalence between the wave equation obeyed by the entanglement entropy of CFT subregions and the linearized bulk Einstein equation in Anti-de Sitter space. In doing so, we make use of the formalism of kinematic space and fields on this space. We show that the gravitational dynamics are equivalent to a gauge invariant wave-equation on kinematic space and that this equation arises in natural correspondence to the conformal Casimir equation in the CFT.
High Frequency Acoustic Propagation using Level Set Methods
2007-01-01
solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...the Eikonal equation derived from the high frequency approximation to the wave equation, ucuH ∇±=∇ )(),( xx , with the nonnegative function c(x...For simplicity, we only consider the case ucuH ∇+=∇ )(),( xx . Two difficulties must be addressed when solving the Eikonal equation in a fixed
Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations
NASA Astrophysics Data System (ADS)
Huang, Li-Li; Qiao, Zhi-Jun; Chen, Yong
2018-02-01
Based on nonlocal symmetry method, localized excitations and interactional solutions are investigated for the reduced Maxwell-Bloch equations. The nonlocal symmetries of the reduced Maxwell-Bloch equations are obtained by the truncated Painleve expansion approach and the Mobious invariant property. The nonlocal symmetries are localized to a prolonged system by introducing suitable auxiliary dependent variables. The extended system can be closed and a novel Lie point symmetry system is constructed. By solving the initial value problems, a new type of finite symmetry transformations is obtained to derive periodic waves, Ma breathers and breathers travelling on the background of periodic line waves. Then rich exact interactional solutions are derived between solitary waves and other waves including cnoidal waves, rational waves, Painleve waves, and periodic waves through similarity reductions. In particular, several new types of localized excitations including rogue waves are found, which stem from the arbitrary function generated in the process of similarity reduction. By computer numerical simulation, the dynamics of these localized excitations and interactional solutions are discussed, which exhibit meaningful structures.
Grating formation by a high power radio wave in near-equator ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.
2011-11-15
The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Suchmore » a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.« less
NASA Astrophysics Data System (ADS)
Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua
2016-12-01
Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205
NASA Astrophysics Data System (ADS)
Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref
2017-11-01
This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.
Time domain viscoelastic full waveform inversion
NASA Astrophysics Data System (ADS)
Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard
2017-06-01
Viscous attenuation can have a strong impact on seismic wave propagation, but it is rarely taken into account in full waveform inversion (FWI). When viscoelasticity is considered in time domain FWI, the displacement formulation of the wave equation is usually used instead of the popular velocity-stress formulation. However, inversion schemes rely on the adjoint equations, which are quite different for the velocity-stress formulation than for the displacement formulation. In this paper, we apply the adjoint state method to the isotropic viscoelastic wave equation in the velocity-stress formulation based on the generalized standard linear solid rheology. By applying linear transformations to the wave equation before deriving the adjoint state equations, we obtain two symmetric sets of partial differential equations for the forward and adjoint variables. The resulting sets of equations only differ by a sign change and can be solved by the same numerical implementation. We also investigate the crosstalk between parameter classes (velocity and attenuation) of the viscoelastic equation. More specifically, we show that the attenuation levels can be used to recover the quality factors of P and S waves, but that they are very sensitive to velocity errors. Finally, we present a synthetic example of viscoelastic FWI in the context of monitoring CO2 geological sequestration. We show that FWI based on our formulation can indeed recover P- and S-wave velocities and their attenuation levels when attenuation is high enough. Both changes in velocity and attenuation levels recovered with FWI can be used to track the CO2 plume during and after injection. Further studies are required to evaluate the performance of viscoelastic FWI on real data.
NASA Astrophysics Data System (ADS)
Lee, Gibbeum; Cho, Yeunwoo
2018-01-01
A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.
NASA Astrophysics Data System (ADS)
Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.
2018-04-01
Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.
Shock waves: The Maxwell-Cattaneo case.
Uribe, F J
2016-03-01
Several continuum theories for shock waves give rise to a set of differential equations in which the analysis of the underlying vector field can be done using the tools of the theory of dynamical systems. We illustrate the importance of the divergences associated with the vector field by considering the ideas by Maxwell and Cattaneo and apply them to study shock waves in dilute gases. By comparing the predictions of the Maxwell-Cattaneo equations with shock wave experiments we are lead to the following conclusions: (a) For low compressions (low Mach numbers: M) the results from the Maxwell-Cattaneo equations provide profiles that are in fair agreement with the experiments, (b) as the Mach number is increased we find a range of Mach numbers (1.27 ≈ M(1) < M < M(2) ≈ 1.90) such that numerical shock wave solutions to the Maxwell-Cattaneo equations cannot be found, and (c) for greater Mach numbers (M>M_{2}) shock wave solutions can be found though they differ significantly from experiments.
Lagrangian geometrical optics of nonadiabatic vector waves and spin particles
Ruiz, D. E.; Dodin, I. Y.
2015-07-29
Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less
4-wave dynamics in kinetic wave turbulence
NASA Astrophysics Data System (ADS)
Chibbaro, Sergio; Dematteis, Giovanni; Rondoni, Lamberto
2018-01-01
A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an ;interaction representation; and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Jibin; Qiao Zhijun
This paper deals with the following equation m{sub t}=(1/2)(1/m{sup k}){sub xxx}-(1/2)(1/m{sup k}){sub x}, which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the casesmore » of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.« less
Low-frequency surface waves on semi-bounded magnetized quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir
2016-08-15
The propagation of low-frequency electrostatic surface waves on the interface between a vacuum and an electron-ion quantum plasma is studied in the direction perpendicular to an external static magnetic field which is parallel to the interface. A new dispersion equation is derived by employing both the quantum magnetohydrodynamic and Poisson equations. It is shown that the dispersion equations for forward and backward-going surface waves are different from each other.
Calculation Of Pneumatic Attenuation In Pressure Sensors
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.
1991-01-01
Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.
Electromagnetic or other directed energy pulse launcher
Ziolkowski, Richard W.
1990-01-01
The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.
Alam, Md Nur; Akbar, M Ali; Roshid, Harun-Or-
2014-01-01
Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the internal mechanism of complex physical phenomena. In this work, the exact traveling wave solutions of the Boussinesq equation is studied by using the new generalized (G'/G)-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational functions. It is shown that the new approach of generalized (G'/G)-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations in mathematical physics and engineering. 05.45.Yv, 02.30.Jr, 02.30.Ik.
FAST TRACK COMMUNICATION: Soliton solutions of the KP equation with V-shape initial waves
NASA Astrophysics Data System (ADS)
Kodama, Y.; Oikawa, M.; Tsuji, H.
2009-08-01
We consider the initial value problems of the Kadomtsev-Petviashvili (KP) equation for symmetric V-shape initial waves consisting of two semi-infinite line solitons with the same amplitude. Those are particularly important for studies of large amplitude waves such as tsunami in shallow water. Numerical simulations show that the solutions of the initial value problem approach asymptotically to certain exact solutions of the KP equation found recently in [1]. We then use a chord diagram to explain the asymptotic result. This provides an analytical method to study asymptotic behavior for the initial value problem of the KP equation. We also demonstrate a real experiment of shallow water waves which may represent the solution discussed in this communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com; Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235; Pal, Nikhil
The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, usingmore » the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.« less
2006-09-30
equation known as the Kadomtsev - Petviashvili (KP) equation ): (ηt + coηx +αηηx + βη )x +γηyy = 0 (4) where γ = co / 2 . The KdV equation ...using the spectral formulation of the Kadomtsev - Petviashvili equation , a standard equation for nonlinear, shallow water wave dynamics that is a... Petviashvili and nonlinear Schroedinger equations and higher order corrections have been developed as prerequisites to coding the Boussinesq and Euler
Bridges, Thomas J.
2016-01-01
Multiphase wavetrains are multiperiodic travelling waves with a set of distinct wavenumbers and distinct frequencies. In conservative systems, such families are associated with the conservation of wave action or other conservation law. At generic points (where the Jacobian of the wave action flux is non-degenerate), modulation of the wavetrain leads to the dispersionless multiphase conservation of wave action. The main result of this paper is that modulation of the multiphase wavetrain, when the Jacobian of the wave action flux vector is singular, morphs the vector-valued conservation law into the scalar Korteweg–de Vries (KdV) equation. The coefficients in the emergent KdV equation have a geometrical interpretation in terms of projection of the vector components of the conservation law. The theory herein is restricted to two phases to simplify presentation, with extensions to any finite dimension discussed in the concluding remarks. Two applications of the theory are presented: a coupled nonlinear Schrödinger equation and two-layer shallow-water hydrodynamics with a free surface. Both have two-phase solutions where criticality and the properties of the emergent KdV equation can be determined analytically. PMID:28119546
Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background
NASA Astrophysics Data System (ADS)
Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo
2016-06-01
A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.
NASA Astrophysics Data System (ADS)
Adib, Arash; Poorveis, Davood; Mehraban, Farid
2018-03-01
In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.
Numerical studies of the KP line-solitons
NASA Astrophysics Data System (ADS)
Chakravarty, S.; McDowell, T.; Osborne, M.
2017-03-01
The Kadomtsev-Petviashvili (KP) equation admits a class of solitary wave solutions localized along distinct rays in the xy-plane, called the line-solitons, which describe the interaction of shallow water waves on a flat surface. These wave interactions have been observed on long, flat beaches, as well as have been recreated in laboratory experiments. In this paper, the line-solitons are investigated via direct numerical simulations of the KP equation, and the interactions of the evolved solitary wave patterns are studied. The objective is to obtain greater insight into solitary wave interactions in shallow water and to determine the extent the KP equation is a good model in describing these nonlinear interactions.
Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ata-ur-Rahman; National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000; Ali, S.
2013-07-15
The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are stronglymore » influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.« less
A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..
Equations for description of nonlinear standing waves in constant-cross-sectioned resonators.
Bednarik, Michal; Cervenka, Milan
2014-03-01
This work is focused on investigation of applicability of two widely used model equations for description of nonlinear standing waves in constant-cross-sectioned resonators. The investigation is based on the comparison of numerical solutions of these model equations with solutions of more accurate model equations whose validity has been verified experimentally in a number of published papers.
Nonlinear Waves and Inverse Scattering
1992-01-29
equations include the Kadomtsev - Petviashvili (K-P), Davey-Stewartson (D-S), 2+1 Toda, and Self-Dual Yang-Mills (SDYM) equations . We have uncovered a... Petviashvili Equation and Associated Constraints, M.J. Ablowitz and Javier Villaroel, Studies in Appl. Math. 85, (1991), 195-213. 12. On the Hamiltonian...nonlinear wave equations of physical significance, multidimensional inverse scattering, numer- ically induced instabilities and chaos, and forced
Sound Beams with Shockwave Pulses
NASA Astrophysics Data System (ADS)
Enflo, B. O.
2000-11-01
The beam equation for a sound beam in a diffusive medium, called the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’ equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the sound velocity in the fluid.
Millimeter Wave Generation by Relativistic Electron Beams.
1984-12-01
frequency and wave vector matching relations for influence of various nonlinear effects on this instability is this four-wave interaction require...following coupled mode equations _ 6 = 6 _ (14)-- v vx (14) ." .’ for the lower hybrid sidebands: v - V 2 - The x component of the resultant vector equation...involves a purely growing modte, a four-wave interaction plitoces is analysed, including a u ap ti wave- vector up-shifted and ilown-shiftes upper
Lump Solitons in Surface Tension Dominated Flows
NASA Astrophysics Data System (ADS)
Milewski, Paul; Berger, Kurt
1999-11-01
The Kadomtsev-Petviashvilli I equation (KPI) which models small-amplitude, weakly three-dimensional surface-tension dominated long waves is integrable and allows for algebraically decaying lump solitary waves. It is not known (theoretically or numerically) whether the full free-surface Euler equations support such solutions. We consider an intermediate model, the generalised Benney-Luke equation (gBL) which is isotropic (not weakly three-dimensional) and contains KPI as a limit. We show numerically that: 1. gBL supports lump solitary waves; 2. These waves collide elastically and are stable; 3. They are generated by resonant flow over an obstacle.
Shock wave equation of state of muscovite
NASA Technical Reports Server (NTRS)
Sekine, Toshimori; Rubin, Allan M.; Ahrens, Thomas J.
1991-01-01
Shock wave data were obtained between 20 and 140 GPa for natural muscovite obtained from Methuen Township (Ontario), in order to provide a shock-wave equation of state for this crustal hydrous mineral. The shock equation of state data could be fit by a linear shock velocity (Us) versus particle velocity (Up) relation Us = 4.62 + 1.27 Up (km/s). Third-order Birch-Murnaghan equation of state parameters were found to be K(OS) = 52 +/-4 GPa and K-prime(OS) = 3.2 +/-0.3 GPa. These parameters are comparable to those of other hydrous minerals such as brucite, serpentine, and tremolite.
Kato Smoothing and Strichartz Estimates for Wave Equations with Magnetic Potentials
NASA Astrophysics Data System (ADS)
D'Ancona, Piero
2015-04-01
Let H be a selfadjoint operator and A a closed operator on a Hilbert space . If A is H-(super)smooth in the sense of Kato-Yajima, we prove that is -(super)smooth. This allows us to include wave and Klein-Gordon equations in the abstract theory at the same level of generality as Schrödinger equations. We give a few applications and in particular, based on the resolvent estimates of Erdogan, Goldberg and Schlag (Forum Mathematicum 21:687-722, 2009), we prove Strichartz estimates for wave equations perturbed with large magnetic potentials on , n ≥ 3.
Sun, Wen-Rong; Wang, Lei
2018-01-01
To show the existence and properties of matter rogue waves in an F =1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F =1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.
NASA Astrophysics Data System (ADS)
Sun, Wen-Rong; Wang, Lei
2018-01-01
To show the existence and properties of matter rogue waves in an F=1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F=1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-12-01
In this study, we presented the problem formulations of models for internal solitary waves in a stratified shear flow with a free surface. The nonlinear higher order of extended KdV equations for the free surface displacement is generated. We derived the coefficients of the nonlinear higher-order extended KdV equation in terms of integrals of the modal function for the linear long-wave theory. The wave amplitude potential and the fluid pressure of the extended KdV equation in the form of solitary-wave solutions are deduced. We discussed and analyzed the stability of the obtained solutions and the movement role of the waves by making graphs of the exact solutions.
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
A Note on the Wave Action Density of a Viscous Instability Mode on a Laminar Free-shear Flow
NASA Technical Reports Server (NTRS)
Balsa, Thomas F.
1994-01-01
Using the assumptions of an incompressible and viscous flow at large Reynolds number, we derive the evolution equation for the wave action density of an instability wave traveling on top of a laminar free-shear flow. The instability is considered to be viscous; the purpose of the present work is to include the cumulative effect of the (locally) small viscous correction to the wave, over length and time scales on which the underlying base flow appears inhomogeneous owing to its viscous diffusion. As such, we generalize our previous work for inviscid waves. This generalization appears as an additional (but usually non-negligible) term in the equation for the wave action. The basic structure of the equation remains unaltered.
NASA Astrophysics Data System (ADS)
Paldor, N.
2017-12-01
The concise and elegant wave theory developed on the equatorial β-plane by Matsuno (1966, M66 hereafter) is based on the formulation of a Schrödinger equation associated with the governing Linear Rotating Shallow Water Equations (LRSWE). The theory yields explicit expressions for the dispersion relations and meridional amplitude structures of all zonally propagating waves - Rossby, Inertia-Gravity, Kelvin and Yanai. In contrast, the spherical wave theory of Longuet-Higgins (1968) is a collection of asymptotic expansions in many sub-ranges e.g. large, small (and even negative) Lamb Number; high and low frequency; low-latitudes, etc. that rests upon extensive numerical solutions of several Ordinary Differential Equations. The difference between the two theories is highlighted by their lengths. The essential elements of the former planar study are completely revealed in just 3-4 pages including the derivation of explicit formulae for the phase speeds and amplitude meridional structures. In comtrast, the latter spherical theory contains 97 pages and the results of the numerical calculations are summarized in 30 pages of tables filled with numerical values and about 31 figures, each of which containing many separate curves! In my talk I will re-visit the wave problem on a sphere by developing several Schrödinger equations that approximate the governing eigenvalue equation associated with zonally propagating waves. Each of the Schrödinger equations approximates the original second order Ordinary Differential Equation in a different range of the 3 parameters: Lamb-Number, frequency and zonal wavenumber. As in M66, each of the Schrödinger equations yields explicit expressions for the dispersion relations and meridional amplitude structure of Rossby and Inertia-Gravity waves. In addition, the analysis shows that Yanai wave exists on a sphere even tough the zonal velocity is regular everywhere there (in contrast to the β-plane where the zonal velocity is singular everywhere) and that Kelvin waves do not exist as a separate mode (but the eastward propagating n=0 Inertia-Gravity is nearly non-dispersive). References Longuet-Higgins, M. S. Phil. Trans. Roy. Soc. London; 262, 511-607; 1968 Matsuno, T.; J. Met. Soc. Japan. 44(1), 25-43; 1966
Momentum and energy transport by waves in the solar atmosphere and solar wind
NASA Technical Reports Server (NTRS)
Jacques, S. A.
1977-01-01
The fluid equations for the solar wind are presented in a form which includes the momentum and energy flux of waves in a general and consistent way. The concept of conservation of wave action is introduced and is used to derive expressions for the wave energy density as a function of heliocentric distance. The explicit form of the terms due to waves in both the momentum and energy equations are given for radially propagating acoustic, Alfven, and fast mode waves. The effect of waves as a source of momentum is explored by examining the critical points of the momentum equation for isothermal spherically symmetric flow. We find that the principal effect of waves on the solutions is to bring the critical point closer to the sun's surface and to increase the Mach number at the critical point. When a simple model of dissipation is included for acoustic waves, in some cases there are multiple critical points.
Numerical modeling of the interaction of liquid drops and jets with shock waves and gas jets
NASA Astrophysics Data System (ADS)
Surov, V. S.
1993-02-01
The motion of a liquid drop (jet) and of the ambient gas is described, in the general case, by Navier-Stokes equations. An approximate solution to the interaction of a plane shock wave with a single liquid drop is presented. Based on the analysis, the general system of Navier-Stokes equations is reduced to two groups of equations, Euler equations for gas and Navier-Stokes equations for liquid; solutions to these equations are presented. The discussion also covers the modeling of the interaction of a shock wave with a drop screen, interaction of a liquid jet with a counterpropagating supersonic gas flow, and modeling of processes in a shock layer during the impact of a drop against an obstacle in gas flow.
Frank, Scott D; Collis, Jon M; Odom, Robert I
2015-06-01
Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.
Rogue wave spectra of the Kundu-Eckhaus equation.
Bayındır, Cihan
2016-06-01
In this paper we analyze the rogue wave spectra of the Kundu-Eckhaus equation (KEE). We compare our findings with their nonlinear Schrödinger equation (NLSE) analogs and show that the spectra of the individual rogue waves significantly differ from their NLSE analogs. A remarkable difference is the one-sided development of the triangular spectrum before the rogue wave becomes evident in time. Also we show that increasing the skewness of the rogue wave results in increased asymmetry in the triangular Fourier spectra. Additionally, the triangular spectra of the rogue waves of the KEE begin to develop at earlier stages of their development compared to their NLSE analogs, especially for larger skew angles. This feature may be used to enhance the early warning times of the rogue waves. However, we show that in a chaotic wave field with many spectral components the triangular spectra remain as the main attribute as a universal feature of the typical wave fields produced through modulation instability and characteristic features of the KEE's analytical rogue wave spectra may be suppressed in a realistic chaotic wave field.
A novel unsplit perfectly matched layer for the second-order acoustic wave equation.
Ma, Youneng; Yu, Jinhua; Wang, Yuanyuan
2014-08-01
When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Santucci, F.; Santini, P. M.
2016-10-01
We study the generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation in n+1 dimensions and with nonlinearity of degree m+1, a model equation describing the propagation of weakly nonlinear, quasi one-dimensional waves in the absence of dispersion and dissipation, and arising in several physical contexts, like acoustics, plasma physics, hydrodynamics and nonlinear optics. In 2 + 1 dimensions and with quadratic nonlinearity, this equation is integrable through a novel inverse scattering transform, and it has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. In higher dimensions and with higher nonlinearity, the generalized dKP equations are not integrable, but their invariance under motions on the paraboloid allows one to construct in this paper a family of exact solutions describing waves constant on their paraboloidal wave front and breaking simultaneously in all points of it, developing after breaking either multivaluedness or single-valued discontinuous profiles (shocks). Then such exact solutions are used to build the longtime behavior of the solutions of the Cauchy problem, for small and localized initial data, showing that wave breaking of small initial data takes place in the longtime regime if and only if m(n-1)≤slant 2. Lastly, the analytic aspects of such wave breaking are investigated in detail in terms of the small initial data, in both cases in which the solution becomes multivalued after breaking or it develops a shock. These results, contained in the 2012 master’s thesis of one of the authors (FS) [1], generalize those obtained in [2] for the dKP equation in n+1 dimensions with quadratic nonlinearity, and are obtained following the same strategy.
On exact traveling-wave solutions for local fractional Korteweg-de Vries equation.
Yang, Xiao-Jun; Tenreiro Machado, J A; Baleanu, Dumitru; Cattani, Carlo
2016-08-01
This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces.
Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavitha, L., E-mail: louiskavitha@yahoo.co.in; The Abdus Salam International Centre for Theoretical Physics, Trieste; Lavanya, C.
We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales muchmore » shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.« less
NASA Astrophysics Data System (ADS)
Gambino, G.; Tanriver, U.; Guha, P.; Choudhury, A. Ghose; Choudhury, S. Roy
2015-02-01
In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively of the original PDEs. We perform many numerical tests in different parameter regime to pinpoint real saddle equilibrium points of the corresponding traveling-wave equations, as well as ensure simultaneous convergence and continuity of the multi-infinite series solutions for the homoclinic/heteroclinic orbits anchored by these saddle points. Unlike the majority of unaccelerated convergent series, high accuracy is attained with relatively few terms. And finally, variational methods are employed to generate families of both regular and embedded solitary wave solutions for the SPE PDE. The technique for obtaining the embedded solitons incorporates several recent generalizations of the usual variational technique and it is thus topical in itself. One unusual feature of the solitary waves derived here is that we are able to obtain them in analytical form (within the assumed ansatz for the trial functions). Thus, a direct error analysis is performed, showing the accuracy of the resulting solitary waves. Given the importance of solitary wave solutions in wave dynamics and information propagation in nonlinear PDEs, as well as the fact that not much is known about solutions of the family of generalized SPE equations considered here, the results obtained are both new and timely.
Feasibility of detecting near-surface feature with Rayleigh-wave diffraction
Xia, J.; Nyquist, Jonathan E.; Xu, Y.; Roth, M.J.S.; Miller, R.D.
2007-01-01
Detection of near-surfaces features such as voids and faults is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Therefore, we studied the feasibility of directly detecting near-surfaces features with surface-wave diffractions. Based on the properties of surface waves, we have derived a Rayleigh-wave diffraction traveltime equation. We also have solved the equation for the depth to the top of a void and an average velocity of Rayleigh waves. Using these equations, the depth to the top of a void/fault can be determined based on traveltime data from a diffraction curve. In practice, only two diffraction times are necessary to define the depth to the top of a void/fault and the average Rayleigh-wave velocity that generates the diffraction curve. We used four two-dimensional square voids to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions: a 2??m by 2??m with a depth to the top of the void of 2??m, 4??m by 4??m with a depth to the top of the void of 7??m, and 6??m by 6??m with depths to the top of the void 12??m and 17??m. We also modeled surface waves due to a vertical fault. Rayleigh-wave diffractions were recognizable for all these models after FK filtering was applied to the synthetic data. The Rayleigh-wave diffraction traveltime equation was verified by the modeled data. Modeling results suggested that FK filtering is critical to enhance diffracted surface waves. A real-world example is presented to show how to utilize the derived equation of surface-wave diffractions. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong
2018-03-01
We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).
NASA Astrophysics Data System (ADS)
Xiao, Zi-Jian; Tian, Bo; Sun, Yan
2018-01-01
In this paper, we investigate a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili (mKP) equation in fluid dynamics. With the binary Bell-polynomial and an auxiliary function, bilinear forms for the equation are constructed. Based on the bilinear forms, multi-soliton solutions and Bell-polynomial-type Bäcklund transformation for such an equation are obtained through the symbolic computation. Soliton interactions are presented. Based on the graphic analysis, Parametric conditions for the existence of the shock waves, elevation solitons and depression solitons are given, and it is shown that under the condition of keeping the wave vectors invariable, the change of α(t) and β(t) can lead to the change of the solitonic velocities, but the shape of each soliton remains unchanged, where α(t) and β(t) are the variable coefficients in the equation. Oblique elastic interactions can exist between the (i) two shock waves, (ii) two elevation solitons, and (iii) elevation and depression solitons. However, oblique interactions between (i) shock waves and elevation solitons, (ii) shock waves and depression solitons are inelastic.
Application of the Parabolic Approximation to Predict Acoustical Propagation in the Ocean.
ERIC Educational Resources Information Center
McDaniel, Suzanne T.
1979-01-01
A simplified derivation of the parabolic approximation to the acoustical wave equation is presented. Exact solutions to this approximate equation are compared with solutions to the wave equation to demonstrate the applicability of this method to the study of underwater sound propagation. (Author/BB)
Capillary waves in the subcritical nonlinear Schroedinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyreff, G.
2010-01-15
We expand recent results on the nonlinear Schroedinger equation with cubic-quintic nonlinearity to show that some solutions are described by the Bernoulli equation in the presence of surface tension. As a consequence, capillary waves are predicted and found numerically at the interface between regions of large and low amplitude.
NASA Astrophysics Data System (ADS)
Dev, A. N.; Deka, M. K.; Sarma, J.; Saikia, D.; Adhikary, N. C.
2016-10-01
The stationary solution is obtained for the K-P-Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev-Petviashvili (K-P) equation, three-dimensional (3D) Burgers equation, and K-P-Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave (DIASW). The K-P equation predictes the existences of stationary small amplitude solitary wave, whereas the K-P-Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.
Approximating a nonlinear advanced-delayed equation from acoustics
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2016-10-01
We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.
Electromagnetic pulses, localized and causal
NASA Astrophysics Data System (ADS)
Lekner, John
2018-01-01
We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.
Asymptotic problems for stochastic partial differential equations
NASA Astrophysics Data System (ADS)
Salins, Michael
Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.
An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation
NASA Astrophysics Data System (ADS)
Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.
2013-04-01
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations.
Nonlinear equations of motion for Landau resonance interactions with a whistler mode wave
NASA Technical Reports Server (NTRS)
Inan, U. S.; Tkalcevic, S.
1982-01-01
A simple set of equations is presented for the description of the cyclotron averaged motion of Landau resonant particles in a whistler mode wave propagating at an angle to the static magnetic field. A comparison is conducted of the wave magnetic field and electric field effects for the parameters of the magnetosphere, and the parameter ranges for which the wave magnetic field effects would be negligible are determined. It is shown that the effect of the wave magnetic field can be neglected for low pitch angles, high normal wave angles, and/or high normalized wave frequencies.
Nonlinear modulation of an extraordinary wave under the conditions of parametric decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.
2012-06-15
A self-consistent set of Hamilton equations describing nonlinear saturation of the amplitude of oscillations excited under the conditions of parametric decay of an elliptically polarized extraordinary wave in cold plasma is solved analytically and numerically. It is shown that the exponential increase in the amplitude of the secondary wave excited at the half-frequency of the primary wave changes into a reverse process in which energy is returned to the primary wave and nonlinear oscillations propagating across the external magnetic field are generated. The system of 'slow' equations for the amplitudes, obtained by averaging the initial equations over the high-frequency period,more » is used to describe steady-state nonlinear oscillations in plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Yukio; Abe, Akihisa; Tokushima, Koji
The aim of this study is to examine the difference between shock temperatures predicted by an equation for temperature inside a steady wave front and the Walsh-Christian equation. Calculations are for yttria-doped tetragonal zirconia, which shows an elastic-plastic and a phase transition: Thus the shock waves treated are multiple structure waves composed of one to three steady wave fronts. The evaluated temperature was 3350K at the minimum specific volume of 0.1175 cm{sup 3}/g (or maximum Hugoniot shock pressure of 140GPa) considered in the present examination, while the temperature predicted by the Walsh-Christian equation under identical conditions was 2657K. The causemore » of the large temperature discrepancy is considered to be that the present model treats nonequilibrium states inside steady waves.« less
Rogue waves in multiple-solitons-inelastic collisions — The complex Sharma-Tasso-Olver equation
NASA Astrophysics Data System (ADS)
Abdel-Gawad, H. I.; Tantawy, M.
2018-03-01
Very recently, a mechanism to the formation of rogue waves (RWs) has been proposed by the authors. In this paper, the formation of RWs in case of the complex Sharma-Tasso-Olver (STO) equation is studied. In the STO equation, one, two and three-soliton solutions are obtained. Due to the inelastic collisions, these soliton waves are fused to one. Under the free parameters constraint this behavior do occurs. The mechanism of formation of RWs is due to the collisions of solitons and multi-periodic waves (like spectral band). These RWs as giant waves, which may be very sharp or chaotic are similar to RWs in laser. The work is done here by using the generalized unified method (GUM).
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2004-01-01
The development of a practical method of accurately calculating the full scattering amplitude, without making a partial wave decomposition is continued. The method is developed in the context of electron-hydrogen scattering, and here exchange is dealt with by considering e-H scattering in the static exchange approximation. The Schroedinger equation in this approximation can be simplified to a set of coupled integro-differential equations. The equations are solved numerically for the full scattering wave function. The scattering amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can be formally simplified, and then evaluated using the numerically determined wave function. The results are essentially identical to converged partial wave results.
Weerasekara, Gihan; Tokunaga, Akihiro; Terauchi, Hiroki; Eberhard, Marc; Maruta, Akihiro
2015-01-12
One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.
Upstream-advancing waves generated by three-dimensional moving disturbances
NASA Astrophysics Data System (ADS)
Lee, Seung-Joon; Grimshaw, Roger H. J.
1990-02-01
The wave field resulting from a surface pressure or a bottom topography in a horizontally unbounded domain is studied. Upstream-advancing waves successively generated by various forcing disturbances moving with near-resonant speeds are found by numerically solving a forced Kadomtsev-Petviashvili (fKP) equation, which shows in its simplest form the interplay of a basic linear wave operator, longitudinal and transverse dispersion, nonlinearity, and forcing. Curved solitary waves are found as a slowly varying similarity solution of the Kadomtsev-Petviashvili (KP) equation, and are favorably compared with the upstream-advancing waves numerically obtained.
Freak waves in random oceanic sea states.
Onorato, M; Osborne, A R; Serio, M; Bertone, S
2001-06-18
Freak waves are very large, rare events in a random ocean wave train. Here we study their generation in a random sea state characterized by the Joint North Sea Wave Project spectrum. We assume, to cubic order in nonlinearity, that the wave dynamics are governed by the nonlinear Schrödinger (NLS) equation. We show from extensive numerical simulations of the NLS equation how freak waves in a random sea state are more likely to occur for large values of the Phillips parameter alpha and the enhancement coefficient gamma. Comparison with linear simulations is also reported.
An Analytical Model of Periodic Waves in Shallow Water--Summary.
1984-01-01
Petviashvili equation , and is based on a Riemann theta function of genus 2. These bi-periodic waves are direct generalizations of the well-known (simply... Petviashvili (KP; 1970) equation , (ut 6uux + U ) 3uyy -0, (1) is a scaled, dimensionless equation that describes the evolution of long water waves of...Fluid Mech., vol. 92, pp 691-715 Dubrovin, B. A., 1981, Russ. Math. Surveys, vol. 36, pp 11-92 Kadomtsev , B. B. & V. I. Petviashvili , 1970,) Soy. Phys
Finite-amplitude strain waves in laser-excited plates.
Mirzade, F Kh
2008-07-09
The governing equations for two-dimensional finite-amplitude longitudinal strain waves in isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are included, and the interaction of longitudinal displacements with the field of concentration of non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach is used to show that the equations are reducible to the Kadomtsev-Petviashvili-Burgers nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that two-dimensional shock waves can propagate in plates.
Infinite hierarchy of nonlinear Schrödinger equations and their solutions.
Ankiewicz, A; Kedziora, D J; Chowdury, A; Bandelow, U; Akhmediev, N
2016-01-01
We study the infinite integrable nonlinear Schrödinger equation hierarchy beyond the Lakshmanan-Porsezian-Daniel equation which is a particular (fourth-order) case of the hierarchy. In particular, we present the generalized Lax pair and generalized soliton solutions, plane wave solutions, Akhmediev breathers, Kuznetsov-Ma breathers, periodic solutions, and rogue wave solutions for this infinite-order hierarchy. We find that "even- order" equations in the set affect phase and "stretching factors" in the solutions, while "odd-order" equations affect the velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are always complex.
NASA Astrophysics Data System (ADS)
Nutku, Y.
1985-06-01
We point out a class of nonlinear wave equations which admit infinitely many conserved quantities. These equations are characterized by a pair of exact one-forms. The implication that they are closed gives rise to equations, the characteristics and Riemann invariants of which are readily obtained. The construction of the conservation laws requires the solution of a linear second-order equation which can be reduced to canonical form using the Riemann invariants. The hodograph transformation results in a similar linear equation. We discuss also the symplectic structure and Bäcklund transformations associated with these equations.
Gravitational waves — A review on the theoretical foundations of gravitational radiation
NASA Astrophysics Data System (ADS)
Dirkes, Alain
2018-05-01
In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating n-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.
Rogue periodic waves of the focusing nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Chen, Jinbing; Pelinovsky, Dmitry E.
2018-02-01
Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn. Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.
Rogue periodic waves of the focusing nonlinear Schrödinger equation.
Chen, Jinbing; Pelinovsky, Dmitry E
2018-02-01
Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn . Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.
Rogue waves of the Kundu-Eckhaus equation in a chaotic wave field.
Bayindir, Cihan
2016-03-01
In this paper we study the properties of the chaotic wave fields generated in the frame of the Kundu-Eckhaus equation (KEE). Modulation instability results in a chaotic wave field which exhibits small-scale filaments with a free propagation constant, k. The average velocity of the filaments is approximately given by the average group velocity calculated from the dispersion relation for the plane-wave solution; however, direction of propagation is controlled by the β parameter, the constant in front of the Raman-effect term. We have also calculated the probabilities of the rogue wave occurrence for various values of propagation constant k and showed that the probability of rogue wave occurrence depends on k. Additionally, we have showed that the probability of rogue wave occurrence significantly depends on the quintic and the Raman-effect nonlinear terms of the KEE. Statistical comparisons between the KEE and the cubic nonlinear Schrödinger equation have also been presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslem, W. M.; Sabry, R.; Shukla, P. K.
2010-03-15
By using the hydrodynamic equations of ions, Thomas-Fermi electron/positron density distribution, and Poisson equation, a three-dimensional cylindrical Kadomtsev-Petviashvili (CKP) equation is derived for small but finite amplitude ion-acoustic waves. The generalized expansion method is used to analytically solve the CKP equation. New class of solutions admits a train of well-separated bell-shaped periodic pulses is obtained. At certain condition, the latter degenerates to solitary wave solution. The effects of physical parameters on the solitary pulse structures are examined. Furthermore, the energy integral equation is used to study the existence regions of the localized pulses. The present study might be helpful tomore » understand the excitation of nonlinear ion-acoustic waves in a very dense astrophysical objects such as white dwarfs.« less
Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef
2013-01-01
Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.
Study of travelling wave solutions for some special-type nonlinear evolution equations
NASA Astrophysics Data System (ADS)
Song, Junquan; Hu, Lan; Shen, Shoufeng; Ma, Wen-Xiu
2018-07-01
The tanh-function expansion method has been improved and used to construct travelling wave solutions of the form U={\\sum }j=0n{a}j{\\tanh }jξ for some special-type nonlinear evolution equations, which have a variety of physical applications. The positive integer n can be determined by balancing the highest order linear term with the nonlinear term in the evolution equations. We improve the tanh-function expansion method with n = 0 by introducing a new transform U=-W\\prime (ξ )/{W}2. A nonlinear wave equation with source terms, and mKdV-type equations, are considered in order to show the effectiveness of the improved scheme. We also propose the tanh-function expansion method of implicit function form, and apply it to a Harry Dym-type equation as an example.
Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.
Shukla, P K; Eliasson, B; Stenflo, L
2012-07-01
We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.
Nonplanar KdV and KP equations for quantum electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Dutta, Debjit
2015-12-01
Nonlinear quantum ion-acoustic waves with the effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the standard reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation for ion-acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave are studied analytically. It is found that the dynamics of ion-acoustic solitary waves (IASWs) is governed by a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE). The results could help in a theoretical analysis of astrophysical and laser produced plasmas.
Electron-acoustic Instability Simulated By Modified Zakharov Equations
NASA Astrophysics Data System (ADS)
Jásenský, V.; Fiala, V.; Vána, O.; Trávnícek, P.; Hellinger, P.
We present non-linear equations describing processes in plasma when electron - acoustic waves are excited. These waves are present for instance in the vicinity of Earth's bow shock and in the polar ionosphere. Frequently they are excited by an elec- tron beam in a plasma with two electron populations, a cold and hot one. We derive modified Zakharov equations from kinetic theory for such a case together with numer- ical method for solving of this type of equations. Bispectral analysis is used to show which non-linear wave processes are of importance in course of the instability. Finally, we compare these results with similar simulations using Vlasov approach.
Some special solutions to the Hyperbolic NLS equation
NASA Astrophysics Data System (ADS)
Vuillon, Laurent; Dutykh, Denys; Fedele, Francesco
2018-04-01
The Hyperbolic Nonlinear SCHRöDINGER equation (HypNLS) arises as a model for the dynamics of three-dimensional narrow-band deep water gravity waves. In this study, the symmetries and conservation laws of this equation are computed. The PETVIASHVILI method is then exploited to numerically compute bi-periodic time-harmonic solutions of the HypNLS equation. In physical space they represent non-localized standing waves. Non-trivial spatial patterns are revealed and an attempt is made to describe them using symbolic dynamics and the language of substitutions. Finally, the dynamics of a slightly perturbed standing wave is numerically investigated by means a highly accurate FOURIER solver.
Uniform high order spectral methods for one and two dimensional Euler equations
NASA Technical Reports Server (NTRS)
Cai, Wei; Shu, Chi-Wang
1991-01-01
Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.
Some Exact Results for the Schroedinger Wave Equation with a Time Dependent Potential
NASA Technical Reports Server (NTRS)
Campbell, Joel
2009-01-01
The time dependent Schroedinger equation with a time dependent delta function potential is solved exactly for many special cases. In all other cases the problem can be reduced to an integral equation of the Volterra type. It is shown that by knowing the wave function at the origin, one may derive the wave function everywhere. Thus, the problem is reduced from a PDE in two variables to an integral equation in one. These results are used to compare adiabatic versus sudden changes in the potential. It is shown that adiabatic changes in the p otential lead to conservation of the normalization of the probability density.
Transverse instability of periodic and generalized solitary waves for a fifth-order KP model
NASA Astrophysics Data System (ADS)
Haragus, Mariana; Wahlén, Erik
2017-02-01
We consider a fifth-order Kadomtsev-Petviashvili equation which arises as a two-dimensional model in the classical water-wave problem. This equation possesses a family of generalized line solitary waves which decay exponentially to periodic waves at infinity. We prove that these solitary waves are transversely spectrally unstable and that this instability is induced by the transverse instability of the periodic tails. We rely upon a detailed spectral analysis of some suitably chosen linear operators.
Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy.
Ankiewicz, A; Akhmediev, N
2017-07-01
We present rogue wave solutions of the integrable nonlinear Schrödinger equation hierarchy with an infinite number of higher-order terms. The latter include higher-order dispersion and higher-order nonlinear terms. In particular, we derive the fundamental rogue wave solutions for all orders of the hierarchy, with exact expressions for velocities, phase, and "stretching factors" in the solutions. We also present several examples of exact solutions of second-order rogue waves, including rogue wave triplets.
Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation.
Loomba, Shally; Kaur, Harleen
2013-12-01
We present optical rogue wave solutions for a generalized nonlinear Schrodinger equation by using similarity transformation. We have predicted the propagation of rogue waves through a nonlinear optical fiber for three cases: (i) dispersion increasing (decreasing) fiber, (ii) periodic dispersion parameter, and (iii) hyperbolic dispersion parameter. We found that the rogue waves and their interactions can be tuned by properly choosing the parameters. We expect that our results can be used to realize improved signal transmission through optical rogue waves.
PHYSICS OF OUR DAYS: Nonlinear long waves on water and solitons
NASA Astrophysics Data System (ADS)
Zeytounian, R. Kh
1995-12-01
The water wave problem has been pivotal in the history of nonlinear wave theory. This problem is one of the most interesting and successful applications of nonlinear hydrodynamics. Waves on the free surface of a body of water (perfect liquid) have always been a fascinating subject, for they represent a familiar yet complex phenomenon, easy to observe but very difficult to describe! The archetypical model equations of Kordeweg and de Vries and of Boussinesq, for example, were originally derived as approximations for water waves, and research into the problem has been sustained vigorously up to the present day. In the present paper, the derivation of the model equations is given in depth and rational use is made of asymptotic methods. Indeed, it is important to understand that in some cases the derivation of these approximate equations is intuitive and heuristic. In fact, it is not clear how to insert the model equation under consideration into a hierarchy of rational approximations, which in turn result from the exact formulation of the selected water wave problem.
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
NASA Astrophysics Data System (ADS)
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-05-01
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Fu, Shubin; Chung, Eric T.
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less
Nonlinear ion acoustic waves scattered by vortexes
NASA Astrophysics Data System (ADS)
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-02-04
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less
Investigation of flood routing by a dynamic wave model in trapezoidal channels
NASA Astrophysics Data System (ADS)
Sulistyono, B. A.; Wiryanto, L. H.
2017-08-01
The problems of flood wave propagation, in bodies of waters, cause by intense rains or breaking of control structures, represent a great challenge in the mathematical modeling processes. This research concerns about the development and application of a mathematical model based on the Saint Venant's equations, to study the behavior of the propagation of a flood wave in trapezoidal channels. In these equations, the momentum equation transforms to partial differential equation which has two parameters related to cross-sectional area and discharge of the channel. These new formulas have been solved by using an explicit finite difference scheme. In computation procedure, after computing the discharge from the momentum equation, the cross-sectional area will be obtained from the continuity equation for a given point of channel. To evaluate the behavior of the control variables, several scenarios for the main channel as well as for flood waves are considered and different simulations are performed. The simulations demonstrate that for the same bed width, the peak discharge in trapezoidal channel smaller than in rectangular one at a specific distance along the channel length and so, that roughness coefficient and bed slope of the channel play a strong game on the behavior of the flood wave propagation.
Analysis of wave propagation and wavefront sensing in target-in-the-loop beam control systems
NASA Astrophysics Data System (ADS)
Vorontsov, Mikhail A.; Kolosov, Valeri V.
2004-10-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual intensity function (MIF) for the backscattered (returned) wave. The resulting evolution equation for the MIF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.
NASA Astrophysics Data System (ADS)
Gan, Zaihui; Zhang, Jian
2005-07-01
This paper is concerned with the standing wave for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions. The existence of standing wave with the ground state is established by applying an intricate variational argument and the instability of the standing wave is shown by applying Pagne and Sattinger's potential well argument and Levine's concavity method.
NASA Astrophysics Data System (ADS)
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-06-01
In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.
Mahillo-Isla, R; Gonźalez-Morales, M J; Dehesa-Martínez, C
2011-06-01
The slowly varying envelope approximation is applied to the radiation problems of the Helmholtz equation with a planar single-layer and dipolar sources. The analyses of such problems provide procedures to recover solutions of the Helmholtz equation based on the evaluation of solutions of the parabolic wave equation at a given plane. Furthermore, the conditions that must be fulfilled to apply each procedure are also discussed. The relations to previous work are given as well.
Three-Dimensional Shallow Water Acoustics
2015-09-30
converts the Helmholtz wave equation of elliptic type to a one-way wave equation of parabolic type. The conversion allows efficient marching solution ...algorithms for 2 solving the boundary value problem posed by the Helmholtz equation . This can reduce significantly the requirement for computational...Fourier parabolic- equation sound propagation solution scheme," J. Acoust. Soc. Am, vol. 132, pp. EL61-EL67 (2012). [6] Y.-T. Lin, J.M. Collis and T.F
A generalized simplest equation method and its application to the Boussinesq-Burgers equation.
Sudao, Bilige; Wang, Xiaomin
2015-01-01
In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.
A Generalized Simplest Equation Method and Its Application to the Boussinesq-Burgers Equation
Sudao, Bilige; Wang, Xiaomin
2015-01-01
In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method. PMID:25973605
Acceleration of stable TTI P-wave reverse-time migration with GPUs
NASA Astrophysics Data System (ADS)
Kim, Youngseo; Cho, Yongchae; Jang, Ugeun; Shin, Changsoo
2013-03-01
When a pseudo-acoustic TTI (tilted transversely isotropic) coupled wave equation is used to implement reverse-time migration (RTM), shear wave energy is significantly included in the migration image. Because anisotropy has intrinsic elastic characteristics, coupling P-wave and S-wave modes in the pseudo-acoustic wave equation is inevitable. In RTM with only primary energy or the P-wave mode in seismic data, the S-wave energy is regarded as noise for the migration image. To solve this problem, we derive a pure P-wave equation for TTI media that excludes the S-wave energy. Additionally, we apply the rapid expansion method (REM) based on a Chebyshev expansion and a pseudo-spectral method (PSM) to calculate spatial derivatives in the wave equation. When REM is incorporated with the PSM for the spatial derivatives, wavefields with high numerical accuracy can be obtained without grid dispersion when performing numerical wave modeling. Another problem in the implementation of TTI RTM is that wavefields in an area with high gradients of dip or azimuth angles can be blown up in the progression of the forward and backward algorithms of the RTM. We stabilize the wavefields by applying a spatial-frequency domain high-cut filter when calculating the spatial derivatives using the PSM. In addition, to increase performance speed, the graphic processing unit (GPU) architecture is used instead of traditional CPU architecture. To confirm the degree of acceleration compared to the CPU version on our RTM, we then analyze the performance measurements according to the number of GPUs employed.
NASA Astrophysics Data System (ADS)
Misra, Amar P.; Chatterjee, Debjani; Brodin, Gert
2017-11-01
We study the nonlinear wave modulation of Langmuir waves (LWs) in a fully degenerate plasma. Using the Wigner-Moyal equation coupled to the Poisson equation and the multiple scale expansion technique, a modified nonlocal nonlinear Schrödinger (NLS) equation is derived which governs the evolution of LW envelopes in degenerate plasmas. The nonlocal nonlinearity in the NLS equation appears due to the group velocity and multiplasmon resonances, i.e., resonances induced by the simultaneous particle absorption of multiple wave quanta. We focus on the regime where the resonant velocity of electrons is larger than the Fermi velocity and thereby the linear Landau damping is forbidden. As a result, the nonlinear wave-particle resonances due to the group velocity and multiplasmon processes are the dominant mechanisms for wave-particle interaction. It is found that in contrast to classical or semiclassical plasmas, the group velocity resonance does not necessarily give rise the wave damping in the strong quantum regime where ℏ k ˜m vF with ℏ denoting the reduced Planck's constant, m the electron mass, and vF the Fermi velocity; however, the three-plasmon process plays a dominant role in the nonlinear Landau damping of wave envelopes. In this regime, the decay rate of the wave amplitude is also found to be higher compared to that in the modest quantum regime where the multiplasmon effects are forbidden.
Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.
NASA Astrophysics Data System (ADS)
van Doren, Thomas Walter
1993-01-01
This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.
Tollmien-Schlichting/vortex interactions in compressible boundary layer flows
NASA Technical Reports Server (NTRS)
Blackaby, Nicholas D.
1993-01-01
The weakly nonlinear interaction of oblique Tollmien-Schlichting waves and longitudinal vortices in compressible, high Reynolds number, boundary-layer flow over a flat plate is considered for all ranges of the Mach number. The interaction equations comprise of equations for the vortex which is indirectly forced by the waves via a boundary condition, whereas a vortex term appears in the amplitude equation for the wave pressure. The downstream solution properties of interaction equations are found to depend on the sign of an interaction coefficient. Compressibility is found to have a significant effect on the interaction properties; principally through its impact on the waves and their governing mechanism, the triple-deck structure. It is found that, in general, the flow quantities will grow slowly with increasing downstream co-ordinate; i.e. in general, solutions do not terminate in abrupt, finite-distance 'break-ups'.
Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.
Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe
2014-09-01
The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave-short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics.
Bound states of moving potential wells in discrete wave mechanics
NASA Astrophysics Data System (ADS)
Longhi, S.
2017-10-01
Discrete wave mechanics describes the evolution of classical or matter waves on a lattice, which is governed by a discretized version of the Schrödinger equation. While for a vanishing lattice spacing wave evolution of the continuous Schrödinger equation is retrieved, spatial discretization and lattice effects can deeply modify wave dynamics. Here we discuss implications of breakdown of exact Galilean invariance of the discrete Schrödinger equation on the bound states sustained by a smooth potential well which is uniformly moving on the lattice with a drift velocity v. While in the continuous limit the number of bound states does not depend on the drift velocity v, as one expects from the covariance of ordinary Schrödinger equation for a Galilean boost, lattice effects can lead to a larger number of bound states for the moving potential well as compared to the potential well at rest. Moreover, for a moving potential bound states on a lattice become rather generally quasi-bound (resonance) states.
Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation
NASA Astrophysics Data System (ADS)
Su, Bo; Tuo, Xianguo; Xu, Ling
2017-08-01
Based on a modified strategy, two modified symplectic partitioned Runge-Kutta (PRK) methods are proposed for the temporal discretization of the elastic wave equation. The two symplectic schemes are similar in form but are different in nature. After the spatial discretization of the elastic wave equation, the ordinary Hamiltonian formulation for the elastic wave equation is presented. The PRK scheme is then applied for time integration. An additional term associated with spatial discretization is inserted into the different stages of the PRK scheme. Theoretical analyses are conducted to evaluate the numerical dispersion and stability of the two novel PRK methods. A finite difference method is used to approximate the spatial derivatives since the two schemes are independent of the spatial discretization technique used. The numerical solutions computed by the two new schemes are compared with those computed by a conventional symplectic PRK. The numerical results, which verify the new method, are superior to those generated by traditional conventional methods in seismic wave modeling.
NASA Astrophysics Data System (ADS)
Das, Amiya; Ganguly, Asish
2017-07-01
The paper deals with Kadomtsev-Petviashvili (KP) equation in presence of a small dispersion effect. The nature of solutions are examined under the dispersion effect by using Lyapunov function and dynamical system theory. We prove that when dispersion is added to the KP equation, in certain regions, yet there exist bounded traveling wave solutions in the form of solitary waves, periodic and elliptic functions. The general solution of the equation with or without the dispersion effect are obtained in terms of Weirstrass ℘ functions and Jacobi elliptic functions. New form of kink-type solutions are established by exploring a new technique based on factorization method, use of functional transformation and the Abel's first order nonlinear equation. Furthermore, the stability analysis of the dispersive solutions are examined which shows that the traveling wave velocity is a bifurcation parameter which governs between different classes of waves. We use the phase plane analysis and show that at a critical velocity, the solution has a transcritical bifurcation.
Accelerated ions and self-excited Alfvén waves at the Earth's bow shock
NASA Astrophysics Data System (ADS)
Berezhko, E. G.; Taneev, S. N.; Trattner, K. J.
2011-07-01
The diffuse energetic ion event and related Alfvén waves upstream of the Earth's bow shock, measured by AMPTE/IRM satellite on 29 September 1984, 06:42-07:22 UT, was studied using a self-consistent quasi-linear theory of ion diffusive shock acceleration and associated Alfvén wave generation. The wave energy density satisfies a wave kinetic equation, and the ion distribution function satisfies the diffusive transport equation. These coupled equations are solved numerically, and calculated ion and wave spectra are compared with observations. It is shown that calculated steady state ion and Alfvén wave spectra are established during the time period of about 1000 s. Alfvén waves excited by accelerated ions are confined within the frequency range (10-2 to 1) Hz, and their spectral peak with the wave amplitude δB ≈ B comparable to the interplanetary magnetic field value B corresponds to the frequency 2 × 10-2 Hz. The high-frequency part of the wave spectrum undergoes absorption by thermal protons. It is shown that the observed ion spectra and the associated Alfvén wave spectra are consistent with the theoretical prediction.
Zubarev, Nikolay M; Zubareva, Olga V
2010-10-01
Nonlinear waves on sheets of dielectric liquid in the presence of an external tangential electric field are studied theoretically. It is shown that waves of arbitrary shape in three-dimensional geometry can propagate along (or against) the electric field direction without distortion, i.e., the equations of motion admit a wide class of exact traveling wave solutions. This unusual situation occurs for nonconducting ideal liquids with high dielectric constants in the case of a sufficiently strong field strength. Governing equations for evolution of plane symmetric waves on fluid sheets are derived using conformal variables. A dispersion relation for the evolution of small perturbations of the traveling wave solutions is obtained. It follows from this relation that, regardless of the wave shape, the amplitudes of small-scale perturbations do not increase with time and, hence, the traveling waves are stable. We also study the interaction of counterpropagating symmetric waves with small but finite amplitudes. The corresponding solution of the equations of motion describes the nonlinear superposition of the oppositely directed waves. The results obtained are applicable for the description of long waves on fluid sheets in a horizontal magnetic field.
Stability of post-fertilization traveling waves
NASA Astrophysics Data System (ADS)
Flores, Gilberto; Plaza, Ramón G.
This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.
Rogue wave modes for a derivative nonlinear Schrödinger model.
Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin
2014-03-01
Rogue waves in fluid dynamics and optical waveguides are unexpectedly large displacements from a background state, and occur in the nonlinear Schrödinger equation with positive linear dispersion in the regime of positive cubic nonlinearity. Rogue waves of a derivative nonlinear Schrödinger equation are calculated in this work as a long-wave limit of a breather (a pulsating mode), and can occur in the regime of negative cubic nonlinearity if a sufficiently strong self-steepening nonlinearity is also present. This critical magnitude is shown to be precisely the threshold for the onset of modulation instabilities of the background plane wave, providing a strong piece of evidence regarding the connection between a rogue wave and modulation instability. The maximum amplitude of the rogue wave is three times that of the background plane wave, a result identical to that of the Peregrine breather in the classical nonlinear Schrödinger equation model. This amplification ratio and the resulting spectral broadening arising from modulation instability correlate with recent experimental results of water waves. Numerical simulations in the regime of marginal stability are described.
Rogue waves in nonlocal media.
Horikis, Theodoros P; Ablowitz, Mark J
2017-04-01
The generation of rogue waves is investigated in a class of nonlocal nonlinear Schrödinger (NLS) equations. In this system, modulation instability is suppressed as the effect of nonlocality increases. Despite this fact, there is a parameter regime where the number and amplitude of the rogue events increase as compared to the standard NLS equation, which is a limit of the system when nonlocality vanishes. Furthermore, the nature of these waves is investigated; while no analytical solutions are known to model these events, it is shown, numerically, that these rogue events differ significantly from the rational soliton (Peregrine) solution of the limiting NLS equation. The universal structure of the associated rogue waves is discussed and a local description is presented. These results can help in the experimental realization of rogue waves in these media.
Small data global solutions for the Camassa–Choi equations
NASA Astrophysics Data System (ADS)
Harrop-Griffiths, Benjamin; Marzuola, Jeremy L.
2018-05-01
We consider solutions to the Cauchy problem for an internal-wave model derived by Camassa–Choi (1996 J. Fluid Mech. 313 83–103). This model is a natural generalization of the Benjamin–Ono and intermediate long wave equations for weak transverse effects as in the case of the Kadomtsev–Petviashvili equations for the Korteweg-de Vries equation. For that reason they are often referred to as the KP-ILW or the KP–Benjamin–Ono equations regarding finite or infinite depth respectively. We prove the existence and long-time dynamics of global solutions from small, smooth, spatially localized initial data on . The techniques applied here involve testing by wave packet techniques developed by Ifrim and Tataru in (2015 Nonlinearity 28 2661–75 2016 Bull. Soc. Math. France 144 369–94).
Yu, Fajun
2017-02-01
Starting from a discrete spectral problem, we derive a hierarchy of nonlinear discrete equations which include the Ablowitz-Ladik (AL) equation. We analytically study the discrete rogue-wave (DRW) solutions of AL equation with three free parameters. The trajectories of peaks and depressions of profiles for the first- and second-order DRWs are produced by means of analytical and numerical methods. In particular, we study the solutions with dispersion in parity-time ( PT) symmetric potential for Ablowitz-Musslimani equation. And we consider the non-autonomous DRW solutions, parameters controlling and their interactions with variable coefficients, and predict the long-living rogue wave solutions. Our results might provide useful information for potential applications of synthetic PT symmetric systems in nonlinear optics and condensed matter physics.
A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions
NASA Technical Reports Server (NTRS)
Huff, R. G.
1984-01-01
The equations of momentum annd continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in Earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.
A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions
NASA Technical Reports Server (NTRS)
Huff, R. G.
1984-01-01
The equations of momentum and continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.
Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Bertola, Marco; El, Gennady A.; Tovbis, Alexander
2016-10-01
Rogue waves appearing on deep water or in optical fibres are often modelled by certain breather solutions of the focusing nonlinear Schrödinger (fNLS) equation which are referred to as solitons on finite background (SFBs). A more general modelling of rogue waves can be achieved via the consideration of multiphase, or finite-band, fNLS solutions of whom the standard SFBs and the structures forming due to their collisions represent particular, degenerate, cases. A generalized rogue wave notion then naturally enters as a large-amplitude localized coherent structure occurring within a finite-band fNLS solution. In this paper, we use the winding of real tori to show the mechanism of the appearance of such generalized rogue waves and derive an analytical criterion distinguishing finite-band potentials of the fNLS equation that exhibit generalized rogue waves.
NASA Astrophysics Data System (ADS)
Chandran, Benjamin D. G.; Perez, Jean C.; Verscharen, Daniel; Klein, Kristopher G.; Mallet, Alfred
2015-09-01
The interaction between Alfvén-wave turbulence and the background solar wind affects the cross helicity (\\int {d}3x {\\boldsymbol{v}}\\cdot {\\boldsymbol{B}}) in two ways. Non-WKB reflection converts outward-propagating Alfvén waves into inward-propagating Alfvén waves and vice versa, and the turbulence transfers momentum to the background flow. When both effects are accounted for, the total cross helicity is conserved. In the special case that the background density and flow speed are independent of time, the equations of cross-helicity conservation and total-energy conservation can be combined to recover a well-known equation derived by Heinemann and Olbert that has been interpreted as a non-WKB generalization of wave-action conservation. This latter equation (in contrast to cross-helicity and energy conservation) does not hold when the background varies in time.
Rayleigh-type waves in nonlocal micropolar solid half-space.
Khurana, Aarti; Tomar, S K
2017-01-01
Propagation of Rayleigh type surface waves in nonlocal micropolar elastic solid half-space has been investigated. Two modes of Rayleigh-type waves are found to propagate under certain approximations. Frequency equations of these Rayleigh type modes and their conditions of existence have been derived. These frequency equations are found to be dispersive in character due to the presence of micropolarity and nonlocality parameters in the medium. One of the frequency equations is a counterpart of the classical Rayleigh waves and the other is new and has appeared due to micropolarity of the medium. Phase speeds of these waves are computed numerically for Magnesium crystal and their variation against wavenumber are presented graphically. Comparisons have been made between the phase speeds of Rayleigh type waves through nonlocal micropolar, local micropolar and elastic solid half-spaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Drift-wave turbulence and zonal flow generation.
Balescu, R
2003-10-01
Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.
Controllable parabolic-cylinder optical rogue wave.
Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola
2014-10-01
We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.
Wave equation datuming applied to marine OBS data and to land high resolution seismic profiling
NASA Astrophysics Data System (ADS)
Barison, Erika; Brancatelli, Giuseppe; Nicolich, Rinaldo; Accaino, Flavio; Giustiniani, Michela; Tinivella, Umberta
2011-03-01
One key step in seismic data processing flows is the computation of static corrections, which relocate shots and receivers at the same datum plane and remove near surface weathering effects. We applied a standard static correction and a wave equation datuming and compared the obtained results in two case studies: 1) a sparse ocean bottom seismometers dataset for deep crustal prospecting; 2) a high resolution land reflection dataset for hydrogeological investigation. In both cases, a detailed velocity field, obtained by tomographic inversion of the first breaks, was adopted to relocate shots and receivers to the datum plane. The results emphasize the importance of wave equation datuming to properly handle complex near surface conditions. In the first dataset, the deployed ocean bottom seismometers were relocated to the sea level (shot positions) and a standard processing sequence was subsequently applied to the output. In the second dataset, the application of wave equation datuming allowed us to remove the coherent noise, such as ground roll, and to improve the image quality with respect to the application of static correction. The comparison of the two approaches evidences that the main reflecting markers are better resolved when the wave equation datuming procedure is adopted.
NASA Technical Reports Server (NTRS)
Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.
1999-01-01
We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.
1987-11-23
e.g. the Kadomtsev - Petviashvili . Davey-Stewartson, and three-wave interaction equations -see for example the review [11]). little progress has been made... equations for our purposes will be the Korteweg-deVries (KdV) equation u, - 6uu., + u, =0 ( ) in one spatial dimension, and the Kadomtsev - Petviashvili (KP...similarities with KP [4] than with u, =sin u, (2) KdV (the IST for (5) has been recently considered and the Kadomtsev - Petviashvili (KP) equation in ref. [ 5
Wave Functions for Time-Dependent Dirac Equation under GUP
NASA Astrophysics Data System (ADS)
Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen
2018-04-01
In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009
NASA Astrophysics Data System (ADS)
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-01-01
In this research, we apply new technique for higher order nonlinear Schrödinger equation which is representing the propagation of short light pulses in the monomode optical fibers and the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Nonlinear Schrödinger equation is one of the basic model in fiber optics. We apply new auxiliary equation method for nonlinear Sasa-Satsuma equation to obtain a new optical forms of solitary traveling wave solutions. Exact and solitary traveling wave solutions are obtained in different kinds like trigonometric, hyperbolic, exponential, rational functions, …, etc. These forms of solutions that we represent in this research prove the superiority of our new technique on almost thirteen powerful methods. The main merits of this method over the other methods are that it gives more general solutions with some free parameters.
NASA Astrophysics Data System (ADS)
Adem, Abdullahi Rashid
2016-05-01
We consider a (2+1)-dimensional Korteweg-de Vries type equation which models the shallow-water waves, surface and internal waves. In the analysis, we use the Lie symmetry method and the multiple exp-function method. Furthermore, conservation laws are computed using the multiplier method.
Boundary value problems for multi-term fractional differential equations
NASA Astrophysics Data System (ADS)
Daftardar-Gejji, Varsha; Bhalekar, Sachin
2008-09-01
Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.
Controllable optical rogue waves via nonlinearity management.
Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi
2018-03-19
Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.
Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul
2014-01-01
In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.
Whitham modulation theory for the two-dimensional Benjamin-Ono equation.
Ablowitz, Mark; Biondini, Gino; Wang, Qiao
2017-09-01
Whitham modulation theory for the two-dimensional Benjamin-Ono (2DBO) equation is presented. A system of five quasilinear first-order partial differential equations is derived. The system describes modulations of the traveling wave solutions of the 2DBO equation. These equations are transformed to a singularity-free hydrodynamic-like system referred to here as the 2DBO-Whitham system. Exact reductions of this system are discussed, the formulation of initial value problems is considered, and the system is used to study the transverse stability of traveling wave solutions of the 2DBO equation.
Seismic wavefield propagation in 2D anisotropic media: Ray theory versus wave-equation simulation
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; Hu, Guang-yi; Zhang, Yan-teng; Li, Zhong-sheng
2014-05-01
Despite the ray theory that is based on the high frequency assumption of the elastic wave-equation, the ray theory and the wave-equation simulation methods should be mutually proof of each other and hence jointly developed, but in fact parallel independent progressively. For this reason, in this paper we try an alternative way to mutually verify and test the computational accuracy and the solution correctness of both the ray theory (the multistage irregular shortest-path method) and the wave-equation simulation method (both the staggered finite difference method and the pseudo-spectral method) in anisotropic VTI and TTI media. Through the analysis and comparison of wavefield snapshot, common source gather profile and synthetic seismogram, it is able not only to verify the accuracy and correctness of each of the methods at least for kinematic features, but also to thoroughly understand the kinematic and dynamic features of the wave propagation in anisotropic media. The results show that both the staggered finite difference method and the pseudo-spectral method are able to yield the same results even for complex anisotropic media (such as a fault model); the multistage irregular shortest-path method is capable of predicting similar kinematic features as the wave-equation simulation method does, which can be used to mutually test each other for methodology accuracy and solution correctness. In addition, with the aid of the ray tracing results, it is easy to identify the multi-phases (or multiples) in the wavefield snapshot, common source point gather seismic section and synthetic seismogram predicted by the wave-equation simulation method, which is a key issue for later seismic application.
Classification of homoclinic rogue wave solutions of the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Osborne, A. R.
2014-01-01
Certain homoclinic solutions of the nonlinear Schrödinger (NLS) equation, with spatially periodic boundary conditions, are the most common unstable wave packets associated with the phenomenon of oceanic rogue waves. Indeed the homoclinic solutions due to Akhmediev, Peregrine and Kuznetsov-Ma are almost exclusively used in scientific and engineering applications. Herein I investigate an infinite number of other homoclinic solutions of NLS and show that they reduce to the above three classical homoclinic solutions for particular spectral values in the periodic inverse scattering transform. Furthermore, I discuss another infinity of solutions to the NLS equation that are not classifiable as homoclinic solutions. These latter are the genus-2N theta function solutions of the NLS equation: they are the most general unstable spectral solutions for periodic boundary conditions. I further describe how the homoclinic solutions of the NLS equation, for N = 1, can be derived directly from the theta functions in a particular limit. The solutions I address herein are actual spectral components in the nonlinear Fourier transform theory for the NLS equation: The periodic inverse scattering transform. The main purpose of this paper is to discuss a broader class of rogue wave packets1 for ship design, as defined in the Extreme Seas program. The spirit of this research came from D. Faulkner (2000) who many years ago suggested that ship design procedures, in order to take rogue waves into account, should progress beyond the use of simple sine waves. 1An overview of other work in the field of rogue waves is given elsewhere: Osborne 2010, 2012 and 2013. See the books by Olagnon and colleagues 2000, 2004 and 2008 for the Brest meetings. The books by Kharif et al. (2008) and Pelinovsky et al. (2010) are excellent references.
Schüler, D; Alonso, S; Torcini, A; Bär, M
2014-12-01
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.
Modeling of Wave Spectrum and Wave Breaking Statistics Based on Balance Equation
NASA Astrophysics Data System (ADS)
Irisov, V.
2012-12-01
Surface roughness and foam coverage are the parameters determining microwave emissivity of sea surface in a wide range of wind. Existing empirical wave spectra are not associated with wave breaking statistics although physically they are closely related. We propose a model of sea surface based on the balance of three terms: wind input, dissipation, and nonlinear wave-wave interaction. It provides an insight on wave generation, interaction, and dissipation - very important parameters for understanding of wave development under changing oceanic and atmospheric conditions. The wind input term is the best known among all three. For our analysis we assume a wind input term as it was proposed by Plant [1982] and consider modification necessary to do to account for proper interaction of long fast waves with wind. For long gravity waves (longer than 15-30 cm) the dissipation term can be related to the wave breaking with whitecaps, as it was shown by Kudryavtsev et al. [2003], so we assume the cubic dependence of dissipation term on wind. It implies certain limitations on the spectrum shape. The most difficult is to estimate the term describing nonlinear wave-wave interaction. Hasselmann [1962] and Zakharov [1999] developed theory of 4-wave interaction, but the resulting equation requires at least 3-fold integration over wavenumbers at each time step of integration of balance equation, which makes it difficult for direct numerical modeling. It is desirable to use an approximation of wave-wave interaction term, which preserves wave action, energy, and momentum, and can be easily estimated during time integration of balance equation. Zakharov and Pushkarev [1999] proposed the diffusion approximation of the wave interaction term and showed that it can be used for estimate of wave spectrum. We believe their assumption that wave-wave interaction is the dominant factor in forming the wave spectrum does not agree with the observations made by Hwang and Sletten [2008]. Finally we consider modifications of the model equation, which can be done to describe gravity-capillary and capillary waves. An obvious correction is to add viscous dissipation. A little less obvious is a transition from 4-wave to 3-wave interaction. The model allows one to include easily generation of parasitic capillary waves as it was proposed by Kudryavtsev et al. [2003]. A modification of dissipation term can explain an "overshoot" phenomenon observed in JONSWAP spectrum. These examples demonstrate that the proposed model is quite flexible and can be used to account for various physical phenomena. The resulting balance equation is easy to integrate using a personal computer and necessity of its numerical solution is paid by the model flexibility and better physical background compared with empirical spectra. References Hasselmann, K., J. Fluid Mech., 12, pp.481-500, 1962. Hwang, P., and M. Sletten, J. Geophys. Res., 113, doi:10.1029/2007JC004277, 2008. Kudryavtsev, V., et al., J. Geophys. Res., 108 (C3), doi:10.1029/2001JC001003, 2003. Plant, W. J., J. Geophys. Res., vol. 87, pp. 1961-1967, 1982. Zakharov, V., and A. Pushkarev, Nonlinear Processes in Geophysics, 6, pp.1-10, 1999. Zakharov, V., Eur. J. Mech. B/Fluids, 18, pp.327-344, 1999.
The nonlinear wave equation for higher harmonics in free-electron lasers
NASA Technical Reports Server (NTRS)
Colson, W. B.
1981-01-01
The nonlinear wave equation and self-consistent pendulum equation are generalized to describe free-electron laser operation in higher harmonics; this can significantly extend their tunable range to shorter wavelengths. The dynamics of the laser field's amplitude and phase are explored for a wide range of parameters using families of normalized gain curves applicable to both the fundamental and harmonics. The electron phase-space displays the fundamental physics driving the wave, and this picture is used to distinguish between the effects of high gain and Coulomb forces.
NASA Astrophysics Data System (ADS)
Vigier, Jean-Pierre
1991-02-01
Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.
The birth of wave mechanics (1923-1926)
NASA Astrophysics Data System (ADS)
Aspect, Alain; Villain, Jacques
2017-11-01
In 1923, in three articles published in the Comptes Rendus of the Académie des Sciences, Louis de Broglie proposed the concept of wave-particle duality. Physicists from many countries seized upon this idea. In particular, Schrödinger developed de Broglie's qualitative idea by writing down the equation that the wave must satisfy in the non-relativistic approximation. A relativistic version of this equation was proposed in 1926 by several scientists, and other ones found a solution to the Schrödinger equation as an expansion in powers of the Planck constant.
Towards an exact factorization of the molecular wave function
NASA Astrophysics Data System (ADS)
Parashar, Shubham; Sajeev, Y.; Ghosh, Swapan K.
2015-10-01
An exact single-product factorisation of the molecular wave function for the timedependent Schrödinger equation is investigated by using an ansatz involving a phase factor. By using the Frenkel variational method, we obtain the Schrödinger equations for the electronic and nuclear wave functions. The concept of a potential energy surface (PES) is retained by introducing a modified Hamiltonian as suggested earlier by Cederbaum. The parameter ω in the phase factor is chosen such that the equations of motion retain the physically appealing Born- Oppenheimer-like form, and is therefore unique.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1973-01-01
Equations are presented which govern the dynamics of the lines-first parachute unfurling process, including wave motion in the parachute suspension lines. Techniques are developed for obtaining numerical solutions to the governing equations. Histories of tension at test data, and generally good agreement is observed. Errors in computed results are attributed to several areas of uncertainty, the most significant being a poorly defined boundary condition on the wave motion at the vehicle-suspension line boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruban, V. P., E-mail: ruban@itp.ac.ru
2015-05-15
The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of roguemore » wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.« less
NASA Astrophysics Data System (ADS)
Hu, Wen-Qiang; Gao, Yi-Tian; Zhao, Chen; Jia, Shu-Liang; Lan, Zhong-Zhou
2017-07-01
Under investigation in this paper is a generalized ?-dimensional Yu-Toda-Sasa-Fukayama equation for the interfacial wave in a two-layer fluid or the elastic quasi-plane wave in a liquid lattice. By virtue of the binary Bell polynomials, bilinear form of this equation is obtained. With the help of the bilinear form, N-soliton solutions are obtained via the Hirota method, and a bilinear Bäcklund transformation is derived to verify the integrability. Homoclinic breather waves are obtained according to the homoclinic test approach, which is not only the space-periodic breather but also the time-periodic breather via the graphic analysis. Via the Riemann theta function, quasi one-periodic waves are constructed, which can be viewed as a superposition of the overlapping solitary waves, placed one period apart. Finally, soliton-like, periodical triangle-type, rational-type and solitary bell-type travelling waves are obtained by means of the polynomial expansion method.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)
2002-01-01
A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.
NASA Astrophysics Data System (ADS)
Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet
2017-11-01
In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.
Nonlinear Gyro-Landau-Fluid Equations
NASA Astrophysics Data System (ADS)
Raskolnikov, I.; Mattor, Nathan; Parker, Scott E.
1996-11-01
We present fluid equations which describe the effects of both linear and nonlinear Landau damping (wave-particle-wave effects). These are derived using a recently developed analytical method similar to renormalization group theory. (Scott E. Parker and Daniele Carati, Phys. Rev. Lett. 75), 441 (1995). In this technique, the phase space structure inherent in Landau damping is treated analytically by building a ``renormalized collisionality'' onto a bare collisionality (which may be taken as vanishingly small). Here we apply this technique to the nonlinear ion gyrokinetic equation in slab geometry, obtaining nonlinear fluid equations for density, parallel momentum and heat. Wave-particle resonances are described by two functions appearing in the heat equation: a renormalized ``collisionality'' and a renormalized nonlinear coupling coeffient. It will be shown that these new equations may correct a deficiency in existing gyrofluid equations, (G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990). which can severely underestimate the strength of nonlinear interaction in regimes where linear resonance is strong. (N. Mattor, Phys. Fluids B 4,) 3952 (1992).
An Experiment on Two-Dimensional Interaction of Solitary Waves in Shallow Water System
NASA Astrophysics Data System (ADS)
Tsuji, Hidekazu; Yufu, Kei; Marubayashi, Kenji
2012-11-01
The dynamics of solitary waves in horizontally two-dimensional region is not yet well understood. Recently two-dimensional soliton interaction of Kadmotsetv-Petviashvili (KP) equation which describes the weakly nonlinear long wave in shallow water system has been theoretically studied (e.g. Kodama (2010)). It is clarified that the ``resonant'' interaction which forms Y-shaped triad can be described by exact solution. Li et al. (2011) experimentally studied the reflection of solitary wave at the wall and verified the theory of KP equation. To investigate more general interaction process, an experiment in wave tank using two wave makers which are controlled independently is carried out. The wave tank is 4 m in length and 3.6 m in width. The depth of the water is about 8cm. The wavemakers, which are piston-type and have board about 1.5 m in length, can produce orderly solitary wave which amplitude is 1.0-3.5 cm. We observe newly generated solitary wave due to interaction of original solitary waves which have different amplitude and/or propagation direction. The results are compared with the aforementioned theory of KP equation.
Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.
Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A
2016-08-01
Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.
NASA Astrophysics Data System (ADS)
Rumyantseva, O. D.; Shurup, A. S.
2017-01-01
The paper considers the derivation of the wave equation and Helmholtz equation for solving the tomographic problem of reconstruction combined scalar-vector inhomogeneities describing perturbations of the sound velocity and absorption, the vector field of flows, and perturbations of the density of the medium. Restrictive conditions under which the obtained equations are meaningful are analyzed. Results of numerical simulation of the two-dimensional functional-analytical Novikov-Agaltsov algorithm for reconstructing the flow velocity using the the obtained Helmholtz equation are presented.
Application of ANNs approach for wave-like and heat-like equations
NASA Astrophysics Data System (ADS)
Jafarian, Ahmad; Baleanu, Dumitru
2017-12-01
Artificial neural networks are data processing systems which originate from human brain tissue studies. The remarkable abilities of these networks help us to derive desired results from complicated raw data. In this study, we intend to duplicate an efficient iterative method to the numerical solution of two famous partial differential equations, namely the wave-like and heat-like problems. It should be noted that many physical phenomena such as coupling currents in a flat multi-strand two-layer super conducting cable, non-homogeneous elastic waves in soils and earthquake stresses, are described by initial-boundary value wave and heat partial differential equations with variable coefficients. To the numerical solution of these equations, a combination of the power series method and artificial neural networks approach, is used to seek an appropriate bivariate polynomial solution of the mentioned initial-boundary value problem. Finally, several computer simulations confirmed the theoretical results and demonstrating applicability of the method.
Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors
NASA Astrophysics Data System (ADS)
Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping
2018-04-01
A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.
Periodic solutions for one dimensional wave equation with bounded nonlinearity
NASA Astrophysics Data System (ADS)
Ji, Shuguan
2018-05-01
This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.
Cubic nonlinearity in shear wave beams with different polarizations
Wochner, Mark S.; Hamilton, Mark F.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.
2008-01-01
A coupled pair of nonlinear parabolic equations is derived for the two components of the particle motion perpendicular to the axis of a shear wave beam in an isotropic elastic medium. The equations account for both quadratic and cubic nonlinearity. The present paper investigates, analytically and numerically, effects of cubic nonlinearity in shear wave beams for several polarizations: linear, elliptical, circular, and azimuthal. Comparisons are made with effects of quadratic nonlinearity in compressional wave beams. PMID:18529167
Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagstrom, George I.; Hameiri, Eliezer
Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also anmore » entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.« less
Wave and pseudo-diffusion equations from squeezed states
NASA Technical Reports Server (NTRS)
Daboul, Jamil
1993-01-01
We show that the probability distributions P(sub n)(q,p;y) := the absolute value squared of (n(p,q;y), which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension; and as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies S(sub n)(y), and we show that they have minima at zero squeezing, y = 0.
2015-06-01
method provides improved agreement with a benchmark solution at longer ranges. 14. SUBJECT TERMS parabolic equation , Monterey Miami...elliptic Helmholtz wave equation dates back to mid-1940s, when Leontovich and Fock introduced the PE method to the problem of radio-wave propagation in...improvements in the solutions . B. PROBLEM STATEMENT The Monterey-Miami Parabolic Equation (MMPE) model was developed in the mid-1990s and since then has
NASA Astrophysics Data System (ADS)
Gidel, Floriane; Bokhove, Onno; Kalogirou, Anna
2017-01-01
In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length and amplitude, reaching up to 4 times the amplitude of the incident waves. A variational approach is used to derive the bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling water waves. This nonlinear and weakly dispersive model has the advantage of allowing wave propagation in two horizontal directions, which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies. A variational Galerkin finite-element method is applied to solve the system numerically in Firedrake with a second-order Störmer-Verlet temporal integration scheme, in order to obtain stable simulations that conserve the overall mass and energy of the system. Using this approach, we are able to get close to the 4-fold amplitude amplification predicted by Miles.
Balbus, Steven A
2016-10-18
A conserved stress energy tensor for weak field gravitational waves propagating in vacuum is derived directly from the linearized general relativistic wave equation alone, for an arbitrary gauge. In any harmonic gauge, the form of the tensor leads directly to the classical expression for the outgoing wave energy. The method described here, however, is a much simpler, shorter, and more physically motivated approach than is the customary procedure, which involves a lengthy and cumbersome second-order (in wave-amplitude) calculation starting with the Einstein tensor. Our method has the added advantage of exhibiting the direct coupling between the outgoing wave energy flux and the work done by the gravitational field on the sources. For nonharmonic gauges, the directly derived wave stress tensor has an apparent index asymmetry. This coordinate artifact may be straightforwardly removed, and the symmetrized (still gauge-invariant) tensor then takes on its widely used form. Angular momentum conservation follows immediately. For any harmonic gauge, however, the stress tensor found is manifestly symmetric from the start, and its derivation depends, in its entirety, on the structure of the linearized wave equation.
Do the freak waves exist in soliton gas?
NASA Astrophysics Data System (ADS)
Shurgalina, Ekaterina; Pelinovsky, Efim
2016-04-01
The possibility of short-lived anomalous large waves (rogue waves) in soliton gas in the frameworks of integrable models like the Korteweg - de Vries - type equations is studied. It is shown that the dynamics of heteropolar soliton gas differs sufficiently from the dynamics of unipolar soliton fields. In particular, in the wave fields consisting of solitons with different polarities the freak wave appearance is possible. It is shown numerically in [Shurgalina and Pelinovsky, 2015]. Freak waves in the framework of the modified Korteweg-de Vries equation have been studied previously in the case of narrowband initial conditions [Grimshaw et al, 2005, 2010; Talipova, 2011]. In this case, the mechanism of freak wave generation was modulation instability of modulated quasi-sinusoidal wave packets. At the same time the modulation instability of modulated cnoidal waves was studied in the mathematical work [Driscoll & O'Neil, 1976]. Since a sequence of solitary waves can be a special case of cnoidal wave, the modulation instability can be a possible mechanism of freak wave appearance in a soliton gas. Thus, we expect that rogue wave phenomenon in soliton gas appears in nonlinear integrable models admitting an existence of modulation instability of periodic waves (like cnoidal waves). References: 1. Shurgalina E.G., Pelinovsky E.N. Dynamics of irregular wave ensembles in the coastal zone, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. - Nizhny Novgorod, 2015, 179 pp. 2. Grimshaw R., Pelinovsky E., Talipova T., Sergeeva A. Rogue internal waves in the ocean: long wave model. European Physical Journal Special Topics, 2010, 185, 195 - 208. 3. Grimshaw R., Pelinovsky E., Talipova T., Ruderman M. Erdelyi R. Short-lived large-amplitude pulses in the nonlinear long-wave model described by the modified Korteweg-de Vries equation. Studied Applied Mathematics, 2005, 114 (2), 189. 4. Talipova T.G. Mechanisms of internal freak waves, Fundamental and Applied Hydrophysics, 2011, 4(4), 58-70. 5. Driscoll F., O'Neil T.M. Modulational instability of cnoidal wave solutions of the modified Korteweg-de Vries equation. Journal of Mathematical Physics, 1976, 17 (7), 1196-1200.
Internally electrodynamic particle model: Its experimental basis and its predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or
2010-03-15
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less
Internally electrodynamic particle model: Its experimental basis and its predictions
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J. X.
2010-03-01
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.
NASA Astrophysics Data System (ADS)
Demiray, Hilmi; El-Zahar, Essam R.
2018-04-01
We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.
Iterative Methods to Solve Linear RF Fields in Hot Plasma
NASA Astrophysics Data System (ADS)
Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo
2014-10-01
Most magnetic plasma confinement devices use radio frequency (RF) waves for current drive and/or heating. Numerical modeling of RF fields is an important part of performance analysis of such devices and a predictive tool aiding design and development of future devices. Prior attempts at this modeling have mostly used direct solvers to solve the formulated linear equations. Full wave modeling of RF fields in hot plasma with 3D nonuniformities is mostly prohibited, with memory demands of a direct solver placing a significant limitation on spatial resolution. Iterative methods can significantly increase spatial resolution. We explore the feasibility of using iterative methods in 3D full wave modeling. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating along test particle orbits. The wave equation is discretized using a finite difference approach. The initial guess is important in iterative methods, and we examine different initial guesses including the solution to the cold plasma wave equation. Work is supported by the U.S. DOE SBIR program.
Nonlinear reflection of shock shear waves in soft elastic media.
Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël
2010-02-01
For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.
Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media
NASA Astrophysics Data System (ADS)
Aver'yanov, M. V.; Khokhlova, V. A.; Sapozhnikov, O. A.; Blanc-Benon, Ph.; Cleveland, R. O.
2006-12-01
A new parabolic equation is derived to describe the propagation of nonlinear sound waves in inhomogeneous moving media. The equation accounts for diffraction, nonlinearity, absorption, scalar inhomogeneities (density and sound speed), and vectorial inhomogeneities (flow). A numerical algorithm employed earlier to solve the KZK equation is adapted to this more general case. A two-dimensional version of the algorithm is used to investigate the propagation of nonlinear periodic waves in media with random inhomogeneities. For the case of scalar inhomogeneities, including the case of a flow parallel to the wave propagation direction, a complex acoustic field structure with multiple caustics is obtained. Inclusion of the transverse component of vectorial random inhomogeneities has little effect on the acoustic field. However, when a uniform transverse flow is present, the field structure is shifted without changing its morphology. The impact of nonlinearity is twofold: it produces strong shock waves in focal regions, while, outside the caustics, it produces higher harmonics without any shocks. When the intensity is averaged across the beam propagating through a random medium, it evolves similarly to the intensity of a plane nonlinear wave, indicating that the transverse redistribution of acoustic energy gives no considerable contribution to nonlinear absorption.
Analysis of pulse thermography using similarities between wave and diffusion propagation
NASA Astrophysics Data System (ADS)
Gershenson, M.
2017-05-01
Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.
NASA Astrophysics Data System (ADS)
Popescu, Mihaela; Shyy, Wei; Garbey, Marc
2005-12-01
In developing suitable numerical techniques for computational aero-acoustics, the dispersion-relation-preserving (DRP) scheme by Tam and co-workers and the optimized prefactored compact (OPC) scheme by Ashcroft and Zhang have shown desirable properties of reducing both dissipative and dispersive errors. These schemes, originally based on the finite difference, attempt to optimize the coefficients for better resolution of short waves with respect to the computational grid while maintaining pre-determined formal orders of accuracy. In the present study, finite volume formulations of both schemes are presented to better handle the nonlinearity and complex geometry encountered in many engineering applications. Linear and nonlinear wave equations, with and without viscous dissipation, have been adopted as the test problems. Highlighting the principal characteristics of the schemes and utilizing linear and nonlinear wave equations with different wavelengths as the test cases, the performance of these approaches is documented. For the linear wave equation, there is no major difference between the DRP and OPC schemes. For the nonlinear wave equations, the finite volume version of both DRP and OPC schemes offers substantially better solutions in regions of high gradient or discontinuity.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.
2003-01-01
A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.
Second-order numerical solution of time-dependent, first-order hyperbolic equations
NASA Technical Reports Server (NTRS)
Shah, Patricia L.; Hardin, Jay
1995-01-01
A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant number is set to one.
Zhao, Xiaofeng; McGough, Robert J.
2016-01-01
The attenuation of ultrasound propagating in human tissue follows a power law with respect to frequency that is modeled by several different causal and noncausal fractional partial differential equations. To demonstrate some of the similarities and differences that are observed in three related time-fractional partial differential equations, time-domain Green's functions are calculated numerically for the power law wave equation, the Szabo wave equation, and for the Caputo wave equation. These Green's functions are evaluated for water with a power law exponent of y = 2, breast with a power law exponent of y = 1.5, and liver with a power law exponent of y = 1.139. Simulation results show that the noncausal features of the numerically calculated time-domain response are only evident very close to the source and that these causal and noncausal time-domain Green's functions converge to the same result away from the source. When noncausal time-domain Green's functions are convolved with a short pulse, no evidence of noncausal behavior remains in the time-domain, which suggests that these causal and noncausal time-fractional models are equally effective for these numerical calculations. PMID:27250193
Modifiying shallow-water equations as a model for wave-vortex turbulence
NASA Astrophysics Data System (ADS)
Mohanan, A. V.; Augier, P.; Lindborg, E.
2017-12-01
The one-layer shallow-water equations is a simple two-dimensional model to study the complex dynamics of the oceans and the atmosphere. We carry out forced-dissipative numerical simulations, either by forcing medium-scale wave modes, or by injecting available potential energy (APE). With pure wave forcing in non-rotating cases, a statistically stationary regime is obtained for a range of forcing Froude numbers Ff = ɛ /(kf c), where ɛ is the energy dissipation rate, kf the forcing wavenumber and c the wave speed. Interestingly, the spectra scale as k-2 and third and higher order structure functions scale as r. Such statistics is a manifestation of shock turbulence or Burgulence, which dominate the flow. Rotating cases exhibit some inverse energy cascade, along with a stronger forward energy cascade, dominated by wave-wave interactions. We also propose two modifications to the classical shallow-water equations to construct a toy model. The properties of the model are explored by forcing in APE at a small and a medium wavenumber. The toy model simulations are then compared with results from shallow-water equations and a full General Circulation Model (GCM) simulation. The most distinctive feature of this model is that, unlike shallow-water equations, it avoids shocks and conserves quadratic energy. In Fig. 1, for the shallow-water equations, shocks appear as thin dark lines in the divergence (∇ .{u}) field, and as discontinuities in potential temperature (θ ) field; whereas only waves appear in the corresponding fields from toy model simulation. Forward energy cascade results in a wave field with k-5/3 spectrum, along with equipartition of KE and APE at small scales. The vortical field develops into a k-3 spectrum. With medium forcing wavenumber, at large scales, energy converted from APE to KE undergoes inverse cascade as a result of nonlinear fluxes composed of vortical modes alone. Gradually, coherent vortices emerge with a strong preference for anticyclonic motion. The model can serve as a closer representation of real geophysical turbulence than the classical shallow-water equations. Fig 1. Divergence and potential temperature fields of shallow-water (top row) and toy model (bottom row) simulations.
Stability properties of solitary waves for fractional KdV and BBM equations
NASA Astrophysics Data System (ADS)
Angulo Pava, Jaime
2018-03-01
This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations.
Geometric calculus-based postulates for the derivation and extension of the Maxwell equations
NASA Astrophysics Data System (ADS)
McClellan, Gene E.
2012-09-01
Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.
NASA Astrophysics Data System (ADS)
Liang, Li-Feng; Zhang, Hong-Bing; Dan, Zhi-Wei; Xu, Zi-Qiang; Liu, Xiu-Juan; Cao, Cheng-Hao
2017-03-01
Simultaneous prestack inversion is based on the modified Fatti equation and uses the ratio of the P- and S-wave velocity as constraints. We use the relation of P-wave impedance and density (PID) and S-wave impedance and density (SID) to replace the constant Vp/Vs constraint, and we propose the improved constrained Fatti equation to overcome the effect of P-wave impedance on density. We compare the sensitivity of both methods using numerical simulations and conclude that the density inversion sensitivity improves when using the proposed method. In addition, the random conjugate-gradient method is used in the inversion because it is fast and produces global solutions. The use of synthetic and field data suggests that the proposed inversion method is effective in conventional and nonconventional lithologies.
NASA Astrophysics Data System (ADS)
Zahnur; Halfiani, Vera; Salmawaty; Tulus; Ramli, Marwan
2018-01-01
This study concerns on the evolution of trichromatic wave group. It has been known that the trichromatic wave group undergoes an instability during its propagation, which results wave deformation and amplification on the waves amplitude. The previous results on the KdV wave group showed that the nonlinear effect will deform the wave and lead to large wave whose amplitude is higher than the initial input. In this study we consider the Benjamin-Bona-Mahony equation and the theory of third order side band approximation to investigate the peaking and splitting phenomena of the wave groups which is initially in trichromatic signal. The wave amplitude amplification and the maximum position will be observed through a quantity called Maximal Temporal Amplitude (MTA) which measures the maximum amplitude of the waves over time.
Initial-value problem for the Gardner equation applied to nonlinear internal waves
NASA Astrophysics Data System (ADS)
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of solitons (family with positive polarity, and family with negative polarity bounded below by the amplitude of 2) and two-parametric family of breathers (oscillatory wave packets). In this case varying amplitude and width of bell-shaped initial impulse leads to plenty of different evolutionary scenarios with the generation of solitary waves, breathers, solibores and nonlinear Airy wave in their various combinations. Statistical analysis of the wave field in time shows almost permanent substantial exceedance of the level of the significant wave height in some position in spatial coordinate. Evolution of Fourier spectrum of the wave field is also analyzed, and its behavior after a long time of initial wave evolution demonstrates the power asymptotic for small wave numbers and exponential asymptotic for large wave numbers. The presented results of research are obtained with the support of the grant of the President of the Russian Federation for state support of the young Russian scientists - Candidates of Sciences (MK-5208.2016.5) and Russian Foundation for Basic Research grant 16-05-00049. References: Grimshaw R., Pelinovsky D., Pelinovsky E and Slunyaev A. Generation of large-amplitude solitons in the extended Korteweg-de Vries equation // Chaos, 2002. - V.12. - No 4. - 1070-1076. Grimshaw, R., Slunyaev, A., and Pelinovsky, E. Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity //Chaos, 2010. - vol. 20.-013102. Kurkina O.E., Kurkin A.A., Soomere T., Pelinovsky E.N., Rouvinskaya E.A. Higher-order (2+4) Korteweg-de Vries - like equation for interfacial waves in a symmetric three-layer fluid // Physics of Fluids, 2011. - Volume 23. - Issue 11. - p.116602--1--13. Kurkina O., Rouvinskaya E., Talipova T., Kurkin A., Pelinovsky E. Nonlinear disintegration of sine wave in the framework of the Gardner equation // Physica D: Nonlinear Phenomena, 2015. - doi:10.1016/j.physd.2015.12.007. Pelinovsky E., Polukhina O., Slunyaev A., Talipova T. Internal solitary waves // Chapter 4 in the book ``Solitary Waves in Fluids''. WIT Press. Southampton, Boston. 2007. P. 85 - 110. Rouvinskaya E., Kurkina O., Kurkin A. Dynamics of nonlinear internal gravity waves in layered fluids // NNSTU n.a. R.E. Alekseev Press - Nizhny Novgorod, 2014 - 160 p. [In Russian] Trillo S., Klein M., Clauss G., Onorato M. Observation of dispersive shock waves developing from initial depressions in shallow water // Physica D, 2016. - http://dx.doi.org/10.1016/j.physd.2016.01.007.
Wave induced density modification in RF sheaths and close to wave launchers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Eester, D., E-mail: d.van.eester@fz-juelich.de; Crombé, K.; Department of Applied Physics, Ghent University, Ghent
2015-12-10
With the return to full metal walls - a necessary step towards viable fusion machines - and due to the high power densities of current-day ICRH (Ion Cyclotron Resonance Heating) or RF (radio frequency) antennas, there is ample renewed interest in exploring the reasons for wave-induced sputtering and formation of hot spots. Moreover, there is experimental evidence on various machines that RF waves influence the density profile close to the wave launchers so that waves indirectly influence their own coupling efficiency. The present study presents a return to first principles and describes the wave-particle interaction using a 2-time scale modelmore » involving the equation of motion, the continuity equation and the wave equation on each of the time scales. Through the changing density pattern, the fast time scale dynamics is affected by the slow time scale events. In turn, the slow time scale density and flows are modified by the presence of the RF waves through quasilinear terms. Although finite zero order flows are identified, the usual cold plasma dielectric tensor - ignoring such flows - is adopted as a first approximation to describe the wave response to the RF driver. The resulting set of equations is composed of linear and nonlinear equations and is tackled in 1D in the present paper. Whereas the former can be solved using standard numerical techniques, the latter require special handling. At the price of multiple iterations, a simple ’derivative switch-on’ procedure allows to reformulate the nonlinear problem as a sequence of linear problems. Analytical expressions allow a first crude assessment - revealing that the ponderomotive potential plays a role similar to that of the electrostatic potential arising from charge separation - but numerical implementation is required to get a feeling of the full dynamics. A few tentative examples are provided to illustrate the phenomena involved.« less
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.
2012-02-01
Double Alfvén wave solutions of the magnetohydrodynamic equations in which the physical variables (the gas density ρ, fluid velocity u, gas pressure p, and magnetic field induction B) depend only on two independent wave phases ϕ1(x,t) and ϕ2(x,t) are obtained. The integrals for the double Alfvén wave are the same as for simple waves, namely, the gas pressure, magnetic pressure, and group velocity of the wave are constant. Compatibility conditions on the evolution of the magnetic field B due to changes in ϕ1 and ϕ2, as well as constraints due to Gauss's law ∇ · B = 0 are discussed. The magnetic field lines and hodographs of B in which the tip of the magnetic field B moves on the sphere |B| = B = const. are used to delineate the physical characteristics of the wave. Hamilton's equations for the simple Alfvén wave with wave normal n(ϕ), and with magnetic induction B(ϕ) in which ϕ is the wave phase, are obtained by using the Frenet-Serret equations for curves x=X(ϕ) in differential geometry. The use of differential geometry of 2D surfaces in a 3D Euclidean space to describe double Alfvén waves is briefly discussed.
Orbital stability of solitary waves for generalized Boussinesq equation with two nonlinear terms
NASA Astrophysics Data System (ADS)
Zhang, Weiguo; Li, Xiang; Li, Shaowei; Chen, Xu
2018-06-01
This paper investigates the orbital stability and instability of solitary waves for the generalized Boussinesq equation with two nonlinear terms. Firstly, according to the theory of Grillakis-Shatah-Strauss orbital stability, we present the general results to judge orbital stability of the solitary waves. Further, we deduce the explicit expression of discrimination d‧‧(c) to judge the stability of the two solitary waves, and give the stable wave speed interval. Moreover, we analyze the influence of the interaction between two nonlinear terms on the stable wave speed interval, and give the maximal stable range for the wave speed. Finally, some conclusions are given in this paper.
On the coupled evolution of oceanic internal waves and quasi-geostrophic flow
NASA Astrophysics Data System (ADS)
Wagner, Gregory LeClaire
Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.
NASA Astrophysics Data System (ADS)
Xu, Shigang; Liu, Yang
2018-03-01
The conventional pseudo-acoustic wave equations (PWEs) in arbitrary orthorhombic anisotropic (OA) media usually have coupled P- and SV-wave modes. These coupled equations may introduce strong SV-wave artifacts and numerical instabilities in P-wave simulation results and reverse-time migration (RTM) profiles. However, pure acoustic wave equations (PAWEs) completely decouple the P-wave component from the full elastic wavefield and naturally solve all the aforementioned problems. In this article, we present a novel PAWE in arbitrary OA media and compare it with the conventional coupled PWEs. Through decomposing the solution of the corresponding eigenvalue equation for the original PWE into an ellipsoidal differential operator (EDO) and an ellipsoidal scalar operator (ESO), the new PAWE in time-space domain is constructed by applying the combination of these two solvable operators and can effectively describe P-wave features in arbitrary OA media. Furthermore, we adopt the optimal finite-difference method (FDM) to solve the newly derived PAWE. In addition, the three-dimensional (3D) hybrid absorbing boundary condition (HABC) with some reasonable modifications is developed for reducing artificial edge reflections in anisotropic media. To improve computational efficiency in 3D case, we adopt graphic processing unit (GPU) with Compute Unified Device Architecture (CUDA) instead of traditional central processing unit (CPU) architecture. Several numerical experiments for arbitrary OA models confirm that the proposed schemes can produce pure, stable and accurate P-wave modeling results and RTM images with higher computational efficiency. Moreover, the 3D numerical simulations can provide us with a comprehensive and real description of wave propagation.
Islam, Md Shafiqul; Khan, Kamruzzaman; Akbar, M Ali; Mastroberardino, Antonio
2014-10-01
The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin-Bona-Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.
Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio
2014-01-01
The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530
Ankiewicz, Adrian
2016-07-01
Analysis of short-pulse propagation in positive dispersion media, e.g., in optical fibers and in shallow water, requires assorted high-order derivative terms. We present an infinite-order "dark" hierarchy of equations, starting from the basic defocusing nonlinear Schrödinger equation. We present generalized soliton solutions, plane-wave solutions, and periodic solutions of all orders. We find that "even"-order equations in the set affect phase and "stretching factors" in the solutions, while "odd"-order equations affect the velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are complex. There are various applications in optics and water waves.
NASA Astrophysics Data System (ADS)
Ibrahim, R. S.; El-Kalaawy, O. H.
2006-10-01
The relativistic nonlinear self-consistent equations for a collisionless cold plasma with stationary ions [R. S. Ibrahim, IMA J. Appl. Math. 68, 523 (2003)] are extended to 3 and 3+1 dimensions. The resulting system of equations is reduced to the sine-Poisson equation. The truncated Painlevé expansion and reduction of the partial differential equation to a quadrature problem (RQ method) are described and applied to obtain the traveling wave solutions of the sine-Poisson equation for stationary and nonstationary equations in 3 and 3+1 dimensions describing the charge-density equilibrium configuration model.
Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation
NASA Astrophysics Data System (ADS)
Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; Dodin, I. Y.
2018-05-01
Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by the WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. We also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.
NASA Astrophysics Data System (ADS)
Wang, Xiu-Bin; Tian, Shou-Fu; Qin, Chun-Yan; Zhang, Tian-Tian
2017-03-01
In this article, a generalised Whitham-Broer-Kaup-Like (WBKL) equations is investigated, which can describe the bidirectional propagation of long waves in shallow water. The equations can be reduced to the dispersive long wave equations, variant Boussinesq equations, Whitham-Broer-Kaup-Like equations, etc. The Lie symmetry analysis method is used to consider the vector fields and optimal system of the equations. The similarity reductions are given on the basic of the optimal system. Furthermore, the power series solutions are derived by using the power series theory. Finally, based on a new theorem of conservation laws, the conservation laws associated with symmetries of this equations are constructed with a detailed derivation.
Evolution of rogue waves in dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com; Moslem, W. M., E-mail: wmmoslem@hotmail.com
2015-04-15
The evolution of rogue waves associated with the dynamics of positively charged dust grains that interact with streaming electrons and ions is investigated. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which proposed as an effective tool for studying the rogue waves in Jupiter. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming densities of the ions and electrons. Furthermore, the supersonic rogue waves are much taller than the subsonic rogue waves bymore » ∼25 times.« less
NASA Technical Reports Server (NTRS)
Hamabata, Hiromitsu
1993-01-01
A class of parametric instabilities of finite-amplitude, circularly polarized Alfven waves in a plasma with pressure anisotropy is studied by application of the CGL equations. A linear perturbation analysis is used to find the dispersion relation governing the instabilities, which is a fifth-order polynomial and is solved numerically. A large-amplitude, circularly polarized wave is unstable with respect to decay into three waves: one sound-like wave and two side-band Alfven-like waves. It is found that, in addition to the decay instability, two new instabilities that are absent in the framework of the MHD equations can occur, depending on the plasma parameters.
Intermittency in generalized NLS equation with focusing six-wave interactions
NASA Astrophysics Data System (ADS)
Agafontsev, D. S.; Zakharov, V. E.
2015-10-01
We study numerically the statistics of waves for generalized one-dimensional Nonlinear Schrödinger (NLS) equation that takes into account focusing six-wave interactions, dumping and pumping terms. We demonstrate the universal behavior of this system for the region of parameters when six-wave interactions term affects significantly only the largest waves. In particular, in the statistically steady state of this system the probability density function (PDF) of wave amplitudes turns out to be strongly non-Rayleigh one for large waves, with characteristic "fat tail" decaying with amplitude | Ψ | close to ∝ exp (- γ | Ψ |), where γ > 0 is constant. The corresponding non-Rayleigh addition to the PDF indicates strong intermittency, vanishes in the absence of six-wave interactions, and increases with six-wave coupling coefficient.
NASA Astrophysics Data System (ADS)
Krzyścin, Janusz
1990-01-01
In this paper we solve analytically wave kinematic equations and the wave energy transport equation, for basic long surface gravity wave in the coastal upwelling zone. Using Gent and Taylor's (1978) parameterization of drag coefficient (which includes interaction between long surface waves and the air flow) we find variability of this coefficient due to wave amplification and refraction caused by specific surface water current in the region. The drag coefficient grows towards the shore. The growth is faster for stronger current. When the angle between waves and the current is less than 90° the growth is mainly connected with the waves steepness, but when the angle is larger, it is caused by relative growth of the wave phase velocity.
Scattered surface wave energy in the seismic coda
Zeng, Y.
2006-01-01
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.
Stability of standing wave for the fractional nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Peng, Congming; Shi, Qihong
2018-01-01
In this paper, we study the stability and instability of standing waves for the fractional nonlinear Schrödinger equation i∂tu = (-Δ)su - |u|2σu, where (t ,x ) ∈R × RN, 1/2
On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations
Christov, Ivan C.
2015-08-20
We propose a hierarchy of nonlinearly dispersive generalized Korteweg–de Vries (KdV) evolution equations based on a modification of the Lagrangian density whose induced action functional the KdV equation extremizes. Two recent nonlinear evolution equations describing wave propagation in certain generalized continua with an inherent material length scale are members of the proposed hierarchy. Like KdV, the equations from the proposed hierarchy possess Hamiltonian structure. Unlike KdV, the solutions to these equations can be compact (i.e., they vanish outside of some open interval) and, in addition, peaked. Implicit solutions for these peaked, compact traveling waves (“peakompactons”) are presented.
Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum
2014-01-01
In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.
NASA Astrophysics Data System (ADS)
Yan, Zhenya; Bluman, George
2002-11-01
The special exact solutions of nonlinearly dispersive Boussinesq equations (called B( m, n) equations), utt- uxx- a( un) xx+ b( um) xxxx=0, is investigated by using four direct ansatze. As a result, abundant new compactons: solitons with the absence of infinite wings, solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions of these two equations are obtained. The variant is extended to include linear dispersion to support compactons and solitary patterns in the linearly dispersive Boussinesq equations with m=1. Moreover, another new compacton solution of the special case, B(2,2) equation, is also found.
Field-aligned structure of the storm time Pc 5 wave of November 14-15, 1979
NASA Astrophysics Data System (ADS)
Takahashi, K.; Higbie, P. R.; Fennell, J. F.; Amata, E.
1987-06-01
Magnetic field data from the four satellites SCATHA (P78-2), GOES 2, GOES 3, and GOES 2 have been analyzed to examine the magnetic field-aligned structure of a storm time Pc 5 wave that occurred on November 14-15, 1979. The wave had both transverse and compressional components. At a given instance, the compressional and the radial components oscillated in phase or 180 deg out of phase, and the compressional and the azimuthal components oscillated +90 deg or -90 deg out of phase. In addition, each component changed its amplitude with magnetic latitude: the compressional component had a minimum at the magnetic equator, whereas the transverse components had a maximum at the equator and minima several degrees off the equator. A 180 deg relative phase switching among the components occurred across the latitudes of amplitude minima. From these observations, the field line displacement of the wave is confirmed to have an antisymmetric standing structure about the magnetic equator with a parallel wave length of a few earth radii.
Low-Dispersion Scheme for Nonlinear Acoustic Waves in Nonuniform Flow
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Kaushik, Dinesh K.; Idres, Moumen
1997-01-01
The linear dispersion-relation-preserving scheme and its boundary conditions have been extended to the nonlinear Euler equations. This allowed computing, a nonuniform flowfield and a nonlinear acoustic wave propagation in such a medium, by the same scheme. By casting all the equations, boundary conditions, and the solution scheme in generalized curvilinear coordinates, the solutions were made possible for non-Cartesian domains and, for the better deployment of the grid points, nonuniform grid step sizes could be used. It has been tested for a number of simple initial-value and periodic-source problems. A simple demonstration of the difference between a linear and nonlinear propagation was conducted. The wall boundary condition, derived from the momentum equations and implemented through a pressure at a ghost point, and the radiation boundary condition, derived from the asymptotic solution to the Euler equations, have proven to be effective for the nonlinear equations and nonuniform flows. The nonreflective characteristic boundary conditions also have shown success but limited to the nonlinear waves in no mean flow, and failed for nonlinear waves in nonuniform flow.
Data dependence for the amplitude equation of surface waves
NASA Astrophysics Data System (ADS)
Secchi, Paolo
2016-04-01
We consider the amplitude equation for nonlinear surface wave solutions of hyperbolic conservation laws. This is an asymptotic nonlocal, Hamiltonian evolution equation with quadratic nonlinearity. For example, this equation describes the propagation of nonlinear Rayleigh waves (Hamilton et al. in J Acoust Soc Am 97:891-897, 1995), surface waves on current-vortex sheets in incompressible MHD (Alì and Hunter in Q Appl Math 61(3):451-474, 2003; Alì et al. in Stud Appl Math 108(3):305-321, 2002) and on the incompressible plasma-vacuum interface (Secchi in Q Appl Math 73(4):711-737, 2015). The local-in-time existence of smooth solutions to the Cauchy problem for the amplitude equation in noncanonical variables was shown in Hunter (J Hyperbolic Differ Equ 3(2):247-267, 2006), Secchi (Q Appl Math 73(4):711-737, 2015). In the present paper we prove the continuous dependence in strong norm of solutions on the initial data. This completes the proof of the well-posedness of the problem in the classical sense of Hadamard.
Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei
2013-08-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.
Fovargue, Daniel E.; Mitran, Sorin; Smith, Nathan B.; Sankin, Georgy N.; Simmons, Walter N.; Zhong, Pei
2013-01-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model. PMID:23927200
Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics
2007-09-30
sub-processor must be added as shown in the blue box of Fig. 1. We first consider the Kadomtsev - Petviashvili (KP) equation ηt + coηx +αηηx + βη ...analytic integration of the so-called “soliton equations ,” I have discovered how the GFT can be used to solved higher order equations for which study...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion
Exact soliton of (2 + 1)-dimensional fractional Schrödinger equation
NASA Astrophysics Data System (ADS)
Rizvi, S. T. R.; Ali, K.; Bashir, S.; Younis, M.; Ashraf, R.; Ahmad, M. O.
2017-07-01
The nonlinear fractional Schrödinger equation is the basic equation of fractional quantum mechanics introduced by Nick Laskin in 2002. We apply three tools to solve this mathematical-physical model. First, we find the solitary wave solutions including the trigonometric traveling wave solutions, bell and kink shape solitons using the F-expansion and Improve F-expansion method. We also obtain the soliton solution, singular soliton solutions, rational function solution and elliptic integral function solutions, with the help of the extended trial equation method.
Theoretical and experimental evidence of non-symmetric doubly localized rogue waves.
He, Jingsong; Guo, Lijuan; Zhang, Yongshuai; Chabchoub, Amin
2014-11-08
We present determinant expressions for vector rogue wave (RW) solutions of the Manakov system, a two-component coupled nonlinear Schrödinger (NLS) equation. As a special case, we generate a family of exact and non-symmetric RW solutions of the NLS equation up to third order, localized in both space and time. The derived non-symmetric doubly localized second-order solution is generated experimentally in a water wave flume for deep-water conditions. Experimental results, confirming the characteristic non-symmetric pattern of the solution, are in very good agreement with theory as well as with numerical simulations, based on the modified NLS equation, known to model accurately the dynamics of weakly nonlinear wave packets in deep water.
Theoretical and experimental evidence of non-symmetric doubly localized rogue waves
He, Jingsong; Guo, Lijuan; Zhang, Yongshuai; Chabchoub, Amin
2014-01-01
We present determinant expressions for vector rogue wave (RW) solutions of the Manakov system, a two-component coupled nonlinear Schrödinger (NLS) equation. As a special case, we generate a family of exact and non-symmetric RW solutions of the NLS equation up to third order, localized in both space and time. The derived non-symmetric doubly localized second-order solution is generated experimentally in a water wave flume for deep-water conditions. Experimental results, confirming the characteristic non-symmetric pattern of the solution, are in very good agreement with theory as well as with numerical simulations, based on the modified NLS equation, known to model accurately the dynamics of weakly nonlinear wave packets in deep water. PMID:25383023
The role of nonlinear critical layers in boundary layer transition
NASA Technical Reports Server (NTRS)
Goldstein, M.E.
1995-01-01
Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.
NASA Astrophysics Data System (ADS)
Angraini, Lily Maysari; Suparmi, Variani, Viska Inda
2010-12-01
SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.
Full thermomechanical coupling in modelling of micropolar thermoelasticity
NASA Astrophysics Data System (ADS)
Murashkin, E. V.; Radayev, Y. N.
2018-04-01
The present paper is devoted to plane harmonic waves of displacements and microrotations propagating in fully coupled thermoelastic continua. The analysis is carried out in the framework of linear conventional thermoelastic micropolar continuum model. The reduced energy balance equation and the special form of the Helmholtz free energy are discussed. The constitutive constants providing fully coupling of equations of motion and heat conduction are considered. The dispersion equation is derived and analysed in the form bi-cubic and bi-quadratic polynoms product. The equation are analyzed by the computer algebra system Mathematica. Algebraic forms expressed by complex multivalued square and cubic radicals are obtained for wavenumbers of transverse and longitudinal waves. The exact forms of wavenumbers of a plane harmonic coupled thermoelastic waves are computed.
Traveling wave solutions to a reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.
2009-07-01
In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.
On Traveling Waves in Lattices: The Case of Riccati Lattices
NASA Astrophysics Data System (ADS)
Dimitrova, Zlatinka
2012-09-01
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schüler, D.; Alonso, S.; Bär, M.
2014-12-15
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexistingmore » static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.« less
NASA Astrophysics Data System (ADS)
Wang, Yu; Chou, Chia-Chun
2018-05-01
The coupled complex quantum Hamilton-Jacobi equations for electronic nonadiabatic transitions are approximately solved by propagating individual quantum trajectories in real space. Equations of motion are derived through use of the derivative propagation method for the complex actions and their spatial derivatives for wave packets moving on each of the coupled electronic potential surfaces. These equations for two surfaces are converted into the moving frame with the same grid point velocities. Excellent wave functions can be obtained by making use of the superposition principle even when nodes develop in wave packet scattering.
Diffraction of a plane wave on two-dimensional conductive structures and a surface wave
NASA Astrophysics Data System (ADS)
Davidovich, Mikhael V.
2018-04-01
We consider the structures type of two-dimensional electron gas in the form of a thin conductive, in particular, graphene films described by tensor conductivity, which are isolated or located on the dielectric layers. The dispersion equation for hybrid modes, as well as scattering parameters. We show that free wave (eigenwaves) problem follow from the problem of diffraction when linking the amplitude of the current of the linear equations are unsolvable, i.e., the determinant of this system is zero. As a particular case the dispersion equation follow from the conditions of matching (with zero reflection coefficient).
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.
Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q
2013-03-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION
Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.
2013-01-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian. PMID:23772179
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
NASA Technical Reports Server (NTRS)
Baumeiste, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
Transverse instability of solitary waves in the generalized kadomtsev-petviashvili equation
Kataoka; Tsutahara; Negoro
2000-04-03
The linear stability of planar solitary waves with respect to long-wavelength transverse perturbations is studied in the framework of the generalized Kadomtsev-Petviashvili equation. It is newly discovered that for some nonlinearities in this family, the solitary waves could be transversely unstable even in a medium with negative dispersion. In the case of positive dispersion, they are found to be always unstable.
Integration of an Acoustic Modem onto a Wave Glider Unmanned Surface Vehicle
2012-06-01
of the wave and ωτ represents the phase of the wave. After some amount of math and taking the limit as ω →∞ , we arrive at a form of the eikonal ...the phase front. (5.5) 22 0A Aτ τ∇ ⋅∇ + ∇ = The transport equation and the eikonal equation can be solved by using multiple methods to give
Nonlinear Waves and Inverse Scattering
1989-01-01
transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional
Nonlinear Problems in Fluid Dynamics and Inverse Scattering
1993-05-31
nonlinear Kadomtsev - Petviashvili (KP) equations , have solutions which will become infinite in finite time. This phenomenon is sometimes referred to as...40 (November 1992). 4 7. Wave Collapse and Instability of Solitary Waves of a Generalized Nonlinear Kaoiomtsev- Petviashvili Equation , X.P. Wang, M.J...words) The inverse scattering of a class of differential-difference equations and multidimensional operators has been constructed. Solutions of nonlinear
Uncertainty in Damage Detection, Dynamic Propagation and Just-in-Time Networks
2015-08-03
estimated parameter uncertainty in dynamic data sets; high order compact finite difference schemes for Helmholtz equations with discontinuous wave numbers...delay differential equations with a Gamma distributed delay. We found that with the same population size the histogram plots for the solution to the...schemes for Helmholtz equations with discontinuous wave numbers across interfaces. • We carried out numerical sensitivity analysis with respect to
NASA Astrophysics Data System (ADS)
Kantardgi, Igor; Zheleznyak, Mark; Demchenko, Raisa; Dykyi, Pavlo; Kivva, Sergei; Kolomiets, Pavlo; Sorokin, Maxim
2014-05-01
The nearshore hydrodynamic fields are produced by the nonlinear interactions of the shoaling waves of different time scales and currents. To simulate the wind wave and swells propagated to the coasts, wave generated near shore currents, nonlinear-dispersive wave transformation and wave diffraction in interaction with coastal and port structure, sediment transport and coastal erosion the chains of the models should be used. The objective of this presentation is to provide an overview of the results of the application of the model chains for the assessment of the wave impacts on new construction designed at the Black Sea coasts and the impacts of these constructions on the coastal erosion/ accretion processes to demonstrate needs for further development of the nonlinear models for the coastal engineering applications. The open source models Wave Watch III and SWAN has been used to simulate wave statistics of the dedicated areas of the Black Sea in high resolution to calculated the statistical parameters of the extreme wave approaching coastal zone construction in accordance with coastal engineering standards. As the main tool for the costal hydrodynamic simulations the modeling system COASTOX-MORPHO has been used, that includes the following models. HWAVE -code based on hyperbolic version of mild slope equations., HWAVE-S - spectral version of HWAVE., BOUSS-FNL - fully nonlinear system of Boussinesq equations for simulation wave nonlinear -dispersive wave transformation in coastal areas. COASTOX-CUR - the code provided the numerical solution of the Nonlinear Shallow Water Equations (NLSWE) by finite-volume methods on the unstructured grid describing the long wave transformation in the coastal zone with the efficient drying -wetting algorithms to simulate the inundation of the coastal areas including tsunami wave runup. Coastox -Cur equations with the radiation stress term calculated via near shore wave fields simulate the wave generated nearhore currents. COASTOX-SED - the module of the simulation of the sediment transport in which the suspended sediments are simulated on the basis of the solution of 2-D advection -diffusion equation and the bottom sediment transport calculations are provided the basis of a library of the most popular semi-empirical formulas. MORPH - the module of the simulation of the morphological transformation of coastal zone based on the mass balance equation, on the basis of the sediment fluxes, calculated in the SED module. MORPH management submodel is responsible for the execution of the model chain "waves- current- sediments - morphodynamics- waves". The open source model SWASH has been used to simulate nonlinear resonance phenomena in coastal waters. The model chain was applied to simulate the potential impact of the designed shore protection structures at the Sochi Olympic Park on coastal morphodynamics, the wave parameters and nonlinear oscillations in the new ports designed in Gelenddjik and Taman at North-East coast of the Black Sea. The modeling results are compared with the results of the physical modeling in the hydraulic flumes of Moscow University of Civil Engineering.
Orbital stability of periodic traveling-wave solutions for the log-KdV equation
NASA Astrophysics Data System (ADS)
Natali, Fábio; Pastor, Ademir; Cristófani, Fabrício
2017-09-01
In this paper we establish the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. Our motivation is inspired in the recent work [3], in which the authors established the well-posedness and the linear stability of Gaussian solitary waves. By using the approach put forward recently in [20] to construct a smooth branch of periodic waves as well as to get the spectral properties of the associated linearized operator, we apply the abstract theories in [13] and [25] to deduce the orbital stability of the periodic traveling waves in the energy space.
High-order rogue waves in vector nonlinear Schrödinger equations.
Ling, Liming; Guo, Boling; Zhao, Li-Chen
2014-04-01
We study the dynamics of high-order rogue waves (RWs) in two-component coupled nonlinear Schrödinger equations. We find that four fundamental rogue waves can emerge from second-order vector RWs in the coupled system, in contrast to the high-order ones in single-component systems. The distribution shape can be quadrilateral, triangle, and line structures by varying the proper initial excitations given by the exact analytical solutions. The distribution pattern for vector RWs is more abundant than that for scalar rogue waves. Possibilities to observe these new patterns for rogue waves are discussed for a nonlinear fiber.
Stability of Planar Rarefaction Wave to 3D Full Compressible Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Li, Lin-an; Wang, Teng; Wang, Yi
2018-05-01
We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier-Stokes equations with the heat-conductivities in an infinite long flat nozzle domain {R × T^2} . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.
The KP Approximation Under a Weak Coriolis Forcing
NASA Astrophysics Data System (ADS)
Melinand, Benjamin
2018-02-01
In this paper, we study the asymptotic behavior of weakly transverse water-waves under a weak Coriolis forcing in the long wave regime. We derive the Boussinesq-Coriolis equations in this setting and we provide a rigorous justification of this model. Then, from these equations, we derive two other asymptotic models. When the Coriolis forcing is weak, we fully justify the rotation-modified Kadomtsev-Petviashvili equation (also called Grimshaw-Melville equation). When the Coriolis forcing is very weak, we rigorously justify the Kadomtsev-Petviashvili equation. This work provides the first mathematical justification of the KP approximation under a Coriolis forcing.
Refraction of dispersive shock waves
NASA Astrophysics Data System (ADS)
El, G. A.; Khodorovskii, V. V.; Leszczyszyn, A. M.
2012-09-01
We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave, often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of the defocusing nonlinear Schrödinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.
Salient features of solitary waves in dusty plasma under the influence of Coriolis force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, G. C.; Nag, Apratim; Department of Physics, G. C. College, Silchar-788004
The main interest is to study the nonlinear acoustic wave in rotating dusty plasma augmented through the derivation of a modified Sagdeev potential equation. Small rotation causes the interaction of Coriolis force in the dynamical system, and leads to the complexity in the derivation of the nonlinear wave equation. As a result, the finding of solitary wave propagation in dusty plasma ought to be of merit. However, the nonlinear wave equation has been successfully solved by the use of the hyperbolic method. Main emphasis has been given to the changes on the evolution and propagation of soliton, and the variationmore » caused by the dusty plasma constituents as well as by the Coriolis force have been highlighted. Some interesting nonlinear wave behavior has been found which can be elaborately studied for the interest of laboratory and space plasmas. Further, to support the theoretical investigations, numeric plasma parameters have been taken for finding the inherent features of solitons.« less
General high-order breathers and rogue waves in the (3 + 1) -dimensional KP-Boussinesq equation
NASA Astrophysics Data System (ADS)
Sun, Baonan; Wazwaz, Abdul-Majid
2018-11-01
In this work, we investigate the (3 + 1) -dimensional KP-Boussinesq equation, which can be used to describe the nonlinear dynamic behavior in scientific and engineering applications. We derive general high-order soliton solutions by using the Hirota's bilinear method combined with the perturbation expansion technique. We also obtain periodic solutions comprising of high-order breathers, periodic line waves, and mixed solutions consisting of breathers and periodic line waves upon selecting particular parameter constraints of the obtained soliton solutions. Furthermore, smooth rational solutions are generated by taking a long wave limit of the soliton solutions. These smooth rational solutions include high-order rogue waves, high-order lumps, and hybrid solutions consisting of lumps and line rogue waves. To better understand the dynamical behaviors of these solutions, we discuss some illustrative graphical analyses. It is expected that our results can enrich the dynamical behavior of the (3 + 1) -dimensional nonlinear evolution equations of other forms.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.
2003-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2004-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Hydroelectromechanical modelling of a piezoelectric wave energy converter
NASA Astrophysics Data System (ADS)
Renzi, E.
2016-11-01
We investigate the hydroelectromechanical-coupled dynamics of a piezoelectric wave energy converter. The converter is made of a flexible bimorph plate, clamped at its ends and forced to motion by incident ocean surface waves. The piezoceramic layers are connected in series and transform the elastic motion of the plate into useful electricity by means of the piezoelectric effect. By using a distributed-parameter analytical approach, we couple the linear piezoelectric constitutive equations for the plate with the potential-flow equations for the surface water waves. The resulting system of governing partial differential equations yields a new hydroelectromechanical dispersion relation, whose complex roots are determined with a numerical approach. The effect of the piezoelectric coupling in the hydroelastic domain generates a system of short- and long-crested weakly damped progressive waves travelling along the plate. We show that the short-crested flexural wave component gives a dominant contribution to the generated power. We determine the hydroelectromechanical resonant periods of the device, at which the power output is significant.
Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons
NASA Astrophysics Data System (ADS)
El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.
2018-02-01
The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Cheong R.
The structural changes of kinetic Alfvén solitary waves (KASWs) due to higher-order terms are investigated. While the first-order differential equation for KASWs provides the dispersion relation for kinetic Alfvén waves, the second-order differential equation describes the structural changes of the solitary waves due to higher-order nonlinearity. The reductive perturbation method is used to obtain the second-order and third-order partial differential equations; then, Kodama and Taniuti's technique [J. Phys. Soc. Jpn. 45, 298 (1978)] is applied in order to remove the secularities in the third-order differential equations and derive a linear second-order inhomogeneous differential equation. The solution to this new second-ordermore » equation indicates that, as the amplitude increases, the hump-type Korteweg-de Vries solution is concentrated more around the center position of the soliton and that dip-type structures form near the two edges of the soliton. This result has a close relationship with the interpretation of the complex KASW structures observed in space with satellites.« less
Bosonized Supersymmetric Sawada-Kotera Equations: Symmetries and Exact Solutions
NASA Astrophysics Data System (ADS)
Liu, Ping; Zeng, Bao-Qing; Liu, Li-Ming
2015-04-01
The Bosonized Supersymmetric Sawada-Kotera (BSSK) system is constructed by applying bosonization method to a Supersymmetric Sawada-Kotera system in this paper. The symmetries on the BSSK equations are researched and the calculation shows that the BSSK equations are invariant under the scaling transformations, the space-time translations and Galilean boosts. The one-parameter invariant subgroups and the corresponding invariant solutions are researched for the BSSK equations. Four types of reduction equations and similarity solutions are proposed. Period Cnoidal wave solutions, dark solitary wave solutions and bright solitary wave solutions of the BSSK equations are demonstrated and some evolution curves of the exact solutions are figured out. Supported by the National Natural Science Foundation of China under Grant No. 11305031, the Natural Science Foundation of Guangdong Province under Grant No. S2013010011546, the Science and Technology Project Foundation of Zhongshan under Grant Nos. 2013A3FC0264 and 2013A3FC0334, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation formore » the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.« less
NASA Astrophysics Data System (ADS)
Sun, Yan; Tian, Bo; Xie, Xi-Yang; Chai, Jun; Yin, Hui-Min
2018-07-01
Under investigation is a ?-dimensional B-type Kadomtsev-Petviashvili equation, which has applications in the propagation of non-linear waves in fluid dynamics. Through the Hirota method and the extended homoclinic test technique, we obtain the breather-type kink soliton solutions and breather rational soliton solutions. Rogue wave solutions are derived, which come from the derivation of breather rational solitons with respect to x. Amplitudes of the breather-type kink solitons and rogue waves decrease with a non-zero parameter in the equation, ?, increasing when ?. In addition, dark rogue waves are derived when ?. Furthermore, with the aid of the Hirota method and symbolic computation, two types of the lump solitons are obtained with the different choices of the parameters. We graphically study the lump solitons related to the parameter ?, and amplitude of the lump soliton is negatively correlated with ? when ?.
A new equation in two dimensional fast magnetoacoustic shock waves in electron-positron-ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; Jehan, Nusrat; Mirza, Arshad M.
2010-03-15
Nonlinear properties of the two dimensional fast magnetoacoustic waves are studied in a three-component plasma comprising of electrons, positrons, and ions. In this regard, Kadomtsev-Petviashvili-Burger (KPB) equation is derived using the small amplitude perturbation expansion method. Under the condition that the electron and positron inertia are ignored, Burger-Kadomtsev-Petviashvili (Burger-KP) for a fast magnetoacoustic wave is derived for the first time, to the best of author's knowledge. The solutions of both KPB and Burger-KP equations are obtained using the tangent hyperbolic method. The effects of positron concentration, kinematic viscosity, and plasma beta are explored both for the KPB and the Burger-KPmore » shock waves and the differences between the two are highlighted. The present investigation may have relevance in the study of nonlinear electromagnetic shock waves both in laboratory and astrophysical plasmas.« less
Analytical approximations for spiral waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Löber, Jakob, E-mail: jakob@physik.tu-berlin.de; Engel, Harald
2013-12-15
We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +}more » with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.« less
Stochastic analysis of pitch angle scattering of charged particles by transverse magnetic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.; Liu Kaijun; Winske, Dan
2009-11-15
This paper describes a theory of the velocity space scattering of charged particles in a static magnetic field composed of a uniform background field and a sum of transverse, circularly polarized, magnetic waves. When that sum has many terms the autocorrelation time required for particle orbits to become effectively randomized is small compared with the time required for the particle velocity distribution to change significantly. In this regime the deterministic equations of motion can be transformed into stochastic differential equations of motion. The resulting stochastic velocity space scattering is described, in part, by a pitch angle diffusion rate that ismore » a function of initial pitch angle and properties of the wave spectrum. Numerical solutions of the deterministic equations of motion agree with the theory at all pitch angles, for wave energy densities up to and above the energy density of the uniform field, and for different wave spectral shapes.« less
Vorticity equation for MHD fast waves in geospace environment
NASA Technical Reports Server (NTRS)
Yamauchi, M.; Lundin, R.; Lui, A. T. Y.
1993-01-01
The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun
In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.
Long Wave Runup in Asymmetric Bays and in Fjords With Two Separate Heads
NASA Astrophysics Data System (ADS)
Raz, Amir; Nicolsky, Dmitry; Rybkin, Alexei; Pelinovsky, Efim
2018-03-01
Modeling of tsunamis in glacial fjords prompts us to evaluate applicability of the cross-sectionally averaged nonlinear shallow water equations to model propagation and runup of long waves in asymmetrical bays and also in fjords with two heads. We utilize the Tuck-Hwang transformation, initially introduced for the plane beaches and currently generalized for bays with arbitrary cross section, to transform the nonlinear governing equations into a linear equation. The solution of the linearized equation describing the runup at the shore line is computed by taking into account the incident wave at the toe of the last sloping segment. We verify our predictions against direct numerical simulation of the 2-D shallow water equations and show that our solution is valid both for bays with an asymmetric L-shaped cross section, and for fjords with two heads—bays with a W-shaped cross section.
Foundations of radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Mihalas, D.; Mihalas, B. W.
This book is the result of an attempt, over the past few years, to gather the basic tools required to do research on radiating flows in astrophysics. The microphysics of gases is discussed, taking into account the equation of state of a perfect gas, the first and second law of thermodynamics, the thermal properties of a perfect gas, the distribution function and Boltzmann's equation, the collision integral, the Maxwellian velocity distribution, Boltzmann's H-theorem, the time of relaxation, and aspects of classical statistical mechanics. Other subjects explored are related to the dynamics of ideal fluids, the dynamics of viscous and heat-conducting fluids, relativistic fluid flow, waves, shocks, winds, radiation and radiative transfer, the equations of radiation hydrodynamics, and radiating flows. Attention is given to small-amplitude disturbances, nonlinear flows, the interaction of radiation and matter, the solution of the transfer equation, acoustic waves, acoustic-gravity waves, basic concepts of special relativity, and equations of motion and energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersson, N. Anders; Sjogreen, Bjorn
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
Petersson, N. Anders; Sjogreen, Bjorn
2017-04-18
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
Rogue wave variational modelling through the interaction of two solitary waves
NASA Astrophysics Data System (ADS)
Gidel, Floriane; Bokhove, Onno
2016-04-01
The extreme and unexpected characteristics of Rogue waves have made them legendary for centuries. It is only on the 1st of January 1995 that these mariners' tales started to raise scientist's curiosity, when such a wave was recorded in the North Sea; a sudden wall of water hit the Draupner offshore platform, more than twice higher than the other waves, providing evidence of the existence of rogue or freak waves. Since then, studies have shown that these surface gravity waves of high amplitude (at least twice the height of the other sea waves [Dyste et al., 2008]) appear in non-linear dispersive water motion [Drazin and Johnson, 1989], at any depth, and have caused a lot of damage in recent years [Nikolkina and Didenkulova, 2011 ]. So far, most of the studies have tried to determine their probability of occurrence, but no conclusion has been achieved yet, which means that we are currently unenable to predict or avoid these monster waves. An accurate mathematical and numerical water-wave model would enable simulation and observation of this external forcing on boats and offshore structures and hence reduce their threat. In this work, we aim to model rogue waves through a soliton splash generated by the interaction of two solitons coming from different channels at a specific angle. Kodama indeed showed that one way to produce extreme waves is through the intersection of two solitary waves, or one solitary wave and its oblique reflection on a vertical wall [Yeh, Li and Kodama, 2010 ]. While he modelled Mach reflection from Kadomtsev-Petviashvili (KP) theory, we aim to model rogue waves from the three-dimensional potential flow equations and/or their asymptotic equivalent described by Benney and Luke [Benney and Luke, 1964]. These theories have the advantage to allow wave propagation in several directions, which is not the case with KP equations. The initial solitary waves are generated by removing a sluice gate in each channel. The equations are derived through a variational approach, based on Luke's variational principle [Luke, 1967], and its dynamical equivalent from Miles [Miles, 1977], that describe incompressible and inviscid potential flows with free surface, through the variations of the Lagrangian. This Lagrangian, obtained from Bernouilli's equations, can be expressed in a Hamiltonian form, for which robust time integrators have been derived [Gagarina et al., 2015]. A Galerkin finite element method is then used to solve the system numerically, and we aim to compare our simulations to exact solutions of the KP-equation.
On the modified intermediate long-wave equation
NASA Astrophysics Data System (ADS)
Naumkin, Pavel I.; Sánchez-Suárez, Isahi
2018-03-01
We consider the modified intermediate long-wave equation ut-∂xu3+1ϑux+VP∫R12ϑcoth(π(y-x)2ϑ)uyy(t,y)dy=0. We develop the factorization technique to study the large time asymptotics of solutions.
Modulated amplitude waves in collisionally inhomogeneous Bose Einstein condensates
NASA Astrophysics Data System (ADS)
Porter, Mason A.; Kevrekidis, P. G.; Malomed, Boris A.; Frantzeskakis, D. J.
2007-05-01
We investigate the dynamics of an effectively one-dimensional Bose-Einstein condensate (BEC) with scattering length a subjected to a spatially periodic modulation, a=a(x)=a(x+L). This “collisionally inhomogeneous” BEC is described by a Gross-Pitaevskii (GP) equation whose nonlinearity coefficient is a periodic function of x. We transform this equation into a GP equation with a constant coefficient and an additional effective potential and study a class of extended wave solutions of the transformed equation. For weak underlying inhomogeneity, the effective potential takes a form resembling a superlattice, and the amplitude dynamics of the solutions of the constant-coefficient GP equation obey a nonlinear generalization of the Ince equation. In the small-amplitude limit, we use averaging to construct analytical solutions for modulated amplitude waves (MAWs), whose stability we subsequently examine using both numerical simulations of the original GP equation and fixed-point computations with the MAWs as numerically exact solutions. We show that “on-site” solutions, whose maxima correspond to maxima of a(x), are more robust and likely to be observed than their “off-site” counterparts.
Propagation estimates for dispersive wave equations: Application to the stratified wave equation
NASA Astrophysics Data System (ADS)
Pravica, David W.
1999-01-01
The plane-stratified wave equation (∂t2+H)ψ=0 with H=-c(y)2∇z2 is studied, where z=x⊕y, x∈Rk, y∈R1 and |c(y)-c∞|→0 as |y|→∞. Solutions to such an equation are solved for the propagation of waves through a layered medium and can include waves which propagate in the x-directions only (i.e., trapped modes). This leads to a consideration of the pseudo-differential wave equation (∂t2+ω(-Δx))ψ=0 such that the dispersion relation ω(ξ2) is analytic and satisfies c1⩽ω'(ξ2)⩽c2 for c*>0. Uniform propagation estimates like ∫|x|⩽|t|αE(UtP±φ0)dkx⩽Cα,β(1+|t|)-β∫E(φ0)dkx are obtained where Ut is the evolution group, P± are projection operators onto the Hilbert space of initial conditions φ∈H and E(ṡ) is the local energy density. In special cases scattering of trapped modes off a local perturbation satisfies the causality estimate ||P+ρΛjSP-ρΛk||⩽Cνρ-ν for each ν<1/2. Here P+ρΛj (P-ρΛk) are remote outgoing/detector (incoming/transmitter) projections for the jth (kth) trapped mode. Also Λ⋐R+ is compact, so the projections localize onto formally-incoming (eventually-outgoing) states.
NASA Astrophysics Data System (ADS)
Kengne, E.; Lakhssassi, A.; Liu, W. M.
2017-08-01
A lossless nonlinear L C transmission network is considered. With the use of the reductive perturbation method in the semidiscrete limit, we show that the dynamics of matter-wave solitons in the network can be modeled by a one-dimensional Gross-Pitaevskii (GP) equation with a time-dependent linear potential in the presence of a chemical potential. An explicit expression for the growth rate of a purely growing modulational instability (MI) is presented and analyzed. We find that the potential parameter of the GP equation of the system does not affect the different regions of the MI. Neglecting the chemical potential in the GP equation, we derive exact analytical solutions which describe the propagation of both bright and dark solitary waves on continuous-wave (cw) backgrounds. Using the found exact analytical solutions of the GP equation, we investigate numerically the transmission of both bright and dark solitary voltage signals in the network. Our numerical studies show that the amplitude of a bright solitary voltage signal and the depth of a dark solitary voltage signal as well as their width, their motion, and their behavior depend on (i) the propagation frequencies, (ii) the potential parameter, and (iii) the amplitude of the cw background. The GP equation derived in this paper with a time-dependent linear potential opens up different ideas that may be of considerable theoretical interest for the management of matter-wave solitons in nonlinear L C transmission networks.
Field-aligned structure of the storm time Pc 5 wave of November 14-15, 1979
NASA Astrophysics Data System (ADS)
Takahashi, K.; Higbie, P. R.; Fennell, J. F.; Amata, E.
1988-02-01
Magnetic field data from the four satellites--SCATHA (P78-2), GOES 2, GOES 3, and GEOS 2--have been analyzed to examine the magnetic-field-aligned structure of a storm time Pc 5 wave which occurred on November 14-15, 1979. The wave had both transverse and compressional components. At a given instance, the compressional and the radial components oscillated in phase or 180 deg out of phase, and the compressional and the azimuthal components oscillated +90 deg or -90 deg out of phase. In addition, each component changed its amplitude with magnetic latitude: the compressional component had a minimum at the magnetic equator, whereas the transverse components had a maximum at the equator and minima several degrees off the equator. At 180 deg relative phase switching among the components occurred across the latitudes of amplitude minima. From these observations, the field-line displacement of the wave is confirmed to have an antisymmetric standing structure about the magnetic equator with a parallel wave length of a few earth radii. We aslo observed other intriguing properties of the wave, such as different parallel wavelengths of different field components and small-amplitude second harmonics near the nodes. A dielectric tensor appropriate for the ring current plasma is found to give an explanation for the relation between the polarization and the propagation of the wave. However, plasma data available from SCATHA do not support either the drift-mirror instability of Hasegawa or tht coupling between a drift mirror wave and a shear Alfven wave, as discussed by Walker et al.
NASA Astrophysics Data System (ADS)
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-03-01
In this research, we investigate one of the most popular model in nature and also industrial which is the pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many application in nature and engineering. Understanding the physical meaning of exact and solitary traveling wave solutions for this equation gives the researchers in this field a great clear vision of the pressure waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our goal, we apply three different methods which are extended tanh-function method, extended simple equation method and a new auxiliary equation method on this equation. We obtained exact and solitary traveling wave solutions and we also discuss the similarity and difference between these three method and make a comparison between results that we obtained with another results that obtained with the different researchers using different methods. All of these results and discussion explained the fact that our new auxiliary equation method is considered to be the most general, powerful and the most result-oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its intrinsic properties as well as the ease of way of application and its applicability to other phenomena.
Rogue waves in the Davey-Stewartson I equation.
Ohta, Yasuhiro; Yang, Jianke
2012-09-01
General rogue waves in the Davey-Stewartson-I equation are derived by the bilinear method. It is shown that the simplest (fundamental) rogue waves are line rogue waves which arise from the constant background with a line profile and then disappear into the constant background again. It is also shown that multirogue waves describe the interaction of several fundamental rogue waves. These multirogue waves also arise from the constant background and then decay back to it, but in the intermediate times, interesting curvy wave patterns appear. However, higher-order rogue waves exhibit different dynamics. Specifically, only part of the wave structure in the higher-order rogue waves rises from the constant background and then retreats back to it, and this transient wave possesses patterns such as parabolas. But the other part of the wave structure comes from the far distance as a localized lump, which decelerates to the near field and interacts with the transient rogue wave, and is then reflected back and accelerates to the large distance again.
Controllable rogue waves in the nonautonomous nonlinear system with a linear potential
NASA Astrophysics Data System (ADS)
Dai, C. Q.; Zheng, C. L.; Zhu, H. P.
2012-04-01
Based on the similarity transformation connected the nonautonomous nonlinear Schrödinger equation with the autonomous nonlinear Schrödinger equation, we firstly derive self-similar rogue wave solutions (rational solutions) for the nonautonomous nonlinear system with a linear potential. Then, we investigate the controllable behaviors of one-rogue wave, two-rogue wave and rogue wave triplets in a soliton control system. Our results demonstrate that the propagation behaviors of rogue waves, including postpone, sustainment, recurrence and annihilation, can be manipulated by choosing the relation between the maximum value of the effective propagation distance Z m and the parameter Z 0. Moreover, the excitation time of controllable rogue waves is decided by the parameter T 0.
NASA Astrophysics Data System (ADS)
Hossen, Md. Belal; Roshid, Harun-Or; Ali, M. Zulfikar
2018-05-01
Under inquisition in this paper is a (2 + 1)-dimensional Breaking Soliton equation, which can describe various nonlinear scenarios in fluid dynamics. Using the Bell polynomials, some proficient auxiliary functions are offered to apparently construct its bilinear form and corresponding soliton solutions which are different from the previous literatures. Moreover, a direct method is used to construct its rogue wave and solitary wave solutions using particular auxiliary function with the assist of bilinear formalism. Finally, the interactions between solitary waves and rogue waves are offered with a complete derivation. These results enhance the variety of the dynamics of higher dimensional nonlinear wave fields related to mathematical physics and engineering.
Relativistic electromagnetic waves in an electron-ion plasma
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Dissipation-preserving spectral element method for damped seismic wave equations
NASA Astrophysics Data System (ADS)
Cai, Wenjun; Zhang, Huai; Wang, Yushun
2017-12-01
This article describes the extension of the conformal symplectic method to solve the damped acoustic wave equation and the elastic wave equations in the framework of the spectral element method. The conformal symplectic method is a variation of conventional symplectic methods to treat non-conservative time evolution problems, which has superior behaviors in long-time stability and dissipation preservation. To reveal the intrinsic dissipative properties of the model equations, we first reformulate the original systems in their equivalent conformal multi-symplectic structures and derive the corresponding conformal symplectic conservation laws. We thereafter separate each system into a conservative Hamiltonian system and a purely dissipative ordinary differential equation system. Based on the splitting methodology, we solve the two subsystems respectively. The dissipative one is cheaply solved by its analytic solution. While for the conservative system, we combine a fourth-order symplectic Nyström method in time and the spectral element method in space to cover the circumstances in realistic geological structures involving complex free-surface topography. The Strang composition method is adopted thereby to concatenate the corresponding two parts of solutions and generate the completed conformal symplectic method. A relative larger Courant number than that of the traditional Newmark scheme is found in the numerical experiments in conjunction with a spatial sampling of approximately 5 points per wavelength. A benchmark test for the damped acoustic wave equation validates the effectiveness of our proposed method in precisely capturing dissipation rate. The classical Lamb problem is used to demonstrate the ability of modeling Rayleigh wave in elastic wave propagation. More comprehensive numerical experiments are presented to investigate the long-time simulation, low dispersion and energy conservation properties of the conformal symplectic methods in both the attenuating homogeneous and heterogeneous media.
Gravitational Wave in Linear General Relativity
NASA Astrophysics Data System (ADS)
Cubillos, D. J.
2017-07-01
General relativity is the best theory currently available to describe the interaction due to gravity. Within Albert Einstein's field equations this interaction is described by means of the spatiotemporal curvature generated by the matter-energy content in the universe. Weyl worked on the existence of perturbations of the curvature of space-time that propagate at the speed of light, which are known as Gravitational Waves, obtained to a first approximation through the linearization of the field equations of Einstein. Weyl's solution consists of taking the field equations in a vacuum and disturbing the metric, using the Minkowski metric slightly perturbed by a factor ɛ greater than zero but much smaller than one. If the feedback effect of the field is neglected, it can be considered as a weak field solution. After introducing the disturbed metric and ignoring ɛ terms of order greater than one, we can find the linearized field equations in terms of the perturbation, which can then be expressed in terms of the Dalambertian operator of the perturbation equalized to zero. This is analogous to the linear wave equation in classical mechanics, which can be interpreted by saying that gravitational effects propagate as waves at the speed of light. In addition to this, by studying the motion of a particle affected by this perturbation through the geodesic equation can show the transversal character of the gravitational wave and its two possible states of polarization. It can be shown that the energy carried by the wave is of the order of 1/c5 where c is the speed of light, which explains that its effects on matter are very small and very difficult to detect.
On the stability of lumps and wave collapse in water waves.
Akylas, T R; Cho, Yeunwoo
2008-08-13
In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg-de Vries solitary waves, the present study is concerned with a distinct class of gravity-capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney-Roskes-Davey-Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev-Petviashvili equation, a model for weakly nonlinear gravity-capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.
Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
He, Jingsong; Wang, Lihong; Li, Linjing; Porsezian, K; Erdélyi, R
2014-06-01
In this paper, we consider the complex modified Korteweg-de Vries (mKdV) equation as a model of few-cycle optical pulses. Using the Lax pair, we construct a generalized Darboux transformation and systematically generate the first-, second-, and third-order rogue wave solutions and analyze the nature of evolution of higher-order rogue waves in detail. Based on detailed numerical and analytical investigations, we classify the higher-order rogue waves with respect to their intrinsic structure, namely, fundamental pattern, triangular pattern, and ring pattern. We also present several new patterns of the rogue wave according to the standard and nonstandard decomposition. The results of this paper explain the generalization of higher-order rogue waves in terms of rational solutions. We apply the contour line method to obtain the analytical formulas of the length and width of the first-order rogue wave of the complex mKdV and the nonlinear Schrödinger equations. In nonlinear optics, the higher-order rogue wave solutions found here will be very useful to generate high-power few-cycle optical pulses which will be applicable in the area of ultrashort pulse technology.
NASA Astrophysics Data System (ADS)
Du, Zhong; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Wu, Xiao-Yu
2017-12-01
Investigated in this paper are the three-coupled fourth-order nonlinear Schrödinger equations, which describe the dynamics of alpha helical protein with the interspine coupling at the higher order. We show that the representation of the Lax pair with Expressions (42) -(45) in Ref. [25] is not correct, because the three-coupled fourth-order nonlinear Schrödinger equations can not be reproduced by the Lax pair with Expressions (42) -(45) in Ref. [25] through the compatibility condition. Therefore, we recalculate the Lax pair. Based on the recalculated Lax pair, we construct the generalized Darboux transformation, and derive the first- and second-order semirational solutions. Through such solutions, dark-bright-bright soliton, breather-breather-bright soliton, breather soliton and rogue waves are analyzed. It is found that the rogue waves in the three components are mutually proportional. Moreover, three types of the semirational rogue waves consisting of the rogue waves and solitons are presented: (1) consisting of the first-order rogue wave and one soliton; (2) consisting of the first-order rogue wave and two solitons; (3) consisting of the second-order rogue wave and two solitons.
Characteristics of vibrational wave propagation and attenuation in submarine fluid-filled pipelines
NASA Astrophysics Data System (ADS)
Yan, Jin; Zhang, Juan
2015-04-01
As an important part of lifeline engineering in the development and utilization of marine resources, the submarine fluid-filled pipeline is a complex coupling system which is subjected to both internal and external flow fields. By utilizing Kennard's shell equations and combining with Helmholtz equations of flow field, the coupling equations of submarine fluid-filled pipeline for n=0 axisymmetrical wave motion are set up. Analytical expressions of wave speed are obtained for both s=1 and s=2 waves, which correspond to a fluid-dominated wave and an axial shell wave, respectively. The numerical results for wave speed and wave attenuation are obtained and discussed subsequently. It shows that the frequency depends on phase velocity, and the attenuation of this mode depends strongly on material parameters of the pipe and the internal and the external fluid fields. The characteristics of PVC pipe are studied for a comparison. The effects of shell thickness/radius ratio and density of the contained fluid on the model are also discussed. The study provides a theoretical basis and helps to accurately predict the situation of submarine pipelines, which also has practical application prospect in the field of pipeline leakage detection.
Splash singularity for water waves.
Castro, Angel; Córdoba, Diego; Fefferman, Charles L; Gancedo, Francisco; Gómez-Serrano, Javier
2012-01-17
We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time.
Splash singularity for water waves
Castro, Angel; Córdoba, Diego; Fefferman, Charles L.; Gancedo, Francisco; Gómez-Serrano, Javier
2012-01-01
We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time. PMID:22219372
Stability analysis of a Vlasov-Wave system describing particles interacting with their environment
NASA Astrophysics Data System (ADS)
De Bièvre, Stephan; Goudon, Thierry; Vavasseur, Arthur
2018-06-01
We study a kinetic equation of the Vlasov-Wave type, which arises in the description of the behavior of a large number of particles interacting weakly with an environment, composed of an infinite collection of local vibrational degrees of freedom, modeled by wave equations. We use variational techniques to establish the existence of large families of stationary states for this system, and analyze their stability.
2017-04-03
setup in terms of temporal and spatial discretization . The second component was an extension of existing depth-integrated wave models to describe...equations (Abbott, 1976). Discretization schemes involve numerical dispersion and dissipation that distort the true character of the governing equations...represent a leading-order approximation of the Boussinesq-type equations. Tam and Webb (1993) proposed a wavenumber-based discretization scheme to preserve
Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation
NASA Astrophysics Data System (ADS)
Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.
2013-12-01
Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.
NASA Astrophysics Data System (ADS)
Vorontsov, Mikhail A.; Kolosov, Valeriy V.
2004-12-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual coherence function (MCF) for the backscattered (returned) wave. The resulting evolution equation for the MCF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.
NASA Astrophysics Data System (ADS)
Wu, Xiao-Yu; Tian, Bo; Chai, Han-Peng; Sun, Yan
2017-08-01
Under investigation in this letter is a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves propagating in a fluid. Employing the Hirota method and symbolic computation, we obtain the lump, breather-wave and rogue-wave solutions under certain constraints. We graphically study the lump waves with the influence of the parameters h1, h3 and h5 which are all the real constants: When h1 increases, amplitude of the lump wave increases, and location of the peak moves; when h3 increases, lump wave’s amplitude decreases, but location of the peak keeps unchanged; when h5 changes, lump wave’s peak location moves, but amplitude keeps unchanged. Breather waves and rogue waves are displayed: Rogue waves emerge when the periods of the breather waves go to the infinity.
The Complex-Step-Finite-Difference method
NASA Astrophysics Data System (ADS)
Abreu, Rafael; Stich, Daniel; Morales, Jose
2015-07-01
We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.
A numerical study of nonlinear waves in a transcritical flow of stratified fluid past an obstacle
NASA Astrophysics Data System (ADS)
Hanazaki, Hideshi
1992-10-01
A numerical study of the flow of stratified fluid past an obstacle in a horizontal channel is described. Upstream advancing of waves near critically (resonance) appears in the case of ordinary two-layer flow, in which case the flow is described well by the solution of the forced extended Korteweg-de Vries (KdV) equation which has a cubic nonlinear term. It is shown theoretically that the upstream waves in the general two-layer flow cannot be well described by the forced KdV equation except when the wave amplitude is very small. The critical-level flow is also governed by the forced extended KdV equation. However, because of the smallness of the coefficient of the quadratic nonlinear term, the bore cannot propagate upstream at exact resonance. The results for the linearly stratified Boussinesq flow show good agreement with the solution of the Grimshaw and Yi (1991) equation, at least for exact resonance.
Test of a new heat-flow equation for dense-fluid shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2010-09-21
Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.
Liu, T Y; Chiu, T L; Clarkson, P A; Chow, K W
2017-09-01
Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.
Rogue waves in terms of multi-point statistics and nonequilibrium thermodynamics
NASA Astrophysics Data System (ADS)
Hadjihosseini, Ali; Lind, Pedro; Mori, Nobuhito; Hoffmann, Norbert P.; Peinke, Joachim
2017-04-01
Ocean waves, which lead to rogue waves, are investigated on the background of complex systems. In contrast to deterministic approaches based on the nonlinear Schroedinger equation or focusing effects, we analyze this system in terms of a noisy stochastic system. In particular we present a statistical method that maps the complexity of multi-point data into the statistics of hierarchically ordered height increments for different time scales. We show that the stochastic cascade process with Markov properties is governed by a Fokker-Planck equation. Conditional probabilities as well as the Fokker-Planck equation itself can be estimated directly from the available observational data. This stochastic description enables us to show several new aspects of wave states. Surrogate data sets can in turn be generated allowing to work out different statistical features of the complex sea state in general and extreme rogue wave events in particular. The results also open up new perspectives for forecasting the occurrence probability of extreme rogue wave events, and even for forecasting the occurrence of individual rogue waves based on precursory dynamics. As a new outlook the ocean wave states will be considered in terms of nonequilibrium thermodynamics, for which the entropy production of different wave heights will be considered. We show evidence that rogue waves are characterized by negative entropy production. The statistics of the entropy production can be used to distinguish different wave states.
NASA Astrophysics Data System (ADS)
Liu, T. Y.; Chiu, T. L.; Clarkson, P. A.; Chow, K. W.
2017-09-01
Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.
Nonreciprocal wave scattering on nonlinear string-coupled oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepri, Stefano, E-mail: stefano.lepri@isc.cnr.it; Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino; Pikovsky, Arkady
2014-12-01
We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaoticmore » scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one direction and chaotic in the opposite one, is reported.« less
Closed form solutions of two time fractional nonlinear wave equations
NASA Astrophysics Data System (ADS)
Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan
2018-06-01
In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.
NASA Astrophysics Data System (ADS)
Pimenova, Anastasiya V.; Goldobin, Denis S.; Lyubimova, Tatyana P.
2018-02-01
We study the waves at the interface between two thin horizontal layers of immiscible liquids subject to high-frequency tangential vibrations. Nonlinear governing equations are derived for the cases of two- and three-dimensional flows and arbitrary ratio of layer thicknesses. The derivation is performed within the framework of the long-wavelength approximation, which is relevant as the linear instability of a thin-layers system is long-wavelength. The dynamics of equations is integrable and the equations themselves can be compared to the Boussinesq equation for the gravity waves in shallow water, which allows one to compare the action of the vibrational field to the action of the gravity and its possible effective inversion.
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.
2015-07-01
In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.
Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.
Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less
Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation
Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; ...
2018-05-29
Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less
Structure-preserving spectral element method in attenuating seismic wave modeling
NASA Astrophysics Data System (ADS)
Cai, Wenjun; Zhang, Huai
2016-04-01
This work describes the extension of the conformal symplectic method to solve the damped acoustic wave equation and the elastic wave equations in the framework of the spectral element method. The conformal symplectic method is a variation of conventional symplectic methods to treat non-conservative time evolution problems which has superior behaviors in long-time stability and dissipation preservation. To construct the conformal symplectic method, we first reformulate the damped acoustic wave equation and the elastic wave equations in their equivalent conformal multi-symplectic structures, which naturally reveal the intrinsic properties of the original systems, especially, the dissipation laws. We thereafter separate each structures into a conservative Hamiltonian system and a purely dissipative ordinary differential equation system. Based on the splitting methodology, we solve the two subsystems respectively. The dissipative one is cheaply solved by its analytic solution. While for the conservative system, we combine a fourth-order symplectic Nyström method in time and the spectral element method in space to cover the circumstances in realistic geological structures involving complex free-surface topography. The Strang composition method is adopted thereby to concatenate the corresponding two parts of solutions and generate the completed numerical scheme, which is conformal symplectic and can therefore guarantee the numerical stability and dissipation preservation after a large time modeling. Additionally, a relative larger Courant number than that of the traditional Newmark scheme is found in the numerical experiments in conjunction with a spatial sampling of approximately 5 points per wavelength. A benchmark test for the damped acoustic wave equation validates the effectiveness of our proposed method in precisely capturing dissipation rate. The classical Lamb problem is used to demonstrate the ability of modeling Rayleigh-wave propagation. More comprehensive numerical experiments are presented to investigate the long-time simulation, low dispersion and energy conservation properties of the conformal symplectic method in both the attenuating homogeneous and heterogeneous mediums.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
NASA Astrophysics Data System (ADS)
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
NASA Technical Reports Server (NTRS)
Kentzer, C. P.
1976-01-01
A statistical approach to sound propagation is considered in situations where, due to the presence of large gradients of properties of the medium, the classical (deterministic) treatment of wave motion is inadequate. Mathematical methods for wave motions not restricted to small wavelengths (analogous to known methods of quantum mechanics) are used to formulate a wave theory of sound in nonuniform flows. Nonlinear transport equations for field probabilities are derived for the limiting case of noninteracting sound waves and it is postulated that such transport equations, appropriately generalized, may be used to predict the statistical behavior of sound in arbitrary flows.
Nonplanar dust-ion acoustic shock waves with transverse perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue Jukui
2005-01-01
The nonlinear dust-ion acoustic shock waves in dusty plasmas with the combined effects of bounded cylindrical/spherical geometry, the transverse perturbation, the dust charge fluctuation, and the nonthermal electrons are studied. Using the perturbation method, a cylindrical/spherical Kadomtsev-Petviashvili Burgers equation that describes the dust-ion acoustic shock waves is deduced. A particular solution of the cylindrical/spherical Kadomtsev-Petviashvili Burgers equation is also obtained. It is shown that the dust-ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be slightly deformed as time goes on.
Asymptotic analysis of dissipative waves with applications to their numerical simulation
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
Various problems involving the interplay of asymptotics and numerics in the analysis of wave propagation in dissipative systems are studied. A general approach to the asymptotic analysis of linear, dissipative waves is developed. It was applied to the derivation of asymptotic boundary conditions for numerical solutions on unbounded domains. Applications include the Navier-Stokes equations. Multidimensional traveling wave solutions to reaction-diffusion equations are also considered. A preliminary numerical investigation of a thermo-diffusive model of flame propagation in a channel with heat loss at the walls is presented.
Scattering of Dirac waves off Kerr black holes
NASA Astrophysics Data System (ADS)
Chakrabarti, Sandip K.; Mukhopadhyay, Banibrata
2000-10-01
Chandrasekhar separated the Dirac equation for spinning and massive particles in Kerr geometry into radial and angular parts. Here we solve the complete wave equation and find out how the Dirac wave scatters off Kerr black holes. The eigenfunctions, eigenvalues and reflection and transmission co-efficients are computed. We compare the solutions with several parameters to show how a spinning black hole recognizes the mass and energy of incoming waves. Very close to the horizon the solutions become independent of the particle parameters, indicating the universality of the behaviour.
Orbital stability of periodic traveling wave solutions for the Kawahara equation
NASA Astrophysics Data System (ADS)
de Andrade, Thiago Pinguello; Cristófani, Fabrício; Natali, Fábio
2017-05-01
In this paper, we investigate the orbital stability of periodic traveling waves for the Kawahara equation. We prove that the periodic traveling wave, under certain conditions, minimizes a convenient functional by using an adaptation of the method developed by Grillakis et al. [J. Funct. Anal. 74, 160-197 (1987)]. The required spectral properties to ensure the orbital stability are obtained by knowing the positiveness of the Fourier transform of the associated periodic wave established by Angulo and Natali [SIAM J. Math. Anal. 40, 1123-1151 (2008)].
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Lilis Elviyanti, Isnaini
2018-04-01
Analysis of relativistic energy and wave function for zero spin particles using Klein Gordon equation was influenced by separable noncentral cylindrical potential was solved by asymptotic iteration method (AIM). By using cylindrical coordinates, the Klein Gordon equation for the case of symmetry spin was reduced to three one-dimensional Schrodinger like equations that were solvable using variable separation method. The relativistic energy was calculated numerically with Matlab software, and the general unnormalized wave function was expressed in hypergeometric terms.
Parabola solitons for the nonautonomous KP equation in fluids and plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xin, E-mail: yuxin@buaa.edu.cn; Sun, Zhi-Yuan
Under investigation in this paper is a nonautonomous Kadomtsev–Petviashvili (KP) equation in fluids and plasmas. The integrability of this equation is examined via the Painlevé analysis and its multi-soliton solutions are constructed. A constraint is proposed to ensure the existence of parabola solitons for such KP equation. Based on the constructed solutions, the solitonic propagation and interaction, including the elastic interaction, inelastic interaction and soliton resonance for parabola solitons, are discussed. The results might be useful for shallow water wave and rogue wave.
Parabola solitons for the nonautonomous KP equation in fluids and plasmas
NASA Astrophysics Data System (ADS)
Yu, Xin; Sun, Zhi-Yuan
2016-04-01
Under investigation in this paper is a nonautonomous Kadomtsev-Petviashvili (KP) equation in fluids and plasmas. The integrability of this equation is examined via the Painlevé analysis and its multi-soliton solutions are constructed. A constraint is proposed to ensure the existence of parabola solitons for such KP equation. Based on the constructed solutions, the solitonic propagation and interaction, including the elastic interaction, inelastic interaction and soliton resonance for parabola solitons, are discussed. The results might be useful for shallow water wave and rogue wave.
Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Gu, Chenjie; Zhou, Yan; Fangohr, Hans
2017-07-01
We theoretically investigate the spin-wave (magnon) excitations in a classical antiferromagnetic spin chain with easy-axis anisotropy. We obtain a Dirac-like equation by linearizing the Landau-Lifshitz-Gilbert equation in this antiferromagnetic system, in contrast to the ferromagnetic system in which a Schrödinger-type equation is derived. The Hamiltonian operator in the Dirac-like equation is a pseudo-Hermitian. We compute and demonstrate relativistic Zitterbewegung (trembling motion) in the antiferromagnetic spin chain by measuring the expectation values of the wave-packet position.
Design Manual for Microgravity Two-Phase Flow and Heat Transfer
1989-10-01
simultaneous solution of two equations. One equation is a dimensionless two-.nhase momentum equation for a separated flow and the other is a dimensionless...created by the flow of the gas over a wave (the Bernoulli effect) is sufficient to lift the waves in a stratified flow to the top of the pipe. A... momentum equation to determine a dimensionless parameter related to the liquid flow rate: 14 [(Ug*Dg*)1(1J*) 2[ [ [ + - 4Y X 2 =9 k (1-16) [U *D1*] -n
Nonlocal symmetry and explicit solutions from the CRE method of the Boussinesq equation
NASA Astrophysics Data System (ADS)
Zhao, Zhonglong; Han, Bo
2018-04-01
In this paper, we analyze the integrability of the Boussinesq equation by using the truncated Painlevé expansion and the CRE method. Based on the truncated Painlevé expansion, the nonlocal symmetry and Bäcklund transformation of this equation are obtained. A prolonged system is introduced to localize the nonlocal symmetry to the local Lie point symmetry. It is proved that the Boussinesq equation is CRE solvable. The two-solitary-wave fusion solutions, single soliton solutions and soliton-cnoidal wave solutions are presented by means of the Bäcklund transformations.
Rayleigh-wave diffractions due to a void in the layered half space
Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.
2006-01-01
Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.
Chaotic Motion of Relativistic Electrons Driven by Whistler Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Telnikhin, A. A.; Kronberg, Tatiana K.
2007-01-01
Canonical equations governing an electron motion in electromagnetic field of the whistler mode waves propagating along the direction of an ambient magnetic field are derived. The physical processes on which the equations of motion are based .are identified. It is shown that relativistic electrons interacting with these fields demonstrate chaotic motion, which is accompanied by the particle stochastic heating and significant pitch angle diffusion. Evolution of distribution functions is described by the Fokker-Planck-Kolmogorov equations. It is shown that the whistler mode waves could provide a viable mechanism for stochastic energization of electrons with energies up to 50 MeV in the Jovian magnetosphere.
Development of a grid-independent approximate Riemannsolver. Ph.D. Thesis - Michigan Univ.
NASA Technical Reports Server (NTRS)
Rumsey, Christopher Lockwood
1991-01-01
A grid-independent approximate Riemann solver for use with the Euler and Navier-Stokes equations was introduced and explored. The two-dimensional Euler and Navier-Stokes equations are described in Cartesian and generalized coordinates, as well as the traveling wave form of the Euler equations. The spatial and temporal discretization are described for both explicit and implicit time-marching schemes. The grid-aligned flux function of Roe is outlined, while the 5-wave grid-independent flux function is derived. The stability and monotonicity analysis of the 5-wave model are presented. Two-dimensional results are provided and extended to three dimensions. The corresponding results are presented.
Robertson, Scott; Leonhardt, Ulf
2014-11-01
Hawking radiation has become experimentally testable thanks to the many analog systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion and give rise to a numerically soluble and stable ordinary differential equation only if the rest-frame dispersion relation Ω^{2}(k) is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.