Sample records for wave finite element

  1. Wave Scattering in Heterogeneous Media using the Finite Element Method

    DTIC Science & Technology

    2016-10-21

    AFRL-AFOSR-JP-TR-2016-0086 Wave Scattering in Heterogeneous Media using the Finite Element Method Chiruvai Vendhan INDIAN INSTITUTE OF TECHNOLOGY...Scattering in Heterogeneous Media using the Finite Element Method 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-12-1-4026 5c.  PROGRAM ELEMENT NUMBER 61102F 6...14.  ABSTRACT The primary aim of this study is to develop a finite element model for elastic scattering by axisymmetric bodies submerged in a

  2. Finite Element Analysis of the Propagation of Acoustic Waves Along Waveguides Immersed in Water

    NASA Astrophysics Data System (ADS)

    Hladky-Hennion, A.-C.; Langlet, P.; de Billy, M.

    1997-03-01

    The finite element approach has previously been used, with the help of the ATILA code, to model the propagation of acoustic waves in waveguides [A.-C. Hladky-Hennion, Journal of Sound and Vibration, 194,119-136 (1996)]. In this paper an extension of the technique to the analysis of the propagation of acoustic waves in immersed waveguides is presented. In the proposed approach, the problem is reduced to a bidimensional problem, in which only the cross-section of the guide and the surrounding fluid domain are meshed by using finite elements. Then, wedges the top angles of which vary, are studied and the finite element results of the wedge wave speed are compared with experimental results. Finally, the conclusion indicates a way to extend this approach to waveguides of any cross-section.

  3. Ultrasound finite element simulation sensitivity to anisotropic titanium microstructures

    NASA Astrophysics Data System (ADS)

    Freed, Shaun; Blackshire, James L.; Na, Jeong K.

    2016-02-01

    Analytical wave models are inadequate to describe complex metallic microstructure interactions especially for near field anisotropic property effects and through geometric features smaller than the wavelength. In contrast, finite element ultrasound simulations inherently capture microstructure influences due to their reliance on material definitions rather than wave descriptions. To better understand and quantify heterogeneous crystal orientation effects to ultrasonic wave propagation, a finite element modeling case study has been performed with anisotropic titanium grain structures. A parameterized model has been developed utilizing anisotropic spheres within a bulk material. The resulting wave parameters are analyzed as functions of both wavelength and sphere to bulk crystal mismatch angle.

  4. An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, S.W.; Heinstein, M.W.; Stone, C.M.

    1997-12-31

    Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite elementmore » enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.« less

  5. Identification of moving sinusoidal wave loads for sensor structural configuration by finite element inverse method

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Yu, S.

    2018-03-01

    In this paper, a beam structure of composite materials with elastic foundation supports is established as the sensor model, which propagates moving sinusoidal wave loads. The inverse Finite Element Method (iFEM) is applied for reconstructing moving wave loads which are compared with true wave loads. The conclusion shows that iFEM is accurate and robust in the determination of wave propagation. This helps to seek a suitable new wave sensor method.

  6. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  7. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  8. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGES

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  9. TECHNICAL NOTE: Direct finite-element analysis of the frequency response of a Y-Z lithium niobate SAW filter

    NASA Astrophysics Data System (ADS)

    Xu, Guanshui

    2000-12-01

    A direct finite-element model is developed for the full-scale analysis of the electromechanical phenomena involved in surface acoustic wave (SAW) devices. The equations of wave propagation in piezoelectric materials are discretized using the Galerkin method, in which an implicit algorithm of the Newmark family with unconditional stability is implemented. The Rayleigh damping coefficients are included in the elements near the boundary to reduce the influence of the reflection of waves. The performance of the model is demonstrated by the analysis of the frequency response of a Y-Z lithium niobate filter with two uniform ports, with emphasis on the influence of the number of electrodes. The frequency response of the filter is obtained through the Fourier transform of the impulse response, which is solved directly from the finite-element simulation. It shows that the finite-element results are in good agreement with the characteristic frequency response of the filter predicted by the simple phase-matching argument. The ability of the method to evaluate the influence of the bulk waves at the high-frequency end of the filter passband and the influence of the number of electrodes on insertion loss is noteworthy. We conclude that the direct finite-element analysis of SAW devices can be used as an effective tool for the design of high-performance SAW devices. Some practical computational challenges of finite-element modeling of SAW devices are discussed.

  10. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    PubMed

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  11. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method

    PubMed Central

    Korvink, Jan G.

    2016-01-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766

  12. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    NASA Astrophysics Data System (ADS)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  13. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  14. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-04

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  15. Estimation of Ocean and Seabed Parameters and Processes Using Low Frequency Acoustic Signals

    DTIC Science & Technology

    2011-09-01

    Dr. Mohsen Badiey (University of Delaware), Kevin Smith (Naval Postgraduate School), Dr. James F. Lynch and Dr. Y.-T. Lin (Woods Hole Oceanographic...Wilson (ARL, University of Texas) in this topic. 3. Finite Element Modeling of wave propagation: Doctoral student, Hui- Kwan Kim, is modeling wave...student Hui- Kwan Kim is focusing on finite element modeling of wave propagation. RESULTS 1. Acoustic variability in the presence of internal waves

  16. Criteria for representing circular arc and sine wave spar webs by non-curved elements

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    The basic problem of how to simply represent a curved web of a spar in a finite element structural model was addressed. The ratio of flat web to curved web axial deformations and longitudinal rotations were calculated using NASTRAN models. Multiplying factors were developed from these calculations for various web thicknesses. These multiplying factors can be applied directly to the area and moment of inertia inputs of the finite element model. This allows the thermal stress relieving configurations of sine wave and circular arc webs to be simply accounted for in finite element structural models.

  17. Wave steering effects in anisotropic composite structures: Direct calculation of the energy skew angle through a finite element scheme.

    PubMed

    Chronopoulos, D

    2017-01-01

    A systematic expression quantifying the wave energy skewing phenomenon as a function of the mechanical characteristics of a non-isotropic structure is derived in this study. A structure of arbitrary anisotropy, layering and geometric complexity is modelled through Finite Elements (FEs) coupled to a periodic structure wave scheme. A generic approach for efficiently computing the angular sensitivity of the wave slowness for each wave type, direction and frequency is presented. The approach does not involve any finite differentiation scheme and is therefore computationally efficient and not prone to the associated numerical errors. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Spectral Finite Element Approach to Modeling Soft Solids Excited with High-Frequency Harmonic Loads

    PubMed Central

    Brigham, John C.; Aquino, Wilkins; Aguilo, Miguel A.; Diamessis, Peter J.

    2010-01-01

    An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number. PMID:21461402

  19. Finite element solution of transient fluid-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.

    1991-01-01

    A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.

  20. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  1. Delamination Defect Detection Using Ultrasonic Guided Waves in Advanced Hybrid Structural Elements

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Qi, Kevin ``Xue''; Rose, Joseph L.; Weiland, Hasso

    2010-02-01

    Nondestructive testing for multilayered structures is challenging because of increased numbers of layers and plate thicknesses. In this paper, ultrasonic guided waves are applied to detect delamination defects inside a 23-layer Alcoa Advanced Hybrid Structural plate. A semi-analytical finite element (SAFE) method generates dispersion curves and wave structures in order to select appropriate wave structures to detect certain defects. One guided wave mode and frequency is chosen to achieve large in-plane displacements at regions of interest. The interactions of the selected mode with defects are simulated using finite element models. Experiments are conducted and compared with bulk wave measurements. It is shown that guided waves can detect deeply embedded damages inside thick multilayer fiber-metal laminates with suitable mode and frequency selection.

  2. High Performance Computing Technologies for Modeling the Dynamics and Dispersion of Ice Chunks in the Arctic Ocean

    DTIC Science & Technology

    2016-08-23

    SECURITY CLASSIFICATION OF: Hybrid finite element / finite volume based CaMEL shallow water flow solvers have been successfully extended to study wave...effects on ice floes in a simplified 10 sq-km ocean domain. Our solver combines the merits of both the finite element and finite volume methods and...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 sea ice dynamics, shallow water, finite element , finite volume

  3. Evaluation of Acoustic Propagation Paths into the Human Head

    DTIC Science & Technology

    2005-07-25

    paths. A 3D finite-element solid mesh was constructed using a digital image database of an adult male head. Finite-element analysis was used to model the...air-borne sound pressure amplitude) via the alternate propagation paths. A 3D finite-element solid mesh was constructed using a digital image database ... database of an adult male head Coupled acoustic-mechanical finite-element analysis (FEA) was used to model the wave propagation through the fluid-solid

  4. Elastic guided waves in a layered plate with rectangular cross section.

    PubMed

    Mukdadi, O M; Desai, Y M; Datta, S K; Shah, A H; Niklasson, A J

    2002-11-01

    Guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) has been studied in this paper. A semianalytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the length of the plate has been used. The method is applicable to arbitrary number of layers and general anisotropic material properties of each layer, and is similar to the stiffness method used earlier to study guided waves in a laminated composite plate of infinite width. Numerical results showing the effect of varying the width of the plate on the dispersion of guided waves are presented and are compared with those for an infinite plate. In addition, effect of thin anisotropic coating or interface layers on the guided waves is investigated.

  5. Numerical modeling of guided ultrasonic waves generated and received by piezoelectric wafer in a Delaminated composite beam

    NASA Astrophysics Data System (ADS)

    Xu, G. D.; Xu, B. Q.; Xu, C. G.; Luo, Y.

    2017-05-01

    A spectral finite element method (SFEM) is developed to analyze guided ultrasonic waves in a delaminated composite beam excited and received by a pair of surface-bonded piezoelectric wafers. The displacements of the composite beam and the piezoelectric wafer are represented by Timoshenko beam and Euler Bernoulli theory respectively. The linear piezoelectricity is used to model the electrical-mechanical coupling between the piezoelectric wafer and the beam. The coupled governing equations and the boundary conditions in time domain are obtained by using the Hamilton's principle, and then the SFEM are formulated by transforming the coupled governing equations into frequency domain via the discrete Fourier transform. The guided waves are analyzed while the interaction of waves with delamination is also discussed. The elements needed in SFEM is far fewer than those for finite element method (FEM), which result in a much faster solution speed in this study. The high accuracy of the present SFEM is verified by comparing with the finite element results.

  6. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu

    2016-07-15

    Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less

  7. Application of finite element approach to transonic flow problems

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C., Jr.

    1976-01-01

    A variational finite element model for transonic small disturbance calculations is described. Different strategy is adopted in subsonic and supersonic regions, and blending elements are introduced between different regions. In the supersonic region, no upstream effect is allowed. If rectangular elements with linear shape functions are used, the model is similar to Murman's finite difference operators. Higher order shape functions, nonrectangular elements, and discontinuous approximation of shock waves are also discussed.

  8. A coupled modal-finite element method for the wave propagation modeling in irregular open waveguides.

    PubMed

    Pelat, Adrien; Felix, Simon; Pagneux, Vincent

    2011-03-01

    In modeling the wave propagation within a street canyon, particular attention must be paid to the description of both the multiple reflections of the wave on the building facades and the radiation in the free space above the street. The street canyon being considered as an open waveguide with a discontinuously varying cross-section, a coupled modal-finite element formulation is proposed to solve the three-dimensional wave equation within. The originally open configuration-the street canyon open in the sky above-is artificially turned into a close waveguiding structure by using perfectly matched layers that truncate the infinite sky without introducing numerical reflection. Then the eigenmodes of the resulting waveguide are determined by a finite element method computation in the cross-section. The eigensolutions can finally be used in a multimodal formulation of the wave propagation along the canyon, given its geometry and the end conditions at its extremities: initial field condition at the entrance and radiation condition at the output. © 2011 Acoustical Society of America

  9. Finite-element analysis of scattering parameters of surface acoustic wave bandpass filter formed on barium titanate thin film

    NASA Astrophysics Data System (ADS)

    Timoshenko; Kalinchuk; Shirokov

    2018-04-01

    The frequency dependence of scattering parameters of interdigital surface acoustic wave transducers placed on ferroelectric barium titanate (BaTiO3) epitaxial film in c-phase coated over magnesium oxide has been studied using the finite-element method (FEM) approach along with the perfectly matched layer (PML) technique. The interdigital transducer which has a comb-like structure with aluminum electrodes excites the mechanical wave. The distance between the fingers allows tuning the frequency properties of the wave propagation. The magnesium oxide is taken as the substrate. The two-dimensional model of two-port surface acoustic wave filter is created to calculate scattering parameters and to show how to design the fixture in COMSOLTM. Some practical computational challenges of finite element modeling of SAW devices in COMSOLTM are shown. The effect of lattice misfit strain on acoustic properties of heterostructures of BaTiO3 epitaxial film in c-phase at room temperature is discussed in present article for two low-frequency surface acoustic resonances.

  10. A Locally Modal B-Spline Based Full-Vector Finite-Element Method with PML for Nonlinear and Lossy Plasmonic Waveguide

    NASA Astrophysics Data System (ADS)

    Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan

    2016-09-01

    In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.

  11. Broadband ground motion simulation using a paralleled hybrid approach of Frequency Wavenumber and Finite Difference method

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wei, S.

    2016-12-01

    The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).

  12. Semi-analytical discontinuous Galerkin finite element method for the calculation of dispersion properties of guided waves in plates.

    PubMed

    Hebaz, Salah-Eddine; Benmeddour, Farouk; Moulin, Emmanuel; Assaad, Jamal

    2018-01-01

    The development of reliable guided waves inspection systems is conditioned by an accurate knowledge of their dispersive properties. The semi-analytical finite element method has been proven to be very practical for modeling wave propagation in arbitrary cross-section waveguides. However, when it comes to computations on complex geometries to a given accuracy, it still has a major drawback: the high consumption of resources. Recently, discontinuous Galerkin finite element method (DG-FEM) has been found advantageous over the standard finite element method when applied as well in the frequency domain. In this work, a high-order method for the computation of Lamb mode characteristics in plates is proposed. The problem is discretised using a class of DG-FEM, namely, the interior penalty methods family. The analytical validation is performed through the homogeneous isotropic case with traction-free boundary conditions. Afterwards, functionally graded material plates are analysed and a numerical example is presented. It was found that the obtained results are in good agreement with those found in the literature.

  13. Adaptive mesh refinement for time-domain electromagnetics using vector finite elements :a feasibility study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis

    This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.

  14. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Graczykowski, B.; Alzina, F.; Gomis-Bresco, J.; Sotomayor Torres, C. M.

    2016-01-01

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.

  15. Spectrally formulated user-defined element in conventional finite element environment for wave motion analysis in 2-D composite structures

    NASA Astrophysics Data System (ADS)

    Khalili, Ashkan; Jha, Ratneshwar; Samaratunga, Dulip

    2016-11-01

    Wave propagation analysis in 2-D composite structures is performed efficiently and accurately through the formulation of a User-Defined Element (UEL) based on the wavelet spectral finite element (WSFE) method. The WSFE method is based on the first-order shear deformation theory which yields accurate results for wave motion at high frequencies. The 2-D WSFE model is highly efficient computationally and provides a direct relationship between system input and output in the frequency domain. The UEL is formulated and implemented in Abaqus (commercial finite element software) for wave propagation analysis in 2-D composite structures with complexities. Frequency domain formulation of WSFE leads to complex valued parameters, which are decoupled into real and imaginary parts and presented to Abaqus as real values. The final solution is obtained by forming a complex value using the real number solutions given by Abaqus. Five numerical examples are presented in this article, namely undamaged plate, impacted plate, plate with ply drop, folded plate and plate with stiffener. Wave motions predicted by the developed UEL correlate very well with Abaqus simulations. The results also show that the UEL largely retains computational efficiency of the WSFE method and extends its ability to model complex features.

  16. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  17. Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer

    NASA Astrophysics Data System (ADS)

    Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi

    2018-04-01

    Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.

  18. On accuracy of the wave finite element predictions of wavenumbers and power flow: A benchmark problem

    NASA Astrophysics Data System (ADS)

    Søe-Knudsen, Alf; Sorokin, Sergey

    2011-06-01

    This rapid communication is concerned with justification of the 'rule of thumb', which is well known to the community of users of the finite element (FE) method in dynamics, for the accuracy assessment of the wave finite element (WFE) method. An explicit formula linking the size of a window in the dispersion diagram, where the WFE method is trustworthy, with the coarseness of a FE mesh employed is derived. It is obtained by the comparison of the exact Pochhammer-Chree solution for an elastic rod having the circular cross-section with its WFE approximations. It is shown that the WFE power flow predictions are also valid within this window.

  19. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants.

    PubMed

    Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo

    2016-07-01

    The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated. Copyright © 2016. Published by Elsevier B.V.

  20. Damping Enhancement of Composite Panels by Inclusion of Shunted Piezoelectric Patches: A Wave-Based Modelling Approach.

    PubMed

    Chronopoulos, Dimitrios; Collet, Manuel; Ichchou, Mohamed

    2015-02-17

    The waves propagating within complex smart structures are hereby computed by employing a wave and finite element method. The structures can be of arbitrary layering and of complex geometric characteristics as long as they exhibit two-dimensional periodicity. The piezoelectric coupling phenomena are considered within the finite element formulation. The mass, stiffness and piezoelectric stiffness matrices of the modelled segment can be extracted using a conventional finite element code. The post-processing of these matrices involves the formulation of an eigenproblem whose solutions provide the phase velocities for each wave propagating within the structure and for any chosen direction of propagation. The model is then modified in order to account for a shunted piezoelectric patch connected to the composite structure. The impact of the energy dissipation induced by the shunted circuit on the total damping loss factor of the composite panel is then computed. The influence of the additional mass and stiffness provided by the attached piezoelectric devices on the wave propagation characteristics of the structure is also investigated.

  1. A Fatigue Crack Size Evaluation Method Based on Lamb Wave Simulation and Limited Experimental Data

    PubMed Central

    He, Jingjing; Ran, Yunmeng; Liu, Bin; Yang, Jinsong; Guan, Xuefei

    2017-01-01

    This paper presents a systematic and general method for Lamb wave-based crack size quantification using finite element simulations and Bayesian updating. The method consists of construction of a baseline quantification model using finite element simulation data and Bayesian updating with limited Lamb wave data from target structure. The baseline model correlates two proposed damage sensitive features, namely the normalized amplitude and phase change, with the crack length through a response surface model. The two damage sensitive features are extracted from the first received S0 mode wave package. The model parameters of the baseline model are estimated using finite element simulation data. To account for uncertainties from numerical modeling, geometry, material and manufacturing between the baseline model and the target model, Bayesian method is employed to update the baseline model with a few measurements acquired from the actual target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the proposed method is demonstrated under different loading and damage conditions. PMID:28902148

  2. Damping Enhancement of Composite Panels by Inclusion of Shunted Piezoelectric Patches: A Wave-Based Modelling Approach

    PubMed Central

    Chronopoulos, Dimitrios; Collet, Manuel; Ichchou, Mohamed; Shah, Tahir

    2015-01-01

    The waves propagating within complex smart structures are hereby computed by employing a wave and finite element method. The structures can be of arbitrary layering and of complex geometric characteristics as long as they exhibit two-dimensional periodicity. The piezoelectric coupling phenomena are considered within the finite element formulation. The mass, stiffness and piezoelectric stiffness matrices of the modelled segment can be extracted using a conventional finite element code. The post-processing of these matrices involves the formulation of an eigenproblem whose solutions provide the phase velocities for each wave propagating within the structure and for any chosen direction of propagation. The model is then modified in order to account for a shunted piezoelectric patch connected to the composite structure. The impact of the energy dissipation induced by the shunted circuit on the total damping loss factor of the composite panel is then computed. The influence of the additional mass and stiffness provided by the attached piezoelectric devices on the wave propagation characteristics of the structure is also investigated. PMID:28787972

  3. Finite Element Analysis of Grouting Compactness Monitoring in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers

    PubMed Central

    Jiang, Tianyong; Song, Gangbing

    2017-01-01

    With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors’ previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD). To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA) developed to utilize one Lead Zirconate Titanate (PZT) transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon duct. PMID:28961173

  4. Finite Element Analysis of Grouting Compactness Monitoring in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers.

    PubMed

    Jiang, Tianyong; Zheng, Junbo; Huo, Linsheng; Song, Gangbing

    2017-09-29

    With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors' previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD). To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA) developed to utilize one Lead Zirconate Titanate (PZT) transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon duct.

  5. Finite element analysis of electromagnetic propagation in an absorbing wave guide

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1986-01-01

    Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.

  6. Wave velocity characteristic for Kenaf natural fibre under impact damage

    NASA Astrophysics Data System (ADS)

    Zaleha, M.; Mahzan, S.; Fitri, Muhamad; Kamarudin, K. A.; Eliza, Y.; Tobi, A. L. Mohd

    2017-01-01

    This paper aims to determining the wave velocity characteristics for kenaf fibre reinforced composite (KFC) and it includes both experimental and simulation results. Lead zirconate titanate (PZT) sensor were proposed to be positioned to corresponding locations on the panel. In order to demonstrate the wave velocity, an impacts was introduced onto the panel. It is based on a classical sensor triangulation methodology, combines with experimental strain wave velocity analysis. Then the simulation was designed to replicate panel used in the experimental impacts test. This simulation was carried out using ABAQUS. It was shown that the wave velocity propagates faster in the finite element simulation. Although the experimental strain wave velocity and finite element simulation results do not match exactly, the shape of both waves is similar.

  7. Free and forced vibrations of a tyre using a wave/finite element approach

    NASA Astrophysics Data System (ADS)

    Waki, Y.; Mace, B. R.; Brennan, M. J.

    2009-06-01

    Free and forced vibrations of a tyre are predicted using a wave/finite element (WFE) approach. A short circumferential segment of the tyre is modelled using conventional finite element (FE) methods, a periodicity condition applied and the mass and stiffness matrices post-processed to yield wave properties. Since conventional FE methods are used, commercial FE packages and existing element libraries can be utilised. An eigenvalue problem is formulated in terms of the transfer matrix of the segment. Zhong's method is used to improve numerical conditioning. The eigenvalues and eigenvectors give the wavenumbers and wave mode shapes, which in turn define transformations between the physical and wave domains. A method is described by which the frequency dependent material properties of the rubber components of the tyre can be included without the need to remesh the structure. Expressions for the forced response are developed which are numerically well-conditioned. Numerical results for a smooth tyre are presented. Dispersion curves for real, imaginary and complex wavenumbers are shown. The propagating waves are associated with various forms of motion of the tread supported by the stiffness of the side wall. Various dispersion phenomena are observed, including curve veering, non-zero cut-off and waves for which the phase velocity and the group velocity have opposite signs. Results for the forced response are compared with experimental measurements and good agreement is seen. The forced response is numerically determined for both finite area and point excitations. It is seen that the size of area of the excitation is particularly important at high frequencies. When the size of the excitation area is small enough compared to the tread thickness, the response at high frequencies becomes stiffness-like (reactive) and the effect of shear stiffness becomes important.

  8. Effect of triangular element orientation on finite element solutions of the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1986-01-01

    The Galerkin finite element solutions for the scalar homogeneous Helmholtz equation are presented for no reflection, hard wall, and potential relief exit terminations with a variety of triangular element orientations. For this group of problems, the correlation between the accuracy of the solution and the orientation of the linear triangle is examined. Nonsymmetric element patterns are found to give generally poor results in the model problems investigated, particularly for cases where standing waves exist. For a fixed number of vertical elements, the results showed that symmetric element patterns give much better agreement with corresponding exact analytical results. In laminated wave guide application, the symmetric pyramid pattern is convenient to use and is shown to give excellent results.

  9. Decomposition of the Seismic Source Using Numerical Simulations and Observations of Nuclear Explosions

    DTIC Science & Technology

    2017-05-31

    SUBJECT TERMS nonlinear finite element calculations, nuclear explosion monitoring, topography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...3D North Korea calculations........ Figure 6. The CRAM 3D finite element outer grid (left) is rectangular......................... Figure 7. Stress...Figure 6. The CRAM 3D finite element outer grid (left) is rectangular. The inner grid (center) is shaped to match the shape of the explosion shock wave

  10. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczykowski, B., E-mail: bartlomiej.graczykowski@icn.cat; Alzina, F.; Gomis-Bresco, J.

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection,more » and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.« less

  11. Finite element simulation of core inspection in helicopter rotor blades using guided waves.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay

    2015-09-01

    This paper extends the work presented earlier on inspection of helicopter rotor blades using guided Lamb modes by focusing on inspecting the spar-core bond. In particular, this research focuses on structures which employ high stiffness, high density core materials. Wave propagation in such structures deviate from the generic Lamb wave propagation in sandwich panels. To understand the various mode conversions, finite element models of a generalized helicopter rotor blade were created and subjected to transient analysis using a commercial finite element code; ANSYS. Numerical simulations showed that a Lamb wave excited in the spar section of the blade gets converted into Rayleigh wave which travels across the spar-core section and mode converts back into Lamb wave. Dispersion of Rayleigh waves in multi-layered half-space was also explored. Damage was modeled in the form of a notch in the core section to simulate a cracked core, and delamination was modeled between the spar and core material to simulate spar-core disbond. Mode conversions under these damaged conditions were examined numerically. The numerical models help in assessing the difficulty of using nondestructive evaluation for complex structures and also highlight the physics behind the mode conversions which occur at various discontinuities. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Studies of Sound Absorption by and Transmission Through Layers of Elastic Noise Control Foams: Finite Element Modeling and Effects of Anisotropy

    NASA Astrophysics Data System (ADS)

    Kang, Yeon June

    In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction normal to the face of foam layer play the principal role in determining the acoustical behavior of polyimide foam layers, although more satisfactory agreement between experimental measurements and theoretical predictions of transmission loss is obtained when the anisotropic properties are allowed in the model.

  13. Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Wang, Yao; Hei, Baoping

    2013-12-01

    The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.

  14. Propagating plane harmonic waves through finite length plates of variable thickness using finite element techniques

    NASA Technical Reports Server (NTRS)

    Clark, J. H.; Kalinowski, A. J.; Wagner, C. A.

    1983-01-01

    An analysis is given using finite element techniques which addresses the propagaton of a uniform incident pressure wave through a finite diameter axisymmetric tapered plate immersed in a fluid. The approach utilized in developing a finite element solution to this problem is based upon a technique for axisymmetric fluid structure interaction problems. The problem addressed is that of a 10 inch diameter axisymmetric fixed plate totally immersed in a fluid. The plate increases in thickness from approximately 0.01 inches thick at the center to 0.421 inches thick at a radius of 5 inches. Against each face of the tapered plate a cylindrical fluid volume was represented extending five wavelengths off the plate in the axial direction. The outer boundary of the fluid and plate regions were represented as a rigid encasement cylinder as was nearly the case in the physical problem. The primary objective of the analysis is to determine the form of the transmitted pressure distribution on the downstream side of the plate.

  15. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-06-01

    The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.

  16. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.

    PubMed

    El Gowini, Mohamed M; Moussa, Walied A

    2010-01-01

    Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  17. A progress report on estuary modeling by the finite-element method

    USGS Publications Warehouse

    Gray, William G.

    1978-01-01

    Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)

  18. Newmark local time stepping on high-performance computing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch; Institute of Geophysics, ETH Zurich; Grote, Marcus, E-mail: marcus.grote@unibas.ch

    In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strongmore » element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.« less

  19. Modeling and measurement of angle-beam wave propagation in a scatterer-free plate

    NASA Astrophysics Data System (ADS)

    Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.

    2017-02-01

    Wavefield imaging has been shown to be a powerful tool for improving the understanding and characterization of wave propagation and scattering in plates. The complete measurement of surface displacement over a 2-D grid provided by wavefield imaging has the potential to serve as a useful means of validating ultrasonic models. Here, a preliminary study of ultrasonic angle-beam wave propagation in a scatterer-free plate using a combination of wavefield measurements and 2-D finite element models is described. Both wavefield imaging and finite element analysis are used to study the propagation of waves at a refracted angle of 56.8° propagating in a 6.35 mm thick aluminum plate. Wavefield imaging is performed using a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. The commercial finite element software package, PZFlex, which is specifically designed to handle large, complex ultrasonic problems, is used to create a 2-D cross-sectional model of the transducer and plate. For model validation, vertical surface displacements from both the wavefield measurements and the PZFlex finite element model are compared and found to be in excellent agreement. The validated PZFlex model is then used to explain the mechanism of Rayleigh wave generation by the angle-beam wedge. Since the wavefield measurements are restricted to the specimen surface, the cross-sectional PZFlex model is able to provide insights the wavefield data cannot. This study illustrates how information obtained from ultrasonic experiments and modeling results can be combined to improve understanding of angle-beam wave generation and propagation.

  20. Improved Finite Element Modeling of the Turbofan Engine Inlet Radiation Problem

    NASA Technical Reports Server (NTRS)

    Roy, Indranil Danda; Eversman, Walter; Meyer, H. D.

    1993-01-01

    Improvements have been made in the finite element model of the acoustic radiated field from a turbofan engine inlet in the presence of a mean flow. The problem of acoustic radiation from a turbofan engine inlet is difficult to model numerically because of the large domain and high frequencies involved. A numerical model with conventional finite elements in the near field and wave envelope elements in the far field has been constructed. By employing an irrotational mean flow assumption, both the mean flow and the acoustic perturbation problem have been posed in an axisymmetric formulation in terms of the velocity potential; thereby minimizing computer storage and time requirements. The finite element mesh has been altered in search of an improved solution. The mean flow problem has been reformulated with new boundary conditions to make it theoretically rigorous. The sound source at the fan face has been modeled as a combination of positive and negative propagating duct eigenfunctions. Therefore, a finite element duct eigenvalue problem has been solved on the fan face and the resulting modal matrix has been used to implement a source boundary condition on the fan face in the acoustic radiation problem. In the post processing of the solution, the acoustic pressure has been evaluated at Gauss points inside the elements and the nodal pressure values have been interpolated from them. This has significantly improved the results. The effect of the geometric position of the transition circle between conventional finite elements and wave envelope elements has been studied and it has been found that the transition can be made nearer to the inlet than previously assumed.

  1. Weak form implementation of the semi-analytical finite element (SAFE) method for a variety of elastodynamic waveguides

    NASA Astrophysics Data System (ADS)

    Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.

    2018-04-01

    Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.

  2. Element sensitive reconstruction of nanostructured surfaces with finite elements and grazing incidence soft X-ray fluorescence.

    PubMed

    Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard

    2018-03-29

    The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.

  3. Vibration band gaps for elastic metamaterial rods using wave finite element method

    NASA Astrophysics Data System (ADS)

    Nobrega, E. D.; Gautier, F.; Pelat, A.; Dos Santos, J. M. C.

    2016-10-01

    Band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators are investigated. New techniques to analyze metamaterial systems are using a combination of analytical or numerical method with wave propagation. One of them, called here wave spectral element method (WSEM), consists of combining the spectral element method (SEM) with Floquet-Bloch's theorem. A modern methodology called wave finite element method (WFEM), developed to calculate dynamic behavior in periodic acoustic and structural systems, utilizes a similar approach where SEM is substituted by the conventional finite element method (FEM). In this paper, it is proposed to use WFEM to calculate band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators of multi-degree-of-freedom (M-DOF). Simulated examples with band gaps generated by Bragg scattering and local resonators are calculated by WFEM and verified with WSEM, which is used as a reference method. Results are presented in the form of attenuation constant, vibration transmittance and frequency response function (FRF). For all cases, WFEM and WSEM results are in agreement, provided that the number of elements used in WFEM is sufficient to convergence. An experimental test was conducted with a real elastic metamaterial rod, manufactured with plastic in a 3D printer, without local resonance-type effect. The experimental results for the metamaterial rod with band gaps generated by Bragg scattering are compared with the simulated ones. Both numerical methods (WSEM and WFEM) can localize the band gap position and width very close to the experimental results. A hybrid approach combining WFEM with the commercial finite element software ANSYS is proposed to model complex metamaterial systems. Two examples illustrating its efficiency and accuracy to model an elastic metamaterial rod unit-cell using 1D simple rod element and 3D solid element are demonstrated and the results present good approximation to the experimental data.

  4. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.

    PubMed

    Nguyen, Vu-Hieu; Naili, Salah

    2012-08-01

    This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Application of hierarchical cascading technique to finite element method simulation in bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Li, Xinyi; Bao, Jingfu; Huang, Yulin; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2018-07-01

    In this paper, we propose the use of the hierarchical cascading technique (HCT) for the finite element method (FEM) analysis of bulk acoustic wave (BAW) devices. First, the implementation of this technique is presented for the FEM analysis of BAW devices. It is shown that the traveling-wave excitation sources proposed by the authors are fully compatible with the HCT. Furthermore, a HCT-based absorbing mechanism is also proposed to replace the perfectly matched layer (PML). Finally, it is demonstrated how the technique is much more efficient in terms of memory consumption and execution time than the full FEM analysis.

  6. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.

    PubMed

    Heidenreich, Elvio A; Ferrero, José M; Doblaré, Manuel; Rodríguez, José F

    2010-07-01

    Many problems in biology and engineering are governed by anisotropic reaction-diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction-diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.

  7. A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard

    1991-01-01

    Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/ mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.

  8. A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Kurt A.; Bartos, Karen F.; Fite, E. B.; Sharp, G. R.

    1992-01-01

    Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.

  9. Three-dimensional computation of laser cavity eigenmodes by the use of finite element analysis (FEA)

    NASA Astrophysics Data System (ADS)

    Altmann, Konrad; Pflaum, Christoph; Seider, David

    2004-06-01

    A new method for computing eigenmodes of a laser resonator by the use of finite element analysis (FEA) is presented. For this purpose, the scalar wave equation [Δ + k2]E(x,y,z) = 0 is transformed into a solvable 3D eigenvalue problem by separating out the propagation factor exp(-ikz) from the phasor amplitude E(x,y,z) of the time-harmonic electrical field. For standing wave resonators, the beam inside the cavity is represented by a two-wave ansatz. For cavities with parabolic optical elements the new approach has successfully been verified by the use of the Gaussian mode algorithm. For a DPSSL with a thermally lensing crystal inside the cavity the expected deviation between Gaussian approximation and numerical solution could be demonstrated clearly.

  10. Analysis of shear wave propagation derived from MR elastography in 3D thigh skeletal muscle using subject specific finite element model.

    PubMed

    Dao, Tien Tuan; Pouletaut, Philippe; Charleux, Fabrice; Tho, Marie-Christine Ho Ba; Bensamoun, Sabine

    2014-01-01

    The purpose of this study was to develop a subject specific finite element model derived from MRI images to numerically analyze the MRE (magnetic resonance elastography) shear wave propagation within skeletal thigh muscles. A sagittal T2 CUBE MRI sequence was performed on the 20-cm thigh segment of a healthy male subject. Skin, adipose tissue, femoral bone and 11 muscles were manually segmented in order to have 3D smoothed solid and meshed models. These tissues were modeled with different constitutive laws. A transient modal dynamics analysis was applied to simulate the shear wave propagation within the thigh tissues. The effects of MRE experimental parameters (frequency, force) and the muscle material properties (shear modulus: C10) were analyzed through the simulated shear wave displacement within the vastus medialis muscle. The results showed a plausible range of frequencies (from 90Hz to 120 Hz), which could be used for MRE muscle protocol. The wave amplitude increased with the level of the force, revealing the importance of the boundary condition. Moreover, different shear displacement patterns were obtained as a function of the muscle mechanical properties. The present study is the first to analyze the shear wave propagation in skeletal muscles using a 3D subject specific finite element model. This study could be of great value to assist the experimenters in the set-up of MRE protocols.

  11. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  12. Modeling a surface-mounted Lamb wave emission-reception system: applications to structural health monitoring.

    PubMed

    Moulin, Emmanuel; Grondel, Sébastien; Assaad, Jamal; Duquenne, Laurent

    2008-12-01

    The work described in this paper is intended to present a simple and efficient way of modeling a full Lamb wave emission and reception system. The emitter behavior and the Lamb wave generation are predicted using a two-dimensional (2D) hybrid finite element-normal mode expansion model. Then the receiver electrical response is obtained from a finite element computation with prescribed displacements. A numerical correction is applied to the 2D results in order to account for the in-plane radiation divergence caused by the finite length of the emitter. The advantage of this modular approach is that realistic configurations can be simulated without performing cumbersome modeling and time-consuming computations. It also provides insight into the physical interpretation of the results. A good agreement is obtained between predicted and measured signals. The range of application of the method is discussed.

  13. Dynamic responses of graphite/epoxy laminated beam to impact of elastic spheres

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Wang, T.

    1982-01-01

    Wave propagation in 90/45/90/-45/902s and 0/45/0/-45/02s laminates of a graphite/epoxy composite due to impact of a steel ball was investigated experimentally and also by using a high order beam finite element. Dynamic strain responses at several locations were obtained using strain gages. The finite element program which incorporated statically determined contact laws was employed to calculate the contact force history as well as the target beam dynamic deformation. The comparison of the finite element solutions with the experimental data indicated that the static contact laws for loading and unloading (developed under this grant) are adequate for the dynamic impact analysis. It was found that for the 0/45/0/-45/02s laminate which has a much larger longitudinal bending rigidity, the use of beam finite elements is not suitable and plate finite element should be used instead.

  14. A Unique Finite Element Modeling of the Periodic Wave Transformation over Sloping and Barred Beaches by Beji and Nadaoka's Extended Boussinesq Equations

    PubMed Central

    Jabbari, Mohammad Hadi; Sayehbani, Mesbah; Reisinezhad, Arsham

    2013-01-01

    This paper presents a numerical model based on one-dimensional Beji and Nadaoka's Extended Boussinesq equations for simulation of periodic wave shoaling and its decomposition over morphological beaches. A unique Galerkin finite element and Adams-Bashforth-Moulton predictor-corrector methods are employed for spatial and temporal discretization, respectively. For direct application of linear finite element method in spatial discretization, an auxiliary variable is hereby introduced, and a particular numerical scheme is offered to rewrite the equations in lower-order form. Stability of the suggested numerical method is also analyzed. Subsequently, in order to display the ability of the presented model, four different test cases are considered. In these test cases, dispersive and nonlinearity effects of the periodic waves over sloping beaches and barred beaches, which are the common coastal profiles, are investigated. Outputs are compared with other existing numerical and experimental data. Finally, it is concluded that the current model can be further developed to model any morphological development of coastal profiles. PMID:23853534

  15. Finite Element Methods for Modelling Mechanical Loss in LIGO coating optics.

    NASA Astrophysics Data System (ADS)

    Newport, Jonathan; Harry, Gregg; LIGO Collaboration

    2015-04-01

    Gravitational waves from sources such as binary star systems, supernovae explosions and stochastic background radiation have yet to be directly detected by experimental observations. Alongside international collaborators, the Laser Interferometer Gravitational-Wave Observatory (LIGO) is designed to realize detection of gravitational waves using interferometric techniques. The second generation of gravitational wave observatories, known as Advanced LIGO, are currently undergoing installation and commissioning at sites in Hanford, Washington and Livingston, Louisiana. The ultimate sensitivity of Advanced LIGO within select spectral bands is limited by thermal noise in the coatings of the interferometer optics. The LIGO lab at American University is measuring the mechanical loss of coated substrates to predict thermal noise within these spectral bands. These predictions use increasingly sophisticated finite element models to ensure the ultimate design sensitivity of Advanced LIGO and to study coating and substrate materials for future gravitational wave detectors.

  16. Two Dimensional Finite Element Analysis for the Effect of a Pressure Wave in the Human Brain

    NASA Astrophysics Data System (ADS)

    Ponce L., Ernesto; Ponce S., Daniel

    2008-11-01

    Brain injuries in people of all ages is a serious, world-wide health problem, with consequences as varied as attention or memory deficits, difficulties in problem-solving, aggressive social behavior, and neuro degenerative diseases such as Alzheimer's and Parkinson's. Brain injuries can be the result of a direct impact, but also pressure waves and direct impulses. The aim of this work is to develop a predictive method to calculate the stress generated in the human brain by pressure waves such as high power sounds. The finite element method is used, combined with elastic wave theory. The predictions of the generated stress levels are compared with the resistance of the arterioles that pervade the brain. The problem was focused to the Chilean mining where there are some accidents happen by detonations and high sound level. There are not formal medical investigation, however these pressure waves could produce human brain damage.

  17. Constrained and Unconstrained Variational Finite Element Formulation of Solutions to a Stress Wave Problem - a Numerical Comparison.

    DTIC Science & Technology

    1982-10-01

    Element Unconstrained Variational Formulations," Innovativ’e Numerical Analysis For the Applied Engineering Science, R. P. Shaw, et at, Fitor...Initial Boundary Value of Gun Dynamics Solved by Finite Element Unconstrained Variational Formulations," Innovative Numerical Analysis For the Applied ... Engineering Science, R. P. Shaw, et al, Editors, University Press of Virginia, Charlottesville, pp. 733-741, 1980. 2 J. J. Wu, "Solutions to Initial

  18. A Variational Formulation for the Finite Element Analysis of Sound Wave Propagation in a Spherical Shell

    NASA Technical Reports Server (NTRS)

    Lebiedzik, Catherine

    1995-01-01

    Development of design tools to furnish optimal acoustic environments for lightweight aircraft demands the ability to simulate the acoustic system on a workstation. In order to form an effective mathematical model of the phenomena at hand, we have begun by studying the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled fluid-structure interaction model based upon variational principles, we have written a finite element analysis program and are in the process of examining several test cases. Future investigations are planned to increase model accuracy by incorporating non-linear and viscous effects.

  19. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2015-09-30

    of buried mines and improve SONAR performance in shallow water. OBJECTIVES 1) Determination of the correct physical model of acoustic propagation... acoustic parameters in the ocean. APPROACH 1) Finite Element Modeling for Range Dependent Waveguides: Finite element modeling is applied to a...roughness measurements for reverberation modeling . GLISTEN data provide insight into the role of biology on acoustic propagation and scattering

  20. Inspection of helicopter rotor blades with the help of guided waves and "turning modes": Experimental and finite element analysis

    NASA Astrophysics Data System (ADS)

    Barnard, Daniel; Chakrapani, Sunil Kishore; Dayal, Vinay

    2013-01-01

    Modern helicopter rotor blades constructed of composite materials offer significant inspection challenges, particularly at inner structures, where geometry and differing material properties and anisotropy make placement of the probing energy difficult. This paper presents an application of Lamb waves to these structures, where mode conversion occurs at internal geometric discontinuities. These additional modes were found to successfully propagate to the targeted regions inside the rotor and back out, allowing evaluation of the structure. A finite element model was developed to simulate wave propagation and mode conversion in the structure and aid in identifying the signals received in the laboratory experiment. A good correlation between numerical and experimental results was observed.

  1. Numerical investigation of diffraction of acoustic waves by phononic crystals

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent

    2012-05-01

    Diffraction as well as transmission of acoustic waves by two-dimensional phononic crystals (PCs) composed of steel rods in water are investigated in this paper. The finite element simulations were performed in order to compute pressure fields generated by a line source that are incident on a finite size PC. Such field maps are analyzed based on the complex band structure for the infinite periodic PC. Finite size computations indicate that the exponential decrease of the transmission at deaf frequencies is much stronger than that in Bragg band gaps.

  2. The forced vibration of one-dimensional multi-coupled periodic structures: An application to finite element analysis

    NASA Astrophysics Data System (ADS)

    Mead, Denys J.

    2009-01-01

    A general theory for the forced vibration of multi-coupled one-dimensional periodic structures is presented as a sequel to a much earlier general theory for free vibration. Starting from the dynamic stiffness matrix of a single multi-coupled periodic element, it derives matrix equations for the magnitudes of the characteristic free waves excited in the whole structure by prescribed harmonic forces and/or displacements acting at a single periodic junction. The semi-infinite periodic system excited at its end is first analysed to provide the basis for analysing doubly infinite and finite periodic systems. In each case, total responses are found by considering just one periodic element. An already-known method of reducing the size of the computational problem is reexamined, expanded and extended in detail, involving reduction of the dynamic stiffness matrix of the periodic element through a wave-coordinate transformation. Use of the theory is illustrated in a combined periodic structure+finite element analysis of the forced harmonic in-plane motion of a uniform flat plate. Excellent agreement between the computed low-frequency responses and those predicted by simple engineering theories validates the detailed formulations of the paper. The primary purpose of the paper is not towards a specific application but to present a systematic and coherent forced vibration theory, carefully linked with the existing free-wave theory.

  3. Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates with Damages - Years 3-4

    DTIC Science & Technology

    2014-05-23

    study of Lamb wave interactions with holes and through thickness defects in thin metal plates . Distribution Code A: Approved for public release...Propagation in Composite Plates with Damages - Years 3-4 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA23861214005 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT The objective of the proposed efforts: -Formulated Wavelet Spectral element for a healthy composite plates and used the formulated

  4. Finite Element Simulation of the Shear Effect of Ultrasonic on Heat Exchanger Descaling

    NASA Astrophysics Data System (ADS)

    Lu, Shaolv; Wang, Zhihua; Wang, Hehui

    2018-03-01

    The shear effect on the interface of metal plate and its attached scale is an important mechanism of ultrasonic descaling, which is caused by the different propagation speed of ultrasonic wave in two different mediums. The propagating of ultrasonic wave on the shell is simulated based on the ANSYS/LS-DYNA explicit dynamic analysis. The distribution of shear stress in different paths under ultrasonic vibration is obtained through the finite element analysis and it reveals the main descaling mechanism of shear effect. The simulation result is helpful and enlightening to the reasonable design and the application of the ultrasonic scaling technology on heat exchanger.

  5. Numerical simulation of the solitary wave interacting with an elastic structure using MPS-FEM coupled method

    NASA Astrophysics Data System (ADS)

    Rao, Chengping; Zhang, Youlin; Wan, Decheng

    2017-12-01

    Fluid-Structure Interaction (FSI) caused by fluid impacting onto a flexible structure commonly occurs in naval architecture and ocean engineering. Research on the problem of wave-structure interaction is important to ensure the safety of offshore structures. This paper presents the Moving Particle Semi-implicit and Finite Element Coupled Method (MPS-FEM) to simulate FSI problems. The Moving Particle Semi-implicit (MPS) method is used to calculate the fluid domain, while the Finite Element Method (FEM) is used to address the structure domain. The scheme for the coupling of MPS and FEM is introduced first. Then, numerical validation and convergent study are performed to verify the accuracy of the solver for solitary wave generation and FSI problems. The interaction between the solitary wave and an elastic structure is investigated by using the MPS-FEM coupled method.

  6. Application of the multi-scale finite element method to wave propagation problems in damaged structures

    NASA Astrophysics Data System (ADS)

    Casadei, F.; Ruzzene, M.

    2011-04-01

    This work illustrates the possibility to extend the field of application of the Multi-Scale Finite Element Method (MsFEM) to structural mechanics problems that involve localized geometrical discontinuities like cracks or notches. The main idea is to construct finite elements with an arbitrary number of edge nodes that describe the actual geometry of the damage with shape functions that are defined as local solutions of the differential operator of the specific problem according to the MsFEM approach. The small scale information are then brought to the large scale model through the coupling of the global system matrices that are assembled using classical finite element procedures. The efficiency of the method is demonstrated through selected numerical examples that constitute classical problems of great interest to the structural health monitoring community.

  7. Acoustic guided waves in cylindrical solid-fluid structures: Modeling with a sweeping frequency finite element method and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Yang; D'Angelo, Ralph M.; Sinha, Bikash K.; Zeroug, Smaine

    2017-02-01

    Modeling and understanding the complex elastic-wave physics prevalent in solid-fluid cylindrically-layered structures is of importance in many NDE fields, and most pertinently in the domain of well integrity evaluation of cased holes in the oil and gas industry. Current sonic measurements provide viable techniques for well integrity evaluation yet their practical effectiveness is hampered by the current lack of knowledge of acoustic wave fields particularly in complicated cased-hole geometry where for instance two or more nested steel strings are present in the borehole. In this article, we propose and implement a Sweeping Frequency Finite Element Method (SFFEM) for acoustic guided waves simulation in complex geometries that include double steel strings cemented to each other and to the formation and where the strings may be non-concentric. Transient dynamic finite element models are constructed with sweeping frequency signals being applied as the excitation sources. The sources and receivers disposition simulate current sonic measurement tools deployed in the oilfield. Synthetic wavetrains are recorded and processed with modified matrix pencil method to isolate both the dispersive and non-dispersive propagating guided wave modes. Scaled experiments of fluid-filled double strings with dimensions mimicking the real ones encountered in the field have also been carried out to generate reference data. A comparison of the experimental and numerical results indicates that the SFFEM is capable of accurately reproducing the rich and intricate higher-order multiple wave fields observed experimentally in the fluid-filled double string geometries.

  8. Unsteady heat transfer in turbine blade ducts: Focus on combustor sources

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Huff, Ronald

    1988-01-01

    Thermal waves generated by either turbine rotor blades cutting through nonuniform combustor temperature fields or unsteady burning could lead to thermal fatigue cracking in the blades. To determine the magnitude of the thermal oscillation in blades with complex shapes and material compositions, a finite element Galerkin formulation has been developed to study combustor generated thermal wave propagation in a model two-dimensional duct with a uniform plug flow profile. The reflection and transmission of the thermal waves at the entrance and exit boundaries are determined by coupling the finite element solutions at the entrance and exit to the eigenfunctions of an infinitely long adiabatic duct. Example solutions are presented. In general, thermal wave propagation from an air passage into a metallic blade wall is small and not a problem. However, if a thermal barrier coating is applied to a metallic surface under conditions of a high heat transfer, a good impedance match is obtained and a significant portion of the thermal wave can pass into the blade material.

  9. Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code.

    PubMed

    Predoi, Mihai Valentin

    2014-09-01

    The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Towards Improved Finite Element Modelling of the Interaction of Elastic Waves with Complex Defect Geometries

    NASA Astrophysics Data System (ADS)

    Rajagopal, P.; Drozdz, M.; Lowe, M. J. S.

    2009-03-01

    A solution to the problem of improving the finite element (FE) modeling of elastic wave-defect interaction is sought by reconsidering the conventional opinion on meshing strategy. The standard approach using uniform square elements imposes severe limitations in representing complex defect outlines but this is thought to improve when the mesh is made finer. Free meshing algorithms available widely in commercial packages of late can cope with difficult features well but they are thought to cause scattering by the irregular mesh itself. This paper examines whether the benefits offered by free meshing in representing defects better outweigh the inaccuracies due to mesh scattering. If using the standard mesh, the questions whether mesh refinement leads to improved results and whether a practical strategy can be constructed are considered.

  11. The application of the Wigner Distribution to wave type identification in finite length beams

    NASA Technical Reports Server (NTRS)

    Wahl, T. J.; Bolton, J. Stuart

    1994-01-01

    The object of the research described in this paper was to develop a means of identifying the wave-types propagating between two points in a finite length beam. It is known that different structural wave-types possess different dispersion relations: i.e., that their group speeds and the frequency dependence of their group speeds differ. As a result of those distinct dispersion relationships, different wave-types may be associated with characteristic features when structural responses are examined in the time frequency domain. Previously, the time-frequency character of analytically generated structural responses of both single element and multi-element structures were examined by using the Wigner Distribution (WD) along with filtering techniques that were designed to detect the wave-types present in the responses. In the work to be described here, the measure time-frequency response of finite length beam is examined using the WD and filtering procedures. This paper is organized as follows. First the concept of time-frequency analysis of structural responses is explained. The WD is then introduced along with a description of the implementation of a discrete version. The time-frequency filtering techniques are then presented and explained. The results of applying the WD and the filtering techniques to the analysis of a transient response is then presented.

  12. The Reverse Time Migration technique coupled with Interior Penalty Discontinuous Galerkin method.

    NASA Astrophysics Data System (ADS)

    Baldassari, C.; Barucq, H.; Calandra, H.; Denel, B.; Diaz, J.

    2009-04-01

    Seismic imaging is based on the seismic reflection method which produces an image of the subsurface from reflected waves recordings by using a tomography process and seismic migration is the industrial standard to improve the quality of the images. The migration process consists in replacing the recorded wavefields at their actual place by using various mathematical and numerical methods but each of them follows the same schedule, according to the pioneering idea of Claerbout: numerical propagation of the source function (propagation) and of the recorded wavefields (retropropagation) and next, construction of the image by applying an imaging condition. The retropropagation step can be realized accouting for the time reversibility of the wave equation and the resulting algorithm is currently called Reverse Time Migration (RTM). To be efficient, especially in three dimensional domain, the RTM requires the solution of the full wave equation by fast numerical methods. Finite element methods are considered as the best discretization method for solving the wave equation, even if they lead to the solution of huge systems with several millions of degrees of freedom, since they use meshes adapted to the domain topography and the boundary conditions are naturally taken into account in the variational formulation. Among the different finite element families, the spectral element one (SEM) is very interesting because it leads to a diagonal mass matrix which dramatically reduces the cost of the numerical computation. Moreover this method is very accurate since it allows the use of high order finite elements. However, SEM uses meshes of the domain made of quadrangles in 2D or hexaedra in 3D which are difficult to compute and not always suitable for complex topographies. Recently, Grote et al. applied the IPDG (Interior Penalty Discontinuous Galerkin) method to the wave equation. This approach is very interesting since it relies on meshes with triangles in 2D or tetrahedra in 3D, which allows to handle the topography of the domain very accurately. Moreover, the fact that the resulting mass matrix is block-diagonal and that IPDG is compatible with the use of high-order finite element may let us suppose that its performances are similar to the ones of the SEM. In this presentation, we study the performances of IDPG through numerical comparisons with the SEM in 1D and 2D. We compare in particular the accuracy of the solutions obtained by the two methods with various order of approximation and the computational burden of the algorithms. The conclusion is IPDG and SEM perform similarly when considering low order finite elements while IPDG outperforms SEM in case of high order finite elements. Next we illustrate the impact of IPDG on the RTM, first through a simple configuration test (two-layered medium), then through realistic industrial applications in 2D.

  13. Arterial waveguide model for shear wave elastography: implementation and in vitro validation

    NASA Astrophysics Data System (ADS)

    Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.

    2017-07-01

    Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.

  14. Electromagnetic Modeling of Human Body Using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada

    Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.

  15. Guided wave mode selection for inhomogeneous elastic waveguides using frequency domain finite element approach.

    PubMed

    Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J

    2016-04-01

    This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II

    NASA Technical Reports Server (NTRS)

    Shertzer, J.; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.

  17. Probabilistic finite elements for transient analysis in nonlinear continua

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  18. Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions

    NASA Astrophysics Data System (ADS)

    Virella, Juan C.; Prato, Carlos A.; Godoy, Luis A.

    2008-05-01

    The influence of nonlinear wave theory on the sloshing natural periods and their modal pressure distributions are investigated for rectangular tanks under the assumption of two-dimensional behavior. Natural periods and mode shapes are computed and compared for both linear wave theory (LWT) and nonlinear wave theory (NLWT) models, using the finite element package ABAQUS. Linear wave theory is implemented in an acoustic model, whereas a plane strain problem with large displacements is used in NLWT. Pressure distributions acting on the tank walls are obtained for the first three sloshing modes using both linear and nonlinear wave theory. It is found that the nonlinearity does not have significant effects on the natural sloshing periods. For the sloshing pressures on the tank walls, different distributions were found using linear and nonlinear wave theory models. However, in all cases studied, the linear wave theory conservatively estimated the magnitude of the pressure distribution, whereas larger pressures resultant heights were obtained when using the nonlinear theory. It is concluded that the nonlinearity of the surface wave does not have major effects in the pressure distribution on the walls for rectangular tanks.

  19. Spectral element method for elastic and acoustic waves in frequency domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the usemore » of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.« less

  20. Finite element area and line integral transforms for generalization of aperture function and geometry in Kirchhoff scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Kraus, Hal G.

    1993-02-01

    Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.

  1. Combination tones along the basilar membrane in a 3D finite element model of the cochlea with acoustic boundary layer attenuation

    NASA Astrophysics Data System (ADS)

    Böhnke, Frank; Scheunemann, Christian; Semmelbauer, Sebastian

    2018-05-01

    The propagation of traveling waves along the basilar membrane is studied in a 3D finite element model of the cochlea using single and two-tone stimulation. The advantage over former approaches is the consideration of viscous-thermal boundary layer damping which makes the usual but physically unjustified assumption of Rayleigh damping obsolete. The energy loss by viscous boundary layer damping is 70 dB lower than the actually assumed power generation by outer hair cells. The space-time course with two-tone stimulation shows the traveling waves and the periodicity of the beat frequency f2 - f1.

  2. Elastic plate spallation

    NASA Technical Reports Server (NTRS)

    Oline, L.; Medaglia, J.

    1972-01-01

    The dynamic finite element method was used to investigate elastic stress waves in a plate. Strain displacement and stress strain relations are discussed along with the stiffness and mass matrix. The results of studying point load, and distributed load over small, intermediate, and large radii are reported. The derivation of finite element matrices, and the derivation of lumped and consistent matrices for one dimensional problems with Laplace transfer solutions are included. The computer program JMMSPALL is also included.

  3. Finite Element Analysis of Lamb Waves Acting within a Thin Aluminum Plate

    DTIC Science & Technology

    2007-09-01

    signal to avoid time aliasing % LambWaveMode % lamb wave mode to simulate; use proper phase velocity curve % thickness % thickness of...analysis of the simulated signal response data demonstrated that elevated temperatures delay wave propagation, although the delays are minimal at the...Echo Techniques Ultrasonic NDE techniques are based on the propagation and reflection of elastic waves , with the assumption that damage in the

  4. A mixed finite-element method for solving the poroelastic Biot equations with electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.

    2005-02-01

    In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.

  5. Comparison between results of solution of Burgers' equation and Laplace's equation by Galerkin and least-square finite element methods

    NASA Astrophysics Data System (ADS)

    Adib, Arash; Poorveis, Davood; Mehraban, Farid

    2018-03-01

    In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.

  6. Guided wave propagation and spectral element method for debonding damage assessment in RC structures

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhu, Xinqun; Hao, Hong; Ou, Jinping

    2009-07-01

    A concrete-steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the concrete-steel interface.

  7. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  8. Vibration isolation design for periodically stiffened shells by the wave finite element method

    NASA Astrophysics Data System (ADS)

    Hong, Jie; He, Xueqing; Zhang, Dayi; Zhang, Bing; Ma, Yanhong

    2018-04-01

    Periodically stiffened shell structures are widely used due to their excellent specific strength, in particular for aeronautical and astronautical components. This paper presents an improved Wave Finite Element Method (FEM) that can be employed to predict the band-gap characteristics of stiffened shell structures efficiently. An aero-engine casing, which is a typical periodically stiffened shell structure, was employed to verify the validation and efficiency of the Wave FEM. Good agreement has been found between the Wave FEM and the classical FEM for different boundary conditions. One effective wave selection method based on the Wave FEM has thus been put forward to filter the radial modes of a shell structure. Furthermore, an optimisation strategy by the combination of the Wave FEM and genetic algorithm was presented for periodically stiffened shell structures. The optimal out-of-plane band gap and the mass of the whole structure can be achieved by the optimisation strategy under an aerodynamic load. Results also indicate that geometric parameters of stiffeners can be properly selected that the out-of-plane vibration attenuates significantly in the frequency band of interest. This study can provide valuable references for designing the band gaps of vibration isolation.

  9. The effect of pits of different sizes on ultrasonic shear wave signals

    NASA Astrophysics Data System (ADS)

    Howard, Richard; Cegla, Frederic

    2018-04-01

    The use of 0-degree shear waves in NDE and SHM has become more commonplace as the disadvantage of coupling has been eliminated by permanent sensor installations or the use of non-contact transducers, such as EMATs. While the effect of rough surfaces and flat bottom holes on shear waves has been studied in depth, the effect of more complex geometries, such as pitting, has not. In this work, 3D finite element simulations are used to explore the reflection and scattering characteristics of shear bulk waves from pits. Specifically, three scenarios have been investigated, the effect on shear waves of: a sloped backwall; pitting directly under the transducer; and the effect of pits with variable pit position. High speed GPU finite element models enabled a wide range of pit radii and positions to be modeled. Hemispherical pits were used throughout. Key findings of the study are that the anisotropic effects that are clearly visible on sloped reflecting surfaces can also be measured on pits that are located not directly below the center of a shear wave transducer. These anisotropic effects are due to the nature of shear wave polarization. This can potentially be used for better defect characterization purposes.

  10. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motamarri, P.; Nowak, M.R.; Leiter, K.

    2013-11-15

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposedmore » solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using modest computational resources, and good scalability of the present implementation up to 192 processors.« less

  11. A novel EBSD-based finite-element wave propagation model for investigating seismic anisotropy: Application to Finero Peridotite, Ivrea-Verbano Zone, Northern Italy

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Frehner, Marcel; Kunze, Karsten; Zappone, Alba

    2014-10-01

    A novel electron backscatter diffraction (EBSD) -based finite-element (FE) wave propagation simulation is presented and applied to investigate seismic anisotropy of peridotite samples. The FE model simulates the dynamic propagation of seismic waves along any chosen direction through representative 2D EBSD sections. The numerical model allows separation of the effects of crystallographic preferred orientation (CPO) and shape preferred orientation (SPO). The obtained seismic velocities with respect to specimen orientation are compared with Voigt-Reuss-Hill estimates and with laboratory measurements. The results of these three independent methods testify that CPO is the dominant factor controlling seismic anisotropy. Fracture fillings and minor minerals like hornblende only influence the seismic anisotropy if their volume proportion is sufficiently large (up to 23%). The SPO influence is minor compared to the other factors. The presented FE model is discussed with regard to its potential in simulating seismic wave propagation using EBSD data representing natural rock petrofabrics.

  12. Hydroelastic analysis of ice shelves under long wave excitation

    NASA Astrophysics Data System (ADS)

    Papathanasiou, T. K.; Karperaki, A. E.; Theotokoglou, E. E.; Belibassakis, K. A.

    2015-05-01

    The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.

  13. Hydroelastic analysis of ice shelves under long wave excitation

    NASA Astrophysics Data System (ADS)

    Papathanasiou, T. K.; Karperaki, A. E.; Theotokoglou, E. E.; Belibassakis, K. A.

    2015-08-01

    The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.

  14. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials.

    PubMed

    Prabhu, Rajkumar; Whittington, Wilburn R; Patnaik, Sourav S; Mao, Yuxiong; Begonia, Mark T; Williams, Lakiesha N; Liao, Jun; Horstemeyer, M F

    2015-05-18

    This study offers a combined experimental and finite element (FE) simulation approach for examining the mechanical behavior of soft biomaterials (e.g. brain, liver, tendon, fat, etc.) when exposed to high strain rates. This study utilized a Split-Hopkinson Pressure Bar (SHPB) to generate strain rates of 100-1,500 sec(-1). The SHPB employed a striker bar consisting of a viscoelastic material (polycarbonate). A sample of the biomaterial was obtained shortly postmortem and prepared for SHPB testing. The specimen was interposed between the incident and transmitted bars, and the pneumatic components of the SHPB were activated to drive the striker bar toward the incident bar. The resulting impact generated a compressive stress wave (i.e. incident wave) that traveled through the incident bar. When the compressive stress wave reached the end of the incident bar, a portion continued forward through the sample and transmitted bar (i.e. transmitted wave) while another portion reversed through the incident bar as a tensile wave (i.e. reflected wave). These waves were measured using strain gages mounted on the incident and transmitted bars. The true stress-strain behavior of the sample was determined from equations based on wave propagation and dynamic force equilibrium. The experimental stress-strain response was three dimensional in nature because the specimen bulged. As such, the hydrostatic stress (first invariant) was used to generate the stress-strain response. In order to extract the uniaxial (one-dimensional) mechanical response of the tissue, an iterative coupled optimization was performed using experimental results and Finite Element Analysis (FEA), which contained an Internal State Variable (ISV) material model used for the tissue. The ISV material model used in the FE simulations of the experimental setup was iteratively calibrated (i.e. optimized) to the experimental data such that the experiment and FEA strain gage values and first invariant of stresses were in good agreement.

  15. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials

    PubMed Central

    Prabhu, Rajkumar; Whittington, Wilburn R.; Patnaik, Sourav S.; Mao, Yuxiong; Begonia, Mark T.; Williams, Lakiesha N.; Liao, Jun; Horstemeyer, M. F.

    2015-01-01

    This study offers a combined experimental and finite element (FE) simulation approach for examining the mechanical behavior of soft biomaterials (e.g. brain, liver, tendon, fat, etc.) when exposed to high strain rates. This study utilized a Split-Hopkinson Pressure Bar (SHPB) to generate strain rates of 100-1,500 sec-1. The SHPB employed a striker bar consisting of a viscoelastic material (polycarbonate). A sample of the biomaterial was obtained shortly postmortem and prepared for SHPB testing. The specimen was interposed between the incident and transmitted bars, and the pneumatic components of the SHPB were activated to drive the striker bar toward the incident bar. The resulting impact generated a compressive stress wave (i.e. incident wave) that traveled through the incident bar. When the compressive stress wave reached the end of the incident bar, a portion continued forward through the sample and transmitted bar (i.e. transmitted wave) while another portion reversed through the incident bar as a tensile wave (i.e. reflected wave). These waves were measured using strain gages mounted on the incident and transmitted bars. The true stress-strain behavior of the sample was determined from equations based on wave propagation and dynamic force equilibrium. The experimental stress-strain response was three dimensional in nature because the specimen bulged. As such, the hydrostatic stress (first invariant) was used to generate the stress-strain response. In order to extract the uniaxial (one-dimensional) mechanical response of the tissue, an iterative coupled optimization was performed using experimental results and Finite Element Analysis (FEA), which contained an Internal State Variable (ISV) material model used for the tissue. The ISV material model used in the FE simulations of the experimental setup was iteratively calibrated (i.e. optimized) to the experimental data such that the experiment and FEA strain gage values and first invariant of stresses were in good agreement. PMID:26067742

  16. Finite element simulation for damage detection of surface rust in steel rebars using elastic waves

    NASA Astrophysics Data System (ADS)

    Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Steel rebar corrosion reduces the integrity and service life of reinforced concrete (RC) structures and causes their gradual and sudden failures. Early stage detection of steel rebar corrosion can improve the efficiency of routine maintenance and prevent sudden failures from happening. In this paper, detecting the presence of surface rust in steel rebars is investigated by the finite element method (FEM) using surface-generated elastic waves. Simulated wave propagation mimics the sensing scheme of a fiber optic acoustic generator mounted on the surface of steel rebars. Formation of surface rust in steel rebars is modeled by changing material's property at local elements. In this paper, various locations of a fiber optic acoustic transducer and a receiver were considered. Megahertz elastic waves were used and different sizes of surface rust were applied. Transient responses of surface displacement and pressure were studied. It is found that surface rust is most detectable when the rust location is between the transducer and the receiver. Displacement response of intact steel rebar is needed in order to obtain background-subtracted response with a better signal-to-noise ratio. When the size of surface rust increases, reduced amplitude in displacement was obtained by the receiver.

  17. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  18. Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates

    NASA Astrophysics Data System (ADS)

    Ha, Sungwon; Chang, Fu-Kuo

    2010-01-01

    Use of surface-mounted piezoelectric actuators to generate acoustic ultrasound has been demonstrated to be a key component of built-in nondestructive detection evaluation (NDE) techniques, which can automatically inspect and interrogate damage in hard-to-access areas in real time without disassembly of the structural parts. However, piezoelectric actuators create complex waves, which propagate through the structure. Having the capability to model piezoelectric actuator-induced wave propagation and understanding its physics are essential to developing advanced algorithms for the built-in NDE techniques. Therefore, the objective of this investigation was to develop an efficient hybrid spectral element for modeling piezoelectric actuator-induced high-frequency wave propagation in thin plates. With the hybrid element we take advantage of both a high-order spectral element in the in-plane direction and a linear finite element in the thickness direction in order to efficiently analyze Lamb wave propagation in thin plates. The hybrid spectral element out-performs other elements in terms of leading to significantly faster computation and smaller memory requirements. Use of the hybrid spectral element is proven to be an efficient technique for modeling PZT-induced (PZT: lead zirconate titanate) wave propagation in thin plates. The element enables fundamental understanding of PZT-induced wave propagation.

  19. The modelling of the flow-induced vibrations of periodic flat and axial-symmetric structures with a wave-based method

    NASA Astrophysics Data System (ADS)

    Errico, F.; Ichchou, M.; De Rosa, S.; Bareille, O.; Franco, F.

    2018-06-01

    The stochastic response of periodic flat and axial-symmetric structures, subjected to random and spatially-correlated loads, is here analysed through an approach based on the combination of a wave finite element and a transfer matrix method. Although giving a lower computational cost, the present approach keeps the same accuracy of classic finite element methods. When dealing with homogeneous structures, the accuracy is also extended to higher frequencies, without increasing the time of calculation. Depending on the complexity of the structure and the frequency range, the computational cost can be reduced more than two orders of magnitude. The presented methodology is validated both for simple and complex structural shapes, under deterministic and random loads.

  20. Full Wave Analysis of RF Signal Attenuation in a Lossy Cave using a High Order Time Domain Vector Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pingenot, J; Rieben, R; White, D

    2004-12-06

    We present a computational study of signal propagation and attenuation of a 200 MHz dipole antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The simulation is performed for a series of random meshes in order to generate statistical data for the propagation and attenuation properties of the cave environment. Results for the power spectral density and phase ofmore » the electric field vector components are presented and discussed.« less

  1. Generalized fourier analyses of the advection-diffusion equation - Part II: two-dimensional domains

    NASA Astrophysics Data System (ADS)

    Voth, Thomas E.; Martinez, Mario J.; Christon, Mark A.

    2004-07-01

    Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with the one-dimensional finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. In Part II we extend the analysis to two-dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one-dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control-volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped mass counterparts and finite-difference based schemes. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd.

  2. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    PubMed

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Moving finite elements in 2-D

    NASA Technical Reports Server (NTRS)

    Gelinas, R. J.; Doss, S. K.; Vajk, J. P.; Djomehri, J.; Miller, K.

    1983-01-01

    The mathematical background regarding the moving finite element (MFE) method of Miller and Miller (1981) is discussed, taking into account a general system of partial differential equations (PDE) and the amenability of the MFE method in two dimensions to code modularization and to semiautomatic user-construction of numerous PDE systems for both Dirichlet and zero-Neumann boundary conditions. A description of test problem results is presented, giving attention to aspects of single square wave propagation, and a solution of the heat equation.

  4. Finite element flow analysis; Proceedings of the Fourth International Symposium on Finite Element Methods in Flow Problems, Chuo University, Tokyo, Japan, July 26-29, 1982

    NASA Astrophysics Data System (ADS)

    Kawai, T.

    Among the topics discussed are the application of FEM to nonlinear free surface flow, Navier-Stokes shallow water wave equations, incompressible viscous flows and weather prediction, the mathematical analysis and characteristics of FEM, penalty function FEM, convective, viscous, and high Reynolds number FEM analyses, the solution of time-dependent, three-dimensional and incompressible Navier-Stokes equations, turbulent boundary layer flow, FEM modeling of environmental problems over complex terrain, and FEM's application to thermal convection problems and to the flow of polymeric materials in injection molding processes. Also covered are FEMs for compressible flows, including boundary layer flows and transonic flows, hybrid element approaches for wave hydrodynamic loadings, FEM acoustic field analyses, and FEM treatment of free surface flow, shallow water flow, seepage flow, and sediment transport. Boundary element methods and FEM computational technique topics are also discussed. For individual items see A84-25834 to A84-25896

  5. Comparison of radiated noise from shrouded and unshrouded propellers

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1992-01-01

    The ducted propeller in a free field is modeled using the finite element method. The generation, propagation, and radiation of sound from a ducted fan is described by the convened wave equation with volumetric body forces. Body forces are used to introduce the blade loading for rotating blades and stationary exit guide vanes. For an axisymmetric nacelle or shroud, the problem is formulated in cylindrical coordinates. For a specified angular harmonic, the angular coordinate is eliminated, resulting in a two-dimensional representation. A finite element discretization based on nine-node quadratic isoparametric elements is used.

  6. An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion

    NASA Astrophysics Data System (ADS)

    Li, Eric; He, Z. C.; Wang, G.; Liu, G. R.

    2017-12-01

    The phononics crystals (PCs) are periodic man-made composite materials. In this paper, a mass-redistributed finite element method (MR-FEM) is formulated to study the wave propagation within liquid PCs with hard inclusion. With a perfect balance between stiffness and mass in the MR-FEM model, the dispersion error of longitudinal wave is minimized by redistribution of mass. Such tuning can be easily achieved by adjusting the parameter r that controls the location of integration points of mass matrix. More importantly, the property of mass conservation in the MR-FEM model indicates that the locations of integration points inside or outside the element are immaterial. Four numerical examples are studied in this work, including liquid PCs with cross and circle hard inclusions, different size of inclusion and defect. Compared with standard finite element method, the numerical results have verified the accuracy and effectiveness of MR-FEM. The proposed MR-FEM is a unique and innovative numerical approach with its outstanding features, which has strong potentials to study the stress wave within multi-physics PCs.

  7. Finite Element Modeling and Long Wave Infrared Imaging for Detection and Identification of Buried Objects

    DTIC Science & Technology

    surface temperature profile of a sandbox containing buried objects using a long-wave infrared camera. Images were recorded for several days under ambient...time of day . Best detection of buried objects corresponded to shallow depths for observed intervals where maxima/minima ambient temperatures coincided

  8. Surface wave resonance and chirality in a tubular cavity with metasurface design

    NASA Astrophysics Data System (ADS)

    Qin, Yuzhou; Fang, Yangfu; Wang, Lu; Tang, Shiwei; Sun, Shulin; Liu, Zhaowei; Mei, Yongfeng

    2018-06-01

    Optical microcavities with whispering-gallery modes (WGMs) have been indispensable in both photonic researches and applications. Besides, metasurfaces, have attracted much attention recently due to their strong abilities to manipulate electromagnetic waves. Here, combining these two optical elements together, we show a tubular cavity can convert input propagating cylindrical waves into directed localized surface waves (SWs), enabling the circulating like WGMs along the wall surface of the designed tubular cavity. Finite element method (FEM) simulations demonstrate that such near-field WGM shows both large chirality and high local field. This work may stimulate interesting potential applications in e.g. directional emission, sensing, and lasing.

  9. 2.5-D frequency-domain viscoelastic wave modelling using finite-element method

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-guo; Huang, Xing-xing; Liu, Wei-fang; Zhao, Wei-jun; Song, Jian-yong; Xiong, Bin; Wang, Shang-xu

    2017-10-01

    2-D seismic modelling has notable dynamic information discrepancies with field data because of the implicit line-source assumption, whereas 3-D modelling suffers from a huge computational burden. The 2.5-D approach is able to overcome both of the aforementioned limitations. In general, the earth model is treated as an elastic material, but the real media is viscous. In this study, we develop an accurate and efficient frequency-domain finite-element method (FEM) for modelling 2.5-D viscoelastic wave propagation. To perform the 2.5-D approach, we assume that the 2-D viscoelastic media are based on the Kelvin-Voigt rheological model and a 3-D point source. The viscoelastic wave equation is temporally and spatially Fourier transformed into the frequency-wavenumber domain. Then, we systematically derive the weak form and its spatial discretization of 2.5-D viscoelastic wave equations in the frequency-wavenumber domain through the Galerkin weighted residual method for FEM. Fixing a frequency, the 2-D problem for each wavenumber is solved by FEM. Subsequently, a composite Simpson formula is adopted to estimate the inverse Fourier integration to obtain the 3-D wavefield. We implement the stiffness reduction method (SRM) to suppress artificial boundary reflections. The results show that this absorbing boundary condition is valid and efficient in the frequency-wavenumber domain. Finally, three numerical models, an unbounded homogeneous medium, a half-space layered medium and an undulating topography medium, are established. Numerical results validate the accuracy and stability of 2.5-D solutions and present the adaptability of finite-element method to complicated geographic conditions. The proposed 2.5-D modelling strategy has the potential to address modelling studies on wave propagation in real earth media in an accurate and efficient way.

  10. Fundamental understanding of wave generation and reception using d(36) type piezoelectric transducers.

    PubMed

    Zhou, Wensong; Li, Hui; Yuan, Fuh-Gwo

    2015-03-01

    A new piezoelectric wafer made from a PMN-PT single crystal with dominant piezoelectric coefficient d36 is proposed to generate and detect guided waves on isotropic plates. The in-plane shear coupled with electric field arising from the piezoelectric coefficient is not usually present for conventional piezoelectric wafers, such as lead zirconate titanate (PZT). The direct piezoelectric effect of coefficient d36 indicates that under external in-plane shear stress the charge is induced on a face perpendicular to the poled z-direction. On thin plates, this type of piezoelectric wafer will generate shear horizontal (SH) waves in two orthogonal wave propagation directions as well as two Lamb wave modes in other wave propagation directions. Finite element analyses are employed to explore the wave disturbance in terms of time-varying displacements excited by the d36 wafer in different directions of wave propagation to understand all the guided wave modes accurately. Experiments are conducted to examine the voltage responses received by this type of wafer, and also investigate results of tuning frequency and effects of d31 piezoelectric coefficient, which is intentionally ignored in the finite element analysis. All results demonstrate the main features and utility of proposed d36 piezoelectric wafer for guided wave generation and detection in structural health monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Determination of lamb wave dispersion data in lossy anisotropic plates using time domain finite element analysis. Part I: theory and experimental verification.

    PubMed

    Hayward, Gordon; Hyslop, Jamie

    2006-02-01

    A theoretical and experimental approach for extraction of guided wave dispersion data in plate structures is described. Finite element modeling is used to calculate the surface displacement data (in-plane and out-of-plane) when the plate is subject to either symmetrical or antisymmetrical impulsive force stimulation at one or both of the parallel faces. Fourier transformation of the resultant space-time displacement histories is then employed to obtain phase velocity as a function of frequency. Experimental verification in the case of antisymmetrical stimulation is provided by means of a high-power Q-switched laser source that is used to excite guided waves in the plate. The subsequent out-of-plane displacement data were then obtained by means of a scanning laser vibrometer, and good agreement between theory and experiment is demonstrated. Examples of dispersion data are provided for aluminum, and excellent correlation between the data sets and conventional Rayleigh-Lamb theory for plate structures was obtained. This was then extended to lossy polymeric plates, in addition to both unpolarized and polarized piezoelectric ceramic plates, again with good agreement between the finite element modeling and optical experiments. The last set of results prepares the way for a detailed investigation of the nonhomogeneous piezoelectric composite waveguides described in a companion paper (Part II).

  12. Scott Jenne | NREL

    Science.gov Websites

    Analysis Center. Areas of Expertise Techno-Economic Analysis Mechanical design 3D modeling/CAD Finite element analysis (FEA) Wave energy conversion Thermal power cycle analysis Research Interests Cost

  13. High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures.

    PubMed

    Masserey, Bernard; Raemy, Christian; Fromme, Paul

    2014-09-01

    Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. 2.5D Finite/infinite Element Approach for Simulating Train-Induced Ground Vibrations

    NASA Astrophysics Data System (ADS)

    Yang, Y. B.; Hung, H. H.; Kao, J. C.

    2010-05-01

    The 2.5D finite/infinite element approach for simulating the ground vibrations by surface or underground moving trains will be briefly summarized in this paper. By assuming the soils to be uniform along the direction of the railway, only a two-dimensional profile of the soil perpendicular to the railway need be considered in the modeling. Besides the two in-plane degrees of freedom (DOFs) per node conventionally used for plane strain elements, an extra DOF is introduced to account for the out-of-plane wave transmission. The profile of the half-space is divided into a near field and a semi-infinite far field. The near field containing the train loads and irregular structures is simulated by the finite elements, while the far field covering the soils with infinite boundary by the infinite elements, by which due account is taken of the radiation effects for the moving loads. Enhanced by the automated mesh expansion procedure proposed previously by the writers, the far field impedances for all the lower frequencies are generated repetitively from the mesh created for the highest frequency considered. Finally, incorporated with a proposed load generation mechanism that takes the rail irregularity and dynamic properties of trains into account, an illustrative case study was performed. This paper investigates the vibration isolation effect of the elastic foundation that separates the concrete slab track from the underlying soil or tunnel structure. In addition, the advantage of the 2.5D approach was clearly demonstrated in that the three-dimensional wave propagation effect can be virtually captured using a two-dimensional finite/infinite element mesh. Compared with the conventional 3D approach, the present approach appears to be simple, efficient and generally accurate.

  15. A singular finite element technique for calculating continuum damping of Alfvén eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowden, G. W.; Hole, M. J.

    2015-02-15

    Damping due to continuum resonances can be calculated using dissipation-less ideal magnetohydrodynamics provided that the poles due to these resonances are properly treated. We describe a singular finite element technique for calculating the continuum damping of Alfvén waves. A Frobenius expansion is used to determine appropriate finite element basis functions on an inner region surrounding a pole due to the continuum resonance. The location of the pole due to the continuum resonance and mode frequency is calculated iteratively using a Galerkin method. This method is used to find the complex frequency and mode structure of a toroidicity-induced Alfvén eigenmode inmore » a large aspect ratio circular tokamak and is shown to agree closely with a complex contour technique.« less

  16. Finite element-integral simulation of static and flight fan noise radiation from the JT15D turbofan engine

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Horowitz, S. J.

    1982-01-01

    An iterative finite element integral technique is used to predict the sound field radiated from the JT15D turbofan inlet. The sound field is divided into two regions: the sound field within and near the inlet which is computed using the finite element method and the radiation field beyond the inlet which is calculated using an integral solution technique. The velocity potential formulation of the acoustic wave equation was employed in the program. For some single mode JT15D data, the theory and experiment are in good agreement for the far field radiation pattern as well as suppressor attenuation. Also, the computer program is used to simulate flight effects that cannot be performed on a ground static test stand.

  17. Efficient Computation of Atmospheric Flows with Tempest: Development of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2015-12-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods at very high spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At global horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of meso-scale test cases to validate the performance of the SNFEM applied in the vertical. Internal gravity wave, mountain wave, convective, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  18. Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure. II - Shell and three-dimensional simulations

    NASA Technical Reports Server (NTRS)

    Kennedy, Ronald; Padovan, Joe

    1987-01-01

    In a three-part series of papers, a generalized finite element solution strategy is developed to handle traveling load problems in rolling, moving and rotating structure. The main thrust of this section consists of the development of three-dimensional and shell type moving elements. In conjunction with this work, a compatible three-dimensional contact strategy is also developed. Based on these modeling capabilities, extensive analytical and experimental benchmarking is presented. Such testing includes traveling loads in rotating structure as well as low- and high-speed rolling contact involving standing wave-type response behavior. These point to the excellent modeling capabilities of moving element strategies.

  19. Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.

    PubMed

    Alkhamaali, Zaied K; Crocombe, Andrew D; Solan, Matthew C; Cirovic, Srdjan

    2016-01-01

    Therapeutic use of high-amplitude pressure waves, or shock wave therapy (SWT), is emerging as a popular method for treating musculoskeletal disorders. However, the mechanism(s) through which this technique promotes healing are unclear. Finite element models of a shock wave source and the foot were constructed to gain a better understanding of the mechanical stimuli that SWT produces in the context of plantar fasciitis treatment. The model of the shock wave source was based on the geometry of an actual radial shock wave device, in which pressure waves are generated through the collision of two metallic objects: a projectile and an applicator. The foot model was based on the geometry reconstructed from magnetic resonance images of a volunteer and it comprised bones, cartilage, soft tissue, plantar fascia, and Achilles tendon. Dynamic simulations were conducted of a single and of two successive shock wave pulses administered to the foot. The collision between the projectile and the applicator resulted in a stress wave in the applicator. This wave was transmitted into the soft tissue in the form of compression-rarefaction pressure waves with an amplitude of the order of several MPa. The negative pressure at the plantar fascia reached values of over 1.5 MPa, which could be sufficient to generate cavitation in the tissue. The results also show that multiple shock wave pulses may have a cumulative effect in terms of strain energy accumulation in the foot.

  20. Vibrational Responses Of Structures To Impulses

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1990-01-01

    Report discusses propagation of vibrations in structure in response to impulsive and/or concentrated loads. Effects of pulsed loads treated by analyzing propagation of characteristic vibrational waves explicitly through each member of structure. This wave-front analysis used in combination with usual finite-element modal analysis to obtain more accurate representation of overall vibrational behavior.

  1. The forced sound transmission of finite single leaf walls using a variational technique.

    PubMed

    Brunskog, Jonas

    2012-09-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.

  2. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor.

    PubMed

    Vergeynst, Lidewei L; Sause, Markus G R; Hamstad, Marvin A; Steppe, Kathy

    2015-01-01

    When drought occurs in plants, acoustic emission (AE) signals can be detected, but the actual causes of these signals are still unknown. By analyzing the waveforms of the measured signals, it should, however, be possible to trace the characteristics of the AE source and get information about the underlying physiological processes. A problem encountered during this analysis is that the waveform changes significantly from source to sensor and lack of knowledge on wave propagation impedes research progress made in this field. We used finite element modeling and the well-known pencil lead break source to investigate wave propagation in a branch. A cylindrical rod of polyvinyl chloride was first used to identify the theoretical propagation modes. Two wave propagation modes could be distinguished and we used the finite element model to interpret their behavior in terms of source position for both the PVC rod and a wooden rod. Both wave propagation modes were also identified in drying-induced signals from woody branches, and we used the obtained insights to provide recommendations for further AE research in plant science.

  3. Benchmarking of Computational Models for NDE and SHM of Composites

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna

    2016-01-01

    Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.

  4. Plane Wave SH₀ Piezoceramic Transduction Optimized Using Geometrical Parameters.

    PubMed

    Boivin, Guillaume; Viens, Martin; Belanger, Pierre

    2018-02-10

    Structural health monitoring is a prominent alternative to the scheduled maintenance of safety-critical components. The nondispersive nature as well as the through-thickness mode shape of the fundamental shear horizontal guided wave mode (SH 0 ) make it a particularly attractive candidate for ultrasonic guided wave structural health monitoring. However, plane wave excitation of SH 0 at a high level of purity remains challenging because of the existence of the fundamental Lamb modes (A 0 and S 0 ) below the cutoff frequency thickness product of high-order modes. This paper presents a piezoelectric transducer concept optimized for plane SH 0 wave transduction based on the transducer geometry. The transducer parameter exploration was initially performed using a simple analytical model. A 3D multiphysics finite element model was then used to refine the transducer design. Finally, an experimental validation was conducted with a 3D laser Doppler vibrometer system. The analytical model, the finite element model, and the experimental measurement showed excellent agreement. The modal selectivity of SH 0 within a 20 ∘ beam opening angle at the design frequency of 425 kHz in a 1.59 mm aluminum plate was 23 dB, and the angle of the 6 dB wavefront was 86 ∘ .

  5. Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems

    NASA Astrophysics Data System (ADS)

    Zuchowski, Loïc; Brun, Michael; De Martin, Florent

    2018-05-01

    The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.

  6. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    NASA Astrophysics Data System (ADS)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  7. Finite Element Solution to the Helmholtz Equation with High Wave Number. Part 1. The h-Version of the FEM

    DTIC Science & Technology

    1993-11-01

    4) between the exact solution and it’s best approximnation on the one and the FE-solution on the other hand. The determining equation for ti. & ielt ...Acknowledgement: The work of the first atitlhor wvas supported by Grant No 517 402 524 3 of the Gerinan Academic Exchange Service (l)AA[)). The work of thle second...methou, mn: A.K. Aziz (ed.), The mathematical foundations of tile finite element, method with applicai.4ons to partial differential equations, Academic

  8. A collocation--Galerkin finite element model of cardiac action potential propagation.

    PubMed

    Rogers, J M; McCulloch, A D

    1994-08-01

    A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.

  9. Development of new vibration energy flow analysis software and its applications to vehicle systems

    NASA Astrophysics Data System (ADS)

    Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.

    2005-09-01

    The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.

  10. Second order harmonic guided wave mutual interactions in plate: Vector analysis, numerical simulation, and experimental results

    NASA Astrophysics Data System (ADS)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2017-08-01

    The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.

  11. The finite element method for micro-scale modeling of ultrasound propagation in cancellous bone.

    PubMed

    Vafaeian, B; El-Rich, M; El-Bialy, T; Adeeb, S

    2014-08-01

    Quantitative ultrasound for bone assessment is based on the correlations between ultrasonic parameters and the properties (mechanical and physical) of cancellous bone. To elucidate the correlations, understanding the physics of ultrasound in cancellous bone is demanded. Micro-scale modeling of ultrasound propagation in cancellous bone using the finite-difference time-domain (FDTD) method has been so far utilized as one of the approaches in this regard. However, the FDTD method accompanies two disadvantages: staircase sampling of cancellous bone by finite difference grids leads to generation of wave artifacts at the solid-fluid interface inside the bone; additionally, this method cannot explicitly satisfy the needed perfect-slip conditions at the interface. To overcome these disadvantages, the finite element method (FEM) is proposed in this study. Three-dimensional finite element models of six water-saturated cancellous bone samples with different bone volume were created. The values of speed of sound (SOS) and broadband ultrasound attenuation (BUA) were calculated through the finite element simulations of ultrasound propagation in each sample. Comparing the results with other experimental and simulation studies demonstrated the capabilities of the FEM for micro-scale modeling of ultrasound in water-saturated cancellous bone. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Finite Element Methods and Multiphase Continuum Theory for Modeling 3D Air-Water-Sediment Interactions

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.

    2016-12-01

    The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water flow via operator splitting (fractional step) schemes. Particular attention will be given to verification and validation of the numerical model and important qualitative features of the numerical methods including phase conservation, wave energy dissipation, and computational efficiency in regimes of interest.

  13. 3-D Wave-Structure Interaction with Coastal Sediments - A Multi-Physics/Multi-Solution-Techniques Approach

    DTIC Science & Technology

    2008-01-01

    element method (BEM). Reynolds averaged Navier-Stokes (RANS) and the particle finite element method ( PFEM ) will be used in the water/mine/sand domain...and deformable sandy seabed (median grain diameter: 0.2 mm) 12 SOLID/FEM SAND/SPH GEOMATERIALS FNPF/BEM FNPF/BEMRANS/ PFEM

  14. 3-D Wave-Structure Interaction with Coastal Sediments - A Multi-Physics/Multi-Solution Techniques Approach

    DTIC Science & Technology

    2007-01-01

    Stokes (RANS) and the particle finite element method ( PFEM ) will be used in the water/mine/sand domain. Sand and the geomaterials around the sand will...wave propagation over a bottom mine at various time steps (Soil and Foam model) 8 SOLID/FEM SAND/SPH GEOMATERIALS FNPF/BEM FNPF/BEM RANS/ PFEM

  15. A three-dimensional, finite element model for coastal and estuarine circulation

    USGS Publications Warehouse

    Walters, R.A.

    1992-01-01

    This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.

  16. Experimental and numerical analysis of stress wave propagation in polymers and the role of interfaces in armour systems

    NASA Astrophysics Data System (ADS)

    Gorwade, Chandragupt V.; Ashcroft, Ian A.; Silberschmidt, Vadim V.; Hughes, Foz T. R.; Swallowe, Gerry M.

    2012-12-01

    Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid of a finite element model of the test. It is seen that the phenomenon of impedance mismatch at interfaces plays an important role in the levels of stress and deformation seen in the sample. A multi-layer armour system is then investigated using the finite element model. This case study illustrates the role of impedance mismatch and interface engineering in the design and optimisation of armour solutions.

  17. Laser generated guided waves and finite element modeling for the thickness gauging of thin layers.

    PubMed

    Lefevre, F; Jenot, F; Ouaftouh, M; Duquennoy, M; Ourak, M

    2010-03-01

    In this paper, nondestructive testing has been performed on a thin gold layer deposited on a 2 in. silicon wafer. Guided waves were generated and studied using a laser ultrasonic setup and a two-dimensional fast Fourier transform technique was employed to obtain the dispersion curves. A gold layer thickness of 1.33 microm has been determined with a +/-5% margin of error using the shape of the two first propagating modes, assuming for the substrate and the layer an uncertainty on the elastic parameters of +/-2.5%. A finite element model has been implemented to validate the data post-treatment and the experimental results. A good agreement between the numerical simulation, the analytical modeling and the experimentations has been observed. This method was considered suitable for thickness layer higher than 0.7 microm.

  18. Efficient Computation of Atmospheric Flows with Tempest: Validation of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, Jorge; Ullrich, Paul

    2016-04-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods for a wide range of spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of idealized test cases to validate the performance of the SNFEM applied in the vertical with an emphasis on flow features and dynamic behavior. Internal gravity wave, mountain wave, convective bubble, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  19. Acoustic propagation in curved ducts with extended reacting wall treatment

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1989-01-01

    A finite-element Galerkin formulation was employed to study the attenuation of acoustic waves propagating in two-dimensional S-curved ducts with absorbing walls without a mean flow. The reflection and transmission at the entrance and the exit of a curved duct were determined by coupling the finite-element solutions in the curved duct to the eigenfunctions of an infinite, uniform, hard wall duct. In the frequency range where the duct height and acoustic wave length are nearly equal, the effects of duct length, curvature (duct offset) and absorber thickness were examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. A means of reducing the number of elements in the absorber region was also presented. In addition, for a curved duct, power attenuation contours were examined to determine conditions for maximum acoustic power absorption. Again, wall curvature was found to significantly effect the optimization process.

  20. Flexural waves induced by electro-impulse deicing forces

    NASA Technical Reports Server (NTRS)

    Gien, P. H.

    1990-01-01

    The generation, reflection and propagation of flexural waves created by electroimpulsive deicing forces are demonstrated both experimentally and analytically in a thin circular plate and a thin semicylindrical shell. Analytical prediction of these waves with finite element models shows good correlation with acceleration and displacement measurements at discrete points on the structures studied. However, sensitivity to spurious flexural waves resulting from the spatial discretization of the structures is shown to be significant. Consideration is also given to composite structures as an extension of these studies.

  1. Finite element modelling of sound transmission from outer to inner ear.

    PubMed

    Areias, Bruno; Santos, Carla; Natal Jorge, Renato M; Gentil, Fernanda; Parente, Marco Pl

    2016-11-01

    The ear is one of the most complex organs in the human body. Sound is a sequence of pressure waves, which propagates through a compressible media such as air. The pinna concentrates the sound waves into the external auditory meatus. In this canal, the sound is conducted to the tympanic membrane. The tympanic membrane transforms the pressure variations into mechanical displacements, which are then transmitted to the ossicles. The vibration of the stapes footplate creates pressure waves in the fluid inside the cochlea; these pressure waves stimulate the hair cells, generating electrical signals which are sent to the brain through the cochlear nerve, where they are decoded. In this work, a three-dimensional finite element model of the human ear is developed. The model incorporates the tympanic membrane, ossicular bones, part of temporal bone (external auditory meatus and tympanic cavity), middle ear ligaments and tendons, cochlear fluid, skin, ear cartilage, jaw and the air in external auditory meatus and tympanic cavity. Using the finite element method, the magnitude and the phase angle of the umbo and stapes footplate displacement are calculated. Two slightly different models are used: one model takes into consideration the presence of air in the external auditory meatus while the other does not. The middle ear sound transfer function is determined for a stimulus of 60 dB SPL, applied to the outer surface of the air in the external auditory meatus. The obtained results are compared with previously published data in the literature. This study highlights the importance of external auditory meatus in the sound transmission. The pressure gain is calculated for the external auditory meatus.

  2. Quantitative damage imaging using Lamb wave diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Yan; Ruan, Min; Zhu, Wen-Fa; Chai, Xiao-Dong

    2016-12-01

    In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474195, 11274226, 11674214, and 51478258).

  3. Guidelines for Finite Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media

    PubMed Central

    Palmeri, Mark L.; Qiang, Bo; Chen, Shigao; Urban, Matthew W.

    2017-01-01

    Ultrasound shear wave elastography is emerging as an important imaging modality for evaluating tissue material properties. In its practice, some systematic biases have been associated with ultrasound frequencies, focal depths and configuration, transducer types (linear versus curvilinear), along with displacement estimation and shear wave speed estimation algorithms. Added to that, soft tissues are not purely elastic, so shear waves will travel at different speeds depending on their spectral content, which can be modulated by the acoustic radiation force excitation focusing, duration and the frequency-dependent stiffness of the tissue. To understand how these different acquisition and material property parameters may affect measurements of shear wave velocity, simulations of the propagation of shear waves generated by acoustic radiation force excitations in viscoelastic media are a very important tool. This article serves to provide an in-depth description of how these simulations are performed. The general scheme is broken into three components: (1) simulation of the three-dimensional acoustic radiation force push beam, (2) applying that force distribution to a finite element model, and (3) extraction of the motion data for post-processing. All three components will be described in detail and combined to create a simulation platform that is powerful for developing and testing algorithms for academic and industrial researchers involved in making quantitative shear wave-based measurements of tissue material properties. PMID:28026760

  4. Discretized energy minimization in a wave guide with point sources

    NASA Technical Reports Server (NTRS)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  5. Solitary wave solutions and their interactions for fully nonlinear water waves with surface tension in the generalized Serre equations

    NASA Astrophysics Data System (ADS)

    Dutykh, Denys; Hoefer, Mark; Mitsotakis, Dimitrios

    2018-04-01

    Some effects of surface tension on fully nonlinear, long, surface water waves are studied by numerical means. The differences between various solitary waves and their interactions in subcritical and supercritical surface tension regimes are presented. Analytical expressions for new peaked traveling wave solutions are presented in the dispersionless case of critical surface tension. Numerical experiments are performed using a high-accurate finite element method based on smooth cubic splines and the four-stage, classical, explicit Runge-Kutta method of order 4.

  6. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn; Lomonosov, Alexey M.

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  7. Computer Simulation For Design Of TWT's

    NASA Technical Reports Server (NTRS)

    Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard

    1992-01-01

    A three-dimensional finite-element analytical technique facilitates design and fabrication of traveling-wave-tube (TWT) slow-wave structures. Used to perform thermal and mechanical analyses of TWT designed with variety of configurations, geometries, and materials. Using three-dimensional computer analysis, designer able to simulate building and testing of TWT, with consequent substantial saving of time and money. Technique enables detailed look into operation of traveling-wave tubes to help improve performance for future communications systems.

  8. Load Measurement in Structural Members Using Guided Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Wilcox, Paul D.

    2006-03-01

    A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.

  9. Lamb wave scattering by a surface-breaking crack in a plate

    NASA Technical Reports Server (NTRS)

    Datta, S. K.; Al-Nassar, Y.; Shah, A. H.

    1991-01-01

    An NDE method based on finite-element representation and modal expansion has been developed for solving the scattering of Lamb waves in an elastic plate waveguide. This method is very powerful for handling discontinuities of arbitrary shape, weldments of different orientations, canted cracks, etc. The advantage of the method is that it can be used to study the scattering of Lamb waves in anisotropic elastic plates and in multilayered plates as well.

  10. Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror

    NASA Astrophysics Data System (ADS)

    Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu

    2017-02-01

    Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.

  11. Subresolution Displacements in Finite Difference Simulations of Ultrasound Propagation and Imaging.

    PubMed

    Pinton, Gianmarco F

    2017-03-01

    Time domain finite difference simulations are used extensively to simulate wave propagation. They approximate the wave field on a discrete domain with a grid spacing that is typically on the order of a tenth of a wavelength. The smallest displacements that can be modeled by this type of simulation are thus limited to discrete values that are integer multiples of the grid spacing. This paper presents a method to represent continuous and subresolution displacements by varying the impedance of individual elements in a multielement scatterer. It is demonstrated that this method removes the limitations imposed by the discrete grid spacing by generating a continuum of displacements as measured by the backscattered signal. The method is first validated on an ideal perfect correlation case with a single scatterer. It is subsequently applied to a more complex case with a field of scatterers that model an acoustic radiation force-induced displacement used in ultrasound elasticity imaging. A custom finite difference simulation tool is used to simulate propagation from ultrasound imaging pulses in the scatterer field. These simulated transmit-receive events are then beamformed into images, which are tracked with a correlation-based algorithm to determine the displacement. A linear predictive model is developed to analytically describe the relationship between element impedance and backscattered phase shift. The error between model and simulation is λ/ 1364 , where λ is the acoustical wavelength. An iterative method is also presented that reduces the simulation error to λ/ 5556 over one iteration. The proposed technique therefore offers a computationally efficient method to model continuous subresolution displacements of a scattering medium in ultrasound imaging. This method has applications that include ultrasound elastography, blood flow, and motion tracking. This method also extends generally to finite difference simulations of wave propagation, such as electromagnetic or seismic waves.

  12. A finite element beam propagation method for simulation of liquid crystal devices.

    PubMed

    Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal

    2009-06-22

    An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.

  13. A waveguide finite element aided analysis of the wave field on a stationary tyre, not in contact with the ground

    NASA Astrophysics Data System (ADS)

    Sabiniarz, Patrick; Kropp, Wolfgang

    2010-07-01

    Although tyre/road noise has been a research subject for more than three decades, there is still no consensus in the literature as to which waves on a tyre are mainly responsible for the radiation of sound during rolling. Even the free vibrational behaviour of a stationary (non-rotating) tyre, not in contact with the ground, is still not well understood in the mid- and high-frequency ranges. Thus, gaining an improved understanding of this behaviour is a natural first step towards illuminating the question of which waves on a rolling tyre contribute to sound radiation. This is the topic of the present paper, in which a model based on the waveguide finite element method (WFEM) is used to study free wave propagation, on a stationary tyre, in the range 0-1500 Hz. In the low-frequency region (0-300 Hz), wave propagation is found to be rather straightforward, with two main wave-types present. Both have cross-section modes involving a nearly rigid motion of the belt. For higher frequencies (300-1500 Hz) the behaviour is more complex, including phenomena such as 'curve veering' and waves for which the phase speed and group speed have opposite signs. Wave-types identified in this region include (i) waves involving mainly sidewall deformation, (ii) belt bending waves, (iii) a wave with significant extensional deformation of the central belt region and (iv) a wave with a 'breathing' cross-section mode. The phase speed corresponding to found waves is computed and their radiation efficiency is discussed, assuming free-field conditions. In a future publication, the tyre model will be used in conjunction with a contact model and a radiation model to investigate the contribution of these waves to radiated sound during rolling.

  14. Slow-wave propagation on monolithic microwave integrated circuits with layered and non-layered structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzuang, C.K.C.

    1986-01-01

    Various MMIC (monolithic microwave integrated circuit) planar waveguides have shown possible existence of a slow-wave propagation. In many practical applications of these slow-wave circuits, the semiconductor devices have nonuniform material properties that may affect the slow-wave propagation. In the first part of the dissertation, the effects of the nonuniform material properties are studied by a finite-element method. In addition, the transient pulse excitations of these slow-wave circuits also have great theoretical and practical interests. In the second part, the time-domain analysis of a slow-wave coplanar waveguide is presented.

  15. Seakeeping with the semi-Lagrangian particle finite element method

    NASA Astrophysics Data System (ADS)

    Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio

    2017-07-01

    The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.

  16. Characteristics of fluid flow in the combustion synthesis of TiC from the elements

    NASA Technical Reports Server (NTRS)

    Valone, S. M.; Behrens, R. G.

    1987-01-01

    The results of a numerical investigation of finite reservoir effects on capillary spreading at small reservoir dimensions are presently related to wave propagation phenomena in the combustion synthesis of TiC from its two elemental constituents. It is noted that gravitational forces can affect bubble coalescence by nonbuoyant means under the suitable conditions, although these conditions are expected to be rare in combustion synthesis. Finite-curved reservoirs can drive capillary flow due to surface tension and wall contact forces; these cause the wall and the metal to be completely reconfigured during combustion synthesis.

  17. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  18. Behavior of piezoelectric wafer active sensor in various media

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay

    The dissertation addresses structural health monitoring (SHM) techniques using ultrasonic waves generated by piezoelectric wafer active sensors (PWAS) with an emphasis on the development of theoretical models of standing harmonic waves and guided waves. The focal objective of the research is to extend the theoretical study of electro-mechanical coupled PWAS as a resonator/transducer that interacts with standing and traveling waves in various media through electro-mechanical impedance spectroscopy (EMIS) method and guided wave propagation. The analytical models are developed and the coupled field finite element analysis (CF-FEA) models are simulated and verified with experiments. The dissertation is divided into two parts with respect to the developments in EMIS methods and GWP methods. In the first part, analytical and finite element models have been developed for the simulation of PWAS-EMIS in in-plane (longitudinal) and out-of-plane (thickness) mode. Temperature effects on free PWAS-EMIS are also discussed with respect to the in-plane mode. Piezoelectric material degradation on certain electrical and mechanical properties as the temperature increases is simulated by our analytical model for in-plane circular PWAS-EMIS that agrees well with the sets of experiments. Then the thickness mode PWAS-EMIS model was further developed for a PWAS resonator bonded on a plate-like structure. The latter analytical model was to determine the resonance frequencies for the normal mode expansion method through the global matrix method by considering PWAS-substrate and proof mass-PWAS-substrate models. The proof mass concept was adapted to shift the systems resonance frequencies in thickness mode. PWAS in contact with liquid medium on one of its surface has been analytically modeled and simulated the electro-mechanical response of PWAS with various liquids with different material properties such as the density and the viscosity. The second part discusses the guided wave propagation in elastic structures. The feature guided waves in thick structures and in high frequency range are discussed considering weld guided quasi-Rayleigh waves. Furthermore, the weld guided quasi Rayleigh waves and their interaction with damages in thick plates and thick walled pipes are examined by the finite element models and experiments. The dissertation finishes with a summary of contributions followed by conclusions, and suggestions for future work.

  19. Finite element modeling of wave propagation in concrete.

    DOT National Transportation Integrated Search

    2008-09-01

    Three reports were produced from research sponsored by the Oregon Department of Transportation on acoustic emission (AE). The first describes the evaluation of AE techniques applied to two reinforced concrete (RC) bridge girders, which were loaded to...

  20. Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave using a High Order Time Domain Vector Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pingenot, J; Rieben, R; White, D

    2005-10-31

    We present a computational study of signal propagation and attenuation of a 200 MHz planar loop antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random rough surface meshes in ordermore » to generate statistical data for the propagation and attenuation properties of the antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric field are presented and discussed.« less

  1. Influence of Young's moduli in 3D fluid-structure coupled models of the human cochlea

    NASA Astrophysics Data System (ADS)

    Böhnke, Frank; Semmelbauer, Sebastian; Marquardt, Torsten

    2015-12-01

    The acoustic wave propagation in the human cochlea was studied using a tapered box-model with linear assumptions respective to all mechanical parameters. The discretisation and evaluation is conducted by a commercial finite element package (ANSYS). The main difference to former models of the cochlea was the representation of the basilar membrane by a 3D elastic solid. The Young's moduli of this solid were modified to study their influence on the travelling wave. The lymph in the scala vestibuli and scala tympani was represented by a viscous and nearly incompressible fluid finite element approach. Our results show the maximum displacement for f = 2kHz at half of the length of the cochlea in accordance with former experiments. For low frequencies f <200 Hz nearly zero phase shifts were found, whereas for f =1 kHz it reaches values up to -12 cycles depending on the degree of orthotropy.

  2. The solution of non-linear hyperbolic equation systems by the finite element method

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Zienkiewicz, O. C.

    1984-01-01

    A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.

  3. Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study.

    PubMed

    Nguyen, Vu-Hieu; Naili, Salah

    2013-01-01

    This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally graded anisotropic material coupled with fluids. The viscous effects are taken into account. The geometrical configuration mimics the one of axial transmission technique used for evaluating the bone quality. We present a numerical procedure adapted for this purpose which is based on the spectral finite element method (FEM). By using a combined Laplace-Fourier transform, the vibroacoustic problem may be transformed into the frequency-wavenumber domain in which, as radiation conditions may be exactly introduced in the infinite fluid halfspaces, only the heterogeneous solid layer needs to be analysed using FEM. Several numerical tests are presented showing very good performance of the proposed approach. We present some results to study the influence of the frequency on the first arriving signal velocity in (visco)elastic bone plate.

  4. Tempest: Mesoscale test case suite results and the effect of order-of-accuracy on pressure gradient force errors

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2014-12-01

    Tempest is a new non-hydrostatic atmospheric modeling framework that allows for investigation and intercomparison of high-order numerical methods. It is composed of a dynamical core based on a finite-element formulation of arbitrary order operating on cubed-sphere and Cartesian meshes with topography. The underlying technology is briefly discussed, including a novel Hybrid Finite Element Method (HFEM) vertical coordinate coupled with high-order Implicit/Explicit (IMEX) time integration to control vertically propagating sound waves. Here, we show results from a suite of Mesoscale testing cases from the literature that demonstrate the accuracy, performance, and properties of Tempest on regular Cartesian meshes. The test cases include wave propagation behavior, Kelvin-Helmholtz instabilities, and flow interaction with topography. Comparisons are made to existing results highlighting improvements made in resolving atmospheric dynamics in the vertical direction where many existing methods are deficient.

  5. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  6. Modal element method for scattering of sound by absorbing bodies

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1992-01-01

    The modal element method for acoustic scattering from 2-D body is presented. The body may be acoustically soft (absorbing) or hard (reflecting). The infinite computational region is divided into two subdomains - the bounded finite element domain, which is characterized by complicated geometry and/or variable material properties, and the surrounding unbounded homogeneous domain. The acoustic pressure field is represented approximately in the finite element domain by a finite element solution, and is represented analytically by an eigenfunction expansion in the homogeneous domain. The two solutions are coupled by the continuity of pressure and velocity across the interface between the two subdomains. Also, for hard bodies, a compact modal ring grid system is introduced for which computing requirements are drastically reduced. Analysis for 2-D scattering from solid and coated (acoustically treated) bodies is presented, and several simple numerical examples are discussed. In addition, criteria are presented for determining the number of modes to accurately resolve the scattered pressure field from a solid cylinder as a function of the frequency of the incoming wave and the radius of the cylinder.

  7. Shear horizontal feature guided ultrasonic waves in plate structures with 90° transverse bends.

    PubMed

    Yu, Xudong; Manogharan, Prabhakaran; Fan, Zheng; Rajagopal, Prabhu

    2016-02-01

    Antisymmetric and symmetric Lamb-type feature guided waves (FGW) have recently been shown to exist in small angle plate bends. This paper reports Semi-Analytical Finite Element (SAFE) method simulations revealing the existence of a new family of Shear Horizontal (SHB) type of FGW mode in 90° bends in plate structures. Mode shapes and velocity dispersion curves are extracted, demonstrating the SH-like nature of a bend-confined mode identified in studies of power flow across the bend. The SHB mode is shown to have reduced attenuation in the higher frequency range, making it an ideal choice for high-resolution inspection of such bends. Further modal studies examine the physical basis for mode confinement, and argue that this is strongly related to FGW phenomena reported earlier, and also linked to the curvature at the bend region. Wedge acoustic waves discussed widely in literature are shown as arising from surface-limiting of the SHB mode at higher frequencies. The results are validated by experiments and supported by 3D Finite Element (FE) simulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Mesh-free distributed point source method for modeling viscous fluid motion between disks vibrating at ultrasonic frequency.

    PubMed

    Wada, Yuji; Kundu, Tribikram; Nakamura, Kentaro

    2014-08-01

    The distributed point source method (DPSM) is extended to model wave propagation in viscous fluids. Appropriate estimation on attenuation and boundary layer formation due to fluid viscosity is necessary for the ultrasonic devices used for acoustic streaming or ultrasonic levitation. The equations for DPSM modeling in viscous fluids are derived in this paper by decomposing the linearized viscous fluid equations into two components-dilatational and rotational components. By considering complex P- and S-wave numbers, the acoustic fields in viscous fluids can be calculated following similar calculation steps that are used for wave propagation modeling in solids. From the calculations reported the precision of DPSM is found comparable to that of the finite element method (FEM) for a fundamental ultrasonic field problem. The particle velocity parallel to the two bounding surfaces of the viscous fluid layer between two rigid plates (one in motion and one stationary) is calculated. The finite element results agree well with the DPSM results that were generated faster than the transient FEM results.

  9. Numerical predictions and experiments for optimizing hidden corrosion detection in aircraft structures using Lamb modes.

    PubMed

    Terrien, N; Royer, D; Lepoutre, F; Déom, A

    2007-06-01

    To increase the sensitivity of Lamb waves to hidden corrosion in aircraft structures, a preliminary step is to understand the phenomena governing this interaction. A hybrid model combining a finite element approach and a modal decomposition method is used to investigate the interaction of Lamb modes with corrosion pits. The finite element mesh is used to describe the region surrounding the corrosion pits while the modal decomposition method permits to determine the waves reflected and transmitted by the damaged area. Simulations make easier the interpretation of some parts of the measured waveform corresponding to superposition of waves diffracted by the corroded area. Numerical results permit to extract significant information from the transmitted waveform and thus to optimize the signal processing for the detection of corrosion at an early stage. Now, we are able to detect corrosion pits down to 80-mum depth distributed randomly on a square centimeter of an aluminum plate. Moreover, thickness variations present on aircraft structures can be discriminated from a slightly corroded area. Finally, using this experimental setup, aircraft structures have been tested.

  10. Bandgaps and directional properties of two-dimensional square beam-like zigzag lattices

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng

    2014-12-01

    In this paper we propose four kinds of two-dimensional square beam-like zigzag lattice structures and study their bandgaps and directional propagation of elastic waves. The band structures are calculated by using the finite element method. Both the in-plane and out-of-plane waves are investigated simultaneously via the three-dimensional Euler beam elements. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. The effects of the geometry parameters of the xy- and z-zigzag lattices on the bandgaps are investigated and discussed. Multiple complete bandgaps are found owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the periodic systems. The deformed displacement fields of the harmonic responses of a finite lattice structure subjected to harmonic loads at different positions are illustrated to show the directional wave propagation. An extension of the proposed concept to the hexagonal lattices is also presented. The research work in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.

  11. Finite element simulation of the mechanism of laser ultrasound induced pain weapon

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Zhan, Ren Jun; Shan, Ning

    2018-03-01

    The Laser-Ultrasonic technique uses laser energy to generate ultrasound waves in various solids. In normal conditions, this technique is used to inspect large structures without destruction, but in military use, we hope get this destruction. Nociceptors in Human skin can feel cold, heat, mechanical and other stimuli, when the stimulus exceeds a certain threshold will produce pain. Based on this principle, a laser induced pain weapon may be made. The generated ultrasound wave form is affected by features of laser pulse. The results obtained from the finite element model of laser generated ultrasound are presented in terms of temperature and displacement. At first step, the transient temperature field can be precisely calculated by using the finite element method. Then, laser generated surface acoustic wave forms are calculated by coupling the temperature distribution. Displacement is used to represent the mechanical action of skin caused by laser ultrasound. Results from numerical simulation are compared with other references; the accuracy of the method is proved accordingly. The results of simulation in the given conditions demonstrate that the stresses generated by pulse laser in human skin model were about -8 and +4 MPa. According to the results of simulation, the max and min stress are both emerged in the range of 0 600 um, that is exactly the location of myelinated Aδ and unmyelinated C nociceptor. The value of stress is can be adjusted by chose suitable parameters of laser. The study provides a possibility for developing a new non-lethal weapon to control riots or crowd.

  12. Scattering of ultrasonic wave by cracks in a plate

    NASA Technical Reports Server (NTRS)

    Liu, S. W.; Datta, S. K.

    1993-01-01

    A hybrid numerical method combining finite elements and the boundary integral representation is used to investigate the transient scattering of ultrasonic waves by a crack in a plate. The incident wave models the guided waves generated by a steel ball impact on the plate. Two surface-breaking cracks and one subsurface crack are studied here. The results show that the location and depth of cracks have measurable effects on the surface responses in time and frequency domains. Also, the scattered fields have distinct differences in the three cases.

  13. A metasurface carpet cloak for electromagnetic, acoustic and water waves.

    PubMed

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-29

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.

  14. Anisotropic dispersion and attenuation due to wave-induced fluid flow: Quasi-static finite element modeling in poroelastic solids

    NASA Astrophysics Data System (ADS)

    Wenzlau, F.; Altmann, J. B.; Müller, T. M.

    2010-07-01

    Heterogeneous porous media such as hydrocarbon reservoir rocks are effectively described as anisotropic viscoelastic solids. They show characteristic velocity dispersion and attenuation of seismic waves within a broad frequency band, and an explanation for this observation is the mechanism of wave-induced pore fluid flow. Various theoretical models quantify dispersion and attenuation of normal incident compressional waves in finely layered porous media. Similar models of shear wave attenuation are not known, nor do general theories exist to predict wave-induced fluid flow effects in media with a more complex distribution of medium heterogeneities. By using finite element simulations of poroelastic relaxation, the total frequency-dependent complex stiffness tensor can be computed for a porous medium with arbitrary internal heterogeneity. From the stiffness tensor, velocity dispersion and frequency-dependent attenuation are derived for compressional and shear waves as a function of the angle of incidence. We apply our approach to the case of layered media and to that of an ellipsoidal poroelastic inclusion. In the case of the ellipsoidal inclusion, compressional and shear wave modes show significant attenuation, and the characteristic frequency dependence of the effect is governed by the spatiotemporal scale of the pore fluid pressure relaxation. In our anisotropic examples, the angle dependence of the attenuation is stronger than that of the velocity dispersion. It becomes clear that the spatial attenuation patterns show specific characteristics of wave-induced fluid flow, implying that anisotropic attenuation measurements may contribute to the inversion of fluid transport properties in heterogeneous porous media.

  15. Finite Element Modelling of the Indo-Gangetic Basin to Study Site Amplification

    NASA Astrophysics Data System (ADS)

    Sivasubramonian, J.; Jaya, D.; Raghukanth, S. T. G.; Mai, P. M.

    2017-12-01

    We have developed a finite-element model of the 3D velocity structure of the Indo-Gangetic basin (IG basin) to quantify site amplifications due to seismic waves emanated from regional earthquakes. Estimating seismic wave amplifications is difficult in case of limited instrumentation, thus motivating us to propose a new simulation-based approach. The input required for the finite-element model include the spatial coordinates and the material properties (density, P-wave and S-wave velocities, Q factor) of the basin. Recent studies in the basin demarcate sediment layers of varying thickness, reaching down to a depth of 6 km and S-wave velocities ranging from 0.4-2.4 km/s (Srinivas et al., 2013). In the present study, our regional model has dimensions 900 x 900 x 80 km in x, y and z directions, discretized into 320 x 320 x 53 hexahedral elements. The top 6 km of the IG basin is divided into 8 different sediment layers with varying material properties. We use kinematic rupture models for the earthquake sources to simulate past as well as hypothetical future events. Two past earthquakes (Mw4.9, Delhi; Mw5.2, Chamoli) and two hypothetical earthquakes (Mw7.1; Mw8.5) are considered in our study. The rupture plane dimensions (L and W) and the slip distribution are estimated using the method of Mai and Beroza (2002). Based on focal-mechanism solutions and the depths of seismicity, we define the strike (580, 3090), the dip (650, 210), the rake (160, 770), and the depth of top edge of fault (5 km, 19 km) for the two large hypothetical earthquakes. Based on these parameters, the Centroid Moment Tensor (CMT) solution of the source is obtained. Ground motions are then simulated by solving the three-dimensional wave equation using the spectral element method (Komatitsch and Tromp, 1999). The key observations from our results are: 1) basin amplification factors for Peak Ground Velocity (PGV) are twice as high as Peak Ground Displacement (PGD) 2) PGV amplifications are as high as a factor of 6 for earthquakes occurring inside the basin, and a factor of 4 for Himalayan earthquakes (to the north of the study region) 3) The simulated shake maps of PGV and PGD show directivity. Based on the above observations, we conclude that it is important to include our model into low-frequency ground-motion estimation for seismic hazard analysis.

  16. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  17. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, Jorge E.; Ullrich, Paul A.

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  18. Finite element simulation of ultrasonic waves in corroded reinforced concrete for early-stage corrosion detection

    NASA Astrophysics Data System (ADS)

    Tang, Qixiang; Yu, Tzuyang

    2017-04-01

    In reinforced concrete (RC) structures, corrosion of steel rebar introduces internal stress at the interface between rebar and concrete, ultimately leading to debonding and separation between rebar and concrete. Effective early-stage detection of steel rebar corrosion can significantly reduce maintenance costs and enable early-stage repair. In this paper, ultrasonic detection of early-stage steel rebar corrosion inside concrete is numerically investigated using the finite element method (FEM). Commercial FEM software (ABAQUS) was used in all simulation cases. Steel rebar was simplified and modeled by a cylindrical structure. 1MHz ultrasonic elastic waves were generated at the interface between rebar and concrete. Two-dimensional plain strain element was adopted in all FE models. Formation of surface rust in rebar was modeled by changing material properties and expanding element size in order to simulate the rust interface between rebar and concrete and the presence of interfacial stress. Two types of surface rust (corroded regions) were considered. Time domain and frequency domain responses of displacement were studied. From our simulation result, two corrosion indicators, baseline (b) and center frequency (fc) were proposed for detecting and quantifying corrosion.

  19. Computation of leaky guided waves dispersion spectrum using vibroacoustic analyses and the Matrix Pencil Method: a validation study for immersed rectangular waveguides.

    PubMed

    Mazzotti, M; Bartoli, I; Castellazzi, G; Marzani, A

    2014-09-01

    The paper aims at validating a recently proposed Semi Analytical Finite Element (SAFE) formulation coupled with a 2.5D Boundary Element Method (2.5D BEM) for the extraction of dispersion data in immersed waveguides of generic cross-section. To this end, three-dimensional vibroacoustic analyses are carried out on two waveguides of square and rectangular cross-section immersed in water using the commercial Finite Element software Abaqus/Explicit. Real wavenumber and attenuation dispersive data are extracted by means of a modified Matrix Pencil Method. It is demonstrated that the results obtained using the two techniques are in very good agreement. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes

    NASA Astrophysics Data System (ADS)

    Wu, Chen-Wu; Wu, Xian-Qian; Huang, Chen-Guang

    2015-10-01

    Laser ablation mechanism of Carbon Fiber Reinforced Polymer (CFRP) composite is of critical meaning for the laser machining process. The ablation behaviors are investigated on the CFRP laminates subject to continuous wave, long duration pulsed wave and short duration pulsed wave lasers. Distinctive ablation phenomena have been observed and the effects of laser operation modes are discussed. The typical temperature patterns resulted from laser irradiation are computed by finite element analysis and thereby the different ablation mechanisms are interpreted.

  1. Accelerating wave propagation modeling in the frequency domain using Python

    NASA Astrophysics Data System (ADS)

    Jo, Sang Hoon; Park, Min Jun; Ha, Wan Soo

    2017-04-01

    Python is a dynamic programming language adopted in many science and engineering areas. We used Python to simulate wave propagation in the frequency domain. We used the Pardiso matrix solver to solve the impedance matrix of the wave equation. Numerical examples shows that Python with numpy consumes longer time to construct the impedance matrix using the finite element method when compared with Fortran; however we could reduce the time significantly to be comparable to that of Fortran using a simple Numba decorator.

  2. Computing Gravitational Fields of Finite-Sized Bodies

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco

    2005-01-01

    A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.

  3. Electromagnetic propagation in PEC and absorbing curved S-ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1988-01-01

    A finite-element Galerkin formulation has been developed to study transverse magnetic (TM) wave propagation in 2-D S-curved ducts with both perfectly conducting and absorbing walls. The reflection and transmission at the entrances and the exits of the curved ducts are determined by coupling the finite-element solutions in the curved ducts to the eigenfunctions of an infinite, uniform, perfectly conducting duct. Example solutions are presented for a double mitred and S-ducts of various lengths. The length of the S-duct is found to significantly effect the reflective characteristics of the duct. Also, the effect of curvature on an absorbing duct is illustrated.

  4. Application of the Finite Element Method in Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine

    2007-01-01

    The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.

  5. Studying the effect of cracks on the ultrasonic wave propagation in a two dimensional gearbox finite element model

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Fazel, Hossein; Cox, Justin; Hardman, William; Kessler, Seth S.; Timmons, Alan

    2014-04-01

    Gearbox components of aerospace structures are typically made of brittle materials with high fracture toughness, but susceptible to fatigue failure due to continuous cyclic loading. Structural Health Monitoring (SHM) methods are used to monitor the crack growth in gearbox components. Damage detection methodologies developed in laboratory-scale experiments may not represent the actual gearbox structural configuration, and are usually not applicable to real application as the vibration and wave properties depend on the material, structural layers and thicknesses. Also, the sensor types and locations are key factors for frequency content of ultrasonic waves, which are essential features for pattern recognition algorithm development in noisy environments. Therefore, a deterministic damage detection methodology that considers all the variables influencing the waveform signature should be considered in the preliminary computation before any experimental test matrix. In order to achieve this goal, we developed two dimensional finite element models of a gearbox cross section from front view and shaft section. The cross section model consists of steel revolving teeth, a thin layer of oil, and retention plate. An ultrasonic wave up to 1 MHz frequency is generated, and waveform histories along the gearbox are recorded. The received waveforms under pristine and cracked conditions are compared in order to analyze the crack influence on the wave propagation in gearbox, which can be utilized by both active and passive SHM methods.

  6. An RF phased array applicator designed for hyperthermia breast cancer treatments

    PubMed Central

    Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V

    2007-01-01

    An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427

  7. Design of an optomechanical filter based on solid/solid phoxonic crystals

    NASA Astrophysics Data System (ADS)

    Moradi, Pedram; Bahrami, Ali

    2018-03-01

    We simulate a phoxonic crystal which shows complete phononic and TM-polarized photonic bandgaps. The constituent materials are tungsten and polymethyl methacrylate, and we obtained these bandgaps with a filling factor of only 28%, which is very compatible with the fabrication method. A cavity was then defined that selects narrow passbands of optical and elastic waves. In order to maximize the quality factor, a defect rod is added in the output waveguide. The final structure filters an optical wavelength of 840 nm (with corresponding frequency of 357 THz) and an elastic frequency of 3.6703 GHz. Simulations are done by using finite element, plane wave expansion, and finite difference time domain methods.

  8. Seismic waves in heterogeneous material: subcell resolution of the discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Castro, Cristóbal E.; Käser, Martin; Brietzke, Gilbert B.

    2010-07-01

    We present an important extension of the arbitrary high-order discontinuous Galerkin (DG) finite-element method to model 2-D elastic wave propagation in highly heterogeneous material. In this new approach we include space-variable coefficients to describe smooth or discontinuous material variations inside each element using the same numerical approximation strategy as for the velocity-stress variables in the formulation of the elastic wave equation. The combination of the DG method with a time integration scheme based on the solution of arbitrary accuracy derivatives Riemann problems still provides an explicit, one-step scheme which achieves arbitrary high-order accuracy in space and time. Compared to previous formulations the new scheme contains two additional terms in the form of volume integrals. We show that the increasing computational cost per element can be overcompensated due to the improved material representation inside each element as coarser meshes can be used which reduces the total number of elements and therefore computational time to reach a desired error level. We confirm the accuracy of the proposed scheme performing convergence tests and several numerical experiments considering smooth and highly heterogeneous material. As the approximation of the velocity and stress variables in the wave equation and of the material properties in the model can be chosen independently, we investigate the influence of the polynomial material representation on the accuracy of the synthetic seismograms with respect to computational cost. Moreover, we study the behaviour of the new method on strong material discontinuities, in the case where the mesh is not aligned with such a material interface. In this case second-order linear material approximation seems to be the best choice, with higher-order intra-cell approximation leading to potential instable behaviour. For all test cases we validate our solution against the well-established standard fourth-order finite difference and spectral element method.

  9. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  10. Electromagnetic beam diffraction by a finite lamellar structure: an aperiodic coupled-wave method.

    PubMed

    Guizal, Brahim; Barchiesi, Dominique; Felbacq, Didier

    2003-12-01

    We have developed a new formulation of the coupled-wave method (CWM) to handle aperiodic lamellar structures, and it will be referred to as the aperiodic coupled-wave method (ACWM). The space is still divided into three regions, but the fields are written by use of their Fourier integrals instead of the Fourier series. In the modulated region the relative permittivity is represented by its Fourier transform, and then a set of integro-differential equations is derived. Discretizing the last system leads to a set of ordinary differential equations that is reduced to an eigenvalue problem, as is usually done in the CWM. To assess the method, we compare our results with three independent formalisms: the Rayleigh perturbation method for small samples, the volume integral method, and the finite-element method.

  11. 16TH Annual Review of Progress in Applied Computational Electromagnetics of the Naval Postgraduate School, Monterey, CA. Volume I

    DTIC Science & Technology

    2000-03-24

    Element Method for Designing Plasma Reactors" Leo Kempel, Paul Rummel, Tim Grotjohn and John Amrhein ............................................ 28...34Finite Element Method for Designing Plasma Reactors" Leo Kempel, Paul Rummel, Tim Grotjohn and John Amrhein...548 "lime-Domain Simulation of Electromagnetic Wave Propagation in a Magnetized Plasma" J. Paul , C. Christopoulos, and

  12. A dynamic model of the piezoelectric traveling wave rotary ultrasonic motor stator with the finite volume method.

    PubMed

    Renteria Marquez, I A; Bolborici, V

    2017-05-01

    This manuscript presents a method to model in detail the piezoelectric traveling wave rotary ultrasonic motor (PTRUSM) stator response under the action of DC and AC voltages. The stator is modeled with a discrete two dimensional system of equations using the finite volume method (FVM). In order to obtain accurate results, a model of the stator bridge is included into the stator model. The model of the stator under the action of DC voltage is presented first, and the results of the model are compared versus a similar model using the commercial finite element software COMSOL Multiphysics. One can observe that there is a difference of less than 5% between the displacements of the stator using the proposed model and the one with COMSOL Multiphysics. After that, the model of the stator under the action of AC voltages is presented. The time domain analysis shows the generation of the traveling wave in the stator surface. One can use this model to accurately calculate the stator surface velocities, elliptical motion of the stator surface and the amplitude and shape of the stator traveling wave. A system of equations discretized with the finite volume method can easily be transformed into electrical circuits, because of that, FVM may be a better choice to develop a model-based control strategy for the PTRUSM. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Dipole excitation of surface plasmon on a conducting sheet: Finite element approximation and validation

    NASA Astrophysics Data System (ADS)

    Maier, Matthias; Margetis, Dionisios; Luskin, Mitchell

    2017-06-01

    We formulate and validate a finite element approach to the propagation of a slowly decaying electromagnetic wave, called surface plasmon-polariton, excited along a conducting sheet, e.g., a single-layer graphene sheet, by an electric Hertzian dipole. By using a suitably rescaled form of time-harmonic Maxwell's equations, we derive a variational formulation that enables a direct numerical treatment of the associated class of boundary value problems by appropriate curl-conforming finite elements. The conducting sheet is modeled as an idealized hypersurface with an effective electric conductivity. The requisite weak discontinuity for the tangential magnetic field across the hypersurface can be incorporated naturally into the variational formulation. We carry out numerical simulations for an infinite sheet with constant isotropic conductivity embedded in two spatial dimensions; and validate our numerics against the closed-form exact solution obtained by the Fourier transform in the tangential coordinate. Numerical aspects of our treatment such as an absorbing perfectly matched layer, as well as local refinement and a posteriori error control are discussed.

  14. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  15. Pile-Driving Pressure and Particle Velocity at the Seabed: Quantifying Effects on Crustaceans and Groundfish.

    PubMed

    Miller, James H; Potty, Gopu R; Kim, Hui-Kwan

    2016-01-01

    We modeled the effects of pile driving on crustaceans, groundfish, and other animals near the seafloor. Three different waves were investigated, including the compressional wave, shear wave, and interface wave. A finite element (FE) technique was employed in and around the pile, whereas a parabolic equation (PE) code was used to predict propagation at long ranges from the pile. Pressure, particle displacement, and particle velocity are presented as a function of range at the seafloor for a shallow-water environment near Rhode Island. We discuss the potential effects on animals near the seafloor.

  16. Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load

    PubMed Central

    Yang, Bin; Xuan, Fu-Zhen; Xiang, Yanxun; Li, Dan; Zhu, Wujun; Tang, Xiaojun; Xu, Jichao; Yang, Kang; Luo, Chengqiang

    2017-01-01

    Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved. PMID:28773014

  17. Hydrodynamic Characteristics and Strength Analysis of a Novel Dot-matrix Oscillating Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong

    2017-12-01

    The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.

  18. Extension of the frequency-domain pFFT method for wave structure interaction in finite depth

    NASA Astrophysics Data System (ADS)

    Teng, Bin; Song, Zhi-jie

    2017-06-01

    To analyze wave interaction with a large scale body in the frequency domain, a precorrected Fast Fourier Transform (pFFT) method has been proposed for infinite depth problems with the deep water Green function, as it can form a matrix with Toeplitz and Hankel properties. In this paper, a method is proposed to decompose the finite depth Green function into two terms, which can form matrices with the Toeplitz and a Hankel properties respectively. Then, a pFFT method for finite depth problems is developed. Based on the pFFT method, a numerical code pFFT-HOBEM is developed with the discretization of high order elements. The model is validated, and examinations on the computing efficiency and memory requirement of the new method have also been carried out. It shows that the new method has the same advantages as that for infinite depth.

  19. Demonstration Of Ultra HI-FI (UHF) Methods

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2004-01-01

    Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools. Most current techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive to achieve with finite volume or finite element methods. However, a novel finite volume approach (Ultra HI-FI or UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and time. The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured grids for maximum efficiency and resolution. In either paradigm, it is possible to resolve ultra-short waves (less than 2 PPW). This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1.

  20. Finite Element Method Analysis of An Out Flow With Free Surface In Transition Zones

    NASA Astrophysics Data System (ADS)

    Saoula, R. Iddir S.; Mokhtar, K. Ait

    The object of this work is to present this part of the fluid mechanics that relates to out-flows of the fluid to big speeds in transitions. Results usually gotten by the classic processes can only have a qualitative aspect. The method fluently used for the count of these out-flows to big speeds is the one of characteristics, this approach remains interesting so much that doesn't appear within the out-flow of intersections of shock waves, as well as of reflections of these. In the simple geometry case, the method of finite differences satisfying result, But when the complexity of this geometry imposes itself, it is the method of finite elements that is proposed to solve this type of prob- lem, in particular for problems Trans critic. The goal of our work is to analyse free surface flows in channels no prismatic has oblong transverse section in zone of tran- sition. (Convergent, divergent). The basic mathematical model of this study is Saint Venant derivatives partial equations. To solve these equations we use the finite ele- ment method, the element of reference is the triangular element with 6 nodes which are quadratic in speed and linear in height (pressure). Our results and their obtains by others are very close to experimental results.

  1. Comparisons of Particle Tracking Techniques and Galerkin Finite Element Methods in Flow Simulations on Watershed Scales

    NASA Astrophysics Data System (ADS)

    Shih, D.; Yeh, G.

    2009-12-01

    This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.

  2. Static aeroelastic analysis of wings using Euler/Navier-Stokes equations coupled with improved wing-box finite element structures

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.

    1994-01-01

    Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.

  3. Laser-Generated Rayleigh Waves Propagating in Transparent Viscoelastic Adhesive Coating/Metal Substrate Systems

    NASA Astrophysics Data System (ADS)

    Guan, Yi-jun; Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi; Ge, Yong

    2016-10-01

    We have established numerical models for simulating laser-generated Rayleigh waves in coating/substrate systems by a finite element method and investigated the propagation characteristics of Rayleigh waves in systems concerning the viscoelasticity and transparency of adhesive coatings. In this way, we have studied the influence of the mechanical properties of the coating, such as the elastic moduli, viscoelastic moduli, coating thickness, transparency, and coating material, on the propagation characteristics of the Rayleigh waves. The results show that the propagation characteristics of the Rayleigh waves can be divided into low- and high-frequency parts. The high-frequency propagation characteristics of the Rayleigh wave are closely related to the properties of the adhesive coating.

  4. Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.

    PubMed

    Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin

    2015-01-01

    The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.

  5. Rotation of a metal gear disk in an ultrasonic levitator

    NASA Astrophysics Data System (ADS)

    Rendon, Pablo L.; Boullosa, Ricardo R.; Salazar, Laura

    2016-11-01

    The phenomenon known as acoustic radiation pressure is well-known to be associated with the time-averaged momentum flux of an acoustic wave, and precisely because it is a time-averaged effect, it is relatively easy to observe experimentally. An ultrasonic levitator makes use of this effect to levitate small particles. Although it is a less-well studied effect, the transfer of angular momentum using acoustic waves in air or liquids has nonetheless been the subject of some recent studies. This transfer depends on the scattering and absorbing properties of the object and is achieved, typically, through the generation of acoustic vortex beams. In the present study, we examine the manner in which the acoustic standing wave located between two disks of an ultrasonic levitator in air may transfer angular momentum to objects with different shapes. In this case, a non-spherical object is subjected to, in addition to the radiation force, a torque which induces rotation. Analytical solutions for the acoustic force and torque are available, but limited to a few simple cases. In general, a finite element model must be used to obtain solutions. Thus, we develop and validate a finite element simulation in order to calculate directly the torque and radiation force.

  6. Simulations of acoustic waves in channels and phonation in glottal ducts

    NASA Astrophysics Data System (ADS)

    Yang, Jubiao; Krane, Michael; Zhang, Lucy

    2014-11-01

    Numerical simulations of acoustic wave propagation were performed by solving compressible Navier-Stokes equations using finite element method. To avoid numerical contamination of acoustic field induced by non-physical reflections at computational boundaries, a Perfectly Matched Layer (PML) scheme was implemented to attenuate the acoustic waves and their reflections near these boundaries. The acoustic simulation was further combined with the simulation of interaction of vocal fold vibration and glottal flow, using our fully-coupled Immersed Finite Element Method (IFEM) approach, to study phonation in the glottal channel. In order to decouple the aeroelastic and aeroacoustic aspects of phonation, the airway duct used has a uniform cross section with PML properly applied. The dynamics of phonation were then studied by computing the terms of the equations of motion for a control volume comprised of the fluid in the vicinity of the vocal folds. It is shown that the principal dynamics is comprised of the near cancellation of the pressure force driving the flow through the glottis, and the aerodynamic drag on the vocal folds. Aeroacoustic source strengths are also presented, estimated from integral quantities computed in the source region, as well as from the radiated acoustic field.

  7. Scattering of Lamb waves by cracks in a composite graphite fiber-reinforced epoxy plate

    NASA Technical Reports Server (NTRS)

    Bratton, Robert; Datta, Subhendu K.; Shah, Arvind

    1990-01-01

    Recent investigations of space construction techniques have explored the used of composite materials in the construction of space stations and platforms. These composites offer superior strength to weight ratio and are thermally stable. For example, a composite material being considered is laminates of graphite fibers in an epoxy matrix. The overall effective elastic constants of such a medium can be calculated from fiber and matrix properties by using an effective modulus theory as shown in Datta, el. al. The investigation of propagation and scattering of elastic waves in composite materials is necessary in order to develop an ability to characterize cracks and predict the reliability of composite structures. The objective of this investigation is the characterization of a surface breaking crack by ultrasonic techniques. In particular, the use of Lamb waves for this purpose is studied here. The Lamb waves travel through the plate, encountering a crack, and scatter. Of interest is the modeling of the scattered wave in terms of the Lamb wave modes. The direct problem of propagation and scattering of Lamb waves by a surface breaking crack has been analyzed. This would permit an experimentalist to characterize the crack by comparing the measured response to the analytical model. The plate is assumed to be infinite in the x and y directions with a constant thickness in the z direction. The top and bottom surfaces are traction free. Solving the governing wave equations and using the stress-free boundary conditions results in the dispersion equation. This equation yields the guided modes in the homogeneous plate. The theoretical model is a hybrid method that combines analytical and finite elements techniques to describe the scattered displacements. A finite region containing the defects is discretized by finite elements. Outside the local region, the far field solution is expressed as a Fourier summation of the guided modes obtained from the dispersion equation. Continuity of tractions and displacements at the boundaries of the two regions provides the necessary equations to determine the expansion coefficients and the nodal displacements. In the hybrid method used here these defects can be of arbitrary shapes as well as inclusions of different materials.

  8. Estimation of Ocean and Seabed Parameters and Processes Using Low Frequency Acoustic Signals

    DTIC Science & Technology

    2012-09-30

    were recently acquired under the DURIP program. 3. Finite Element Modeling of wave propagation: Doctoral student, Hui- Kwan Kim, is modeling wave...Delaware), Kevin Smith (Naval Postgraduate School), Dr. James F. Lynch and Dr. Y.-T. Lin (Woods Hole Oceanographic Institution). Another graduate student...test was conducted in collaboration with ARL, UT (Preston Wilson, PI) in August, 2011 in Narragansett Bay and off Block Island. PhD student Hui- Kwan

  9. Non-Impact, Blast-Induced Mild TBI and PTSD: Concepts and Caveats

    DTIC Science & Technology

    2011-07-01

    has been verified by wound ballistics experiments in animals and finite element simulation of blast loads on the torso. Blood surge caused by...ballistic pressure waves in animals An experimental study of wound ballistics demon- strates that a ballistic pressure wave can cause a remote injury to...surge. This hypothesis has been supported by some experimental data. A volumetric surge of blood moved through the thorax and abdomen has been observed

  10. Accuracy of a class of concurrent algorithms for transient finite element analysis

    NASA Technical Reports Server (NTRS)

    Ortiz, Michael; Sotelino, Elisa D.; Nour-Omid, Bahram

    1988-01-01

    The accuracy of a new class of concurrent procedures for transient finite element analysis is examined. A phase error analysis is carried out which shows that wave retardation leading to unacceptable loss of accuracy may occur if a Courant condition based on the dimensions of the subdomains is violated. Numerical tests suggest that this Courant condition is conservative for typical structural applications and may lead to a marked increase in accuracy as the number of subdomains is increased. Theoretical speed-up ratios are derived which suggest that the algorithms under consideration can be expected to exhibit a performance superior to that of globally implicit methods when implemented on parallel machines.

  11. Development of a Flexible Broadband Rayleigh Waves Comb Transducer with Nonequidistant Comb Interval for Defect Detection of Thick-Walled Pipelines

    PubMed Central

    He, Cunfu; Yan, Lyu; Zhang, Haijun

    2018-01-01

    It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the −3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ−3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth. PMID:29498636

  12. Development of a Flexible Broadband Rayleigh Waves Comb Transducer with Nonequidistant Comb Interval for Defect Detection of Thick-Walled Pipelines.

    PubMed

    Zhao, Huamin; He, Cunfu; Yan, Lyu; Zhang, Haijun

    2018-03-02

    It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ -3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.

  13. The pressure distribution for biharmonic transmitting array: theoretical study

    NASA Astrophysics Data System (ADS)

    Baranowska, A.

    2005-03-01

    The aim of the paper is theoretical analysis of the finite amplitude waves interaction problem for the biharmonic transmitting array. We assume that the array consists of 16 circular pistons of the same dimensions that regrouped in two sections. Two different arrangements of radiating elements were considered. In this situation the radiating surface is non-continuous without axial symmetry. The mathematical model was built on the basis of the Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation. To solve the problem the finite-difference method was applied. On-axis pressure amplitude for different frequency waves as a function of distance from the source, transverse pressure distribution of these waves at fixed distances from the source and pressure amplitude distribution for them at fixed planes were examined. Especially changes of normalized pressure amplitude for difference frequency were studied. The paper presents mathematical model and some results of theoretical investigations obtained for different values of source parameters.

  14. 3-D Voxel FEM Simulation of Seismic Wave Propagation in a Land-Sea Structure with Topography

    NASA Astrophysics Data System (ADS)

    Ikegami, Y.; Koketsu, K.

    2003-12-01

    We have already developed the voxel FEM (finite element method) code to simulate seismic wave propagation in a land structure with surface topography (Koketsu, Fujiwara and Ikegami, 2003). Although the conventional FEM often requires much larger memory, longer computation time and farther complicated mesh generation than the Finite Difference Method (FDM), this code consumes a similar amount of memory to FDM and spends only 1.4 times longer computation time thanks to the simplicity of voxels (hexahedron elements). The voxel FEM was successfully applied to inland earthquakes, but most earthquakes in a subduction zone occur beneath a sea, so that a simulation in a land-sea structure should be essential for waveform modeling and strong motion prediction there. We now introduce a domain of fluid elements into the model and formulate displacements in the elements using the Lagrange method. Sea-bottom motions are simulated for the simple land-sea models of Okamoto and Takenaka (1999). The simulation results agree well with their reflectivity and FDM seismograms. In order to enhance numerical stability, not only a variable mesh but also an adaptive time step is introduced. We can now choose the optimal time steps everywhere in the model based the Courant condition. This doubly variable formulation may result in inefficient parallel computing. The wave velocity in a shallow part is lower than that in a deeper part. Therefore, if the model is divided into horizontal slices and they are assigned to CPUs, a shallow slice will consist of only small elements. This can cause unbalanced loads on the CPUs. Accordingly, the model is divided into vertical slices in this study. They also reduce inter-processor communication, because a vertical cross section is usually smaller than a horizontal one. In addition, we will consider higher-order FEM formulation compatible to the fourth-order FDM. We will also present numerical examples to demonstrate the effects of a sea and surface topography on seismic waves and ground motions.

  15. Simulation of Detecting Damage in Composite Stiffened Panel Using Lamb Waves

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Ross, Richard W.; Huang, Guo L.; Yuan, Fuh G.

    2013-01-01

    Lamb wave damage detection in a composite stiffened panel is simulated by performing explicit transient dynamic finite element analyses and using signal imaging techniques. This virtual test process does not need to use real structures, actuators/sensors, or laboratory equipment. Quasi-isotropic laminates are used for the stiffened panels. Two types of damage are studied. One type is a damage in the skin bay and the other type is a debond between the stiffener flange and the skin. Innovative approaches for identifying the damage location and imaging the damage were developed. The damage location is identified by finding the intersection of the damage locus and the path of the time reversal wave packet re-emitted from the sensor nodes. The damage locus is a circle that envelops the potential damage locations. Its center is at the actuator location and its radius is computed by multiplying the group velocity by the time of flight to damage. To create a damage image for estimating the size of damage, a group of nodes in the neighborhood of the damage location is identified for applying an image condition. The image condition, computed at a finite element node, is the zero-lag cross-correlation (ZLCC) of the time-reversed incident wave signal and the time reversal wave signal from the sensor nodes. This damage imaging process is computationally efficient since only the ZLCC values of a small amount of nodes in the neighborhood of the identified damage location are computed instead of those of the full model.

  16. A robust, finite element model for hydrostatic surface water flows

    USGS Publications Warehouse

    Walters, R.A.; Casulli, V.

    1998-01-01

    A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.

  17. Numerical simulations of earthquakes and the dynamics of fault systems using the Finite Element method.

    NASA Astrophysics Data System (ADS)

    Kettle, L. M.; Mora, P.; Weatherley, D.; Gross, L.; Xing, H.

    2006-12-01

    Simulations using the Finite Element method are widely used in many engineering applications and for the solution of partial differential equations (PDEs). Computational models based on the solution of PDEs play a key role in earth systems simulations. We present numerical modelling of crustal fault systems where the dynamic elastic wave equation is solved using the Finite Element method. This is achieved using a high level computational modelling language, escript, available as open source software from ACcESS (Australian Computational Earth Systems Simulator), the University of Queensland. Escript is an advanced geophysical simulation software package developed at ACcESS which includes parallel equation solvers, data visualisation and data analysis software. The escript library was implemented to develop a flexible Finite Element model which reliably simulates the mechanism of faulting and the physics of earthquakes. Both 2D and 3D elastodynamic models are being developed to study the dynamics of crustal fault systems. Our final goal is to build a flexible model which can be applied to any fault system with user-defined geometry and input parameters. To study the physics of earthquake processes, two different time scales must be modelled, firstly the quasi-static loading phase which gradually increases stress in the system (~100years), and secondly the dynamic rupture process which rapidly redistributes stress in the system (~100secs). We will discuss the solution of the time-dependent elastic wave equation for an arbitrary fault system using escript. This involves prescribing the correct initial stress distribution in the system to simulate the quasi-static loading of faults to failure; determining a suitable frictional constitutive law which accurately reproduces the dynamics of the stick/slip instability at the faults; and using a robust time integration scheme. These dynamic models generate data and information that can be used for earthquake forecasting.

  18. Spectral-Element Simulations of Wave Propagation in Porous Media: Finite-Frequency Sensitivity Kernels Based Upon Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Morency, C.; Tromp, J.

    2008-12-01

    The mathematical formulation of wave propagation in porous media developed by Biot is based upon the principle of virtual work, ignoring processes at the microscopic level, and does not explicitly incorporate gradients in porosity. Based on recent studies focusing on averaging techniques, we derive the macroscopic porous medium equations from the microscale, with a particular emphasis on the effects of gradients in porosity. In doing so, we are able to naturally determine two key terms in the momentum equations and constitutive relationships, directly translating the coupling between the solid and fluid phases, namely a drag force and an interfacial strain tensor. In both terms, gradients in porosity arise. One remarkable result is that when we rewrite this set of equations in terms of the well known Biot variables us, w), terms involving gradients in porosity are naturally accommodated by gradients involving w, the fluid motion relative to the solid, and Biot's formulation is recovered, i.e., it remains valid in the presence of porosity gradients We have developed a numerical implementation of the Biot equations for two-dimensional problems based upon the spectral-element method (SEM) in the time domain. The SEM is a high-order variational method, which has the advantage of accommodating complex geometries like a finite-element method, while keeping the exponential convergence rate of (pseudo)spectral methods. As in the elastic and acoustic cases, poroelastic wave propagation based upon the SEM involves a diagonal mass matrix, which leads to explicit time integration schemes that are well-suited to simulations on parallel computers. Effects associated with physical dispersion & attenuation and frequency-dependent viscous resistance are addressed by using a memory variable approach. Various benchmarks involving poroelastic wave propagation in the high- and low-frequency regimes, and acoustic-poroelastic and poroelastic-poroelastic discontinuities have been successfully performed. We present finite-frequency sensitivity kernels for wave propagation in porous media based upon adjoint methods. We first show that the adjoint equations in porous media are similar to the regular Biot equations upon defining an appropriate adjoint source. Then we present finite-frequency kernels for seismic phases in porous media (e.g., fast P, slow P, and S). These kernels illustrate the sensitivity of seismic observables to structural parameters and form the basis of tomographic inversions. Finally, we show an application of this imaging technique related to the detection of buried landmines and unexploded ordnance (UXO) in porous environments.

  19. Well-Balanced Second-Order Approximation of the Shallow Water Equations With Friction via Continuous Galerkin Finite Elements

    NASA Astrophysics Data System (ADS)

    Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.

    2017-12-01

    The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well-balanced nature of the scheme and its convergence properties. We conclude with well-known benchmark problems including the Malpasset dam break (see the attached figure). All numerical experiments are performed and available in the Proteus toolkit, which is an open source python package for modeling continuum mechanical processes and fluid flow.

  20. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    NASA Astrophysics Data System (ADS)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  1. ULTRASONIC STUDIES OF THE FUNDAMENTAL MECHANISMS OF RECRYSTALLIZATION AND SINTERING OF METALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TURNER, JOSEPH A.

    2005-11-30

    The purpose of this project was to develop a fundamental understanding of the interaction of an ultrasonic wave with complex media, with specific emphases on recrystallization and sintering of metals. A combined analytical, numerical, and experimental research program was implemented. Theoretical models of elastic wave propagation through these complex materials were developed using stochastic wave field techniques. The numerical simulations focused on finite element wave propagation solutions through complex media. The experimental efforts were focused on corroboration of the models developed and on the development of new experimental techniques. The analytical and numerical research allows the experimental results to bemore » interpreted quantitatively.« less

  2. Numerical Simulation of Monitoring Corrosion in Reinforced Concrete Based on Ultrasonic Guided Waves

    PubMed Central

    Zheng, Zhupeng; Lei, Ying; Xue, Xin

    2014-01-01

    Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale. PMID:25013865

  3. ICANT, a code for the self-consistent computation of ICRH antenna coupling

    NASA Astrophysics Data System (ADS)

    Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.

    1996-02-01

    The code deals with 3D antenna structures (finite length antennae) that are used to launch electromagnetic waves into tokamak plasmas. The antenna radiation problem is solved using a finite boundary element technique combined with a spectral solution of the interior problem. The slab approximation is used, and periodicity in y and z directions is introduced to account for toroidal geometry. We present results for various types of antennae radiating in vacuum: antenna with a finite Faraday screen and ideal Faraday screen, antenna with side limiters and phased antenna arrays. The results (radiated power, current profile) obtained are very close to analytical solutions when available.

  4. Finite element modeling of light propagation in fruit under illumination of continuous-wave beam

    USDA-ARS?s Scientific Manuscript database

    Spatially-resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of infinitely small size light beam. The method is, however, prone to error in m...

  5. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2014-09-30

    of buried mines and improve SONAR performance in shallow water. OBJECTIVES 1) Determination of the correct physical model of acoustic propagation...Nicholas Chotiros, particularly for theoretical development of bulk acoustic /sediment modeling and laser roughness measurements. REFERENCES C...PUBLICATIONS 1. M. Isakson, and N. Chotiros. Finite Element Modeling of Acoustic

  6. Finite and spectral cell method for wave propagation in heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Joulaian, Meysam; Duczek, Sascha; Gabbert, Ulrich; Düster, Alexander

    2014-09-01

    In the current paper we present a fast, reliable technique for simulating wave propagation in complex structures made of heterogeneous materials. The proposed approach, the spectral cell method, is a combination of the finite cell method and the spectral element method that significantly lowers preprocessing and computational expenditure. The spectral cell method takes advantage of explicit time-integration schemes coupled with a diagonal mass matrix to reduce the time spent on solving the equation system. By employing a fictitious domain approach, this method also helps to eliminate some of the difficulties associated with mesh generation. Besides introducing a proper, specific mass lumping technique, we also study the performance of the low-order and high-order versions of this approach based on several numerical examples. Our results show that the high-order version of the spectral cell method together requires less memory storage and less CPU time than other possible versions, when combined simultaneously with explicit time-integration algorithms. Moreover, as the implementation of the proposed method in available finite element programs is straightforward, these properties turn the method into a viable tool for practical applications such as structural health monitoring [1-3], quantitative ultrasound applications [4], or the active control of vibrations and noise [5, 6].

  7. Scattering Cross Section of Sound Waves by the Modal Element Method

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1994-01-01

    #he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.

  8. A point-value enhanced finite volume method based on approximate delta functions

    NASA Astrophysics Data System (ADS)

    Xuan, Li-Jun; Majdalani, Joseph

    2018-02-01

    We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.

  9. A Finite Element Theory for Predicting the Attenuation of Extended-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2009-01-01

    A non-modal finite element theory for predicting the attenuation of an extended-reacting liner containing a porous facesheet and located in a no-flow duct is presented. The mathematical approach is to solve separate wave equations in the liner and duct airway and to couple these two solutions by invoking kinematic constraints at the facesheet that are consistent with a continuum theory of fluid motion. Given the liner intrinsic properties, a weak Galerkin finite element formulation with cubic polynomial basis functions is used as the basis for generating a discrete system of acoustic equations that are solved to obtain the coupled acoustic field. A state-of-the-art, asymmetric, parallel, sparse equation solver is implemented that allows tens of thousands of grid points to be analyzed. A grid refinement study is presented to show that the predicted attenuation converges. Excellent comparison of the numerically predicted attenuation to that of a mode theory (using a Haynes 25 metal foam liner) is used to validate the computational approach. Simulations are also presented for fifteen porous plate, extended-reacting liners. The construction of some of the porous plate liners suggest that they should behave as resonant liners while the construction of others suggest that they should behave as broadband attenuators. In each case the finite element theory is observed to predict the proper attenuation trend.

  10. Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-11-01

    The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.

  11. An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow

    DOE PAGES

    Hu, Rui

    2017-03-27

    Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less

  12. An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less

  13. A framework for grand scale parallelization of the combined finite discrete element method in 2d

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, E.; Knight, E. E.; Munjiza, A.

    2014-09-01

    Within the context of rock mechanics, the Combined Finite-Discrete Element Method (FDEM) has been applied to many complex industrial problems such as block caving, deep mining techniques (tunneling, pillar strength, etc.), rock blasting, seismic wave propagation, packing problems, dam stability, rock slope stability, rock mass strength characterization problems, etc. The reality is that most of these were accomplished in a 2D and/or single processor realm. In this work a hardware independent FDEM parallelization framework has been developed using the Virtual Parallel Machine for FDEM, (V-FDEM). With V-FDEM, a parallel FDEM software can be adapted to different parallel architecture systems ranging from just a few to thousands of cores.

  14. Energy localization and frequency analysis in the locust ear.

    PubMed

    Malkin, Robert; McDonagh, Thomas R; Mhatre, Natasha; Scott, Thomas S; Robert, Daniel

    2014-01-06

    Animal ears are exquisitely adapted to capture sound energy and perform signal analysis. Studying the ear of the locust, we show how frequency signal analysis can be performed solely by using the structural features of the tympanum. Incident sound waves generate mechanical vibrational waves that travel across the tympanum. These waves shoal in a tsunami-like fashion, resulting in energy localization that focuses vibrations onto the mechanosensory neurons in a frequency-dependent manner. Using finite element analysis, we demonstrate that two mechanical properties of the locust tympanum, distributed thickness and tension, are necessary and sufficient to generate frequency-dependent energy localization.

  15. A numerical comparison with an exact solution for the transient response of a cylinder immersed in a fluid. [computer simulated underwater tests to determine transient response of a submerged cylindrical shell

    NASA Technical Reports Server (NTRS)

    Giltrud, M. E.; Lucas, D. S.

    1979-01-01

    The transient response of an elastic cylindrical shell immersed in an acoustic media that is engulfed by a plane wave is determined numerically. The method applies to the USA-STAGS code which utilizes the finite element method for the structural analysis and the doubly asymptotic approximation for the fluid-structure interaction. The calculations are compared to an exact analysis for two separate loading cases: a plane step wave and an exponentially decaying plane wave.

  16. Wave computation on the Poincaré dodecahedral space

    NASA Astrophysics Data System (ADS)

    Bachelot-Motet, Agnès

    2013-12-01

    We compute the waves propagating on a compact 3-manifold of constant positive curvature with a non-trivial topology: the Poincaré dodecahedral space that is a plausible model of multi-connected universe. We transform the Cauchy problem to a mixed problem posed on a fundamental domain determined by the quaternionic calculus. We adopt a variational approach using a space of finite elements that is invariant under the action of the binary icosahedral group. The computation of the transient waves is validated with their spectral analysis by computing a lot of eigenvalues of the Laplace-Beltrami operator.

  17. Multislice does it all—calculating the performance of nanofocusing X-ray optics

    DOE PAGES

    Li, Kenan; Wojcik, Michael; Jacobsen, Chris

    2017-01-23

    Here, we describe an approach to calculating the optical performance of a wide range of nanofocusing X-ray optics using multislice scalar wave propagation with a complex X-ray refractive index. This approach produces results indistinguishable from methods such as coupled wave theory, and it allows one to reproduce other X-ray optical phenomena such as grazing incidence reflectivity where the direction of energy flow is changed significantly. Just as finite element analysis methods allow engineers to compute the thermal and mechanical responses of arbitrary structures too complex to model by analytical approaches, multislice propagation can be used to understand the properties ofmore » the real-world optics of finite extent and with local imperfections, allowing one to better understand the limits to nanoscale X-ray imaging.« less

  18. Dispersion transitions and pole-zero characteristics of finite inertially amplified acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Al Ba'ba'a, H.; DePauw, D.; Singh, T.; Nouh, M.

    2018-03-01

    This work presents a comprehensive analysis of wave dispersion patterns and band gap formation associated with Inertially Amplified Acoustic Metamaterials (IAAM). The findings explain the different mechanisms by which inertial amplification affect wave dispersion in the individual IAAM cell as well as the evolution of such effects in finite configurations of these cells. Derived expressions for acoustic wave dispersion in IAAMs reveal unique features including flat dispersion branches with zero group velocity and a transition from a metamaterial (local resonance) to a phononic behavior that is directly related to the location and magnitude of the inerter elements. Using a closed-form transfer function approach, the translation of such effects to IAAM realizations with a known number of cells is interpreted from the pole-zero distributions of the resultant finite structures. It is also shown that band gaps are not always necessarily enlarged in the presence of inertial amplification. Comparing with benchmark conventional acoustic metamaterials, the conditions leading up to favorable as well as inferior IAAM designs are fully derived. Finally, an alternative resonator-free acoustic metamaterial is presented and shown to exhibit local resonance effects under appropriately tuned conditions.

  19. A permanent magnet tubular linear generator for wave energy conversion

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Liu, Chunyuan; Yuan, Bang; Hu, Minqiang; Huang, Lei; Zhou, Shigui

    2012-04-01

    A novel three-phase permanent magnet tubular linear generator (PMTLG) with Halbach array is proposed for the sea wave energy conversion. Non-linear axi-symmetrical finite element method (FEM) is implemented to calculate the magnetic fields along air-gap for different Halbach arrays of PMTLGs. The PMTLG characteristics are analyzed and the simulation results are validated by the experiment. An assistant tooth is implemented to greatly minimize the end and cogging effects which cause the oscillatory detent force.

  20. Lamb Wave Propagation in a Restricted Geometry Composite PI-Joint Specimen (Preprint)

    DTIC Science & Technology

    2011-11-01

    adhesive, and were located along the length and height of the specimen as depicted in Figure 3. The sensors were 6.35 mm round disks of PZT , with a...in both cases for R1, R2, and R3. 3D Finite Element Model Geometry 200mm length 50mm width 140mm height x z y PZT Actuation Sensor...health monitoring using scanning laser vibrometry: III. Lamb waves for fatigue crack detection”, Smart Mater. Struct., Vol. 14, No. 6, 2005. 16

  1. Scattering of Lamb waves in a composite plate

    NASA Technical Reports Server (NTRS)

    Bratton, Robert; Datta, Subhendu; Shah, Arvind

    1991-01-01

    A combined analytical and finite element technique is developed to gain a better understanding of the scattering of elastic waves by defects. This hybrid method is capable of predicting scattered displacements from arbitrary shaped defects as well as inclusions of different material. The continuity of traction and displacements at the boundaries of the two areas provided the necessary equations to find the nodal displacements and expansion coefficients. Results clearly illustrate the influence of increasing crack depth on the scattered signal.

  2. Development and Application of Compatible Discretizations of Maxwell's Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D; Koning, J; Rieben, R

    We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we havemore » designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.« less

  3. Energy Finite Element Analysis for Computing the High Frequency Vibration of the Aluminum Testbed Cylinder and Correlating the Results to Test Data

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas

    2005-01-01

    The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.

  4. Iterative Addition of Kinetic Effects to Cold Plasma RF Wave Solvers

    NASA Astrophysics Data System (ADS)

    Green, David; Berry, Lee; RF-SciDAC Collaboration

    2017-10-01

    The hot nature of fusion plasmas requires a wave vector dependent conductivity tensor for accurate calculation of wave heating and current drive. Traditional methods for calculating the linear, kinetic full-wave plasma response rely on a spectral method such that the wave vector dependent conductivity fits naturally within the numerical method. These methods have seen much success for application to the well-confined core plasma of tokamaks. However, quantitative prediction of high power RF antenna designs for fusion applications has meant a requirement of resolving the geometric details of the antenna and other plasma facing surfaces for which the Fourier spectral method is ill-suited. An approach to enabling the addition of kinetic effects to the more versatile finite-difference and finite-element cold-plasma full-wave solvers was presented by where an operator-split iterative method was outlined. Here we expand on this approach, examine convergence and present a simplified kinetic current estimator for rapidly updating the right-hand side of the wave equation with kinetic corrections. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  5. The spectral cell method in nonlinear earthquake modeling

    NASA Astrophysics Data System (ADS)

    Giraldo, Daniel; Restrepo, Doriam

    2017-12-01

    This study examines the applicability of the spectral cell method (SCM) to compute the nonlinear earthquake response of complex basins. SCM combines fictitious-domain concepts with the spectral-version of the finite element method to solve the wave equations in heterogeneous geophysical domains. Nonlinear behavior is considered by implementing the Mohr-Coulomb and Drucker-Prager yielding criteria. We illustrate the performance of SCM with numerical examples of nonlinear basins exhibiting physically and computationally challenging conditions. The numerical experiments are benchmarked with results from overkill solutions, and using MIDAS GTS NX, a finite element software for geotechnical applications. Our findings show good agreement between the two sets of results. Traditional spectral elements implementations allow points per wavelength as low as PPW = 4.5 for high-order polynomials. Our findings show that in the presence of nonlinearity, high-order polynomials (p ≥ 3) require mesh resolutions above of PPW ≥ 10 to ensure displacement errors below 10%.

  6. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam

    USDA-ARS?s Scientific Manuscript database

    Spatially-resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of infinitely small size light beam. The method is, however, prone to error in m...

  7. Evaluation of Acoustic Propagation Paths into the Human Head

    DTIC Science & Technology

    2005-04-01

    pressure amplitude) via the alternate propagation paths. A 3D finite-element solid mesh was constructed using a digital image database of an adult...optics, rays are used to depict the path or paths taken as a light wave travels through a lens. However, in optics, the eikonal equation can be solved

  8. Finite element coiled cochlea model

    NASA Astrophysics Data System (ADS)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  9. Wave propagation in strain gradient poroelastic medium with microinertia: closed-form and finite element solutions

    NASA Astrophysics Data System (ADS)

    Rosi, Giuseppe; Scala, Ilaria; Nguyen, Vu-Hieu; Naili, Salah

    2017-06-01

    This article is about ultrasonic wave propagation in microstructured porous media. The classic Biot's model is enriched using a strain gradient approach to be able to capture high-order effects when the wavelength approaches the characteristic size of the microstructure. In order to reproduce actual transmission/reflection experiments performed on poroelastic samples, and to validate the choice of the model, the computation of the time domain response is necessary, as it allows for a direct comparison with experimental results. For obtaining the time response, we use two strategies: on the one hand we compute the closed form solution by using the Laplace and Fourier transforms techniques; on the other hand we used a finite element method. The results are presented for a transmission/reflection test performed on a poroelastic sample immersed in water. The effects introduced by the strain gradient terms are visible in the time response and in agreement with experimental observations. The results can be exploited in characterization of mechanical properties of poroelastic media by enhancing the reliability of quantitative ultrasound techniques.

  10. Calculation of reinforced-concrete frame strength under a simultaneous static cross section load and a column lateral impact

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay; Yugov, Nikolay; Kopanitsa, Dmitry; Kopanitsa, Georgy; Yugov, Alexey; Kaparulin, Sergey; Plyaskin, Andrey; Kalichkina, Anna; Ustinov, Artyom

    2016-01-01

    When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.

  11. Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations

    USGS Publications Warehouse

    Walters, R.A.; Carey, G.F.

    1983-01-01

    The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.

  12. A combined representation method for use in band structure calculations. 1: Method

    NASA Technical Reports Server (NTRS)

    Friedli, C.; Ashcroft, N. W.

    1975-01-01

    A representation was described whose basis levels combine the important physical aspects of a finite set of plane waves with those of a set of Bloch tight-binding levels. The chosen combination has a particularly simple dependence on the wave vector within the Brillouin Zone, and its use in reducing the standard one-electron band structure problem to the usual secular equation has the advantage that the lattice sums involved in the calculation of the matrix elements are actually independent of the wave vector. For systems with complicated crystal structures, for which the Korringa-Kohn-Rostoker (KKR), Augmented-Plane Wave (APW) and Orthogonalized-Plane Wave (OPW) methods are difficult to apply, the present method leads to results with satisfactory accuracy and convergence.

  13. Speed of transverse waves in a string revisited

    NASA Astrophysics Data System (ADS)

    Rizcallah, Joseph A.

    2017-11-01

    In many introductory-level physics textbooks, the derivation of the formula for the speed of transverse waves in a string is either omitted altogether or presented under physically overly idealized assumptions about the shape of the considered wave pulse and the related velocity and acceleration distributions. In this paper, we derive the named formula by applying Newton’s second law or the work-energy theorem to a finite element of the string, making no assumptions about the shape of the wave. We argue that the suggested method can help the student gain a deeper insight into the nature of waves and the related process of energy transport, as well as provide a new experience with the fundamental principles of mechanics as applied to extended and deformable bodies.

  14. Dynamics of a discrete chain of bi-stable elements: A biomimetic shock absorbing mechanism

    NASA Astrophysics Data System (ADS)

    Cohen, T.; Givli, S.

    2014-03-01

    A biomimetic shock absorbing mechanism, inspired by the bi-stable elongation behavior of the giant protein titin, is examined. A bi-stable element, composed of three mass particles with monotonous interaction forces, is suggested to facilitate an internal degree of freedom of finite mass which contributes significantly to dissipation upon unlocking of an internal link. An essential feature of the suggested element is that it undergoes reversible rapture and therefore retrieves its initial configuration once unloaded. The quasistatic and dynamic behaviors are investigated showing similarity to the common tri-linear bi-stable response, with two steady phases separated by a spinodal region. The dynamic behavior of a chain of elements is also examined, for several loading scenarios, showing that the suggested mechanism serves as an efficient shock absorber in a sub-critical dampening environment, as compared with a simple mass on spring system. Propagation of shock waves and refraction waves in an element chain is observed and the effect of natural imperfections is considered.

  15. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach

    NASA Astrophysics Data System (ADS)

    Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing

    2015-12-01

    Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.

  16. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.

    PubMed

    Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu

    2006-12-01

    A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.

  17. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  18. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-06-01

    It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.

  19. Dynamic characteristics and simplified numerical methods of an all-vertical-piled wharf in offshore deep water

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-qing; Sun, Xi-ping; Wang, Yuan-zhan; Yin, Ji-long; Wang, Chao-yang

    2015-10-01

    There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.

  20. Rotorcraft Transmission Noise Path Model, Including Distributed Fluid Film Bearing Impedance Modeling

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Hanford, Amanda D.; Shepherd, Micah R.; Campbell, Robert L.; Smith, Edward C.

    2010-01-01

    A computational approach for simulating the effects of rolling element and journal bearings on the vibration and sound transmission through gearboxes has been demonstrated. The approach, using ARL/Penn State s CHAMP methodology, uses Component Mode Synthesis of housing and shafting modes computed using Finite Element (FE) models to allow for rapid adjustment of bearing impedances in gearbox models. The approach has been demonstrated on NASA GRC s test gearbox with three different bearing configurations: in the first condition, traditional rolling element (ball and roller) bearings were installed, and in the second and third conditions, the traditional bearings were replaced with journal and wave bearings (wave bearings are journal bearings with a multi-lobed wave pattern on the bearing surface). A methodology for computing the stiffnesses and damping in journal and wave bearings has been presented, and demonstrated for the journal and wave bearings used in the NASA GRC test gearbox. The FE model of the gearbox, along with the rolling element bearing coupling impedances, was analyzed to compute dynamic transfer functions between forces applied to the meshing gears and accelerations on the gearbox housing, including several locations near the bearings. A Boundary Element (BE) acoustic model was used to compute the sound radiated by the gearbox. Measurements of the Gear Mesh Frequency (GMF) tones were made by NASA GRC at several operational speeds for the rolling element and journal bearing gearbox configurations. Both the measurements and the CHAMP numerical model indicate that the journal bearings reduce vibration and noise for the second harmonic of the gear meshing tones, but show no clear benefit to using journal bearings to reduce the amplitudes of the fundamental gear meshing tones. Also, the numerical model shows that the gearbox vibrations and radiated sound are similar for journal and wave bearing configurations.

  1. Validated finite element analyses of WaveOne Endodontic Instruments: a comparison between M-Wire and NiTi alloys.

    PubMed

    Bonessio, N; Pereira, E S J; Lomiento, G; Arias, A; Bahia, M G A; Buono, V T L; Peters, O A

    2015-05-01

    To validate torsional analysis, based on finite elements, of WaveOne instruments against in vitro tests and to model the effects of different nickel-titanium (NiTi) materials. WaveOne reciprocating instruments (Small, Primary and Large, n = 8 each, M-Wire) were tested under torsion according to standard ISO 3630-1. Torsional profiles including torque and angle at fracture were determined. Test conditions were reproduced through Finite Element Analysis (FEA) simulations based on micro-CT scans at 10-μm resolution; results were compared to experimental data using analysis of variance and two-sided one sample t-tests. The same simulation was performed on virtual instruments with identical geometry and load condition, based on M-Wire or conventional NiTi alloy. Torsional profiles from FEA simulations were in significant agreement with the in vitro results. Therefore, the models developed in this study were accurate and able to provide reliable simulation of the torsional performance. Stock NiTi files under torsional tests had up to 44.9%, 44.9% and 44.1% less flexibility than virtual M-Wire files at small deflections for Small, Primary and Large instruments, respectively. As deflection levels increased, the differences in flexibility between the two sets of simulated instruments decreased until fracture. Stock NiTi instruments had a torsional fracture resistance up to 10.3%, 8.0% and 7.4% lower than the M-Wire instruments, for the Small, Primary and Large file, respectively. M-Wire instruments benefitted primarily through higher material flexibility while still at low deflection levels, compared with conventional NiTi alloy. At fracture, the instruments did not take complete advantage of the enhanced fractural resistance of the M-Wire material, which determines only limited improvements of the torsional performance. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. Bandgaps and directional propagation of elastic waves in 2D square zigzag lattice structures

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng

    2014-12-01

    In this paper we propose various types of two-dimensional (2D) square zigzag lattice structures, and we study their bandgaps and directional propagation of elastic waves. The band structures and the transmission spectra of the systems are calculated by using the finite element method. The effects of the geometry parameters of the 2D-zigzag lattices on the bandgaps are investigated and discussed. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. Multiple wide complete bandgaps are found in a wide porosity range owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the systems. The deformed displacement fields of the transient response of finite structures subjected to time-harmonic loads are presented to show the directional wave propagation. The research in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.

  3. Effect of microstructure on the coupled electromagnetic-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates to infrared laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Judith A.; Zikry, M. A., E-mail: zikry@ncsu.edu

    2015-09-28

    The coupled electromagnetic (EM)-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates under laser irradiation and high strain rate loads has been investigated for various aggregate sizes and binder volume fractions. The cyclotrimethylenetrinitramine (RDX) crystals are modeled with a dislocation density-based crystalline plasticity formulation and the estane binder is modeled with finite viscoelasticity through a nonlinear finite element approach that couples EM wave propagation with laser heat absorption, thermal conduction, and inelastic deformation. Material property and local behavior mismatch at the crystal-binder interfaces resulted in geometric scattering of the EM wave, electric field and laser heating localization, high stress gradients, dislocation density, andmore » crystalline shear slip accumulation. Viscous sliding in the binder was another energy dissipation mechanism that reduced stresses in aggregates with thicker binder ligaments and larger binder volume fractions. This investigation indicates the complex interactions between EM waves and mechanical behavior, for accurate predictions of laser irradiation of heterogeneous materials.« less

  4. Construction strength analysis of landing craft tank conversion to passenger ship using finite element method

    NASA Astrophysics Data System (ADS)

    Nurul Misbah, Mohammad; Setyawan, Dony; Murti Dananjaya, Wisnu

    2018-03-01

    This research aims to determine the longitudinal strength of passenger ship which was converted from Landing Craft Tank with 54 m of length as stated by BKI (Biro Klasifikasi Indonesia / Indonesian Classification Bureau). Verification of strength value is done to 4 (four) loading conditions which are (1) empty load condition during sagging wave, (2) empty load condition during hogging wave, (3) full load condition during sagging wave and (4) full load condition during hogging wave. Analysis is done using Finite Element Analysis (FEA) software by modeling the entire part of passenger ship and its loading condition. The back and upfront part of ship centerline were used as the boundary condition. From that analysis it can be concluded that the maximum stress for load condition (1) is 72,393 MPa, 74,792 MPa for load condition (2), 129,92 MPa for load condition (3), and 132,4 MPa for load condition (4). Longitudinal strength of passenger ship fulfilled the criteria of empty load condition having smaller stress value than allowable stress which is 90 MPa, and during full load condition with smaller stress value than allowable stress which is 150 MPa. Analysis on longitudinal strength comparison with entire ship plate thickness variation of ± 2 mm from initial plate was also done during this research. From this research it can be concluded that plate thickness reduction causes the value of longitudinal strength to decrease, while plate thickness addition causes the value of longitudinal strength to increase.

  5. Characterization of Aircraft Structural Damage Using Guided Wave Based Finite Element Analysis for In-Flight Structural Health Management

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Krishnamurthy, Thiagarajan; Ross, Richard W.

    2016-01-01

    The development of multidisciplinary Integrated Vehicle Health Management (IVHM) tools will enable accurate detection, diagnosis and prognosis of damage under normal and adverse conditions during flight. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable catastrophic propagation of damage during a flight, load levels must be maintained that are below the load-carrying capacity for damaged aircraft structures. Hence, a capability is needed for accurate real-time predictions of safe load carrying capacity for aircraft structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size and location is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size and location is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries and sizes.

  6. Control of Love waves by resonant metasurfaces.

    PubMed

    Palermo, Antonio; Marzani, Alessandro

    2018-05-08

    Metasurfaces of mechanical resonators have been successfully used to control in-plane polarized surface waves for filtering, waveguiding and lensing applications across different length scales. In this work, we extend the concept of metasurfaces to anti-plane surface waves existing in semi-infinite layered media, generally known as Love waves. By means of an effective medium approach, we derive an original closed-form dispersion relation for the metasurface. This relation reveals the possibility to control the Love waves dispersive properties by varying the resonators mechanical parameters. We exploit this capability to manipulate the metasurface refractive index and design two gradient index (GRIN) metalenses, i.e. a Luneburg lens and a Maxwell lens. We confirm the performance of the designed lenses using full 3D finite element simulations. Our work demonstrates the possibility of realizing wave control devices for anti-plane waves.

  7. Nonlinear dispersion effects in elastic plates: numerical modelling and validation

    NASA Astrophysics Data System (ADS)

    Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.

  8. On the validation of seismic imaging methods: Finite frequency or ray theory?

    DOE PAGES

    Maceira, Monica; Larmat, Carene; Porritt, Robert W.; ...

    2015-01-23

    We investigate the merits of the more recently developed finite-frequency approach to tomography against the more traditional and approximate ray theoretical approach for state of the art seismic models developed for western North America. To this end, we employ the spectral element method to assess the agreement between observations on real data and measurements made on synthetic seismograms predicted by the models under consideration. We check for phase delay agreement as well as waveform cross-correlation values. Based on statistical analyses on S wave phase delay measurements, finite frequency shows an improvement over ray theory. Random sampling using cross-correlation values identifiesmore » regions where synthetic seismograms computed with ray theory and finite-frequency models differ the most. Our study suggests that finite-frequency approaches to seismic imaging exhibit measurable improvement for pronounced low-velocity anomalies such as mantle plumes.« less

  9. Proceedings of the 14th International Conference on the Numerical Simulation of Plasmas

    NASA Astrophysics Data System (ADS)

    Partial Contents are as follows: Numerical Simulations of the Vlasov-Maxwell Equations by Coupled Particle-Finite Element Methods on Unstructured Meshes; Electromagnetic PIC Simulations Using Finite Elements on Unstructured Grids; Modelling Travelling Wave Output Structures with the Particle-in-Cell Code CONDOR; SST--A Single-Slice Particle Simulation Code; Graphical Display and Animation of Data Produced by Electromagnetic, Particle-in-Cell Codes; A Post-Processor for the PEST Code; Gray Scale Rendering of Beam Profile Data; A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers; 3-D Electromagnetic PIC Simulation on the NRL Connection Machine; Plasma PIC Simulations on MIMD Computers; Vlasov-Maxwell Algorithm for Electromagnetic Plasma Simulation on Distributed Architectures; MHD Boundary Layer Calculation Using the Vortex Method; and Eulerian Codes for Plasma Simulations.

  10. Surface photovoltage measurements and finite element modeling of SAW devices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form ofmore » the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.« less

  11. Geometric and boundary element method simulations of acoustic reflections from rough, finite, or non-planar surfaces

    NASA Astrophysics Data System (ADS)

    Rathsam, Jonathan

    This dissertation seeks to advance the current state of computer-based sound field simulations for room acoustics. The first part of the dissertation assesses the reliability of geometric sound-field simulations, which are approximate in nature. The second part of the dissertation uses the rigorous boundary element method (BEM) to learn more about reflections from finite reflectors: planar and non-planar. Acoustical designers commonly use geometric simulations to predict sound fields quickly. Geometric simulation of reflections from rough surfaces is still under refinement. The first project in this dissertation investigates the scattering coefficient, which quantifies the degree of diffuse reflection from rough surfaces. The main result is that predicted reverberation time varies inversely with scattering coefficient if the sound field is nondiffuse. Additional results include a flow chart that enables acoustical designers to gauge how sensitive predicted results are to their choice of scattering coefficient. Geometric acoustics is a high-frequency approximation to wave acoustics. At low frequencies, more pronounced wave phenomena cause deviations between real-world values and geometric predictions. Acoustical designers encounter the limits of geometric acoustics in particular when simulating the low frequency response from finite suspended reflector panels. This dissertation uses the rigorous BEM to develop an improved low-frequency radiation model for smooth, finite reflectors. The improved low frequency model is suggested in two forms for implementation in geometric models. Although BEM simulations require more computation time than geometric simulations, BEM results are highly accurate. The final section of this dissertation uses the BEM to investigate the sound field around non-planar reflectors. The author has added convex edges rounded away from the source side of finite, smooth reflectors to minimize coloration of reflections caused by interference from boundary waves. Although the coloration could not be fully eliminated, the convex edge increases the sound energy reflected into previously nonspecular zones. This excess reflected energy is marginally audible using a standard of 20 dB below direct sound energy. The convex-edged panel is recommended for use when designers want to extend reflected energy spatially beyond the specular reflection zone of a planar panel.

  12. Numerical modelling and experimental analysis of acoustic emission

    NASA Astrophysics Data System (ADS)

    Gerasimov, S. I.; Sych, T. V.

    2018-05-01

    In the present paper, the authors report on the application of non-destructive acoustic waves technologies to determine the structural integrity of engineering components. In particular, a finite element (FE) system COSMOS/M is used to investigate propagation characteristics of ultrasonic waves in linear, plane and three-dimensional structures without and with geometric concentrators. In addition, the FE results obtained are compared to the analytical and experimental ones. The study illustrates the efficient use of the FE method to model guided wave propagation problems and demonstrates the FE method’s potential to solve problems when an analytical solution is not possible due to “complicated” geometry.

  13. Full-Scale Direct Numerical Simulation of Two- and Three-Dimensional Instabilities and Rivulet Formulation in Heated Falling Films

    NASA Technical Reports Server (NTRS)

    Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.

    1995-01-01

    A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.

  14. New Combinational Method for Noninvasive Treatments of Superficial Tissues for Body Aesthetics Applications

    NASA Astrophysics Data System (ADS)

    Rybyanets, A. N.; Naumenko, A. A.

    The paper introduces an innovative combinational treatment method based on ultrasonic standing waves (USW) technology for noninvasive surgical, therapeutic, lypolitic or cosmetic treatment of tissues including subcutaneous adipose tissue, cellulite or skin on arbitrary body part of patient. The method is based on simultaneous or successive applying of constructively interfering physically and biologically sensed influences: USW, ultrasonic shear waves, radio-frequency (RF) heating, and vacuum massage. The paper provides basic physical principles of USW as well as critical comparison of USW and HIFU methods. The results of finite-elements and finite- difference modeling of USW transducer design and nodal pattern structure in tissue are presented. Biological effects of USW-tissue interaction and synergetic aspects of USW and RF combination are explored. Combinational treatment transducer designs and original in-vitro experiments on tissues are described.

  15. Methods for the calculation of axial wave numbers in lined ducts with mean flow

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1981-01-01

    A survey is made of the methods available for the calculation of axial wave numbers in lined ducts. Rectangular and circular ducts with both uniform and non-uniform flow are considered as are ducts with peripherally varying liners. A historical perspective is provided by a discussion of the classical methods for computing attenuation when no mean flow is present. When flow is present these techniques become either impractical or impossible. A number of direct eigenvalue determination schemes which have been used when flow is present are discussed. Methods described are extensions of the classical no-flow technique, perturbation methods based on the no-flow technique, direct integration methods for solution of the eigenvalue equation, an integration-iteration method based on the governing differential equation for acoustic transmission, Galerkin methods, finite difference methods, and finite element methods.

  16. High order Nyström method for elastodynamic scattering

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Gurrala, Praveen; Song, Jiming; Roberts, Ron

    2016-02-01

    Elastic waves in solids find important applications in ultrasonic non-destructive evaluation. The scattering of elastic waves has been treated using many approaches like the finite element method, boundary element method and Kirchhoff approximation. In this work, we propose a novel accurate and efficient high order Nyström method to solve the boundary integral equations for elastodynamic scattering problems. This approach employs high order geometry description for the element, and high order interpolation for fields inside each element. Compared with the boundary element method, this approach makes the choice of the nodes for interpolation based on the Gaussian quadrature, which renders matrix elements for far field interaction free from integration, and also greatly simplifies the process for singularity and near singularity treatment. The proposed approach employs a novel efficient near singularity treatment that makes the solver able to handle extreme geometries like very thin penny-shaped crack. Numerical results are presented to validate the approach. By using the frequency domain response and performing the inverse Fourier transform, we also report the time domain response of flaw scattering.

  17. Effects of Earth's curvature in full-wave modeling of VLF propagation

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Lehtinen, N. G.; Inan, U. S.; Stanford VLF Group

    2011-12-01

    We show how to include curvature in the full-wave finite element approach to calculate ELF/VLF wave propagation in horizontally stratified earth-ionosphere waveguide. A general curvilinear stratified system is considered, and the numerical solutions of full-wave method in curvilinear system are compared with the analytic solutions in the cylindrical and spherical waveguides filled with an isotropic medium. We calculate the attenuation and height gain for modes in the Earth-ionosphere waveguide, taking into account the anisotropicity of ionospheric plasma, for different assumptions about the Earth's curvature, and quantify the corrections due to the curvature. The results are compared with the results of previous models, such as LWPC, as well as with ground and satellite observations, and show improved accuracy compared with full-wave method without including the curvature effect.

  18. Differentiate low impedance media in closed steel tank using ultrasonic wave tunneling.

    PubMed

    Wang, Chunying; Chen, Zhaojiang; Cao, Wenwu

    2018-01-01

    Ultrasonic wave tunneling through seriously mismatched media, such as steel and water, is possible only when the frequency matches the resonance of the steel plate. But it is nearly impossible to realize continuous wave tunneling if the low acoustic impedance media is air because the transducer frequency cannot be made so accurate. The issue might be resolved using tone-burst signals. Using finite element simulations, we found that for air media when the cycle number is 20, the -6dB bandwidth of energy transmission increased from 0.001% to 5.9% compared with that of continuous waves. We show that the tunneling waves can give us enough information to distinguish low acoustic impedance media inside a steel tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonites

    NASA Astrophysics Data System (ADS)

    Adam, L.; Frehner, M.; Sauer, K. M.; Toy, V.; Guerin-Marthe, S.; Boulton, C. J.

    2017-12-01

    Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonitesLudmila Adam1, Marcel Frehner2, Katrina Sauer3, Virginia Toy3, Simon Guerin-Marthe4, Carolyn Boulton5(1) University of Auckland, New Zealand, (2) ETH Zurich, Switzerland, (3) University of Otago, New Zealand (4) Durham University, Earth Sciences, United Kingdom (5) Victoria University of Wellington, New Zealand Quartzo-feldspathic mylonites and schists are the main contributors to seismic wave anisotropy in the vicinity of the Alpine Fault (New Zealand). We must determine how the physical properties of rocks like these influence elastic wave anisotropy if we want to unravel both the reasons for heterogeneous seismic wave propagation, and interpret deformation processes in fault zones. To study such controls on velocity anisotropy we can: 1) experimentally measure elastic wave anisotropy on cores at in-situ conditions or 2) estimate wave velocities by static (effective medium averaging) or dynamic (finite element) modelling based on EBSD data or photomicrographs. Here we compare all three approaches in study of schist and mylonite samples from the Alpine Fault. Volumetric proportions of intrinsically anisotropic micas in cleavage domains and comparatively isotropic quartz+feldspar in microlithons commonly vary significantly within one sample. Our analysis examines the effects of these phases and their arrangement, and further addresses how heterogeneity influences elastic wave anisotropy. We compare P-wave seismic anisotropy estimates based on millimetres-scale ultrasonic waves under in situ conditions, with simulations that account for micrometre-scale variations in elastic properties of constitutent minerals with the MTEX toolbox and finite-element wave propagation on EBSD images. We observe that the sorts of variations in the distribution of micas and quartz+feldspar within any one of our real core samples can change the elastic wave anisotropy by 10%. In addition, at 60 MPa confining pressure, experimental elastic anisotropy is greater than modelled anisotropy, which could indicate that open microfractures dramatically influence seismic wave anisotropy in the top 3 to 4 km of the crust, or be related to the different resolutions of the two methods.

  20. Finite element cochlea box model - Mechanical and electrical analysis of the cochlea

    NASA Astrophysics Data System (ADS)

    Nikolic, Milica; Teal, Paul D.; Isailovic, Velibor; Filipović, Nenad

    2015-12-01

    The primary role of the cochlea is to transform external sound stimuli into mechanical vibrations and then to neural impulses which are sent to the brain. A simplified cochlea box model was developed using the finite element method. Firstly, a mechanical model of the cochlea was analyzed. The box model consists of the basilar membrane and two fluid chambers - the scala vestibuli and scala tympani. The third chamber, the scala media, was neglected in the mechanical analysis. The best agreement with currently available analytical and experimental results was obtained when behavior of the fluid in the chambers was described using the wave acoustic equation and behavior of the basilar membrane was modeled with Newtonian dynamics. The obtained results show good frequency mapping. The second approach was to use an active model of the cochlea in which the Organ of Corti was included. The operation of the Organ of Corti involves the generation of current, caused by mechanical vibration. This current in turn causes a force applied to the basilar membrane, creating in this way an active feedback mechanism. A state space representation of the electro-mechanical model from existing literature was implemented and a first comparison with the finite element method is presented.

  1. A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method

    NASA Astrophysics Data System (ADS)

    Fu, Shubin; Gao, Kai

    2017-11-01

    Conventional finite-element methods for solving the acoustic-wave Helmholtz equation in highly heterogeneous media usually require finely discretized mesh to represent the medium property variations with sufficient accuracy. Computational costs for solving the Helmholtz equation can therefore be considerably expensive for complicated and large geological models. Based on the generalized multiscale finite-element theory, we develop a novel continuous Galerkin method to solve the Helmholtz equation in acoustic media with spatially variable velocity and mass density. Instead of using conventional polynomial basis functions, we use multiscale basis functions to form the approximation space on the coarse mesh. The multiscale basis functions are obtained from multiplying the eigenfunctions of a carefully designed local spectral problem with an appropriate multiscale partition of unity. These multiscale basis functions can effectively incorporate the characteristics of heterogeneous media's fine-scale variations, thus enable us to obtain accurate solution to the Helmholtz equation without directly solving the large discrete system formed on the fine mesh. Numerical results show that our new solver can significantly reduce the dimension of the discrete Helmholtz equation system, and can also obviously reduce the computational time.

  2. Design synthesis and optimization of permanent magnet synchronous machines based on computationally-efficient finite element analysis

    NASA Astrophysics Data System (ADS)

    Sizov, Gennadi Y.

    In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.

  3. Modeling North Atlantic Nor'easters With Modern Wave Forecast Models

    NASA Astrophysics Data System (ADS)

    Perrie, Will; Toulany, Bechara; Roland, Aron; Dutour-Sikiric, Mathieu; Chen, Changsheng; Beardsley, Robert C.; Qi, Jianhua; Hu, Yongcun; Casey, Michael P.; Shen, Hui

    2018-01-01

    Three state-of-the-art operational wave forecast model systems are implemented on fine-resolution grids for the Northwest Atlantic. These models are: (1) a composite model system consisting of SWAN implemented within WAVEWATCHIII® (the latter is hereafter, WW3) on a nested system of traditional structured grids, (2) an unstructured grid finite-volume wave model denoted "SWAVE," using SWAN physics, and (3) an unstructured grid finite element wind wave model denoted as "WWM" (for "wind wave model") which uses WW3 physics. Models are implemented on grid systems that include relatively large domains to capture the wave energy generated by the storms, as well as including fine-resolution nearshore regions of the southern Gulf of Maine with resolution on the scale of 25 m to simulate areas where inundation and coastal damage have occurred, due to the storms. Storm cases include three intense midlatitude cases: a spring Nor'easter storm in May 2005, the Patriot's Day storm in 2007, and the Boxing Day storm in 2010. Although these wave model systems have comparable overall properties in terms of their performance and skill, it is found that there are differences. Models that use more advanced physics, as presented in recent versions of WW3, tuned to regional characteristics, as in the Gulf of Maine and the Northwest Atlantic, can give enhanced results.

  4. Detonator Performance Characterization using Multi-Frame Laser Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Clarke, Steven; Landon, Colin; Murphy, Michael; Martinez, Michael; Mason, Thomas; Thomas, Keith

    2009-06-01

    Multi-frame Laser Schlieren Imaging of shock waves produced by detonators in transparent witness materials can be used to evaluate detonator performance. We use inverse calculations of the 2D propagation of shock waves in the EPIC finite element model computer code to calculate a temporal-spatial-pressure profile on the surface of the detonator that is consistent with the experimental shock waves from the schlieren imaging. Examples of calculated 2D temporal-spatial-pressure profiles from a range of detonator types (EFI --exploding foil initiators, DOI -- direct optical initiation, EBW -- exploding bridge wire, hotwire), detonator HE materials (PETN, HMX, etc), and HE densities. Also pressure interaction profiles from the interaction of multiple shock waves will be shown. LA-UR-09-00909.

  5. Surface response of a viscoelastic medium to subsurface acoustic sources with application to medical diagnosis

    NASA Astrophysics Data System (ADS)

    Royston, Thomas J.; Yazicioglu, Yigit; Loth, Francis

    2003-02-01

    The response at the surface of an isotropic viscoelastic medium to buried fundamental acoustic sources is studied theoretically, computationally and experimentally. Finite and infinitesimal monopole and dipole sources within the low audible frequency range (40-400 Hz) are considered. Analytical and numerical integral solutions that account for compression, shear and surface wave response to the buried sources are formulated and compared with numerical finite element simulations and experimental studies on finite dimension phantom models. It is found that at low audible frequencies, compression and shear wave propagation from point sources can both be significant, with shear wave effects becoming less significant as frequency increases. Additionally, it is shown that simple closed-form analytical approximations based on an infinite medium model agree well with numerically obtained ``exact'' half-space solutions for the frequency range and material of interest in this study. The focus here is on developing a better understanding of how biological soft tissue affects the transmission of vibro-acoustic energy from biological acoustic sources below the skin surface, whose typical spectral content is in the low audible frequency range. Examples include sound radiated from pulmonary, gastro-intestinal and cardiovascular system functions, such as breath sounds, bowel sounds and vascular bruits, respectively.

  6. Nonlinear Aeroacoustics Computations by the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2003-01-01

    The Space-Time Conservation Element and Solution Element Method, or CE/SE Method for short, is a recently developed numerical method for conservation laws. Despite its second order accuracy in space and time, it possesses low dispersion errors and low dissipation. The method is robust enough to cover a wide range of compressible flows: from weak linear acoustic waves to strong discontinuous waves (shocks). An outstanding feature of the CE/SE scheme is its truly multi-dimensional, simple but effective non-reflecting boundary condition (NRBC), which is particularly valuable for computational aeroacoustics (CAA). In nature, the method may be categorized as a finite volume method, where the conservation element (CE) is equivalent to a finite control volume (or cell) and the solution element (SE) can be understood as the cell interface. However, due to its careful treatment of the surface fluxes and geometry, it is different from the existing schemes. Currently, the CE/SE scheme has been developed to a matured stage that a 3-D unstructured CE/SE Navier-Stokes solver is already available. However, in the present review paper, as a general introduction to the CE/SE method, only the 2-D unstructured Euler CE/SE solver is chosen and sketched in section 2. Then applications of the 2-D and 3-D CE/SE schemes to linear, and in particular, nonlinear aeroacoustics are depicted in sections 3, 4, and 5 to demonstrate its robustness and capability.

  7. Design of invisibility cloaks with an open tunnel.

    PubMed

    Ako, Thomas; Yan, Min; Qiu, Min

    2010-12-20

    In this paper we apply the methodology of transformation optics for design of a novel invisibility cloak which can possess an open tunnel. Such a cloak facilitates the insertion (retrieval) of matter into (from) the cloak's interior without significantly affecting the cloak's performance, overcoming the matter exchange bottleneck inherent to most previously proposed cloak designs.We achieve this by applying a transformation which expands a point at the origin in electromagnetic space to a finite area in physical space in a highly anisotropic manner. The invisibility performance of the proposed cloak is verified by using full-wave finite-element simulations.

  8. ICANT, a code for the self-consistent computation of ICRH antenna coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecoul, S.; Heuraux, S.; Koch, R.

    1996-02-01

    The code deals with 3D antenna structures (finite length antennae) that are used to launch electromagnetic waves into tokamak plasmas. The antenna radiation problem is solved using a finite boundary element technique combined with a spectral solution of the interior problem. The slab approximation is used, and periodicity in {ital y} and {ital z} directions is introduced to account for toroidal geometry. We present results for various types of antennae radiating in vacuum: antenna with a finite Faraday screen and ideal Faraday screen, antenna with side limiters and phased antenna arrays. The results (radiated power, current profile) obtained are verymore » close to analytical solutions when available. {copyright} {ital 1996 American Institute of Physics.}« less

  9. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-13

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  10. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  11. Modelling cavitation erosion using fluid–material interaction simulations

    PubMed Central

    Chahine, Georges L.; Hsiao, Chao-Tsung

    2015-01-01

    Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed. PMID:26442140

  12. Modelling based on Spatial Impulse Response Model for Optimization of Inter Digital Transducers (SAW Sensors) for Non Destructive Testing

    NASA Astrophysics Data System (ADS)

    Fall, D.; Duquennoy, M.; Ouaftouh, M.; Piwakowski, B.; Jenot, F.

    This study deals with modelling SAW-IDT transducers for their optimization. These sensors are specifically developed to characterize properties of thin layers, coatings and functional surfaces. Among the methods of characterization, the ultrasonic methods using Rayleigh surface waves are particularly interesting because the propagation of these waves is close to the surface of material and the energy is concentrated within a layer under the surface of about one wavelength thick. In order to characterize these coatings and structures, it is necessary to work in high frequencies, this is why in this study, SAW-IDT sensors are realized for surface acoustic wave generation. For optimization of these SAW-IDT sensors, particularly their band-width, it is necessary to study various IDT configurations by varying the number of electrodes, dimensions of the electrodes, their shapes and spacings. Thus it is necessary to implement effective and rapid technique for modelling. The originality of this study is to develop simulation tools based on Spatial Impulse Response model. Therefore it will be possible to reduce considerably computing time and results are obtained in a few seconds, instead of several hours (or days) by using finite element method. In order to validate this method, theoretical and experimental results are compared with finite element method and Interferometric measurements. The results obtained show a good overall concordance and confirm effectiveness of suggested method.

  13. Guided wave propagation in single and double layer hollow cylinders embedded in infinite media.

    PubMed

    Jia, Hua; Jing, Mu; Joseph, L Rose

    2011-02-01

    Millions of miles of pipes are being used for the transportation, distribution, and local use of petroleum products, gas, water, and chemicals. Most of the pipes are buried in soil, leading to the significance of the study on the subject of guided wave propagation in pipes with soil influence. Previous investigations of ultrasonic guided wave propagation in an elastic hollow cylinder and in an elastic hollow cylinder coated with a viscoelastic material have led to the development of inspection techniques for bare and coated pipes. However, the lack of investigation on guided wave propagation in hollow cylinders embedded in infinite media like soil has hindered the development of pipe inspection methods. Therefore the influence of infinite media on wave propagation is explored in this paper. Dispersion curves and wave structures of both axisymmetric and nonaxisymmetric wave modes are developed. Due to the importance of the convergence of numerical calculations, the requirements of thickness and element number of the finite soil layer between hollow cylinder and infinite element layer are discussed, and an optimal combination is obtained in this paper. Wave structures are used for the mode identification in the non-monotonic region caused by the viscoelastic properties of coating and infinite media.

  14. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  15. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    PubMed

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  16. Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates.

    PubMed

    Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2018-04-01

    Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios <16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  17. Effect of strong elastic contrasts on the propagation of seismic wave in hard-rock environments

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Zheng, L.; Liu, Q.; Milkereit, B.

    2013-12-01

    Understanding the propagation of seismic waves in a presence of strong elastic contrasts, such as topography, tunnels and ore-bodies is still a challenge. Safety in mining is a major concern and seismic monitoring is the main tool here. For engineering purposes, amplitudes (peak particle velocity/acceleration) and travel times of seismic events (mostly blasts or microseismic events) are critical parameters that have to be determined at various locations in a mine. These parameters are useful in preparing risk maps or to better understand the process of spatial and temporal stress distributions in a mine. Simple constant velocity models used for monitoring studies in mining, cannot explain the observed complexities in scattered seismic waves. In hard-rock environments modeling of elastic seismic wavefield require detailed 3D petrophysical, infrastructure and topographical data to simulate the propagation of seismic wave with a frequencies up to few kilohertz. With the development of efficient numerical techniques, and parallel computation facilities, a solution for such a problem is achievable. In this study, the effects of strong elastic contrasts such as ore-bodies, rough topography and tunnels will be illustrated using 3D modeling method. The main tools here are finite difference code (SOFI3D)[1] that has been benchmarked for engineering studies, and spectral element code (SPECFEM) [2], which was, developed for global seismology problems. The modeling results show locally enhanced peak particle velocity due to presence of strong elastic contrast and topography in models. [1] Bohlen, T. Parallel 3-D viscoelastic finite difference seismic modeling. Computers & Geosciences 28 (2002) 887-899 [2] Komatitsch, D., and J. Tromp, Introduction to the spectral-element method for 3-D seismic wave propagation, Geophys. J. Int., 139, 806-822, 1999.

  18. Acoustic, elastic and poroelastic simulations of CO2 sequestration crosswell monitoring based on spectral-element and adjoint methods

    NASA Astrophysics Data System (ADS)

    Morency, Christina; Luo, Yang; Tromp, Jeroen

    2011-05-01

    The key issues in CO2 sequestration involve accurate monitoring, from the injection stage to the prediction and verification of CO2 movement over time, for environmental considerations. '4-D seismics' is a natural non-intrusive monitoring technique which involves 3-D time-lapse seismic surveys. Successful monitoring of CO2 movement requires a proper description of the physical properties of a porous reservoir. We investigate the importance of poroelasticity by contrasting poroelastic simulations with elastic and acoustic simulations. Discrepancies highlight a poroelastic signature that cannot be captured using an elastic or acoustic theory and that may play a role in accurately imaging and quantifying injected CO2. We focus on time-lapse crosswell imaging and model updating based on Fréchet derivatives, or finite-frequency sensitivity kernels, which define the sensitivity of an observable to the model parameters. We compare results of time-lapse migration imaging using acoustic, elastic (with and without the use of Gassmann's formulae) and poroelastic models. Our approach highlights the influence of using different physical theories for interpreting seismic data, and, more importantly, for extracting the CO2 signature from seismic waveforms. We further investigate the differences between imaging with the direct compressional wave, as is commonly done, versus using both direct compressional (P) and shear (S) waves. We conclude that, unlike direct P-wave traveltimes, a combination of direct P- and S-wave traveltimes constrains most parameters. Adding P- and S-wave amplitude information does not drastically improve parameter sensitivity, but it does improve spatial resolution of the injected CO2 zone. The main advantage of using a poroelastic theory lies in direct sensitivity to fluid properties. Simulations are performed using a spectral-element method, and finite-frequency sensitivity kernels are calculated using an adjoint method.

  19. Hybrid Numerical-Analytical Scheme for Calculating Elastic Wave Diffraction in Locally Inhomogeneous Waveguides

    NASA Astrophysics Data System (ADS)

    Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.

    2018-01-01

    Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.

  20. Detection and assessment of flaws in friction stir welded joints using ultrasonic guided waves: experimental and finite element analysis

    NASA Astrophysics Data System (ADS)

    Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey

    2018-02-01

    Ultrasonic guided waves (GWs), e.g. Lamb waves, have been proven effective in the detection of defects such as corrosion, cracking, delamination, and debonding in both composite and metallic structures. They are a significant tool employed in structural health monitoring. In this study, the ability of ultrasonic GWs to assess the quality of friction stir welding (FSW) was investigated. Four friction stir welded AZ31B magnesium plates processed with different welding parameters and a non-welded plate were used. The fundamental symmetric (S0) Lamb wave mode was excited using piezoelectric wafers (PZTs). Further, the S0 mode was separated using the "Improved complete ensemble empirical mode decomposition with adaptive noise (Improved CEEMDAN)" technique. A damage index (DI) was defined based on the variation in the amplitude of the captured wave signals in order to detect the presence and asses the severity of damage resulting from the welding process. As well, computed tomography (CT) scanning was used as a non-destructive testing (NDT) technique to assess the actual weld quality and validate predictions based on the GW approach. The findings were further confirmed using finite element analysis (FEA). To model the actual damage profile in the welds, "Mimics" software was used for the 3D reconstruction of the CT scans. The built 3D models were later used for evaluation of damage volume and for FEA. The damage volumes were correlated to the damage indices computed from both experimental and numerical data. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the friction stir welded joints. This methodology has great potential as a future classification method of FSW quality.

  1. Study on the application of shear-wave elastography to thin-layered media and tubular structure: Finite-element analysis and experiment verification

    NASA Astrophysics Data System (ADS)

    Jang, Jun-keun; Kondo, Kengo; Namita, Takeshi; Yamakawa, Makoto; Shiina, Tsuyoshi

    2016-07-01

    Shear-wave elastography (SWE) enables the noninvasive and quantitative evaluation of the mechanical properties of human soft tissue. Generally, shear-wave velocity (C S) can be estimated using the time-of-flight (TOF) method. Young’s modulus is then calculated directly from the estimated C S. However, because shear waves in thin-layered media propagate as guided waves, C S cannot be accurately estimated using the conventional TOF method. Leaky Lamb dispersion analysis (LLDA) has recently been proposed to overcome this problem. In this study, we performed both experimental and finite-element (FE) analyses to evaluate the advantages of LLDA over TOF. In FE analysis, we investigated why the conventional TOF is ineffective for thin-layered media. In phantom experiments, C S results estimated using the two methods were compared for 1.5 and 2% agar plates and tube phantoms. Furthermore, it was shown that Lamb waves can be applied to tubular structures by extracting lateral waves traveling in the long axis direction of the tube using a two-dimensional window. Also, the effects of the inner radius and stiffness (or shear wavelength) of the tube on the estimation performance of LLDA were experimentally discussed. In phantom experiments, the results indicated good agreement between LLDA (plate phantoms of 2 mm thickness: 5.0 m/s for 1.5% agar and 7.2 m/s for 2% agar; tube phantoms with 2 mm thickness and 2 mm inner radius: 5.1 m/s for 1.5% agar and 7.0 m/s for 2% agar; tube phantoms with 2 mm thickness and 4 mm inner radius: 5.3 m/s for 1.5% agar and 7.3 m/s for 2% agar) and SWE measurements (bulk phantoms: 5.3 m/s ± 0.27 for 1.5% agar and 7.3 m/s ± 0.54 for 2% agar).

  2. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    NASA Astrophysics Data System (ADS)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  3. Octree-based Global Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Ramirez-Guzman, L.; Juarez, A.; Bielak, J.; Salazar Monroy, E. F.

    2017-12-01

    Seismological research has motivated recent efforts to construct more accurate three-dimensional (3D) velocity models of the Earth, perform global simulations of wave propagation to validate models, and also to study the interaction of seismic fields with 3D structures. However, traditional methods for seismogram computation at global scales are limited by computational resources, relying primarily on traditional methods such as normal mode summation or two-dimensional numerical methods. We present an octree-based mesh finite element implementation to perform global earthquake simulations with 3D models using topography and bathymetry with a staircase approximation, as modeled by the Carnegie Mellon Finite Element Toolchain Hercules (Tu et al., 2006). To verify the implementation, we compared the synthetic seismograms computed in a spherical earth against waveforms calculated using normal mode summation for the Preliminary Earth Model (PREM) for a point source representation of the 2014 Mw 7.3 Papanoa, Mexico earthquake. We considered a 3 km-thick ocean layer for stations with predominantly oceanic paths. Eigen frequencies and eigen functions were computed for toroidal, radial, and spherical oscillations in the first 20 branches. Simulations are valid at frequencies up to 0.05 Hz. Matching among the waveforms computed by both approaches, especially for long period surface waves, is excellent. Additionally, we modeled the Mw 9.0 Tohoku-Oki earthquake using the USGS finite fault inversion. Topography and bathymetry from ETOPO1 are included in a mesh with more than 3 billion elements; constrained by the computational resources available. We compared estimated velocity and GPS synthetics against observations at regional and teleseismic stations of the Global Seismological Network and discuss the differences among observations and synthetics, revealing that heterogeneity, particularly in the crust, needs to be considered.

  4. Modeling thermoelastic distortion of optics using elastodynamic reciprocity

    NASA Astrophysics Data System (ADS)

    King, Eleanor; Levin, Yuri; Ottaway, David; Veitch, Peter

    2015-07-01

    Thermoelastic distortion resulting from optical absorption by transmissive and reflective optics can cause unacceptable changes in optical systems that employ high-power beams. In advanced-generation laser-interferometric gravitational wave detectors, for example, optical absorption is expected to result in wavefront distortions that would compromise the sensitivity of the detector, thus necessitating the use of adaptive thermal compensation. Unfortunately, these systems have long thermal time constants, and so predictive feed-forward control systems could be required, but the finite-element analysis is computationally expensive. We describe here the use of the Betti-Maxwell elastodynamic reciprocity theorem to calculate the response of linear elastic bodies (optics) to heating that has arbitrary spatial distribution. We demonstrate, using a simple example, that it can yield accurate results in computational times that are significantly less than those required for finite-element analyses.

  5. Duality and Unified Analysis of Discrete Approximations in Structural Dynamics and Wave Propagation: Comparison of rho-method Finite Elements with kappa-method NURBS (Preprint)

    DTIC Science & Technology

    2007-10-10

    Dipartimento di Meccanica Strutturale, Università degli Studi di Pavia cDipartimento di Matematica , Università degli Studi di Pavia dEuropean Centre...for Training and Research in Earthquake Engineering, Pavia eIstituto di Matematica Applicata e Tecnologie Informatiche del CNR, Pavia “Comparisons

  6. Time-Domain Finite Element Analysis of Nonlinear Breakdown Problems in High-Power-Microwave Devices and Systems

    DTIC Science & Technology

    2015-12-24

    simulation of the electromagnetic- plasma interaction and the high-power microwave breakdown in air. Under the high pressure and high frequency condition of...the high-power air breakdown, the physical phenomenon is described using a nonlinearly coupled full-wave Maxwell and fluid plasma system. This...Challenges ........................................................................... 3 3.1.1 Plasma Fluid Model

  7. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.

    PubMed

    Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T

    2018-01-01

    In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.

  8. Dispersion characteristics of plasmonic waveguides for THz waves

    NASA Astrophysics Data System (ADS)

    Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur

    2013-05-01

    Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.

  9. Influence of hole shape on sound absorption of underwater anechoic layers

    NASA Astrophysics Data System (ADS)

    Ye, Changzheng; Liu, Xuewei; Xin, Fengxian; Lu, Tian Jian

    2018-07-01

    A theoretical model is established to evaluate the sound absorption performance of underwater anechoic layers containing periodically distributed axial holes. Based on the concept for homogenized equivalent layer and on the theory of wave propagation in viscoelastic cylindrical tubes, the transfer function method is used to obtain the absorption coefficient of the anechoic layer adhered on the rigid plate. Three different types of axial holes are considered, the cylindrical, the conical and the horn shaped one. Results obtained with full finite element simulations are used to validate the model predictions. For each hole type, the vibration characteristics of the anechoic layer as well as the propagation of longitudinal and transverse waves in the layer are analyzed in detail to explore the physical mechanisms underlying its absorption performance. Furthermore, a three-dimensional finite element model for oblique incidence is developed to study the effect of hole shape at different incidence angles. The results show that two new absorption peaks appear since the oblique incidence excites two horizontal modes. Among the three hole types, the horn one achieves the best absorption performance at relatively low frequencies both in normal incidence and in oblique incidence.

  10. Interpreting electrically evoked emissions using a finite-element model of the cochlea

    NASA Astrophysics Data System (ADS)

    Deo, Niranjan V.; Grosh, Karl; Parthasarathi, Anand

    2003-10-01

    Electrically evoked otoacoustic emissions (EEOAEs) are used to investigate in vivo cochlear electromechanical function. Electrical stimulation through bipolar electrodes placed very close to the basilar membrane (in the scala vestibuli and scala tympani) gives rise to a narrow frequency range of EEOAEs, limited to around 20 kHz when the electrodes are placed near the 18-kHz best frequency place. Model predictions using a three-dimensional inviscid fluid model in conjunction with a middle ear model [S. Puria and J. B. Allen, J. Acoust. Soc. Am. 104, 3463-3481 (1998)] and a simple model for outer hair cell activity [S. Neely and D. Kim, J. Acoust. Soc. Am. 94, 137-146 (1993)] are used to interpret the experimental results. To estimate effect of viscosity, model results are compared with those obtained for a viscous fluid. The models are solved using a 2.5-D finite-element formulation. Predictions show that the high frequency limit of the excitation is determined by the spatial extent of the current stimulus. The global peaks in the EEOAE spectra are interpreted as constructive interference between electrically evoked backward traveling waves and forward traveling waves reflected from the stapes. Steady state response predictions of the model are presented.

  11. Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides

    NASA Astrophysics Data System (ADS)

    Hakoda, Christopher; Rose, Joseph; Shokouhi, Parisa; Lissenden, Clifford

    2018-04-01

    Dispersion curves are essential to any guided-wave-related project. The Semi-Analytical Finite Element (SAFE) method has become the conventional way to compute dispersion curves for homogeneous waveguides. However, only recently has a general SAFE formulation for commercial and open-source software become available, meaning that until now SAFE analyses have been variable and more time consuming than desirable. Likewise, the Floquet boundary conditions enable analysis of waveguides with periodicity and have been an integral part of the development of metamaterials. In fact, we have found the use of Floquet boundary conditions to be an extremely powerful tool for homogeneous waveguides, too. The nuances of using periodic boundary conditions for homogeneous waveguides that do not exhibit periodicity are discussed. Comparisons between this method and SAFE are made for selected homogeneous waveguide applications. The COMSOL Multiphysics software is used for the results shown, but any standard finite element software that can implement Floquet periodicity (user-defined or built-in) should suffice. Finally, we identify a number of complex waveguides for which dispersion curves can be found with relative ease by using the periodicity inherent to the Floquet boundary conditions.

  12. Finite Element Development of Honeycomb Panel Configurations with Improved Transmission Loss

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Palumbo, Daniel L.; Klos, Jacob; Castle, William D.

    2006-01-01

    The higher stiffness-to-mass ratio of a honeycomb panel compared to a homogeneous panel results in a lower acoustic critical frequency. Above the critical frequency the panel flexural wave speed is acoustically fast and the structure becomes a more efficient radiator with associated lower sound transmission loss. Finite element models of honeycomb sandwich structures are presented featuring areas where the core is removed from the radiating face sheet disrupting the supersonic flexural and shear wave speeds that exist in the baseline honeycomb panel. These modified honeycomb panel structures exhibit improved transmission loss for a pre-defined diffuse field sound excitation. The models were validated by the sound transmission loss of honeycomb panels measured in the Structural Acoustic Loads and Transmission (SALT) facility at the NASA Langley Research Center. A honeycomb core panel configuration is presented exhibiting a transmission loss improvement of 3-11 dB compared to a honeycomb baseline panel over a frequency range from 170 Hz to 1000 Hz. The improved transmission loss panel configuration had a 5.1% increase in mass over the baseline honeycomb panel, and approximately twice the deflection when excited by a static force.

  13. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  14. Calculation of reinforced-concrete frame strength under a simultaneous static cross section load and a column lateral impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, Nikolay, E-mail: n.n.belov@mail.ru; Kopanitsa, Dmitry, E-mail: kopanitsa@mail.ru; Yugov, Alexey, E-mail: yugalex@mail.ru

    When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved usingmore » software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.« less

  15. Highly accurate adaptive finite element schemes for nonlinear hyperbolic problems

    NASA Astrophysics Data System (ADS)

    Oden, J. T.

    1992-08-01

    This document is a final report of research activities supported under General Contract DAAL03-89-K-0120 between the Army Research Office and the University of Texas at Austin from July 1, 1989 through June 30, 1992. The project supported several Ph.D. students over the contract period, two of which are scheduled to complete dissertations during the 1992-93 academic year. Research results produced during the course of this effort led to 6 journal articles, 5 research reports, 4 conference papers and presentations, 1 book chapter, and two dissertations (nearing completion). It is felt that several significant advances were made during the course of this project that should have an impact on the field of numerical analysis of wave phenomena. These include the development of high-order, adaptive, hp-finite element methods for elastodynamic calculations and high-order schemes for linear and nonlinear hyperbolic systems. Also, a theory of multi-stage Taylor-Galerkin schemes was developed and implemented in the analysis of several wave propagation problems, and was configured within a general hp-adaptive strategy for these types of problems. Further details on research results and on areas requiring additional study are given in the Appendix.

  16. A forward-advancing wave expansion method for numerical solution of large-scale sound propagation problems

    NASA Astrophysics Data System (ADS)

    Rolla, L. Barrera; Rice, H. J.

    2006-09-01

    In this paper a "forward-advancing" field discretization method suitable for solving the Helmholtz equation in large-scale problems is proposed. The forward wave expansion method (FWEM) is derived from a highly efficient discretization procedure based on interpolation of wave functions known as the wave expansion method (WEM). The FWEM computes the propagated sound field by means of an exclusively forward advancing solution, neglecting the backscattered field. It is thus analogous to methods such as the (one way) parabolic equation method (PEM) (usually discretized using standard finite difference or finite element methods). These techniques do not require the inversion of large system matrices and thus enable the solution of large-scale acoustic problems where backscatter is not of interest. Calculations using FWEM are presented for two propagation problems and comparisons to data computed with analytical and theoretical solutions and show this forward approximation to be highly accurate. Examples of sound propagation over a screen in upwind and downwind refracting atmospheric conditions at low nodal spacings (0.2 per wavelength in the propagation direction) are also included to demonstrate the flexibility and efficiency of the method.

  17. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment.

    PubMed

    Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A

    2018-03-01

    Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.

  18. Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation.

    PubMed

    Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R

    2018-02-01

    This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Shock Wave Propagation in Cementitious Materials at Micro/Meso Scales

    NASA Astrophysics Data System (ADS)

    Rajendran, Arunachalam

    2015-06-01

    The mechanical and constitutive response of materials like cement, and bio materials like fish scale and abalone shell is very complex due to heterogeneities that are inherently present in the nano and microstructures. The intrinsic constitutive behaviors are driven by the chemical composition and the molecular, micro, and meso structures. Therefore, it becomes important to identify the material genome as the building block for the material. For instance, in cementitious materials, the genome of C-S-H phase (the glue or the paste) that holds the various clinkers, such as the dicalcium silicate, tricalcium silicate, calcium ferroaluminates, and others is extremely complex. Often mechanical behaviors of C-S-H type materials are influenced by the chemistry and the structures at all nano to micro length scales. By explicitly modeling the molecular structures using appropriate potentials, it is then possible to compute the elastic tensor from molecular dynamics simulations using all atom method. The elastic tensors for the C-S-H gel and other clinkers are determined using the software suite ``Accelrys Materials Studio.'' A strain rate dependent, fracture mechanics based tensile damage model has been incorporated into ABAQUS finite element code to model spall evolution in the heterogeneous cementitious material with all constituents explicitly modeled through one micron element resolution. This paper presents results from nano/micro/meso scale analyses of shock wave propagation in a heterogeneous cementitious material using both molecular dynamic and finite element codes.

  20. Modeling the high-frequency complex modulus of silicone rubber using standing Lamb waves and an inverse finite element method.

    PubMed

    Jonsson, Ulf; Lindahl, Olof; Andersson, Britt

    2014-12-01

    To gain an understanding of the high-frequency elastic properties of silicone rubber, a finite element model of a cylindrical piezoelectric element, in contact with a silicone rubber disk, was constructed. The frequency-dependent elastic modulus of the silicone rubber was modeled by a fourparameter fractional derivative viscoelastic model in the 100 to 250 kHz frequency range. The calculations were carried out in the range of the first radial resonance frequency of the sensor. At the resonance, the hyperelastic effect of the silicone rubber was modeled by a hyperelastic compensating function. The calculated response was matched to the measured response by using the transitional peaks in the impedance spectrum that originates from the switching of standing Lamb wave modes in the silicone rubber. To validate the results, the impedance responses of three 5-mm-thick silicone rubber disks, with different radial lengths, were measured. The calculated and measured transitional frequencies have been compared in detail. The comparison showed very good agreement, with average relative differences of 0.7%, 0.6%, and 0.7% for the silicone rubber samples with radial lengths of 38.0, 21.4, and 11.0 mm, respectively. The average complex elastic moduli of the samples were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 0.005i) GPa at 250 kHz.

  1. Reflection and transmission coefficients for guided waves reflected by defects in viscoelastic material plates.

    PubMed

    Hosten, Bernard; Moreau, Ludovic; Castaings, Michel

    2007-06-01

    The paper presents a Fourier transform-based signal processing procedure for quantifying the reflection and transmission coefficients and mode conversion of guided waves diffracted by defects in plates made of viscoelastic materials. The case of the S(0) Lamb wave mode incident on a notch in a Perspex plate is considered. The procedure is applied to numerical data produced by a finite element code that simulates the propagation of attenuated guided modes and their diffraction by the notch, including mode conversion. Its validity and precision are checked by the way of the energy balance computation and by comparison with results obtained using an orthogonality relation-based processing method.

  2. Coupling of free space sub-terahertz waves into dielectric slabs using PC waveguides.

    PubMed

    Ghattan, Z; Hasek, T; Shahabadi, M; Koch, M

    2008-04-28

    The paper presents theoretical and experimental results on photonic crystal structures which work under the self-collimation condition to couple free space waves into dielectric slabs in the sub-terahertz range. Using a standard machining process, two-dimensional photonic crystal structures consisting of a square array of air holes in the dielectric medium are fabricated. One of the structures has two adjacent parallel line-defects that improve the coupling efficiency. This leads to a combination of self-collimation and directional emission of electromagnetic waves. The experimental results are in good agreement with those of the Finite- Element-Method calculations. Experimentally we achieve a coupling efficiency of 63%.

  3. Experimental and theoretical study of Rayleigh-Lamb waves in a plate containing a surface-breaking crack

    NASA Technical Reports Server (NTRS)

    Paffenholz, Joseph; Fox, Jon W.; Gu, Xiaobai; Jewett, Greg S.; Datta, Subhendu K.

    1990-01-01

    Scattering of Rayleigh-Lamb waves by a normal surface-breaking crack in a plate has been studied both theoretically and experimentally. The two-dimensionality of the far field, generated by a ball impact source, is exploited to characterize the source function using a direct integration technique. The scattering of waves generated by this impact source by the crack is subsequently solved by employing a Green's function integral expression for the scattered field coupled with a finite element representation of the near field. It is shown that theoretical results of plate response, both in frequency and time, are similar to those obtained experimentally. Additionally, implication for practical applications are discussed.

  4. X-ray EM simulation tool for ptychography dataset construction

    NASA Astrophysics Data System (ADS)

    Stoevelaar, L. Pjotr; Gerini, Giampiero

    2018-03-01

    In this paper, we present an electromagnetic full-wave modeling framework, as a support EM tool providing data sets for X-ray ptychographic imaging. Modeling the entire scattering problem with Finite Element Method (FEM) tools is, in fact, a prohibitive task, because of the large area illuminated by the beam (due to the poor focusing power at these wavelengths) and the very small features to be imaged. To overcome this problem, the spectrum of the illumination beam is decomposed into a discrete set of plane waves. This allows reducing the electromagnetic modeling volume to the one enclosing the area to be imaged. The total scattered field is reconstructed by superimposing the solutions for each plane wave illumination.

  5. Modal Ring Method for the Scattering of Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1993-01-01

    The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.

  6. Numerical simulation of fluid flow around a scramaccelerator projectile

    NASA Technical Reports Server (NTRS)

    Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.

    1991-01-01

    Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.

  7. A study of methods to predict and measure the transmission of sound through the walls of light aircraft

    NASA Technical Reports Server (NTRS)

    Bernhard, R. J.; Bolton, J. S.; Gardner, B.; Mickol, J.; Mollo, C.; Bruer, C.

    1986-01-01

    Progress was made in the following areas: development of a numerical/empirical noise source identification procedure using bondary element techniques; identification of structure-borne noise paths using structural intensity and finite element methods; development of a design optimization numerical procedure to be used to study active noise control in three-dimensional geometries; measurement of dynamic properties of acoustical foams and incorporation of these properties in models governing three-dimensional wave propagation in foams; and structure-borne sound path identification by use of the Wigner distribution.

  8. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes

    NASA Astrophysics Data System (ADS)

    Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2017-10-01

    We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.

  9. Newtonian noise and ambient ground motion for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Beker, M. G.; van den Brand, J. F. J.; Hennes, E.; Rabeling, D. S.

    2012-06-01

    Fluctuations of the local gravitational field as a result of seismic and atmospheric displacements will limit the sensitivity of ground based gravitational wave detectors at frequencies below 10 Hz. We discuss the implications of Newtonian noise for future third generation gravitational wave detectors. The relevant seismic wave fields are predominately of human origin and are dependent on local infrastructure and population density. Seismic studies presented here show that considerable seismic noise reduction is possible compared to current detector locations. A realistic seismic amplitude spectral density of a suitably quiet site should not exceed 0.5 nm/(Hz/f)2 above 1 Hz. Newtonian noise models have been developed both analytically and by finite element analysis. These show that the contribution to Newtonian noise from surface waves due to distance sources significantly reduces with depth. Seismic displacements from local sources and body waves then become the dominant contributors to the Newtonian fluctuations.

  10. Ultrasonic guided waves in eccentric annular pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-02-18

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modesmore » in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.« less

  11. Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Tol, S.; Degertekin, F. L.; Erturk, A.

    2016-08-01

    We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.

  12. Analysis of coiled stator ultrasound motor: Fundamental study on analysis of wave propagation on acoustic waveguide for coiled stator

    NASA Astrophysics Data System (ADS)

    Ozeki, Seiya; Kurita, Keisuke; Uehara, Choyu; Nakane, Noriaki; Sato, Toshio; Takeuchi, Shinichi

    2018-07-01

    In our research group, we previously developed a coiled stator ultrasound motor (CS-USM) for medical applications such as intravascular ultrasound (IVUS) devices. However, wave propagation on acoustic waveguides has not been investigated sufficiently in previous studies. In this study, we analyze the propagation velocity of elastic waves from the simulated the vibration displacement mode profile along a straight line acoustic waveguide via three-dimensional finite element method (FEM). Concerning results, elastic waves with vibration displacement along the thickness direction show dispersion characteristics corresponding to the a0 and a1 mode plate waves (Lamb waves) in the acoustic waveguide. Our theoretical hypotheses of the propagation velocities were closely borne out by experimental results. We further find that the dispersion characteristic is affected by the width of the acoustic waveguide. We believe that our findings can contribute to improved CS-USM designs for practical application.

  13. Using guided ultrasonic wave inspection to quantify the length of delaminations in composite laminates

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Ribeiro, Artur Lopes; Ramos, Helena Geirinhas

    2018-04-01

    This paper presents a study of the characteristics of Lamb wave (S0 mode) testing signals in carbon fiber composite laminates containing delaminations. The study was implemented by using commercial finite element simulation software - ANSYS. The delamination signal is proven to be the superposition of the two waves travelling from upper and lower sub-laminates. Dispersion curves for the two sub-laminates were calculated to show the difference between phase velocities of the waves in the sub-laminates. Two models are specifically designed to get the phase difference between the waves that travel in each of the two sub-laminates. From the simulation results, it was found that the phase difference increases with the delamination length. Furthermore, the amplitude of delamination signal decreases first, then it starts to increase after reaching the minimum value. The minimum is reached when the waves from the two sub-laminates are 180° out of phase.

  14. Propagation of nonlinear shock waves for the generalised Oskolkov equation and its dynamic motions in the presence of an external periodic perturbation

    NASA Astrophysics Data System (ADS)

    Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid

    2018-06-01

    Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.

  15. Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter

    2018-01-01

    This paper presents a high order hybrid discontinuous Galerkin/finite volume scheme for solving the equations of the magnetohydrodynamics (MHD) and of the relativistic hydrodynamics (SRHD) on quadrilateral meshes. In this approach, for the spatial discretization, an arbitrary high order discontinuous Galerkin spectral element (DG) method is combined with a finite volume (FV) scheme in order to simulate complex flow problems involving strong shocks. Regarding the time discretization, a fourth order strong stability preserving Runge-Kutta method is used. In the proposed hybrid scheme, a shock indicator is computed at the beginning of each Runge-Kutta stage in order to flag those elements containing shock waves or discontinuities. Subsequently, the DG solution in these troubled elements and in the current time step is projected onto a subdomain composed of finite volume subcells. Right after, the DG operator is applied to those unflagged elements, which, in principle, are oscillation-free, meanwhile the troubled elements are evolved with a robust second/third order FV operator. With this approach we are able to numerically simulate very challenging problems in the context of MHD and SRHD in one, and two space dimensions and with very high order polynomials. We make convergence tests and show a comprehensive one- and two dimensional testbench for both equation systems, focusing in problems with strong shocks. The presented hybrid approach shows that numerical schemes of very high order of accuracy are able to simulate these complex flow problems in an efficient and robust manner.

  16. Solving three-body-breakup problems with outgoing-flux asymptotic conditions

    NASA Astrophysics Data System (ADS)

    Randazzo, J. M.; Buezas, F.; Frapiccini, A. L.; Colavecchia, F. D.; Gasaneo, G.

    2011-11-01

    An analytically solvable three-body collision system (s wave) model is used to test two different theoretical methods. The first one is a configuration interaction expansion of the scattering wave function using a basis set of Generalized Sturmian Functions (GSF) with purely outgoing flux (CISF), introduced recently in A. L. Frapicinni, J. M. Randazzo, G. Gasaneo, and F. D. Colavecchia [J. Phys. B: At. Mol. Opt. Phys.JPAPEH0953-407510.1088/0953-4075/43/10/101001 43, 101001 (2010)]. The second one is a finite element method (FEM) calculation performed with a commercial code. Both methods are employed to analyze different ways of modeling the asymptotic behavior of the wave function in finite computational domains. The asymptotes can be simulated very accurately by choosing hyperspherical or rectangular contours with the FEM software. In contrast, the CISF method can be defined both in an infinite domain or within a confined region in space. We found that the hyperspherical (rectangular) FEM calculation and the infinite domain (confined) CISF evaluation are equivalent. Finally, we apply these models to the Temkin-Poet approach of hydrogen ionization.

  17. Transport of phase space densities through tetrahedral meshes using discrete flow mapping

    NASA Astrophysics Data System (ADS)

    Bajars, Janis; Chappell, David J.; Søndergaard, Niels; Tanner, Gregor

    2017-01-01

    Discrete flow mapping was recently introduced as an efficient ray based method determining wave energy distributions in complex built up structures. Wave energy densities are transported along ray trajectories through polygonal mesh elements using a finite dimensional approximation of a ray transfer operator. In this way the method can be viewed as a smoothed ray tracing method defined over meshed surfaces. Many applications require the resolution of wave energy distributions in three-dimensional domains, such as in room acoustics, underwater acoustics and for electromagnetic cavity problems. In this work we extend discrete flow mapping to three-dimensional domains by propagating wave energy densities through tetrahedral meshes. The geometric simplicity of the tetrahedral mesh elements is utilised to efficiently compute the ray transfer operator using a mixture of analytic and spectrally accurate numerical integration. The important issue of how to choose a suitable basis approximation in phase space whilst maintaining a reasonable computational cost is addressed via low order local approximations on tetrahedral faces in the position coordinate and high order orthogonal polynomial expansions in momentum space.

  18. Novel modeling technique for the stator of traveling wave ultrasonic motors.

    PubMed

    Pons, José L; Rodríguez, Humberto; Ceres, Ramón; Calderón, Leopoldo

    2003-11-01

    Traveling wave ultrasonic motors (TWUM) are a promising type of piezoelectric transducers, which are based on the friction transmission of mechanical propagating waves. These waves are excited on the stator by using high Q piezoelectric ceramics. This article presents a modeling strategy, which allows for a quick and precise modal and forced analysis of the stator of TWUM. First-order shear deformation laminated plate theory is applied to annular subdomains (super-elements) of the stator. In addition to shear deformations, the model takes into account the effect of rotary inertia, the stiffness contribution of the teeth, and the linear varying thickness of the stator. Moreover, the formulation considers a more realistic function for the electric field inside the piezoelectric ceramic, i.e., a linear function, instead of the generally assumed constant electric field. The Ritz method is used to find an approximated solution for the dynamic equations. Finally, the modal response is obtained and compared against the results from classical simplified models and the finite element method. Thus, the high accuracy and short computation times of the novel strategy were demonstrated.

  19. Discontinuous Galerkin finite element method for the nonlinear hyperbolic problems with entropy-based artificial viscosity stabilization

    NASA Astrophysics Data System (ADS)

    Zingan, Valentin Nikolaevich

    This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation. The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux. To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound. One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature. We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.

  20. Acoustic wave transmission through piezoelectric structured materials.

    PubMed

    Lam, M; Le Clézio, E; Amorín, H; Algueró, M; Holc, Janez; Kosec, Marija; Hladky-Hennion, A C; Feuillard, G

    2009-05-01

    This paper deals with the transmission of acoustic waves through multilayered piezoelectric materials. It is modeled in an octet formalism via the hybrid matrix of the structure. The theoretical evolution with the angle and frequency of the transmission coefficients of ultrasonic plane waves propagating through a partially depoled PZT plate is compared to finite element calculations showing that both methods are in very good agreement. The model is then used to study a periodic stack of 0.65 PMN-0.35 PT/0.90 PMN-0.10 PT layers. The transmission spectra are interpreted in terms of a dispersive behavior of the critical angles of longitudinal and transverse waves, and band gap structures are analysed. Transmission measurements confirm the theoretical calculations and deliver an experimental validation of the model.

  1. Radiofrequency electrode vibration-induced shear wave imaging for tissue modulus estimation: a simulation study.

    PubMed

    Bharat, Shyam; Varghese, Tomy

    2010-10-01

    Quasi-static electrode displacement elastography, used for in-vivo imaging of radiofrequency ablation-induced lesions in abdominal organs such as the liver and kidney, is extended in this paper to dynamic vibrational perturbations of the ablation electrode. Propagation of the resulting shear waves into adjoining regions of tissue can be tracked and the shear wave velocity used to quantify the shear (and thereby Young's) modulus of tissue. The algorithm used utilizes the time-to-peak displacement data (obtained from finite element analyses) to calculate the speed of shear wave propagation in the material. The simulation results presented illustrate the feasibility of estimating the Young's modulus of tissue and is promising for characterizing the stiffness of radiofrequency-ablated thermal lesions and surrounding normal tissue.

  2. Three-nucleon force contribution in the distorted-wave theory of (d ,p ) reactions

    NASA Astrophysics Data System (ADS)

    Timofeyuk, N. K.

    2018-05-01

    The distorted-wave theory of A (d ,p )B reactions, widely used to analyze experimental data, is based on a Hamiltonian that includes only two-nucleon interactions. However, numerous studies of few-nucleon systems and many modern developments in nuclear structure theory show the importance of the three-nucleon (3 N ) force. The purpose of this paper is to study the contribution of the 3 N force of the simplest possible form to the A (d ,p )B reaction amplitude. This contribution is given by a new term that accounts for the interaction of the neutron and proton in the incoming deuteron with one of the target nucleons. This term involves a new type of nuclear matrix elements containing an infinite number of target excitations in addition to the main part associated with the traditional overlap function between A and B . The nuclear matrix elements are calculated for double-closed shell targets within a mean field theory where target excitations are shown to be equivalent to exchanges between valence and core nucleons. These matrix elements can be readily incorporated into available reaction codes if the 3 N interaction has a spin-independent zero-range form. Distorted-wave calculations are presented for a contact 3 N force with the volume integral fixed by the chiral effective field theory at the next-to-next-to-leading order. For this particular choice, the 3 N contribution is noticeable, especially at high deuteron incident energies. No 3 N effects are seen for incident energies below the Coulomb barrier. The finite range can significantly affect the 3 N contribution to the (d ,p ) cross sections. Finite-range studies require new formal developments and, therefore, their contribution is preliminarily assessed within the plane-wave Born approximation, together with sensitivity to the choice of the deuteron model.

  3. Characteristics of a liquid-crystal-filled composite lattice terahertz bandgap fiber

    NASA Astrophysics Data System (ADS)

    Bai, Jinjun; Ge, Meilan; Wang, Shasha; Yang, Yanan; Li, Yong; Chang, Shengjiang

    2018-07-01

    A new type of terahertz fiber is presented based on composite lattice photonic crystal bandgap. The cladding is filled selectively with the nematic liquid crystal 5CB which is sensitive to the electric field. The terahertz wave can be modulated by using the electric field to control the orientation of liquid crystal molecules. The plane wave expansion method and the finite element method are employed to theoretically analyze bandgap characteristics, polarization characteristics, energy fraction and material absorption loss. The results show that this fiber structure can be used as tunable terahertz polarization controller.

  4. Analysis of the electromagnetic wave resistivity tool in deviated well drilling

    NASA Astrophysics Data System (ADS)

    Zhang, Yumei; Xu, Lijun; Cao, Zhang

    2014-04-01

    Electromagnetic wave resistivity (EWR) tools are used to provide real-time measurements of resistivity in the formation around the tool in Logging While Drilling (LWD). In this paper, the acquired resistivity information in the formation is analyzed to extract more information, including dipping angle and azimuth direction of the drill. A finite element (FM) model of EWR tool working in layered earth formations is established. Numerical analysis and FM simulations are employed to analyze the amplitude ratio and phase difference between the voltages measured at the two receivers of the EWR tool in deviated well drilling.

  5. Possibilities of the particle finite element method for fluid-soil-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín

    2011-09-01

    We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.

  6. Characterization of a plasma photonic crystal using a multi-fluid plasma model

    NASA Astrophysics Data System (ADS)

    Thomas, W. R.; Shumlak, U.; Wang, B.; Righetti, F.; Cappelli, M. A.; Miller, S. T.

    2017-10-01

    Plasma photonic crystals have the potential to significantly expand the capabilities of current microwave filtering and switching technologies by providing high speed (μs) control of energy band-gap/pass characteristics in the GHz through low THz range. While photonic crystals consisting of dielectric, semiconductor, and metallic matrices have seen thousands of articles published over the last several decades, plasma-based photonic crystals remain a relatively unexplored field. Numerical modeling efforts so far have largely used the standard methods of analysis for photonic crystals (the Plane Wave Expansion Method, Finite Difference Time Domain, and ANSYS finite element electromagnetic code HFSS), none of which capture nonlinear plasma-radiation interactions. In this study, a 5N-moment multi-fluid plasma model is implemented using University of Washington's WARPXM finite element multi-physics code. A two-dimensional plasma-vacuum photonic crystal is simulated and its behavior is characterized through the generation of dispersion diagrams and transmission spectra. These results are compared with theory, experimental data, and ANSYS HFSS simulation results. This research is supported by a Grant from United States Air Force Office of Scientific Research.

  7. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.

    PubMed

    Nennig, Benoit; Tahar, Mabrouk Ben; Perrey-Debain, Emmanuel

    2011-07-01

    In the present work, the propagation of sound in a lined duct containing sheared mean flow is studied. Walls of the duct are acoustically treated with absorbent poroelastic foams. The propagation of elasto-acoustic waves in the liner is described by Biot's model. In the fluid domain, the propagation of sound in a sheared mean flow is governed by the Galbrun's equation. The problem is solved using a mixed displacement-pressure finite element formulation in both domains. A 3D implementation of the model has been performed and is illustrated on axisymmetric examples. Convergence and accuracy of the numerical model are shown for the particular case of the modal propagation in a infinite duct containing a uniform flow. Practical examples concerning the sound attenuation through dissipative silencers are discussed. In particular, effects of the refraction effects in the shear layer as well as the mounting conditions of the foam on the transmission loss are shown. The presence of a perforate screen at the air-porous interface is also considered and included in the model. © 2011 Acoustical Society of America

  8. Genetic Algorithm Optimization of Phononic Bandgap Structures

    DTIC Science & Technology

    2006-09-01

    a GA with a computational finite element method for solving the acoustic wave equation, and find optimal designs for both metal-matrix composite...systems consisting of Ti/SiC, and H2O-filled porous ceramic media, by maximizing the relative acoustic bandgap for these media. The term acoustic here...stress minimization, global optimization, phonon bandgap, genetic algorithm, periodic elastic media, inhomogeneity, inclusion, porous media, acoustic

  9. Dual traveling wave rotary ultrasonic motor with single active vibrator

    NASA Astrophysics Data System (ADS)

    An, Dawei; Yang, Ming; Zhuang, Xiaoqi; Yang, Tianyue; Meng, Fan; Dong, Zhaopeng

    2017-04-01

    Traveling wave rotary ultrasonic motor with double vibrators can improve the output performance effectively. However, the rotor has to be energized through a slip ring, which increases the complexity and reduces the reliability. Inheriting the concept of two traveling waves propagating in the stator and rotor, a dual traveling wave rotary ultrasonic motor energized only in the stator is proposed. By analyzing the oscillatory differential equation and the contact particles motion, a traveling wave is found in the rotor and the drive mechanism of dual traveling wave is studied. With the resonant rotor adopted, the consistent eigenfrequencies are calculated by finite element method and verified by an impedance analyzer. The performance experiment presents that the dual traveling wave rotary ultrasonic motor is superior to the motor with single traveling wave. The no-load speed is 60 rpm and the stalling torque is 0.85 Nm. Additionally, compared with a reported motor with double vibrators, the proposed motor presents the better output performance and the simpler design.

  10. Simulation of ultrasonic and EMAT arrays using FEM and FDTD.

    PubMed

    Xie, Yuedong; Yin, Wuliang; Liu, Zenghua; Peyton, Anthony

    2016-03-01

    This paper presents a method which combines electromagnetic simulation and ultrasonic simulation to build EMAT array models. For a specific sensor configuration, Lorentz forces are calculated using the finite element method (FEM), which then can feed through to ultrasonic simulations. The propagation of ultrasound waves is numerically simulated using finite-difference time-domain (FDTD) method to describe their propagation within homogenous medium and their scattering phenomenon by cracks. Radiation pattern obtained with Hilbert transform on time domain waveforms is proposed to characterise the sensor in terms of its beam directivity and field distribution along the steering angle. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping

    2017-05-01

    Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.

  12. A two-dimensional hydrodynamic model of a tidal estuary

    USGS Publications Warehouse

    Walters, Roy A.; Cheng, Ralph T.

    1979-01-01

    A finite element model is described which is used in the computation of tidal currents in an estuary. This numerical model is patterned after an existing algorithm and has been carefully tested in rectangular and curve-sided channels with constant and variable depth. One of the common uncertainties in this class of two-dimensional hydrodynamic models is the treatment of the lateral boundary conditions. Special attention is paid specifically to addressing this problem. To maintain continuity within the domain of interest, ‘smooth’ curve-sided elements must be used at all shoreline boundaries. The present model uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and a linear basis function for water surface elevation. An implicit time integration is used and the model is unconditionally stable. The resultant governing equations are nonlinear owing to the advective and the bottom friction terms and are solved iteratively at each time step by the Newton-Raphson method. Model test runs have been made in the southern portion of San Francisco Bay, California (South Bay) as well as in the Bay west of Carquinez Strait. Owing to the complex bathymetry, the hydrodynamic characteristics of the Bay system are dictated by the generally shallow basins which contain deep, relict river channels. Great care must be exercised to ensure that the conservation equations remain locally as well as globally accurate. Simulations have been made over several representative tidal cycles using this finite element model, and the results compare favourably with existing data. In particular, the standing wave in South Bay and the progressive wave in the northern reach are well represented.

  13. Computational Aeroacoustics by the Space-time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2001-01-01

    In recent years, a new numerical methodology for conservation laws-the Space-Time Conservation Element and Solution Element Method (CE/SE), was developed by Dr. Chang of NASA Glenn Research Center and collaborators. In nature, the new method may be categorized as a finite volume method, where the conservation element (CE) is equivalent to a finite control volume (or cell) and the solution element (SE) can be understood as the cell interface. However, due to its rigorous treatment of the fluxes and geometry, it is different from the existing schemes. The CE/SE scheme features: (1) space and time treated on the same footing, the integral equations of conservation laws are solve( for with second order accuracy, (2) high resolution, low dispersion and low dissipation, (3) novel, truly multi-dimensional, simple but effective non-reflecting boundary condition, (4) effortless implementation of computation, no numerical fix or parameter choice is needed, an( (5) robust enough to cover a wide spectrum of compressible flow: from weak linear acoustic waves to strong, discontinuous waves (shocks) appropriate for linear and nonlinear aeroacoustics. Currently, the CE/SE scheme has been developed to such a stage that a 3-13 unstructured CE/SE Navier-Stokes solver is already available. However, in the present paper, as a general introduction to the CE/SE method, only the 2-D unstructured Euler CE/SE solver is chosen as a prototype and is sketched in Section 2. Then applications of the CE/SE scheme to linear, nonlinear aeroacoustics and airframe noise are depicted in Sections 3, 4, and 5 respectively to demonstrate its robustness and capability.

  14. Unsteady combustion of solid propellants

    NASA Astrophysics Data System (ADS)

    Chung, T. J.; Kim, P. K.

    The oscillatory motions of all field variables (pressure, temperature, velocity, density, and fuel fractions) in the flame zone of solid propellant rocket motors are calculated using the finite element method. The Arrhenius law with a single step forward chemical reaction is used. Effects of radiative heat transfer, impressed arbitrary acoustic wave incidence, and idealized mean flow velocities are also investigated. Boundary conditions are derived at the solid-gas interfaces and at the flame edges which are implemented via Lagrange multipliers. Perturbation expansions of all governing conservation equations up to and including the second order are carried out so that nonlinear oscillations may be accommodated. All excited frequencies are calculated by means of eigenvalue analyses, and the combustion response functions corresponding to these frequencies are determined. It is shown that the use of isoparametric finite elements, Gaussian quadrature integration, and the Lagrange multiplier boundary matrix scheme offers a convenient approach to two-dimensional calculations.

  15. Finite element analysis of wirelessly interrogated implantable bio-MEMS

    NASA Astrophysics Data System (ADS)

    Dissanayake, Don W.; Al-Sarawi, Said F.; Lu, Tien-Fu; Abbott, Derek

    2008-12-01

    Wirelessly interrogated bio-MEMS devices are becoming more popular due to many challenges, such as improving the diagnosis, monitoring, and patient wellbeing. The authors present here a passive, low power and small area device, which can be interrogated wirelessly using a uniquely coded signal for a secure and reliable operation. The proposed new approach relies on converting the interrogating coded signal to surface acoustic wave that is then correlated with an embedded code. The suggested method is implemented to operate a micropump, which consist of a specially designed corrugated microdiaphragm to modulate the fluid flow in microchannels. Finite Element Analysis of the micropump operation is presented and a performance was analysed. Design parameters of the diaphragm design were finetuned for optimal performance and different polymer based materials were used in various parts of the micropump to allow for better flexibility and high reliability.

  16. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  17. Mixed variational formulations of finite element analysis of elastoacoustic/slosh fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Ohayon, Roger

    1991-01-01

    A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derive semidiscrete equations of motion that account for such effects.

  18. Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials

    NASA Astrophysics Data System (ADS)

    Taheri, H.; Koester, L.; Bigelow, T.; Bond, L. J.

    2018-04-01

    Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.

  19. Comparative study of two approaches to model the offshore fish cages

    NASA Astrophysics Data System (ADS)

    Zhao, Yun-peng; Wang, Xin-xin; Decew, Jud; Tsukrov, Igor; Bai, Xiao-dong; Bi, Chun-wei

    2015-06-01

    The goal of this paper is to provide a comparative analysis of two commonly used approaches to discretize offshore fish cages: the lumped-mass approach and the finite element technique. Two case studies are chosen to compare predictions of the LMA (lumped-mass approach) and FEA (finite element analysis) based numerical modeling techniques. In both case studies, we consider several loading conditions consisting of different uniform currents and monochromatic waves. We investigate motion of the cage, its deformation, and the resultant tension in the mooring lines. Both model predictions are sufficient close to the experimental data, but for the first experiment, the DUT-FlexSim predictions are slightly more accurate than the ones provided by Aqua-FE™. According to the comparisons, both models can be successfully utilized to the design and analysis of the offshore fish cages provided that an appropriate safety factor is chosen.

  20. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.

    PubMed

    Degirmenci, Elif; Landais, Pascal

    2013-10-20

    Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.

  1. Biomechanical responses of a pig head under blast loading: a computational simulation.

    PubMed

    Zhu, Feng; Skelton, Paul; Chou, Cliff C; Mao, Haojie; Yang, King H; King, Albert I

    2013-03-01

    A series of computational studies were performed to investigate the biomechanical responses of the pig head under a specific shock tube environment. A finite element model of the head of a 50-kg Yorkshire pig was developed with sufficient details, based on the Lagrangian formulation, and a shock tube model was developed using the multimaterial arbitrary Lagrangian-Eulerian (MMALE) approach. These two models were integrated and a fluid/solid coupling algorithm was used to simulate the interaction of the shock wave with the pig's head. The finite element model-predicted incident and intracranial pressure traces were in reasonable agreement with those obtained experimentally. Using the verified numerical model of the shock tube and pig head, further investigations were carried out to study the spatial and temporal distributions of pressure, shear stress, and principal strain within the head. Pressure enhancement was found in the skull, which is believed to be caused by shock wave reflection at the interface of the materials with distinct wave impedances. Brain tissue has a shock attenuation effect and larger pressures were observed in the frontal and occipital regions, suggesting a greater possibility of coup and contrecoup contusion. Shear stresses in the brain and deflection in the skull remained at a low level. Higher principal strains were observed in the brain near the foramen magnum, suggesting that there is a greater chance of cellular or vascular injuries in the brainstem region. Copyright © 2012 John Wiley & Sons, Ltd.

  2. RACE and Calculations of Three-dimensional Distributed Cavity Phase Shifts

    NASA Technical Reports Server (NTRS)

    Li, Ruoxin; Gibble, Kurt

    2003-01-01

    The design for RACE, a Rb-clock flight experiment for the ISS, is described. The cold collision shift and multiple launching (juggling) have important implications for the design and the resulting clock accuracy and stability. We present and discuss the double clock design for RACE. This design reduces the noise contributions of the local oscillator and simplifies and enhances an accuracy evaluation of the clock. As we try to push beyond the current accuracies of clocks, new systematic errors become important. The best fountain clocks are using cylindrical TE(sub 011) microwave cavities. We recently pointed out that many atoms pass through a node of the standing wave microwave field in these cavities. Previous studies have shown potentially large frequency shifts for atoms passing through nodes in a TE(sub 013) cavity. The shift occurs because there is a small traveling wave component due to the absorption of the copper cavity walls. The small traveling wave component leads to position dependent phase shifts. To study these effects, we perform Finite Element calculations. Three-dimensional Finite Element calculations require significant computer resources. Here we show that the cylindrical boundary condition can be Fourier decomposed to a short series of two-dimensional problems. This dramatically reduces the time and memory required and we obtain (3D) phase distributions for a variety of cavities. With these results, we will be able to analyze this frequency shift in fountain and future space clocks.

  3. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  4. Finite-Frequency Simulations of Core-Reflected Seismic Waves to Assess Models of General Lower Mantle Anisotropy

    NASA Astrophysics Data System (ADS)

    Nowacki, A.; Walker, A. M.; Wookey, J.; Kendall, J.

    2012-12-01

    The core-mantle boundary (CMB) region is the site of the largest change in properties in the Earth. Moreover, the lowermost mantle above it (known as D″) shows the largest lateral variations in seismic velocity and strength of seismic anisotropy below the upper mantle. It is therefore vital to be able to accurately forward model candidate structures in the lowermost mantle with realistic sensitivity to structure and at the same frequencies at which observations are made. We use the spectral finite-element method to produce synthetic seismograms of ScS waves traversing a model of D″ anisotropy derived from mineralogical texture calculations and show that the seismic discontinuity atop the lowermost mantle varies in character laterally purely as a function of the strength and orientation of anisotropy. The lowermost mantle is widely anisotropic, shown by numerous shear wave splitting studies using waves of dominant frequency ~0.2-1 Hz. Whilst methods exist to model the finite-frequency seismic response of the lowermost mantle, most make the problem computationally efficient by imposing a certain symmetry to the problem, and of those which do not, almost none allow for completely general elasticity. Where low frequencies are simulated to reduce computational cost, it is uncertain whether waves of that frequency have comparable sensitivity to D″ structure as those observed at shorter periods. Currently, therefore, these computational limitations precludes the ability to interpret our observations fully. We present recent developments in taking a general approach to forward-modelling waves in D″. We use a modified version of SPECFEM3D_GLOBE, which uses the spectral finite-element method to model seismic wave propagation in a fully generally-elastic (i.e., 3D-varying, arbitrarily anisotropic) Earth. The calculations are computationally challenging: to approach the frequency of the observations, up to 10,000 processor cores and up to 2 TB of memory are needed. The synthetic seismograms can be directly compared to observations of shear wave splitting or other seismic phenomena and utilise all information from the waveform to accurately interpret D″ structures and elasticity. Using a recent model of mineralogical texture in the lowermost mantle (imposing no symmetry on the type on anisotropy), we model ScS waves traversing D″ in various regions. In this case, no lateral variations in average isotropic velocity exist, though the orientation and strength of anisotropy changes over a range of lengthscales (spherical harmonic degrees ≤128). We note a change in the amplitude (sometimes 0) and polarity (positive to negative) of arrivals which are reflected from the top of D″ (an arrival known as SdS) at ~300 km above the core-mantle boundary, even though no lateral variation exists between the isotropic overlying lower mantle and the anisotropic lowermost mantle. Supported by previous studies, this shows that changes only in anisotropy could be responsible for observed variations in SdS across the globe. Our approach can potentially be used to further model general elasticity at short wavelengths in any region in the Earth.

  5. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  6. Spin wave steering in three-dimensional magnonic networks

    NASA Astrophysics Data System (ADS)

    Beginin, E. N.; Sadovnikov, A. V.; Sharaevskaya, A. Yu.; Stognij, A. I.; Nikitov, S. A.

    2018-03-01

    We report the concept of three-dimensional (3D) magnonic structures which are especially promising for controlling and manipulating magnon currents. The approach for fabrication of 3D magnonic crystals (MCs) and 3D magnonic networks is presented. A meander type ferromagnetic film grown at the top of the initially structured substrate can be a candidate for such 3D crystals. Using the finite element method, transfer matrix method, and micromagnetic simulations, we study spin-wave propagation in both isolated and coupled 3D MCs and reconstruct spin-wave dispersion and transmission response to elucidate the mechanism of magnonic bandgap formation. Our results show the possibility of the utilization of proposed structures for fabrication of a 3D magnonic network.

  7. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II: Inclusion of Exchange

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.

  8. Molding acoustic, electromagnetic and water waves with a single cloak

    PubMed Central

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-01-01

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934

  9. [Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].

    PubMed

    Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong

    2015-04-01

    Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic.

  10. On selection of primary modes for generation of strong internally resonant second harmonics in plate

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chillara, Vamshi Krishna; Lissenden, Cliff J.

    2013-09-01

    The selection of primary shear-horizontal (SH) and Rayleigh-Lamb (RL) ultrasonic wave modes that generate cumulative second harmonics in homogeneous isotropic plates is analyzed by theoretical modeling. Selection criteria include: internal resonance (synchronism and nonzero power flux), group velocity matching, and excitability/receivability. The power flux, group velocity matching, and excitability are tabulated for the SH and RL internal resonance points. The analysis indicates that SH waves can generate cumulative symmetric RL secondary wave fields. Laboratory experiments on aluminum plates demonstrate that excitation of the SH3 primary mode generates the s4 secondary RL mode and that the secondary wave field amplitude increases linearly with propagation distance. Simple magnetostrictive transducers were used to excite the primary SH wave and to receive the SH and RL wave signals. Reception of these wave modes having orthogonal polarizations was achieved by simply reorienting the electrical coil. The experiment was complicated by the presence of a nonplanar primary wavefront, however finite element simulations were able to clarify the experimental results.

  11. Molding acoustic, electromagnetic and water waves with a single cloak.

    PubMed

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.

  12. Quasi-static finite element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media

    NASA Astrophysics Data System (ADS)

    Quintal, Beatriz; Steeb, Holger; Frehner, Marcel; Schmalholz, Stefan M.

    2011-01-01

    The finite element method is used to solve Biot's equations of consolidation in the displacement-pressure (u - p) formulation. We compute one-dimensional (1-D) and two-dimensional (2-D) numerical quasi-static creep tests with poroelastic media exhibiting mesoscopic-scale heterogeneities to calculate the complex and frequency-dependent P wave moduli from the modeled stress-strain relations. The P wave modulus is used to calculate the frequency-dependent attenuation (i.e., inverse of quality factor) and phase velocity of the medium. Attenuation and velocity dispersion are due to fluid flow induced by pressure differences between regions of different compressibilities, e.g., regions (or patches) saturated with different fluids (i.e., so-called patchy saturation). Comparison of our numerical results with analytical solutions demonstrates the accuracy and stability of the algorithm for a wide range of frequencies (six orders of magnitude). The algorithm employs variable time stepping and an unstructured mesh which make it efficient and accurate for 2-D simulations in media with heterogeneities of arbitrary geometries (e.g., curved shapes). We further numerically calculate the quality factor and phase velocity for 1-D layered patchy saturated porous media exhibiting random distributions of patch sizes. We show that the numerical results for the random distributions can be approximated using a volume average of White's analytical solution and the proposed averaging method is, therefore, suitable for a fast and transparent prediction of both quality factor and phase velocity. Application of our results to frequency-dependent reflection coefficients of hydrocarbon reservoirs indicates that attenuation due to wave-induced flow can increase the reflection coefficient at low frequencies, as is observed at some reservoirs.

  13. Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity

    NASA Astrophysics Data System (ADS)

    Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.

    2018-03-01

    The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.

  14. ANSYS duplicate finite-element checker routine

    NASA Technical Reports Server (NTRS)

    Ortega, R.

    1995-01-01

    An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.

  15. Hybrid multicore/vectorisation technique applied to the elastic wave equation on a staggered grid

    NASA Astrophysics Data System (ADS)

    Titarenko, Sofya; Hildyard, Mark

    2017-07-01

    In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.

  16. Accounting for the Spatial Observation Window in the 2-D Fourier Transform Analysis of Shear Wave Attenuation.

    PubMed

    Rouze, Ned C; Deng, Yufeng; Palmeri, Mark L; Nightingale, Kathryn R

    2017-10-01

    Recent measurements of shear wave propagation in viscoelastic materials have been analyzed by constructing the 2-D Fourier transform (2DFT) of the shear wave signal and measuring the phase velocity c(ω) and attenuation α(ω) from the peak location and full width at half-maximum (FWHM) of the 2DFT signal at discrete frequencies. However, when the shear wave is observed over a finite spatial range, the 2DFT signal is a convolution of the true signal and the observation window, and measurements using the FWHM can yield biased results. In this study, we describe a method to account for the size of the spatial observation window using a model of the 2DFT signal and a non-linear, least-squares fitting procedure to determine c(ω) and α(ω). Results from the analysis of finite-element simulation data agree with c(ω) and α(ω) calculated from the material parameters used in the simulation. Results obtained in a viscoelastic phantom indicate that the measured attenuation is independent of the observation window and agree with measurements of c(ω) and α(ω) obtained using the previously described progressive phase and exponential decay analysis. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less

  18. High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling.

    PubMed

    Banks, H T; Birch, Malcolm J; Brewin, Mark P; Greenwald, Stephen E; Hu, Shuhua; Kenz, Zackary R; Kruse, Carola; Maischak, Matthias; Shaw, Simon; Whiteman, John R

    2014-04-13

    We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685-6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension ( r + 1) D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over [Formula: see text] for r ⩽ 100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin-Voigt and Maxwell-Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

  19. High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling

    PubMed Central

    Banks, H T; Birch, Malcolm J; Brewin, Mark P; Greenwald, Stephen E; Hu, Shuhua; Kenz, Zackary R; Kruse, Carola; Maischak, Matthias; Shaw, Simon; Whiteman, John R

    2014-01-01

    We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685–6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (r + 1)D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over for r ⩽100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin–Voigt and Maxwell–Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd. PMID:25834284

  20. Three-dimensional instability of standing waves

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial/azimuthal mode number of the base standing wave. Finally, we show that the instability we find for both two- and three-dimensional standing waves is a result of third-order (quartet) resonance.

  1. Thermoviscoplastic response of thin plates subjected to intense local heating

    NASA Technical Reports Server (NTRS)

    Byrom, Ted G.; Allen, David H.; Thornton, Earl A.

    1992-01-01

    A finite element method is employed to investigate the thermoviscoplastic response of a half-cylinder to intense localized transient heating. Thermoviscoplastic material behavior is characterized by the Bodner-Partom constitutive model. Structure geometry is modeled with a three-dimensional assembly of CST-DKT plate elements incorporating the large deflection von Karman assumptions. The paper compares the results of a dynamic analysis with a quasi-static analysis for the half-cylinder structure with a step-function transient temperature loading similar to that which may be encountered with shock wave interference on a hypersonic leading edge.

  2. Helicon normal modes in Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Green, D. L.; Goulding, R. H.; Lau, C.; Caughman, J. B. O.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    The Proto-MPEX helicon source has been operating in a high electron density ‘helicon-mode’. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the ‘helicon-mode’. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besides directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region. ).

  3. Helicon normal modes in Proto-MPEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrowicz, Pawel A.; Caneses, Juan F.; Green, David L.

    Here, the Proto-MPEX helicon source has been operating in a high electron density 'helicon-mode'. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the 'helicon-mode'. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besidesmore » directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region.« less

  4. Pulse compression favourable aperiodic infrared imaging approach for non-destructive testing and evaluation of bio-materials

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Dua, Geetika; Arora, Vanita; Siddiqui, Juned A.; Muniyappa, Amarnath

    2017-05-01

    In recent years, aperiodic, transient pulse compression favourable infrared imaging methodologies demonstrated as reliable, quantitative, remote characterization and evaluation techniques for testing and evaluation of various biomaterials. This present work demonstrates a pulse compression favourable aperiodic thermal wave imaging technique, frequency modulated thermal wave imaging technique for bone diagnostics, especially by considering the bone with tissue, skin and muscle over layers. In order to find the capabilities of the proposed frequency modulated thermal wave imaging technique to detect the density variations in a multi layered skin-fat-muscle-bone structure, finite element modeling and simulation studies have been carried out. Further, frequency and time domain post processing approaches have been adopted on the temporal temperature data in order to improve the detection capabilities of frequency modulated thermal wave imaging.

  5. Helicon normal modes in Proto-MPEX

    DOE PAGES

    Piotrowicz, Pawel A.; Caneses, Juan F.; Green, David L.; ...

    2018-05-22

    Here, the Proto-MPEX helicon source has been operating in a high electron density 'helicon-mode'. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the 'helicon-mode'. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besidesmore » directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region.« less

  6. Parametric study of electromagnetic waves propagating in absorbing curved S ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1989-01-01

    A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.

  7. Langasite surface acoustic wave gas sensors: modeling and verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Zheng,; Greve, D. W.; Oppenheim, I. J.

    2013-03-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave modemore » and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.« less

  8. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals.

    PubMed

    Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua

    2016-04-18

    We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.

  9. Effect of surface deposits on electromagnetic waves propagating in uniform ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1990-01-01

    A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  10. Electron Interactions with Non-Linear Polyatomic Molecules and Their Radicals

    DTIC Science & Technology

    1993-12-01

    developed which generates SCE quantities from molecular wave functions. This progress was realized in terms of some actual calculations on some molecules...section 4.A describes the basics of the Partial Differential Equation Theory; section 4.B describes the generalization to a finite element...Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations. This technical report has been reviewed and

  11. Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness

    NASA Technical Reports Server (NTRS)

    Townsend, John S.

    1987-01-01

    A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. The effects of system parameters on beam response are explored with a perturbation expansion technique. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.

  12. A time-domain finite element boundary integral approach for elastic wave scattering

    NASA Astrophysics Data System (ADS)

    Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.

    2018-04-01

    The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.

  13. Simulation of ultrasonic NCF composites testing using 3D finite element model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-04-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness in the order of millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g. fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The effect of porosity as a typical manufacturing imperfection has been considered. The potential for the detection and quantification of such defects is discussed based on the observed influence on the ultrasonic wave propagation and attenuation.

  14. 3D finite element simulation of non-crimp fabric composites ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-05-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness of less than a millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g., fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The influence of porosity in the epoxy matrix as a typical manufacturing defect on the ultrasonic wave propagation and attenuation has been studied.

  15. Experiment and numerical simulation for laser ultrasonic measurement of residual stress.

    PubMed

    Zhan, Yu; Liu, Changsheng; Kong, Xiangwei; Lin, Zhongya

    2017-01-01

    Laser ultrasonic is a most promising method for non-destructive evaluation of residual stress. The residual stress of thin steel plate is measured by laser ultrasonic technique. The pre-stress loading device is designed which can easily realize the condition of the specimen being laser ultrasonic tested at the same time in the known stress state. By the method of pre-stress loading, the acoustoelastic constants are obtained and the effect of different test directions on the results of surface wave velocity measurement is discussed. On the basis of known acoustoelastic constants, the longitudinal and transverse welding residual stresses are measured by the laser ultrasonic technique. The finite element method is used to simulate the process of surface wave detection of welding residual stress. The pulsed laser is equivalent to the surface load and the relationship between the physical parameters of the laser and the load is established by the correction coefficient. The welding residual stress of the specimen is realized by the ABAQUS function module of predefined field. The results of finite element analysis are in good agreement with the experimental method. The simple and effective numerical and experimental methods for laser ultrasonic measurement of residual stress are demonstrated. Copyright © 2016. Published by Elsevier B.V.

  16. International Conference on Numerical Methods in Fluid Dynamics, 7th, Stanford University, Stanford and Moffett Field, CA, June 23-27, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C. (Editor); Maccormack, R. W.

    1981-01-01

    Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.

  17. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  18. Studies of finite element analysis of composite material structures

    NASA Technical Reports Server (NTRS)

    Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.

    1975-01-01

    Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.

  19. Design of a phased array for the generation of adaptive radiation force along a path surrounding a breast lesion for dynamic ultrasound elastography imaging.

    PubMed

    Ekeom, Didace; Hadj Henni, Anis; Cloutier, Guy

    2013-03-01

    This work demonstrates, with numerical simulations, the potential of an octagonal probe for the generation of radiation forces in a set of points following a path surrounding a breast lesion in the context of dynamic ultrasound elastography imaging. Because of the in-going wave adaptive focusing strategy, the proposed method is adapted to induce shear wave fronts to interact optimally with complex lesions. Transducer elements were based on 1-3 piezocomposite material. Three-dimensional simulations combining the finite element method and boundary element method with periodic boundary conditions in the elevation direction were used to predict acoustic wave radiation in a targeted region of interest. The coupling factor of the piezocomposite material and the radiated power of the transducer were optimized. The transducer's electrical impedance was targeted to 50 Ω. The probe was simulated by assembling the designed transducer elements to build an octagonal phased-array with 256 elements on each edge (for a total of 2048 elements). The central frequency is 4.54 MHz; simulated transducer elements are able to deliver enough power and can generate the radiation force with a relatively low level of voltage excitation. Using dynamic transmitter beamforming techniques, the radiation force along a path and resulting acoustic pattern in the breast were simulated assuming a linear isotropic medium. Magnitude and orientation of the acoustic intensity (radiation force) at any point of a generation path could be controlled for the case of an example representing a heterogeneous medium with an embedded soft mechanical inclusion.

  20. Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy

    NASA Astrophysics Data System (ADS)

    Hurtado, Daniel E.; Rojas, Guillermo

    2018-04-01

    Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.

  1. Finite-element analysis of vibrational modes in piezoelectric ceramic disks.

    PubMed

    Kunkel, H A; Locke, S; Pikeroen, B

    1990-01-01

    The natural vibrational modes of axially symmetric piezoelectric ceramic disks have been calculated by the finite-element method. The disks are of the type used as active elements in compressional wave ultrasonic transducers, and are electrically polarized in thickness with full electrodes on the disk's major faces. To optimize disk geometry for ultrasonic transducer application, the dependence of the vibrational modes on the disk diameter-to-thickness ratio for ratios from 0.2 (a tall cylinder) to 10.0 (a thin disk) has been studied. Series and parallel resonance frequencies for each of the modes are determined through an eigenfrequency analysis, and effective electromechanical coupling coefficients are calculated. The modal displacement fields in the disk are calculated to determine the physical nature of each mode. An analysis of the complete spectrum of piezoelectrically active modes as a function of diameter-thickness ratio is presented for the ceramic PZT-5H, including and identification of radial, edge, length expander, thickness shear, and thickness extensional vibrations. From this analysis, optimal diameter-to-thickness ratios for good transducer performance are discussed.

  2. Numerical survey of pressure wave propagation around and inside an underground cavity with high order FEM

    NASA Astrophysics Data System (ADS)

    Esterhazy, Sofi; Schneider, Felix; Schöberl, Joachim; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    The research on purely numerical methods for modeling seismic waves has been more and more intensified over last decades. This development is mainly driven by the fact that on the one hand for subsurface models of interest in exploration and global seismology exact analytic solutions do not exist, but, on the other hand, retrieving full seismic waveforms is important to get insides into spectral characteristics and for the interpretation of seismic phases and amplitudes. Furthermore, the computational potential has dramatically increased in the recent past such that it became worthwhile to perform computations for large-scale problems as those arising in the field of computational seismology. Algorithms based on the Finite Element Method (FEM) are becoming increasingly popular for the propagation of acoustic and elastic waves in geophysical models as they provide more geometrical flexibility in terms of complexity as well as heterogeneity of the materials. In particular, we want to demonstrate the benefit of high-order FEMs as they also provide a better control on the accuracy. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Further we are interested in the generation of synthetic seismograms including direct, refracted and converted waves in correlation to the presence of an underground cavity and the detailed simulation of the comprehensive wave field inside and around such a cavity that would have been created by a nuclear explosion. The motivation of this application comes from the need to find evidence of a nuclear test as they are forbidden by the Comprehensive Nuclear-Test Ban Treaty (CTBT). With this approach it is possible for us to investigate the wave field over a large bandwidth of wave numbers. This again will help to provide a better understanding on the characteristic signatures of an underground cavity, improve the protocols for OSI field deployment and create solid observational strategies for detecting the presence of an underground (nuclear) cavity.

  3. Patient-specific finite element modeling of bones.

    PubMed

    Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A

    2013-04-01

    Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.

  4. Topology-optimized broadband surface relief transmission grating

    NASA Astrophysics Data System (ADS)

    Andkjær, Jacob; Ryder, Christian P.; Nielsen, Peter C.; Rasmussen, Thomas; Buchwald, Kristian; Sigmund, Ole

    2014-03-01

    We propose a design methodology for systematic design of surface relief transmission gratings with optimized diffraction efficiency. The methodology is based on a gradient-based topology optimization formulation along with 2D frequency domain finite element simulations for TE and TM polarized plane waves. The goal of the optimization is to find a grating design that maximizes diffraction efficiency for the -1st transmission order when illuminated by unpolarized plane waves. Results indicate that a surface relief transmission grating can be designed with a diffraction efficiency of more than 40% in a broadband range going from the ultraviolet region, through the visible region and into the near-infrared region.

  5. Band structure analysis of leaky Bloch waves in 2D phononic crystal plates.

    PubMed

    Mazzotti, Matteo; Miniaci, Marco; Bartoli, Ivan

    2017-02-01

    A hybrid Finite Element-Plane Wave Expansion method is presented for the band structure analysis of phononic crystal plates with two dimensional lattice that are in contact with acoustic half-spaces. The method enables the computation of both real (propagative) and imaginary (attenuation) components of the Bloch wavenumber at any given frequency. Three numerical applications are presented: a benchmark dispersion analysis for an oil-loaded Titanium isotropic plate, the band structure analysis of a water-loaded Tungsten slab with square cylindrical cavities and a phononic crystal plate composed of Aurum cylinders embedded in an epoxy matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Theoretical Study of the Effect of Enamel Parameters on Laser-Induced Surface Acoustic Waves in Human Incisor

    NASA Astrophysics Data System (ADS)

    Yuan, Ling; Sun, Kaihua; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian

    2015-06-01

    The laser ultrasound technique has great potential for clinical diagnosis of teeth because of its many advantages. To study laser surface acoustic wave (LSAW) propagation in human teeth, two theoretical methods, the finite element method (FEM) and Laguerre polynomial extension method (LPEM), are presented. The full field temperature values and SAW displacements in an incisor can be obtained by the FEM. The SAW phase velocity in a healthy incisor and dental caries is obtained by the LPEM. The methods and results of this work can provide a theoretical basis for nondestructive evaluation of human teeth with LSAWs.

  7. Mechanical design and analysis of a low beta squeezed half-wave resonator

    NASA Astrophysics Data System (ADS)

    He, Shou-Bo; Zhang, Cong; Yue, Wei-Ming; Wang, Ruo-Xu; Xu, Meng-Xin; Wang, Zhi-Jun; Huang, Shi-Chun; Huang, Yu-Lu; Jiang, Tian-Cai; Wang, Feng-Feng; Zhang, Sheng-Xue; He, Yuan; Zhang, Sheng-Hu; Zhao, Hong-Wei

    2014-08-01

    A superconducting squeezed type half-wave resonator (HWR) of β=0.09 has been developed at the Institute of Modern Physics, Lanzhou. In this paper, a basic design is presented for the stiffening structure for the detuning effect caused by helium pressure and Lorentz force. The mechanical modal analysis has been investigated the with finite element method (FEM). Based on these considerations, a new stiffening structure is proposed for the HWR cavity. The computation results concerning the frequency shift show that the low beta HWR cavity with new stiffening structure has low frequency sensitivity coefficient df/dp and Lorentz force detuning coefficient KL, and stable mechanical properties.

  8. A cylindrical optical black hole using graded index photonic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Hung-Wen; Chen, Lien-Wen

    2011-05-01

    The electromagnetic wave propagation of a two-dimensional optical black hole with graded index photonic crystals for transverse magnetic modes is studied. The implementation of the proposed system is validated in the metamaterial regime. The finite element method is employed in order to confirm the optical properties of the designed device. Numerical simulations show that the light incident on the device is bent toward the central area and absorbed by the inner core. As a result, the artificial optical black hole can effectively absorb the incident waves from all directions. The structure is composed of two kinds of real isotropic materials, which eases the experimental fabrication.

  9. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2005-01-01

    The finite-difference time-domain method was used to simulate radar waves that were generated by a transmitting antenna inside a borehole. The simulations were of four different models that included features such as a water-filled borehole and an antenna with resistive loading. For each model, radiation patterns for the far-field region were calculated. The radiation patterns show that the amplitude of the radar wave was strongly affected by its frequency, the water-filled borehole, the resistive loading of the antenna, and the external metal parts of the antenna (e.g., the cable head and the battery pack). For the models with a water-filled borehole, their normalized radiation patterns were practically identical to the normalized radiation pattern of a finite-length electric dipole when the wavelength in the formation was significantly greater than the total length of the radiating elements of the model antenna. The minimum wavelength at which this criterion was satisfied depended upon the features of the antenna, especially its external metal parts. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  10. Wave of chaos in a spatial eco-epidemiological system: Generating realistic patterns of patchiness in rabbit-lynx dynamics.

    PubMed

    Upadhyay, Ranjit Kumar; Roy, Parimita; Venkataraman, C; Madzvamuse, A

    2016-11-01

    In the present paper, we propose and analyze an eco-epidemiological model with diffusion to study the dynamics of rabbit populations which are consumed by lynx populations. Existence, boundedness, stability and bifurcation analyses of solutions for the proposed rabbit-lynx model are performed. Results show that in the presence of diffusion the model has the potential of exhibiting Turing instability. Numerical results (finite difference and finite element methods) reveal the existence of the wave of chaos and this appears to be a dominant mode of disease dispersal. We also show the mechanism of spatiotemporal pattern formation resulting from the Hopf bifurcation analysis, which can be a potential candidate for understanding the complex spatiotemporal dynamics of eco-epidemiological systems. Implications of the asymptotic transmission rate on disease eradication among rabbit population which in turn enhances the survival of Iberian lynx are discussed. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  11. International Symposium on Numerical Methods in Engineering, 5th, Ecole Polytechnique Federale de Lausanne, Switzerland, Sept. 11-15, 1989, Proceedings. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Gruber, Ralph; Periaux, Jaques; Shaw, Richard Paul

    Recent advances in computational mechanics are discussed in reviews and reports. Topics addressed include spectral superpositions on finite elements for shear banding problems, strain-based finite plasticity, numerical simulation of hypersonic viscous continuum flow, constitutive laws in solid mechanics, dynamics problems, fracture mechanics and damage tolerance, composite plates and shells, contact and friction, metal forming and solidification, coupling problems, and adaptive FEMs. Consideration is given to chemical flows, convection problems, free boundaries and artificial boundary conditions, domain-decomposition and multigrid methods, combustion and thermal analysis, wave propagation, mixed and hybrid FEMs, integral-equation methods, optimization, software engineering, and vector and parallel computing.

  12. Characterization of Meta-Materials Using Computational Electromagnetic Methods

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Shin, Joon

    2005-01-01

    An efficient and powerful computational method is presented to synthesize a meta-material to specified electromagnetic properties. Using the periodicity of meta-materials, the Finite Element Methodology (FEM) is developed to estimate the reflection and transmission through the meta-material structure for a normal plane wave incidence. For efficient computations of the reflection and transmission over a wide band frequency range through a meta-material a Finite Difference Time Domain (FDTD) approach is also developed. Using the Nicholson-Ross method and the Genetic Algorithms, a robust procedure to extract electromagnetic properties of meta-material from the knowledge of its reflection and transmission coefficients is described. Few numerical examples are also presented to validate the present approach.

  13. Crossing the threshold

    NASA Astrophysics Data System (ADS)

    Bush, John; Tambasco, Lucas

    2017-11-01

    First, we summarize the circumstances in which chaotic pilot-wave dynamics gives rise to quantum-like statistical behavior. For ``closed'' systems, in which the droplet is confined to a finite domain either by boundaries or applied forces, quantum-like features arise when the persistence time of the waves exceeds the time required for the droplet to cross its domain. Second, motivated by the similarities between this hydrodynamic system and stochastic electrodynamics, we examine the behavior of a bouncing droplet above the Faraday threshold, where a stochastic element is introduced into the drop dynamics by virtue of its interaction with a background Faraday wave field. With a view to extending the dynamical range of pilot-wave systems to capture more quantum-like features, we consider a generalized theoretical framework for stochastic pilot-wave dynamics in which the relative magnitudes of the drop-generated pilot-wave field and a stochastic background field may be varied continuously. We gratefully acknowledge the financial support of the NSF through their CMMI and DMS divisions.

  14. A projection-based model reduction strategy for the wave and vibration analysis of rotating periodic structures

    NASA Astrophysics Data System (ADS)

    Beli, D.; Mencik, J.-M.; Silva, P. B.; Arruda, J. R. F.

    2018-05-01

    The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.

  15. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  16. Analysis of the sound field in finite length infinite baffled cylindrical ducts with vibrating walls of finite impedance.

    PubMed

    Shao, Wei; Mechefske, Chris K

    2005-04-01

    This paper describes an analytical model of finite cylindrical ducts with infinite flanges. This model is used to investigate the sound radiation characteristics of the gradient coil system of a magnetic resonance imaging (MRI) scanner. The sound field in the duct satisfies both the boundary conditions at the wall and at the open ends. The vibrating cylindrical wall of the duct is assumed to be the only sound source. Different acoustic conditions for the wall (rigid and absorptive) are used in the simulations. The wave reflection phenomenon at the open ends of the finite duct is described by general radiation impedance. The analytical model is validated by the comparison with its counterpart in a commercial code based on the boundary element method (BEM). The analytical model shows significant advantages over the BEM model with better numerical efficiency and a direct relation between the design parameters and the sound field inside the duct.

  17. Higher Order Bases in a 2D Hybrid BEM/FEM Formulation

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Wilton, Donald R.

    2002-01-01

    The advantages of using higher order, interpolatory basis functions are examined in the analysis of transverse electric (TE) plane wave scattering by homogeneous, dielectric cylinders. A boundary-element/finite-element (BEM/FEM) hybrid formulation is employed in which the interior dielectric region is modeled with the vector Helmholtz equation, and a radiation boundary condition is supplied by an Electric Field Integral Equation (EFIE). An efficient method of handling the singular self-term arising in the EFIE is presented. The iterative solution of the partially dense system of equations is obtained using the Quasi-Minimal Residual (QMR) algorithm with an Incomplete LU Threshold (ILUT) preconditioner. Numerical results are shown for the case of an incident wave impinging upon a square dielectric cylinder. The convergence of the solution is shown versus the number of unknowns as a function of the completeness order of the basis functions.

  18. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanGordon, James A.; Kovaleski, Scott D., E-mail: kovaleskis@missouri.edu; Norgard, Peter

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-opticmore » effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model for a wider range of electrical load impedances under test.« less

  19. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects.

    PubMed

    VanGordon, James A; Kovaleski, Scott D; Norgard, Peter; Gall, Brady B; Dale, Gregory E

    2014-02-01

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model for a wider range of electrical load impedances under test.

  20. Variational modelling of extreme waves through oblique interaction of solitary waves: application to Mach reflection

    NASA Astrophysics Data System (ADS)

    Gidel, Floriane; Bokhove, Onno; Kalogirou, Anna

    2017-01-01

    In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length and amplitude, reaching up to 4 times the amplitude of the incident waves. A variational approach is used to derive the bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling water waves. This nonlinear and weakly dispersive model has the advantage of allowing wave propagation in two horizontal directions, which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies. A variational Galerkin finite-element method is applied to solve the system numerically in Firedrake with a second-order Störmer-Verlet temporal integration scheme, in order to obtain stable simulations that conserve the overall mass and energy of the system. Using this approach, we are able to get close to the 4-fold amplitude amplification predicted by Miles.

  1. The wave-field from an array of periodic emitters driven simultaneously by a broadband pulse.

    PubMed

    Dixon, Steve; Hill, Samuel; Fan, Yichao; Rowlands, George

    2013-06-01

    The use of phased array methods are commonplace in ultrasonic applications, where controlling the variation of the phase between the narrowband emitters in an array facilitates beam steering and focusing of ultrasonic waves. An approach is presented here whereby emitters of alternating polarity arranged in a one-dimensional array are pulsed simultaneously, and have sufficiently wide, controlled bandwidth to emit a two-dimensional wave. This pulsed approach provides a rapid means of simultaneously covering a region of space with a wave-front, whereby any wave that scatters or reflects off a body to a detector will have a distinct arrival time and frequency. This is a general wave phenomenon with a potential application in radar, sonar, and ultrasound. The key result is that one can obtain a smooth, continuous wave-front emitted from the array, over a large solid angle, whose frequency varies as a function of angle to the array. Analytic and finite element models created to describe this phenomenon have been validated with experimental results using ultrasonic waves in metal samples.

  2. Full wave simulations of helicon wave losses in the scrape-off-layer of the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Lau, Cornwall; Jaeger, Fred; Berry, Lee; Bertelli, Nicola; Pinsker, Robert

    2017-10-01

    Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D. Previous modeling using the hot plasma, full wave code AORSA, has shown good agreement with the ray tracing code GENRAY for helicon wave propagation and absorption in the core plasma. AORSA, and a new, reduced finite-element-model show discrepancies between ray tracing and full wave occur in the scrape-off-layer (SOL), especially at high densities. The reduced model is much faster than AORSA, and reproduces most of the important features of the AORSA model. The reduced model also allows for larger parametric scans and for the easy use of arbitrary tokamak geometry. Results of the full wave codes, AORSA and COMSOL, will be shown for helicon wave losses in the SOL are shown for a large range of parameters, such as SOL density profiles, n||, radial and vertical locations of the antenna, and different tokamak vessel geometries. This work was supported by DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-04ER54698.

  3. Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge.

    PubMed

    Yan, Xiang; Yuan, Fuh-Gwo

    2015-06-01

    This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.

  4. Three-Dimensional Numerical Analyses of Earth Penetration Dynamics

    DTIC Science & Technology

    1979-01-31

    Lagrangian formulation based on the HEMP method and has been adapted and validated for treatment of normal-incidence (axisymmetric) impact and...code, is a detailed analysis of the structural response of the EPW. This analysis is generated using a nonlinear dynamic, elastic- plastic finite element...based on the HEMP scheme. Thus, the code has the same material modeling capabilities and abilities to track large scale motion found in the WAVE-L code

  5. Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates

    DTIC Science & Technology

    2012-02-21

    aerospace structures is increasing rapidly due to several advantages such as lighter weight, fewer joints, improved fatigue life, and higher...breakage, and matrix cracking. These damages often occur below the surface due to fatigue , foreign object impact, etc., and may not be visible. The...ply [0/90]2s. A piezoelectric ( PZT ) actuator (diameter 13.5 mm and thickness 0.22 mm) is affixed onto the composite plate using epoxy. A National

  6. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  7. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE PAGES

    Kohno, H.; Myra, J. R.

    2017-07-24

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  8. A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Li, Meng; Gu, Xian-Ming; Huang, Chengming; Fei, Mingfa; Zhang, Guoyu

    2018-04-01

    In this paper, a fast linearized conservative finite element method is studied for solving the strongly coupled nonlinear fractional Schrödinger equations. We prove that the scheme preserves both the mass and energy, which are defined by virtue of some recursion relationships. Using the Sobolev inequalities and then employing the mathematical induction, the discrete scheme is proved to be unconditionally convergent in the sense of L2-norm and H α / 2-norm, which means that there are no any constraints on the grid ratios. Then, the prior bound of the discrete solution in L2-norm and L∞-norm are also obtained. Moreover, we propose an iterative algorithm, by which the coefficient matrix is independent of the time level, and thus it leads to Toeplitz-like linear systems that can be efficiently solved by Krylov subspace solvers with circulant preconditioners. This method can reduce the memory requirement of the proposed linearized finite element scheme from O (M2) to O (M) and the computational complexity from O (M3) to O (Mlog ⁡ M) in each iterative step, where M is the number of grid nodes. Finally, numerical results are carried out to verify the correction of the theoretical analysis, simulate the collision of two solitary waves, and show the utility of the fast numerical solution techniques.

  9. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, H.; Myra, J. R.

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  10. Finite Element Study on Continuous Rotating versus Reciprocating Nickel-Titanium Instruments.

    PubMed

    El-Anwar, Mohamed I; Yousief, Salah A; Kataia, Engy M; El-Wahab, Tarek M Abd

    2016-01-01

    In the present study, GTX and ProTaper as continuous rotating endodontic files were numerically compared with WaveOne reciprocating file using finite element analysis, aiming at having a low cost, accurate/trustworthy comparison as well as finding out the effect of instrument design and manufacturing material on its lifespan. Two 3D finite element models were especially prepared for this comparison. Commercial engineering CAD/CAM package was used to model full detailed flute geometries of the instruments. Multi-linear materials were defined in analysis by using real strain-stress data of NiTi and M-Wire. Non-linear static analysis was performed to simulate the instrument inside root canal at a 45° angle in the apical portion and subjected to 0.3 N.cm torsion. The three simulations in this study showed that M-Wire is slightly more resistant to failure than conventional NiTi. On the other hand, both materials are fairly similar in case of severe locking conditions. For the same instrument geometry, M-Wire instruments may have longer lifespan than the conventional NiTi ones. In case of severe locking conditions both materials will fail similarly. Larger cross sectional area (function of instrument taper) resisted better to failure than the smaller ones, while the cross sectional shape and its cutting angles could affect instrument cutting efficiency.

  11. Eliminating time dispersion from seismic wave modeling

    NASA Astrophysics Data System (ADS)

    Koene, Erik F. M.; Robertsson, Johan O. A.; Broggini, Filippo; Andersson, Fredrik

    2018-04-01

    We derive an expression for the error introduced by the second-order accurate temporal finite-difference (FD) operator, as present in the FD, pseudospectral and spectral element methods for seismic wave modeling applied to time-invariant media. The `time-dispersion' error speeds up the signal as a function of frequency and time step only. Time dispersion is thus independent of the propagation path, medium or spatial modeling error. We derive two transforms to either add or remove time dispersion from synthetic seismograms after a simulation. The transforms are compared to previous related work and demonstrated on wave modeling in acoustic as well as elastic media. In addition, an application to imaging is shown. The transforms enable accurate computation of synthetic seismograms at reduced cost, benefitting modeling applications in both exploration and global seismology.

  12. Multiscale Approach For Simulating Nonlinear Wave Propagation In Materials with Localized Microdamage

    NASA Astrophysics Data System (ADS)

    Vanaverbeke, Sigfried; Van Den Abeele, Koen

    2006-05-01

    A multiscale model for the simulation of two-dimensional nonlinear wave propagation in microcracked materials exhibiting hysteretic nonlinearity is presented. We use trigger-like elements with a two state nonlinear stress-strain relation to simulate microcracks at the microlevel. A generalized Preisach space approach, based on the eigenstress-eigenstrain formulation, upscales the microscopic state relation to the mesoscopic level. The macroscopic response of the sample to an arbitrary excitation signal is then predicted using a staggered grid Elastodynamic Finite Integration Technique (EFIT) formalism. We apply the model to investigate spectral changes of a pulsed signal traversing a localized microdamaged region with hysteretic nonlinearity in a plate, and to study the influence of a superficial region with hysteretic nonlinearity on the nonlinear Rayleigh wave propagation.

  13. Quantitative evaluation of thickness reduction in corroded steel plates using surface SH waves

    NASA Astrophysics Data System (ADS)

    Suzuki, Keigo; Ha, Nguyen Phuong; Otobe, Yuichi; Tamura, Hiroshi; Sasaki, Eiichi

    2018-04-01

    This study evaluates the effect of reduction in plate thickness for a steel plate existing in concrete on guided ultrasonic SH (g-SH) waves. It has been found that the time of flight (TOF) increases if the plate thickness is reduced. The parameter investigated in this study is a delay time obtained from a TOF comparison between a healthy and a damaged plate. The wave propagation is simulated by dynamic Finite Element Analysis (FEA). The resulting data are then used to propose a theoretical equation for predicting TOF. The prediction of delay time obtained from the proposed equation is found to be in general agreement, with an error of 10% (or less), when compared with the experiment results, if the thickness reduction is over 3.65mm.

  14. ATHENA 3D: A finite element code for ultrasonic wave propagation

    NASA Astrophysics Data System (ADS)

    Rose, C.; Rupin, F.; Fouquet, T.; Chassignole, B.

    2014-04-01

    The understanding of wave propagation phenomena requires use of robust numerical models. 3D finite element (FE) models are generally prohibitively time consuming. However, advances in computing processor speed and memory allow them to be more and more competitive. In this context, EDF R&D developed the 3D version of the well-validated FE code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based on solving elastodynamic equations in the calculation zone expressed in terms of stress and particle velocities. The particularity of the code relies on the fact that the discretization of the calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry can be described using a separate (2D) mesh using the fictitious domains method. This allows combining the rapidity of regular meshes computation with the capability of modelling arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-explicit time evolution scheme. Thereby only local linear systems of small size have to be solved. The final step to reduce the computation time relies on the fact that ATHENA3D has been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for several inspection configurations. The performances in terms of calculation time are also presented in the cases of both local computer and computation cluster use.

  15. Development of Multi-Physics Dynamics Models for High-Frequency Large-Amplitude Structural Response Simulation

    NASA Technical Reports Server (NTRS)

    Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.

    2016-01-01

    An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.

  16. KANTBP 2.0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Vinitsky, S. I.; Abrashkevich, A. G.

    2008-11-01

    A FORTRAN 77 program for calculating energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach is presented. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on a finite interval with homogeneous boundary conditions: (i) the Dirichlet, Neumann and third type at the left and right boundary points for continuous spectrum problem, (ii) the Dirichlet and Neumann type conditions at left boundary point and Dirichlet, Neumann and third type at the right boundary point for the discrete spectrum problem. The resulting system of radial equations containing the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite element method. As a test desk, the program is applied to the calculation of the reaction matrix and radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field. This version extends the previous version 1.0 of the KANTBP program [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675]. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 403 No. of bytes in distributed program, including test data, etc.: 147 563 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: This depends on the number of differential equations; the number and order of finite elements; the number of hyperradial points; and the number of eigensolutions required. The test run requires 2 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [2] Nature of problem: In the hyperspherical adiabatic approach [3-5], a multidimensional Schrödinger equation for a two-electron system [6] or a hydrogen atom in magnetic field [7-9] is reduced by separating radial coordinate ρ from the angular variables to a system of the second-order ordinary differential equations containing the potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions of the continuum spectrum for such systems of coupled differential equations on finite intervals of the radial variable ρ∈[ρ,ρ]. This approach can be used in the calculations of effects of electron screening on low-energy fusion cross sections [10-12]. Solution method: The boundary problems for the coupled second-order differential equations are solved by the finite element method using high-order accuracy approximations [13]. The generalized algebraic eigenvalue problem AF=EBF with respect to pair unknowns ( E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [14]. The generalized algebraic eigenvalue problem (A-EB)F=λDF with respect to pair unknowns ( λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy value, E, is solved by the LDL factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [14]. As a test desk, the program is applied to the calculation of the reaction matrix and corresponding radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field described in [9] on finite intervals of the radial variable ρ∈[ρ,ρ]. For this benchmark model the required analytical expressions for asymptotics of the potential matrix elements and first-derivative coupling terms, and also asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra system. Restrictions: The computer memory requirements depend on: the number of differential equations; the number and order of finite elements; the total number of hyperradial points; and the number of eigensolutions required. Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Section 3 and [1] for details). The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should also supply subroutines ASYMEV (when solving the eigenvalue problem) or ASYMS0 and ASYMSC (when solving the scattering problem) which evaluate asymptotics of the radial wave functions at left and right boundary points in case of a boundary condition of the third type for the above problems. Running time: The running time depends critically upon: the number of differential equations; the number and order of finite elements; the total number of hyperradial points on interval [ ρ,ρ]; and the number of eigensolutions required. The test run which accompanies this paper took 2 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz. References: [1] O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675; http://cpc.cs.qub.ac.uk/summaries/ADZHv10.html. [2] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986. [3] J. Macek, J. Phys. B 1 (1968) 831-843. [4] U. Fano, Rep. Progr. Phys. 46 (1983) 97-165. [5] C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77-142. [6] A.G. Abrashkevich, D.G. Abrashkevich, M. Shapiro, Comput. Phys. Commun. 90 (1995) 311-339. [7] M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352. [8] O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, L.A. Melnikov, V.V. Serov, S.I. Vinitsky, J. Phys. A 40 (2007) 11485-11524. [9] O. Chuluunbaatar, A.A. Gusev, V.P. Gerdt, V.A. Rostovtsev, S.I. Vinitsky, A.G. Abrashkevich, M.S. Kaschiev, V.V. Serov, Comput. Phys. Commun. 178 (2007) 301 330; http://cpc.cs.qub.ac.uk/summaries/AEAAv10.html. [10] H.J. Assenbaum, K. Langanke, C. Rolfs, Z. Phys. A 327 (1987) 461-468. [11] V. Melezhik, Nucl. Phys. A 550 (1992) 223-234. [12] L. Bracci, G. Fiorentini, V.S. Melezhik, G. Mezzorani, P. Pasini, Phys. Lett. A 153 (1991) 456-460. [13] A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Commun. 85 (1995) 40-64. [14] K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982.

  17. A Finite Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces

    DTIC Science & Technology

    1991-09-01

    Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces by Victor W. Sparrow...The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency...incident on the hard and porous surfaces were produced. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance

  18. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  19. A Wave Chaotic Study of Quantum Graphs with Microwave Networks

    NASA Astrophysics Data System (ADS)

    Fu, Ziyuan

    Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.

  20. Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy.

    PubMed

    Mo, Jianqiang; Xu, Hao; Qiang, Bo; Giambini, Hugo; Kinnick, Randall; An, Kai-Nan; Chen, Shigao; Luo, Zongping

    2016-01-01

    Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method and Lamb wave model simulation. The result indicated that the Young's modulus measured by SWE decreased continuously when the sample thickness decreased, and this effect was more significant for smaller thickness. We proposed a new empirical formula which can conveniently correct the bias without the need of using complicated mathematical modeling. In summary, we confirmed the nonlinear relation between thickness and Young's modulus measured by SWE in thin layer samples, and offered a simple and practical correction strategy which is convenient for clinicians to use.

  1. Lamb wave propagation in a restricted geometry composite pi-joint specimen

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Soni, Som

    2012-05-01

    The propagation of elastic waves in a material can involve a number of complex physical phenomena, resulting in both subtle and dramatic effects on detected signal content. In recent years, the use of advanced methods for characterizing and imaging elastic wave propagation and scattering processes has increased, where for example the use of scanning laser vibrometry and advanced computational models have been used very effectively to identify propagating modes, scattering phenomena, and damage feature interactions. In the present effort, the propagation of Lamb waves within a narrow, constrained geometry composite pi-joint structure are studied using 3D finite element models and scanning laser vibrometry measurements, where the effects of varying sample thickness, complex joint curvatures, and restricted structure geometries are highlighted, and a direct comparison of computational and experimental results are provided for simulated and realistic geometry composite pi-joint samples.

  2. Propagation behavior of the stress wave in a hollow Hopkinson transmission bar

    NASA Astrophysics Data System (ADS)

    Zou, G.; Shen, X.; Guo, C.; Vecchio, K. S.; Jiang, F.

    2018-03-01

    In order to investigate the stress wave propagation behavior through a hollow elastic bar that is used in a Hopkinson-bar-loaded fracture testing system, three-point bending fracture experiments were performed in such a system. The effects of sample span and diameter and wall thickness of the hollow elastic bar on the stress wave propagation behavior were studied numerically using the software of ANSYS/LS-DYNA. The experimental results demonstrated that the incident, reflected, and transmitted pulses calculated by the finite element method are coincident with those obtained from the Hopkinson-bar-loaded fracture tests. Compared to the solid transmission bar, the amplitude of the transmitted pulse is relatively larger in the hollow transmission bar under the same loading conditions and decreases with increasing wall thickness. On the other hand, when the inside diameter is fixed, the effect of the wall thickness on the stress wave characteristics is more obvious.

  3. The effects of core-reflected waves on finite fault inversion with teleseismic body wave data

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Ni, S.; Wei, S.

    2016-12-01

    Reliable estimation of rupture processes for a large earthquake is valuable for post-seismic rescue, tsunami alert, seismotectonic studies, as well as earthquake physics. Finite-fault inversion has been widely accepted to reconstruct the spatial-temporal distribution of rupture processes, which can be obtained by individual or jointly inversion of seismic, geodetic and tsunami data sets. Among the above observations, teleseismic (30° 90°) body waves, usually P and SH waves, have been used extensively in such inversions because their propagation are well understood and readily available for large earthquakes with good coverages of slowness and azimuth. However, finite fault inversion methods usually assume turning P and SH waves without inclusion of core-reflected waves when calculating the synthetic waveforms, which may result in systematic error in finite-fault inversions. For the core-reflected SH wave ScS, it is expected to be strong due to total reflection from Core-Mantle-Boundary. Moreover, the time interval between direct S and ScS could be smaller than the duration of large earthquakes for large epicentral distances. In order to improve the accuracy of finite fault inversion with teleseismic body waves, we develop a procedure named multitel3 to compute Greens' functions that contain both turning waves (P, pP, sP, S, sS et al.) and core-reflected phases (PcP and ScS) and apply it to finite fault inversions. This ray-based method can rapidly calculate teleseismic body wave synthetics with flexibility for path calibration of 3D mantle structure. The new Green's function is plugged into finite fault inversion package to replace the original Green's function with only turning P and SH waves. With the 2008 Mw7.9 Wenchuan earthquake as example, a series of numerical tests conducted on synthetic data are used to assess the performance of our approach. We also explore this new procedure's stability when there are discrepancies between the parameters of input model and the priori information of inverse model, such as strike, dip of finite fault and so on. With the quantified code, we apply it to study rupture process of the 2016 Mw7.8 Sumatra earthquake.

  4. A general algorithm using finite element method for aerodynamic configurations at low speeds

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.

    1975-01-01

    A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.

  5. The numerical calculation of hydrological processes in the coastal zone of the Black Sea region in the city of Poti

    NASA Astrophysics Data System (ADS)

    Saghinadze, Ivane; Pkhakadze, Manana

    2016-04-01

    (The article was published with support of the Sh. Rustaveli National Science Foundation) The serious environmental problems started in Poti after transfer of the main flow of the river Rioni to the north. As a result the flooding of the city stopped, but the reduction of water consumption in the city channel, caused a decrease of the sediments carried away by the river, what leads to coastal erosion. The coast changes are connected with the movement of the waves and currents in the coastal part of the sea. In the paper, the three-dimensional mathematical model of sediment transport and coastal zone lithodynamics is developed. The finite element formulations for the problems of wave modes, coastal currents, sediment transport and evolution of the coastal zone of the sea, are given. The numerical algorithms, implemented in the form of software. Programs are allowing to bring the solutions of the tasks to numerical results. The numerical modeling was developed in three stages. In the first stage the topography of the coast and the initial geometry of the structures are considered as an input parameters. Then, coastal wave field is calculated for the conditions prescribed in the initial wave. In the second stage, the calculated wave field is used to estimate the spatial distribution of the radiation stresses near-bottom orbital velocity. In the third stage the coastal wave fields and flow fields are used in the sub-models of sediment transport and changes in the topography of the coast. In the numerical solution of basic equations of motion of the waves, coastal currents and changes in sea bottom topography we use: finite element, finite difference methods and the method of upper relaxation, Crank-Nicolson scheme. As an example, we are giving the results of research of the wave regime in the coastal area of the city of Poti (700X600m) adjacent to the port of Poti. The bottom profile, in this area is rather complicated. During the calculations of the average rise of sea level, 0.1m was taken as the initial value, which corresponds to the actual conditions The calculations have found that in the excitement, the sediment transport rates at a depth of 10-15m are almost zero. The maximum value of the velocity of sediment transport change within 0.006-0.0065m2/s.In the case of the western waves it is essential for longshore sediment transport directions, which varies in the range 0.0015-0.0022m2/s. The rate of sediment transport perpendicular to the bank in this case is irrelevant, and their maximum values in the range 0.00001-0.000017m2/s. Changes in the water depth varies from -0.25 to 0.29m. The rate of coastal erosion south of the port of 8-10 m/year.

  6. The Indirect Boundary Element Method (IBEM) for Seismic Response of Topographical Irregularities in Layered Media

    NASA Astrophysics Data System (ADS)

    Contreras Zazueta, M. A.; Perton, M.; Sanchez-Sesma, F. J.; Sánchez-Alvaro, E.

    2013-12-01

    The seismic hazard assessment of extended developments, such as a dam, a bridge or a pipeline, needs the strong ground motion simulation taking into account the effects of surface geology. In many cases the incoming wave field can be obtained from attenuation relations or simulations for layered media using Discrete Wave Number (DWN). Sometimes there is a need to include in simulations the seismic source as well. A number of methods to solve these problems have been developed. Among them the Finite Element and Finite Difference Methods (FEM and FDM) are generally preferred because of the facility of use. Nevertheless, the analysis of realistic dynamic loading induced by earthquakes requires a thinner mesh of the entire domain to consider high frequencies. Consequently this may imply a high computational cost. The Indirect Boundary Element Method (IBEM) can also be employed. Here it is used to study the response of a site to historical seismic activity. This method is particularly suited to model wave propagation through wide areas as it requires only the meshing of boundaries. Moreover, it is well suited to represent finely the diffraction that can occur on a fault. However, the IBEM has been applied mainly to simple geometrical configurations. In this communication significant refinements of the formulation are presented. Using IBEM we can simulate wave propagation in complex geometrical configurations such as a stratified medium crossed by thin faults or having a complex topography. Two main developments are here described; one integrates the DWN method inside the IBEM in order to represent the Green's functions of stratified media with relatively low computational cost but assuming unbounded parallel flat layers, and the other is the extension of IBEM to deal with multi-regions in contact which allows more versatility with a higher computational cost compared to the first one but still minor to an equivalent FEM formulation. The two approaches are fully described here and their results compared within the hazard studies of CFE-Las Cruces, Nayarit, Mexico, hydroelectrical project. ACKNOWLEDGEMENTS. This study is partially supported by DGAPA-UNAM under Project IN104712.

  7. Improving a complex finite-difference ground water flow model through the use of an analytic element screening model

    USGS Publications Warehouse

    Hunt, R.J.; Anderson, M.P.; Kelson, V.A.

    1998-01-01

    This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.

  8. X-ray nanofocusing by kinoform lenses: A comparative study using different modeling approaches

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei

    2010-02-01

    We conduct a comparative study on various kinoform lenses (KLs) for x-ray nanofocusing by using the geometrical theory, the dynamical diffraction theory, and the beam propagation method. This study shows that the geometrical theory becomes invalid to describe the performance of a KL for nanofocusing. The strong edge diffraction effect from individual lens element, which distorts the desired wave field, leads to a reduction in the effective numerical aperture and imposes a limit on how small a focus a KL can achieve. Because this effect is associated with a finite thickness of a lens, larger lens thickness depicts a stronger distortion. We find that a short KL where all lens elements are folded back to a single plane shows an illumination preference: if the illuminating geometry is in favor of the Bragg diffraction for a focusing order, its performance is enhanced and vice versa. We also find that a short KL usually outperforms its long version where all lens elements do not lie in a single plane because the short one suffers less the wave field distortion due to the edge diffraction. Simulation results suggest that for a long KL, an adaptive lens design is needed to correct the wave field distortion in order to achieve a better performance.

  9. Measuring the band structures of periodic beams using the wave superposition method

    NASA Astrophysics Data System (ADS)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in the dispersion curve measured from the experiments were deduced to be a result of a combination of measurement noise, the different placement of the accelerometer with finite mass, and the torsional mode.

  10. TerraFERMA: The Transparent Finite Element Rapid Model Assembler for multi-physics problems in the solid Earth sciences

    NASA Astrophysics Data System (ADS)

    Spiegelman, M. W.; Wilson, C. R.; Van Keken, P. E.

    2013-12-01

    We announce the release of a new software infrastructure, TerraFERMA, the Transparent Finite Element Rapid Model Assembler for the exploration and solution of coupled multi-physics problems. The design of TerraFERMA is driven by two overarching computational needs in Earth sciences. The first is the need for increased flexibility in both problem description and solution strategies for coupled problems where small changes in model assumptions can often lead to dramatic changes in physical behavior. The second is the need for software and models that are more transparent so that results can be verified, reproduced and modified in a manner such that the best ideas in computation and earth science can be more easily shared and reused. TerraFERMA leverages three advanced open-source libraries for scientific computation that provide high level problem description (FEniCS), composable solvers for coupled multi-physics problems (PETSc) and a science neutral options handling system (SPuD) that allows the hierarchical management of all model options. TerraFERMA integrates these libraries into an easier to use interface that organizes the scientific and computational choices required in a model into a single options file, from which a custom compiled application is generated and run. Because all models share the same infrastructure, models become more reusable and reproducible. TerraFERMA inherits much of its functionality from the underlying libraries. It currently solves partial differential equations (PDE) using finite element methods on simplicial meshes of triangles (2D) and tetrahedra (3D). The software is particularly well suited for non-linear problems with complex coupling between components. We demonstrate the design and utility of TerraFERMA through examples of thermal convection and magma dynamics. TerraFERMA has been tested successfully against over 45 benchmark problems from 7 publications in incompressible and compressible convection, magmatic solitary waves and Stokes flow with free surfaces. We have been using it extensively for research in basic magma dynamics, fluid flow in subduction zones and reactive cracking in poro-elastic materials. TerraFERMA is open-source and available as a git repository at bitbucket.org/tferma/tferma and through CIG. Instability of a 1-D magmatic solitary wave to spherical 3D waves calculated using TerraFERMA

  11. The band gap properties of the three-component semi-infinite plate-like LRPC by using PWE/FE method

    NASA Astrophysics Data System (ADS)

    Qian, Denghui; Wang, Jianchun

    2018-06-01

    This paper applies coupled plane wave expansion and finite element (PWE/FE) method to calculate the band structure of the proposed three-component semi-infinite plate-like locally resonant phononic crystal (LRPC). In order to verify the accuracy of the result, the band structure calculated by PWE/FE method is compared to that calculated by the traditional finite element (FE) method, and the frequency range of the band gap in the band structure is compared to that of the attenuation in the transmission power spectrum. Numerical results and further analysis demonstrate that a band gap is opened by the coupling between the dominant vibrations of the rubber layer and the matrix modes. In addition, the influences of the geometry parameters on the band gap are studied and understood with the help of the simple “base-spring-mass” model, the influence of the viscidity of rubber layer on the band gap is also investigated.

  12. A MATLAB-based finite-element visualization of quantum reactive scattering. I. Collinear atom-diatom reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warehime, Mick; Alexander, Millard H., E-mail: mha@umd.edu

    We restate the application of the finite element method to collinear triatomic reactive scattering dynamics with a novel treatment of the scattering boundary conditions. The method provides directly the reactive scattering wave function and, subsequently, the probability current density field. Visualizing these quantities provides additional insight into the quantum dynamics of simple chemical reactions beyond simplistic one-dimensional models. Application is made here to a symmetric reaction (H+H{sub 2}), a heavy-light-light reaction (F+H{sub 2}), and a heavy-light-heavy reaction (F+HCl). To accompany this article, we have written a MATLAB code which is fast, simple enough to be accessible to a wide audience,more » as well as generally applicable to any problem that can be mapped onto a collinear atom-diatom reaction. The code and user's manual are available for download from http://www2.chem.umd.edu/groups/alexander/FEM.« less

  13. Increasing low frequency sound attenuation using compounded single layer of sonic crystal

    NASA Astrophysics Data System (ADS)

    Gulia, Preeti; Gupta, Arpan

    2018-05-01

    Sonic crystals (SC) are man-made periodic structures where sound hard scatterers are arranged in a crystalline manner. SC reduces noise in a particular range of frequencies called as band gap. Sonic crystals have a promising application in noise shielding; however, the application is limited due to the size of structure. Particularly for low frequencies, the structure becomes quite bulky, restricting its practical application. This paper presents a compounded model of SC, which has the same overall area and filling fraction but with increased low frequency sound attenuation. Two cases have been considered, a three layer SC and a compounded single layer SC. Both models have been analyzed using finite element simulation and plane wave expansion method. Band gaps for periodic structures have been obtained using both methods which are in good agreement. Further, sound transmission loss has been evaluated using finite element method. The results demonstrate the use of compounded model of Sonic Crystal for low frequency sound attenuation.

  14. Elastography methods applicable to the eye

    NASA Astrophysics Data System (ADS)

    Khan, Altaf A.; Cortina, Soledad M.; Chamon, Wallace; Royston, Thomas J.

    2014-02-01

    Elastography is the mapping of tissues and cells by their respective mechanical properties, such as elasticity and viscosity. Our interest primarily lies in the human eye. Combining Scanning Laser Doppler Vibrometry (SLDV) with geometrically focused mechanical vibratory excitations of the cornea, it is possible to reconstruct these mechanical properties of the cornea. Experiments were conducted on phantom corneas as well as excised donor human corneas to test feasibility and derive a method of modeling. Finite element analysis was used to recreate the phantom studies and corroborate with the experimental data. Results are in close agreement. To further expand the study, lamb eyes were used in MR Elastography studies. 3D wave reconstruction was created and elastography maps were obtained. With MR Elastography, it would be possible to noninvasively measure mechanical properties of anatomical features not visible to SLDV, such as the lens and retina. Future plans include creating a more robust finite element model, improving the SLDV method for in-vivo application, and continuing experiments with MR Elastography.

  15. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    PubMed

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  16. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU

    NASA Astrophysics Data System (ADS)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.

  17. Influence of global heterogeneities on regional imaging based upon full waveform inversion of teleseismic wavefield

    NASA Astrophysics Data System (ADS)

    Monteiller, Vadim; Beller, Stephen; Operto, Stephane; Virieux, Jean

    2015-04-01

    The current development of dense seismic arrays and high performance computing make feasible today application of full-waveform inversion (FWI) on teleseismic data for high-resolution lithospheric imaging. In teleseismic configuration, the source is often considered to first order as a planar wave that impinges the base of the lithospheric target located below the receiver array. Recently, injection methods coupling global propagation in 1D or axisymmetric earth model with regional 3D methods (Discontinuous Galerkin finite element methods, Spectral elements methods or finite differences) allow us to consider more realistic teleseismic phases. Those teleseismic phases can be propagated inside 3D regional model in order to exploit not only the forward-scattered waves propagating up to the receiver but also second-order arrivals that are back-scattered from the free-surface and the reflectors before their recordings on the surface. However, those computation are performed assuming simple global model. In this presentation, we review some key specifications that might be considered for mitigating the effect on FWI of heterogeneities situated outside the regional domain. We consider synthetic models and data computed using our recently developed hybrid method AxiSEM/SEM. The global simulation is done by AxiSEM code which allows us to consider axisymmetric anomalies. The 3D regional computation is performed by Spectral Element Method. We investigate the effect of external anomalies on the regional model obtained by FWI when one neglects them by considering only 1D global propagation. We also investigate the effect of the source time function and the focal mechanism on results of the FWI approach.

  18. A high-order 3-D spectral-element method for the forward modelling and inversion of gravimetric data—Application to the western Pyrenees

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Chevrot, Sébastien; Komatitsch, Dimitri; Seoane, Lucia; Spangenberg, Hannah; Wang, Yi; Dufréchou, Grégory; Bonvalot, Sylvain; Bruinsma, Sean

    2017-04-01

    We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a Vp model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3-D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral-element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.

  19. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

  20. Lamb wave propagation in monocrystalline silicon wafers.

    PubMed

    Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.

  1. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    NASA Astrophysics Data System (ADS)

    Santos, J. E.; Savioli, G. B.

    2018-04-01

    Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  2. Journal and Wave Bearing Impedance Calculation Software

    NASA Technical Reports Server (NTRS)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  3. Numerical modeling of the load effect on PZT-induced guided wave for load compensation of damage detection

    NASA Astrophysics Data System (ADS)

    Sun, Hu; Zhang, Aijia; Wang, Yishou; Qing, Xinlin P.

    2017-04-01

    Guided wave-based structural health monitoring (SHM) has been given considerable attention and widely studied for large-scale aircraft structures. Nevertheless, it is difficult to apply SHM systems on board or online, for which one of the most serious reasons is the environmental influence. Load is one fact that affects not only the host structure, in which guided wave propagates, but also the PZT, by which guided wave is transmitted and received. In this paper, numerical analysis using finite element method is used to study the load effect on guided wave acquired by PZT. The static loads with different grades are considered to analyze its effect on guided wave signals that PZT transmits and receives. Based on the variation trend of guided waves versus load, a load compensation method is developed to eliminate effects of load in the process of damage detection. The probabilistic reconstruction algorithm based on the signal variation of transmitter-receiver path is employed to identify the damage. Numerical tests is conducted to verify the feasibility and effectiveness of the given method.

  4. Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Bertola, Marco; El, Gennady A.; Tovbis, Alexander

    2016-10-01

    Rogue waves appearing on deep water or in optical fibres are often modelled by certain breather solutions of the focusing nonlinear Schrödinger (fNLS) equation which are referred to as solitons on finite background (SFBs). A more general modelling of rogue waves can be achieved via the consideration of multiphase, or finite-band, fNLS solutions of whom the standard SFBs and the structures forming due to their collisions represent particular, degenerate, cases. A generalized rogue wave notion then naturally enters as a large-amplitude localized coherent structure occurring within a finite-band fNLS solution. In this paper, we use the winding of real tori to show the mechanism of the appearance of such generalized rogue waves and derive an analytical criterion distinguishing finite-band potentials of the fNLS equation that exhibit generalized rogue waves.

  5. Effects of compressional waves on the response of quartz crystal microbalance in contact with silicone oil droplets

    NASA Astrophysics Data System (ADS)

    Zhuang, Han; Lim, Siak Piang; Lee, Heow Pueh

    2009-06-01

    Droplet quartz crystal microbalance has been demonstrated to be a promising tool for accessing material properties of fluids as well as the diverse solid-fluid interface phenomena. However, a microliter droplet localized on the surface of the electrodes of finite lateral size may cause a nonuniform distribution of the plane velocity, which may lead to surface normal fluid flow and generate the compressional waves above the crystal surface. In the present article, we report systematical investigation on both resonance frequency and dissipation measurements with reference to the small droplets of silicone oils spreading on the surface of the quartz crystal microbalance. Significant cyclical variations in the resonant frequency and resistance of the crystal have been observed as the characteristic sizes of the silicone oil droplets are close to specific values known to favor compressional wave generation. The experimental results have been compared with the theoretical values predicted by the finite element computation associated with a simple hydrodynamic model. Good agreement between theory and experiment has been obtained. The finding indicates that the small droplets on the crystal surface can act as resonant cavities for the compressional wave generation and that the greatest propensity to exhibit periodical resonance behavior in the frequency and dissipation measurements is at droplet height of λc/2 above the crystal surface.

  6. Wind driven general circulation of the Mediterranean Sea simulated with a Spectral Element Ocean Model

    NASA Astrophysics Data System (ADS)

    Molcard, A.; Pinardi, N.; Iskandarani, M.; Haidvogel, D. B.

    2002-05-01

    This work is an attempt to simulate the Mediterranean Sea general circulation with a Spectral Finite Element Model. This numerical technique associates the geometrical flexibility of the finite elements for the proper coastline definition with the precision offered by spectral methods. The model is reduced gravity and we study the wind-driven ocean response in order to explain the large scale sub-basin gyres and their variability. The study period goes from January 1987 to December 1993 and two forcing data sets are used. The effect of wind variability in space and time is analyzed and the relationship between wind stress curl and ocean response is stressed. Some of the main permanent structures of the general circulation (Gulf of Lions cyclonic gyre, Rhodes gyre, Gulf of Syrte anticylone) are shown to be induced by permanent wind stress curl structures. The magnitude and spatial variability of the wind is important in determining the appearance or disappearance of some gyres (Tyrrhenian anticyclonic gyre, Balearic anticyclonic gyre, Ionian cyclonic gyre). An EOF analysis of the seasonal variability indicates that the weakening and strengthening of the Levantine basin boundary currents is a major component of the seasonal cycle in the basin. The important discovery is that seasonal and interannual variability peak at the same spatial scales in the ocean response and that the interannual variability includes the change in amplitude and phase of the seasonal cycle in the sub-basin scale gyres and boundary currents. The Coriolis term in the vorticity balance seems to be responsible for the weakening of anticyclonic structures and their total disappearance when they are close to a boundary. The process of adjustment to winds produces a train of coastally trapped gravity waves which travel around the eastern and western basins, respectively in approximately 6 months. This corresponds to a phase velocity for the wave of about 1 m/s, comparable to an average velocity of an internal Kelvin wave in the area.

  7. Propagation characteristics of ultrasonic guided waves in continuously welded rail

    NASA Astrophysics Data System (ADS)

    Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan

    2017-07-01

    Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.

  8. Effect of target-fixture geometry on shock-wave compacted copper powders

    NASA Astrophysics Data System (ADS)

    Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop

    2018-01-01

    In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.

  9. In Situ Guided Wave Structural Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Zhao, George; Tittmann, Bernhard R.

    2011-01-01

    Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.

  10. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  11. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Hongxiang; Faculty of Science, Jiangsu University, Zhenjiang 212013; Zhang Shuyi

    2011-04-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coatingmore » on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.« less

  12. Perturbational and nonperturbational inversion of Rayleigh-wave velocities

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2017-01-01

    The inversion of Rayleigh-wave dispersion curves is a classic geophysical inverse problem. We have developed a set of MATLAB codes that performs forward modeling and inversion of Rayleigh-wave phase or group velocity measurements. We describe two different methods of inversion: a perturbational method based on finite elements and a nonperturbational method based on the recently developed Dix-type relation for Rayleigh waves. In practice, the nonperturbational method can be used to provide a good starting model that can be iteratively improved with the perturbational method. Although the perturbational method is well-known, we solve the forward problem using an eigenvalue/eigenvector solver instead of the conventional approach of root finding. Features of the codes include the ability to handle any mix of phase or group velocity measurements, combinations of modes of any order, the presence of a surface water layer, computation of partial derivatives due to changes in material properties and layer boundaries, and the implementation of an automatic grid of layers that is optimally suited for the depth sensitivity of Rayleigh waves.

  13. Configurational forces in electronic structure calculations using Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Motamarri, Phani; Gavini, Vikram

    2018-04-01

    We derive the expressions for configurational forces in Kohn-Sham density functional theory, which correspond to the generalized variational force computed as the derivative of the Kohn-Sham energy functional with respect to the position of a material point x . These configurational forces that result from the inner variations of the Kohn-Sham energy functional provide a unified framework to compute atomic forces as well as stress tensor for geometry optimization. Importantly, owing to the variational nature of the formulation, these configurational forces inherently account for the Pulay corrections. The formulation presented in this work treats both pseudopotential and all-electron calculations in a single framework, and employs a local variational real-space formulation of Kohn-Sham density functional theory (DFT) expressed in terms of the nonorthogonal wave functions that is amenable to reduced-order scaling techniques. We demonstrate the accuracy and performance of the proposed configurational force approach on benchmark all-electron and pseudopotential calculations conducted using higher-order finite-element discretization. To this end, we examine the rates of convergence of the finite-element discretization in the computed forces and stresses for various materials systems, and, further, verify the accuracy from finite differencing the energy. Wherever applicable, we also compare the forces and stresses with those obtained from Kohn-Sham DFT calculations employing plane-wave basis (pseudopotential calculations) and Gaussian basis (all-electron calculations). Finally, we verify the accuracy of the forces on large materials systems involving a metallic aluminum nanocluster containing 666 atoms and an alkane chain containing 902 atoms, where the Kohn-Sham electronic ground state is computed using a reduced-order scaling subspace projection technique [P. Motamarri and V. Gavini, Phys. Rev. B 90, 115127 (2014), 10.1103/PhysRevB.90.115127].

  14. Establishing the 3-D finite element solid model of femurs in partial by volume rendering.

    PubMed

    Zhang, Yinwang; Zhong, Wuxue; Zhu, Haibo; Chen, Yun; Xu, Lingjun; Zhu, Jianmin

    2013-01-01

    It remains rare to report three-dimensional (3-D) finite element solid model of femurs in partial by volume rendering method, though several methods of femoral 3-D finite element modeling are already available. We aim to analyze the advantages of the modeling method by establishing the 3-D finite element solid model of femurs in partial by volume rendering. A 3-D finite element model of the normal human femurs, made up of three anatomic structures: cortical bone, cancellous bone and pulp cavity, was constructed followed by pretreatment of the CT original image. Moreover, the finite-element analysis was carried on different material properties, three types of materials given for cortical bone, six assigned for cancellous bone, and single for pulp cavity. The established 3-D finite element of femurs contains three anatomical structures: cortical bone, cancellous bone, and pulp cavity. The compressive stress primarily concentrated in the medial surfaces of femur, especially in the calcar femorale. Compared with whole modeling by volume rendering method, the 3-D finite element solid model created in partial is more real and fit for finite element analysis. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  15. KANTBP: A program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Abrashkevich, A. G.; Amaya-Tapia, A.; Kaschiev, M. S.; Larsen, S. Y.; Vinitsky, S. I.

    2007-10-01

    A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type. The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4224 No. of bytes in distributed program, including test data, etc.: 31 232 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and (d) the number of eigensolutions required. Test run requires 30 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986] Nature of problem: In the hyperspherical adiabatic approach [J. Macek, J. Phys. B 1 (1968) 831-843; U. Fano, Rep. Progr. Phys. 46 (1983) 97-165; C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77-142], a multi-dimensional Schrödinger equation for a two-electron system [A.G. Abrashkevich, D.G. Abrashkevich, M. Shapiro, Comput. Phys. Comm. 90 (1995) 311-339] or a hydrogen atom in magnetic field [M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352] is reduced by separating the radial coordinate ρ from the angular variables to a system of second-order ordinary differential equations which contain potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite-element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions for such systems of coupled differential equations. Solution method: The boundary problems for coupled differential equations are solved by the finite-element method using high-order accuracy approximations [A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40-64]. The generalized algebraic eigenvalue problem AF=EBF with respect to pair unknowns ( E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. The generalized algebraic eigenvalue problem (A-EB)F=λDF with respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy value, E, is solved by the LDL factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials described in [Yu. A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330-361; O. Chuluunbaatar, A.A. Gusev, S.Y. Larsen, S.I. Vinitsky, J. Phys. A 35 (2002) L513-L525; N.P. Mehta, J.R. Shepard, Phys. Rev. A 72 (2005) 032728-1-11; O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006) 243-269]. For this benchmark model the needed analytical expressions for the potential matrix elements and first-derivative coupling terms, their asymptotics and asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra system. Restrictions: The computer memory requirements depend on: (a) the number of differential equations; (b) the number and order of finite-elements; (c) the total number of hyperradial points; and (d) the number of eigensolutions required. Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Long Write-Up and listing for details). The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should supply subroutines ASYMEV (when solving the eigenvalue problem) or ASYMSC (when solving the scattering problem) that evaluate the asymptotics of the radial wave functions at the right boundary point in case of a boundary condition of the third type, respectively. Running time: The running time depends critically upon: (a) the number of differential equations; (b) the number and order of finite-elements; (c) the total number of hyperradial points on interval [0,ρ]; and (d) the number of eigensolutions required. The test run which accompanies this paper took 28.48 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.

  16. Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.

    2010-01-01

    Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.

  17. Rapid SAW Sensor Development Tools

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    The lack of integrated design tools for Surface Acoustic Wave (SAW) devices has led us to develop tools for the design, modeling, analysis, and automatic layout generation of SAW devices. These tools enable rapid development of wireless SAW sensors. The tools developed have been designed to integrate into existing Electronic Design Automation (EDA) tools to take advantage of existing 3D modeling, and Finite Element Analysis (FEA). This paper presents the SAW design, modeling, analysis, and automated layout generation tools.

  18. Transient and steady state viscoelastic rolling contact

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Paramadilok, O.

    1985-01-01

    Based on moving total Lagrangian coordinates, a so-called traveling Hughes type contact strategy is developed. Employing the modified contact scheme in conjunction with a traveling finite element strategy, an overall solution methodology is developed to handle transient and steady viscoelastic rolling contact. To verify the scheme, the results of both experimental and analytical benchmarking is presented. The experimental benchmarking includes the handling of rolling tires up to their upper bound behavior, namely the standing wave response.

  19. Ability of Magnetic Resonance Elastography to Assess Taut Bands

    PubMed Central

    Chen, Qingshan; Basford, Jeffery; An, Kai-Nan

    2008-01-01

    Background Myofascial taut bands are central to diagnosis of myofascial pain. Despite their importance, we still lack either a laboratory test or imaging technique capable of objectively confirming either their nature or location. This study explores the ability of magnetic resonance elastography to localize and investigate the mechanical properties of myofascial taut bands on the basis of their effects on shear wave propagation. Methods This study was conducted in three phases. The first involved the imaging of taut bands in gel phantoms, the second a finite element modeling of the phantom experiment, and the third a preliminary evaluation involving eight human subjects-four of whom had, and four of whom did not have myofascial pain. Experiments were performed with a 1.5 Tesla magnetic resonance imaging scanner. Shear wave propagation was imaged and shear stiffness was reconstructed using matched filtering stiffness inversion algorithms. Findings The gel phantom imaging and finite element calculation experiments supported our hypothesis that taut bands can be imaged based on its outstanding shear stiffness. The preliminary human study showed a statistically significant 50-100% (p=0.01) increase of shear stiffness in the taut band regions of the involved subjects relative to that of the controls or in nearby uninvolved muscle. Interpretation This study suggests that magnetic resonance elastography may have a potential for objectively characterizing myofascial taut bands that have been up to now detectable only by the clinician's fingers. PMID:18206282

  20. Rotary Motors Actuated by Traveling Ultrasonic Flexural Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1999-01-01

    Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and also require effective analytical tools for the design of efficient motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a piezoelectrically actuated rotary motor. The model uses 3D finite element and equivalent circuit models that are applied to predict the excitation frequency and modal response of the stator. This model incorporates the details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. The theoretical predictions were corroborated experimentally for the stator. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. Experiments have shown that the motor can sustain at least 230 temperature cycles from 0 C to -90 C at 7 Torr pressure significant performance change. Also, in an earlier study the motor lasted over 334 hours at -150 C and vacuum. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

Top