A new method for blood velocity measurements using ultrasound FMCW signals.
Kunita, Masanori; Sudo, Masamitsu; Inoue, Shinya; Akahane, Mutsuhiro
2010-05-01
The low peak power of frequency-modulated continuous wave (FMCW) radar makes it attractive for various applications, including vehicle collision warning systems and airborne radio altimeters. This paper describes a new ultrasound Doppler measurement system that measures blood flow velocity based on principles similar to those of FMCW radar. We propose a sinusoidal wave for FM modulation and introduce a new demodulation technique for obtaining Doppler information with high SNR and range resolution. Doppler signals are demodulated with a reference FMCW signal to adjust delay times so that they are equal to propagation times between the transmitter and the receiver. Analytical results suggest that Doppler signals can be obtained from a selected position, as with a sample volume in pulse wave Doppler systems, and that the resulting SNR is nearly identical to that obtained with continuous wave (CW) Doppler systems. Additionally, clutter power is less than that of CW Doppler systems. The analytical results were verified by experiments involving electronic circuits and Doppler ultrasound phantoms.
Optical-fiber-connected 300-GHz FM-CW radar system
NASA Astrophysics Data System (ADS)
Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu; Kawanishi, Tetsuya
2017-05-01
300-GHz frequency-modulated continuous-wave (FM-CW) radar system operated by radio over fiber technologies is configured and demonstrated. Centralized signal generator, which is based on an optical frequency comb generation, provides high-precise FM-CW radar signal. The optical signal is easy to be transported to radar heads through an optical fiber network. Optical-modulator-based optical frequency comb generator is utilized as an optical frequency multiplier from a microwave signal to a 300-GHz terahertz signal by an optical modulation technique. In the study, we discuss the configuration of the network, signal generator and remote radar head for terahertz-wave multi-static radar system.
Multitarget detection algorithm for automotive FMCW radar
NASA Astrophysics Data System (ADS)
Hyun, Eugin; Oh, Woo-Jin; Lee, Jong-Hun
2012-06-01
Today, 77 GHz FMCW (Frequency Modulation Continuous Wave) radar has strong advantages of range and velocity detection for automotive applications. However, FMCW radar brings out ghost targets and missed targets in multi-target situations. In this paper, in order to resolve these limitations, we propose an effective pairing algorithm, which consists of two steps. In the proposed method, a waveform with different slopes in two periods is used. In the 1st pairing processing, all combinations of range and velocity are obtained in each of two wave periods. In the 2nd pairing step, using the results of the 1st pairing processing, fine range and velocity are detected. In that case, we propose the range-velocity windowing technique in order to compensate for the non-ideal beat-frequency characteristic that arises due to the non-linearity of the RF module. Based on experimental results, the performance of the proposed algorithm is improved compared with that of the typical method.
Monte Carlo simulation of non-invasive glucose measurement based on FMCW LIDAR
NASA Astrophysics Data System (ADS)
Xiong, Bing; Wei, Wenxiong; Liu, Nan; He, Jian-Jun
2010-11-01
Continuous non-invasive glucose monitoring is a powerful tool for the treatment and management of diabetes. A glucose measurement method, with the potential advantage of miniaturizability with no moving parts, based on the frequency modulated continuous wave (FMCW) LIDAR technology is proposed and investigated. The system mainly consists of an integrated near-infrared tunable semiconductor laser and a detector, using heterodyne technology to convert the signal from time-domain to frequency-domain. To investigate the feasibility of the method, Monte Carlo simulations have been performed on tissue phantoms with optical parameters similar to those of human interstitial fluid. The simulation showed that the sensitivity of the FMCW LIDAR system to glucose concentration can reach 0.2mM. Our analysis suggests that the FMCW LIDAR technique has good potential for noninvasive blood glucose monitoring.
Estimation techniques and simulation platforms for 77 GHz FMCW ACC radars
NASA Astrophysics Data System (ADS)
Bazzi, A.; Kärnfelt, C.; Péden, A.; Chonavel, T.; Galaup, P.; Bodereau, F.
2012-01-01
This paper presents two radar simulation platforms that have been developed and evaluated. One is based on the Advanced Design System (ADS) and the other on Matlab. Both platforms are modeled using homodyne front-end 77 GHz radar, based on commercially available monolithic microwave integrated circuits (MMIC). Known linear modulation formats such as the frequency modulation continuous wave (FMCW) and three-segment FMCW have been studied, and a new variant, the dual FMCW, is proposed for easier association between beat frequencies, while maintaining an excellent distance estimation of the targets. In the signal processing domain, new algorithms are proposed for the three-segment FMCW and for the dual FMCW. While both of these algorithms present the choice of either using complex or real data, the former allows faster signal processing, whereas the latter enables a simplified front-end architecture. The estimation performance of the modulation formats has been evaluated using the Cramer-Rao and Barankin bounds. It is found that the dual FMCW modulation format is slightly better than the other two formats tested in this work. A threshold effect is found at a signal-to-noise ratio (SNR) of 12 dB which means that, to be able to detect a target, the SNR should be above this value. In real hardware, the SNR detection limit should be set to about at least 15 dB.
Large depth high-precision FMCW tomography using a distributed feedback laser array
NASA Astrophysics Data System (ADS)
DiLazaro, Thomas; Nehmetallah, George
2018-02-01
Swept-source optical coherence tomography (SS-OCT) has been widely employed in the medical industry for the high resolution imaging of subsurface biological structures. SS-OCT typically exhibits axial resolutions on the order of tens of microns at speeds of hundreds of kilohertz. Using the same coherent heterodyne detection technique, frequency modulated continuous wave (FMCW) ladar has been used for highly precise ranging for distances up to kilometers. Distributed feedback lasers (DFBs) have been used as a simple and inexpensive source for FMCW ranging. Here, we use a bandwidth-combined DFB array for sub-surface volume imaging at a 27 μm axial resolution over meters of distance. 2D and 3D tomographic images of several semi-transparent and diffuse objects at distances up to 10 m will be presented.
NASA Astrophysics Data System (ADS)
Shi, Guang; Wang, Wen; Zhang, Fumin
2018-03-01
The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.
DOT National Transportation Integrated Search
2014-06-01
Effective techniques for a nondestructive evaluation of mechanically stabilized earth (MSE) walls during normal operation : or immediately after an earthquake event are yet to be developed. MSE walls often have a rough surface finishing for the : pur...
NASA Astrophysics Data System (ADS)
Zheng, Wanfu; Xie, Jianglei; Li, Yi; Xu, Ben; Kang, Juan; Shen, Changyu; Wang, Jianfeng; Jin, Yongxing; Liu, Honglin; Ni, Kai; Dong, Xinyong; Zhao, Chunliu; Jin, Shangzhong
In this study, a fiber in-line air-gap Fabry-Pérot interferometer (FPI) is fabricated by HF acid etching. For a low-cost and higher precise measurement, a demodulation system based on frequency modulated continuous wave (FMCW) technique is build up and demonstrated in this air-gap FPI. In temperature measurements, the temperature sensitivity is about 1.75 rad/°C by phase shift detection. We also test the long term performance of the system and the RMS error is about 0.04 rad, which corresponds to the temperature resolution of ~0.02 °C. It is much higher than the measurement resolution by using the traditional wavelength shift detection method. Our experiments show that the FMCW can provide a low-cost, high resolution and high speed interrogation solution to the fiber FPIs.
Mutual Coupling and Compensation in FMCW MIMO Radar Systems
NASA Astrophysics Data System (ADS)
Schmid, Christian M.; Feger, Reinhard; Wagner, Christoph; Stelzer, Andreas
2011-09-01
This paper deals with mutual coupling, its effects and the compensation thereof in frequency-modulated continuous-wave (FMCW) multiple-input multiple-output (MIMO) array radar systems. Starting with a signal model we introduce mutual coupling and its primary sources in FMCW MIMO systems. We also give a worst-case boundary of the effects that mutual coupling can have on the side lobe level of an array. A method of dealing with and compensating for these effects is covered in this paper and verified by measurements from a 77-GHz FMCW radar system.
NASA Astrophysics Data System (ADS)
Carroll, B.; Kharkovsky, S.; Zoughi, R.; Limmer, R.
2009-03-01
A frequency-modulated continuous-wave (FM-CW) handheld radar operating in the frequency range of 8-18 GHz, resulting in a relatively fine range resolution was designed and constructed for on-site inspection of refractory structure thickness. This paper presents the design of the radar and the results of measurements conducted on typical refractory furnace structures assembled in the laboratory.
Low-cost mm-wave Doppler/FMCW transceivers for ground surveillance applications
NASA Astrophysics Data System (ADS)
Hansen, H. J.; Lindop, R. W.; Majstorovic, D.
2005-12-01
A 35 GHz Doppler CW/FMCW transceiver (Equivalent Radiated Power ERP=30dBm) has been assembled and its operation described. Both instantaneous beat signals (relating to range in FMCW mode) and Doppler signals (relating to targets moving at ~1.5 ms -1) exhibit audio frequencies. Consequently, the radar processing is provided by laptop PC using its inbuilt video-audio media system with appropriate MathWorks software. The implications of radar-on-chip developments are addressed.
A low-power CMOS trans-impedance amplifier for FM/cw ladar imaging system
NASA Astrophysics Data System (ADS)
Hu, Kai; Zhao, Yi-qiang; Sheng, Yun; Zhao, Hong-liang; Yu, Hai-xia
2013-09-01
A scannerless ladar imaging system based on a unique frequency modulation/continuous wave (FM/cw) technique is able to entirely capture the target environment, using a focal plane array to construct a 3D picture of the target. This paper presents a low power trans-impedance amplifier (TIA) designed and implemented by 0.18 μm CMOS technology, which is used in the FM/cw imaging ladar with a 64×64 metal-semiconductor-metal(MSM) self-mixing detector array. The input stage of the operational amplifier (op amp) in TIA is realized with folded cascade structure to achieve large open loop gain and low offset. The simulation and test results of TIA with MSM detectors indicate that the single-end trans-impedance gain is beyond 100 kΩ, and the -3 dB bandwidth of Op Amp is beyond 60 MHz. The input common mode voltage ranges from 0.2 V to 1.5 V, and the power dissipation is reduced to 1.8 mW with a supply voltage of 3.3 V. The performance test results show that the TIA is a candidate for preamplifier of the read-out integrated circuit (ROIC) in the FM/cw scannerless ladar imaging system.
NASA Astrophysics Data System (ADS)
Meneses, L.; Cupido, L.; Sirinelli, A.; Manso, M. E.; Jet-Efds Contributors
2008-10-01
We present the main design options and implementation of an X-mode reflectometer developed and successfully installed at JET using an innovative approach. It aims to prove the viability of measuring density profiles with high spatial and temporal resolution using broadband reflectometry operating in long and complex transmission lines. It probes the plasma with magnetic fields between 2.4 and 3.0 T using the V band [~(0-1.4)×1019 m-3]. The first experimental results show the high sensitivity of the diagnostic when measuring changes in the plasma density profile occurring ITER relevant regimes, such as ELMy H-modes. The successful demonstration of this concept motivated the upgrade of the JET frequency modulation of the continuous wave (FMCW) reflectometry diagnostic, to probe both the edge and core. This new system is essential to prove the viability of using the FMCW reflectometry technique to probe the plasma in next step devices, such as ITER, since they share the same waveguide complexity.
Dual Channel S-Band Frequency Modulated Continuous Wave Through-Wall Radar Imaging
Oh, Daegun; Kim, Sunwoo; Chong, Jong-Wha
2018-01-01
This article deals with the development of a dual channel S-Band frequency-modulated continuous wave (FMCW) system for a through-the-wall imaging (TWRI) system. Most existing TWRI systems using FMCW were developed for synthetic aperture radar (SAR) which has many drawbacks such as the need for several antenna elements and movement of the system. Our implemented TWRI system comprises a transmitting antenna and two receiving antennas, resulting in a significant reduction of the number of antenna elements. Moreover, a proposed algorithm for range-angle-Doppler 3D estimation based on a 3D shift invariant structure is utilized in our implemented dual channel S-band FMCW TWRI system. Indoor and outdoor experiments were conducted to image the scene beyond a wall for water targets and person targets, respectively. The experimental results demonstrate that high-quality imaging can be achieved under both experimental scenarios. PMID:29361777
Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors.
Ha, Keum-Won; Lee, Jeong-Yun; Kim, Jeong-Geun; Baek, Donghyun
2018-04-01
Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.
Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors
Lee, Jeong-Yun; Kim, Jeong-Geun
2018-01-01
Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor. PMID:29614777
A Noncontact FMCW Radar Sensor for Displacement Measurement in Structural Health Monitoring
Li, Cunlong; Chen, Weimin; Liu, Gang; Yan, Rong; Xu, Hengyi; Qi, Yi
2015-01-01
This paper investigates the Frequency Modulation Continuous Wave (FMCW) radar sensor for multi-target displacement measurement in Structural Health Monitoring (SHM). The principle of three-dimensional (3-D) displacement measurement of civil infrastructures is analyzed. The requirements of high-accuracy displacement and multi-target identification for the measuring sensors are discussed. The fundamental measuring principle of FMCW radar is presented with rigorous mathematical formulas, and further the multiple-target displacement measurement is analyzed and simulated. In addition, a FMCW radar prototype is designed and fabricated based on an off-the-shelf radar frontend and data acquisition (DAQ) card, and the displacement error induced by phase asynchronism is analyzed. The conducted outdoor experiments verify the feasibility of this sensing method applied to multi-target displacement measurement, and experimental results show that three targets located at different distances can be distinguished simultaneously with millimeter level accuracy. PMID:25822139
A noncontact FMCW radar sensor for displacement measurement in structural health monitoring.
Li, Cunlong; Chen, Weimin; Liu, Gang; Yan, Rong; Xu, Hengyi; Qi, Yi
2015-03-26
This paper investigates the Frequency Modulation Continuous Wave (FMCW) radar sensor for multi-target displacement measurement in Structural Health Monitoring (SHM). The principle of three-dimensional (3-D) displacement measurement of civil infrastructures is analyzed. The requirements of high-accuracy displacement and multi-target identification for the measuring sensors are discussed. The fundamental measuring principle of FMCW radar is presented with rigorous mathematical formulas, and further the multiple-target displacement measurement is analyzed and simulated. In addition, a FMCW radar prototype is designed and fabricated based on an off-the-shelf radar frontend and data acquisition (DAQ) card, and the displacement error induced by phase asynchronism is analyzed. The conducted outdoor experiments verify the feasibility of this sensing method applied to multi-target displacement measurement, and experimental results show that three targets located at different distances can be distinguished simultaneously with millimeter level accuracy.
FMCW Radar Jamming Techniques and Analysis
2013-09-01
an education system that is compacted with various radar capabilities, the circuitry does not provide the full functionality of each type of radar as...example of a typical FMCW architecture. The hardware components and their functionalities are explained individually in the order of the signal processing...drawn. Chapter IV presents a MATLAB model that emulates the functionality of the homodyne FMCW radar discussed in Chapter II. The model design and
A low-cost FMCW radar for footprint detection from a mobile platform
NASA Astrophysics Data System (ADS)
Boutte, David; Taylor, Paul; Hunt, Allan
2015-05-01
Footprint and human trail detection in rugged all-weather environments is an important and challenging problem for perimeter security, passive surveillance and reconnaissance. To address this challenge a low-cost, wideband, frequency-modulated continuous wave (FMCW) radar operating at 33.4GHz - 35.5GHz is being developed through a Department of Homeland Security Science and Technology Directorate Phase I SBIR and has been experimentally demonstrated to be capable of detecting footprints and footprint trails on unimproved roads in an experimental setting. It uses a low-cost digital signal processor (DSP) that makes important operating parameters reconfigurable and allows for frequency sweep linearization, a key technique developed to increase footprint signal-to-noise ratio (SNR). This paper discusses the design, DSP implementation and experimental results of a low-cost FMCW radar for mobile footprint detection. A technique for wideband sweep linearization is detailed along with system performance metrics and experimental results showing receive-SNR from footprint trails in sand and on unimproved dirt roads. Results from a second stepped frequency CW (SFCW) Ka-band system are also shown, verifying the ability of both systems to detect footprints and footprint trails in an experimental setting. The results show that there is sufficient receive-SNR to detect even shallow footprints (~1cm) using a radar based detection system in Ka-band. Field experimental results focus on system proof of concept from a static position with mobile results also presented highlighting necessary improvements to both systems.
Collision Avoidance W-Band FMCW Radars in an Altimeter Application
2006-08-01
underground mining applications. Potentially, a small low– powered downward looking aerial radar employing Frequency Modulated Continuous Wave (FMCW) ranging...frequency [1]. 3 Figure 3: Epsilon Lambda ELF 171-1A radar. Model and System block diagram [2]. 4 Figure 4: Beam limited resolution cell (after [3]). 6...Figure 5: (black curves) Projected SNR variation of clutter return with range for ELF 171-1A type system in different weather conditions. Clutter-to
Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods
NASA Astrophysics Data System (ADS)
Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua
2010-03-01
This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.
Millimeter-wave micro-Doppler measurements of small UAVs
NASA Astrophysics Data System (ADS)
Rahman, Samiur; Robertson, Duncan A.
2017-05-01
This paper discusses the micro-Doppler signatures of small UAVs obtained from a millimeter-wave radar system. At first, simulation results are shown to demonstrate the theoretical concept. It is illustrated that whilst the propeller rotation rate of the small UAVs is quite high, millimeter-wave radar systems are capable of capturing the full micro-Doppler spread. Measurements of small UAVs have been performed with both CW and FMCW radars operating at 94 GHz. The CW radar was used for obtaining micro-Doppler signatures of individual propellers. The field test data of a flying small UAV was collected with the FMCW radar and was processed to extract micro-Doppler signatures. The high fidelity results clearly reveal features such as blade flashes and propeller rotation modulation lines which can be used to classify targets. This work confirms that millimeter-wave radar is suitable for the detection and classification of small UAVs at usefully long ranges.
Capability of long distance 100 GHz FMCW using a single GDD lamp sensor.
Levanon, Assaf; Rozban, Daniel; Aharon Akram, Avihai; Kopeika, Natan S; Yitzhaky, Yitzhak; Abramovich, Amir
2014-12-20
Millimeter wave (MMW)-based imaging systems are required for applications in medicine, homeland security, concealed weapon detection, and space technology. The lack of inexpensive room temperature imaging sensors makes it difficult to provide a suitable MMW system for many of the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The radar system requires that the millimeter wave detector will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the 2D image. New experiments show the capability of long distance FMCW detection by using a large scale Cassegrain projection system, described first (to our knowledge) in this paper. The system presents the capability to employ a long distance of at least 20 m with a low-cost plasma-based glow discharge detector (GDD) focal plane array (FPA). Each point on the object corresponds to a point in the image and includes the distance information. This will enable relatively inexpensive 3D MMW imaging.
A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)
NASA Astrophysics Data System (ADS)
Peng, Zhengyu; Li, Changzhi
2017-05-01
A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)
NASA Astrophysics Data System (ADS)
Pace, Phillip Eric; Tan, Chew Kung; Ong, Chee K.
2018-02-01
Direction finding (DF) systems are fundamental electronic support measures for electronic warfare. A number of DF techniques have been developed over the years; however, these systems are limited in bandwidth and resolution and suffer from a complex design for frequency downconversion. The design of a photonic DF technique for the detection and DF of low probability of intercept (LPI) signals is investigated. Key advantages of this design include a small baseline, wide bandwidth, high resolution, minimal space, weight, and power requirement. A robust postprocessing algorithm that utilizes the minimum Euclidean distance detector provides consistence and accurate estimation of angle of arrival (AoA) for a wide range of LPI waveforms. Experimental tests using frequency modulation continuous wave (FMCW) and P4 modulation signals were conducted in an anechoic chamber to verify the system design. Test results showed that the photonic DF system is capable of measuring the AoA of the LPI signals with 1-deg resolution over a 180 deg field-of-view. For an FMCW signal, the AoA was determined with a RMS error of 0.29 deg at 1-deg resolution. For a P4 coded signal, the RMS error in estimating the AoA is 0.32 deg at 1-deg resolution.
Research on effect of rough surface on FMCW laser radar range accuracy
NASA Astrophysics Data System (ADS)
Tao, Huirong
2018-03-01
The non-cooperative targets large scale measurement system based on frequency-modulated continuous-wave (FMCW) laser detection and ranging technology has broad application prospects. It is easy to automate measurement without cooperative targets. However, the complexity and diversity of the surface characteristics of the measured surface directly affects the measurement accuracy. First, the theoretical analysis of range accuracy for a FMCW laser radar was studied, the relationship between surface reflectivity and accuracy was obtained. Then, to verify the effect of surface reflectance for ranging accuracy, a standard tool ball and three standard roughness samples were measured within 7 m to 24 m. The uncertainty of each target was obtained. The results show that the measurement accuracy is found to increase as the surface reflectivity gets larger. Good agreements were obtained between theoretical analysis and measurements from rough surfaces. Otherwise, when the laser spot diameter is smaller than the surface correlation length, a multi-point averaged measurement can reduce the measurement uncertainty. The experimental results show that this method is feasible.
Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica
NASA Technical Reports Server (NTRS)
Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad
2012-01-01
Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.
Through Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis
Ritchie, Matthew; Ash, Matthew; Chen, Qingchao; Chetty, Kevin
2016-01-01
The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Soprano. The objective of this analysis was to classify whether an individual was carrying an item in both hands or not using micro-Doppler information from a FMCW sensor. The radar was deployed at a standoff distance, of approximately 0.5 m, outside a residential building and used to detect multiple people walking within a room. Through the application of digital filtering, it was shown that significant suppression of the primary wall reflection is possible, significantly enhancing the target signal to clutter ratio. Singular Value Decomposition (SVD) signal processing techniques were then applied to the micro-Doppler signatures from different individuals. Features from the SVD information have been used to classify whether the person was carrying an item or walking free handed. Excellent performance of the classifier was achieved in this challenging scenario with accuracies up to 94%, suggesting that future through wall radar sensors may have the ability to reliably recognize many different types of activities in TTW scenarios using these techniques. PMID:27589760
Ritchie, Matthew; Ash, Matthew; Chen, Qingchao; Chetty, Kevin
2016-08-31
The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Soprano. The objective of this analysis was to classify whether an individual was carrying an item in both hands or not using micro-Doppler information from a FMCW sensor. The radar was deployed at a standoff distance, of approximately 0.5 m, outside a residential building and used to detect multiple people walking within a room. Through the application of digital filtering, it was shown that significant suppression of the primary wall reflection is possible, significantly enhancing the target signal to clutter ratio. Singular Value Decomposition (SVD) signal processing techniques were then applied to the micro-Doppler signatures from different individuals. Features from the SVD information have been used to classify whether the person was carrying an item or walking free handed. Excellent performance of the classifier was achieved in this challenging scenario with accuracies up to 94%, suggesting that future through wall radar sensors may have the ability to reliably recognize many different types of activities in TTW scenarios using these techniques.
Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements
NASA Technical Reports Server (NTRS)
Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel
2008-01-01
An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.
The promise of remote sensing in the atmospheric sciences
NASA Technical Reports Server (NTRS)
Atlas, D.
1981-01-01
The applications and advances in remote sensing technology for weather prediction, mesoscale meteorology, severe storms, and climate studies are discussed. Doppler radar permits tracking of the three-dimensional field of motion within storms, thereby increasing the accuracy of convective storm modeling. Single Doppler units are also employed for detecting mesoscale storm vortices and tornado vortex signatures with lead times of 30 min. Clear air radar in pulsed and high resolution FM-CW forms reveals boundary layer convection, Kelvin-Helmoltz waves, shear layer turbulence, and wave motions. Lidar is successfully employed for stratospheric aerosol measurements, while Doppler lidar provides data on winds from the ground and can be based in space. Sodar is useful for determining the structure of the PBL. Details and techniques of satellite-based remote sensing are presented, and results from the GWE and FGGE experiments are discussed.
An Airborne Millimeter-Wave FM-CW Radar for Thickness Profiling of Freshwater Ice
1992-11-01
commercial and recreational application, including safety and trafficability surveys. A proto- type broadband millimeter wave (26.5 to 40 GHz) Frequency...and utility for ice safety and traffica- appropriate antenna for transmission. Morey (1974) bility studies. Other important applications include...resolution and a 2.7- which can provide reliable safety survey profiling for GHz center frequency, that is capable of airborne pro- the entire practical
NASA Astrophysics Data System (ADS)
Pan, Hao; Qu, Xinghua; Shi, Chunzhao; Zhang, Fumin; Li, Yating
2018-06-01
The non-uniform interval resampling method has been widely used in frequency modulated continuous wave (FMCW) laser ranging. In the large-bandwidth and long-distance measurements, the range peak is deteriorated due to the fiber dispersion mismatch. In this study, we analyze the frequency-sampling error caused by the mismatch and measure it using the spectroscopy of molecular frequency references line. By using the adjacent points' replacement and spline interpolation technique, the sampling errors could be eliminated. The results demonstrated that proposed method is suitable for resolution-enhancement and high-precision measurement. Moreover, using the proposed method, we achieved the precision of absolute distance less than 45 μm within 8 m.
Noise analysis for near-field 3D FM-CW radar imaging systems
NASA Astrophysics Data System (ADS)
Sheen, David M.
2015-05-01
Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Xu, Xiangde; Ruan, Zheng; Chen, Bin; Wang, Fang
2018-03-01
The integrated analysis of the data from a C-band frequency-modulated continuous-wave (C-FMCW) radar site in Naqu obtained during a rainstorm over the middle and lower reaches of the Yangtze River and the data concerning the three-dimensional structure of the circulation of the precipitation system that occurred over the lower reaches of the Yangtze River Basin during the Third Tibetan Plateau (TP) Atmospheric Experiment from August 15th to 19th, 2014, was carried out. The changes in the echo intensity at the C-FMCW radar site in Naqu were of regional indicative significance for the characteristics of the whole-layer apparent heat source Q1 in local areas and the region of the adjacent river source area, including the Yangtze River, Yellow River, and Lancang River (hereinafter referred to as the "source area of three rivers"), as well as to the vertical speeds due to the development of convection. This study indicates that the C-FMCW radar echo intensity of the plateau convection zone and the related power structures of the coupled dipole circulations in the middle layer of the atmosphere, as well as in the upper atmospheric level divergence and lower atmospheric level convergence, are important stimuli for convective clouds in this region. Furthermore, these radar data provided a physical image of the development and maintenance mechanisms of an eastward-moving heavy rainstorm belt. This study also shows that changes in the echo intensities at the C-FMCW radar site of Naqu can provide strong signals related to heavy rainstorm processes in the upper reaches of the Yangtze River.
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-01
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-20
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.
100 GHz FMCW Radar Module Based on Broadband Schottky-diode Transceiver
NASA Astrophysics Data System (ADS)
Jiang, Shu; Xu, Jinping; Dou, Jiangling; Wang, Wenbo
2018-04-01
We report on a W-band frequency-modulated continuous-wave (FMCW) radar module with fractional bandwidth over 10 %. To improve flatness over large operation bandwidth, the radar module is developed with focus on the 90-101 GHz modular transceiver, for which accurate modeling of Schottky diode in combination with an integrated design method are proposed in this work. Moreover, the nonlinearity compensation approach is introduced to further optimize the range resolution. To verify the design method and RF performance of the radar module, both measurements of critical components and ISAR imaging experiments are performed. The results demonstrate that high resolution in range and azimuth dimensions can be achieved based on the radar module, of which the receiving gain flatness and transmitting power flatness are better than ±1.3 dB and ±0.7 dB over 90 101 GHz, respectively.
Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review
Gu, Changzhan
2016-01-01
Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW) radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends. PMID:27472330
Preliminary study of a millimeter wave FMCW InSAR for UAS indoor navigation.
Scannapieco, Antonio F; Renga, Alfredo; Moccia, Antonio
2015-01-22
Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3Dmapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved.
Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation
Scannapieco, Antonio F.; Renga, Alfredo; Moccia, Antonio
2015-01-01
Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3D mapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved. PMID:25621606
Digital FMCW for ultrawideband spectrum sensing
NASA Astrophysics Data System (ADS)
Cheema, A. A.; Salous, S.
2016-08-01
An ultrawideband digital frequency-modulated continuous wave sensing engine is proposed as an alternative technique for cognitive radio applications. A dual-band demonstrator capable of sensing 750 MHz bandwidth in 204.8 µs is presented. Its performance is illustrated from both bench tests and from real-time measurements of the GSM 900 band and the 2.4 GHz wireless local area network (WLAN) band. The measured sensitivity and noise figure values are -90 dBm for a signal-to-noise ratio margin of at least 10 dB and ~13-14 dB, respectively. Data were collected over 24 h and were analyzed by using the energy detection method. The obtained results show the time variability of occupancy, and considerable sections of the spectrum are unoccupied. In addition, unlike the cyclic temporal variations of spectrum occupancy in the GSM 900 band, the detected variations in the 2.4 GHz WLAN band have an impulsive nature.
Localization and Mapping Using Only a Rotating FMCW Radar Sensor
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-01-01
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed. PMID:23567523
Localization and mapping using only a rotating FMCW radar sensor.
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-04-08
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed.
Observations of tornadoes and wall clouds with a portable FM-CW Doppler radar: 1989--1990 results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluestein, H.B.; Unruh, W.P.
1990-01-01
The purpose of this paper is to report on our progress using a portable, 1 W,FM (frequency modulated)-CW (continuous wave) Doppler radar developed at the Los Alamos National Laboratory (LANL), to make measurements of the wind field in tornadoes and wall clouds along with simultaneous visual documentation. Results using a CW version of the radar in 1987--1988 are given in Bluestein and Unruh (1989). 18 refs., 2 figs., 1 tab.
Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason
2014-01-01
Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal processing of the photocurrent processes at the outputs of the two detectors is to perform log-matched filtering followed by a summation and peak detection. This implies that neither difference detection, nor Fourier-domain peak detection, which are the staples of the state-of-the-art systems, is optimal when a weak local oscillator is employed.
NASA Astrophysics Data System (ADS)
Miller, Stephanie; Pfeif, Erik; Kazakov, Andrei; Baumann, Esther; Dowell, Marla
2016-03-01
Laser welding has many advantages over traditional joining methods, yet remains underutilized. NIST has undertaken an ambitious initiative to improve predictions of weldability, reliability, and performance of laser welds. This study investigates butt welding of galvanized and ungalvanized dual-phase automotive sheet steels (DP 590) using a 10 kW commercial fiber laser system. Parameter development work, hardness profiles, microstructural characterization, and optical profilometry results are presented. Sound welding was accomplished in a laser power range of 2.0 kW to 4.5 kW and travel speed of 2000 mm/min to 5000 mm/min. Vickers hardness ranged from approximately 2 GPa to 4 GPa across the welds, with limited evidence of heat affected zone softening. Decreased hardness across the heat affected zone directly correlated to the appearance of ferrite. A technique was developed to non-destructively evaluate weld quality based on geometrical criteria. Weld face profilometry data were compared between light optical, metallographic sample, and frequency-modulated continuous-wave laser detection and ranging (FMCW LADAR) methods.
Vertical velocity structure and geometry of clear air convective elements
NASA Technical Reports Server (NTRS)
Rowland, J. R.; Arnold, A.
1975-01-01
The paper discusses observations of individual convective elements with a high-power narrow-beam scanning radar, an FM-CW radar, and an acoustic sounder, including the determination of the vertical air velocity patterns of convective structures with the FM-CW radar and acoustic sounder. Data are presented which link the observed velocity structure and geometrical patterns to previously proposed models of boundary layer convection. It is shown that the high-power radar provides a clear three-dimensional picture of convective cells and fields over a large area with a resolution of 150 m, where the convective cells are roughly spherical. Analysis of time-height records of the FM-CW radar and acoustic sounder confirms the downdraft-entrainment mechanism of the convective cell. The Doppler return of the acoustic sounder and the insect-trail slopes on FM-CW radar records are independent but redundant methods for obtaining the vertical velocity patterns of convective structures.
A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs.
Wang, Siying; Pohl, Antje; Jaeschke, Timo; Czaplik, Michael; Köny, Marcus; Leonhardt, Steffen; Pohl, Nils
2015-01-01
In this paper an ultra-wideband 80 GHz FMCW-radar system for contactless monitoring of respiration and heart rate is investigated and compared to a standard monitoring system with ECG and CO(2) measurements as reference. The novel FMCW-radar enables the detection of the physiological displacement of the skin surface with submillimeter accuracy. This high accuracy is achieved with a large bandwidth of 10 GHz and the combination of intermediate frequency and phase evaluation. This concept is validated with a radar system simulation and experimental measurements are performed with different radar sensor positions and orientations.
On the measurement of wind speeds in tornadoes with a portable CW/FM-CW Doppler radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluestein, H.B.; Unruh, W.P.
1991-01-01
Both the formation mechanism and structure of tornadoes are not yet well understood. The Doppler radar is probably the best remote-sensing instrument at present for determining the wind field in tornadoes. Although much has been learned about the non-supercell tornado from relatively close range using Doppler radars at fixed sites, close-range measurements in supercell tornadoes are relatively few. Doppler radar can increase significantly the number of high-resolution, sub-cloud base measurements of both the tornado vortex and its parent vortex in supercells, with simultaneous visual documentation. The design details and operation of the CW/FM-CW Doppler radar developed at the Los Alamosmore » National Laboratory and used by storm-intercept teams at the Univ. of Oklahoma are described elsewhere. The radar transmits 1 W at 3 cm, and can be switched back and forth between CW and FM-CW modes. In the FM-CW mode the sweep repetition frequency is 15.575 kHz and the sweep width 1.9 MHz; the corresponding maximum unambiguous range and velocity, and range resolution are 5 km, {plus minus} 115 m s{sup {minus}1}, and 78 m respectively. The bistatic antennas, which have half-power beamwidths of 5{degree}, are easily pointed wit the aid of a boresighted VCR. FM-CW Data are recorded on the VCR, while voice documentation is recorded on the audio tape; video is recorded on another VCR. The radar and antennas are easily mounted on a tripod, and can be set up by three people in a minute or two. The purpose of this paper is to describe the signal processing techniques used to determine the Doppler spectrum in the FM-CW mode and a method of its interpretation in real time, and to present data gathered in a tornadic storm in 1990. 15 refs., 7 figs.« less
Kim, Bongseok; Kim, Sangdong; Lee, Jonghun
2018-01-01
We propose a novel discrete Fourier transform (DFT)-based direction of arrival (DOA) estimation by a virtual array extension using simple multiplications for frequency modulated continuous wave (FMCW) radar. DFT-based DOA estimation is usually employed in radar systems because it provides the advantage of low complexity for real-time signal processing. In order to enhance the resolution of DOA estimation or to decrease the missing detection probability, it is essential to have a considerable number of channel signals. However, due to constraints of space and cost, it is not easy to increase the number of channel signals. In order to address this issue, we increase the number of effective channel signals by generating virtual channel signals using simple multiplications of the given channel signals. The increase in channel signals allows the proposed scheme to detect DOA more accurately than the conventional scheme while using the same number of channel signals. Simulation results show that the proposed scheme achieves improved DOA estimation compared to the conventional DFT-based method. Furthermore, the effectiveness of the proposed scheme in a practical environment is verified through the experiment. PMID:29758016
Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.
Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef
2016-05-23
The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.
Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies
Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef
2016-01-01
The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286
NASA Astrophysics Data System (ADS)
Xiong, Xingting; Qu, Xinghua; Zhang, Fumin
2018-01-01
We propose and describe a novel multi-dimensional absolute distance measurement system. This system incorporates a basic frequency modulated continuous wave (FMCW) radar and an second external cavity laser (ECL). Through the use of trilateration, the system in our paper can provide 3D resolution inherently range. However, the measured optical path length differences (OPD) is often variable in industrial environments and this will causes Doppler effect, which has greatly impact on the measurement result. With using the second ECL, the system can correct the Doppler effect to ensure the precision of absolute distance measurement. Result of the simulation will prove the influence of Doppler effect.
Applications of FM-CW laser radar to antenna contour mapping
NASA Technical Reports Server (NTRS)
Slotwinski, A. R.
1989-01-01
The FM-CW coherent laser radar concept, based on the FM radar principle which makes use of the coherence and lunability of injection laser diodes, is discussed. Laser radar precision/time tradeoffs, block diagrams, system performance, fiber optic system implantation, and receiver improvements are briefly described.
Nam, HyungSoo; Choi, ByungGil; Oh, Daegun
2018-01-01
In this paper, a three-dimensional (3D)-subspace-based azimuth angle, elevation angle, and range estimation method with auto-pairing is proposed for frequency-modulated continuous waveform (FMCW) radar with an L-shaped array. The proposed method is designed to exploit the 3D shift-invariant structure of the stacked Hankel snapshot matrix for auto-paired azimuth angle, elevation angle, and range estimation. The effectiveness of the proposed method is verified through a variety of experiments conducted in a chamber. For the realization of the proposed method, K-band FMCW radar is implemented with an L-shaped antenna. PMID:29621193
Noise analysis for near field 3-D FM-CW radar imaging systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.
2015-06-19
Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of thesemore » noise sources on a fast-chirping FM-CW system.« less
Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER
NASA Astrophysics Data System (ADS)
Doyle, E. J.
2006-10-01
Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.
SAR Tomography for Terrestrial Snow Stratigraphy
NASA Astrophysics Data System (ADS)
Lei, Y.; Xu, X.; Baldi, C.; Bleser, J. W. D.; Yueh, S. H.; Elder, K.
2017-12-01
Traditional microwave observation of snowpack includes brightness temperature and backscatter. The single baseline configuration and loss of phase information hinders the retrieval of snow stratigraphy information from microwave observations. In this paper, we are investigating the tomography of polarimetric SAR to measure snow stratigraphy. In the past two years, we have developed a homodyne frequency modulated continuous wave radar (FMCW), operation at three earth exploration satellite bands within the X-band and Ku-band spectrums (centered at 9.6 GHz, 13.5 GHz, and 17.2 GHz) at Jet Propulsion Laboratory. The transceiver is mounted to a dual-axis planar scanner (60cm in each direction), which translates the antenna beams across the target area creating a tomographic baseline in two directions. Dual-antenna architecture was implemented to improve the isolation between the transmitter and receiver. This technique offers a 50 dB improvement in signal-to-noise ratio versus conventional single-antenna FMCW radar systems. With current setting, we could have around 30cm vertical resolution. The system was deployed on a ground based tower at the Fraser Experimental Forest (FEF) Headquarters, near Fraser, CO, USA (39.847°N, 105.912°W) from February 1 to April 30, 2017 and run continuously with some gaps for required optional supports. FEF is a 93-km2 research watershed in the heart of the central Rocky Mountains approximately 80-km West of Denver. During the campaign, in situ measurements of snow depth and other snowpack properties were performed every week for comparison with the remotely sensed data. A network of soil moisture sensors, time-lapse cameras, acoustic depth sensors, laser depth sensor and meteorological instruments was installed next to the site to collect in situ measurements of snow, weather, and soil conditions. Preliminary tomographic processing of ground based SAR data of snowpack at X- and Ku- band has revealed the presence of multiple layers within the snowpack and clear melting/refrozen cycle, which is consistant with the in-situ measurement.
The characteristics simulation of FMCW laser backscattering signals
NASA Astrophysics Data System (ADS)
Liu, Bohu; Song, Chengtian; Duan, Yabo
2018-04-01
A Monte Carlo simulation model of FMCW laser transmission in a smoke interference environment was established in this paper. The aerosol extinction coefficient and scattering coefficient changed dynamically in the simulation according to the smoke concentration variation, aerosol particle distributions and photon spatial positions. The simulation results showed that the smoke backscattering interference produced a number of amplitude peaks in the beat signal spectrum; the SNR of target echo signal to smoke interference was related to the transmitted laser wavelength and the aerosol particle size distribution; a better SNR could be obtained when the laser wavelength was in the range of 560-1660 nm. The characteristics of FMCW laser backscattering signals generated by simulation are consistent with the theoretical analysis. Therefore, this study was greatly helpful for improving the ability of identifying target and anti-interference in the further research.
Forward-looking automotive radar sensor
NASA Astrophysics Data System (ADS)
Ganci, Paul; Potts, Steven; Okurowski, Frank
1995-12-01
For intelligent cruise control (ICC) and forward looking collision warning systems to be successful products they must provide robust performance in a complex roadway environment. Inconveniences caused by dropped tracks and nuisance alarms will not be tolerated by consumers, and would likely result in rejection of these new technologies in the marketplace. The authors report on a low-cost automotive millimeter wave (MMW) radar design which addresses shortcomings associated with previously reported ICC system implementations. The importance of the sensor's ability to identify and separately track all obstacles in the field of view is discussed. The applicability of the MMW's FM-CW sensor implementation to collision warning systems is also discussed.
Application of a GPU-Assisted Maxwell Code to Electromagnetic Wave Propagation in ITER
NASA Astrophysics Data System (ADS)
Kubota, S.; Peebles, W. A.; Woodbury, D.; Johnson, I.; Zolfaghari, A.
2014-10-01
The Low Field Side Reflectometer (LSFR) on ITER is envisioned to provide capabilities for electron density profile and fluctuations measurements in both the plasma core and edge. The current design for the Equatorial Port Plug 11 (EPP11) employs seven monostatic antennas for use with both fixed-frequency and swept-frequency systems. The present work examines the characteristics of this layout using the 3-D version of the GPU-Assisted Maxwell Code (GAMC-3D). Previous studies in this area were performed with either 2-D full wave codes or 3-D ray- and beam-tracing. GAMC-3D is based on the FDTD method and can be run with either a fixed-frequency or modulated (e.g. FMCW) source, and with either a stationary or moving target (e.g. Doppler backscattering). The code is designed to run on a single NVIDIA Tesla GPU accelerator, and utilizes a technique based on the moving window method to overcome the size limitation of the onboard memory. Effects such as beam drift, linear mode conversion, and diffraction/scattering will be examined. Comparisons will be made with beam-tracing calculations using the complex eikonal method. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466, and the DoE SULI Program at PPPL.
Real-time FPGA-based radar imaging for smart mobility systems
NASA Astrophysics Data System (ADS)
Saponara, Sergio; Neri, Bruno
2016-04-01
The paper presents an X-band FMCW (Frequency Modulated Continuous Wave) Radar Imaging system, called X-FRI, for surveillance in smart mobility applications. X-FRI allows for detecting the presence of targets (e.g. obstacles in a railway crossing or urban road crossing, or ships in a small harbor), as well as their speed and their position. With respect to alternative solutions based on LIDAR or camera systems, X-FRI operates in real-time also in bad lighting and weather conditions, night and day. The radio-frequency transceiver is realized through COTS (Commercial Off The Shelf) components on a single-board. An FPGA-based baseband platform allows for real-time Radar image processing.
Indoor imagery with a 3D through-wall synthetic aperture radar
NASA Astrophysics Data System (ADS)
Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Fournier, Jonathan
2012-06-01
Through-wall radar imaging is an emerging technology with great interest to military and police forces operating in an urban environment. A through-wall imaging radar can potentially provide interior room layouts as well as detection and localization of targets of interest within a building. In this paper, we present our through-wall radar system mounted on the side of a vehicle and driven along a path in front of a building of interest. The vehicle is equipped with a LIDAR (Light Detection and Ranging) and motion sensors that provide auxiliary information. The radar uses an ultra wideband frequency-modulated continuous wave (FMCW) waveform to obtain high range resolution. Our system is composed of a vertical linear receive array to discriminate targets in elevation, and two transmit elements operated in a slow multiple-input multiple output (MIMO) configuration to increase the achievable elevation resolution. High resolution in the along-track direction is obtained through synthetic aperture radar (SAR) techniques. We present experimental results that demonstrate the 3-D capability of the radar. We further demonstrate target detection behind challenging walls, and imagery of internal wall features. Finally, we discuss future work.
A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere
Guo, Liang; Xing, Mendao; Tang, Yu; Dan, Jing
2008-01-01
The spatial resolution of a conventional imaging lidar system is constrained by the diffraction limit of the telescope's aperture. The combination of the lidar and synthetic aperture (SA) processing techniques may overcome the diffraction limit and pave the way for a higher resolution air borne or space borne remote sensor. Regarding the lidar transmitting frequency modulation continuous-wave (FMCW) signal, the motion during the transmission of a sweep and the reception of the corresponding echo were expected to be one of the major problems. The given modified Omega-K algorithm takes the continuous motion into account, which can compensate for the Doppler shift induced by the continuous motion efficiently and azimuth ambiguity for the low pulse recurrence frequency limited by the tunable laser. And then, simulation of Phase Screen (PS) distorted by atmospheric turbulence following the von Karman spectrum by using Fourier Transform is implemented in order to simulate turbulence. Finally, the computer simulation shows the validity of the modified algorithm and if in the turbulence the synthetic aperture length does not exceed the similar coherence length of the atmosphere for SAIL, we can ignore the effect of the turbulence. PMID:27879865
NASA Astrophysics Data System (ADS)
Brook, A.; Cristofani, E.; Vandewal, M.; Matheis, C.; Jonuscheit, J.; Beigang, R.
2012-05-01
The present study proposes a fully integrated, semi-automatic and near real-time mode-operated image processing methodology developed for Frequency-Modulated Continuous-Wave (FMCW) THz images with the center frequencies around: 100 GHz and 300 GHz. The quality control of aeronautics composite multi-layered materials and structures using Non-Destructive Testing is the main focus of this work. Image processing is applied on the 3-D images to extract useful information. The data is processed by extracting areas of interest. The detected areas are subjected to image analysis for more particular investigation managed by a spatial model. Finally, the post-processing stage examines and evaluates the spatial accuracy of the extracted information.
Design of hybrid optical delay line for automotive radar test system
NASA Astrophysics Data System (ADS)
Son, Byung-Hee; Kim, Kwang-Jin; Li, Ye; Park, Chang-In; Choi, Young-Wan
2015-03-01
In this paper, hybrid optical delay line (HODL) which is demanded on automotive radar test system (RTS) is proposed and demonstrated. HODL is composed with coaxial cable in short delay time (< 32 nsec) and optical fiber in long delay time (>= 32 nsec) which are considering the volume, loss and frequency characteristics. Also, the optical transceiver that has the bandwidth of 1 GHz is designed for frequency modulated continuous wave (FMCW). Experimental results show that the S21 is +/- 0.5 dB in the optical transceiver and +/- 1.7 dB in the whole system at 3.7 GHz ~ 4.7 GHz. The resolution of delay time is 1 ns and the delay flatness is +/- 0.23 ns.
Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young
2005-12-12
We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.
NASA Astrophysics Data System (ADS)
Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.
2017-09-01
The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.
Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range
NASA Astrophysics Data System (ADS)
Koppenjan, S.,; Martinez, M.
The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteria for the development of geophysical technologies and techniques. The US DOE's Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a 'chirped' FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site.
Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koppenjan, S,; Martinez, M.
1994-06-01
The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteriamore » for the development of geophysical technologies and techniques. The US DOE`s Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a ``chirped`` FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site.« less
A low-cost through-the-wall FMCW radar for stand-off operation and activity detection
NASA Astrophysics Data System (ADS)
Chetty, Kevin; Chen, Qingchao; Ritchie, Matthew; Woodbridge, Karl
2017-05-01
In this paper we present a new through-wall (TW) FMCW radar system. The architecture of the radar enables both high sensitivity and range resolutions of <1.5 m. Moreover, the radar employs moving target indication (MTI) signal processing to remove the problematic primary wall reflection, allowing higher signal-to- noise and signal-to-interference ratios, which can be traded-off for increased operational stand-off. The TW radar operates at 5.8 GHz with a 200 MHz bandwidth. Its dual-frequency design minimises interference from signal leakage, and permits a baseband output after deramping which is digitized using an inexpensive 24-bit off-the-shelf sound card. The system is therefore an order of magnitude lower in cost than competitor ultrawideband (UWB) TW systems. The high sensitivity afforded by this wide dynamic range has allowed us to develop a wall removal technique whereby high-order digital filters provide a flexible means of MTI filtering based on the phases of the returned echoes. Experimental data demonstrates through-wall detection of individuals and groups of people in various scenarios. Target positions were located to within +/-1.25 m in range, allowing us distinguish between two closely separated targets. Furthermore, at 8.5 m standoff, our wall removal technique can recover target responses that would have otherwise been masked by the primary wall reflection, thus increasing the stand-off capability of the radar. Using phase processing, our experimental data also reveals a clear difference in the micro-Doppler signatures across various types of everyday actions
Frequency-modulated laser ranging sensor with closed-loop control
NASA Astrophysics Data System (ADS)
Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin
2018-02-01
Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.
Full polarimetric millimetre wave radar for stand-off security screening
NASA Astrophysics Data System (ADS)
Blackhurst, Eddie; Salmon, Neil; Southgate, Matthew
2017-10-01
The development and measurements are described of a frequency modulated continuous wave (FMCW) mono-static millimetre wave full polarimetric radar, operating at k-band (18 to 26 GHz). The system has been designed to explore the feasibility of using full polarimetry for the detection of concealed weapons, and person borne improvised explosive devices (PBIED). The philosophy of this scheme is a means to extract the maximum information content from a target which is normally in the single spatial pixel (sometimes sub-pixel) configuration in stand-off (tens of metres) and crowd surveillance scenarios. The radar comprises a vector network analyser (VNA), an orthomode transducer and a conical horn antenna. A calibration strategy is discussed and demonstrated using a variety of known calibration targets with known reflective properties, including a flat metal plate, dihedral reflector, metal sphere, helix and dipole. The orthomode transducer is based on a high performance linear polarizer of the turnstile type with isolation better than - 35dB between orthogonal polarisations. The calibration enables the polarimetric Sinclair scattering matrix to be measured at each frequency for coherent polarimetry, and this can be extended using multiple measurements via the Kennaugh matrix to investigate incoherent full polarimetry.
A coherent through-wall MIMO phased array imaging radar based on time-duplexed switching
NASA Astrophysics Data System (ADS)
Chen, Qingchao; Chetty, Kevin; Brennan, Paul; Lok, Lai Bun; Ritchie, Matthiew; Woodbridge, Karl
2017-05-01
Through-the-Wall (TW) radar sensors are gaining increasing interest for security, surveillance and search and rescue applications. Additionally, the integration of Multiple-Input, Multiple-Output (MIMO) techniques with phased array radar is allowing higher performance at lower cost. In this paper we present a 4-by-4 TW MIMO phased array imaging radar operating at 2.4 GHz with 200 MHz bandwidth. To achieve high imaging resolution in a cost-effective manner, the 4 Tx and 4 Rx elements are used to synthesize a uniform linear array (ULA) of 16 virtual elements. Furthermore, the transmitter is based on a single-channel 4-element time-multiplexed switched array. In transmission, the radar utilizes frequency modulated continuous wave (FMCW) waveforms that undergo de-ramping on receive to allow digitization at relatively low sampling rates, which then simplifies the imaging process. This architecture has been designed for the short-range TW scenarios envisaged, and permits sufficient time to switch between antenna elements. The paper first outlines the system characteristics before describing the key signal processing and imaging algorithms which are based on traditional Fast Fourier Transform (FFT) processing. These techniques are implemented in LabVIEW software. Finally, we report results from an experimental campaign that investigated the imaging capabilities of the system and demonstrated the detection of personnel targets. Moreover, we show that multiple targets within a room with greater than approximately 1 meter separation can be distinguished from one another.
NASA Astrophysics Data System (ADS)
Crouch, Stephen; Kaylor, Brant M.; Barber, Zeb W.; Reibel, Randy R.
2015-09-01
Currently large volume, high accuracy three-dimensional (3D) metrology is dominated by laser trackers, which typically utilize a laser scanner and cooperative reflector to estimate points on a given surface. The dependency upon the placement of cooperative targets dramatically inhibits the speed at which metrology can be conducted. To increase speed, laser scanners or structured illumination systems can be used directly on the surface of interest. Both approaches are restricted in their axial and lateral resolution at longer stand-off distances due to the diffraction limit of the optics used. Holographic aperture ladar (HAL) and synthetic aperture ladar (SAL) can enhance the lateral resolution of an imaging system by synthesizing much larger apertures by digitally combining measurements from multiple smaller apertures. Both of these approaches only produce two-dimensional imagery and are therefore not suitable for large volume 3D metrology. We combined the SAL and HAL approaches to create a swept frequency digital holographic 3D imaging system that provides rapid measurement speed for surface coverage with unprecedented axial and lateral resolution at longer standoff ranges. The technique yields a "data cube" of Fourier domain data, which can be processed with a 3D Fourier transform to reveal a 3D estimate of the surface. In this paper, we provide the theoretical background for the technique and show experimental results based on an ultra-wideband frequency modulated continuous wave (FMCW) chirped heterodyne ranging system showing ~100 micron lateral and axial precisions at >2 m standoff distances.
Portable concealed weapon detection using millimeter-wave FMCW radar imaging
NASA Astrophysics Data System (ADS)
Johnson, Michael A.; Chang, Yu-Wen
2001-02-01
Unobtrusive detection of concealed weapons on persons or in abandoned bags would provide law enforcement a powerful tool to focus resources and increase traffic throughput in high- risk situations. We have developed a fast image scanning 94 GHz radar system that is suitable for portable operation and remote viewing of radar data. This system includes a novel fast image-scanning antenna that allows for the acquisition of medium resolution 3D millimeter wave images of stationary targets with frame times on order of one second. The 3D radar data allows for potential isolation of concealed weapons from body and environmental clutter such as nearby furniture or other people. The radar is an active system so image quality is not affected indoors, emitted power is however very low so there are no health concerns for operator or targets. The low power operation is still sufficient to penetrate heavy clothing or material. Small system size allows for easy transport and rapid deployment of the system as well as an easy migration path to future hand held systems.
NASA Astrophysics Data System (ADS)
Luo, Y.; Wang, H.; Ma, R.; Zipser, E. J.; Liu, C.
2017-12-01
This study examines the vertical structure of precipitation echoes in central Tibetan Plateau using observations collected at Naqu during the Third Tibetan Plateau Atmospheric Scientific Experiment in July-August 2014. Precipitation reaching the surface is classified into stratiform, convective, and other by analyzing the vertical profiles of reflectivity (Ze) at 30-m spacing and 3-s temporal resolution made with the vertical pointing C-band frequency-modulated continuous-wave (C-FMCW) radar. Radar echoes with non-zero surface rainfall rate are observed during 17.96% of the entire observing period. About 52.03% of the precipitation reaching the surface includes a bright band and lacks a thick layer (≥1 km) of large Ze (> 35 dBZ); these are classified as stratiform; non-stratiform echoes with Ze > 35 dBZ are classified as convective (4.99%); the remainder (42.98%) as other. Based on concurrent measurements made with a collocated disdrometer, the classified stratiform, convective, and other precipitation echoes contribute 53.84%, 23.08%, and 23.08%, respectively, to the surface rainfall amount. Distinct internal structural features of each echo type are revealed by collectively analyzing the vertical profiles of Ze, radial velocity (Vr), and spectral width (SW) observed by the C-FMCW radar. The stratiform precipitation contains a melting-layer centered at 0.97 km above ground with an average depth of 415 m. The median Ze at 0°C -15°C levels in convective regions at Naqu is weaker than those in some midlatitude continental convection and stronger than those in some tropical continents, suggesting that convective intensity measured by mixed-phase microphysical processes at Naqu is intermediate.
High-resolution three-dimensional imaging radar
NASA Technical Reports Server (NTRS)
Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)
2010-01-01
A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.
Multi-pixel high-resolution three-dimensional imaging radar
NASA Technical Reports Server (NTRS)
Cooper, Ken B. (Inventor); Dengler, Robert J. (Inventor); Siegel, Peter H. (Inventor); Chattopadhyay, Goutam (Inventor); Ward, John S. (Inventor); Juan, Nuria Llombart (Inventor); Bryllert, Tomas E. (Inventor); Mehdi, Imran (Inventor); Tarsala, Jan A. (Inventor)
2012-01-01
A three-dimensional imaging radar operating at high frequency e.g., 670 GHz radar using low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform, is disclosed that operates with a multiplexed beam to obtain range information simultaneously on multiple pixels of a target. A source transmit beam may be divided by a hybrid coupler into multiple transmit beams multiplexed together and directed to be reflected off a target and return as a single receive beam which is demultiplexed and processed to reveal range information of separate pixels of the target associated with each transmit beam simultaneously. The multiple transmit beams may be developed with appropriate optics to be temporally and spatially differentiated before being directed to the target. Temporal differentiation corresponds to a different intermediate frequencies separating the range information of the multiple pixels. Collinear transmit beams having differentiated polarizations may also be implemented.
Time-of-Flight Microwave Camera.
Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh
2015-10-05
Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable "stealth" regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz-12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows "camera-like" behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum.
Detrecting and Locating Partial Discharges in Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shourbaji, A.; Richards, R.; Kisner, R. A.
A collaborative research between the Oak Ridge National Laboratory (ORNL), the American Electric Power (AEP), the Tennessee Valley Authority (TVA), and the State of Ohio Energy Office (OEO) has been formed to conduct a feasibility study to detect and locate partial discharges (PDs) inside large transformers. The success of early detection of the PDs is necessary to avoid costly catastrophic failures that can occur if the process of PD is ignored. The detection method under this research is based on an innovative technology developed by ORNL researchers using optical methods to sense the acoustical energy produced by the PDs. ORNLmore » researchers conducted experimental studies to detect PD using an optical fiber as an acoustic sensor capable of detecting acoustical disturbances at any point along its length. This technical approach also has the potential to locate the point at which the PD was sensed within the transformer. Several optical approaches were experimentally investigated, including interferometric detection of acoustical disturbances along the sensing fiber, light detection and ranging (LIDAR) techniques using frequency modulation continuous wave (FMCW), frequency modulated (FM) laser with a multimode fiber, FM laser with a single mode fiber, and amplitude modulated (AM) laser with a multimode fiber. The implementation of the optical fiber-based acoustic measurement technique would include installing a fiber inside a transformer allowing real-time detection of PDs and determining their locations. The fibers are nonconductive and very small (core plus cladding are diameters of 125 μm for single-mode fibers and 230 μm for multimode fibers). The research identified the capabilities and limitations of using optical technology to detect and locate sources of acoustical disturbances such as in PDs in large transformers. Amplitude modulation techniques showed the most promising results and deserve further research to better quantify the technique’s sensitivity and its ability to characterize a PD event. Other sensing techniques have been also identified, such as the wavelength shifting fiber optics and custom fabricated fibers with special coatings.« less
Design of an FMCW radar baseband signal processing system for automotive application.
Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung
2016-01-01
For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario.
Varela, P; Silva, A; da Silva, F; da Graça, S; Manso, M E; Conway, G D
2010-10-01
The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder.
Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Bruce; Ghate, Virendra; CADeddu, Maria
2016-06-01
The scientific focus of this project was to examine precipitation and entrainment processes in marine stratocumulus clouds. The entrainment studies focused on characterizing cloud turbulence at cloud top using Doppler cloud radar observations. The precipitation studies focused on characterizing the precipitation and the macroscopic properties (cloud thickness, and liquid water path) of the clouds. This project will contribute to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s overall objective of providing the remote-sensing observations needed to improve the representation of key cloud processes in climate models. It will be of direct relevance to the componentsmore » of ARM dealing with entrainment and precipitation processes in stratiform clouds. Further, the radar observing techniques that will be used in this study were developed using ARM Southern Great Plains (SGP) facility observations under Atmospheric System Research (ASR) support. The observing systems operating automatously from a site located just north of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) aircraft hangar in Marina, California during the period of 1 May to 4 November 2015 included: 1. Microwave radiometer: ARM Microwave Radiometer, 3-Channel (MWR3C) with channels centered at 23.834, 30, and 89 GHz; supported by Dr. Maria Cadeddu. 2. Cloud Radar: CIRPAS 95 GHz Frequency Modulated Continuous Wave (FMCW) Cloud Radar (Centroid Frequency Chirp Rate [CFCR]); operations overseen by Drs. Ghate and Albrecht. 3. Ceilometer: Vaisala CK-14; operations overseen by Drs. Ghate and Albrecht.« less
Experimentelles FMCW-Radar zur hochfrequenten Charakterisierung von Windenergieanlagen
NASA Astrophysics Data System (ADS)
Schubert, Karsten; Werner, Jens; Schwartau, Fabian
2017-09-01
During the increasing dissemination of renewable energy sources the potential and actual interference effects of wind turbine plants became obvious. Turbines reflect the signals of weather radar and other radar systems. In addition to the static radar echoes, in particular the Doppler echoes are to be mentioned as an undesirable impairment Keränen (2014). As a result, building permit is refused for numerous new wind turbines, as the potential interference can not be reliably predicted. As a contribution to the improvement of this predictability, measurements are planned which aim at the high-frequency characterisation of wind energy installations. In this paper, a cost-effective FMCW radar is presented, which is operated in the same frequency band (C-band) as the weather radars of the German weather service. Here, the focus is on the description of the hardware design including the considerations used for its dimensioning.
Experimental simulation of ranging action using Si photonic crystal modulator and optical antenna
NASA Astrophysics Data System (ADS)
Furukado, Yuya; Abe, Hiroshi; Hinakura, Yosuke; Baba, Toshihiko
2018-02-01
Time of flight LiDARs are used for auto-driving of vehicles, while FMCW LiDARs potentially achieve a higher sensitivity. In this study, we fabricated and tested each component of a FMCW LiDAR based on Si photonics and experimentally simulated the ranging action. Here, we drove a Si photonic crystal slow light modulator with linearly frequency-chirped signal in the frequency band of 500-1000 MHz and a repetition frequency of 100 kHz, to generate FM-signal light from a narrow-linewidth laser source. Next, we branched the signal light into two paths. One was inserted into a fiber delay line of 20-320 m and its output was irradiated to a photonic crystal slow beam steering device acting as an optical antenna via the free-space transmission. When the irradiation angle was optimized so that the antenna gain took maximum for a set laser wavelength, light was efficiently coupled into the antenna. We mixed the light output from the antenna with reference light of the other path with no delay, and detected it by balanced photodiodes. We observed a beat signal whose frequency well agreed with the theoretical value predicted from the length of the delay line. Thus, we succeeded in the experimental simulation of the FMCW LiDAR. We also observed a spectral sequence around the beat spectrum, in which the inter-frequency spacing equals the repetition frequency and corresponds to a range resolution of 30 cm which will be improved by expanding the modulation bandwidth.
Range and azimuth resolution enhancement for 94 GHz real-beam radar
NASA Astrophysics Data System (ADS)
Liu, Guoqing; Yang, Ken; Sykora, Brian; Salha, Imad
2008-04-01
In this paper, two-dimensional (2D) (range and azimuth) resolution enhancement is investigated for millimeter wave (mmW) real-beam radar (RBR) with linear or non-linear antenna scan in the azimuth dimension. We design a new architecture of super resolution processing, in which a dual-mode approach is used for defining region of interest for 2D resolution enhancement and a combined approach is deployed for obtaining accurate location and amplitude estimations of targets within the region of interest. To achieve 2D resolution enhancement, we first adopt the Capon Beamformer (CB) approach (also known as the minimum variance method (MVM)) to enhance range resolution. A generalized CB (GCB) approach is then applied to azimuth dimension for azimuth resolution enhancement. The GCB approach does not rely on whether the azimuth sampling is even or not and thus can be used in both linear and non-linear antenna scanning modes. The effectiveness of the resolution enhancement is demonstrated by using both simulation and test data. The results of using a 94 GHz real-beam frequency modulation continuous wave (FMCW) radar data show that the overall image quality is significantly improved per visual evaluation and comparison with respect to the original real-beam radar image.
Recent progress in millimeter-wave sensor system capabilities for enhanced (synthetic) vision
NASA Astrophysics Data System (ADS)
Hellemann, Karlheinz; Zachai, Reinhard
1999-07-01
Weather- and daylight independent operation of modern traffic systems is strongly required for an optimized and economic availability. Mainly helicopters, small aircraft and military transport aircraft operating frequently close to the ground have a need for effective and cost-effective Enhanced Vision sensors. The technical progress in sensor technology and processing speed offer today the possibility for new concepts to be realized. Derived from this background the paper reports on the improvements which are under development within the HiVision program at DaimlerChrysler Aerospace. A sensor demonstrator based on FMCW radar technology with high information update-rate and operating in the mm-wave band, has been up-graded to improve performance and fitted to fly on an experimental base. The results achieved so far demonstrate the capability to produce a weather independent enhanced vision. In addition the demonstrator has been tested on board a high- speed ferry at the Baltic sea, because fast vessels have a similar need for weather-independent operation and anti- collision measures. In the future one sensor type may serve both 'worlds' and help ease and save traffic. The described demonstrator fills up the technology gap between optical sensors (Infrared) and standard pulse radars with its specific features such as high speed scanning and weather penetration with the additional benefit of cost-effectiveness.
Time-of-Flight Microwave Camera
Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh
2015-01-01
Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable “stealth” regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz–12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows “camera-like” behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum. PMID:26434598
Ultra-Wideband Radar Measurements of Thickness of Snow Over Sea Ice
NASA Technical Reports Server (NTRS)
Kanagaratnam, P.; Markus, T.; Lytle, V.; Heavey, B.; Jansen, P.; Prescott, G.; Gogineni, S.
2007-01-01
An accurate knowledge of snow thickness and its variability over sea ice is crucial for determining the overall polar heat and freshwater budget, which influences the global climate. Recently, algorithms have been developed to extract snow thicknesses from passive microwave satellite data. However, validation of these data over the large footprint of the passive microwave sensor has been a challenge. The only method used thus far has been with meter sticks during ship cruises. To address this problem, we developed an ultra wideband frequency-modulated continuous-wave (FM-CW) radar to measure snow thickness over sea ice. We made snow-thickness measurements over Antarctic sea ice by operating the radar from a sled during September and October, 2003. We performed radar measurements over 11 stations with varying snow thickness between 4 and 85 cm. We observed excellent agreement between radar estimates of snow thickness with physical measurements, achieving a correlation coefficient of 0.95 and a vertical resolution of about 3 cm.
3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar.
Li, Ying-Chun; Choi, Byunggil; Chong, Jong-Wha; Oh, Daegun
2018-05-20
In this paper, a modified 3D multiple signal classification (MUSIC) algorithm is proposed for joint estimation of range, azimuth, and elevation angles of K-band radar with a small 2 × 2 horn antenna array. Three channels of the 2 × 2 horn antenna array are utilized as receiving channels, and the other one is a transmitting antenna. The proposed modified 3D MUSIC is designed to make use of a stacked autocorrelation matrix, whose element matrices are related to each other in the spatial domain. An augmented 2D steering vector based on the stacked autocorrelation matrix is proposed for the modified 3D MUSIC, instead of the conventional 3D steering vector. The effectiveness of the proposed modified 3D MUSIC is verified through implementation with a K-band frequency-modulated continuous-wave (FMCW) radar with the 2 × 2 horn antenna array through a variety of experiments in a chamber.
Time-of-Flight Microwave Camera
NASA Astrophysics Data System (ADS)
Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh
2015-10-01
Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable “stealth” regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz-12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows “camera-like” behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum.
van Loon, K; Breteler, M J M; van Wolfwinkel, L; Rheineck Leyssius, A T; Kossen, S; Kalkman, C J; van Zaane, B; Peelen, L M
2016-12-01
Altered respiratory rate is one of the first symptoms of medical conditions that require timely intervention, e.g., sepsis or opioid-induced respiratory depression. To facilitate continuous respiratory rate monitoring on general hospital wards a contactless, non-invasive, prototype monitor was developed using frequency modulated continuous wave radar. We aimed to study whether radar can reliably measure respiratory rate in postoperative patients. In a diagnostic cross-sectional study patients were monitored with the radar and the reference monitor (pneumotachograph during mechanical ventilation and capnography during spontaneous breathing). Eight patients were included; yielding 796 min of observation time during mechanical ventilation and 521 min during spontaneous breathing. After elimination of movement artifacts the bias and 95 % limits of agreement for mechanical ventilation and spontaneous breathing were -0.12 (-1.76 to 1.51) and -0.59 (-5.82 to 4.63) breaths per minute respectively. The radar was able to accurately measure respiratory rate in mechanically ventilated patients, but the accuracy decreased during spontaneous breathing.
A Data Acquisition System Using Single-Chip Microcomputer
NASA Astrophysics Data System (ADS)
Yonyjiang, Dai; Jingkuan, Gao; Lin, Wan; Mingjia, Pi; Jingda, Nan
1989-12-01
A data acquisition system by single-chip microcomputer was designed. It is suitable to the future devlopment of the miniature tidar signal processing epuipment . The characteristics of frequecy response, SNR, D* and NEP of FM-CW CO2 coherent tidar were discussed.
Coherent Doppler Lidar for Precision Navigation of Spacecrafts
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce
2011-01-01
A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.
Demonstration of coherent Doppler lidar for navigation in GPS-denied environments
NASA Astrophysics Data System (ADS)
Amzajerdian, Farzin; Hines, Glenn D.; Pierrottet, Diego F.; Barnes, Bruce W.; Petway, Larry B.; Carson, John M.
2017-05-01
A coherent Doppler lidar has been developed to address NASA's need for a high-performance, compact, and cost-effective velocity and altitude sensor onboard its landing vehicles. Future robotic and manned missions to solar system bodies require precise ground-relative velocity vector and altitude data to execute complex descent maneuvers and safe, soft landing at a pre-designated site. This lidar sensor, referred to as a Navigation Doppler Lidar (NDL), meets the required performance of the landing missions while complying with vehicle size, mass, and power constraints. Operating from up to four kilometers altitude, the NDL obtains velocity and range precision measurements reaching 2 cm/sec and 2 meters, respectively, dominated by the vehicle motion. Terrestrial aerial vehicles will also benefit from NDL data products as enhancement or replacement to GPS systems when GPS is unavailable or redundancy is needed. The NDL offers a viable option to aircraft navigation in areas where the GPS signal can be blocked or jammed by intentional or unintentional interference. The NDL transmits three laser beams at different pointing angles toward the ground to measure range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. The three line-of-sight measurements are then combined in order to determine the three components of the vehicle velocity vector and its altitude relative to the ground. This paper describes the performance and capabilities that the NDL demonstrated through extensive ground tests, helicopter flight tests, and onboard an autonomous rocket-powered test vehicle while operating in closedloop with a guidance, navigation, and control (GN and C) system.
Clear-air radar observations of the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Ince, Turker
2001-10-01
This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation presents two case studies with the measurements of remote (the FM-CW radar and Doppler lidar) and in-situ (research aircraft, kite, and radiosonde) sensors from the stable nighttime boundary layer. It also presents a unique observation of evolution of the convective and nocturnal boundary layers by the S-band radar, and provides description of the observed boundary layer characteristics with the aid of in-situ measurements by the 55m instrumented tower and radiosonde.
A new ULF wave analysis for Seismo-Electromagnetics using CPMN/MAGDAS data
NASA Astrophysics Data System (ADS)
Yumoto, K.; Ikemoto, S.; Cardinal, M. G.; Hayakawa, M.; Hattori, K.; Liu, J. Y.; Saroso, S.; Ruhimat, M.; Husni, M.; Widarto, D.; Ramos, E.; McNamara, D.; Otadoy, R. E.; Yumul, G.; Ebora, R.; Servando, N.
The Space Environment Research Center of Kyushu University has obtained geomagnetic data in the Circum-pan Pacific Magnetometer Network (CPMN) region for over 10 years, and has recently deployed a new real-time Magnetic Data Acquisition System (MAGDAS) in the CPMN region and an FM-CW radar network along the 210° magnetic meridian (MM) for space weather research and applications. This project intends to get the MAGDAS network fully operational and provide data for studies on space and lithosphere weather. In connection with this project, we propose a new ultra-low frequency (ULF) wave analysis method to study ULF anomalies associated with large earthquakes using magnetic data. From a case study of the 1999/05/12 Kushiro earthquake with magnitude M = 6.4, we found a peculiar increase of H-component power ratio AR/ AM of Pc 3 magnetic pulsations a few weeks before the earthquake, where AR is the power obtained at Rikubetsu station ( r = 61 km) near the epicenter and AM is the power obtained at a remote reference station, Moshiri ( r = 205 km). It is also found that the H-component power ratio AD/ AY of Pc 3 increased three times just a few weeks before the earthquake and after one week decreased to the normal level, where AD is one-day power at Rikubetsu station and AY is the one-year-average power.
NASA Astrophysics Data System (ADS)
Lebsock, M. D.; Millan Valle, L. F.; Cooper, K. B.; Siles, J.; Monje, R.
2017-12-01
We present the results of our efforts to build and demonstrate the first Differential Absorption Radar (DAR), which will provide unique capabilities to remotely sound for water vapor within cloudy and precipitating atmospheres. The approach leverages multiple radar channels located near the 183 GHz water vapor absorption feature to simultaneously derive microphysical and water vapor profiles. The DAR technique has the potential to neatly complement existing water vapor sounding techniques such as infrared and microwave sounding and GPS radio occultation. These precisions rival those of existing water vapor remote sensing instruments. The approach works best from above clouds because the water vapor burden and line width increases towards the Earth surface allowing increased sampling from the top-down compared with bottom-up. From an airborne or satellite platform channels can be selected that target either upper-tropospheric or lower-tropospheric clouds. Our theoretical studies suggest that the water vapor concentration can be retrieved to within 1-3 gm-3 and the column integrated water vapor can be retrieved to within 1 kgm-2. The high-frequency radar is only recently enabled by technological advances that have allowed us to demonstrate 0.5 W of continuous power near 183 GHz. We are currently developing an airborne DAR using a Frequency Modulated Continuous Wave (FMCW) architecture with a quasi-optical duplexer providing 80 dB of transmit/receive isolation. A prototype of this instrument recently made the first ever range resolved DAR measurements of humidity out to several hundred meters during a light rain event at JPL. The spectral dependence of the attenuation was in excellent agreement with the predicted attenuation based on nearby weather stations, proving for the first time the feasibility of the concept. A major impediment to implementing DAR is the international regulation of radio-frequency transmissions below 300 GHz. The major roadblocks and potential paths forward towards a spaceborne instruments will be presented.
NASA Astrophysics Data System (ADS)
Laurenzis, Martin; Hengy, Sebastien; Hommes, Alexander; Kloeppel, Frank; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Naz, Pierre; Christnacher, Frank
2017-05-01
Small unmanned aerial vehicles (UAV) flying at low altitude are becoming more and more a serious threat in civilian and military scenarios. In recent past, numerous incidents have been reported where small UAV were flying in security areas leading to serious danger to public safety or privacy. The detection and tracking of small UAV is a widely discussed topic. Especially, small UAV flying at low altitude in urban environment or near background structures and the detection of multiple UAV at the same time is challenging. Field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude with state of the art detection technologies. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small frequency modulated continuous wave (FMCW) RADAR systems and optical sensors. While acoustics, RADAR and LiDAR were applied to monitor a wide azimuthal area (360°) and to simultaneously track multiple UAV, optical sensors were used for sequential identification with a very narrow field of view.
Active microwave water equivalence
NASA Technical Reports Server (NTRS)
Boyne, H. S.; Ellerbruch, D. A.
1980-01-01
Measurements of water equivalence using an active FM-CW microwave system were conducted over the past three years at various sites in Colorado, Wyoming, and California. The measurement method is described. Measurements of water equivalence and stratigraphy are compared with ground truth. A comparison of microwave, federal sampler, and snow pillow measurements at three sites in Colorado is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, H; Soliman, A; Song, W
Purpose: Brachytherapy treatment planning systems based on TG-43 protocol calculate the dose in water and neglects the heterogeneity effect of seeds in multi-seed implant brachytherapy. In this research, the accuracy of a novel analytical model that we propose for the inter-seed attenuation effect (ISA) for 103-Pd seed model is evaluated. Methods: In the analytical model, dose perturbation due to the ISA effect for each seed in an LDR multi-seed implant for 103-Pd is calculated by assuming that the seed of interest is active and the other surrounding seeds are inactive. The cumulative dosimetric effect of all seeds is then summedmore » using the superposition principle. The model is based on pre Monte Carlo (MC) simulated 3D kernels of the dose perturbations caused by the ISA effect. The cumulative ISA effect due to multiple surrounding seeds is obtained by a simple multiplication of the individual ISA effect by each seed, the effect of which is determined by the distance from the seed of interest. This novel algorithm is then compared with full MC water-based simulations (FMCW). Results: The results show that the dose perturbation model we propose is in excellent agreement with the FMCW values for a case with three seeds separated by 1 cm. The average difference of the model and the FMCW simulations was less than 8%±2%. Conclusion: Using the proposed novel analytical ISA effect model, one could expedite the corrections due to the ISA dose perturbation effects during permanent seed 103-Pd brachytherapy planning with minimal increase in time since the model is based on multiplications and superposition. This model can be applied, in principle, to any other brachytherapy seeds. Further work is necessary to validate this model on a more complicated geometry as well.« less
VHF Scintillation in an Artificially Heated Ionosphere
NASA Astrophysics Data System (ADS)
Suszcynsky, D. M.; Layne, J.; Light, M. E.; Pigue, M. J.; Rivera, L.
2017-12-01
As part of an ongoing project to characterize very-high-frequency (VHF) radio wave propagation through structured ionospheres, Los Alamos National Laboratory has been conducting a set of experiments to measure the scintillation effects of VHF transmissions under a variety of ionospheric conditions. Previous work (see 2015 Fall AGU poster by D. Suszcynsky et al.) measured the S4 index and ionospheric coherence bandwidth in the 32 - 44 MHz frequency range under naturally scintillated conditions in the equatorial region at Kwajalein Atoll during three separate campaigns centered on the 2014 and 2015 equinoxes. In this paper, we will present preliminary results from the February and September, 2017 High Altitude Auroral Research Project (HAARP) Experimental Campaigns where we are attempting to make these measurements under more controlled conditions using the HAARP ionospheric heater in a twisted-beam mode. Two types of measurements are made by transmitting VHF signals through the heated ionospheric volume to the Radio Frequency Propagation (RFProp) satellite experiment. The S4 scintillation index is determined by measuring the power fluctuations of a 135-MHz continuous wave signal and the ionospheric coherence bandwidth is simultaneously determined by measuring the delay spread of a frequency-modulated continuous wave (FMCW) signal in the 130 - 140 MHz frequency range. Additionally, a spatial Fourier transform of the CW time series is used to calculate the irregularity spectral density function. Finally, the temporal evolution of the time series is used to characterize spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities. All results are compared to theory and scaled for comparison to the 32 - 44 MHz Kwajalein measurements.
Detection and Jamming Low Probability of Intercept (LPI) Radars
2006-09-01
69 The resulting WVD is, therefore ( ) 2 1 ’ 0 , 2 ( ) . j knN N l n W l k f n e π− − = = ∑ (3.11) Equation (3.11) is the final...of FMCW and P-4 polyphase LPI waveforms. 2002 IEEE International Conference on Acoustics, Speech , and Signal Processing.Proceedings (Cat.no.02CH37334
Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project
NASA Astrophysics Data System (ADS)
Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro
2016-04-01
Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data. Degradation of transmission power was monitored and sensitivity of receiving system was derived with estimating antenna gain by using radio wave absorber and considering antenna geometry of two antenna system. In order to estimate final results, altitude dependent detection limit curve was also calculated. Original intensity data in real time and calibrated radar reflectivity data are archived on "Arctic Data archive System (ADS)". Other collocated observations were made with fog monitor (particle size distribution), MPS (particle image) for continuous measurements at Zeppelin Mountain, 450 m height a. s. l., and tethered balloon for intense observing period. From these measurements together with aerosol and meteorological monitoring made by collaborating institutes (Stockholm University, University of Florence, AWI, NILU, NCAR and NPI) microphysics of low level cloud and aerosol-cloud interactions are discussed. Ground based remote sensors provide a powerful validation for satellite cloud observations. Radar reflectivity (dBZ) by FALCON-A was compared with that by CPR on CloudSAT during several overpasses around Ny-Ålesund, and though some difference due to the different vertical resolution was seen, overall agreement was confirmed. We are planning to establish Ny-Ålesund observatory as the super site for validation for EarthCARE (JAXA-ESA) mission.
NASA Astrophysics Data System (ADS)
Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter
2014-10-01
Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.
MEMS-Electronic-Photonic Heterogeneous Integrated FMCW Ladar Source
2015-12-18
CMOS ICs in a seamless manner, and...the heterogeneous integration is to leverage on the available foundry capabilities ( CMOS and...dies” or “known good wafers”). We have adopted a three-‐dimensional (3D) integration strategy: The CMOS
Detecting Negative Obstacles by Use of Radar
NASA Technical Reports Server (NTRS)
Mittskus, Anthony; Lux, James
2006-01-01
Robotic land vehicles would be equipped with small radar systems to detect negative obstacles, according to a proposal. The term "negative obstacles" denotes holes, ditches, and any other terrain features characterized by abrupt steep downslopes that could be hazardous for vehicles. Video cameras and other optically based obstacle-avoidance sensors now installed on some robotic vehicles cannot detect obstacles under adverse lighting conditions. Even under favorable lighting conditions, they cannot detect negative obstacles. A radar system according to the proposal would be of the frequency-modulation/ continuous-wave (FM/CW) type. It would be installed on a vehicle, facing forward, possibly with a downward slant of the main lobe(s) of the radar beam(s) (see figure). It would utilize one or more wavelength(s) of the order of centimeters. Because such wavelengths are comparable to the characteristic dimensions of terrain features associated with negative hazards, a significant amount of diffraction would occur at such features. In effect, the diffraction would afford a limited ability to see corners and to see around corners. Hence, the system might utilize diffraction to detect corners associated with negative obstacles. At the time of reporting the information for this article, preliminary analyses of diffraction at simple negative obstacles had been performed, but an explicit description of how the system would utilize diffraction was not available.
Development of a Coherent Lidar for Aiding Precision Soft Landing on Planetary Bodies
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierrottet, Diego; Tolson, Robert H.; Powell, Richard W.; Davidson, John B.; Peri, Frank
2005-01-01
Coherent lidar can play a critical role in future planetary exploration missions by providing key guidance, navigation, and control (GNC) data necessary for navigating planetary landers to the pre-selected site and achieving autonomous safe soft-landing. Although the landing accuracy has steadily improved over time to approximately 35 km for the recent Mars Exploration Rovers due to better approach navigation, a drastically different guidance, navigation and control concept is required to meet future mission requirements. For example, future rovers will require better than 6 km landing accuracy for Mars and better than 1 km for the Moon plus maneuvering capability to avoid hazardous terrain features. For this purpose, an all-fiber coherent lidar is being developed to address the call for advancement of entry, descent, and landing technologies. This lidar will be capable of providing precision range to the ground and approach velocity data, and in the case of landing on Mars, it will also measure the atmospheric wind and density. The lidar obtains high resolution range information from a frequency modulated-continuous wave (FM-CW) laser beam whose instantaneous frequency varies linearly with time, and the ground vector velocity is directly extracted from the Doppler frequency shift. Utilizing the high concentration of aerosols in the Mars atmosphere (approx. two order of magnitude higher than the Earth), the lidar can measure wind velocity with a few watts of optical power. Operating in 1.57 micron wavelength regime, the lidar can use the differential absorption (DIAL) technique to measure the average CO2 concentration along the laser beam using, that is directly proportional to the Martian atmospheric density. Employing fiber optics components allows for the lidar multi-functional operation while facilitating a highly efficient, compact and reliable design suitable for integration into a spacecraft with limited mass, size, and power resources.
Detection of hidden objects using a real-time 3-D millimeter-wave imaging system
NASA Astrophysics Data System (ADS)
Rozban, Daniel; Aharon, Avihai; Levanon, Assaf; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, N. S.
2014-10-01
Millimeter (mm)and sub-mm wavelengths or terahertz (THz) band have several properties that motivate their use in imaging for security applications such as recognition of hidden objects, dangerous materials, aerosols, imaging through walls as in hostage situations, and also in bad weather conditions. There is no known ionization hazard for biological tissue, and atmospheric degradation of THz radiation is relatively low for practical imaging distances. We recently developed a new technology for the detection of THz radiation. This technology is based on very inexpensive plasma neon indicator lamps, also known as Glow Discharge Detector (GDD), that can be used as very sensitive THz radiation detectors. Using them, we designed and constructed a Focal Plane Array (FPA) and obtained recognizable2-dimensional THz images of both dielectric and metallic objects. Using THz wave it is shown here that even concealed weapons made of dielectric material can be detected. An example is an image of a knife concealed inside a leather bag and also under heavy clothing. Three-dimensional imaging using radar methods can enhance those images since it can allow the isolation of the concealed objects from the body and environmental clutter such as nearby furniture or other people. The GDDs enable direct heterodyning between the electric field of the target signal and the reference signal eliminating the requirement for expensive mixers, sources, and Low Noise Amplifiers (LNAs).We expanded the ability of the FPA so that we are able to obtain recognizable 2-dimensional THz images in real time. We show here that the THz detection of objects in three dimensions, using FMCW principles is also applicable in real time. This imaging system is also shown here to be capable of imaging objects from distances allowing standoff detection of suspicious objects and humans from large distances.
The 8-18 GHz radar spectrometer
NASA Technical Reports Server (NTRS)
Bush, T. F.; Ulaby, F. T.
1973-01-01
The design, construction, testing, and accuracy of an 8-18 GHz radar spectrometer, an FM-CW system which employs a dual antenna system, is described. The antennas, transmitter, and a portion of the receiver are mounted at the top of a 26 meter hydraulic boom which is in turn mounted on a truck for system mobility. HH and VV polarized measurements are possible at incidence angles ranging from 0 deg. to 80 deg. Calibration is accomplished by referencing the measurements against a Luneberg lens of known radar cross section.
Strain evaluation of strengthened concrete structures using FBG sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau Kintak; Zhou Limin; Ye Lin
1999-12-02
Fibre-optic Bragg Grating (FBG) sensor presents a great deal of potential in monitoring the internal status of the concrete structures after repairing or strengthening by an external adhered reinforcement. It can be used in a variety of configurations ranging from pointwise to multi-point strain measurement in order to investigate the strain distribution of the structures. In this paper, an experimental investigation on the rectangular notched-concrete beam, which was strengthened by glass fibre composites with the embedment of multiplexing FBG sensors is presented. Three point bending test was performed to investigate the strain profile of the specimen. Frequency modulated continuous wavemore » (FMCW) technique was used to measure the strain variation of the fibre-grating regions. The results give a good agreement with the electrical resistance strain gauge in early loading condition. The difference of the strain-measuring results between the strain-gauge and FBG sensor was increased when further increasing the applied load. It was suspected that the micro/marco cracks occurred on the concrete surface and that the externally bonded strain-measuring device cannot be detected.« less
Multimodal UAV detection: study of various intrusion scenarios
NASA Astrophysics Data System (ADS)
Hengy, Sebastien; Laurenzis, Martin; Schertzer, Stéphane; Hommes, Alexander; Kloeppel, Franck; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Rassy, Oussama; Christnacher, Frank
2017-10-01
Small unmanned aerial vehicles (UAVs) are becoming increasingly popular and affordable the last years for professional and private consumer market, with varied capacities and performances. Recent events showed that illicit or hostile uses constitute an emergent, quickly evolutionary threat. Recent developments in UAV technologies tend to bring autonomous, highly agile and capable unmanned aerial vehicles to the market. These UAVs can be used for spying operations as well as for transporting illicit or hazardous material (smuggling, flying improvised explosive devices). The scenario of interest concerns the protection of sensitive zones against the potential threat constituted by small drones. In the recent past, field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small FMCW RADAR systems and optical sensors. While acoustics and RADAR was applied to monitor a wide azimuthal area (360°), optical sensors were used for sequentially identification. The localization results have been compared to the ground truth data to estimate the efficiency of each detection system. Seven-microphone acoustic arrays allow single source localization. The mean azimuth and elevation estimation error has been measured equal to 1.5 and -2.5 degrees respectively. The FMCW radar allows tracking of multiple UAVs by estimating their range, azimuth and motion speed. Both technologies can be linked to the electro-optical system for final identification of the detected object.
NASA Astrophysics Data System (ADS)
Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.; Mouche, A.
2003-04-01
Among the new specificities of the ENVISAT/ASAR particular polarization diversity make the instrument very promising, but require complementary studies in addition to those already completed with the ERS data. Moreover, in the context of the preparation of other missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. In particular, over the ocean the question remains open regarding the estimate of wind speed, directional spectra of surface ocean waves and maybe other parameters related to wave breaking. CETP has designed and developed a new airborne radar called STORM], which has a full polarimetric capability. STORM is a new-version of the RESSAC airborne radar already used in previous experiments (Hauser et al, JGR 1992). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. In addition to RESSAC (which was mono-polarized) it offers a polarization diversity (receiving simultaneously in H and V polarizations) which enables us to analyze the radar cross- section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. In the context of the validation of the ASAR wave mode of ENVISAT, a field experiment will be carried out in October and November 2002 over the ocean (offshore the coasts of Brittany, France), with STORM] embarked on the MERLIN-IV aircraft of Meteo-France. We intend to perform about 20 flights under the ENVISAT SAR swath during a one-month experiment, with overpasses over a directional wave buoy also equipped with wind measurements. The ASAR image mode (in HH or VV) or alternating polarization mode will be requested during these flights. STORM will be used in a mode which will permit to measure the full complex scattering matrix over the sea surface at incidence angles ranging from 10 to 35°. In addition to conventional analysis of the radar cross-sections in HH, and VV polarizations to estimate wind speed and directional wave spectra, cross-polarized cross-sections and parameters derived from the full polarimetric matrix will be analyzed to investigate their relation with the environmental conditions (wind, waves), using co-located in situ measurements. With this combination of measurements we will first assess the performance of the ASAR products and inversion scheme to estimate the 2D wave spectra and wind in various configurations of polarization state. In addition, we expect new results on the parameters related to the full polarimetric matrix and their relation with environmental conditions. During this workshop, first results of this experiment will be presented.
A low cost, low power, S-band radar for atmospheric turbulence studies
NASA Astrophysics Data System (ADS)
Farrell, Thomas C.
2015-05-01
We present a frequency modulated continuous wave (FMCW) radar capable of measuring atmospheric turbulence profiles within the Earth's surface layer. Due to the low cost and easily automated design, a number of units may be built and deployed to sites of interest around the world. Each unit would be capable of collecting turbulence strength, as a function of altitude, with a range of about 50 meters above the antenna plane. Such data is valuable to developers of directed energy, laser communications, imaging, and other optical systems, where good engineering design is based on an understanding of the details of the turbulence in which those systems will have to operate. The radar is based on the MIT "coffee can" design1,2. It is FCC compliant, operating in the 2.4 GHz instrumentation, science, and medical (ISM) band with less than 1 watt effective isotropic radiated power (EIRP). It is expected to cost less than $1000 per unit and is built from commercial off the shelf parts, along with easily constructed horn antennas. Major modifications to the design in 1,2 are the inclusion of horn antennas for directivity, and a straight forward processing software change that increases integration times to the order of tens of seconds to a minute. Here, a prototype system is described and preliminary data is presented.
NASA IceBridge: Scientific Insights from Airborne Surveys of the Polar Sea Ice Covers
NASA Astrophysics Data System (ADS)
Richter-Menge, J.; Farrell, S. L.
2015-12-01
The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea ice cover is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea ice processes across all length scales. Key scientific insights gained on the state of the sea ice cover will be highlighted, including snow depth, ice thickness, surface roughness and morphology, and melt pond evolution.
Synthetic Aperture Ladar Imaging and Atmospheric Turbulence
2016-06-09
Cyanide (HCN). This keeps the absolute center frequency of the chirp from drifting which leads to undesirable phase drifts on the FMCW ladar...is known as the modulus of the complex coherence factor (, ′⃗⃗⃗⃗ ) = |Γ(, ′⃗⃗⃗⃗ )| |Γ(, )Γ (′⃗⃗⃗, ′⃗⃗⃗⃗ )| 1/2 Which is related...to the wavestructure function as D(, ′⃗⃗⃗⃗ ) = −2 ln μ(, ′⃗⃗⃗⃗ ). What is nice about using the modulus of the complex coherence factor is
2016-09-01
mean- square (RMS) error of 0.29° at ə° resolution. For a P4 coded signal, the RMS error in estimating the AOA is 0.32° at 1° resolution. 14...FMCW signal, it was demonstrated that the system is capable of estimating the AOA with a root-mean- square (RMS) error of 0.29° at ə° resolution. For a...Modulator PCB printed circuit board PD photodetector RF radio frequency RMS root-mean- square xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii
Improved ultrasonic TV images achieved by use of Lamb-wave orientation technique
NASA Technical Reports Server (NTRS)
Berger, H.
1967-01-01
Lamb-wave sample orientation technique minimizes the interference from standing waves in continuous wave ultrasonic television imaging techniques used with thin metallic samples. The sample under investigation is oriented such that the wave incident upon it is not normal, but slightly angled.
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Bush, T.; Metzler, T.; Stiles, H.
1976-01-01
The author has identified the following significant results. Employing two FM-CW radar spectrometers, scattering data were acquired from stands of deciduous trees during the spring and autumn. The data suggest that the trees act as a volume scatter target particularly in the 7-18 GHz region. A comparison of data collected in spring and autumn indicates that the radar scattering coefficient, sigma deg, as measured in spring can be substantially larger (as much as 10 dB) than sigma deg as measured in the autumn.
Radar return from a continuous vegetation canopy
NASA Technical Reports Server (NTRS)
Bush, T. F.; Ulaby, F. T.
1975-01-01
The radar backscatter coefficient, sigma deg, of alfalfa was investigated as a function of both radar parameters and the physical characteristics of the alfalfa canopy. Measurements were acquired with an 8-18 GHz FM-CW mobile radar over an angular range of 0 - 70 deg as measured from nadir. The experimental data indicates that the excursions of sigma deg at nadir cover a range of nearly 18 dB during one complete growing cycle. An empirical model for sigma deg was developed which accounts for its variability in terms of soil moisture, plant moisture and plant height.
Doppler lidar power, aperture diameter, and FFT size trade-off study
NASA Astrophysics Data System (ADS)
Chester, David B.; Budge, Scott E.
2017-05-01
In the design or selection of a Doppler lidar instrument for a spacecraft landing system, it is important to evaluate the balance between performance requirements and cost, weight, and power consumption. Leveraging the capability of LadarSIM, a trade-off study was performed to evaluate the interaction between the laser transmission power, aperture diameter, and FFT size in a Doppler lidar system. For this study the probabilities of detection and false alarm were calculated using LadarSIM to simulate FMCW lidar systems with varying power, aperture diameter, and FFT size. This paper reports the results of this trade-off study.
NASA Technical Reports Server (NTRS)
Onana, Vincent De Paul; Koenig, Lora Suzanne; Ruth, Julia; Studinger, Michael; Harbeck, Jeremy P.
2014-01-01
Snow accumulation over an ice sheet is the sole mass input, making it a primary measurement for understanding the past, present, and future mass balance. Near-surface frequency-modulated continuous-wave (FMCW) radars image isochronous firn layers recording accumulation histories. The Semiautomated Multilayer Picking Algorithm (SAMPA) was designed and developed to trace annual accumulation layers in polar firn from both airborne and ground-based radars. The SAMPA algorithm is based on the Radon transform (RT) computed by blocks and angular orientations over a radar echogram. For each echogram's block, the RT maps firn segmented-layer features into peaks, which are picked using amplitude and width threshold parameters of peaks. A backward RT is then computed for each corresponding block, mapping the peaks back into picked segmented-layers. The segmented layers are then connected and smoothed to achieve a final layer pick across the echogram. Once input parameters are trained, SAMPA operates autonomously and can process hundreds of kilometers of radar data picking more than 40 layers. SAMPA final pick results and layer numbering still require a cursory manual adjustment to correct noncontinuous picks, which are likely not annual, and to correct for inconsistency in layer numbering. Despite the manual effort to train and check SAMPA results, it is an efficient tool for picking multiple accumulation layers in polar firn, reducing time over manual digitizing efforts. The trackability of good detected layers is greater than 90%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, D.; Guerrier, J.; Martinez, M.
1994-01-04
In situ and near real-time measurements of coal seam thickness have been identified by industry as a highly desirable component of robotic mining systems. With it, a continuous mining machine can be guided close to the varying boundary of the seam while the cutting operation is underway. This provides the mining operation the ability to leave behind the high-sulfur, high-particulate coal which is concentrated near the seam boundary. The result is near total recovery of high quality coal resources, an increase in mining efficiency, and opportunities for improved safety through reduction in personnel in the most hazardous coal cutting areas.more » In situ, real-time coal seam measurements using the Special Technologies Laboratory (STL) ground penetrating radar (GPR) technology were shown feasible by a demonstration in a Utah coal mine on April 21, 1994. This report describes the October 18, 1994 in situ GPR measurements of coal seam thickness at the US Bureau of Mines (USBM) robotic mining testing laboratory. In this report, an overview of the measurements at the USBM Laboratory is given. It is followed by a description of the technical aspects of the STL frequency modulated-continuous wave (FM-CW) GPR system. Section 4 provides a detailed description of the USBM Laboratory measurements and the conditions under which they were taken. Section 5 offers conclusions and possibilities for future communications.« less
2011-02-01
seakeeping was the transient wave technique, developed analytically by Davis and Zarnick (1964). At the David Taylor Model Basin, Davis and Zarnick, and...Gersten and Johnson (1969) applied the transient wave technique to regular wave model experiments for heave and pitch, at zero forward speed. These...tests demonstrated a potential reduction by an order of magnitude of the total necessary testing time. The transient wave technique was also applied to
Advanced millimeter-wave security portal imaging techniques
NASA Astrophysics Data System (ADS)
Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.
2012-03-01
Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.
Brown, Lily A.; Gaudiano, Brandon A.; Miller, Ivan W.
2013-01-01
There has been much discussion in the literature recently regarding the conceptual and techniual differences between so-called second (e.g., Beckian cognitive therapy) and third “wave” (e.g., acceptance and commitment therapy) behavior therapies. Previous research has not addressed the potential similarities and differences among the practitioners of these types of approaches. The current study examined possible differences in the characteristics of second wave (n=55) and third wave cognitive-behavioral therapists (n=33) using an internet-based survey. There were differences found at the technique level between the two groups. As expected, third wave therapists reported greater use of mindfulness/acceptance techniques. Also, third wave therapists reported greater use of exposure techniques and second wave therapists reported greater use of cognitive restructuring and relaxation techniques. In general, third wave clinicians were more eclectic at the technique level, and demonstrated significantly greater use of family systems techniques, existential/humanistic techniques, and the total number of techniques used. No significant differences were found on the attitudinal measures administered, including reliance on an intuitive thinking style, acceptance of complementary and alternative therapies and related health beliefs, or most attitudes toward evidence-based practices. We did not identify many differences between second wave and third wave therapists other than in terms of the techniques they employ. The clinical and research implications for these findings are discussed. PMID:21324946
Advanced Millimeter-Wave Security Portal Imaging Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.
2012-04-01
Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.
Recent Experience Using Active Love Wave Techniques to Characterize Seismographic Station Sites
NASA Astrophysics Data System (ADS)
Martin, A. J.; Yong, A.; Salomone, L.
2014-12-01
Active-source Love waves recorded by the multi-channel analysis of surface wave (MASLW) technique were recently analyzed in two site characterization projects. Between 2010 and 2011, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 189 seismographic stations—185 in California and 4 in the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in the investigation it became evident that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not effective at characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. The MASLW technique was deployed at a total of 38 sites, in addition to other methods, and used as the primary technique to characterize 22 sites, 5 of which were also characterized using Rayleigh wave techniques. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites—the remaining 9 sites and 2 overlapping sites were characterized by University of Texas, Austin. Of the 24 sites characterized by GEOVision, 16 were characterized using MASLW data, 4 using both MASLW and MASRW data and 4 using MASRW data. Love wave techniques were often found to perform better, or at least yield phase velocity data that could be more readily modeled using the fundamental mode assumption, at shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in Love wave data. At such sites, it may be possible to model Rayleigh wave data using multi- or effective-mode techniques; however, in many cases extraction of adequate Rayleigh wave dispersion data for modeling was difficult. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to collect Love wave data when warranted.
NASA Astrophysics Data System (ADS)
Young, Tun Jan; Christoffersen, Poul; Nicholls, Keith; Bun Lok, Lai; Doyle, Samuel; Hubbard, Bryn; Stewart, Craig; Hofstede, Coen; Bougamont, Marion; Todd, Joseph; Brennan, Paul; Hubbard, Alun
2016-04-01
Fast-flowing outlet glaciers terminating in the sea drain 90% of the Greenland Ice Sheet. It is well-known that these glaciers flow rapidly due to fast basal motion, but its contributing processes and mechanisms are, however, poorly understood. In particular, there is a paucity of data to quantify the extent to which basal sliding and internal ice deformation by viscous creep contribute to the fast motion of Greenland outlet glaciers. To study these processes, we installed a network of global positioning system (GPS) receivers around an autonomous phase-sensitive radio-echo sounder (ApRES) capable of imaging internal reflectors and the glacier bed. The ApRES system, including antennas, were custom-designed to monitor and image ice sheets and ice shelves in monostatic and multiple-input multiple-output (MIMO) modes. Specifically, the system transmits a frequency-modulated continuous-wave (FMCW) that increases linearly from 200 to 400 MHz over a period of 1 second. We installed this system 30 km up-flow of the tidewater terminus of Store Glacier, which flows into Uummannaq Fjord in West Greenland, and data were recorded every hour from 06 May to 16 July 2014 and every 4 hours from 26 July to 11 December 2014. The same site was used to instrument 600 m deep boreholes drilled to the bed as part of the SAFIRE research programme. With range and reflector distances captured at high temporal (hourly) and spatial (millimetre) resolutions, we obtained a unique, 6-month-long time series of strain through the vertical ice column at the drill site where tilt was independently recorded in a borehole. Our results show variable, but persistently high vertical strain. In the upper three-fourths of the ice column, we have calculated strain rates on the order of a few percent per year, and the strain regime curiously shifts from vertical thinning in winter to vertical thickening at the onset of summer melt. In the basal ice layer we observed high-magnitude vertical strain rates on the order of 10-20 percent per year due to significant horizontal compression. With eight transmitting antennas and eight receiving antennas, we were also able to analyse strain in 2 and 3 dimensions. This imagery revealed the spatial dimensions of the two ice layers as well as the ice-bed interface, and with the system advecting with the ice flow we were able to track key features, e.g. moulins and internal layers, over the period of observation. Here, we present a complete record of the internal and basal contributions to ice sheet motion and we visualise the variability of ice deformation on a major outlet glacier in Greenland. The results demonstrate the potential of using ApRES to image strain in high temporal resolution and multiple spatial dimensions.
Martin, Antony; Yong, Alan K.; Salomone, Larry A.
2014-01-01
Active-source Love waves, recorded by the multi-channel analysis of surface wave (MASLW) technique, were recently analyzed in two site characterization projects. Between 2010 and 2012, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 191 seismographic stations in California and the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in this investigation it became clear that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not suited for characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites. At shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments, Love wave techniques generally were found to be easier to interpret, i.e., Love wave data typically yielded unambiguous fundamental mode dispersion curves and thus, reduce uncertainty in the resultant VS model. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in the Love wave data. It is possible to model Rayleigh wave data using multi- or effective-mode techniques; however, extraction of Rayleigh wave dispersion data was found to be difficult in many cases. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to also collect Love wave data when warranted.
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1980-01-01
Scanning beam microwave radars were used to measure ocean wave directional spectra from satellites. In principle, surface wave spectral resolution in wave number can be obtained using either short pulse (SP) or dual frequency (DF) techniques; in either case, directional resolution obtains naturally as a consequence of a Bragg-like wave front matching. A four frequency moment characterization of backscatter from the near vertical using physical optics in the high frequency limit was applied to an analysis of the SP and DF measurement techniques. The intrinsic electromagnetic modulation spectrum was to the first order in wave steepness proportional to the large wave directional slope spectrum. Harmonic distortion was small and was a minimum near 10 deg incidence. NonGaussian wave statistics can have an effect comparable to that in the second order of scattering from a normally distributed sea surface. The SP technique is superior to the DF technique in terms of measurement signal to noise ratio and contrast ratio.
Ceilometer-based Rainfall Rate estimates in the framework of VORTEX-SE campaign: A discussion
NASA Astrophysics Data System (ADS)
Barragan, Ruben; Rocadenbosch, Francesc; Waldinger, Joseph; Frasier, Stephen; Turner, Dave; Dawson, Daniel; Tanamachi, Robin
2017-04-01
During Spring 2016 the first season of the Verification of the Origins of Rotation in Tornadoes EXperiment-Southeast (VORTEX-SE) was conducted in the Huntsville, AL environs. Foci of VORTEX-SE include the characterization of the tornadic environments specific to the Southeast US as well as societal response to forecasts and warnings. Among several experiments, a research team from Purdue University and from the University of Massachusetts Amherst deployed a mobile S-band Frequency-Modulated Continuous-Wave (FMCW) radar and a co-located Vaisala CL31 ceilometer for a period of eight weeks near Belle Mina, AL. Portable disdrometers (DSDs) were also deployed in the same area by Purdue University, occasionally co-located with the radar and lidar. The NOAA National Severe Storms Laboratory also deployed the Collaborative Lower Atmosphere Mobile Profiling System (CLAMPS) consisting of a Doppler lidar, a microwave radiometer, and an infrared spectrometer. The purpose of these profiling instruments was to characterize the atmospheric boundary layer evolution over the course of the experiment. In this paper we focus on the lidar-based retrieval of rainfall rate (RR) and its limitations using observations from intensive observation periods during the experiment: 31 March and 29 April 2016. Departing from Lewandowski et al., 2009, the RR was estimated by the Vaisala CL31 ceilometer applying the slope method (Kunz and Leeuw, 1993) to invert the extinction caused by the rain. Extinction retrievals are fitted against RR estimates from the disdrometer in order to derive a correlation model that allows us to estimate the RR from the ceilometer in similar situations without a disdrometer permanently deployed. The problem of extinction retrieval is also studied from the perspective of Klett-Fernald-Sasano's (KFS) lidar inversion algorithm (Klett, 1981; 1985), which requires the assumption of an aerosol extinction-to-backscatter ratio (the so-called lidar ratio) and calibration in a molecular reference range. The latter is hampered by the limited dynamic range of the ceilometer under rain events, which usually makes it difficult to properly record the reference-range interval. The RR is also compared to estimates by the FMCW radar, which provides vertical profiles of reflectivity and Doppler spectra, from which DSDs and rainfall rates can be inferred more directly. Ceilometer-derived RRs are compared with RR radar estimates for the same days in order to identify pros and cons of the proposed approach. Following Westbrook et al. (2010), we also consider the estimation of rain rates using two-color lidar, which is limited to drizzle and low rain rates. The key to this method is that the Doppler lidar's wavelength (1.5 µm) is partially absorbed by the liquid, and thus it is a differential absorption technique. This work was supported by NOAA under contracts NA1501R4590232 and NA16OAR4590209 and by the Purdue University Dept. of Earth, Atmospheric, and Planetary Sciences. UPC collaborated via Spanish Government - European Regional Development Funds, TEC2015-63832-P project and EU H2020 ACTRIS-2 (GA-654109) project. Klett J.D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt. 20, 211-220. doi: 10.1364/AO.20.000211. Klett J.D., 1985: Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 24, 1638-1643. doi: 10.1364/AO.24.001638. Kunz G.J., de Leeuv G., 1993: Inversion of lidar signals with the slope method. Appl Opt. 32(18):3249-56. doi: 10.1364/AO.32.003249. Lewandowski P.A., Eichinger W.E., Kruger A., Krajewski W.F., 2008: Lidar-Based Estimation of Small-Scale Rainfall: Empirical Evidence. Journal of Atmospheric and Oceanic Technology, 26, 656-664. doi: 10.1175/2008JTECHA1122.1. Westbrook C.D., Hogan R.J., O'Connor E.J., Illinworth A.J., 2010: Estimating drizzle drop size and precipitation rate using two-colour lidar measurements. Atmos. Meas. Tech., 3, 671-681. doi: 10.5194/amt-3-671-2010.
Ultra-wide-band 3D microwave imaging scanner for the detection of concealed weapons
NASA Astrophysics Data System (ADS)
Rezgui, Nacer-Ddine; Andrews, David A.; Bowring, Nicholas J.
2015-10-01
The threat of concealed weapons, explosives and contraband in footwear, bags and suitcases has led to the development of new devices, which can be deployed for security screening. To address known deficiencies of metal detectors and x-rays, an UWB 3D microwave imaging scanning apparatus using FMCW stepped frequency working in the K and Q bands and with a planar scanning geometry based on an x y stage, has been developed to screen suspicious luggage and footwear. To obtain microwave images of the concealed weapons, the targets are placed above the platform and the single transceiver horn antenna attached to the x y stage is moved mechanically to perform a raster scan to create a 2D synthetic aperture array. The S11 reflection signal of the transmitted sweep frequency from the target is acquired by a VNA in synchronism with each position step. To enhance and filter from clutter and noise the raw data and to obtain the 2D and 3D microwave images of the concealed weapons or explosives, data processing techniques are applied to the acquired signals. These techniques include background subtraction, Inverse Fast Fourier Transform (IFFT), thresholding, filtering by gating and windowing and deconvolving with the transfer function of the system using a reference target. To focus the 3D reconstructed microwave image of the target in range and across the x y aperture without using focusing elements, 3D Synthetic Aperture Radar (SAR) techniques are applied to the post-processed data. The K and Q bands, between 15 to 40 GHz, show good transmission through clothing and dielectric materials found in luggage and footwear. A description of the system, algorithms and some results with replica guns and a comparison of microwave images obtained by IFFT, 2D and 3D SAR techniques are presented.
Advanced Millimeter-Wave Imaging Enhances Security Screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.
2012-01-12
Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.
MMW/THz imaging using upconversion to visible, based on glow discharge detector array and CCD camera
NASA Astrophysics Data System (ADS)
Aharon, Avihai; Rozban, Daniel; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, Natan S.
2017-10-01
An inexpensive upconverting MMW/THz imaging method is suggested here. The method is based on glow discharge detector (GDD) and silicon photodiode or simple CCD/CMOS camera. The GDD was previously found to be an excellent room-temperature MMW radiation detector by measuring its electrical current. The GDD is very inexpensive and it is advantageous due to its wide dynamic range, broad spectral range, room temperature operation, immunity to high power radiation, and more. An upconversion method is demonstrated here, which is based on measuring the visual light emitting from the GDD rather than its electrical current. The experimental setup simulates a setup that composed of a GDD array, MMW source, and a basic CCD/CMOS camera. The visual light emitting from the GDD array is directed to the CCD/CMOS camera and the change in the GDD light is measured using image processing algorithms. The combination of CMOS camera and GDD focal plane arrays can yield a faster, more sensitive, and very inexpensive MMW/THz camera, eliminating the complexity of the electronic circuits and the internal electronic noise of the GDD. Furthermore, three dimensional imaging systems based on scanning prohibited real time operation of such imaging systems. This is easily solved and is economically feasible using a GDD array. This array will enable us to acquire information on distance and magnitude from all the GDD pixels in the array simultaneously. The 3D image can be obtained using methods like frequency modulation continuous wave (FMCW) direct chirp modulation, and measuring the time of flight (TOF).
Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean
2017-07-01
Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.
2010-09-01
ADVANCEMENT OF TECHNIQUES FOR MODELING THE EFFECTS OF ATMOSPHERIC GRAVITY-WAVE-INDUCED INHOMOGENEITIES ON INFRASOUND PROPAGATION Robert G...number of infrasound observations indicate that fine-scale atmospheric inhomogeneities contribute to infrasonic arrivals that are not predicted by...standard modeling techniques. In particular, gravity waves, or buoyancy waves, are believed to contribute to the multipath nature of infrasound
Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis
NASA Astrophysics Data System (ADS)
Park, Sunyoung; Ishii, Miaki
2018-06-01
A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.
A progress report on the ARRA-funded geotechnical site characterization project
NASA Astrophysics Data System (ADS)
Martin, A. J.; Yong, A.; Stokoe, K.; Di Matteo, A.; Diehl, J.; Jack, S.
2011-12-01
For the past 18 months, the 2009 American Recovery and Reinvestment Act (ARRA) has funded geotechnical site characterizations at 189 seismographic station sites in California and the central U.S. This ongoing effort applies methods involving surface-wave techniques, which include the horizontal-to-vertical spectral ratio (HVSR) technique and one or more of the following: spectral analysis of surface wave (SASW), active and passive multi-channel analysis of surface wave (MASW) and passive array microtremor techniques. From this multi-method approach, shear-wave velocity profiles (VS) and the time-averaged shear-wave velocity of the upper 30 meters (VS30) are estimated for each site. To accommodate the variability in local conditions (e.g., rural and urban soil locales, as well as weathered and competent rock sites), conventional field procedures are often modified ad-hoc to fit the unanticipated complexity at each location. For the majority of sites (>80%), fundamental-mode Rayleigh wave dispersion-based techniques are deployed and where complex geology is encountered, multiple test locations are made. Due to the presence of high velocity layers, about five percent of the locations require multi-mode inversion of Rayleigh wave (MASW-based) data or 3-D array-based inversion of SASW dispersion data, in combination with shallow P-wave seismic refraction and/or HVSR results. Where a strong impedance contrast (i.e. soil over rock) exists at shallow depth (about 10% of sites), dominant higher modes limit the use of Rayleigh wave dispersion techniques. Here, use of the Love wave dispersion technique, along with seismic refraction and/or HVSR data, is required to model the presence of shallow bedrock. At a small percentage of the sites, surface wave techniques are found not suitable for stand-alone deployment and site characterization is limited to the use of the seismic refraction technique. A USGS Open File Report-describing the surface geology, VS profile and the calculated VS30 for each site-will be prepared after the completion of the project in November 2011.
Efficient techniques for wave-based sound propagation in interactive applications
NASA Astrophysics Data System (ADS)
Mehra, Ravish
Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data-driven, rotating or time-varying directivity function at runtime. Unlike previous approaches, the listener directivity approach can be used to compute spatial audio (3D audio) for a moving, rotating listener at interactive rates. Lastly, we propose an efficient GPU-based time-domain solver for the wave equation that enables wave simulation up to the mid-frequency range in tens of minutes on a desktop computer. It is demonstrated that by carefully mapping all the components of the wave simulator to match the parallel processing capabilities of the graphics processors, significant improvement in performance can be achieved compared to the CPU-based simulators, while maintaining numerical accuracy. We validate these techniques with offline numerical simulations and measured data recorded in an outdoor scene. We present results of preliminary user evaluations conducted to study the impact of these techniques on user's immersion in virtual environment. We have integrated these techniques with the Half-Life 2 game engine, Oculus Rift head-mounted display, and Xbox game controller to enable users to experience high-quality acoustics effects and spatial audio in the virtual environment.
Radar based Ground Level Reconstruction Utilizing a Hypocycloid Antenna Positioning System
NASA Astrophysics Data System (ADS)
Baer, Christoph; Musch, Thomas
2015-01-01
In this contribution we introduce a novel radar positioning system. It makes use of a mathematical curve, called hypocycloid, for a slanting movement of the radar antenna. By means of a planetary gear, a ball, and a universal joint as well as a stepping motor, a two dimensional positioning is provided by a uniaxial drive shaft exclusively. The fundamental position calculation and different signal processing algorithms are presented. By means of an 80 GHz FMCW radar system we performed several measurements on objects with discrete heights as well as on objects with continuous surfaces. The results of these investigations are essential part of this contribution and are discussed in detail.
AgRISTARS. Supporting research: MARS x-band scatterometer
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Gabel, P. F., Jr.; Brunfeldt, D. R.
1981-01-01
The design, construction, and data collection procedures of the mobile agricultural radar sensor (MARS) x band scatterometer are described. This system is an inexpensive, highly mobile, truck mounted FM-CW radar operating at a center frequency of 10.2 GHz. The antennas, which allow for VV and VH polarizations, are configured in a side looking mode that allows for drive by data collection. This configuration shortens fieldwork time considerably while increasing statistical confidence in the data. Both internal calibration, via a delay line, and external calibration with a Luneberg lens are used to calibrate the instrument in terms of sigma(o). The radar scattering cross section per unit area, sigma(o), is found using the radar equation.
Ultrasonic technique for inspection of GPHS capsule girth weld integrity
NASA Astrophysics Data System (ADS)
Placr, Arnost
1993-05-01
An innovative nondestructive examination (NDE) technique for the inspection of integrity of General Purpose Heat Source (GPHS) capsule girth welds was developed employing a Lamb wave as the mode of the sound propagation. Reliability of the Lamb wave technique was tested on GPHS capsules using plutonium pallet simulators. All ten capsules, which were previously rejected, passed ultrasonic (UT) inspection using the Lamb wave technique.
An Artificial Particle Precipitation Technique Using HAARP-Generated VLF Waves
2006-11-02
AFRL-VS-HA-TR-2007-1021 An Artificial Particle Precipitation Technique Using HAARP -Generated VLF Waves O o o r- Q M. J. Kosch T. Pedersen J...Artificial Particle Precipitation Technique Using HAARP Generated VLF Waves. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62101F...model. The frequency-time modulated VLF wave patterns have been successfully implemented at the HAARP ionospheric modification facility in Alaska
Chai, Hwa Kian; Liu, Kit Fook; Behnia, Arash; Yoshikazu, Kobayashi; Shiotani, Tomoki
2016-04-16
Concrete is the most ubiquitous construction material. Apart from the fresh and early age properties of concrete material, its condition during the structure life span affects the overall structural performance. Therefore, development of techniques such as non-destructive testing which enable the investigation of the material condition, are in great demand. Tomography technique has become an increasingly popular non-destructive evaluation technique for civil engineers to assess the condition of concrete structures. In the present study, this technique is investigated by developing reconstruction procedures utilizing different parameters of elastic waves, namely the travel time, wave amplitude, wave frequency, and Q-value. In the development of algorithms, a ray tracing feature was adopted to take into account the actual non-linear propagation of elastic waves in concrete containing defects. Numerical simulation accompanied by experimental verifications of wave motion were conducted to obtain wave propagation profiles in concrete containing honeycomb as a defect and in assessing the tendon duct filling of pre-stressed concrete (PC) elements. The detection of defects by the developed tomography reconstruction procedures was evaluated and discussed.
THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.
Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige
2013-09-15
We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.
An ultrasonic technique for measuring stress in fasteners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, K. J.; Day, P.; Byron, D.
1999-12-02
High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring themore » stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.« less
Nondestructive evaluation of green wood using stress wave and transverse vibration techniques
Udaya B. Halabe; Gangadhar M. Bidigalu; Hota V.S. GangaRao; Robert J. Ross
1997-01-01
Longitudinal stress wave and transverse vibration nondestructive testing (NDT) techniques have proven to be accurate means of evaluating the quality of wood based products. Researchers have found strong relationships between stress wave and transverse vibration parameters (e.g., wave velocity and modulus of elasticity predicted using NDT measurements) with the actual...
NASA Technical Reports Server (NTRS)
Poole, L. R.
1975-01-01
A study of the effects of using different methods for approximating bottom topography in a wave-refraction computer model was conducted. Approximation techniques involving quadratic least squares, cubic least squares, and constrained bicubic polynomial interpolation were compared for computed wave patterns and parameters in the region of Saco Bay, Maine. Although substantial local differences can be attributed to use of the different approximation techniques, results indicated that overall computed wave patterns and parameter distributions were quite similar.
NASA Astrophysics Data System (ADS)
Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.
2018-01-01
This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.
Finite Element Analysis of Lamb Waves Acting within a Thin Aluminum Plate
2007-09-01
signal to avoid time aliasing % LambWaveMode % lamb wave mode to simulate; use proper phase velocity curve % thickness % thickness of...analysis of the simulated signal response data demonstrated that elevated temperatures delay wave propagation, although the delays are minimal at the...Echo Techniques Ultrasonic NDE techniques are based on the propagation and reflection of elastic waves , with the assumption that damage in the
Digital techniques for ULF wave polarization analysis
NASA Technical Reports Server (NTRS)
Arthur, C. W.
1979-01-01
Digital power spectral and wave polarization analysis are powerful techniques for studying ULF waves in the earth's magnetosphere. Four different techniques for using the spectral matrix to perform such an analysis have been presented in the literature. Three of these techniques are similar in that they require transformation of the spectral matrix to the principal axis system prior to performing the polarization analysis. The differences in the three techniques lie in the manner in which determine this transformation. A comparative study of these three techniques using both simulated and real data has shown them to be approximately equal in quality of performance. The fourth technique does not require transformation of the spectral matrix. Rather, it uses the measured spectral matrix and state vectors for a desired wave type to design a polarization detector function in the frequency domain. The design of various detector functions and their application to both simulated and real data will be presented.
Characterization of Dispersive Ultrasonic Rayleigh Surface Waves in Asphalt Concrete
NASA Astrophysics Data System (ADS)
In, Chi-Won; Kim, Jin-Yeon; Jacobs, Laurence J.; Kurtis, Kimberly E.
2008-02-01
This research focuses on the application of ultrasonic Rayleigh surface waves to nondestructively characterize the mechanical properties and structural defects (non-uniformly distributed aggregate) in asphalt concrete. An efficient wedge technique is developed in this study to generate Rayleigh surface waves that is shown to be effective in characterizing Rayleigh waves in this highly viscoelastic (attenuating) and heterogeneous medium. Experiments are performed on an asphalt-concrete beam produced with uniformly distributed aggregate. Ultrasonic techniques using both contact and non-contact sensors are examined and their results are compared. Experimental results show that the wedge technique along with an air-coupled sensor appears to be effective in characterizing Rayleigh waves in asphalt concrete. Hence, measurement of theses material properties needs to be investigated in non-uniformly distributed aggregate material using these techniques.
A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr; Cho, Younho
2015-03-31
Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actualmore » defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.« less
Empirical Guidelines for Use of Irregular Wave Model to Estimate Nearshore Wave Height.
1982-07-01
height, the easier to use tech- nique presented by McClenan (1975) was employed. The McClenan technique uti- lizes a monogram which was constructed from...the SPM equations and gives the same results. The inputs to the monogram technique are the period, the deep- water wave height, the deepwater wave
Use of an ultrasonic-acoustic technique for nondestructive evaluation of fiber composite strength
NASA Technical Reports Server (NTRS)
Vary, A.; Bowles, K. J.
1978-01-01
Details of the method used to measure the stress wave factor are described. Frequency spectra of the stress waves are analyzed in order to clarify the nature of the wave phenomena involved. The stress wave factor was measured with simple contact probes requiring only one-side access to a part. This is beneficial in nondestructive evaluations because the waves can run parallel to fiber directions and thus measure material properties in directions assumed by actual loads. The technique can be applied where conventional through transmission techniques are impractical or where more quantitative data are required. The stress wave factor was measured for a series of graphite/polyimide composite panels, and results obtained are compared with through transmission immersion ultrasonic scans.
NASA Astrophysics Data System (ADS)
Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S.; Rozban, Daniel; Abramovich, Amir
2014-10-01
In recent years, much effort has been invested to develop inexpensive but sensitive Millimeter Wave (MMW) detectors that can be used in focal plane arrays (FPAs), in order to implement real time MMW imaging. Real time MMW imaging systems are required for many varied applications in many fields as homeland security, medicine, communications, military products and space technology. It is mainly because this radiation has high penetration and good navigability through dust storm, fog, heavy rain, dielectric materials, biological tissue, and diverse materials. Moreover, the atmospheric attenuation in this range of the spectrum is relatively low and the scattering is also low compared to NIR and VIS. The lack of inexpensive room temperature imaging systems makes it difficult to provide a suitable MMW system for many of the above applications. In last few years we advanced in research and development of sensors using very inexpensive (30-50 cents) Glow Discharge Detector (GDD) plasma indicator lamps as MMW detectors. This paper presents three kinds of GDD sensor based lamp Focal Plane Arrays (FPA). Those three kinds of cameras are different in the number of detectors, scanning operation, and detection method. The 1st and 2nd generations are 8 × 8 pixel array and an 18 × 2 mono-rail scanner array respectively, both of them for direct detection and limited to fixed imaging. The last designed sensor is a multiplexing frame rate of 16x16 GDD FPA. It permits real time video rate imaging of 30 frames/ sec and comprehensive 3D MMW imaging. The principle of detection in this sensor is a frequency modulated continuous wave (FMCW) system while each of the 16 GDD pixel lines is sampled simultaneously. Direct detection is also possible and can be done with a friendly user interface. This FPA sensor is built over 256 commercial GDD lamps with 3 mm diameter International Light, Inc., Peabody, MA model 527 Ne indicator lamps as pixel detectors. All three sensors are fully supported by software Graphical Unit Interface (GUI). They were tested and characterized through different kinds of optical systems for imaging applications, super resolution, and calibration methods. Capability of the 16x16 sensor is to employ a chirp radar like method to produced depth and reflectance information in the image. This enables 3-D MMW imaging in real time with video frame rate. In this work we demonstrate different kinds of optical imaging systems. Those systems have capability of 3-D imaging for short range and longer distances to at least 10-20 meters.
Long-Wavelength Elastic Wave Propagation Across Naturally Fractured Rock Masses
NASA Astrophysics Data System (ADS)
Mohd-Nordin, Mohd Mustaqim; Song, Ki-Il; Cho, Gye-Chun; Mohamed, Zainab
2014-03-01
Geophysical site investigation techniques based on elastic waves have been widely used to characterize rock masses. However, characterizing jointed rock masses by using such techniques remains challenging because of a lack of knowledge about elastic wave propagation in multi-jointed rock masses. In this paper, the roughness of naturally fractured rock joint surfaces is estimated by using a three-dimensional (3D) image-processing technique. The classification of the joint roughness coefficient (JRC) is enhanced by introducing the scan line technique. The peak-to-valley height is selected as a key indicator for JRC classification. Long-wavelength P-wave and torsional S-wave propagation across rock masses containing naturally fractured joints are simulated through the quasi-static resonant column (QSRC) test. In general, as the JRC increases, the S-wave velocity increases within the range of stress levels considered in this paper, whereas the P-wave velocity and the damping ratio of the shear wave decrease. In particular, the two-dimensional joint specimen underestimates the S-wave velocity while overestimating the P-wave velocity. This suggests that 3D joint surfaces should be implicated to obtain the reliable elastic wave velocity in jointed rock masses. The contact characteristic and degree of roughness and waviness of the joint surface are identified as a factor influencing P-wave and S-wave propagation in multi-jointed rock masses. The results indicate a need for a better understanding of the sensitivity of contact area alterations to the elastic wave velocity induced by changes in normal stress. This paper's framework can be a reference for future research on elastic wave propagation in naturally multi-jointed rock masses.
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy
1989-01-01
Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.
Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials
NASA Astrophysics Data System (ADS)
Ju, Taeho
To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear mixing technique is adapted to develop an NDE technique for characterizing thermal aging of adhesive joints. To this end, a nonlinear spring model is used to simulate the effect of the adhesive layer. Based on this nonlinear spring model, analytical expressions of the resonant wave generated by the adhesive layers is obtained through an asymptotic analysis when the adhesive layer thickness is much smaller than the pertinent wavelength. The solutions are expressed in terms of the properties of the adhesive layer. The nonlinear spring model shows a good agreement with the finite layer model solutions in the limit of a small thickness to wavelength ratio. Third, to demonstrate the effectiveness of this newly developed technique, measurements are conducted on adhesive joint samples made of two aluminum adherends bonded together by a polymer adhesive tape. The samples are aged in a thermal chamber to induce thermal ageing degradation in the adhesive layer. Using the developed wave-mixing technique in conjunction with the nonlinear spring model, we show that the thermal aging damage of the adhesive layer can be quantified from only one side of the sample. Finally, by mixing two L-waves, we develop a mixing technique to nondestructively evaluate the damage induced by alkali-silica reaction (ASR) in concrete. Experimental measurements are conducted on concrete prism samples that contain reactive aggregates and have been subjected to different ASR conditioning. This new technique takes into consideration of the significant attenuation caused by ASR-induced microcracks and scattering by the aggregates. The measurement results show that the ANLP has a much greater sensitivity to ASR damage than other parameters such as attenuation and wave speed. More remarkably, it is also found that the measured acoustic nonlinearity parameter is well-correlated with the reduction of the compressive strength induced by ASR damage. Thus, ANLP can be used to nondestructively track ASR damage in concrete.
Sen, Novonil; Kundu, Tribikram
2018-07-01
Estimating the location of an acoustic source in a structure is an important step towards passive structural health monitoring. Techniques for localizing an acoustic source in isotropic structures are well developed in the literature. Development of similar techniques for anisotropic structures, however, has gained attention only in the recent years and has a scope of further improvement. Most of the existing techniques for anisotropic structures either assume a straight line wave propagation path between the source and an ultrasonic sensor or require the material properties to be known. This study considers different shapes of the wave front generated during an acoustic event and develops a methodology to localize the acoustic source in an anisotropic plate from those wave front shapes. An elliptical wave front shape-based technique was developed first, followed by the development of a parametric curve-based technique for non-elliptical wave front shapes. The source coordinates are obtained by minimizing an objective function. The proposed methodology does not assume a straight line wave propagation path and can predict the source location without any knowledge of the elastic properties of the material. A numerical study presented here illustrates how the proposed methodology can accurately estimate the source coordinates. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kawamori, E.; Igami, H.
2017-11-01
A diagnostic technique for detecting the wave numbers of electron density fluctuations at electron gyro-scales in an electron cyclotron frequency range is proposed, and the validity of the idea is checked by means of a particle-in-cell (PIC) numerical simulation. The technique is a modified version of the scattering technique invented by Novik et al. [Plasma Phys. Controlled Fusion 36, 357-381 (1994)] and Gusakov et al., [Plasma Phys. Controlled Fusion 41, 899-912 (1999)]. The novel method adopts forward scattering of injected extraordinary probe waves at the upper hybrid resonance layer instead of the backward-scattering adopted by the original method, enabling the measurement of the wave-numbers of the fine scale density fluctuations in the electron-cyclotron frequency band by means of phase measurement of the scattered waves. The verification numerical simulation with the PIC method shows that the technique has a potential to be applicable to the detection of electron gyro-scale fluctuations in laboratory plasmas if the upper-hybrid resonance layer is accessible to the probe wave. The technique is a suitable means to detect electron Bernstein waves excited via linear mode conversion from electromagnetic waves in torus plasma experiments. Through the numerical simulations, some problems that remain to be resolved are revealed, which include the influence of nonlinear processes such as the parametric decay instability of the probe wave in the scattering process, and so on.
Comparative study of shear wave-based elastography techniques in optical coherence tomography
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Rolland, Jannick P.; Yao, Jianing; Meemon, Panomsak; Parker, Kevin J.
2017-03-01
We compare five optical coherence elastography techniques able to estimate the shear speed of waves generated by one and two sources of excitation. The first two techniques make use of one piezoelectric actuator in order to produce a continuous shear wave propagation or a tone-burst propagation (TBP) of 400 Hz over a gelatin tissue-mimicking phantom. The remaining techniques utilize a second actuator located on the opposite side of the region of interest in order to create three types of interference patterns: crawling waves, swept crawling waves, and standing waves, depending on the selection of the frequency difference between the two actuators. We evaluated accuracy, contrast to noise ratio, resolution, and acquisition time for each technique during experiments. Numerical simulations were also performed in order to support the experimental findings. Results suggest that in the presence of strong internal reflections, single source methods are more accurate and less variable when compared to the two-actuator methods. In particular, TBP reports the best performance with an accuracy error <4.1%. Finally, the TBP was tested in a fresh chicken tibialis anterior muscle with a localized thermally ablated lesion in order to evaluate its performance in biological tissue.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Yao, Jianing; Chu, Ying-Ju; Meemon, Panomsak; Rolland, Jannick P.; Parker, Kevin J.
2016-03-01
Optical Coherence Elastography (OCE) is a widely investigated noninvasive technique for estimating the mechanical properties of tissue. In particular, vibrational OCE methods aim to estimate the shear wave velocity generated by an external stimulus in order to calculate the elastic modulus of tissue. In this study, we compare the performance of five acquisition and processing techniques for estimating the shear wave speed in simulations and experiments using tissue-mimicking phantoms. Accuracy, contrast-to-noise ratio, and resolution are measured for all cases. The first two techniques make the use of one piezoelectric actuator for generating a continuous shear wave propagation (SWP) and a tone-burst propagation (TBP) of 400 Hz over the gelatin phantom. The other techniques make use of one additional actuator located on the opposite side of the region of interest in order to create an interference pattern. When both actuators have the same frequency, a standing wave (SW) pattern is generated. Otherwise, when there is a frequency difference df between both actuators, a crawling wave (CrW) pattern is generated and propagates with less speed than a shear wave, which makes it suitable for being detected by the 2D cross-sectional OCE imaging. If df is not small compared to the operational frequency, the CrW travels faster and a sampled version of it (SCrW) is acquired by the system. Preliminary results suggest that TBP (error < 4.1%) and SWP (error < 6%) techniques are more accurate when compared to mechanical measurement test results.
Fourier Analysis and the Rhythm of Conversation.
ERIC Educational Resources Information Center
Dabbs, James M., Jr.
Fourier analysis, a common technique in engineering, breaks down a complex wave form into its simple sine wave components. Communication researchers have recently suggested that this technique may provide an index of the rhythm of conversation, since vocalizing and pausing produce a complex wave form pattern of alternation between two speakers. To…
3D Ultrasonic Wave Simulations for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.
2011-01-01
Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.
Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves
Xia, J.; Miller, R.D.; Park, C.B.
1999-01-01
The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.
NASA Technical Reports Server (NTRS)
Jackson, F. C.; Walton, W. T.; Baker, P. L.
1982-01-01
A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique, which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra.
An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra
NASA Technical Reports Server (NTRS)
Schuler, D. L.; Eng, W. P.
1984-01-01
A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements.
A new shock wave assisted sandalwood oil extraction technique
NASA Astrophysics Data System (ADS)
Arunkumar, A. N.; Srinivasa, Y. B.; Ravikumar, G.; Shankaranarayana, K. H.; Rao, K. S.; Jagadeesh, G.
A new shock wave assisted oil extraction technique from sandalwood has been developed in the Shock Waves Lab, IISc, Bangalore. The fragrant oil extracted from sandalwood finds variety of applications in medicine and perfumery industries. In the present method sandal wood specimens (2.5mm diameter and 25mm in length)are subjected to shock wave loading (over pressure 15 bar)in a constant area shock tube, before extracting the sandal oil using non-destructive oil extraction technique. The results from the study indicates that both the rate of extraction as well as the quantity of oil obtained from sandal wood samples exposed to shock waves are higher (15-40 percent) compared to non-destructive oil extraction technique. The compressive squeezing of the interior oil pockets in the sandalwood specimen due to shock wave loading appears to be the main reason for enhancement in the oil extraction rate. This is confirmed by the presence of warty structures in the cross-section and micro-fissures in the radial direction of the wood samples exposed to shock waves in the scanning electron microscopic investigation. In addition the gas chromatographic studies do not show any change in the q uality of sandal oil extracted from samples exposed to shock waves.
Estimating propagation velocity through a surface acoustic wave sensor
Xu, Wenyuan; Huizinga, John S.
2010-03-16
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
Visualization of stress wave propagation via air-coupled acoustic emission sensors
NASA Astrophysics Data System (ADS)
Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan
2017-02-01
We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.
NASA Astrophysics Data System (ADS)
Su, Zhongqing; Ye, Lin
2004-08-01
The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.
3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds
NASA Technical Reports Server (NTRS)
Leckey, C.; Hinders, M.
2011-01-01
Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.
THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.
Jiang, H; Liu, F; Meerschaert, M M; McGough, R J
2013-01-01
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n ) ( n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko's Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi-term time-space fractional models including fractional Laplacian.
Real-time shear velocity imaging using sonoelastographic techniques.
Hoyt, Kenneth; Parker, Kevin J; Rubens, Deborah J
2007-07-01
In this paper, a novel sonoelastographic technique for estimating local shear velocities from propagating shear wave interference patterns (termed crawling waves) is introduced. A relationship between the local crawling wave spatial phase derivatives and local shear wave velocity is derived with phase derivatives estimated using an autocorrelation technique. Results from homogeneous phantoms demonstrate the ability of sonoelastographic shear velocity imaging to quantify the true underlying shear velocity distributions as verified using time-of-flight measurements. Heterogeneous phantom results reveal the capacity for lesion detection and shear velocity quantification as validated from mechanical measurements on phantom samples. Experimental results obtained from a prostate specimen illustrated feasibility for shear velocity imaging in tissue. More importantly, high-contrast visualization of focal carcinomas was demonstrated introducing the clinical potential of this novel sonoelastographic imaging technique.
NASA Astrophysics Data System (ADS)
Gitlin, M. S.; Glyavin, M. Yu.; Fedotov, A. E.; Tsvetkov, A. I.
2017-07-01
The paper presents the second part of the review on a high-sensitive technique for time-resolved imaging and measurements of the 2D intensity profiles of millimeter-wave radiation by means of Visible Continuum Radiation emitted by the positive column of a medium-pressure Cs-Xe DC Discharge (VCRD method). The first part of the review was focused on the operating principles and fundamentals of this new technique [Plasma Phys. Rep. 43, 253 (2017)]. The second part of the review focuses on experiments demonstrating application of this imaging technique to measure the parameters of radiation at the output of moderate-power millimeter-wave sources. In particular, the output waveguide mode of a moderate-power W-band gyrotron with a pulsed magnetic field was identified and the relative powers of some spurious modes at the outputs of this gyrotron and a pulsed D-band orotron were evaluated. The paper also reviews applications of the VCRD technique for real-time imaging and nondestructive testing with a frame rate of higher than 10 fps by using millimeter waves. Shadow projection images of objects opaque and transparent for millimeter waves have been obtained using pulsed watt-scale millimeter waves for object illumination. Near video frame rate millimeter-wave shadowgraphy has been demonstrated. It is shown that this technique can be used for single-shot screening (including detection of concealed objects) and time-resolved imaging of time-dependent processes.
Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors
Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke
2014-01-01
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430
Vegetation and soil backscatter over the 4-18 GHz region
NASA Technical Reports Server (NTRS)
Ulaby, F. T.
1974-01-01
Using an FM-CW radar mounted atop a truck-mounted boom, 4-8 GHz backscatter spectral data was gathered during the 1972 growing season at incidence angles of 0-70 deg in 10 deg steps for each of the four linear polarization combinations. The data covers four mature crop types (corn, milo, soybeans and alfalfa) and bare ground taken under a wide range of soil and plant moisture contents. To insure statistical representation of the results, measurements were conducted over 147 fields corresponding to a total of about 50,000 data points. During 1973, a higher frequency version of the above system was used to collect additional data over the 8-18 GHz frequency region. This paper presents a summary of the results and suggests design criteria for future radar remote sensing missions.
NASA Astrophysics Data System (ADS)
Naumenko, Natalya F.
2014-09-01
A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.
Comparison of two ways of altering carpal tunnel pressure with ultrasound surface wave elastography.
Cheng, Yu-Shiuan; Zhou, Boran; Kubo, Kazutoshi; An, Kai-Nan; Moran, Steven L; Amadio, Peter C; Zhang, Xiaoming; Zhao, Chunfeng
2018-06-06
Higher carpal tunnel pressure is related to the development of carpal tunnel syndrome. Currently, the measurement of carpal tunnel pressure is invasive and therefore, a noninvasive technique is needed. We previously demonstrated that speed of wave propagation through a tendon in the carpal tunnel measured by ultrasound elastography could be used as an indicator of carpal tunnel pressure in a cadaveric model, in which a balloon had to be inserted into the carpal tunnel to adjust the carpal tunnel pressure. However, the method for adjusting the carpal tunnel pressure in the cadaveric model is not applicable for the in vivo model. The objective of this study was to utilize a different technique to adjust carpal tunnel pressure via pressing the palm and to validate it with ultrasound surface wave elastography in a human cadaveric model. The outcome was also compared with a previous balloon insertion technique. Results showed that wave speed of intra-carpal tunnel tendon and the ratio of wave speed of intra-and outer-carpal tunnel tendons increased linearly with carpal tunnel pressure. Moreover, wave speed of intra carpal tunnel tendon via both ways of altering carpal tunnel pressure showed similar results with high correlation. Therefore, it was concluded that the technique of pressing the palm can be used to adjust carpal tunnel pressure, and pressure changes can be detected via ultrasound surface wave elastography in an ex vivo model. Future studies will utilize this technique in vivo to validate the usefulness of ultrasound surface wave elastography for measuring carpal tunnel pressure. Copyright © 2018 Elsevier Ltd. All rights reserved.
The anatomy of floating shock fitting. [shock waves computation for flow field
NASA Technical Reports Server (NTRS)
Salas, M. D.
1975-01-01
The floating shock fitting technique is examined. Second-order difference formulas are developed for the computation of discontinuities. A procedure is developed to compute mesh points that are crossed by discontinuities. The technique is applied to the calculation of internal two-dimensional flows with arbitrary number of shock waves and contact surfaces. A new procedure, based on the coalescence of characteristics, is developed to detect the formation of shock waves. Results are presented to validate and demonstrate the versatility of the technique.
Nondestructive evaluation of standing trees with a stress wave method.
Xiping Wang; Robert J. Ross; Michael McClellan; R. James Barbour; John R. Erickson; John W. Forsman; Gary D. McGinnis
2001-01-01
The primary objective of this study was to investigate the usefulness of a stress wave technique for evaluating wood strength and stiffness of young-growth western hemlock and Sitka spruce in standing trees. A secondary objective was to determine if the effects of silvicultural practices on wood quality can be identified using this technique. Stress wave measurements...
An optical technique for detecting minute-amplitude standing waves on a liquid jet
NASA Astrophysics Data System (ADS)
Takahashi, I.; Mori, Y. H.
1995-10-01
A liquid jet emerging from a nozzle or an orifice whose outlet is slightly elliptic has a series of minute-amplitude waves on its surface. A quite simple technique is proposed which enables detecting such waves even if they are no longer recognizable with the aid of ordinary backlighting of the jet.
Tailored ramp wave generation in gas gun experiments
NASA Astrophysics Data System (ADS)
Cotton, Matthew; Chapman, David; Winter, Ron; Harris, Ernie; Eakins, Daniel
2015-09-01
Gas guns are traditionally used as platforms to introduce a planar shock wave to a material using plate impact methods, generating states on the Hugoniot. The ability to deliver a ramp wave to a target during a gas gun experiment enables access to different regions of the equation-of-state surface, making it a valuable technique for characterising material behaviour. Previous techniques have relied on the use of multi-material impactors to generate a density gradient, which can be complex to manufacture. In this paper we describe the use of an additively manufactured steel component consisting of an array of tapered spikes which can deliver a ramp wave over ˜ 2 μs. The ability to tailor the input wave by varying the component design is discussed, an approach which makes use of the design freedom offered by additive manufacturing techniques to rapidly iterate the spike profile. Results from gas gun experiments are presented to evaluate the technique, and compared with 3D hydrodynamic simulations.
SH-wave refraction/reflection and site characterization
Wang, Z.; Street, R.L.; Woolery, E.W.; Madin, I.P.
2000-01-01
Traditionally, nonintrusive techniques used to characterize soils have been based on P-wave refraction/reflection methods. However, near-surface unconsolidated soils are oftentimes water-saturated, and when groundwater is present at a site, the velocity of the P-waves is more related to the compressibility of the pore water than to the matrix of the unconsolidated soils. Conversely, SH-waves are directly relatable to the soil matrix. This makes SH-wave refraction/reflection methods effective in site characterizations where groundwater is present. SH-wave methods have been used extensively in site characterization and subsurface imaging for earthquake hazard assessments in the central United States and western Oregon. Comparison of SH-wave investigations with geotechnical investigations shows that SH-wave refraction/reflection techniques are viable and cost-effective for engineering site characterization.
Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection
NASA Astrophysics Data System (ADS)
Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.
2000-07-01
A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30 - 300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3D images of the person. After reconstruction, the images are combined into a single high-resolution 3D image of the person under surveillance. This combined image is then rendered using 3D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operate will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration.
Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry
NASA Astrophysics Data System (ADS)
Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram
2011-04-01
Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.
NASA Astrophysics Data System (ADS)
Mulaveesala, Ravibabu; Dua, Geetika; Arora, Vanita; Siddiqui, Juned A.; Muniyappa, Amarnath
2017-05-01
In recent years, aperiodic, transient pulse compression favourable infrared imaging methodologies demonstrated as reliable, quantitative, remote characterization and evaluation techniques for testing and evaluation of various biomaterials. This present work demonstrates a pulse compression favourable aperiodic thermal wave imaging technique, frequency modulated thermal wave imaging technique for bone diagnostics, especially by considering the bone with tissue, skin and muscle over layers. In order to find the capabilities of the proposed frequency modulated thermal wave imaging technique to detect the density variations in a multi layered skin-fat-muscle-bone structure, finite element modeling and simulation studies have been carried out. Further, frequency and time domain post processing approaches have been adopted on the temporal temperature data in order to improve the detection capabilities of frequency modulated thermal wave imaging.
Controlling the plasmonic surface waves of metallic nanowires by transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yichao; Yuan, Jun; Yin, Ge
2015-07-06
In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.
NASA Astrophysics Data System (ADS)
Bostron, Jason
Ultrasonic guided waves are becoming more widely used in nondestructive evaluation applications due to their efficiency in defect detection, ability to inspect hidden areas, and other reasons. This dissertation addresses two main topics: ultrasonic guided wave bond evaluation of thin and thick coatings on thick metallic structures, and the use of a novel phased array technique for optimal guided wave mode and frequency selection. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Li, Xinyi; Bao, Jingfu; Huang, Yulin; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya
2018-07-01
In this paper, we propose the use of the hierarchical cascading technique (HCT) for the finite element method (FEM) analysis of bulk acoustic wave (BAW) devices. First, the implementation of this technique is presented for the FEM analysis of BAW devices. It is shown that the traveling-wave excitation sources proposed by the authors are fully compatible with the HCT. Furthermore, a HCT-based absorbing mechanism is also proposed to replace the perfectly matched layer (PML). Finally, it is demonstrated how the technique is much more efficient in terms of memory consumption and execution time than the full FEM analysis.
Lamb wave line sensing for crack detection in a welded stiffener.
An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae
2014-07-18
This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.
A Self-Organizing Maps approach to assess the wave climate of the Adriatic Sea
NASA Astrophysics Data System (ADS)
Barbariol, Francesco; Marcello Falcieri, Francesco; Scotton, Carlotta; Benetazzo, Alvise; Bergamasco, Andrea; Bergamasco, Filippo; Bonaldo, Davide; Carniel, Sandro; Sclavo, Mauro
2015-04-01
The assessment of wave conditions at sea is fruitful for many research fields in marine and atmospheric sciences and for the human activities in the marine environment. To this end, in the last decades the observational network, that mostly relies on buoys, satellites and other probes from fixed platforms, has been integrated with numerical models outputs, which allow to compute the parameters of sea states (e.g. the significant wave height, the mean and peak wave periods, the mean and peak wave directions) over wider regions. Apart from the collection of wave parameters observed at specific sites or modeled on arbitrary domains, the data processing performed to infer the wave climate at those sites is a crucial step in order to provide high quality data and information to the community. In this context, several statistical techniques has been used to model the randomness of wave parameters. While univariate and bivariate probability distribution functions (pdf) are routinely used, multivariate pdfs that model the probability structure of more than two wave parameters are hardly managed. Recently, the Self-Organizing Maps (SOM) technique has been successfully applied to represent the multivariate random wave climate at sites around the Iberian peninsula and the South America continent. Indeed, the visualization properties offered by this technique allow to get the dependencies between the different parameters by visual inspection. In this study, carried out in the frame of the Italian National Flagship Project "RITMARE", we take advantage of the SOM technique to assess the multivariate wave climate over the Adriatic Sea, a semi-enclosed basin in the north-eastern Mediterranean Sea, where winds from North-East (called "Bora") and South-East (called "Sirocco") mainly blow causing sea storms. By means of the SOM techniques we can observe the multivariate character of the typical Bora and Sirocco wave features in the Adriatic Sea. To this end, we used both observed and modeled wave parameters. The "Acqua Alta" oceanographic tower in the northern Adriatic Sea (ISMAR-CNR) and the Italian Data Buoy Network (RON, managed by ISPRA) off the western Adriatic coasts furnished the wave parameters at specific sites of interest. Widespread wave parameters were obtained by means of a numerical SWAN wave model that was implemented on the whole Adriatic Sea with a 6x6 km2 resolution and forced by the high resolution COSMO-I7 atmospheric model for the period 2007-2013.
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1984-01-01
The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1979-01-01
Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.
Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe
2016-04-20
New developments are made in the resonant fiber optic gyro (RFOG), which is an optical sensor for the measurement of rotation rate. The digital signal processing system based on the phase modulation technique is capable of detecting the weak frequency difference induced by the Sagnac effect and suppressing the reciprocal noise in the circuit, which determines the detection sensitivity of the RFOG. A new technique based on the sinusoidal wave modulation and square wave demodulation is implemented, and the demodulation curve of the system is simulated and measured. Compared with the past technique using sinusoidal modulation and demodulation, it increases the slope of the demodulation curve by a factor of 1.56, improves the spectrum efficiency of the modulated signal, and reduces the occupancy of the field-programmable gate array resource. On the basis of this new phase modulation technique, the loop is successfully locked and achieves a short-term bias stability of 1.08°/h, which is improved by a factor of 1.47.
Planar millimeter wave radar frontend for automotive applications
NASA Astrophysics Data System (ADS)
Grubert, J.; Heyen, J.; Metz, C.; Stange, L. C.; Jacob, A. F.
2003-05-01
A fully integrated planar sensor for 77 GHz automotive applications is presented. The frontend consists of a transceiver multichip module and an electronically steerable microstrip patch array. The antenna feed network is based on a modified Rotman-lens and connected to the array in a multilayer approach offering higher integration. Furthermore, the frontend comprises a phase lock loop to allow proper frequency-modulated continuous wave (FMCW) radar operation. The latest experimental results verify the functionality of this advanced frontend design featuring automatic cruise control, precrash sensing and cut-in detection. These promising radar measurements give reason to a detailed theoretical investigation of system performance. Employing commercially available MMIC various circuit topologies are compared based on signal-tonoise considerations. Different scenarios for both sequential and parallel lobing hint to more advanced sensor designs and better performance. These improvements strongly depend on the availability of suitable MMIC and reliable packaging technologies. Within our present approach possible future MMIC developments are already considered and, thus, can be easily adapted by the flexible frontend design.
Matrix basis for plane and modal waves in a Timoshenko beam.
Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-11-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.
Assessing TMS-induced D and I waves with spinal H-reflexes.
Niemann, Niclas; Wiegel, Patrick; Kurz, Alexander; Rothwell, John C; Leukel, Christian
2018-03-01
Transcranial magnetic stimulation (TMS) of motor cortex produces a series of descending volleys known as D (direct) and I (indirect) waves. In the present study, we questioned whether spinal H-reflexes can be used to dissect D waves and early and late I waves from TMS. We therefore probed H-reflex facilitation at arrival times of D and I waves at the spinal level and thereby changed TMS parameters that have previously been shown to have selective effects on evoked D and different I waves. We changed TMS intensity and current direction and applied a double-pulse paradigm known as short-interval intracortical inhibition (SICI). Experiments were conducted in flexor carpi radialis (FCR) in the arm and soleus (SOL) in the leg. There were two major findings: 1) in FCR, H-reflex facilitation showed characteristic modulations with altered TMS parameters that correspond to the changes of evoked D and I waves; and 2) H-reflexes in SOL did not, possibly because of increased interference from other spinal circuits. Therefore, the most significant outcome of this study is that in FCR, H-reflexes combined with TMS seem to be a useful technique to dissect TMS-induced D and I waves. NEW & NOTEWORTHY Questions that relate to corticospinal function in pathophysiology and movement control demand sophisticated techniques to provide information about corticospinal mechanisms. We introduce a noninvasive electrophysiological technique that may be useful in describing such mechanisms in more detail by dissecting D and I waves from transcranial magnetic stimulation (TMS). Based on the combination of spinal H-reflexes and TMS in the flexor carpi radialis muscle, the technique was shown to measure selective effects on D and I waves from changing TMS parameters.
Improving wave forecasting by integrating ensemble modelling and machine learning
NASA Astrophysics Data System (ADS)
O'Donncha, F.; Zhang, Y.; James, S. C.
2017-12-01
Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.
Simulation tools for guided wave based structural health monitoring
NASA Astrophysics Data System (ADS)
Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien
2018-04-01
Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and will be adapted to simulate complex real-life structures such as curved composite panels with stiffeners. This communication will present these numerical tools and their main functionalities.
NASA Astrophysics Data System (ADS)
Ji, Hongli; Luo, Jing; Qiu, Jinhao; Cheng, Li
2018-05-01
Acoustic Black Holes (ABHs), as a new type of passive structure for vibration damping enhancement and noise attenuation, have been drawing increasing attentions of many researchers. Due to the difficulty in manufacturing the sharp edges required by the ABH structures, it is important to understand the wave propagation and attenuation process in the presence of damping layers in non-ideal ABHs with a truncated edge. In this paper, an analytical expression of the wave reflection coefficient in a modified one-dimensional ABH is derived and a time-domain experimental method based on a laser excitation technique is used to visualize the wave propagation. In the experimental studies, the flexural waves in the ABH were excited by a scanning pulse laser and measured by a Laser Doppler Vibrometer (LDV). The incident wave and reflected wave were separated from the measured original wave field and the decrease of the wave velocity in the ABH was exhibited. The reflection coefficient was calculated from the ratio of the amplitude of the reflected wave to that of the incident wave for different ABH parameters and different thicknesses of the damping layer. The measured reflection coefficients were used to identify the unknown coefficients in the theoretical formula. The results confirm that there exists an optimal thickness for the damping layer, which leads to the minimum wave reflection. Based on the laser-induced visualization technique and various signal processing and feature extraction methods, the entire process of the wave propagation in a non-ideal one-dimensional ABH structure can be visualized and scrutinized.
Ultrasonic guided wave interpretation for structural health inspections
NASA Astrophysics Data System (ADS)
Bingham, Jill Paisley
Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further understanding of how the guided wave modes propagate through the real structures, we have developed parallel processing, 3D elastic wave simulations using the finite integration technique (EFIT). This full field, numeric simulation technique easily examines models too complex for analytical solutions. We have developed the algorithm to handle built up 3D structures as well as layers with different material properties and surface detail. The simulations produce informative visualizations of the guided wave modes in the structures as well as the output from sensors placed in the simulation space to mimic the placement from experiment. Using the previously developed mode extraction algorithms we were then able to compare our 3D EFIT data to their experimental counterparts with consistency.
NASA Astrophysics Data System (ADS)
Sengupta, A.; Kletzing, C.; Howk, R.; Kurth, W. S.
2017-12-01
An important goal of the Van Allen Probes mission is to understand wave particle interactions that can energize relativistic electron in the Earth's Van Allen radiation belts. The EMFISIS instrumentation suite provides measurements of wave electric and magnetic fields of wave features such as chorus that participate in these interactions. Geometric signal processing discovers structural relationships, e.g. connectivity across ridge-like features in chorus elements to reveal properties such as dominant angles of the element (frequency sweep rate) and integrated power along the a given chorus element. These techniques disambiguate these wave features against background hiss-like chorus. This enables autonomous discovery of chorus elements across the large volumes of EMFISIS data. At the scale of individual or overlapping chorus elements, topological pattern recognition techniques enable interpretation of chorus microstructure by discovering connectivity and other geometric features within the wave signature of a single chorus element or between overlapping chorus elements. Thus chorus wave features can be quantified and studied at multiple scales of spectral geometry using geometric signal processing techniques. We present recently developed computational techniques that exploit spectral geometry of chorus elements and whistlers to enable large-scale automated discovery, detection and statistical analysis of these events over EMFISIS data. Specifically, we present different case studies across a diverse portfolio of chorus elements and discuss the performance of our algorithms regarding precision of detection as well as interpretation of chorus microstructure. We also provide large-scale statistical analysis on the distribution of dominant sweep rates and other properties of the detected chorus elements.
Robert Ross; John W. Forsman; John R. Erickson; Allen M. Brackley
2014-01-01
Stress-wave nondestructive evaluation (NDE) techniques are used widely in the forest products industryâfrom the grading of wood veneer to inspection of timber structures. Inspection professionals frequently use stress-wave NDE techniques to locate internal voids and decayed or deteriorated areas in large timbers. Although these techniques have proven useful, little...
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, Justin L.; Rappaport, Carey M.; Sheen, David M.
2011-05-01
The cylindrical millimeter-wave imaging technique, developed at Pacific Northwest National Laboratory (PNNL) and commercialized by L-3 Communications/Safeview in the ProVision system, is currently being deployed in airports and other high security locations to meet person-borne weapon and explosive detection requirements. While this system is efficient and effective in its current form, there are a number of areas in which the detection performance may be improved through using different reconstruction algorithms and sensing configurations. PNNL and Northeastern University have teamed together to investigate higher-order imaging artifacts produced by the current cylindrical millimeter-wave imaging technique using full-wave forward modeling and laboratory experimentation.more » Based on imaging results and scattered field visualizations using the full-wave forward model, a new imaging system is proposed. The new system combines a multistatic sensor configuration with the generalized synthetic aperture focusing technique (GSAFT). Initial results show an improved ability to image in areas of the body where target shading, specular and higher-order reflections cause images produced by the monostatic system difficult to interpret.« less
Sumire Kawamoto; James H. Muehl; R. Sam Williams
2005-01-01
Properties of particleboard manufactured entirely from recycled particleboard were tested The method for processing three-layer particleboard from all-recycled particles was described. Dynamic MOE (modulus of elasticity) before and after re-manufacturing was tested by a longitudinal stress wave technique. Some stress wave techniques were compared. Nondestructive AU (...
NASA Technical Reports Server (NTRS)
Poole, L. R.
1976-01-01
The Langley Research Center and Virginia Institute of Marine Science wave refraction computer model was applied to the Baltimore Canyon region of the mid-Atlantic continental shelf. Wave refraction diagrams for a wide range of normally expected wave periods and directions were computed by using three bottom topography approximation techniques: quadratic least squares, cubic least squares, and constrained bicubic interpolation. Mathematical or physical interpretation of certain features appearing in the computed diagrams is discussed.
Nd:YAG Pulsed Laser based flaw imaging techniques for noncontact NDE of an aluminum plate
NASA Astrophysics Data System (ADS)
Park, Woong-Ki; Lee, Changgil; Park, Seunghee
2012-04-01
Recently, the longitudinal, shear and surface waves have been very widely used as a kind of ultrasonic wave exploration methods to identify internal defects of metallic structures. The ultrasonic wave-based non-destructive testing (NDT) is one of main non-destructive inspection techniques for a health assessment about nuclear power plant, aircraft, ships, and/or automobile manufacturing. In this study, a noncontact pulsed laser-based flaw imaging NDT technique is implemented to detect the damage of a plate-like structure and to identify the location of the damage. To achieve this goal, the Nd:YAG pulsed laser equipment is used to generate a guided wave and scans a specific area to find damage location. The Nd: YAG pulsed laser is used to generate Lamb wave and piezoelectric sensors are installed to measure structural responses. Ann aluminum plate is investigated to verify the effectiveness and the robustness of the proposed NDT approach. A notch is a target to detect, which is inflicted on the surface of an aluminum plate. The damagesensitive features are extracted by comparing the time of flight of the guided wave obtained from an acoustic emission (AE) sensor and make use of the flaw imaging techniques of the aluminum plate.
Yong, Alan; Martin, Antony; Stokoe, Kenneth; Diehl, John
2013-01-01
Funded by the 2009 American Recovery and Reinvestment Act (ARRA), we conducted geophysical site characterizations at 191 strong-motion stations: 187 in California and 4 in the Central-Eastern United States (CEUS). The geophysical methods used at each site included passive and active surface-wave and body-wave techniques. Multiple techniques were used at most sites, with the goal of robustly determining VS (shear-wave velocity) profiles and VS30 (the time-averaged shear-wave velocity in the upper 30 meters depth). These techniques included: horizontal-to-vertical spectral ratio (HVSR), two-dimensional (2-D) array microtremor (AM), refraction microtremor (ReMi™), spectral analysis of surface wave (SASW), multi-channel analysis of surface waves (Rayleigh wave: MASRW; and Love wave: MASLW), and compressional- and shear-wave refraction. Of the selected sites, 47 percent have crystalline, volcanic, or sedimentary rock at the surface or at relatively shallow depth, and 53 percent are of Quaternary sediments located in either rural or urban environments. Calculated values of VS30 span almost the full range of the National Earthquake Hazards Reduction Program (NEHRP) Site Classes, from D (stiff soils) to B (rock). The NEHRP Site Classes based on VS30 range from being consistent with the Class expected from analysis of surficial geology, to being one or two Site Classes below expected. In a few cases where differences between the observed and expected Site Class occurred, it was the consequence of inaccurate or coarse geologic mapping, as well as considerable degradation of the near-surface rock. Additionally, several sites mapped as rock have Site Class D (stiff soil) velocities, which is due to the extensive weathering of the surficial rock.
Diffraction of three-colour radiation on an acoustic wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotov, V M
We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)
Local Dynamics of Baroclinic Waves in the Martian Atmosphere
NASA Astrophysics Data System (ADS)
Kavulich, M. J.; Szunyogh, I.; Gyarmati, G.; Wilson, R.
2010-12-01
In this presentation, the spatio-temporal evolution of baroclinic waves in the GFDL Mars GCM is investigated. The study employs diagnostic techniques that were developed to analyze the life cycles of baroclinic waves in the terrestrial atmosphere. These techniques include a Hilbert-transform-based method to extract the packets of Rossby wave envelopes at the jet level, the eddy kinetic energy equation for the full atmospheric column, and ensemble-based diagnostics. The results show that, similar to the terrestrial atmosphere, coherent westward-propagating wave packets can be detected in the Martian atmosphere. These wave packets are composed of waves of wavenumber 2 through 5, in contrast to the wavenumber 4 through 9 waves that contribute the upper-tropospheric wave packets of the terrestrial atmosphere. Additionally, as in the terrestrial atmosphere, the dominant part of the eddy kinetic energy is generated in regions of baroclinic energy conversion, which are strongly localized in both space and time. Implications of the results for predictability of the state of the Martian atmosphere are also discussed.
Matrix basis for plane and modal waves in a Timoshenko beam
Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-01-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville’s technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form. PMID:28018668
Lamb wave detection of limpet mines on ship hulls.
Bingham, Jill; Hinders, Mark; Friedman, Adam
2009-12-01
This paper describes the use of ultrasonic guided waves for identifying the mass loading due to underwater limpet mines on ship hulls. The Dynamic Wavelet Fingerprint Technique (DFWT) is used to render the guided wave mode information in two-dimensional binary images because the waveform features of interest are too subtle to identify in time domain. The use of wavelets allows both time and scale features from the original signals to be retained, and image processing can be used to automatically extract features that correspond to the arrival times of the guided wave modes. For further understanding of how the guided wave modes propagate through the real structures, a parallel processing, 3D elastic wave simulation is developed using the finite integration technique (EFIT). This full field, technique models situations that are too complex for analytical solutions, such as built up 3D structures. The simulations have produced informative visualizations of the guided wave modes in the structures as well as mimicking directly the output from sensors placed in the simulation space for direct comparison to experiments. Results from both drydock and in-water experiments with dummy mines are also shown.
Damage Detection in Composite Structures with Wavenumber Array Data Processing
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara; Yu, Lingyu
2013-01-01
Guided ultrasonic waves (GUW) have the potential to be an efficient and cost-effective method for rapid damage detection and quantification of large structures. Attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distances. They have proven to be an efficient approach for crack detection and localization in isotropic materials. However, techniques must be pushed beyond isotropic materials in order to be valid for composite aircraft components. This paper presents our study on GUW propagation and interaction with delamination damage in composite structures using wavenumber array data processing, together with advanced wave propagation simulations. Parallel elastodynamic finite integration technique (EFIT) is used for the example simulations. Multi-dimensional Fourier transform is used to convert time-space wavefield data into frequency-wavenumber domain. Wave propagation in the wavenumber-frequency domain shows clear distinction among the guided wave modes that are present. This allows for extracting a guided wave mode through filtering and reconstruction techniques. Presence of delamination causes spectral change accordingly. Results from 3D CFRP guided wave simulations with delamination damage in flat-plate specimens are used for wave interaction with structural defect study.
Identification of P/S-wave successions for application in microseismicity
NASA Astrophysics Data System (ADS)
Deflandre, J.-P.; Dubesset, M.
1992-09-01
Interpretation of P/S-wave successions is used in induced or passive microseismicity. It makes the location of microseismic events possible when the triangulation technique cannot be used. To improve the reliability of the method, we propose a technique that identifies the P/S-wave successions among recorded wave successions. A polarization software is used to verify the orthogonality between the P and S polarization axes. The polarization parameters are computed all along the 3-component acoustic signal. Then the algorithm detects time windows within which the signal polarization axis is perpendicular to the polarization axis of the wave in the reference time window (representative of the P wave). The technique is demonstrated for a synthetic event, and three application cases are presented. The first one corresponds to a calibration shot within which the arrivals of perpendicularly polarized waves are correctly detected in spite of their moderate amplitude. The second example presents a microseismic event recorded during gas withdrawal from an underground gas storage reservoir. The last example is chosen as a counter-example, concerning a microseismic event recorded during a hydraulic fracturing job. The detection algorithm reveals that, in this case, the wave succession does not correspond to a P/S one. This implies that such an event must not be located by the method based on the interpretation of a P/S-wave succession as no such a succession is confirmed.
On-Wafer Characterization of Millimeter-Wave Antennas for Wireless Applications
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Lee, Richard Q.
1998-01-01
The paper demonstrates a de-embedding technique and a direct on-substrate measurement technique for fast and inexpensive characterization of miniature antennas for wireless applications at millimeter-wave frequencies. The technique is demonstrated by measurements on a tapered slot antenna (TSA). The measured results at Ka-Band frequencies include input impedance, mutual coupling between two TSAs and absolute gain of TSA.
Computation of shock wave/target interaction
NASA Technical Reports Server (NTRS)
Mark, A.; Kutler, P.
1983-01-01
Computational results of shock waves impinging on targets and the ensuing diffraction flowfield are presented. A number of two-dimensional cases are computed with finite difference techniques. The classical case of a shock wave/cylinder interaction is compared with shock tube data and shows the quality of the computations on a pressure-time plot. Similar results are obtained for a shock wave/rectangular body interaction. Here resolution becomes important and the use of grid clustering techniques tend to show good agreement with experimental data. Computational results are also compared with pressure data resulting from shock impingement experiments for a complicated truck-like geometry. Here of significance are the grid generation and clustering techniques used. For these very complicated bodies, grids are generated by numerically solving a set of elliptic partial differential equations.
The propagation of Lamb waves in multilayered plates: phase-velocity measurement
NASA Astrophysics Data System (ADS)
Grondel, Sébastien; Assaad, Jamal; Delebarre, Christophe; Blanquet, Pierrick; Moulin, Emmanuel
1999-05-01
Owing to the dispersive nature and complexity of the Lamb waves generated in a composite plate, the measurement of the phase velocities by using classical methods is complicated. This paper describes a measurement method based upon the spectrum-analysis technique, which allows one to overcome these problems. The technique consists of using the fast Fourier transform to compute the spatial power-density spectrum. Additionally, weighted functions are used to increase the probability of detecting the various propagation modes. Experimental Lamb-wave dispersion curves of multilayered plates are successfully compared with the analytical ones. This technique is expected to be a useful way to design composite parts integrating ultrasonic transducers in the field of health monitoring. Indeed, Lamb waves and particularly their velocities are very sensitive to defects.
NASA Astrophysics Data System (ADS)
Prindle-Sheldrake, K. L.; Tanimoto, T.
2003-12-01
Analysis of teleseismic waves generated by large earthquakes worldwide across the Southern California TriNet Seismic Broadband Array has yielded high quality measurements of both surface waves and body waves. Rayleigh waves and Love waves were previously analyzed using a spectral fitting technique (Tanimoto. and Prindle-Sheldrake, GRL 2002; Prindle-Sheldrake and Tanimoto, submitted to JGR), producing a three-dimensional S-wave velocity structure. Features in our velocity structure show some regional contrasts with respect to the starting model (SCEC 2.2), which has detailed crustal structure, but laterally homogeneous upper mantle structure. The most prominent of which is a postulated fast velocity anomaly located west of the Western Transverse Ranges that could be related to a rotated remnant plate from Farallon subduction. Analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Recent advances in our velocity structure focus on accommodation of finite frequency effect, and the addition of body waves to the data. Thus far, 118 events have been analyzed for body waves. A simple geometrical approach is used to represent the finite frequency effect in phase velocity maps. Due to concerns that, for seismic phases between 10-100 seconds, structure away from the ray theoretical is also sampled by a propagating surface wave, we have adopted a technique which examines a normal mode formula in its asymptotic limit (Tanimoto, GRL 2003 in press). An ellipse, based on both distance from source to receiver and wavelength, can be used to approximate the effect on the structure along the ray path and adjacent structure. Three models were tested in order to select the appropriate distribution within the ellipse; the first case gives equal weight to all blocks within the ellipse; case 2 incorporates a Gaussian function which falls off perpendicular to the ray path, allowing the amplitude to peak at the receiver; case 3 is the same as case 2, yet removes the effect of the peak at the receiver. A major improvement is that the locale under consideration has expanded due to the effect of ray paths spreading over a larger area than the ray theoretical. Comparison of the three techniques yields very similar results, and all techniques show an exceptional correlation to the ray theoretical phase velocity maps. After analyzing our data in terms of the finite frequency effect, we find that little change has occurred as a result of employing this technique other than expanding our region of study. P-wave measurements were obtained from the data set for 118 events. Preliminary results show systematic patterns. We have successfully measured 30 S-wave events which we plan to incorporate into our velocity structure. Our goal is to proceed with a joint inversion of P-waves, S-waves and Surface waves for a collective Southern California velocity structure.
Shear wave elastography using Wigner-Ville distribution: a simulated multilayer media study.
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2016-08-01
Shear Wave Elastography (SWE) is a quantitative ultrasound-based imaging modality for distinguishing normal and abnormal tissue types by estimating the local viscoelastic properties of the tissue. These properties have been estimated in many studies by propagating ultrasound shear wave within the tissue and estimating parameters such as speed of wave. Vast majority of the proposed techniques are based on the cross-correlation of consecutive ultrasound images. In this study, we propose a new method of wave detection based on time-frequency (TF) analysis of the ultrasound signal. The proposed method is a modified version of the Wigner-Ville Distribution (WVD) technique. The TF components of the wave are detected in a propagating ultrasound wave within a simulated multilayer tissue and the local properties are estimated based on the detected waves. Image processing techniques such as Alternative Sequential Filters (ASF) and Circular Hough Transform (CHT) have been utilized to improve the estimation of TF components. This method has been applied to a simulated data from Wave3000™ software (CyberLogic Inc., New York, NY). This data simulates the propagation of an acoustic radiation force impulse within a two-layer tissue with slightly different viscoelastic properties between the layers. By analyzing the local TF components of the wave, we estimate the longitudinal and shear elasticities and viscosities of the media. This work shows that our proposed method is capable of distinguishing between different layers of a tissue.
A full-wave Helmholtz model for continuous-wave ultrasound transmission.
Huttunen, Tomi; Malinen, Matti; Kaipio, Jari P; White, Phillip Jason; Hynynen, Kullervo
2005-03-01
A full-wave Helmholtz model of continuous-wave (CW) ultrasound fields may offer several attractive features over widely used partial-wave approximations. For example, many full-wave techniques can be easily adjusted for complex geometries, and multiple reflections of sound are automatically taken into account in the model. To date, however, the full-wave modeling of CW fields in general 3D geometries has been avoided due to the large computational cost associated with the numerical approximation of the Helmholtz equation. Recent developments in computing capacity together with improvements in finite element type modeling techniques are making possible wave simulations in 3D geometries which reach over tens of wavelengths. The aim of this study is to investigate the feasibility of a full-wave solution of the 3D Helmholtz equation for modeling of continuous-wave ultrasound fields in an inhomogeneous medium. The numerical approximation of the Helmholtz equation is computed using the ultraweak variational formulation (UWVF) method. In addition, an inverse problem technique is utilized to reconstruct the velocity distribution on the transducer which is used to model the sound source in the UWVF scheme. The modeling method is verified by comparing simulated and measured fields in the case of transmission of 531 kHz CW fields through layered plastic plates. The comparison shows a reasonable agreement between simulations and measurements at low angles of incidence but, due to mode conversion, the Helmholtz model becomes insufficient for simulating ultrasound fields in plates at large angles of incidence.
Physics Structure Analysis of Parallel Waves Concept of Physics Teacher Candidate
NASA Astrophysics Data System (ADS)
Sarwi, S.; Supardi, K. I.; Linuwih, S.
2017-04-01
The aim of this research was to find a parallel structure concept of wave physics and the factors that influence on the formation of parallel conceptions of physics teacher candidates. The method used qualitative research which types of cross-sectional design. These subjects were five of the third semester of basic physics and six of the fifth semester of wave course students. Data collection techniques used think aloud and written tests. Quantitative data were analysed with descriptive technique-percentage. The data analysis technique for belief and be aware of answers uses an explanatory analysis. Results of the research include: 1) the structure of the concept can be displayed through the illustration of a map containing the theoretical core, supplements the theory and phenomena that occur daily; 2) the trend of parallel conception of wave physics have been identified on the stationary waves, resonance of the sound and the propagation of transverse electromagnetic waves; 3) the influence on the parallel conception that reading textbooks less comprehensive and knowledge is partial understanding as forming the structure of the theory.
Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data
NASA Astrophysics Data System (ADS)
Sheen, David M.; Hall, Thomas E.
2011-05-01
Cylindrical millimeter-wave imaging systems and technology have been under development at the Pacific Northwest National Laboratory (PNNL) for several years. This technology has been commercialized, and systems are currently being deployed widely across the United States and internationally. These systems are effective at screening for concealed items of all types; however, new sensor designs, image reconstruction techniques, and image rendering algorithms could potentially improve performance. At PNNL, a number of specific techniques have been developed recently to improve cylindrical imaging methods including wideband techniques, combining data from full 360-degree scans, polarimetric imaging techniques, calibration methods, and 3-D data visualization techniques. Many of these techniques exploit the three-dimensionality of the cylindrical imaging technique by optimizing the depth resolution of the system and using this information to enhance detection. Other techniques, such as polarimetric methods, exploit scattering physics of the millimeter-wave interaction with concealed targets on the body. In this paper, calibration, reconstruction, and three-dimensional rendering techniques will be described that optimize the depth information in these images and the display of the images to the operator.
Bistatic radar sea state monitoring
NASA Technical Reports Server (NTRS)
Ruck, G. T.; Barrick, D. E.; Kaliszewski, T.
1972-01-01
Bistatic radar techniques were examined for remote measurement of the two-dimensional surface wave height spectrum of the ocean. One technique operates at high frequencies (HF), 3-30 MHz, and the other at ultrahigh frequencies (UHF), approximately 1 GHz. Only a preliminary theoretical examination of the UHF technique was performed; however the principle underlying the HF technique was demonstrated experimentally with results indicating that an HF bistatic system using a surface transmitter and an orbital receiver would be capable of measuring the two-dimensional wave height spectrum in the vicinity of the transmitter. An HF bistatic system could also be used with an airborne receiver for ground truth ocean wave spectrum measurements. Preliminary system requirements and hardware configurations are discussed for both an orbital system and an aircraft verification experiment.
NASA Astrophysics Data System (ADS)
Park, S.; Ishii, M.
2017-12-01
Various seismic imaging methods have been developed, such as traveltime, waveform, and noise tomography, improving our knowledge of the subsurface structure and evolution. Near-surface structure, in particular, is crucial in understanding earthquake and volcano hazards. Seismic speed is directly related to the level of ground shaking, and monitoring its temporal change is valuable in volcanic hazard assessment. Here, we introduce a novel technique to constrain seismic wave speed of the very upper crust based upon the polarization measurements of teleseismic body-wave arrivals. The technique relates the orientation of recorded body waves to the wave speed immediately beneath a seismic instrument. We develop a counter-intuitive relationship that the P-wave polarization direction is only sensitive to subsurface shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. This approach is applied to the High-Sensitivity Seismograph Network in Japan, where the results are benchmarked against the borehole well data available at most stations. There is a good agreement between polarization-based estimates and the well measurements at as shallow as 100 m, confirming the efficacy of the new method in resolving the shallow structure. The lateral variation of wave speeds shows that sedimentary basins and mountainous regions are characterized by low and high wave speeds, respectively. It also correlates with volcano locations and geological units of different ages. Moreover, the analysis is expanded into 3D by examining the frequency dependence, where some preliminary results using broadband data are presented. These 2D and 3D wave speed estimates can be used to identify zones of high seismic risk by comparison with population distribution. This technique requires minimal computation resources and can be applied to any single three-component seismograph. It opens a new path to a reliable, non-invasive, and inexpensive earthquake hazard assessment in any environment where a drilling or a field experiment using vibro-trucks or explosives is not a practical option for measuring the near-surface seismic wave speeds. It can also provide means of monitoring changes that occur within the very upper crust such as from volcanic or hydrological phenomena.
Computer Simulation For Design Of TWT's
NASA Technical Reports Server (NTRS)
Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard
1992-01-01
A three-dimensional finite-element analytical technique facilitates design and fabrication of traveling-wave-tube (TWT) slow-wave structures. Used to perform thermal and mechanical analyses of TWT designed with variety of configurations, geometries, and materials. Using three-dimensional computer analysis, designer able to simulate building and testing of TWT, with consequent substantial saving of time and money. Technique enables detailed look into operation of traveling-wave tubes to help improve performance for future communications systems.
Load Measurement in Structural Members Using Guided Acoustic Waves
NASA Astrophysics Data System (ADS)
Chen, Feng; Wilcox, Paul D.
2006-03-01
A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.
Improved Pulse Wave Velocity Estimation Using an Arterial Tube-Load Model
Gao, Mingwu; Zhang, Guanqun; Olivier, N. Bari; Mukkamala, Ramakrishna
2015-01-01
Pulse wave velocity (PWV) is the most important index of arterial stiffness. It is conventionally estimated by non-invasively measuring central and peripheral blood pressure (BP) and/or velocity (BV) waveforms and then detecting the foot-to-foot time delay between the waveforms wherein wave reflection is presumed absent. We developed techniques for improved estimation of PWV from the same waveforms. The techniques effectively estimate PWV from the entire waveforms, rather than just their feet, by mathematically eliminating the reflected wave via an arterial tube-load model. In this way, the techniques may be more robust to artifact while revealing the true PWV in absence of wave reflection. We applied the techniques to estimate aortic PWV from simultaneously and sequentially measured central and peripheral BP waveforms and simultaneously measured central BV and peripheral BP waveforms from 17 anesthetized animals during diverse interventions that perturbed BP widely. Since BP is the major acute determinant of aortic PWV, especially under anesthesia wherein vasomotor tone changes are minimal, we evaluated the techniques in terms of the ability of their PWV estimates to track the acute BP changes in each subject. Overall, the PWV estimates of the techniques tracked the BP changes better than those of the conventional technique (e.g., diastolic BP root-mean-squared-errors of 3.4 vs. 5.2 mmHg for the simultaneous BP waveforms and 7.0 vs. 12.2 mmHg for the BV and BP waveforms (p < 0.02)). With further testing, the arterial tube-load model-based PWV estimation techniques may afford more accurate arterial stiffness monitoring in hypertensive and other patients. PMID:24263016
Geological structure analysis in Central Java using travel time tomography technique of S waves
NASA Astrophysics Data System (ADS)
Palupi, I. R.; Raharjo, W.; Nurdian, S. W.; Giamboro, W. S.; Santoso, A.
2016-11-01
Java is one of the islands in Indonesia that is prone to the earthquakes, in south of Java, there is the Australian Plate move to the Java island and press with perpendicular direction. This plate movement formed subduction zone and cause earthquakes. The earthquake is the release of energy due to the sudden movement of the plates. When an earthquake occurs, the energy is released and record by seismometers in the waveform. The first wave recorded is called the P waves (primary) and the next wave is called S waves (secondary). Both of these waves have different characteristics in terms of propagation and direction of movement. S wave is composed of waves of Rayleigh and Love waves, with each direction of movement of the vertical and horizontal, subsurface imaging by using S wave tomography technique can describe the type of the S wave through the medium. The variation of wave velocity under Central Java (esearch area) is ranging from -10% to 10% at the depth of 20, 30 and 40 km, the velocity decrease with the depth increase. Moho discontinuity is lies in the depth of 32 km under the crust, it is indicates there is strong heterogenity in Moho.
NASA Astrophysics Data System (ADS)
Kuznetsov, N.; Maz'ya, V.; Vainberg, B.
2002-08-01
This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'
NASA Technical Reports Server (NTRS)
Roth, D. J.; Cosgriff, L. M.; Martin, R. E.; Verrilli, M. J.; Bhatt, R. T.
2003-01-01
In this study, an ultrasonic guided wave scan system was used to characterize various microstructural and flaw conditions in two types of ceramic matrix composites, SiC/SiC and C/SiC. Rather than attempting to isolate specific lamb wave modes to use for characterization (as is desired for many types of guided wave inspection problems), the guided wave scan system utilizes the total (multi-mode) ultrasonic response in its inspection analysis. Several time and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. Microstructural and defect conditions examined include delamination, density variation, cracking, and pre/ post-infiltration. Results are compared with thermographic imaging methods. Although the guided wave technique is commonly used so scanning can be eliminated, applying the technique in the scanning mode allows a more precise characterization of defect conditions.
Matsushima, Kyoji
2008-07-01
Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.
Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves
Vincent, Paul
2005-06-28
A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.
Using high speed smartphone cameras and video analysis techniques to teach mechanical wave physics
NASA Astrophysics Data System (ADS)
Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano
2017-07-01
We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses along a spring and the period of transverse standing waves generated in the same spring. These experiments can be helpful in addressing several relevant concepts about the physics of mechanical waves and in overcoming some of the typical student misconceptions in this same field.
Untuned resonators for near millimeter waves
NASA Astrophysics Data System (ADS)
Gebbie, H. A.; Llewellyn-Jones, D. T.
1981-03-01
A brief account is given of the reasons for revitalizing an old technique for near millimeter wave measurements. The principles of the method are outlined and the scope of its application indicated. The potential importance of the technique for liquid phase and biological material studies is illustrated.
Survey of Temperature Measurement Techniques For Studying Underwater Shock Waves
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Alderfer, David W.
2004-01-01
Several optical methods for measuring temperature near underwater shock waves are reviewed and compared. The relative merits of the different techniques are compared, considering accuracy, precision, ease of use, applicable temperature range, maturity, spatial resolution, and whether or not special additives are required.
Surface elastic wave detectors
NASA Technical Reports Server (NTRS)
Lawson, R. L.
1971-01-01
The potential applications of acoustic surface wave technology to multiplex communication systems such as data-bus, are examined. The goals are primarily to characterize certain aspects of surface wave trapped delay lines, surface wave modulation techniques, and surface wave applications that are relevant to the evaluation of surface wave devices in multiplex systems. The results indicate that there is a potential for the application of surface wave technology in data-bus type systems.
NASA Astrophysics Data System (ADS)
Lim, Say Ian; Liu, Yu; Soh, Chee Kiong
2012-04-01
Fatigue cracks often initiate at the weld toes of welded steel connections. Usually, these cracks cannot be identified by the naked eyes. Existing identification methods like dye-penetration test and alternating current potential drop (ACPD) may be useful for detecting fatigue cracks at the weld toes. To apply these non-destructive evaluation (NDE) techniques, the potential sites have to be accessible during inspection. Therefore, there is a need to explore other detection and monitoring techniques for fatigue cracks especially when their locations are inaccessible or cost of access is uneconomical. Electro-mechanical Impedance (EMI) and Lamb wave techniques are two fast growing techniques in the Structural Health Monitoring (SHM) community. These techniques use piezoelectric ceramics (PZT) for actuation and sensing. Since the monitoring site is only needed to be accessed once for the instrumentation of the transducers, remote monitoring is made possible. The permanent locations of these transducers also translate to having consistent measurement for monitoring. The main focus of this study is to conduct a comparative investigation on the effectiveness and efficiency of the EMI technique and the Lamb wave technique for successful fatigue crack identification and monitoring of welded steel connections using piezoelectric transducers. A laboratory-sized non-load carrying fillet weld specimen is used in this study. The specimen is subjected to cyclic tensile load and data for both techniques are acquired at stipulated intervals. It can be concluded that the EMI technique is sensitive to the crack initiation phase while the Lamb wave technique correlates well with the crack propagation phase.
Inter- and Intra-method Variability of VS Profiles and VS30 at ARRA-funded Sites
NASA Astrophysics Data System (ADS)
Yong, A.; Boatwright, J.; Martin, A. J.
2015-12-01
The 2009 American Recovery and Reinvestment Act (ARRA) funded geophysical site characterizations at 191 seismographic stations in California and in the central and eastern United States. Shallow boreholes were considered cost- and environmentally-prohibitive, thus non-invasive methods (passive and active surface- and body-wave techniques) were used at these stations. The drawback, however, is that these techniques measure seismic properties indirectly and introduce more uncertainty than borehole methods. The principal methods applied were Array Microtremor (AM), Multi-channel Analysis of Surface Waves (MASW; Rayleigh and Love waves), Spectral Analysis of Surface Waves (SASW), Refraction Microtremor (ReMi), and P- and S-wave refraction tomography. Depending on the apparent geologic or seismic complexity of the site, field crews applied one or a combination of these methods to estimate the shear-wave velocity (VS) profile and calculate VS30, the time-averaged VS to a depth of 30 meters. We study the inter- and intra-method variability of VS and VS30 at each seismographic station where combinations of techniques were applied. For each site, we find both types of variability in VS30 remain insignificant (5-10% difference) despite substantial variability observed in the VS profiles. We also find that reliable VS profiles are best developed using a combination of techniques, e.g., surface-wave VS profiles correlated against P-wave tomography to constrain variables (Poisson's ratio and density) that are key depth-dependent parameters used in modeling VS profiles. The most reliable results are based on surface- or body-wave profiles correlated against independent observations such as material properties inferred from outcropping geology nearby. For example, mapped geology describes station CI.LJR as a hard rock site (VS30 > 760 m/s). However, decomposed rock outcrops were found nearby and support the estimated VS30 of 303 m/s derived from the MASW (Love wave) profile.
Guzmán, R; Carpintero, G; Gordon, C; Orbe, L
2016-10-15
We demonstrate and compare two different photonic-based signal sources for generating the carrier wave in a wireless communication link operating in the millimeter-wave range. The first signal source uses the optical heterodyne technique to generate a 113 GHz carrier wave frequency, while the second employs a different technique based on a pulsed mode-locked source with 100 GHz repetition rate frequency. The two optical sources were fabricated in a multi-project wafer run from an active/passive generic integration platform process using standardized building blocks, including multimode interference reflectors which allow us to define the structures on chip, without the need for cleaved facet mirrors. We highlight the superior performance of the mode-locked sources over an optical heterodyne technique. Error-free transmission was achieved in this experiment.
Wang, Dengjiang; Zhang, Weifang; Wang, Xiangyu; Sun, Bo
2016-01-01
This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs) was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART) method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately. PMID:28774041
A technique for generating shear waves in cylindrical shells under radial impact
NASA Technical Reports Server (NTRS)
Blum, A.; Mortimer, R. W.; Rose, J. L.
1974-01-01
Experimental techniques are developed to study and measure the shear-wave velocity in an aluminum cylindrical shell subjected to a radial impact. The radial impact is obtained by exploding an electrical detonator inserted in plastic plugs mounted on the end of the shell. Strain gages, mounted on the outside surface of the shell at various axial locations, are used to obtain oscilloscope traces from which the shear-wave velocity can be calculated.
2013-03-01
beam tunnel [5,6] for a high - power , wideband W- band traveling-wave tube (TWT) amplifier. UV-LIGA is also a promising technique at higher...wide- band , high - power operation of the amplifier [7, 8]. The interaction circuit consists of two traveling-wave stages separated by a power ...technique produces monolithic all-copper circuits, integrated with electron beam tunnel, suitable for high - power continuous-wave operation [1]. We
The Global Signature of Ocean Wave Spectra
NASA Astrophysics Data System (ADS)
Portilla-Yandún, Jesús
2018-01-01
A global atlas of ocean wave spectra is developed and presented. The development is based on a new technique for deriving wave spectral statistics, which is applied to the extensive ERA-Interim database from European Centre of Medium-Range Weather Forecasts. Spectral statistics is based on the idea of long-term wave systems, which are unique and distinct at every geographical point. The identification of those wave systems allows their separation from the overall spectrum using the partition technique. Their further characterization is made using standard integrated parameters, which turn out much more meaningful when applied to the individual components than to the total spectrum. The parameters developed include the density distribution of spectral partitions, which is the main descriptor; the identified wave systems; the individual distribution of the characteristic frequencies, directions, wave height, wave age, seasonal variability of wind and waves; return periods derived from extreme value analysis; and crossing-sea probabilities. This information is made available in web format for public use at http://www.modemat.epn.edu.ec/#/nereo. It is found that wave spectral statistics offers the possibility to synthesize data while providing a direct and comprehensive view of the local and regional wave conditions.
NASA Astrophysics Data System (ADS)
Sabet Divsholi, Bahador; Yang, Yaowen
2011-04-01
Piezoelectric lead zirconate titanate (PZT) transducers have been used for health monitoring of various structures over the last two decades. There are three methods to install the PZT transducers to structures, namely, surface bonded, reusable setup and embedded PZTs. The embedded PZTs and reusable PZT setups can be used for concrete structures during construction. On the other hand, the surface bonded PZTs can be installed on the existing structures. In this study, the applicability and limitations of each installation method are experimentally studied. A real size concrete structure is cast, where the surface bonded, reusable setup and embedded PZTs are installed. Monitoring of concrete hydration and structural damage is conducted by the electromechanical impedance (EMI), wave propagation and wave transmission techniques. It is observed that embedded PZTs are suitable for monitoring the hydration of concrete by using both the EMI and the wave transmission techniques. For damage detection in concrete structures, the embedded PZTs can be employed using the wave transmission technique, but they are not suitable for the EMI technique. It is also found that the surface bonded PZTs are sensitive to damage when using both the EMI and wave propagation techniques. The reusable PZT setups are able to monitor the hydration of concrete. However they are less sensitive in damage detection in comparison to the surface bonded PZTs.
Further SEASAT SAR coastal ocean wave analysis
NASA Technical Reports Server (NTRS)
Kasischke, E. S.; Shuchman, R. A.; Meadows, G. A.; Jackson, P. L.; Tseng, Y.
1981-01-01
Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results.
Surface and downhole shear wave seismic methods for thick soil site investigations
Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.
2002-01-01
Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.
Hu, Fei; Cheng, Yayun; Gui, Liangqi; Wu, Liang; Zhang, Xinyi; Peng, Xiaohui; Su, Jinlong
2016-11-01
The polarization properties of thermal millimeter-wave emission capture inherent information of objects, e.g., material composition, shape, and surface features. In this paper, a polarization-based material-classification technique using passive millimeter-wave polarimetric imagery is presented. Linear polarization ratio (LPR) is created to be a new feature discriminator that is sensitive to material type and to remove the reflected ambient radiation effect. The LPR characteristics of several common natural and artificial materials are investigated by theoretical and experimental analysis. Based on a priori information about LPR characteristics, the optimal range of incident angle and the classification criterion are discussed. Simulation and measurement results indicate that the presented classification technique is effective for distinguishing between metals and dielectrics. This technique suggests possible applications for outdoor metal target detection in open scenes.
Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates
NASA Astrophysics Data System (ADS)
Ha, Sungwon; Chang, Fu-Kuo
2010-01-01
Use of surface-mounted piezoelectric actuators to generate acoustic ultrasound has been demonstrated to be a key component of built-in nondestructive detection evaluation (NDE) techniques, which can automatically inspect and interrogate damage in hard-to-access areas in real time without disassembly of the structural parts. However, piezoelectric actuators create complex waves, which propagate through the structure. Having the capability to model piezoelectric actuator-induced wave propagation and understanding its physics are essential to developing advanced algorithms for the built-in NDE techniques. Therefore, the objective of this investigation was to develop an efficient hybrid spectral element for modeling piezoelectric actuator-induced high-frequency wave propagation in thin plates. With the hybrid element we take advantage of both a high-order spectral element in the in-plane direction and a linear finite element in the thickness direction in order to efficiently analyze Lamb wave propagation in thin plates. The hybrid spectral element out-performs other elements in terms of leading to significantly faster computation and smaller memory requirements. Use of the hybrid spectral element is proven to be an efficient technique for modeling PZT-induced (PZT: lead zirconate titanate) wave propagation in thin plates. The element enables fundamental understanding of PZT-induced wave propagation.
Terahertz wave electro-optic measurements with optical spectral filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilyakov, I. E., E-mail: igor-ilyakov@mail.ru; Shishkin, B. V.; Kitaeva, G. Kh.
We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.
Treatment of Renal Calculi with Extracorporeal Shock Wave Lithotripsy
Eberwein, P. M.; Denstedt, J. D.
1992-01-01
In 12 years, extracorporeal shock wave lithotripsy has replaced other treatment techniques for most surgical calculi in the upper urinary tract. Worldwide clinical series have documented its efficacy. Technological advances and modifications have significantly expanded the clinical applications of this technique. Imagesp1673-aFigure 3 PMID:21221368
C-Band Backscatter Measurements of Winter Sea-Ice in the Weddell Sea, Antarctica
NASA Technical Reports Server (NTRS)
Drinkwater, M. R.; Hosseinmostafa, R.; Gogineni, P.
1995-01-01
During the 1992 Winter Weddell Gyre Study, a C-band scatterometer was used from the German ice-breaker R/V Polarstern to obtain detailed shipborne measurement scans of Antarctic sea-ice. The frequency-modulated continuous-wave (FM-CW) radar operated at 4-3 GHz and acquired like- (VV) and cross polarization (HV) data at a variety of incidence angles (10-75 deg). Calibrated backscatter data were recorded for several ice types as the icebreaker crossed the Weddell Sea and detailed measurements were made of corresponding snow and sea-ice characteristics at each measurement site, together with meteorological information, radiation budget and oceanographic data. The primary scattering contributions under cold winter conditions arise from the air/snow and snow/ice interfaces. Observations indicate so e similarities with Arctic sea-ice scattering signatures, although the main difference is generally lower mean backscattering coefficients in the Weddell Sea. This is due to the younger mean ice age and thickness, and correspondingly higher mean salinities. In particular, smooth white ice found in 1992 in divergent areas within the Weddell Gyre ice pack was generally extremely smooth and undeformed. Comparisons of field scatterometer data with calibrated 20-26 deg incidence ERS-1 radar image data show close correspondence, and indicate that rough Antarctic first-year and older second-year ice forms do not produce as distinctively different scattering signatures as observed in the Arctic. Thick deformed first-year and second-year ice on the other hand are clearly discriminated from younger undeformed ice. thereby allowing successful separation of thick and thin ice. Time-series data also indicate that C-band is sensitive to changes in snow and ice conditions resulting from atmospheric and oceanographic forcing and the local heat flux environment. Variations of several dB in 45 deg incidence backscatter occur in response to a combination of thermally-regulated parameters including sea-ice brine volume, snow and ice complex dielectric properties, and snow physical properties.
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Ellis, Justin; Gair, Jonathan
2014-11-01
We describe several new techniques which accelerate Bayesian searches for continuous gravitational-wave emission from supermassive black-hole binaries using pulsar-timing arrays. These techniques mitigate the problematic increase of search dimensionality with the size of the pulsar array which arises from having to include an extra parameter per pulsar as the array is expanded. This extra parameter corresponds to searching over the phase of the gravitational wave as it propagates past each pulsar so that we can coherently include the pulsar term in our search strategies. Our techniques make the analysis tractable with powerful evidence-evaluation packages like MultiNest. We find good agreement of our techniques with the parameter-estimation and Bayes factor evaluation performed with full signal templates and conclude that these techniques make excellent first-cut tools for detection and characterization of continuous gravitational-wave signals with pulsar-timing arrays. Crucially, at low to moderate signal-to-noise ratios the factor by which the analysis is sped up can be ≳100 , permitting rigorous programs of systematic injection and recovery of signals to establish robust detection criteria within a Bayesian formalism.
Manipulation of Bloch surface waves: from subwavelength focusing to nondiffracting beam
NASA Astrophysics Data System (ADS)
Kim, Myun-Sik; Herzig, Hans Peter
2018-01-01
We present a different type of electromagnetic surface wave than a surface plasmon polariton (SPP), called Bloch surface wave (BSW). BSWs are sustained by dielectric multilayers, and therefore they do not suffer from dissipation. Their propagation length is unbeatably long, e.g., over several millimeters. Thanks to this feature, larger integrations of 2D photonic chips are realizable. To do this, 2D optical components and corresponding techniques are necessary to manipulate in-plane propagation of surface waves. We overview recent progresses of the BSW research on manipulation techniques and developed components. Our study will provide a good guideline of the BSW components for users.
ULTRASONIC STUDIES OF THE FUNDAMENTAL MECHANISMS OF RECRYSTALLIZATION AND SINTERING OF METALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
TURNER, JOSEPH A.
2005-11-30
The purpose of this project was to develop a fundamental understanding of the interaction of an ultrasonic wave with complex media, with specific emphases on recrystallization and sintering of metals. A combined analytical, numerical, and experimental research program was implemented. Theoretical models of elastic wave propagation through these complex materials were developed using stochastic wave field techniques. The numerical simulations focused on finite element wave propagation solutions through complex media. The experimental efforts were focused on corroboration of the models developed and on the development of new experimental techniques. The analytical and numerical research allows the experimental results to bemore » interpreted quantitatively.« less
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Sibeck, D. G.; Breneman, A.W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.
2014-01-01
We present a detailed outline and discussion of the analysis techniques used to compare the relevance of different energy dissipation mechanisms at collisionless shock waves. We show that the low-frequency, quasi-static fields contribute less to ohmic energy dissipation, (-j · E ) (minus current density times measured electric field), than their high-frequency counterparts. In fact, we found that high-frequency, large-amplitude (greater than 100 millivolts per meter and/or greater than 1 nanotesla) waves are ubiquitous in the transition region of collisionless shocks. We quantitatively show that their fields, through wave-particle interactions, cause enough energy dissipation to regulate the global structure of collisionless shocks. The purpose of this paper, part one of two, is to outline and describe in detail the background, analysis techniques, and theoretical motivation for our new results presented in the companion paper. The companion paper presents the results of our quantitative energy dissipation rate estimates and discusses the implications. Together, the two manuscripts present the first study quantifying the contribution that high-frequency waves provide, through wave-particle interactions, to the total energy dissipation budget of collisionless shock waves.
Damage detection in composite materials using Lamb wave methods
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark; Soutis, Constantinos
2002-04-01
Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Linear wave scans were performed on narrow laminated specimens and sandwich beams with various cores by monitoring the transmitted waves with piezoceramic sensors. Optimal actuator and sensor configurations were devised through experimentation, and various types of driving signal were explored. These experiments provided a procedure capable of easily and accurately determining the time of flight of a Lamb wave pulse between an actuator and sensor. Lamb wave techniques provide more information about damage presence and severity than previously tested methods (frequency response techniques), and provide the possibility of determining damage location due to their local response nature. These methods may prove suitable for structural health monitoring applications since they travel long distances and can be applied with conformable piezoelectric actuators and sensors that require little power.
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Mehrdad
Characterizing the near-surface shear-wave velocity structure using Rayleigh-wave phase velocity dispersion curves is widespread in the context of reservoir characterization, exploration seismology, earthquake engineering, and geotechnical engineering. This surface seismic approach provides a feasible and low-cost alternative to the borehole measurements. Phase velocity dispersion curves from Rayleigh surface waves are inverted to yield the vertical shear-wave velocity profile. A significant problem with the surface wave inversion is its intrinsic non-uniqueness, and although this problem is widely recognized, there have not been systematic efforts to develop approaches to reduce the pervasive uncertainty that affects the velocity profiles determined by the inversion. Non-uniqueness cannot be easily studied in a nonlinear inverse problem such as Rayleigh-wave inversion and the only way to understand its nature is by numerical investigation which can get computationally expensive and inevitably time consuming. Regarding the variety of the parameters affecting the surface wave inversion and possible non-uniqueness induced by them, a technique should be established which is not controlled by the non-uniqueness that is already affecting the surface wave inversion. An efficient and repeatable technique is proposed and tested to overcome the non-uniqueness problem; multiple inverted shear-wave velocity profiles are used in a wavenumber integration technique to generate synthetic time series resembling the geophone recordings. The similarity between synthetic and observed time series is used as an additional tool along with the similarity between the theoretical and experimental dispersion curves. The proposed method is proven to be effective through synthetic and real world examples. In these examples, the nature of the non-uniqueness is discussed and its existence is shown. Using the proposed technique, inverted velocity profiles are estimated and effectiveness of this technique is evaluated; in the synthetic example, final inverted velocity profile is compared with the initial target velocity model, and in the real world example, final inverted shear-wave velocity profile is compared with the velocity model from independent measurements in a nearby borehole. Real world example shows that it is possible to overcome the non-uniqueness and distinguish the representative velocity profile for the site that also matches well with the borehole measurements.
NASA Technical Reports Server (NTRS)
Flower, D. A.; Peckham, G. E.; Bradford, W. J.
1984-01-01
Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.
Wave envelope technique for multimode wave guide problems
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Sudharsanan, S. I.
1986-01-01
A fast method for solving wave guide problems is proposed. In particular, the guide is considered to be inhomogeneous allowing propagation of waves of higher order modes. Such problems have been handled successfully for acoustic wave propagation problems with single mode and finite length. This paper extends this concept to electromagnetic wave guides with several modes and infinite length. The method is described and results of computations are presented.
Utilization of high-frequency Rayleigh waves in near-surface geophysics
Xia, J.; Miller, R.D.; Park, C.B.; Ivanov, J.; Tian, G.; Chen, C.
2004-01-01
Shear-wave velocities can be derived from inverting the dispersive phase velocity of the surface. The multichannel analysis of surface waves (MASW) is one technique for inverting high-frequency Rayleigh waves. The process includes acquisition of high-frequency broad-band Rayleigh waves, efficient and accurate algorithms designed to extract Rayleigh-wave dispersion curves from Rayleigh waves, and stable and efficient inversion algorithms to obtain near-surface S-wave velocity profiles. MASW estimates S-wave velocity from multichannel vertical compoent data and consists of data acquisition, dispersion-curve picking, and inversion.
Wave scheduling - Decentralized scheduling of task forces in multicomputers
NASA Technical Reports Server (NTRS)
Van Tilborg, A. M.; Wittie, L. D.
1984-01-01
Decentralized operating systems that control large multicomputers need techniques to schedule competing parallel programs called task forces. Wave scheduling is a probabilistic technique that uses a hierarchical distributed virtual machine to schedule task forces by recursively subdividing and issuing wavefront-like commands to processing elements capable of executing individual tasks. Wave scheduling is highly resistant to processing element failures because it uses many distributed schedulers that dynamically assign scheduling responsibilities among themselves. The scheduling technique is trivially extensible as more processing elements join the host multicomputer. A simple model of scheduling cost is used by every scheduler node to distribute scheduling activity and minimize wasted processing capacity by using perceived workload to vary decentralized scheduling rules. At low to moderate levels of network activity, wave scheduling is only slightly less efficient than a central scheduler in its ability to direct processing elements to accomplish useful work.
Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.
2014-01-01
Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.
Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions.
Feng, Wei; Li, Yong; Jin, Depeng; Su, Li; Chen, Sheng
2016-06-16
The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design.
NASA Astrophysics Data System (ADS)
Cushley, Alex Clay
The proposed launch of a CubeSat carrying the first space-borne ADS-B receiver by RMCC will create a unique opportunity to study the modification of radio waves following propagation through the ionosphere as the signals propagate from the transmitting aircraft to the passive satellite receiver(s). Experimental work is described which successfully demonstrated that ADS-B data can be used to reconstruct two-dimensional electron density maps of the ionosphere using techniques from computerized tomography. Ray-tracing techniques are used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation is determined and converted to TEC along the ray-paths. The resulting TEC is used as input for CIT using ART. This study concentrated on meso-scale structures 100--1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Keywords: Automatic Dependent Surveillance-Broadcast (ADS-B), Faraday rotation, electromagnetic (EM) waves, radio frequency (RF) propagation, ionosphere (auroral, irregularities, instruments and techniques), electron density profile, total electron content (TEC), computer ionospheric tomography (CIT), algebraic reconstruction technique (ART).
Method for Manufacturing Bulk Metallic Glass-Based Strain Wave Gear Components
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C. (Inventor); Wilcox, Brian H. (Inventor)
2017-01-01
Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a method of fabricating a strain wave gear includes: shaping a BMG-based material using a mold in conjunction with one of a thermoplastic forming technique and a casting technique; where the BMG-based material is shaped into one of: a wave generator plug, an inner race, an outer race, a rolling element, a flexspline, a flexspline without a set of gear teeth, a circular spline, a circular spline without a set of gear teeth, a set of gear teeth to be incorporated within a flexspline, and a set of gear teeth to be incorporated within a circular spline.
NASA Astrophysics Data System (ADS)
Kropf, M.; Pedrick, M.; Wang, X.; Tittmann, B. R.
2005-05-01
As per the recent advances in remote in situ monitoring of industrial equipment using long wire waveguides (~10m), novel applications of existing wave generation techniques and new acoustic modeling software have been used to advance waveguide technology. The amount of attainable information from an acoustic signal in such a system is limited by transmission through the waveguide along with frequency content of the generated waves. Magnetostrictive, and Electromagnetic generation techniques were investigated in order to maximize acoustic transmission along the waveguide and broaden the range of usable frequencies. Commercial EMAT, Magnetostrictive and piezoelectric disc transducers (through the innovative use of an acoustic horn) were utilized to generate waves in the wire waveguide. Insertion loss, frequency bandwidth and frequency range were examined for each technique. Electromagnetic techniques are shown to allow for higher frequency wave generation. This increases accessibility of dispersion curves providing further versatility in the selection of guided wave modes, thus increasing the sensitivity to physical characteristics of the specimen. Both electromagnetic and magnetostrictive transducers require the use of a ferromagnetic waveguide, typically coupled to a steel wire when considering long transmission lines (>2m). The interface between these wires introduces an acoustic transmission loss. Coupling designs were examined with acoustic finite element software (Coupled-Acoustic Piezoelectric Analysis). Simulations along with experimental results aided in the design of a novel joint which minimizes transmission loss. These advances result in the increased capability of remote sensing using wire waveguides.
A Modified, Direct Neck Lift Technique: The Cervical Wave-Plasty
Castel, Nikki; Parsa, Natalie Niloufar
2016-01-01
Background Major problems with cervicoplasty by direct skin excision include the subjective nature of skin markings preoperatively and the confusing array of procedures offered. This technique incorporates curved incisions, resulting in a wave-like scar, which is why the procedure is called a "wave-plasty". Methods This prospective study includes 37 patients who underwent wave-plasty procedures from 2004 to 2015. Skin pinching technique was used to mark the anterior neck preoperatively in a reproducible fashion. Intra-operatively, redundant skin was excised, along with excess fat when necessary, and closed to form a wave-shaped scar. Patients were asked to follow up at 1 week, 6 weeks, and 6 months after surgery. Results The mean operation time was 70.8 minutes. The majority (81.3%) was satisfied with their progress. On a scale of 1 to 10 (1 being the worst, and 10 being the best), the scars were objectively graded on average 5.5 when viewed from the front and 7.3 when seen from the side 6 months after surgery. Complications consisted of one partial wound dehiscence (2.3%), one incidence of hypertrophic scarring (2.3%), and two cases of under-resection requiring revision (5.4%). Conclusions In select patients, surgical rejuvenation of the neck may be obtained through wave-like incisions to remove redundant cervical skin when other options are not available. The technique is reproducible, easily teachable and carries low morbidity and high patient satisfaction in carefully chosen patients. PMID:27019811
Three-dimensional waveform sensitivity kernels
NASA Astrophysics Data System (ADS)
Marquering, Henk; Nolet, Guust; Dahlen, F. A.
1998-03-01
The sensitivity of intermediate-period (~10-100s) seismic waveforms to the lateral heterogeneity of the Earth is computed using an efficient technique based upon surface-wave mode coupling. This formulation yields a general, fully fledged 3-D relationship between data and model without imposing smoothness constraints on the lateral heterogeneity. The calculations are based upon the Born approximation, which yields a linear relation between data and model. The linear relation ensures fast forward calculations and makes the formulation suitable for inversion schemes; however, higher-order effects such as wave-front healing are neglected. By including up to 20 surface-wave modes, we obtain Fréchet, or sensitivity, kernels for waveforms in the time frame that starts at the S arrival and which includes direct and surface-reflected body waves. These 3-D sensitivity kernels provide new insights into seismic-wave propagation, and suggest that there may be stringent limitations on the validity of ray-theoretical interpretations. Even recently developed 2-D formulations, which ignore structure out of the source-receiver plane, differ substantially from our 3-D treatment. We infer that smoothness constraints on heterogeneity, required to justify the use of ray techniques, are unlikely to hold in realistic earth models. This puts the use of ray-theoretical techniques into question for the interpretation of intermediate-period seismic data. The computed 3-D sensitivity kernels display a number of phenomena that are counter-intuitive from a ray-geometrical point of view: (1) body waves exhibit significant sensitivity to structure up to 500km away from the source-receiver minor arc; (2) significant near-surface sensitivity above the two turning points of the SS wave is observed; (3) the later part of the SS wave packet is most sensitive to structure away from the source-receiver path; (4) the sensitivity of the higher-frequency part of the fundamental surface-wave mode is wider than for its faster, lower-frequency part; (5) delayed body waves may considerably influence fundamental Rayleigh and Love waveforms. The strong sensitivity of waveforms to crustal structure due to fundamental-mode-to-body-wave scattering precludes the use of phase-velocity filters to model body-wave arrivals. Results from the 3-D formulation suggest that the use of 2-D and 1-D techniques for the interpretation of intermediate-period waveforms should seriously be reconsidered.
Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao
2014-01-01
Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave elastography. These promising results indicate that the proposed technique can enable the implementation of 2D shear wave elastography on conventional ultrasound scanners and potentially facilitate wider clinical applications with shear wave elastography. PMID:25643079
Data Analysis Techniques for Ligo Detector Characterization
NASA Astrophysics Data System (ADS)
Valdes Sanchez, Guillermo A.
Gravitational-wave astronomy is a branch of astronomy which aims to use gravitational waves to collect observational data about astronomical objects and events such as black holes, neutron stars, supernovae, and processes including those of the early universe shortly after the Big Bang. Einstein first predicted gravitational waves in the early century XX, but it was not until Septem- ber 14, 2015, that the Laser Interferometer Gravitational-Wave Observatory (LIGO) directly ob- served the first gravitational waves in history. LIGO consists of two twin detectors, one in Livingston, Louisiana and another in Hanford, Washington. Instrumental and sporadic noises limit the sensitivity of the detectors. Scientists conduct Data Quality studies to distinguish a gravitational-wave signal from the noise, and new techniques are continuously developed to identify, mitigate, and veto unwanted noise. This work presents the application of data analysis techniques, such as Hilbert-Huang trans- form (HHT) and Kalman filtering (KF), in LIGO detector characterization. We investigated the application of HHT to characterize the gravitational-wave signal of the first detection, we also demonstrated the functionality of HHT identifying noise originated from light being scattered by perturbed surfaces, and we estimated thermo-optical aberration using KF. We put particular attention to the scattering origin application, for which a tool was developed to identify disturbed surfaces originating scattering noise. The results reduced considerably the time to search for the scattering surface and helped LIGO commissioners to mitigate the noise.
Architectural Considerations of Fiber-Radio Millimeter-Wave Wireless Access Systems
NASA Astrophysics Data System (ADS)
Kitayama, Ken-Ichi
The architecture of fiber-radio mm-wave wireless access systems critically depends upon the optical mm-wave generation and transport techniques. Four optical mm-wave generation and transport techniques: 1) optical self-heterodyning, 2) external modulation, 3) up- and downconversion, and 4) optical transceiver, will be assessed. From the technical viewpoints, their advantages and disadvantages are discussed. The economical assessment, focusing on the cost of a base station BS ( ), will suggest that the optical transceiver looks the most promising in the long run, but in the near future, however, the external modulation will be cost-effective. The experimental results of 60 GHz testbeds using the external modulation will support the conclusion.
Cunningham, Susan J; Kruger, Andries C; Nxumalo, Mthobisi P; Hockey, Philip A R
2013-01-01
Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (T(thresh)) above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using T(thresh) values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (T(thresh) = 35.5 °C) and the common fiscal Lanius collaris (T(thresh) = 33 °C). We used these T(thresh) values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > T(thresh)), in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance) of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the T(thresh) technique as a conservation tool.
Cunningham, Susan J.; Kruger, Andries C.; Nxumalo, Mthobisi P.
2013-01-01
Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (Tthresh) above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using Tthresh values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (Tthresh = 35.5°C) and the common fiscal Lanius collaris (Tthresh = 33°C). We used these Tthresh values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > Tthresh), in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance) of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the Tthresh technique as a conservation tool. PMID:24349296
Optical distortion in the field of a lithotripter shock wave
NASA Astrophysics Data System (ADS)
Carnell, M. T.; Emmony, D. C.
1995-10-01
The schlieren observation of cavitation phenomena produced in the tail of a lithotripter shock wave has indicated the presence of some interesting features. The images produced appear to indicate that cavitation transients in the field of a shock wave propagate nonsymmetrically; this is not the case. The apparent lack of symmetry exhibited by the primary cavitation transients is due to a complex optical lensing effect, which is brought about by the change in refractive index associated with the pressure profile of the shock wave. Objects seen through or immersed in the shock-wave field of an electromagnetic acoustic transducer, such as cavitation, appear highly distorted because of the strong positive and negative lensing effects of the compression and rarefaction cycles of the shock wave. A modification of the schlieren technique called the scale method has been used to model the distortion introduced by the shock wave and consequently explain the cavitation distortion. The technique has also been used to quantitatively analyze and partially reconstruct the lithotripter shock wave. The combination of schlieren and scale imaging gives more information about the refractive index field and therefore the shock-wave structure itself.
Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F
2014-01-01
Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed. Published by Elsevier B.V.
On the surface-to-bulk mode conversion of Rayleigh waves.
NASA Technical Reports Server (NTRS)
Chang, C.-P.; Tuan, H.-S.
1973-01-01
Surface-to-bulk wave conversion phenomena occurring at a discontinuity characterized by a surface contour deformation are shown to be usable as a means for tapping Rayleigh waves in a nonpiezoelectric solid. A boundary perturbation technique is used in the treatment of the mode conversion problem. A systematic procedure is presented for calculating not only the first-order scattered waves, which include the reflected surface wave and the converted bulk wave, but also the higher order terms.
Denoising in digital speckle pattern interferometry using wave atoms.
Federico, Alejandro; Kaufmann, Guillermo H
2007-05-15
We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.
Technique Developed for Optimizing Traveling-Wave Tubes
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.
1999-01-01
A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT s are critical components in deep-space probes, geosynchronous communication satellites, and high-power radar systems. Power efficiency is of paramount importance for TWT s employed in deep-space probes and communications satellites. Consequently, increasing the power efficiency of TWT s has been the primary goal of the TWT group at the NASA Lewis Research Center over the last 25 years. An in-house effort produced a technique (ref. 1) to design TWT's for optimized power efficiency. This technique is based on simulated annealing, which has an advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 2). A simulated annealing algorithm was created and integrated into the NASA TWT computer model (ref. 3). The new technique almost doubled the computed conversion power efficiency of a TWT from 7.1 to 13.5 percent (ref. 1).
NASA Astrophysics Data System (ADS)
Scanu, Sergio; Peviani, Maximo; Carli, Filippo Maria; Paladini de Mendoza, Francesco; Piermattei, Viviana; Bonamano, Simone; Marcelli, Marco
2015-04-01
This work proposes a multidisciplinary approach in which wave power potential maps are used as baseline for the application of environmental monitoring techniques identified through the use of a Database for Environmental Monitoring Techniques and Equipment (DEMTE), derived in the frame of the project "Marine Renewables Infrastructure Network for Emerging Energy Technologies" (Marinet - FP7). This approach aims to standardize the monitoring of the marine environment in the event of installation, operation and decommissioning of Marine Energy Conversion Systems. The database has been obtained through the collection of techniques and instrumentation available among the partners of the consortium, in relation with all environmental marine compounds potentially affected by any impacts. Furthermore in order to plan marine energy conversion schemes, the wave potential was assessed at regional and local scales using the numerical modelling downscaling methodology. The regional scale lead to the elaboration of the Italian Wave Power Atlas, while the local scale lead to the definition of nearshore hot spots useful for the planning of devices installation along the Latium coast. The present work focus in the application of environmental monitoring techniques identified in the DEMTE, in correspondence of the hotspot derived from the wave potential maps with particular reference to the biological interaction of the devices and the management of the marine space. The obtained results are the bases for the development of standardized procedures which aims to an effective application of marine environmental monitoring techniques during the installation, operation and decommissioning of Marine Energy Conversion Systems. The present work gives a consistent contribution to overcome non-technological barriers in the concession procedures, as far as the protection of the marine environment is of concern.
Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics
ERIC Educational Resources Information Center
Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano
2017-01-01
We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…
NASA Astrophysics Data System (ADS)
Poulain, Pierre-Marie; Luther, Douglas S.; Patzert, William C.
1992-11-01
Two techniques have been developed for estimating statistics of inertial oscillations from satellite-tracked drifters. These techniques overcome the difficulties inherent in estimating such statistics from data dependent upon space coordinates that are a function of time. Application of these techniques to tropical surface drifter data collected during the NORPAX, EPOCS, and TOGA programs reveals a latitude-dependent, statistically significant "blue shift" of inertial wave frequency. The latitudinal dependence of the blue shift is similar to predictions based on "global" internal wave spectral models, with a superposition of frequency shifting due to modification of the effective local inertial frequency by the presence of strongly sheared zonal mean currents within 12° of the equator.
Sundaram, C P; Saltzman, B
1998-10-01
We describe a simple method to assist stone localization during shock wave lithotripsy in the presence of a Double J stent. A 4F whistle tip ureteral catheter is passed alongside a previously inserted 6F Double J stent. The tip of the ureteral stent is positioned in the lower or mid third of the ureter. Contrast material is injected through the ureteral catheter during lithotripsy to assist stone localization. This technique has been successful in localization of poorly opacified renal stones during lithotripsy. Radiolucent and poorly calcified renal stones can be easily localized during shock wave lithotripsy, despite the presence of a Double J stent. No special catheters or stents are required for this technique.
NASA Technical Reports Server (NTRS)
Baum, J. D.; Levine, J. N.
1980-01-01
The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.
NASA Astrophysics Data System (ADS)
Cherry, M.; Dierken, J.; Boehnlein, T.; Pilchak, A.; Sathish, S.; Grandhi, R.
2018-01-01
A new technique for performing quantitative scanning acoustic microscopy imaging of Rayleigh surface wave (RSW) velocity was developed based on b-scan processing. In this technique, the focused acoustic beam is moved through many defocus distances over the sample and excited with an impulse excitation, and advanced algorithms based on frequency filtering and the Hilbert transform are used to post-process the b-scans to estimate the Rayleigh surface wave velocity. The new method was used to estimate the RSW velocity on an optically flat E6 glass sample, and the velocity was measured at ±2 m/s and the scanning time per point was on the order of 1.0 s, which are both improvement from the previous two-point defocus method. The new method was also applied to the analysis of two titanium samples, and the velocity was estimated with very low standard deviation in certain large grains on the sample. A new behavior was observed with the b-scan analysis technique where the amplitude of the surface wave decayed dramatically on certain crystallographic orientations. The new technique was also compared with previous results, and the new technique has been found to be much more reliable and to have higher contrast than previously possible with impulse excitation.
A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.
Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa
2013-10-15
The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.
Study of Lamb Waves for Non-Destructive Testing Behind Screens
NASA Astrophysics Data System (ADS)
Kauffmann, P.; Ploix, M.-A.; Chaix, J.-F.; Gueudré, C.; Corneloup, G.; Baqué, F. AF(; )
2018-01-01
The inspection and control of sodium-cooled fast reactors (SFR) is a major issue for the nuclear industry. Ultrasonic solutions are under study because of the opacity of liquid sodium. In this paper, the use of leaky Lamb waves is considered for non-destructive testing (NDT) on parallel and immersed structures assimilated as plates. The first phase of our approach involved studying the propagation properties of leaky Lamb waves. Equations that model the propagation of Lamb waves in an immersed plate were solved numerically. The phase velocity can be experimentally measured using a two dimensional Fourier transform. The group velocity can be experimentally measured using a short-time Fourier transform technique. Attenuation of leaky Lamb waves is mostly due to the re-emission of energy into the surrounding fluid, and it can be measured by these two techniques.
NASA Astrophysics Data System (ADS)
Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok
We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.
Stress-wave grading techniques on veneer sheets
Joseph Jung
1979-01-01
A study was conducted to compare stress wave devices and determine the information available from stress waves in veneer sheets. The distortion of the stress wave as it passed a defect indicated that an estimate of the location and size of the defect can be obtained but information regarding wood quality is lost in the areas immediately behind a knot.
Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings
ERIC Educational Resources Information Center
Fang, Tian-Shen
2007-01-01
This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…
Low thermal diffusivity measurements of thin films using mirage technique
NASA Astrophysics Data System (ADS)
Wong, P. K.; Fung, P. C. W.; Tam, H. L.
1998-12-01
Mirage technique is proved to be powerful in measurements of thermal diffusivity. Its contactless nature makes it suitable for delicate samples such as thin films and single crystals. However, as the damping of the thermal wave profile increases progressively upon the decrease in thermal diffusivity of the medium, mirage technique becomes more difficult to be applied to low thermal diffusivity measurements. Moreover influences from substrate signals make analysis difficult when the samples are thermally thin. Recently a thermal-wave-coupling method for mirage signal analysis [P. K. Wong, P. C. W. Fung, H. L. Tam, and J. Gao, Phys. Rev. B 51, 523 (1995)] was reported for thermal diffusivity measurements of thin film down to 60 nm thick. In this article we apply the thermal-wave-coupling method to thin films of low thermal diffusivity, especially polymer films. A new lower limit of thermal diffusivity measurable by mirage technique has been reached.
Strain Elastography - How To Do It?
Dietrich, Christoph F.; Barr, Richard G.; Farrokh, André; Dighe, Manjiri; Hocke, Michael; Jenssen, Christian; Dong, Yi; Saftoiu, Adrian; Havre, Roald Flesland
2017-01-01
Tissue stiffness assessed by palpation for diagnosing pathology has been used for thousands of years. Ultrasound elastography has been developed more recently to display similar information on tissue stiffness as an image. There are two main types of ultrasound elastography, strain and shear wave. Strain elastography is a qualitative technique and provides information on the relative stiffness between one tissue and another. Shear wave elastography is a quantitative method and provides an estimated value of the tissue stiffness that can be expressed in either the shear wave speed through the tissues in meters/second, or converted to the Young’s modulus making some assumptions and expressed in kPa. Each technique has its advantages and disadvantages and they are often complimentary to each other in clinical practice. This article reviews the principles, technique, and interpretation of strain elastography in various organs. It describes how to optimize technique, while pitfalls and artifacts are also discussed. PMID:29226273
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Shalkhauser, Kurt A.
1989-01-01
The design and evaluation of a novel fixturing technique for characterizing millimeter wave solid state devices is presented. The technique utilizes a cosine-tapered ridge guide fixture and a one-tier de-embedding procedure to produce accurate and repeatable device level data. Advanced features of this technique include nondestructive testing, full waveguide bandwidth operation, universality of application, and rapid, yet repeatable, chip-level characterization. In addition, only one set of calibration standards is required regardless of the device geometry.
Yamamoto, Tetsuya
2007-06-01
A novel test fixture operating at a millimeter-wave band using an extrapolation range measurement technique was developed at the National Metrology Institute of Japan (NMIJ). Here I describe the measurement system using a Q-band test fixture. I measured the relative insertion loss as a function of antenna separation distance and observed the effects of multiple reflections between the antennas. I also evaluated the antenna gain at 33 GHz using the extrapolation technique.
Radar Remote Sensing of Waves and Currents in the Nearshore Zone
2006-01-01
and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.
Weld quality inspection using laser-EMAT ultrasonic system and C-scan method
NASA Astrophysics Data System (ADS)
Yang, Lei; Ume, I. Charles
2014-02-01
Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.
Sensitivity of high-frequency Rayleigh-wave data revisited
Xia, J.; Miller, R.D.; Ivanov, J.
2007-01-01
Rayleigh-wave phase velocity of a layered earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity (Vs), density, and thickness of layers. Analysis of the Jacobian matrix (or the difference method) provides a measure of dispersion curve sensitivity to earth properties. Vs is the dominant influence for the fundamental mode (Xia et al., 1999) and higher modes (Xia et al., 2003) of dispersion curves in a high frequency range (>2 Hz) followed by layer thickness. These characteristics are the foundation of determining S-wave velocities by inversion of Rayleigh-wave data. More applications of surface-wave techniques show an anomalous velocity layer such as a high-velocity layer (HVL) or a low-velocity layer (LVL) commonly exists in near-surface materials. Spatial location (depth) of an anomalous layer is usually the most important information that surface-wave techniques are asked to provide. Understanding and correctly defining the sensitivity of high-frequency Rayleigh-wave data due to depth of an anomalous velocity layer are crucial in applying surface-wave techniques to obtain a Vs profile and/or determine the depth of an anomalous layer. Because depth is not a direct earth property of a layered model, changes in depth will result in changes in other properties. Modeling results show that sensitivity at a given depth calculated by the difference method is dependent on the Vs difference (contrast) between an anomalous layer and surrounding layers. The larger the contrast is, the higher the sensitivity due to depth of the layer. Therefore, the Vs contrast is a dominant contributor to sensitivity of Rayleigh-wave data due to depth of an anomalous layer. Modeling results also suggest that the most sensitive depth for an HVL is at about the middle of the depth to the half-space, but for an LVL it is near the ground surface. ?? 2007 Society of Exploration Geophysicists.
SPH Numerical Modeling for the Wave-Thin Structure Interaction
NASA Astrophysics Data System (ADS)
Ren, Xi-feng; Sun, Zhao-chen; Wang, Xing-gang; Liang, Shu-xiu
2018-04-01
In this paper, a numerical model of 2D weakly compressible smoothed particle hydrodynamics (WCSPH) is developed to simulate the interaction between waves and thin structures. A new color domain particle (CDP) technique is proposed to overcome difficulties of applying the ghost particle method to thin structures in dealing with solid boundaries. The new technique can deal with zero-thickness structures. To apply this enforcing technique, the computational fluid domain is divided into sub domains, i.e., boundary domains and internal domains. A color value is assigned to each particle, and contains the information of the domains in which the particle belongs to and the particles can interact with. A particle, nearby a thin boundary, is prevented from interacting with particles, which should not interact with on the other side of the structure. It is possible to model thin structures, or the structures with the thickness negligible with this technique. The proposed WCSPH module is validated for a still water tank, divided by a thin plate at the middle section, with different water levels in the subdomains, and is applied to simulate the interaction between regular waves and a perforated vertical plate. Finally, the computation is carried out for waves and submerged twin-horizontal plate interaction. It is shown that the numerical results agree well with experimental data in terms of the pressure distribution, pressure time series and wave transmission.
Visualization of interaction of Mach waves with a bow shock
NASA Astrophysics Data System (ADS)
Pavlov, Al.; Golubev, M.; Kosinov, A.; Pavlov, A.
2017-10-01
The work presents results of investigation of couple weak waves with a bow shock at Mach number M = 2. The waves produced by a small 2D roughness installed on the nozzle inset or side wall of working section. Hot-wire measurements revealed profile of the waves to be similar to N-wave. The visualization was done by means of schlieren technique and interferential AVT SA method. The inclination angle change of the Mach waves at free-stream section and bow shock section was found.
Supershear Rayleigh Waves at a Soft Interface
NASA Astrophysics Data System (ADS)
Le Goff, Anne; Cobelli, Pablo; Lagubeau, Guillaume
2013-06-01
We report on the experimental observation of waves at a liquid foam surface propagating faster than the bulk shear waves. The existence of such waves has long been debated, but the recent observation of supershear events in a geophysical context has inspired us to search for their existence in a model viscoelastic system. An optimized fast profilometry technique allows us to observe on a liquid foam surface the waves triggered by the impact of a projectile. At high impact velocity, we show that the expected subshear Rayleigh waves are accompanied by faster surface waves that can be identified as supershear Rayleigh waves.
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.
2014-01-01
NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.
Mukdadi, Osama; Shandas, Robin
2004-01-01
Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.
Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data
Lin, Kui; McLaughlin, Joyce R.; Thomas, Ashley; Parker, Kevin; Castaneda, Benjamin; Rubens, Deborah J.
2011-01-01
The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i.e., the crawling wave speed, is proportional to the shear wave speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling wave speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling wave speed and the shear wave speed using the phases of the crawling wave and the shear wave. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a wave moving in only one direction; and (2) an L1 minimization technique with physics inspired constraints is employed to calculate the phase of the crawling wave and to eliminate jump discontinuities from the phase of the shear wave. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear wave speed images can have less artifacts than the crawling wave images. Examples are presented where the shear wave speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands. PMID:21786924
Radar studies of gravity waves and tides in the middle atmosphere - A review
NASA Technical Reports Server (NTRS)
Rastogi, P. K.
1981-01-01
A review is presented of recent radar studies of gravity waves and tides in the middle atmosphere (over regions of approximately 10-30 and 60-90 km). The techniques used for monitoring the motions are outlined and their limitations are pointed out. The radars provide observations of short-period (1 min-1 h) gravity waves and tides at selected height intervals, depending on the radar frequency and the observation technique. The following contributions to the study of the midatmosphere are included in the discussion: (1) buoyancy oscillations and short-period (less than 10 min) acoustic-gravity waves have been observed in the troposphere and stratosphere and, in several cases, their generation and propagation near critical levels has been reconciled with theoretical models; (2) excitation of stratospheric waves by penetrative convection associated with thunderstorms has been established; (3) stratospheric and mesospheric tides at diurnal and semidiurnal periods have been observed; and (4) long-period (approximately 2 to 5 days) waves have been observed in the mesosphere. It is noted that more comprehensive data bases need to be obtained for further tidal and wave studies.
Combining spiral and target wave detection to analyze excitable media dynamics
NASA Astrophysics Data System (ADS)
Geberth, Daniel; Hütt, Marc-Thorsten
2010-01-01
Excitable media dynamics is the lossless active transmission of waves of excitation over a field of coupled elements, such as electrical excitation in heart tissue or nerve fibers, cAMP signaling in the slime mold Dictyostelium discoideum or waves of chemical activity in the Belousov-Zhabotinsky reaction. All these systems follow essentially the same generic dynamics, including undamped wave transmission and the self-organized emergence of circular target and self-sustaining spiral waves. We combine spiral recognition, using the established phase singularity technique, and a novel three-dimensional fitting algorithm for noise-resistant target wave recognition to extract all important events responsible for the layout of the asymptotic large-scale pattern. Space-time plots of these combined events reveal signatures of events leading to spiral formation, illuminating the microscopic mechanisms at work. This strategy can be applied to arbitrary excitable media data from either models or experiments, giving insight into for example the microscopic causes for formation of pathological spiral waves in heart tissue, which could lead to novel techniques for diagnosis, risk evaluation and treatment.
Using Boosting Decision Trees in Gravitational Wave Searches triggered by Gamma-ray Bursts
NASA Astrophysics Data System (ADS)
Zuraw, Sarah; LIGO Collaboration
2015-04-01
The search for gravitational wave bursts requires the ability to distinguish weak signals from background detector noise. Gravitational wave bursts are characterized by their transient nature, making them particularly difficult to detect as they are similar to non-Gaussian noise fluctuations in the detector. The Boosted Decision Tree method is a powerful machine learning algorithm which uses Multivariate Analysis techniques to explore high-dimensional data sets in order to distinguish between gravitational wave signal and background detector noise. It does so by training with known noise events and simulated gravitational wave events. The method is tested using waveform models and compared with the performance of the standard gravitational wave burst search pipeline for Gamma-ray Bursts. It is shown that the method is able to effectively distinguish between signal and background events under a variety of conditions and over multiple Gamma-ray Burst events. This example demonstrates the usefulness and robustness of the Boosted Decision Tree and Multivariate Analysis techniques as a detection method for gravitational wave bursts. LIGO, UMass, PREP, NEGAP.
Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C
2008-02-01
We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.
A non-collinear mixing technique to measure the acoustic nonlinearity parameter of adhesive bond
NASA Astrophysics Data System (ADS)
Ju, Taeho; Achenbach, Jan. D.; Jacobs, Laurence J.; Qu, Jianmin
2018-04-01
In this work, we employed a wave mixing technique with an incident longitudinal wave and a shear wave to measure the Acoustic Nonlinearity Parameter (ANLP) of adhesive bonds. An adhesive transfer tape (F-9473PC) was used as an adhesive material: two aluminum plates are bonded together by the tape. To achieve a high signal to noise ratio, the optimal interaction angle and frequency ratio between the two incident waves were carefully selected so resonance occurs primarily in the adhesive layer, which somewhat suppressed the resonance in the aluminum plates. One of the most significant features of this method is that the measurements need only one-side access to the sample being measured. To demonstrate the effectiveness of the proposed technique, the adhesively bonded aluminum sample was placed in a temperature-controlled chamber for thermal aging. The ANLP of the thermally aged sample was compared with that of a freshly made adhesive sample. The results show that the ANLP increases with aging time and temperature.
Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions
Feng, Wei; Li, Yong; Jin, Depeng; Su, Li; Chen, Sheng
2016-01-01
The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design. PMID:27322265
A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves
NASA Astrophysics Data System (ADS)
Hyunjo, Jeong; Sungjong, Cho; Wei, Wei
2011-06-01
We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side-band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect.
Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor
NASA Astrophysics Data System (ADS)
John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand
2002-12-01
A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.
A technique to measure the thermal diffusivity of high Tc superconductors
NASA Technical Reports Server (NTRS)
Powers, Charles E.
1991-01-01
High T(sub c) superconducting electrical current leads and ground straps will be used in cryogenic coolers in future NASA Goddard Space Flight Center missions. These superconducting samples are long, thin leads with a typical diameter of two millimeters. A longitudinal method is developed to measure the thermal diffusivity of candidate materials for this application. This technique uses a peltier junction to supply an oscillatory heat wave into one end of a sample and will use low mass thermocouples to follow the heat wave along the sample. The thermal diffusivity is calculated using both the exponential decay of the heat wave and the phase shift to the wave. Measurements are performed in a cryostat between 10 K and room temperature.
Full Spectrum Conversion Using Traveling Pulse Wave Quantization
2017-03-01
Full Spectrum Conversion Using Traveling Pulse Wave Quantization Michael S. Kappes Mikko E. Waltari IQ-Analog Corporation San Diego, California...temporal-domain quantization technique called Traveling Pulse Wave Quantization (TPWQ). Full spectrum conversion is defined as the complete...pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a
Middle Atmosphere Program. Handbook for MAP, volume 20
NASA Technical Reports Server (NTRS)
Bowhill, S. A. (Editor); Edwards, B. (Editor)
1986-01-01
Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.
Statistical approaches for studying the wave climate of crossing-sea states
NASA Astrophysics Data System (ADS)
Barbariol, Francesco; Portilla, Jesus; Benetazzo, Alvise; Cavaleri, Luigi; Sclavo, Mauro; Carniel, Sandro
2017-04-01
Surface waves are an important feature of the world's oceans and seas. Their role in the air-sea exchanges is well recognized, together with their effects on the upper ocean and lower atmosphere dynamics. Physical processes involving surface waves contribute in driving the Earth's climate that, while experiencing changes at global and regional scales, in turn affects the surface waves climate over the oceans. The assessment of the wave climate at specific locations of the ocean is fruitful for many research fields in marine and atmospheric sciences and also for the human activities in the marine environment. Very often, wind generated waves (wind-sea) and one or more swell systems occur simultaneously, depending on the complexity of the atmospheric conditions that force the waves. Therefore, a wave climate assessed from the statistical analysis of long time series of integral wave parameters, can hardly say something about the frequency of occurrence of the so-called crossing-seas, as well as of their features. Directional wave spectra carry such information but proper statistical methods to analyze them are needed. In this respect, in order to identify the crossing sea states within the spectral time series and to assess their frequency of occurrence we exploit two advanced statistical techniques. First, we apply the Spectral Partitioning, a well-established method based on a two-step partitioning of the spectrum that allows to identify the individual wave systems and to compute their probability of occurrence in the frequency/direction space. Then, we use the Self-Organizing Maps, an unsupervised neural network algorithm that quantize the time series by autonomously identifying an arbitrary (small) number of wave spectra representing the whole wave climate, each with its frequency of occurrence. This method has been previously applied to time series of wave parameters and for the first time is applied to directional wave spectra. We analyze the wave climate of one of the most severe regions of the Mediterranean Sea, between north-west Sardinia and the Gulf of Lion, where quite often wave systems coming from different directions superpose. Time series for the analysis is taken from the ERA-Interim Reanalysis dataset, which provides global directional wave spectra at 1° resolution, starting from 1979 up to the present. Results from the two techniques are shown to be consistent, and their comparison points out the contribution that each technique can provide for a more detailed interpretation of the wave climate.
Velocity Profile measurements in two-phase flow using multi-wave sensors
NASA Astrophysics Data System (ADS)
Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.
2009-02-01
Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.
NASA Technical Reports Server (NTRS)
Rosenbaum, D. S.; Albrecht, P.; Cohen, R. J.
1996-01-01
Sudden cardiac death remains a preeminent public health problem. Despite advances in preventative treatment for patients known to be at risk, to date we have been able to identify, and thus treat, only a small minority of these patients. Therefore, there is a major need to develop noninvasive diagnostic technologies to identify patients at risk. Recent studies have demonstrated that measurement of microvolt-level T wave alternans is a promising technique for the accurate identification of patients at risk for ventricular arrhythmias and sudden cardiac death. In this article, we review the clinical data establishing the relationship between microvolt T wave alternans and susceptibility to ventricular arrhythmias. We also review the methods and technology that have been developed to measure microvolt levels of T wave alternans noninvasively in broad populations of ambulatory patients. In particular, we examine techniques that permit the accurate measurement of T wave alternans during exercise stress testing.
NASA Astrophysics Data System (ADS)
Geza, N.; Yushin, V.
2007-12-01
Instant variations of the velocities and attenuation of seismic waves in a friable medium subjected to dynamic loading have been studied by new experimental techniques using a powerful seismic vibrator. The half-space below the operating vibrator baseplate was scanned by high-frequency elastic waves, and the recorded fluctuations were exposed to a stroboscopic analysis. It was found that the variations of seismic velocities and attenuation are synchronous with the external vibrational load but have phase shift from it. Instant variations of the seismic waves parameters depend on the magnitude and absolute value of deformation, which generally result in decreasing of the elastic-wave velocities. New experimental techniques have a high sensitivity to the dynamic disturbance in the medium and allow one to detect a weak seismic boundaries. The relaxation process after dynamic vibrational loading were investigated and the results of research are presented.
Umeyama, Motohiko
2012-04-13
This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.
NASA Technical Reports Server (NTRS)
Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.;
2014-01-01
The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.
NASA Astrophysics Data System (ADS)
Sidery, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; Kalogera, V.; Mandel, I.; O'Shaughnessy, R.; Pitkin, M.; Price, L.; Raymond, V.; Röver, C.; Singer, L.; van der Sluys, M.; Smith, R. J. E.; Vecchio, A.; Veitch, J.; Vitale, S.
2014-04-01
The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiral-only signals from compact binary systems with a total mass of ≤20M⊙ and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor ≈20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor ≈1000 longer processing time.
Patra, Subir; Ahmed, Hossain; Banerjee, Sourav
2018-01-18
Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D) Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS) and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT) transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D) in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM) of plate-like structures and nondestructive evaluation (NDE) of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.
Ormachea, Juvenal; Castaneda, Benjamin; Parker, Kevin J
2018-05-01
Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansonnens, L.; Schmidt, H.; Howling, A.A.
The electromagnetic standing wave effect can become the main source of nonuniformity limiting the use of very high frequency in large area reactors exceeding 1 m{sup 2} required for industrial applications. Recently, it has been proposed and shown experimentally in a cylindrical reactor that a shaped electrode in place of the conventional flat electrode can be used in order to suppress the electromagnetic standing wave nonuniformity. In this study, we show experimental measurements demonstrating that the shaped electrode technique can also be applied in large area rectangular reactors. We also present results of electromagnetic screening by a conducting substrate whichmore » has important consequences for industrial application of the shaped electrode technique.« less
Guided-waves technique for inspecting the health of wall-covered building risers
NASA Astrophysics Data System (ADS)
Tse, Peter W.; Chen, J. M.; Wan, X.
2015-03-01
The inspection technique uses guided ultrasonic waves (GW) has been proven effective in detecting pipes' defects. However, as of today, the technique has not attracted much market attention because of insufficient field tests and lack of traceable records with proven results in commercial applications. In this paper, it presents the results obtained by using GW to inspect the defects occurred in real gas risers that are commonly installed in tall buildings. The purpose of having risers is to deliver gas from any building external piping system to each household unit of the building. The risers extend from the external wall of the building, penetrate thorough the concrete wall, into the kitchen or bathroom of each household unit. Similar to in-service pipes, risers are prone to corrosion due to water leaks into the concrete wall. However, the corrosion occurs in the section of riser, which is covered by the concrete wall, is difficult to be inspected by conventional techniques. Hence, GW technique was employed. The effectiveness of GW technique was tested by laboratory and on-site experiments using real risers gathered from tall buildings. The experimental results show that GW can partially penetrate thorough the riser's section that is covered by wall. The integrity of the wall-covered section of a riser can be determined by the reflected wave signals generated by the corroded area that may exit inside the wall-covered section. Based on the reflected wave signal, one can determine the health of the wall-covered riser.
Experimental studies on the stability and transition of 3-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Nitschke-Kowsky, P.
1987-01-01
Three-dimensional unstable boundary layers were investigated as to their characteristic instabilities, leading to turbulence. Standing cross-flow instabilities and traveling waves preceding the transition were visualized with the hydrogen bubble technique in the boundary layer above the wall of a swept cylinder. With the sublimation method and hot film technique, a model consisting of a swept flat plate with a pressure-inducing displacement body in the 1 m wind tunnel was studied. Standing waves and traveling waves in a broad frequency are observed. The boundary layer of this model is close to the assumptions of the theory.
Momentum flux measurements: Techniques and needs, part 4.5A
NASA Technical Reports Server (NTRS)
Fritts, D. C.
1984-01-01
The vertical flux of horizontal momentum by internal gravity waves is now recognized to play a significant role in the large-scale circulation and thermal structure of the middle atmosphere. This is because a divergence of momentum flux due to wave dissipation results in an acceleration of the local mean flow towards the phase speed of the gravity wave. Such mean flow acceleration are required to offset the large zonal accelerations driven by Coriolis torques acting on the diabatic meridional circulation. Techniques and observations regarding the momentum flux distribution in the middle atmosphere are discussed.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
NASA Technical Reports Server (NTRS)
Baumeiste, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
Experimental studies of a continuous-wave HF(DF) confocal unstable resonator. Interim report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chodzko, R.A.; Cross, E.F.; Durran, D.A.
1976-05-03
A series of experiments were performed on a continuous-wave HF(DF) multiline edge-coupled confocal unstable resonator at The Aerospace Corporation MESA facility. Experimental techniques were developed to measure remotely (from a blockhouse) the output power, the near-field intensity distribution, the spatially resolved spectral content of the near field, and the far-field power distribution. A new technique in which a variable aperture calorimeter absorbing scraper (VACAS) was used for measuring the continuous-wave output power from an unstable resonator with variable-mode geometry and without the use of an output coupling mirror was developed. (GRA)
Structural damage diagnostics via wave propagation-based filtering techniques
NASA Astrophysics Data System (ADS)
Ayers, James T., III
Structural health monitoring (SHM) of aerospace components is a rapidly emerging field due in part to commercial and military transport vehicles remaining in operation beyond their designed life cycles. Damage detection strategies are sought that provide real-time information of the structure's integrity. One approach that has shown promise to accurately identify and quantify structural defects is based on guided ultrasonic wave (GUW) inspections, where low amplitude attenuation properties allow for long range and large specimen evaluation. One drawback to GUWs is that they exhibit a complex multi-modal response, such that each frequency corresponds to at least two excited modes, and thus intelligent signal processing is required for even the simplest of structures. In addition, GUWs are dispersive, whereby the wave velocity is a function of frequency, and the shape of the wave packet changes over the spatial domain, requiring sophisticated detection algorithms. Moreover, existing damage quantification measures are typically formulated as a comparison of the damaged to undamaged response, which has proven to be highly sensitive to changes in environment, and therefore often unreliable. As a response to these challenges inherent to GUW inspections, this research develops techniques to locate and estimate the severity of the damage. Specifically, a phase gradient based localization algorithm is introduced to identify the defect position independent of excitation frequency and damage size. Mode separation through the filtering technique is central in isolating and extracting single mode components, such as reflected, converted, and transmitted modes that may arise from the incident wave impacting a damage. Spatially-integrated single and multiple component mode coefficients are also formulated with the intent to better characterize wave reflections and conversions and to increase the signal to noise ratios. The techniques are applied to damaged isotropic finite element plate models and experimental data obtained from Scanning Laser Doppler Vibrometry tests. Numerical and experimental parametric studies are conducted, and the current strengths and weaknesses of the proposed approaches are discussed. In particular, limitations to the damage profiling characterization are shown for low ultrasonic frequency regimes, whereas the multiple component mode conversion coefficients provide excellent noise mitigation. Multiple component estimation relies on an experimental technique developed for the estimation of Lamb wave polarization using a 1D Laser Vibrometer. Lastly, suggestions are made to apply the techniques to more structurally complex geometries.
Sand-wave movement on Little Georges Bank
Twichell, David C.
1983-01-01
A 1-x-1.5-km area on Little Georges Bank (centered at 41?08?N., 68?04?W.) was mapped three times during a ten-month period by sidescan sonar and echo-sounding techniques to assess the morphology and mobility of sand waves on Georges Bank. Sand-wave amplitudes in the survey area ranged from 1-11 m although most were 5-7 m. Wavelengths were not constant as the crests were sinuous and in places, even bifurcated. The sand waves are asymmetrical with their steepest sides facing northwest; however, gradients of their steep sides mostly are 4?-10? which is well below the angle of repose for sand in water. Sand waves tended to have greater relief and a sharper asymmetry during the survey in September than during those in June or April. During the survey period the sand waves moved but the direction and rate of motion was variable. Even along an individual sand wave some parts moved as much as 60 m between surveys while other parts apparently remained stationary. The sand waves were asymmetrical, but movement was not consistently in the direction that the steep sides faced. Along the same sand wave, parts moved to the northwest while other parts moved to the southeast. Despite the complex pattern of sand motion, the mean displacement of the sand waves was below the resolution of the survey technique; to resolve it, a longer survey is needed.
NASA Astrophysics Data System (ADS)
Gambino, G.; Tanriver, U.; Guha, P.; Choudhury, A. Ghose; Choudhury, S. Roy
2015-02-01
In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively of the original PDEs. We perform many numerical tests in different parameter regime to pinpoint real saddle equilibrium points of the corresponding traveling-wave equations, as well as ensure simultaneous convergence and continuity of the multi-infinite series solutions for the homoclinic/heteroclinic orbits anchored by these saddle points. Unlike the majority of unaccelerated convergent series, high accuracy is attained with relatively few terms. And finally, variational methods are employed to generate families of both regular and embedded solitary wave solutions for the SPE PDE. The technique for obtaining the embedded solitons incorporates several recent generalizations of the usual variational technique and it is thus topical in itself. One unusual feature of the solitary waves derived here is that we are able to obtain them in analytical form (within the assumed ansatz for the trial functions). Thus, a direct error analysis is performed, showing the accuracy of the resulting solitary waves. Given the importance of solitary wave solutions in wave dynamics and information propagation in nonlinear PDEs, as well as the fact that not much is known about solutions of the family of generalized SPE equations considered here, the results obtained are both new and timely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsin-Liang, E-mail: hlchen@iner.gov.tw; Tu, Yen-Cheng; Hsieh, Cheng-Chang
2014-09-14
With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in timemore » and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to <±10% once two specific standing waves are launched at the same time. Moreover, in terms of the reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.« less
5-D interpolation with wave-front attributes
NASA Astrophysics Data System (ADS)
Xie, Yujiang; Gajewski, Dirk
2017-11-01
Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that there are significant advantages for steep dipping events using the 5-D WABI method when compared to the rank-reduction-based 5-D interpolation technique. Diffraction tails substantially benefit from this improved performance of the partial CRS stacking approach while the CPU time is comparable to the CPU time consumed by the rank-reduction-based method.
Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin
2004-01-01
This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...
Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.
2007-01-01
A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.
Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis
Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng
2016-01-01
Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinalâ...
Bistable traveling waves for a competitive-cooperative system with nonlocal delays
NASA Astrophysics Data System (ADS)
Tian, Yanling; Zhao, Xiao-Qiang
2018-04-01
This paper is devoted to the study of bistable traveling waves for a competitive-cooperative reaction and diffusion system with nonlocal time delays. The existence of bistable waves is established by appealing to the theory of monotone semiflows and the finite-delay approximations. Then the global stability of such traveling waves is obtained via a squeezing technique and a dynamical systems approach.
System Identification of Mistuned Bladed Disks from Traveling Wave Response Measurements
NASA Technical Reports Server (NTRS)
Feiner, D. M.; Griffin, J. H.; Jones, K. W.; Kenyon, J. A.; Mehmed, O.; Kurkov, A. P.
2003-01-01
A new approach to modal analysis is presented. By applying this technique to bladed disk system identification methods, one can determine the mistuning in a rotor based on its response to a traveling wave excitation. This allows system identification to be performed under rotating conditions, and thus expands the applicability of existing mistuning identification techniques from integrally bladed rotors to conventional bladed disks.
Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun
2009-10-21
Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.
Radar measurements of surface deformation in the sub mm-range
NASA Astrophysics Data System (ADS)
Peters, Gerhard; Hort, Matthias; Gerst, Alexander; Scharff, Lea
2016-04-01
A portable low power Doppler radar at 24 GHz is used for volcano eruption observations since more than a decade (e.g. Hort and Seyfried, 1998, doi: 10.1029/97GL03482; Seyfried and Hort, 1999, doi: 10.1007/s004450050256; Vöge et al., 2005, doi: 10.1029/2005 EO510001, Vöge and Hort, 2009, doi: 10.1109/TGRS. 2008.2002693, Gerst et al., 2013, doi: 10.1002/jgrb.50234; Scharff et al, 2015, doi: 10.1130/G36705.1) The typical radar products are range resolved Doppler spectra containing information on the reflectivity, radial velocity and its distribution of ejected particles. Here we present the analysis of the phase of radar signals for the detection of comparably slow and small deformations of the solid surface which may occur for example prior to an eruption [Hort et al., 2010, AGU Fall meeting, Abstract V32B-03]. While the phase analysis of weather radar echoes from ground targets is established for estimating the atmospheric refractivity [Besson and du Châtelet, 2013, http://dx.doi.org/ 10.1175/ JTECH-D-12-00167.1], we consider here the variability of the atmosphere as a source of uncertainty. We describe the implementation of this technique in a dedicated compact low power FMCW system. Observations at Stromboli suggest an expansion of the vent prior to the eruption on the order of millimeter which is on the same oder as reported by [Noferini et al., 2009, doi: 10.1109/IGARSS. 2009. 5416901] and in case of Santiaguito volcano we were able to observe the post eruptive subsidence of the volcanic dome. We suggest further to resolve the range/refractivity ambiguity by using a dual frequency radar with sufficient frequency separation for utilizing the frequency dependence of refractivity.
Bonding Diamond To Metal In Electronic Circuits
NASA Technical Reports Server (NTRS)
Jacquez, Andrew E.
1993-01-01
Improved technique for bonding diamond to metal evolved from older technique of soldering or brazing and more suitable for fabrication of delicate electronic circuits. Involves diffusion bonding, developed to take advantage of electrically insulating, heat-conducting properties of diamond, using small diamond bars as supports for slow-wave transmission-line structures in traveling-wave-tube microwave amplifiers. No fillets or side coats formed because metal bonding strips not melted. Technique also used to mount such devices as transistors and diodes electrically insulated from, but thermally connected to, heat sinks.
Simple equations guide high-frequency surface-wave investigation techniques
Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.
2006-01-01
We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.
Advanced Accelerators: Particle, Photon and Plasma Wave Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Ronald L.
2017-06-29
The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less
Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves
NASA Astrophysics Data System (ADS)
Li, Dan; Kuang, Kevin Sze Chiang; Ghee Koh, Chan
2017-06-01
The acoustic emission (AE) technique is a promising approach for detecting and locating fatigue cracks in metallic structures such as rail tracks. However, it is still a challenge to quantify the crack size accurately using this technique. AE waves can be generated by either crack propagation (CP) or crack closure (CC) processes and classification of these two types of AE waves is necessary to obtain more reliable crack sizing results. As the pre-processing step, an index based on wavelet power (WP) of AE signal is initially established in this paper in order to distinguish between the CC-induced AE waves and their CP-induced counterparts. Here, information embedded within the AE signal was used to perform the AE wave classification, which is preferred to the use of real-time load information, typically adopted in other studies. With the proposed approach, it renders the AE technique more amenable to practical implementation. Following the AE wave classification, a novel method to quantify the fatigue crack length was developed by taking advantage of the CC-induced AE waves, the count rate of which was observed to be positively correlated with the crack length. The crack length was subsequently determined using an empirical model derived from the AE data acquired during the fatigue tests of the rail steel specimens. The performance of the proposed method was validated by experimental data and compared with that of the traditional crack sizing method, which is based on CP-induced AE waves. As a significant advantage over other AE crack sizing methods, the proposed novel method is able to estimate the crack length without prior knowledge of the initial crack length, integration of AE data or real-time load amplitude. It is thus applicable to the health monitoring of both new and existing structures.
NASA Astrophysics Data System (ADS)
Poppeliers, C.; Preston, L. A.
2017-12-01
Measurements of seismic surface wave dispersion can be used to infer the structure of the Earth's subsurface. Typically, to identify group- and phase-velocity, a series of narrow-band filters are applied to surface wave seismograms. Frequency dependent arrival times of surface waves can then be identified from the resulting suite of narrow band seismograms. The frequency-dependent velocity estimates are then inverted for subsurface velocity structure. However, this technique has no method to estimate the uncertainty of the measured surface wave velocities, and subsequently there is no estimate of uncertainty on, for example, tomographic results. For the work here, we explore using the multiwavelet transform (MWT) as an alternate method to estimate surface wave speeds. The MWT decomposes a signal similarly to the conventional filter bank technique, but with two primary advantages: 1) the time-frequency localization is optimized in regard to the time-frequency tradeoff, and 2) we can use the MWT to estimate the uncertainty of the resulting surface wave group- and phase-velocities. The uncertainties of the surface wave speed measurements can then be propagated into tomographic inversions to provide uncertainties of resolved Earth structure. As proof-of-concept, we apply our technique to four seismic ambient noise correlograms that were collected from the University of Nevada Reno seismic network near the Nevada National Security Site. We invert the estimated group- and phase-velocities, as well the uncertainties, for 1-D Earth structure for each station pair. These preliminary results generally agree with 1-D velocities that are obtained from inverting dispersion curves estimated from a conventional Gaussian filter bank.
Observing the Microseism Source Regions from Space
NASA Astrophysics Data System (ADS)
Simard, M.; Kedar, S.; Rodriguez, E.; Webb, F. H.
2005-12-01
Correlations of this ambient seismic signal between seismic stations has recently emerged as a powerful technique for tomography of the Earth's crust, allowing continuous global monitoring of the crust to seismogenic depths without relying on the occurrence of earthquakes. The technique has the potential for resolving changes in the crust during periods of little or no earthquake activity. Since ambient seismic noise is predominantly generated by ocean wave-wave interactions known to originate in narrowly defined geographical source areas that vary according to ocean swell state and season, it may be possible to derive physical constraints of the source characteristics by globallyly observing candidate source regions from space. At present, such observations have been confined to point measurements such as directional buoys and ocean-bottom seismometers. Using a technique formulated by Engen and Jonsen [1995], a 'field view' of the generating region can be obtained by deriving ocean directional spectra from Synthetic Aperature Radar (SAR) images by analysis of cross correlation of single-look SAR images. In November 2004, the Jet Propulsion Laboratory's (JPL) air-borne SAR instrument, has collected data off the Alaska coast, while a large storm with wave heights of ~8m was pounding the coast. This was contemporaneous with the recording of strong microseismic activity by the Canadian National Seismic (CNSN). The AirSAR collected over a 100km long, 10km wide swath offshore, the region most likely to involve wave-wave interaction between the incoming swell and coast-reflected waves. JPL has implemented the cross correlation spectral technique, and applied it to the 2004 data-set. We will present results of the analysis of the SAR data in conjunction with analysis of the CNSN broadband seismic data.
Dipping-interface mapping using mode-separated Rayleigh waves
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.
Covariant extension of the GPD overlap representation at low Fock states
Chouika, N.; Mezrag, C.; Moutarde, H.; ...
2017-12-26
Here, we present a novel approach to compute generalized parton distributions within the lightfront wave function overlap framework. We show how to systematically extend generalized parton distributions computed within the DGLAP region to the ERBL one, fulfilling at the same time both the polynomiality and positivity conditions. We exemplify our method using pion lightfront wave functions inspired by recent results of non-perturbative continuum techniques and algebraic nucleon lightfront wave functions. We also test the robustness of our algorithm on reggeized phenomenological parameterizations. This approach paves the way to a better understanding of the nucleon structure from non-perturbative techniques and tomore » a unification of generalized parton distributions and transverse momentum dependent parton distribution functions phenomenology through lightfront wave functions.« less
PVT Degradation Studies: Acoustic Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dib, Gerges; Tucker, Brian J.; Kouzes, Richard T.
Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regionsmore » with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.« less
Comparing wave shoaling methods used in large-scale coastal evolution modeling
NASA Astrophysics Data System (ADS)
Limber, P. W.; Adams, P. N.; Murray, A.
2013-12-01
A variety of methods are available to simulate wave propagation from the deep ocean to the surf zone. They range from simple and computationally fast (e.g. linear wave theory applied to shore-parallel bathymetric contours) to complicated and computationally intense (e.g., Delft's ';Simulating WAves Nearshore', or SWAN, model applied to complex bathymetry). Despite their differences, the goal of each method is the same with respect to coastline evolution modeling: to link offshore waves with rates of (and gradients in) alongshore sediment transport. Choosing a shoaling technique for modeling coastline evolution should be partly informed by the spatial and temporal scales of the model, as well as the model's intent (is it simulating a specific coastline, or exploring generic coastline dynamics?). However, the particular advantages and disadvantages of each technique, and how the advantages/disadvantages vary over different model spatial and temporal scales, are not always clear. We present a wave shoaling model that simultaneously computes breaking wave heights and angles using three increasingly complex wave shoaling routines: the most basic approach assuming shore-parallel bathymetric contours, a wave ray tracing method that includes wave energy convergence and divergence and non-shore-parallel contours, and a spectral wave model (SWAN). Initial results show reasonable agreement between wave models along a flat shoreline for small (1 m) wave heights, low wave angles (0 to 10 degrees), and simple bathymetry. But, as wave heights and angles increase, bathymetry becomes more variable, and the shoreline shape becomes sinuous, the model results begin to diverge. This causes different gradients in alongshore sediment transport between model runs employing different shoaling techniques and, therefore, different coastline behavior. Because SWAN does not approximate wave breaking (which drives alongshore sediment transport) we use a routine to extract grid cells from SWAN output where wave height is approximately one-half of the water depth (a standard wave breaking threshold). The goal of this modeling exercise is to understand under what conditions a simple wave model is sufficient for simulating coastline evolution, and when using a more complex shoaling routine can optimize a coastline model. The Coastline Evolution Model (CEM; Ashton and Murray, 2006) is used to show how different shoaling routines affect modeled coastline behavior. The CEM currently includes the most basic wave shoaling approach to simulate cape and spit formation. We will instead couple it to SWAN, using the insight from the comprehensive wave model (above) to guide its application. This will allow waves transformed over complex bathymetry, such as cape-associated shoals and ridges, to be input for the CEM so that large-scale coastline behavior can be addressed in less idealized environments. Ashton, A., and Murray, A.B., 2006, High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes: Journal of Geophysical Research, v. 111, p. F04011, doi:10.1029/2005JF000422.
SU-E-J-192: Comparative Effect of Different Respiratory Motion Management Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Y; Kadoya, N; Ito, K
Purpose: Irregular breathing can influence the outcome of four-dimensional computed tomography imaging for causing artifacts. Audio-visual biofeedback systems associated with patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches), representing simpler visual coaching techniques without guiding waveform are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching to reduce respiratory irregularities by comparing two respiratory management systems. Methods: We collected data from eleven healthy volunteers. Bar and wave models were used as audio-visual biofeedback systems. Abches consisted of a respiratorymore » indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. Results: All coaching techniques improved respiratory variation, compared to free breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86, and 0.98 ± 0.47 mm for free breathing, Abches, bar model, and wave model, respectively. Free breathing and wave model differed significantly (p < 0.05). Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18, and 0.17 ± 0.05 s for free breathing, Abches, bar model, and wave model, respectively. Free breathing and all coaching techniques differed significantly (p < 0.05). For variation in both displacement and period, wave model was superior to free breathing, bar model, and Abches. The average reduction in displacement and period RMSE compared with wave model were 27% and 47%, respectively. Conclusion: The efficacy of audio-visual biofeedback to reduce respiratory irregularity compared with Abches. Our results showed that audio-visual biofeedback combined with a wave model can potentially provide clinical benefits in respiratory management, although all techniques could reduce respiratory irregularities.« less
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2010-01-01
Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2008-01-01
Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).
Parameterizing unresolved obstacles with source terms in wave modeling: A real-world application
NASA Astrophysics Data System (ADS)
Mentaschi, Lorenzo; Kakoulaki, Georgia; Vousdoukas, Michalis; Voukouvalas, Evangelos; Feyen, Luc; Besio, Giovanni
2018-06-01
Parameterizing the dissipative effects of small, unresolved coastal features, is fundamental to improve the skills of wave models. The established technique to deal with this problem consists in reducing the amount of energy advected within the propagation scheme, and is currently available only for regular grids. To find a more general approach, Mentaschi et al., 2015b formulated a technique based on source terms, and validated it on synthetic case studies. This technique separates the parameterization of the unresolved features from the energy advection, and can therefore be applied to any numerical scheme and to any type of mesh. Here we developed an open-source library for the estimation of the transparency coefficients needed by this approach, from bathymetric data and for any type of mesh. The spectral wave model WAVEWATCH III was used to show that in a real-world domain, such as the Caribbean Sea, the proposed approach has skills comparable and sometimes better than the established propagation-based technique.
NASA Technical Reports Server (NTRS)
Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.
1977-01-01
The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.
Numerical methods in acoustics
NASA Astrophysics Data System (ADS)
Candel, S. M.
This paper presents a survey of some computational techniques applicable to acoustic wave problems. Recent advances in wave extrapolation methods, spectral methods and boundary integral methods are discussed and illustrated by specific calculations.
Ionospheric tomography using ADS-B signals
NASA Astrophysics Data System (ADS)
Cushley, A. C.; Noël, J.-M.
2014-07-01
Numerical modeling has demonstrated that Automatic Dependent Surveillance Broadcast (ADS-B) signals can be used to reconstruct two-dimensional (2-D) electron density maps of the ionosphere using techniques for computerized tomography. Ray tracing techniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modeled Faraday rotation was computed and converted to total electron content (TEC) along the raypaths. The resulting TEC was used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique. This study concentrated on reconstructing mesoscale structures 25-100 km in horizontal extent. The primary scientific interest of this study was to show that ADS-B signals can be used as a new source of data for CIT to image the ionosphere and to obtain a better understanding of magneto-ionic wave propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, Robert E.; Bartel, Lewis Clark; Pullammanappallil, Satish
2006-08-01
We present a technique that allows for the simultaneous acquisition and interpretation of both shear-wave and compressive-wave 3-D velocities. The technique requires no special seismic sources or array geometries, and is suited to studies with small source-receiver offsets. The method also effectively deals with unwanted seismic arrivals by using the statistical properties of the data itself to discriminate against spurious picks. We demonstrate the technique with a field experiment at the Facility for Analysis, Calibration, and Testing at Sandia National Laboratories, Albuquerque, New Mexico. The resulting 3-D shear-velocity and compressive-velocity distributions are consistent with surface geologic mapping. The averaged velocitiesmore » and V{sub p}/V{sub s} ratio in the upper 30 meters are also consistent with examples found in the scientific literature.« less
An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection
NASA Astrophysics Data System (ADS)
Arun, K.; Dhayalan, R.; Balasubramaniam, Krishnan; Maxfield, Bruce; Peres, Patrick; Barnoncel, David
2012-05-01
The evaluation of adhesively bonded structures has been a challenge over the several decades that these structures have been used. Applications within the aerospace industry often call for particularly high performance adhesive bonds. Several techniques have been proposed for the detection of disbonds and cohesive weakness but a reliable NDE method for detecting interfacial weakness (also sometimes called a kissing bond) has been elusive. Different techniques, including ultrasonic, thermal imaging and shearographic methods, have been proposed; all have had some degree of success. In particular, ultrasonic methods, including those based upon shear and guided waves, have been explored for the assessment of interfacial bond quality. Since 3-D guided shear horizontal (SH) waves in plates have predominantly shear displacement at the plate surfaces, we conjectured that SH guided waves should be influenced by interfacial conditions when they propagate between adhesively bonded plates of comparable thickness. This paper describes a new technique based on SH guided waves that propagate within and through a lap joint. Through mechanisms we have yet to fully understand, the propagation of an SH wave through a lap joint gives rise to a reverberation signal that is due to one or more reflections of an SH guided wave mode within that lap joint. Based upon a combination of numerical simulations and measurements, this method shows promise for detecting and classifying interfacial bonds. It is also apparent from our measurements that the SH wave modes can discriminate between adhesive and cohesive bond weakness in both Aluminum-Epoxy-Aluminum and Composite-Epoxy-Composite lap joints. All measurements reported here used periodic permanent magnet (PPM) Electro-Magnetic Acoustic Transducers (EMATs) to generate either or both of the two lowest order SH modes in the plates that comprise the lap joint. This exact configuration has been simulated using finite element (FE) models to describe the SH mode generation, propagation and reception. Of particular interest is that one SH guided wave mode (probably SH0) reverberates within the lap joint. Moreover, in both simulations and measurements, features of this so-called reverberation signal appear to be related to interfacial weakness between the plate (substrate) and the epoxy bond. The results of a hybrid numerical (FE) approach based on using COMSOL to calculate the driving forces within an elastic solid and ABAQUS to propagate the resulting elastic disturbances (waves) within the plates and lap joint are compared with measurements of SH wave generation and reception in lap joint specimens having different interfacial and cohesive bonding conditions.
Interaction of rippled shock wave with flat fast-slow interface
NASA Astrophysics Data System (ADS)
Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong
2018-04-01
The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.
NASA Astrophysics Data System (ADS)
Taira, T.; Kato, A.
2013-12-01
A high-resolution Vp/Vs ratio estimate is one of the key parameters to understand spatial variations of composition and physical state within the Earth. Lin and Shearer (2007, BSSA) recently developed a methodology to obtain local Vp/Vs ratios in individual similar earthquake clusters, based on P- and S-wave differential times. A waveform cross-correlation approach is typically employed to measure those differential times for pairs of seismograms from similar earthquakes clusters, at narrow time windows around the direct P and S waves. This approach effectively collects P- and S-wave differential times and however requires the robust P- and S-wave time windows that are extracted based on either manually or automatically picked P- and S-phases. We present another technique to estimate P- and S-wave differential times by exploiting temporal properties of delayed time as a function of elapsed time on the seismograms with a moving-window cross-correlation analysis (e.g., Snieder, 2002, Phys. Rev. E; Niu et al. 2003, Nature). Our approach is based on the principle that the delayed time for the direct S wave differs from that for the direct P wave. Two seismograms aligned by the direct P waves from a pair of similar earthquakes yield that delayed times become zero around the direct P wave. In contrast, delayed times obtained from time windows including the direct S wave have non-zero value. Our approach, in principle, is capable of measuring both P- and S-wave differential times from single-component seismograms. In an ideal case, the temporal evolution of delayed time becomes a step function with its discontinuity at the onset of the direct S wave. The offset in the resulting step function would be the S-wave differential time, relative to the P-wave differential time as the two waveforms are aligned by the direct P wave. We apply our moving-window cross-correlation technique to the two different data sets collected at: 1) the Wakayama district, Japan and 2) the Geysers geothermal field, California. The both target areas are characterized by earthquake swarms that provide a number of similar events clusters. We use the following automated procedure to systematically analyze the two data sets: 1) the identification of the direct P arrivals by using an Akaike Information Criterion based phase picking algorithm introduced by Zhang and Thurber (2003, BSSA), 2) the waveform alignment by the P-wave with a waveform cross-correlation to obtain P-wave differential time, 3) the moving-time window analysis to estimate the S-differential time. Kato et al. (2010, GRL) have estimated the Vp/Vs ratios for a few similar earthquake clusters from the Wakayama data set, by a conventional approach to obtain differential times. We find that the resulting Vp/Vs ratios from our approach for the same earthquake clusters are comparable with those obtained from Kato et al. (2010, GRL). We show that the moving-window cross-correlation technique effectively measures both P- and S-wave differential times for the seismograms in which the clear P and S phases are not observed. We will show spatial distributions in Vp/Vs ratios in our two target areas.
Waves and instabilities in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.
Patra, Subir; Banerjee, Sourav
2017-12-16
Detection of precursor damage followed by the quantification of the degraded material properties could lead to more accurate progressive failure models for composite materials. However, such information is not readily available. In composite materials, the precursor damages-for example matrix cracking, microcracks, voids, interlaminar pre-delamination crack joining matrix cracks, fiber micro-buckling, local fiber breakage, local debonding, etc.-are insensitive to the low-frequency ultrasonic guided-wave-based online nondestructive evaluation (NDE) or Structural Health Monitoring (SHM) (~100-~500 kHz) systems. Overcoming this barrier, in this article, an online ultrasonic technique is proposed using the coda part of the guided wave signal, which is often neglected. Although the first-arrival wave packets that contain the fundamental guided Lamb wave modes are unaltered, the coda wave packets however carry significant information about the precursor events with predictable phase shifts. The Taylor-series-based modified Coda Wave Interferometry (CWI) technique is proposed to quantify the stretch parameter to compensate the phase shifts in the coda wave as a result of precursor damage in composites. The CWI analysis was performed on five woven composite-fiber-reinforced-laminate specimens, and the precursor events were identified. Next, the precursor damage states were verified using high-frequency Scanning Acoustic Microscopy (SAM) and optical microscopy imaging.
NASA Astrophysics Data System (ADS)
Lan, Bo; Lowe, Michael J. S.; Dunne, Fionn P. E.
2015-10-01
A new spherical convolution approach has been presented which couples HCP single crystal wave speed (the kernel function) with polycrystal c-axis pole distribution function to give the resultant polycrystal wave speed response. The three functions have been expressed as spherical harmonic expansions thus enabling application of the de-convolution technique to enable any one of the three to be determined from knowledge of the other two. Hence, the forward problem of determination of polycrystal wave speed from knowledge of single crystal wave speed response and the polycrystal pole distribution has been solved for a broad range of experimentally representative HCP polycrystal textures. The technique provides near-perfect representation of the sensitivity of wave speed to polycrystal texture as well as quantitative prediction of polycrystal wave speed. More importantly, a solution to the inverse problem is presented in which texture, as a c-axis distribution function, is determined from knowledge of the kernel function and the polycrystal wave speed response. It has also been explained why it has been widely reported in the literature that only texture coefficients up to 4th degree may be obtained from ultrasonic measurements. Finally, the de-convolution approach presented provides the potential for the measurement of polycrystal texture from ultrasonic wave speed measurements.
Investigation of surface wave amplitudes in 3-D velocity and 3-D Q models
NASA Astrophysics Data System (ADS)
Ruan, Y.; Zhou, Y.
2010-12-01
It has been long recognized that seismic amplitudes depend on both wave speed structures and anelasticity (Q) structures. However, the effects of lateral heterogeneities in wave speed and Q structures on seismic amplitudes has not been well understood. We investigate the effects of 3-D wave speed and 3-D anelasticity (Q) structures on surface-wave amplitudes based upon wave propagation simulations of twelve globally-distributed earthquakes and 801 stations in Earth models with and without lateral heterogeneities in wave speed and anelasticity using a Spectral Element Method (SEM). Our tomographic-like 3-D Q models are converted from a velocity model S20RTS using a set of reasonable mineralogical parameters, assuming lateral perturbations in both velocity and Q are due to temperature perturbations. Surface-wave amplitude variations of SEM seismograms are measured in the period range of 50--200 s using boxcar taper, cosine taper and Slepian multi-tapers. We calculate ray-theoretical predictions of surface-wave amplitude perturbations due to elastic focusing, attenuation, and anelastic focusing which respectively depend upon the second spatial derivative (''roughness'') of perturbations in phase velocity, 1/Q, and the roughness of perturbations in 1/Q. Both numerical experiments and theoretical calculations show that (1) for short-period (~ 50 s) surface waves, the effects of amplitude attenuation due to 3-D Q structures are comparable with elastic focusing effects due to 3-D wave speed structures; and (2) for long-period (> 100 s) surface waves, the effects of attenuation become much weaker than elastic focusing; and (3) elastic focusing effects are correlated with anelastic focusing at all periods due to the correlation between velocity and Q models; and (4) amplitude perturbations are depend on measurement techniques and therefore cannot be directly compared with ray-theoretical predictions because ray theory does not account for the effects of measurement techniques. We calculate 3-D finite-frequency sensitivity of surface-wave amplitude to perturbations in wave speed and anelasticity (Q) which fully account for the effects of elastic focusing, attenuation, anelastic focusing as well as measurement techniques. We show that amplitude perturbations calculated using wave speed and Q sensitivity kernels agree reasonably well with SEM measurements and therefore the sensitivity kernels can be used in a joint inversion of seismic phase delays and amplitudes to simultaneously image high resolution 3-D wave speed and 3-D Q structures in the upper mantle.
Modulation theory, dispersive shock waves and Gerald Beresford Whitham
NASA Astrophysics Data System (ADS)
Minzoni, A. A.; Smyth, Noel F.
2016-10-01
Gerald Beresford (GB) Whitham, FRS, (13th December, 1927-26th January, 2014) was one of the leading applied mathematicians of the twentieth century whose work over forty years had a profound, formative impact on research on wave motion across a broad range of areas. Many of the ideas and techniques he developed have now become the standard tools used to analyse and understand wave motion, as the papers of this special issue of Physica D testify. Many of the techniques pioneered by GB Whitham have spread beyond wave propagation into other applied mathematics areas, such as reaction-diffusion, and even into theoretical physics and pure mathematics, in which Whitham modulation theory is an active area of research. GB Whitham's classic textbook Linear and Nonlinear Waves, published in 1974, is still the standard reference for the applied mathematics of wave motion. In honour of his scientific achievements, GB Whitham was elected a Fellow of the American Academy of Arts and Sciences in 1959 and a Fellow of the Royal Society in 1965. He was awarded the Norbert Wiener Prize for Applied Mathematics in 1980.
Investigation of optical/infrared sensor techniques for application satellites
NASA Technical Reports Server (NTRS)
Kaufman, I.
1972-01-01
A method of scanning an optical sensor array by acoustic surface waves is discussed. Data cover detailed computer based analysis of the operation of a multielement acoustic surface-wave-scanned optical sensor, the development of design and operation techniques that were used to show the feasibility of an integrated array to design several such arrays, and experimental verification of a number of the calculations with discrete sensor devices.
First measurements of the new ClO-mm-wave sounder at the Jungfraujoch Alpine Station
NASA Technical Reports Server (NTRS)
Gerber, Louis; Kaempfer, Niklaus
1994-01-01
In the last years much progress has been made in the field of the detection of stratospheric trace constituents. However, only few techniques are suitable to detect ClO, one of the key constituents in ozone depletion chemistry. One of these techniques is mm-wave radiometry. This work presents the first measurements performed by a new 204 GHz radiometer at the Jungfraujoch Alpine Station.
Shuttle wave experiments. [space plasma investigations: design and instrumentation
NASA Technical Reports Server (NTRS)
Calvert, W.
1976-01-01
Wave experiments on shuttle are needed to verify dispersion relations, to study nonlinear and exotic phenomena, to support other plasma experiments, and to test engineering designs. Techniques based on coherent detection and bistatic geometry are described. New instrumentation required to provide modules for a variety of missions and to incorporate advanced signal processing and control techniques is discussed. An experiment for Z to 0 coupling is included.
Measurement of Coherence Decay in GaMnAs Using Femtosecond Four-wave Mixing
Webber, Daniel; de Boer, Tristan; Yildirim, Murat; March, Sam; Mathew, Reuble; Gamouras, Angela; Liu, Xinyu; Dobrowolska, Margaret; Furdyna, Jacek; Hall, Kimberley
2013-01-01
The application of femtosecond four-wave mixing to the study of fundamental properties of diluted magnetic semiconductors ((s,p)-d hybridization, spin-flip scattering) is described, using experiments on GaMnAs as a prototype III-Mn-V system. Spectrally-resolved and time-resolved experimental configurations are described, including the use of zero-background autocorrelation techniques for pulse optimization. The etching process used to prepare GaMnAs samples for four-wave mixing experiments is also highlighted. The high temporal resolution of this technique, afforded by the use of short (20 fsec) optical pulses, permits the rapid spin-flip scattering process in this system to be studied directly in the time domain, providing new insight into the strong exchange coupling responsible for carrier-mediated ferromagnetism. We also show that spectral resolution of the four-wave mixing signal allows one to extract clear signatures of (s,p)-d hybridization in this system, unlike linear spectroscopy techniques. This increased sensitivity is due to the nonlinearity of the technique, which suppresses defect-related contributions to the optical response. This method may be used to measure the time scale for coherence decay (tied to the fastest scattering processes) in a wide variety of semiconductor systems of interest for next generation electronics and optoelectronics. PMID:24326982
Design, construction and evaluation of a 12.2 GHz, 4.0 kW-CW coupled-cavity traveling wave tube
NASA Technical Reports Server (NTRS)
Ayers, W. R.; Harman, W. A.
1973-01-01
An analytical and experimental program to study design techniques and to utilize these techniques to optimize the performance of an X-band 4 kW, CW traveling wave tube ultimately intended for satellite-borne television broadcast transmitters is described. The design is based on the coupled-cavity slow-wave circuit with velocity resynchronization to maximize the conversion efficiency. The design incorporates a collector which is demountable from the tube. This was done to facilitate multistage depressed collector experiments employing a NASA designed axisymmetric, electrostatic collector for linear beam microwave tubes after shipment of the tubes to NASA.
An unambiguous determination of the propagation of a compressional Pc 5 wave
NASA Technical Reports Server (NTRS)
Lin, N.; Mcpherron, R. L.; Kivelson, M. G.; Williams, D. J.
1988-01-01
A compressional Pc5 event observed by the ISEE-1 magnetometer and Medium Energetic Particle Experiment instrument on August 21 and 22, 1978, is examined. The propagation properties of the compressional waves were determined using a technique which utilizes the finite Larmor radius effects in the signature of the multichannel energetic ion detector. It is shown that this technique determines unambiguously the propagation characteristics of the wave in both the azimuthal and the radial directions in the plane perpendicular to the background magnetic field; the results remained valid even though heavy energetic ions with Larmor radii larger than proton Larmor radii were present in the plasma.
An unambiguous determination of the propagation of a compressional Pc 5 wave
NASA Astrophysics Data System (ADS)
Lin, N.; McPherron, R. L.; Kivelson, M. G.; Williams, D. J.
1988-06-01
A compressional Pc5 event observed by the ISEE-1 magnetometer and Medium Energetic Particle Experiment instrument on August 21 and 22, 1978, is examined. The propagation properties of the compressional waves were determined using a technique which utilizes the finite Larmor radius effects in the signature of the multichannel energetic ion detector. It is shown that this technique determines unambiguously the propagation characteristics of the wave in both the azimuthal and the radial directions in the plane perpendicular to the background magnetic field; the results remained valid even though heavy energetic ions with Larmor radii larger than proton Larmor radii were present in the plasma.
Tornese, Davide; Mattei, Enrico; Lucchesi, Giampaolo; Bandi, Marco; Ricci, Gabriele; Melegati, Gianluca
2008-09-01
To describe and compare two extracorporeal shock wave therapy techniques for the treatment of painful subcalcaneal spur. Random assignment to two groups of treatment with two and eight months follow-up. The data were collected in outpatients. Forty-five subjects with a history of at least six months of heel pain were studied. Each subject received a three-session ultrasound-guided extracorporeal shock wave therapy (performed weekly). Perpendicular technique was used in group A (n=22, mean age 59.3 +/- 12 years) and tangential technique was used in group B (n= 23, mean age 58.8 +/- 12.3 years). Mayo Clinical Scoring System was used to evaluate each subject before the treatment and at two and eight months follow-up. Mayo Clinical Scoring System pretreatment scores were homogeneous between the groups (group A 55.2 +/-18.7; group B 53.5 +/- 20; P>0.05). In both groups there was a significant (P<0.05) increase in the Mayo Clinical Scoring System score at two months (group A 83.9 +/- 13.7; group B 80 +/- 15,8) and eight months (group A 90 +/- 10.5; group B 90.2 +/-8.7) follow-up. No significant differences were obtained comparing the Mayo Clinical Scoring System scores of the two groups at two and eight months follow-up. There was no difference between the two techniques of using extracorporeal shock wave therapy. The tangential technique was found to be better tolerated as regards treatment-induced pain, allowing higher energy dosages to be used.
NASA Astrophysics Data System (ADS)
Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed
2015-03-01
The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.
Development of a shock wave adhesion test for composite bonds by pulsed laser and mechanical impacts
NASA Astrophysics Data System (ADS)
Ecault, R.; Boustie, M.; Touchard, F.; Arrigoni, M.; Berthe, L.
2014-05-01
Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims to the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bonds. The resulting damage has been quantified using different methods such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test because of often fixed settings. That is why mechanical impacts on bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the generated tensile stresses by the shock wave propagation were moved toward the composite/bond interface. The made observations prove that the technique optimization is possible. The key parameters for the development of a bonding test using shock waves have been identified.
Development of a shock wave adhesion test for composite bonds by laser pulsed and mechanical impacts
NASA Astrophysics Data System (ADS)
Ecault, Romain; Boustie, Michel; Touchard, Fabienne; Arrigoni, Michel; Berthe, Laurent; CNRS Collaboration
2013-06-01
Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bond without any mechanical contact. The resulting damage has been quantified using different method such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test since it has often fixed parameters. That is why mechanical impacts bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the tensile stresses generated by the shock wave propagation were moved toward the composite/bond interface. The observations made prove that the optimization of the technique is possible. The key parameters for the development of a bonding test using shock wave have been identified.
Characterization of nanosecond pulse electrical field shock waves using imaging techniques
NASA Astrophysics Data System (ADS)
Mimun, L. Chris; Ibey, Bennett L.; Roth, Caleb C.; Barnes, Ronald A.; Sardar, Dhiraj K.; Beier, Hope T.
2015-03-01
Nanosecond pulsed electric fields (nsPEF) cause the formation of small pores, termed nanopores, in the membrane of cells. Current nanoporation models treat nsPEF exposure as a purely electromagnetic phenomenon, but recent publications showing pressure transients, ROS production, temperature gradients, and pH waves suggest the stimulus may be physically and chemically multifactorial causing elicitation of diverse biological conditions and stressors. Our research group's goal is to quantify the breadth and participation of these stressors generated during nsPEF exposure and determine their relative importance to the observed cellular response. In this paper, we used advanced imaging techniques to identify a possible source of nsPEF-induced acoustic shock waves. nsPEFs were delivered in an aqueous media via a pair of 125 μm tungsten electrodes separated by 100 μm, mirroring our previously published cellular exposure experiments. To visualize any pressure transients emanating from the electrodes or surrounding medium, we used the Schlieren imaging technique. Resulting images and measurements confirmed that mechanical pressure waves and electrode-based stresses are formed during nsPEF, resulting in a clearer understanding of the whole exposure dosimetry. This information will be used to better quantify the impact of nsPEF-induced acoustic shock waves on cells, and has provided further evidence of non-electrical-field induced exposures for elicitation of bioieffects.
The application of the Wigner Distribution to wave type identification in finite length beams
NASA Technical Reports Server (NTRS)
Wahl, T. J.; Bolton, J. Stuart
1994-01-01
The object of the research described in this paper was to develop a means of identifying the wave-types propagating between two points in a finite length beam. It is known that different structural wave-types possess different dispersion relations: i.e., that their group speeds and the frequency dependence of their group speeds differ. As a result of those distinct dispersion relationships, different wave-types may be associated with characteristic features when structural responses are examined in the time frequency domain. Previously, the time-frequency character of analytically generated structural responses of both single element and multi-element structures were examined by using the Wigner Distribution (WD) along with filtering techniques that were designed to detect the wave-types present in the responses. In the work to be described here, the measure time-frequency response of finite length beam is examined using the WD and filtering procedures. This paper is organized as follows. First the concept of time-frequency analysis of structural responses is explained. The WD is then introduced along with a description of the implementation of a discrete version. The time-frequency filtering techniques are then presented and explained. The results of applying the WD and the filtering techniques to the analysis of a transient response is then presented.
Local numerical modelling of ultrasonic guided waves in linear and nonlinear media
NASA Astrophysics Data System (ADS)
Packo, Pawel; Radecki, Rafal; Kijanka, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear ultrasonic techniques provide improved damage sensitivity compared to linear approaches. The combination of attractive properties of guided waves, such as Lamb waves, with unique features of higher harmonic generation provides great potential for characterization of incipient damage, particularly in plate-like structures. Nonlinear ultrasonic structural health monitoring techniques use interrogation signals at frequencies other than the excitation frequency to detect changes in structural integrity. Signal processing techniques used in non-destructive evaluation are frequently supported by modeling and numerical simulations in order to facilitate problem solution. This paper discusses known and newly-developed local computational strategies for simulating elastic waves, and attempts characterization of their numerical properties in the context of linear and nonlinear media. A hybrid numerical approach combining advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE) is proposed for unique treatment of arbitrary strain-stress relations. The iteration equations of the method are derived directly from physical principles employing stress and displacement continuity, leading to an accurate description of the propagation in arbitrarily complex media. Numerical analysis of guided wave propagation, based on the newly developed hybrid approach, is presented and discussed in the paper for linear and nonlinear media. Comparisons to Finite Elements (FE) are also discussed.
Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.
2008-01-01
In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.
Propagation of time-reversed Lamb waves in bovine cortical bone in vitro.
Lee, Kang Il; Yoon, Suk Wang
2015-01-01
The present study aims to investigate the propagation of time-reversed Lamb waves in bovine cortical bone in vitro. The time-reversed Lamb waves were successfully launched at 200 kHz in 18 bovine tibiae through a time reversal process of Lamb waves. The group velocities of the time-reversed Lamb waves in the bovine tibiae were measured using the axial transmission technique. They showed a significant correlation with the cortical thickness and tended to follow the theoretical group velocity of the lowest order antisymmetrical Lamb wave fairly well, consistent with the behavior of the slow guided wave in long cortical bones.
High-frequency Rayleigh-wave method
Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.
2009-01-01
High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.
Suppression of stimulus artifact contaminating electrically evoked electromyography.
Liu, Jie; Li, Sheng; Li, Xiaoyan; Klein, Cliff; Rymer, William Z; Zhou, Ping
2014-01-01
Electrical stimulation of muscle or nerve is a very useful technique for understanding of muscle activity and its pathological changes for both diagnostic and therapeutic purposes. During electrical stimulation of a muscle, the recorded M wave is often contaminated by a stimulus artifact. The stimulus artifact must be removed for appropriate analysis and interpretation of M waves. The objective of this study was to develop a novel software based method to remove stimulus artifacts contaminating or superimposing with electrically evoked surface electromyography (EMG) or M wave signals. The multiple stage method uses a series of signal processing techniques, including highlighting and detection of stimulus artifacts using Savitzky-Golay filtering, estimation of the artifact contaminated region with Otsu thresholding, and reconstruction of such region using signal interpolation and smoothing. The developed method was tested using M wave signals recorded from biceps brachii muscles by a linear surface electrode array. To evaluate the performance, a series of semi-synthetic signals were constructed from clean M wave and stimulus artifact recordings with different degrees of overlap between them. The effectiveness of the developed method was quantified by a significant increase in correlation coefficient and a significant decrease in root mean square error between the clean M wave and the reconstructed M wave, compared with those between the clean M wave and the originally contaminated signal. The validity of the developed method was also demonstrated when tested on each channel's M wave recording using a linear electrode array. The developed method can suppress stimulus artifacts contaminating M wave recordings.
NASA Astrophysics Data System (ADS)
Pujiastuti, D.; Daniati, S.; Taufiqurrahman, E.; Mustafa, B.; Ednofri
2018-03-01
A qualitative analysis has been conducted by comparing the critical frequency anomalies of layer F (f0F2) and Spread F events to see the correlation with seismic activity before the Solok earthquake (March 6, 2007) in West Sumatra. The ionospherics data used was taken using the FMCW ionosonde at LAPAN SPD Kototabang, Palupuah, West Sumatra. The process of ionogramme scaling is done first to get the daily value of f0F2. The value of f0F2 is then compared with its monthly median to see the daily variations that appear. Anomalies of f0F2 and Spread F events were observed from February 20, 2007 to March 6, 2007. The presence of f0F2 anomalies was the negative deviation and the presence of Spread F before earthquake events were recommended as Solok earthquake precursors as they occurred when geomagneticsics and solar activities were normal.
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.
Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing
NASA Technical Reports Server (NTRS)
Morrison, R. A.
1972-01-01
Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.
Millimeter-wave generation and characterization of a GaAs FET by optical mixing
NASA Technical Reports Server (NTRS)
Ni, David C.; Fetterman, Harold R.; Chew, Wilbert
1990-01-01
Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamamoto, Atsushi; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi
2015-07-01
We have proposed a quantitative shear wave imaging technique for continuous shear wave excitation. Shear wave wavefront is observed directly by color flow imaging using a general-purpose ultrasonic imaging system. In this study, the proposed method is applied to experiments in vivo, and shear wave maps, namely, the shear wave phase map, which shows the shear wave propagation inside the medium, and the shear wave velocity map, are observed for the skeletal muscle in the shoulder. To excite the shear wave inside the skeletal muscle of the shoulder, a hybrid ultrasonic wave transducer, which combines a small vibrator with an ultrasonic wave probe, is adopted. The shear wave velocity of supraspinatus muscle, which is measured by the proposed method, is 4.11 ± 0.06 m/s (N = 4). This value is consistent with those obtained by the acoustic radiation force impulse method.
NASA Astrophysics Data System (ADS)
Hung, Hing-Loi A.; Smith, Thane; Huang, Ho C.; Polak-Dingels, Penny; Webb, Kevin J.
1989-08-01
The characterization of microwave and millimeter-wave monolithic integrated circits (MIMICs) using picosecond pulse-sampling techniques is developed with emphasis on improving broadband coverage and measurement accuracy. GaAs photoconductive swithces are used for signal generation and sampling operations. The measured time-domain response allows the spectral transfer function of the MIMIC to be obtained. This measurement technique is verified by characterization of the frequency response (magnitude and phase) of a reference 50-ohm microstrip line and a two-stage Ka-band MIMIC amplifier. The measured broadband results agree with those obtained from conventional frequency-domain measurements using a network analyzer. The application of this optical technique to on-wafer MIMIC characterization is described.
Put a Short-Wave Radio in Your Foreign Language Classroom
ERIC Educational Resources Information Center
Oksenholt, Svein
1977-01-01
Advantages of the short-wave radio as a supplement to foreign language instruction as well as practical hints on wavelength, antenna, and techniques for use are provided. Selective annotated bibliography. (STS)
NASA Technical Reports Server (NTRS)
Bershader, D. (Editor); Hanson, R. (Editor)
1986-01-01
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
NASA Astrophysics Data System (ADS)
Bershader, D.; Hanson, R.
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2014-01-01
Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.
NASA Astrophysics Data System (ADS)
Raad Hussein, Alaa; Badri Albarody, Thar M.; Megat Yusoff, Puteri Sri Melor Bt
2018-05-01
Nowadays there is no viable non-destructive method that could detect flaws in complex composite products. Such a method could provide unique tools to allow engineers to minimize time consumption and cost during the evaluation of various product parameters without disturbing production. The latest research and development on propagation waves introduce micro, radio and millimetre waves as new potential non-destructive test methods for evaluation of mechanical flaws and prediction of failure in a product during production. This paper focuses on recent developments, usage, classification of electromagnetic waves under the range of radio frequency, millimetre and micro-waves. In addition, this paper reviews the application of propagation wave and proposed a new health monitoring technique based on Doppler Effect for vibration measurement in complex composite structures. Doppler Effect is influenced by dynamic behaviour of the composite structures and both are effect by flaws occurred inside the structure. Composite manufacturers, especially Aerospace industry are demanding these methods comprehensively inspect and evaluate the damages and defects in their products.
Nonlinear ship waves and computational fluid dynamics
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139
Wave Telescope Technique for MMS Magnetometer
NASA Technical Reports Server (NTRS)
Narita, Y.; Plaschke, F.; Nakamura, R.; Baumjojann, W.; Magnes, W.; Fischer, D.; Voros, Z.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.;
2016-01-01
Multipoint measurements are a powerful method in studying wavefields in space plasmas.The wave telescope technique is tested against magnetic field fluctuations in the terrestrial magnetosheath measured by the four Magnetospheric Multiscale (MMS) spacecraft on a spatial scale of about 20 km.The dispersion relation diagram and the wave vector distribution are determined for the first time in the ion-kinetic range. Moreover, the dispersion relation diagram is determined in a proxy plasma restframe by regarding the low-frequency dispersion relation as a Doppler relation and compensating for the apparent phase velocity. Fluctuations are highly compressible, and the wave vectors have an angle of about 60 from the mean magnetic field. We interpret that the measured fluctuations represent akinetic-drift mirror mode in the magnetosheath which is dispersive and in a turbulent state accompanied by a sideband formation.
Strong Langmuir Turbulence and Four-Wave Mixing
NASA Astrophysics Data System (ADS)
Glanz, James
1991-02-01
The staircase expansion is a new mathematical technique for deriving reduced, nonlinear-PDE descriptions from the plasma-moment equations. Such descriptions incorporate only the most significant linear and nonlinear terms of more complex systems. The technique is used to derive a set of Dawson-Zakharov or "master" equations, which unify and generalize previous work and show the limitations of models commonly used to describe nonlinear plasma waves. Fundamentally new wave-evolution equations are derived that admit of exact nonlinear solutions (solitary waves). Analytic calculations illustrate the competition between well-known effects of self-focusing, which require coupling to ion motion, and pure-electron nonlinearities, which are shown to be especially important in curved geometries. Also presented is an N -moment hydrodynamic model derived from the Vlasov equation. In this connection, the staircase expansion is shown to remain useful for all values of N >= 3. The relevance of the present work to nonlocally truncated hierarchies, which more accurately model dissipation, is briefly discussed. Finally, the general formalism is applied to the problem of electromagnetic emission from counterpropagating Langmuir pumps. It is found that previous treatments have neglected order-unity effects that increase the emission significantly. Detailed numerical results are presented to support these conclusions. The staircase expansion--so called because of its appearance when written out--should be effective whenever the largest contribution to the nonlinear wave remains "close" to some given frequency. Thus the technique should have application to studies of wake-field acceleration schemes and anomalous damping of plasma waves.
NASA Astrophysics Data System (ADS)
Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.
2015-07-01
A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.
Minimal T-wave representation and its use in the assessment of drug arrhythmogenicity.
Shakibfar, Saeed; Graff, Claus; Kanters, Jørgen K; Nielsen, Jimmi; Schmidt, Samuel; Struijk, Johannes J
2017-05-01
Recently, numerous models and techniques have been developed for analyzing and extracting features from the T wave which could be used as biomarkers for drug-induced abnormalities. The majority of these techniques and algorithms use features that determine readily apparent characteristics of the T wave, such as duration, area, amplitude, and slopes. In the present work the T wave was down-sampled to a minimal rate, such that a good reconstruction was still possible. The entire T wave was then used as a feature vector to assess drug-induced repolarization effects. The ability of the samples or combinations of samples obtained from the minimal T-wave representation to correctly classify a group of subjects before and after receiving d,l-sotalol 160 mg and 320 mg was evaluated using a linear discriminant analysis (LDA). The results showed that a combination of eight samples from the minimal T-wave representation can be used to identify normal from abnormal repolarization significantly better compared to the heart rate-corrected QT interval (QTc). It was further indicated that the interval from the peak of the T wave to the end of the T wave (Tpe) becomes relatively shorter after I K r inhibition by d,l-sotalol and that the most pronounced repolarization changes were present in the ascending segment of the minimal T-wave representation. The minimal T-wave representation can potentially be used as a new tool to identify normal from abnormal repolarization in drug safety studies. © 2016 Wiley Periodicals, Inc.
High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.
2016-03-01
Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.
NASA Astrophysics Data System (ADS)
Hindley, N. P.; Wright, C. J.; Smith, N. D.; Mitchell, N. J.
2015-07-01
Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they advance our understanding of the nature and origins of waves in the southern stratosphere.
Application of guided acoustic waves to delamination detection
NASA Technical Reports Server (NTRS)
Sun, Keun J.
1992-01-01
Guided plate waves are able to interact with structural flaws such as delaminations and cracks due to their propagation properties highly sensitive to the thickness change in materials. A technique which employs an acoustic damper to probe the results of this interaction and then to locate flaws in a relatively short period of time is developed. With its technical advantages, this technique shows its potential application to large area structural integrity assessment.
Ground-based mm-wave emission spectroscopy for the detection and monitoring of stratospheric ozone
NASA Technical Reports Server (NTRS)
Parrish, A.; Dezafra, R.; Solomon, P.
1981-01-01
The molecular rotational spectrum of ozone is quite rich in the mm-wave region from 50 to 300 GHz. An apparatus, which was developed primarily for detection and measurement of stratospheric ClO and other trace molecules, is found to be well suited also for the observation of ozone lines. The collecting antenna of the apparatus is a simple mm-waveguide feedhorn. The detector is a superheterodyne mixer using a special high frequency Schottky diode and a klystron local oscillator. The spectrometer is a 256 channel filter bank with 1 MHz resolution per channel. The apparatus is believed to be the first ground-based mm-wave instrument having the capability of obtaining data of sufficient quality to make use of the inversion technique. The ground based radio technique is most sensitive to changes in vertical distribution in the region above 25 km, a region which is difficult to sample by other techniques.
Interfaces and thin films as seen by bound electromagnetic waves.
Knoll, W
1998-01-01
This contribution summarizes the use of plasmon surface polaritons and guided optical waves for the characterization of interfaces and thin organic films. After a short introduction to the theoretical background of evanescent wave optics, examples are given that show how this interfacial "light" can be employed to monitor thin coatings at a solid/air or solid/liquid interface. Examples are given for a very sensitive thickness determination of samples ranging from self-assembled monolayers, to multilayer assemblies prepared by the Langmuir/Blodgett/Kuhn technique or by the alternate polyelectrolyte deposition. These are complemented by the demonstration of the potential of the technique to also monitor time-dependent processes in a kinetic mode. Here, we put an emphasis on the combination set-up of surface plasmon optics with electrochemical techniques, allowing for the on-line characterization of various surface functionalization strategies, e.g. for (bio-) sensor purposes.
Estevez, Claudio; Kailas, Aravind
2012-01-01
Millimeter-wave technology shows high potential for future wireless personal area networks, reaching over 1 Gbps transmissions using simple modulation techniques. Current specifications consider dividing the spectrum into effortlessly separable spectrum ranges. These low requirements open a research area in time and space multiplexing techniques for millimeter-waves. In this work a process-stacking multiplexing access algorithm is designed for single channel operation. The concept is intuitive, but its implementation is not trivial. The key to stacking single channel events is to operate while simultaneously obtaining and handling a-posteriori time-frame information of scheduled events. This information is used to shift a global time pointer that the wireless access point manages and uses to synchronize all serviced nodes. The performance of the proposed multiplexing access technique is lower bounded by the performance of legacy TDMA and can significantly improve the effective throughput. Work is validated by simulation results.
An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment
de Cos Juez, Francisco J.; Lasheras, Fernando Sánchez; Roqueñí, Nieves; Osborn, James
2012-01-01
In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A). PMID:23012524
Ultrasonic velocity testing of steel pipeline welded joints
NASA Astrophysics Data System (ADS)
Carreón, Hector
2017-04-01
In general the ultrasonic techniques have been used to determine the mechanical properties of materials on based of their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic velocity and phased array and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performated in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal itself weld material of studied joints is anisotropic, too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable.
Le Floch, Jean-Michel; Fan, Y; Humbert, Georges; Shan, Qingxiao; Férachou, Denis; Bara-Maillet, Romain; Aubourg, Michel; Hartnett, John G; Madrangeas, Valerie; Cros, Dominique; Blondy, Jean-Marc; Krupka, Jerzy; Tobar, Michael E
2014-03-01
Dielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties. This includes exact simulation with precision numerical software and precise measurements of resonant modes. For example, we have developed the Whispering Gallery mode technique for microwave applications, which has now become the standard for characterizing low-loss structures. This paper will give some of the most common characterization techniques used in the micro to millimeter wave regime at room and cryogenic temperatures for designing high-Q dielectric loaded cavities.
Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves
NASA Astrophysics Data System (ADS)
Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua
2017-09-01
In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.
Relation between hardness and ultrasonic velocity on pipeline steel welded joints
NASA Astrophysics Data System (ADS)
Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.
2016-04-01
In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.
Development of a pseudo phased array technique using EMATs for DM weld testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobb, Adam C., E-mail: adam.cobb@swri.org; Fisher, Jay L., E-mail: adam.cobb@swri.org; Shiokawa, Nobuyuki
2015-03-31
Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS materialmore » in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.« less
Nonlinear ultrasonics for material state awareness
NASA Astrophysics Data System (ADS)
Jacobs, L. J.
2014-02-01
Predictive health monitoring of structural components will require the development of advanced sensing techniques capable of providing quantitative information on the damage state of structural materials. By focusing on nonlinear acoustic techniques, it is possible to measure absolute, strength based material parameters that can then be coupled with uncertainty models to enable accurate and quantitative life prediction. Starting at the material level, this review will present current research that involves a combination of sensing techniques and physics-based models to characterize damage in metallic materials. In metals, these nonlinear ultrasonic measurements can sense material state, before the formation of micro- and macro-cracks. Typically, cracks of a measurable size appear quite late in a component's total life, while the material's integrity in terms of toughness and strength gradually decreases due to the microplasticity (dislocations) and associated change in the material's microstructure. This review focuses on second harmonic generation techniques. Since these nonlinear acoustic techniques are acoustic wave based, component interrogation can be performed with bulk, surface and guided waves using the same underlying material physics; these nonlinear ultrasonic techniques provide results which are independent of the wave type used. Recent physics-based models consider the evolution of damage due to dislocations, slip bands, interstitials, and precipitates in the lattice structure, which can lead to localized damage.
NASA Technical Reports Server (NTRS)
Huang, N. E.; Flood, W. A.; Brown, G. S.
1975-01-01
The feasibility of remote sensing of current flows in the ocean and the remote sensing of ocean currents by backscattering cross section techniques was studied. It was established that for capillary waves, small scale currents could be accurately measured through observation of wave kinematics. Drastic modifications of waves by changing currents were noted. The development of new methods for the measurement of capillary waves are discussed. Improvement methods to resolve data processing problems are suggested.
Wave propagation in strongly dispersive superthermal dusty plasma
NASA Astrophysics Data System (ADS)
El-Labany, S. K.; El-Shewy, E. K.; Abd El-Razek, H. N.; El-Rahman, A. A.
2017-04-01
The attributes of acoustic envelope waves in a collisionless dust ion unmagnetized plasmas model composed of cold ions, superthermal electrons and positive-negative dust grains have been studied. Using the derivative expansion technique in a strong dispersive medium, the system model is reduced to a nonlinearly form of Schrodinger equation (NLSE). Rational solution of NLSE in unstable region is responsible for the creation of large shape waves; namely rogue waves. The subjection of instability regions upon electron superthermality (via κ), carrier wave number and dusty grains charge is discussed.
Lagrangian methods in nonlinear plasma wave interaction
NASA Technical Reports Server (NTRS)
Crawford, F. W.
1980-01-01
Analysis of nonlinear plasma wave interactions is usually very complicated, and simplifying mathematical approaches are highly desirable. The application of averaged-Lagrangian methods offers a considerable reduction in effort, with improved insight into synchronism and conservation (Manley-Rowe) relations. This chapter indicates how suitable Lagrangian densities have been defined, expanded, and manipulated to describe nonlinear wave-wave and wave-particle interactions in the microscopic, macroscopic and cold plasma models. Recently, further simplifications have been introduced by the use of techniques derived from Lie algebra. These and likely future developments are reviewed briefly.
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.; Winfree, W. P.
1980-01-01
The solution of the nonlinear differential equation which describes an initially sinusoidal finite-amplitude elastic wave propagating in a solid contains a static-displacement term in addition to the harmonic terms. The static-displacement amplitude is theoretically predicted to be proportional to the product of the squares of the driving-wave amplitude and the driving-wave frequency. The first experimental verification of the elastic-wave static displacement in a solid (the 111 direction of single-crystal germanium) is reported, and agreement is found with the theoretical predictions.
An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds
NASA Technical Reports Server (NTRS)
Achenbach, J. D.; Tang, Z.
1999-01-01
In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive bond nonlinearity and which can be conveniently obtained by an ultrasonic measurement, has been used as an indication of adhesive bond degradation. Experimental results have shown that the temperature increase method is a convenient and productive alternative to static loading. A technique which uses the reflected waveform data to obtain the fundamental ultrasonic parameters (transit time, reflection coefficient and attenuation coefficient) of an adhesive bond has also been presented.
Acoustic excitations in nanosponges, low-k dielectric thin films and oxide glasses
NASA Astrophysics Data System (ADS)
Zhou, Wei
The invention of the laser has made optical spectroscopy techniques especially valuable research tools. Brillouin light scattering (BLS) is one such powerful technique to measure low energy excitations as acoustic phonons and magnons (spin waves) in materials. In this thesis, the BLS technique is utilized to investigate acoustic excitations and the underlying physics in different media: carbon nanosponges, ultra thin low-k dielectric films and soda germanate glasses. The highlights include: (1) acoustic response of carbon nanosponges solvated in the organic solvent dimethylformamide (DMF) and the discovery of nanosponge formation by exposure to laser radiation. The observed acoustic mode is confirmed as the slow longitudinal wave within the nanosponge suspension. The counter intuitive result of the sound speed decreasing with increasing weight fraction of carbon nano tubes is found and modeled by an effective medium approximation theory; (2) in ultra thin low-k dielectric films, longitudinal standing waves, transverse standing waves and surface waves are observed and recorded. Using a Green's function method, the elastic constants are calculated by fitting the dispersion of these waves. The displacements of standing waves are also simulated and found to behave like the modes in an organ pipe; (3) the long wavelength bulk longitudinal and transverse modes in soda germanate glasses (Na2O)x(GeO2) 1-x glasses are found to be anomalous with increasing soda concentration. The elastic constants C11 and C44 are determined and related quantities such as the elastic energy are also found to have maxima around a soda concentration of x=17%. The elastic properties are compared with those of (Na2O)x(SiO2)1-x glasses, and structural differences are discussed to account for the origin of their different behaviors.
Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F
2011-04-07
Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.
NASA Technical Reports Server (NTRS)
Beal, Robert C. (Editor)
1987-01-01
Papers are presented on ocean-wave prediction; the quasi-universal form of the spectra of wind-generated gravity waves at different stages of their development; the limitations of the spectral measurements and observations of the group structure of surface waves; the effect of swell on the growth of wind wave; operational wave forecasting; ocean-wave models, and seakeeping using directional wave spectra. Consideration is given to microwave measurements of the ocean-wave directional spectra; SIR research; estimating wave energy spectra from SAR imagery, with the radar ocean-wave spectrometer, and SIR-B; the wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar; and SIR-B ocean-wave enhancement with fast-Fourier transform techniques. Topics discussed include wave-current interaction; the design and applicability of Spectrasat; the need for a global wave monitoring system; the age and source of ocean swell observed in Hurricane Josephine; and the use of satellite technology for insulin treatment.
Lamb Wave Assessment of Fiber Volume Fraction in Composites
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.
1998-01-01
Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.
Shear wave elasticity imaging based on acoustic radiation force and optical detection.
Cheng, Yi; Li, Rui; Li, Sinan; Dunsby, Christopher; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing
2012-09-01
Tissue elasticity is closely related to the velocity of shear waves within biologic tissue. Shear waves can be generated by an acoustic radiation force and tracked by, e.g., ultrasound or magnetic resonance imaging (MRI) measurements. This has been shown to be able to noninvasively map tissue elasticity in depth and has great potential in a wide range of clinical applications including cancer and cardiovascular diseases. In this study, a highly sensitive optical measurement technique is proposed as an alternative way to track shear waves generated by the acoustic radiation force. A charge coupled device (CCD) camera was used to capture diffuse photons from tissue mimicking phantoms illuminated by a laser source at 532 nm. CCD images were recorded at different delays after the transmission of an ultrasound burst and were processed to obtain the time of flight for the shear wave. A differential measurement scheme involving generation of shear waves at two different positions was used to improve the accuracy and spatial resolution of the system. The results from measurements on both homogeneous and heterogeneous phantoms were compared with measurements from other instruments and demonstrate the feasibility and accuracy of the technique for imaging and quantifying elasticity. The relative error in estimation of shear wave velocity can be as low as 3.3% with a spatial resolution of 2 mm, and increases to 8.8% with a spatial resolution of 1 mm for the medium stiffness phantom. The system is shown to be highly sensitive and is able to track shear waves propagating over several centimetres given the ultrasound excitation amplitude and the phantom material used in this study. It was also found that the reflection of shear waves from boundaries between regions with different elastic properties can cause significant bias in the estimation of elasticity, which also applies to other shear wave tracking techniques. This bias can be reduced at the expense of reduced spatial resolution. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Application of MIMO Techniques in sky-surface wave hybrid networking sea-state radar system
NASA Astrophysics Data System (ADS)
Zhang, L.; Wu, X.; Yue, X.; Liu, J.; Li, C.
2016-12-01
The sky-surface wave hybrid networking sea-state radar system contains of the sky wave transmission stations at different sites and several surface wave radar stations. The subject comes from the national 863 High-tech Project of China. The hybrid sky-surface wave system and the HF surface wave system work simultaneously and the HF surface wave radar (HFSWR) can work in multi-static and surface-wave networking mode. Compared with the single mode radar system, this system has advantages of better detection performance at the far ranges in ocean dynamics parameters inversion. We have applied multiple-input multiple-output(MIMO) techniques in this sea-state radar system. Based on the multiple channel and non-causal transmit beam-forming techniques, the MIMO radar architecture can reduce the size of the receiving antennas and simplify antenna installation. Besides, by efficiently utilizing the system's available degrees of freedom, it can provide a feasible approach for mitigating multipath effect and Doppler-spread clutter in Over-the-horizon Radar. In this radar, slow-time phase-coded MIMO method is used. The transmitting waveforms are phase-coded in slow-time so as to be orthogonal after Doppler processing at the receiver. So the MIMO method can be easily implemented without the need to modify the receiver hardware. After the radar system design, the MIMO experiments of this system have been completed by Wuhan University during 2015 and 2016. The experiment used Wuhan multi-channel ionospheric sounding system(WMISS) as sky-wave transmitting source and three dual-frequency HFSWR developed by the Oceanography Laboratory of Wuhan University. The transmitter system located at Chongyang with five element linear equi-spaced antenna array and Wuhan with one log-periodic antenna. The RF signals are generated by synchronized, but independent digital waveform generators - providing complete flexibility in element phase and amplitude control, and waveform type and parameters. The field experimental results show the presented method is effective. The echoes are obvious and distinguishable both in co-located MIMO mode and widely distributed MIMO mode. Key words: sky-surface wave hybrid networking; sea-state radar; MIMO; phase-coded
Statistical Downscaling in Multi-dimensional Wave Climate Forecast
NASA Astrophysics Data System (ADS)
Camus, P.; Méndez, F. J.; Medina, R.; Losada, I. J.; Cofiño, A. S.; Gutiérrez, J. M.
2009-04-01
Wave climate at a particular site is defined by the statistical distribution of sea state parameters, such as significant wave height, mean wave period, mean wave direction, wind velocity, wind direction and storm surge. Nowadays, long-term time series of these parameters are available from reanalysis databases obtained by numerical models. The Self-Organizing Map (SOM) technique is applied to characterize multi-dimensional wave climate, obtaining the relevant "wave types" spanning the historical variability. This technique summarizes multi-dimension of wave climate in terms of a set of clusters projected in low-dimensional lattice with a spatial organization, providing Probability Density Functions (PDFs) on the lattice. On the other hand, wind and storm surge depend on instantaneous local large-scale sea level pressure (SLP) fields while waves depend on the recent history of these fields (say, 1 to 5 days). Thus, these variables are associated with large-scale atmospheric circulation patterns. In this work, a nearest-neighbors analog method is used to predict monthly multi-dimensional wave climate. This method establishes relationships between the large-scale atmospheric circulation patterns from numerical models (SLP fields as predictors) with local wave databases of observations (monthly wave climate SOM PDFs as predictand) to set up statistical models. A wave reanalysis database, developed by Puertos del Estado (Ministerio de Fomento), is considered as historical time series of local variables. The simultaneous SLP fields calculated by NCEP atmospheric reanalysis are used as predictors. Several applications with different size of sea level pressure grid and with different temporal domain resolution are compared to obtain the optimal statistical model that better represents the monthly wave climate at a particular site. In this work we examine the potential skill of this downscaling approach considering perfect-model conditions, but we will also analyze the suitability of this methodology to be used for seasonal forecast and for long-term climate change scenario projection of wave climate.
Progress in terahertz nondestructive testing: A review
NASA Astrophysics Data System (ADS)
Zhong, Shuncong
2018-05-01
Terahertz (THz) waves, whose frequencies range between microwave and infrared, are part of the electromagnetic spectrum. A gap exists in THz literature because investigating THz waves is difficult due to the weak characteristics of the waves and the lack of suitable THz sources and detectors. Recently, THz nondestructive testing (NDT) technology has become an interesting topic. This review outlines several typical THz devices and systems and engineering applications of THz NDT techniques in composite materials, thermal barrier coatings, car paint films, marine protective coatings, and pharmaceutical tablet coatings. THz imaging has higher resolution but lower penetration than ultrasound imaging. This review presents the significance and advantages provided by the emerging THz NDT technique.
NASA Technical Reports Server (NTRS)
Baker, John; Thorpe, Ira
2012-01-01
Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.
Ambiguities in model-independent partial-wave analysis
NASA Astrophysics Data System (ADS)
Krinner, F.; Greenwald, D.; Ryabchikov, D.; Grube, B.; Paul, S.
2018-06-01
Partial-wave analysis is an important tool for analyzing large data sets in hadronic decays of light and heavy mesons. It commonly relies on the isobar model, which assumes multihadron final states originate from successive two-body decays of well-known undisturbed intermediate states. Recently, analyses of heavy-meson decays and diffractively produced states have attempted to overcome the strong model dependences of the isobar model. These analyses have overlooked that model-independent, or freed-isobar, partial-wave analysis can introduce mathematical ambiguities in results. We show how these ambiguities arise and present general techniques for identifying their presence and for correcting for them. We demonstrate these techniques with specific examples in both heavy-meson decay and pion-proton scattering.
NASA Technical Reports Server (NTRS)
Poulain, Pierre-Marie; Luther, Douglas S.; Patzert, William C.
1992-01-01
Two techniques were developed for estimating statistics of inertial oscillations from satellite-tracked drifters that overcome the difficulties inherent in estimating such statistics from data dependent upon space coordinates that are a function of time. Application of these techniques to tropical surface drifter data collected during the NORPAX, EPOCS, and TOGA programs reveals a latitude-dependent, statistically significant 'blue shift' of inertial wave frequency. The latitudinal dependence of the blue shift is similar to predictions based on 'global' internal-wave spectral models, with a superposition of frequency shifting due to modification of the effective local inertial frequency by the presence of strongly sheared zonal mean currents within 12 deg of the equator.
Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.
Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B
2005-11-01
A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.
Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts
NASA Astrophysics Data System (ADS)
McLaughlin, Joyce; Renzi, Daniel
2006-04-01
Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. The objective of this paper is to develop and test algorithms whose ultimate product is images of the shear wave speed of tissue mimicking phantoms. The data used in the algorithms are the front of the propagating shear wave. Here, we first develop techniques to find the arrival time surface given the displacement data from a transient elastography experiment. The arrival time surface satisfies the Eikonal equation. We then propose a family of methods, called distance methods, to solve the inverse Eikonal equation: given the arrival times of a propagating wave, find the wave speed. Lastly, we explain why simple inversion schemes for the inverse Eikonal equation lead to large outliers in the wave speed and numerically demonstrate that the new scheme presented here does not have any large outliers. We exhibit two recoveries using these methods: one is with synthetic data; the other is with laboratory data obtained by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).
NASA Astrophysics Data System (ADS)
Nguyen, Thao T. P.; Tanabe, Rie; Ito, Yoshiro
2018-03-01
We compared the expansion characteristics of the plasma plumes and shock waves generated in laser-induced shock process between the two ablation regimes: in air and under water. The observation was made from the initial moment when the laser pulse hit the target until 1.5 μs. The shock processes were driven by focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy-resin blocks using a 40-mm focal length lens. The estimated laser intensity at the target plane is approximate to 9 ×109Wcm-2 . We used the fast-imaging technique to observe the expansion of the plasma plume and a custom-designed time-resolved photoelasticity imaging technique to observe the propagation of shock waves with the time resolution of nanoseconds. We found that at the same intensity of the laser beam, the plasma expansion during the laser pulse follows different mechanisms: the plasma plume that grows in air follows a radiation-wave model while a detonation-wave model can explain the expansion of the plasma plume induced in water. The ideal blast wave theory can be used to predict the decay of the shock wave in air but is not appropriate to describe the decay of the shock wave induced under water.
Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey
NASA Astrophysics Data System (ADS)
Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin
2018-04-01
Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f-v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.
Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey
NASA Astrophysics Data System (ADS)
Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin
2018-07-01
Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f- v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.
Benzy, V K; Jasmin, E A; Koshy, Rachel Cherian; Amal, Frank; Indiradevi, K P
2018-01-01
The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.
Delineation of a collapse feature in a noisy environment using a multichannel surface wave technique
Xia, J.; Chen, C.; Li, P.H.; Lewis, M.J.
2004-01-01
A collapse developed at Calvert Cliffs Nuclear Power Plant, Maryland, in early 2001. The location of the collapse was over a groundwater drainage system pipe buried at an elevation of +0??9 m (reference is to Chesapeake Bay level). The cause of the collapse was a subsurface drain pipe that collapsed because of saltwater corrosion of the corrugated metal pipe. The inflow/outflow of sea water and groundwater flow caused soil to be removed from the area where the pipe collapsed. To prevent damage to nearby structures, the collapse was quickly filled with uncompacted sand and gravel (???36000 kg). However, the plant had an immediate need to determine whether more underground voids existed. A high-frequency multichannel surface-wave survey technique was conducted to define the zone affected by the collapse. Although the surface-wave survey at Calvert Cliffs Nuclear Power Plant was conducted at a noise level 50-100 times higher than the normal environment for a shallow seismic survey, the shear (S)-wave velocity field calculated from surface-wave data delineated a possible zone affected by the collapse. The S-wave velocity field showed chimney-shaped low-velocity anomalies that were directly related to the collapse. Based on S-wave velocity field maps, a potential zone affected by the collapse was tentatively defined.
NASA Astrophysics Data System (ADS)
Baglivo, Fabricio Hugo; Arini, Pedro David
2011-12-01
Electrocardiographic repolarization abnormalities can be detected by Principal Components Analysis of the T-wave. In this work we studied the efect of signal averaging on the mean value and reproducibility of the ratio of the 2nd to the 1st eigenvalue of T-wave (T21W) and the absolute and relative T-wave residuum (TrelWR and TabsWR) in the ECG during ischemia induced by Percutaneous Coronary Intervention. Also, the intra-subject and inter-subject variability of T-wave parameters have been analyzed. Results showed that TrelWR and TabsWR evaluated from the average of 10 complexes had lower values and higher reproducibility than those obtained from 1 complex. On the other hand T21W calculated from 10 complexes did not show statistical diferences versus the T21W calculated on single beats. The results of this study corroborate that, with a signal averaging technique, the 2nd and the 1st eigenvalue are not afected by noise while the 4th to 8th eigenvalues are so much afected by this, suggesting the use of the signal averaged technique before calculation of absolute and relative T-wave residuum. Finally, we have shown that T-wave morphology parameters present high intra-subject stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mészárosová, Hana; Karlický, Marian; Jelínek, Petr
Currently, there is a common endeavor to detect magnetoacoustic waves in solar flares. This paper contributes to this topic using an approach of numerical simulations. We studied a spatial and temporal evolution of impulsively generated fast and slow magnetoacoustic waves propagating along the dense slab and Harris current sheet using two-dimensional magnetohydrodynamic numerical models. Wave signals computed in numerical models were used for computations of the temporal and spatial wavelet spectra for their possible comparison with those obtained from observations. It is shown that these wavelet spectra allow us to estimate basic parameters of waveguides and perturbations. It was foundmore » that the wavelet spectra of waves in the dense slab and current sheet differ in additional wavelet components that appear in association with the main tadpole structure. These additional components are new details in the wavelet spectrum of the signal. While in the dense slab this additional component is always delayed after the tadpole head, in the current sheet this component always precedes the tadpole head. It could help distinguish a type of the waveguide in observed data. We present a technique based on wavelets that separates wave structures according to their spatial scales. This technique shows not only how to separate the magnetoacoustic waves and waveguide structure in observed data, where the waveguide structure is not known, but also how propagating magnetoacoustic waves would appear in observations with limited spatial resolutions. The possibilities detecting these waves in observed data are mentioned.« less
Real time wave forecasting using wind time history and numerical model
NASA Astrophysics Data System (ADS)
Jain, Pooja; Deo, M. C.; Latha, G.; Rajendran, V.
Operational activities in the ocean like planning for structural repairs or fishing expeditions require real time prediction of waves over typical time duration of say a few hours. Such predictions can be made by using a numerical model or a time series model employing continuously recorded waves. This paper presents another option to do so and it is based on a different time series approach in which the input is in the form of preceding wind speed and wind direction observations. This would be useful for those stations where the costly wave buoys are not deployed and instead only meteorological buoys measuring wind are moored. The technique employs alternative artificial intelligence approaches of an artificial neural network (ANN), genetic programming (GP) and model tree (MT) to carry out the time series modeling of wind to obtain waves. Wind observations at four offshore sites along the east coast of India were used. For calibration purpose the wave data was generated using a numerical model. The predicted waves obtained using the proposed time series models when compared with the numerically generated waves showed good resemblance in terms of the selected error criteria. Large differences across the chosen techniques of ANN, GP, MT were not noticed. Wave hindcasting at the same time step and the predictions over shorter lead times were better than the predictions over longer lead times. The proposed method is a cost effective and convenient option when a site-specific information is desired.
Ultrasound Elastography: Review of Techniques and Clinical Applications
Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.
2017-01-01
Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467
Nondestructive Measurements Using Mechanical Waves in Reinforced Concrete Structures.
DOT National Transportation Integrated Search
2014-02-01
"This study evaluated various techniques that use mechanical waves for the evaluation of critical concrete properties, : such as proper consolidation of the concrete during placement and strength development; changes in modulus; and the detection : o...
Progress in high-power continuous-wave quantum cascade lasers [Invited].
Figueiredo, Pedro; Suttinger, Matthew; Go, Rowel; Tsvid, Eugene; Patel, C Kumar N; Lyakh, Arkadiy
2017-11-01
Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.
Rigid polyurethane foam as an efficient material for shock wave attenuation
NASA Astrophysics Data System (ADS)
Komissarov, P. V.; Borisov, A. A.; Sokolov, G. N.; Lavrov, V. V.
2016-09-01
A new method for reducing parameters of blast waves generated by explosions of HE charges on ground is presented. Most of the traditional techniques reduce the wave parameters at a certain distance from the charge, i.e. as a matter of fact the damping device interacts with a completely formed shock wave. The proposed approach is to use rigid polyurethane foam coating immediately the explosive charge. A distributed structure of such a foam block that provides most efficient shock wave attenuation is suggested. Results of experimental shock wave investigations recorded in tests in which HE charges have been exploded with damping devices and without it are compared.
Time Dependent Channel Packet Calculation of Two Nucleon Scattering Matrix Elements
2010-03-01
solutions, 46 ( ) ( )1 1 11 ( ) cos sinL L L L Lr Akr j kr krψ δ η δ= − (3.70) Here, A is an arbitrary constant, Lδ is the phase shift...iv AFIT/DS/ENP/10-M03 Abstract A new approach to calculating nucleon-nucleon scattering matrix...elements using a proven atomic time-dependent wave packet technique is investigated. Using this technique, reactant and product wave packets containing
LITHO1.0: An Updated Crust and Lithosphere Model of the Earth
2010-09-01
wc arc uncertain what causes the remainder of the discrepancy. The measurement discrepancies are much smaller than the signal in the data, and the...short-period group velocity data measured with a new technique which are sensitive to lid properties as well as crustal thickness and average...most progress was made on surface-wave measurements . We use a cluster analysis technique to measure surface-wave group velocity from lOmHz to 40mHz
Helfenstein-Didier, C; Andrade, R J; Brum, J; Hug, F; Tanter, M; Nordez, A; Gennisson, J-L
2016-03-21
The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p < 0.05). Furthermore, the technique showed a very good reproducibility (all standard error of the mean values <10.7 kPa and all coefficient of variation (CV) values ⩽ 0.05%). In addition, independently from the ankle dorsiflexion, the shear modulus was significantly higher in the proximal location compared to the more distal one. The shear modulus provided by SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R = 0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.
NASA Astrophysics Data System (ADS)
Irwandi; Rusydy, Ibnu; Muksin, Umar; Rudyanto, Ariska; Daryono
2018-05-01
Wave vibration confined in the boundary will produce stationary wave solution in discrete states called modes. There are many physics applications related to modal solutions such as air column resonance, string vibration, and emission spectrum of the atomic Hydrogen. Naturally, energy is distributed in several modes so that the complete calculation is obtained from the sum of the whole modes called modal summation. The modal summation technique was applied to simulate the surface wave propagation above crustal structure of the earth. The method is computational because it uses 1D structural model which is not necessary to calculate the overall wave propagation. The simulation results of the magnitude 6.5 Pidie Jaya earthquake show the response spectral of the Summation Technique has a good correlation to the observed seismometer and accelerometer waveform data, especially at the KCSI (Kotacane) station. On the other hand, at the LASI (Langsa) station shows the modal simulation result of response is relatively lower than observation. The lower value of the reaction spectral estimation is obtained because the station is located in the thick sedimentary basin causing the amplification effect. This is the limitation of modal summation technique, and therefore it should be combined with different finite simulation on the 2D local structural model of the basin.
NASA Astrophysics Data System (ADS)
Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Flaud, Patrice; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2014-11-01
Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305-11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications.
Suppression of Stimulus Artifact Contaminating Electrically Evoked Electromyography
Liu, Jie; Li, Sheng; Li, Xiaoyan; Klein, Cliff; Rymer, William Z.; Zhou, Ping
2013-01-01
Background Electrical stimulation of muscle or nerve is a very useful technique for understanding of muscle activity and its pathological changes for both diagnostic and therapeutic purposes. During electrical stimulation of a muscle, the recorded M wave is often contaminated by a stimulus artifact. The stimulus artifact must be removed for appropriate analysis and interpretation of M waves. Objectives The objective of this study was to develop a novel software based method to remove stimulus artifacts contaminating or superimposing with electrically evoked surface electromyography (EMG) or M wave signals. Methods The multiple stage method uses a series of signal processing techniques, including highlighting and detection of stimulus artifacts using the Savitzky-Golay filtering, estimation of the artifact contaminated region with the Otsu thresholding, and reconstruction of such region using signal interpolation and smoothing. The developed method was tested using M wave signals recorded from biceps brachii muscles by a linear surface electrode array. To evaluate the performance, a series of semi-synthetic signals were constructed from clean M wave and stimulus artifact recordings with different degrees of overlap between them. Results The effectiveness of the developed method was quantified by a significant increase in correlation coefficient and a significant decrease in root mean square error between the clean M wave and the reconstructed M wave, compared with those between the clean M wave and the originally contaminated signal. The validity of the developed method was also demonstrated when tested on each channel’s M wave recording using the linear electrode array. Conclusions The developed method can suppress stimulus artifacts contaminating M wave recordings. PMID:24419021
Colombet, B; Woodman, M; Badier, J M; Bénar, C G
2015-03-15
The importance of digital signal processing in clinical neurophysiology is growing steadily, involving clinical researchers and methodologists. There is a need for crossing the gap between these communities by providing efficient delivery of newly designed algorithms to end users. We have developed such a tool which both visualizes and processes data and, additionally, acts as a software development platform. AnyWave was designed to run on all common operating systems. It provides access to a variety of data formats and it employs high fidelity visualization techniques. It also allows using external tools as plug-ins, which can be developed in languages including C++, MATLAB and Python. In the current version, plug-ins allow computation of connectivity graphs (non-linear correlation h2) and time-frequency representation (Morlet wavelets). The software is freely available under the LGPL3 license. AnyWave is designed as an open, highly extensible solution, with an architecture that permits rapid delivery of new techniques to end users. We have developed AnyWave software as an efficient neurophysiological data visualizer able to integrate state of the art techniques. AnyWave offers an interface well suited to the needs of clinical research and an architecture designed for integrating new tools. We expect this software to strengthen the collaboration between clinical neurophysiologists and researchers in biomedical engineering and signal processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis of pulse thermography using similarities between wave and diffusion propagation
NASA Astrophysics Data System (ADS)
Gershenson, M.
2017-05-01
Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.
Tozaki, Mitsuhiro; Saito, Masahiro; Benson, John; Fan, Liexiang; Isobe, Sachiko
2013-12-01
This study compared the diagnostic performance of two shear wave speed measurement techniques in 81 patients with 83 solid breast lesions. Virtual Touch Quantification, which provides single-point shear wave speed measurement capability (SP-SWS), was compared with Virtual Touch IQ, a new 2-D shear wave imaging technique with multi-point shear wave speed measurement capability (2D-SWS). With SP-SWS, shear wave velocity was measured within the lesion ("internal" value) and the marginal areas ("marginal" value). With 2D-SWS, the highest velocity was measured. The marginal values obtained with the SP-SWS and 2D-SWS methods were significantly higher for malignant lesions and benign lesions, respectively (p < 0.0001). Sensitivity, specificity and accuracy were 86% (36/42), 90% (37/41) and 88% (73/83), respectively, for SP-SWS, and 88% (37/42), 93% (38/41) and 90% (75/83), respectively, for 2D-SWS. It is concluded that 2D-SWS is a useful diagnostic tool for differentiating malignant from benign solid breast masses. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.
2015-03-01
Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the potential of using Q-SWI-OCT as an essential tool for nondestructive biomechanical evaluation of myocardium.
NASA Technical Reports Server (NTRS)
Murthy, G.; Yost, W. T.; Ballard, R. E.; Watenpaugh, D. E.; Kawai, Y.; Hargens, A. R.
1994-01-01
Headaches are commonly experienced by astronauts in microgravity and by subjects undergoing head-down tilt (simulated microgravity on Earth). Exposure to microgravity probably elevates blood pressure and flow in the head which may increase intracranial volume (ICV) and pressure (ICP) and in turn cause headache. Due to the slightly compliant nature of the cranial vault and the encasement of brain and its vasculature within this vault, any increase of ICV will increase ICP and slightly distend the cranium. Previous studies document perivascular edema and increased ICP in rhesus monkeys during head-down tilt. Elevated ICP has also been reported in humans during head-down tilt. ICP measurements in healthy humans are rare because of the invasiveness of currently-available measurement techniques. Therefore, we proposed a noninvasive ultrasound technique to assess changes of ICV and JCP. The ultrasound principle is based on compliance of the cranial vault. A 450 kHz ultrasound stimulus is transmitted through the cranium by a transducer every 7.5-10 msec. The ultrasound wave enters the brain tissue, reflects off the opposite side of the cranium and is received by the same transducer. The detected wave is compared for phase quadrature (90 deg.to transmitted wave). Because the electronic circuitry of the device maintains a 90 deg. phase (phi), any alterations in the detected wave caused by an increase of ICV and ICP will be reflected as a change in the wave frequency. Phase shift is directly proportional to path length of the wave, DELTA x, which is expressed as DELTA x = phi lambda/2 pi where lambda is wavelength. Elevated ICV and ICP expand the cranial vault and increase path length of the wave (a measure of intracranial distance). Increased path length equals reduced frequency of the detected wave. Reduced frequency is then related to elevated ICP. This technique has potential uses for ICP studies of astronauts in space and head trauma patients on Earth.
Path planning on cellular nonlinear network using active wave computing technique
NASA Astrophysics Data System (ADS)
Yeniçeri, Ramazan; Yalçın, Müstak E.
2009-05-01
This paper introduces a simple algorithm to solve robot path finding problem using active wave computing techniques. A two-dimensional Cellular Neural/Nonlinear Network (CNN), consist of relaxation oscillators, has been used to generate active waves and to process the visual information. The network, which has been implemented on a Field Programmable Gate Array (FPGA) chip, has the feature of being programmed, controlled and observed by a host computer. The arena of the robot is modelled as the medium of the active waves on the network. Active waves are employed to cover the whole medium with their own dynamics, by starting from an initial point. The proposed algorithm is achieved by observing the motion of the wave-front of the active waves. Host program first loads the arena model onto the active wave generator network and command to start the generation. Then periodically pulls the network image from the generator hardware to analyze evolution of the active waves. When the algorithm is completed, vectorial data image is generated. The path from any of the pixel on this image to the active wave generating pixel is drawn by the vectors on this image. The robot arena may be a complicated labyrinth or may have a simple geometry. But, the arena surface always must be flat. Our Autowave Generator CNN implementation which is settled on the Xilinx University Program Virtex-II Pro Development System is operated by a MATLAB program running on the host computer. As the active wave generator hardware has 16, 384 neurons, an arena with 128 × 128 pixels can be modeled and solved by the algorithm. The system also has a monitor and network image is depicted on the monitor simultaneously.
Beamforming array techniques for acoustic emission monitoring of large concrete structures
NASA Astrophysics Data System (ADS)
McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.
2010-06-01
This paper introduces a novel method of acoustic emission (AE) analysis which is particularly suited for field applications on large plate-like reinforced concrete structures, such as walls and bridge decks. Similar to phased-array signal processing techniques developed for other non-destructive evaluation methods, this technique adapts beamforming tools developed for passive sonar and seismological applications for use in AE source localization and signal discrimination analyses. Instead of relying on the relatively weak P-wave, this method uses the energy-rich Rayleigh wave and requires only a small array of 4-8 sensors. Tests on an in-service reinforced concrete structure demonstrate that the azimuth of an artificial AE source can be determined via this method for sources located up to 3.8 m from the sensor array, even when the P-wave is undetectable. The beamforming array geometry also allows additional signal processing tools to be implemented, such as the VESPA process (VElocity SPectral Analysis), whereby the arrivals of different wave phases are identified by their apparent velocity of propagation. Beamforming AE can reduce sampling rate and time synchronization requirements between spatially distant sensors which in turn facilitates the use of wireless sensor networks for this application.
Petersson, N. Anders; Sjogreen, Bjorn
2015-07-20
We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less
Nakajima, Yujiro; Kadoya, Noriyuki; Kanai, Takayuki; Ito, Kengo; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Ishikawa, Yojiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi
2016-07-01
Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Astrophysics Data System (ADS)
Koju, Vijay
Photonic crystals and their use in exciting Bloch surface waves have received immense attention over the past few decades. This interest is mainly due to their applications in bio-sensing, wave-guiding, and other optical phenomena such as surface field enhanced Raman spectroscopy. Improvement in numerical modeling techniques, state of the art computing resources, and advances in fabrication techniques have also assisted in growing interest in this field. The ability to model photonic crystals computationally has benefited both the theoretical as well as experimental communities. It helps the theoretical physicists in solving complex problems which cannot be solved analytically and helps to acquire useful insights that cannot be obtained otherwise. Experimentalists, on the other hand, can test different variants of their devices by changing device parameters to optimize performance before fabrication. In this dissertation, we develop two commonly used numerical techniques, namely transfer matrix method, and rigorous coupled wave analysis, in C++ and MATLAB, and use two additional software packages, one open-source and another commercial, to model one-dimensional photonic crystals. Different variants of one-dimensional multilayered structures such as perfectly periodic dielectric multilayers, quasicrystals, aperiodic multilayer are modeled, along with one-dimensional photonic crystals with gratings on the top layer. Applications of Bloch surface waves, along with new and novel aperiodic dielectric multilayer structures that support Bloch surface waves are explored in this dissertation. We demonstrate a slow light configuration that makes use of Bloch Surface Waves as an intermediate excitation in a double-prism tunneling configuration. This method is simple compared to the more usual techniques for slowing light using the phenomenon of electromagnetically induced transparency in atomic gases or doped ionic crystals operated at temperatures below 4K. Using a semi-numerical approach, we show that a 1D photonic crystal, a multilayer structure composed of alternating layers of TiO2 and SiO2 , can be used to slow down light by a factor of up to 400. The results also show that better control of the speed of light can be achieved by changing the number of bilayers and the air-gap thickness appropriately. The existence of Bloch surface waves in periodic dielectric multilayer structures with a surface defect is well-known. Not yet recognized is that quasi-crystals and aperiodic dielectric multilayers can also support Bloch-like surface waves. We numerically show the excitation of Bloch-like surface waves in Fibonacci quasi-crystals, Thue-Morse aperiodic dielectric multilayers using the prism coupling method. We report improved surface electric field intensity and penetration depth of Bloch-like surface waves in the air side in such structures compared to their periodic counterparts. Bloch surface waves have also demonstrated significant potential in the field of bios-ensing technology. We further extend our study into a new type of multilayer structure based on Maximal-length sequence, which is a pseudo random sequence. We study the characteristics of Bloch surface waves in a 32 layered Maximal-length sequence multilayer and perform angular, as well as spectral sensitivity analysis for refractive index change detection. We demonstrate numerically that Maximal-length sequence multilayers significantly enhance the sensitivity of Bloch surface waves. Another type of structure that support Bloch surface waves are dielectric multilayer structures with a grating profile on the top-most layer. The grating profile adds an additional degree of freedom to the phase matching conditions for Bloch surface wave excitation. In such structures, the conditions for Bloch surface wave coupling can also be achieved by rotating both polar and azimuthal angles. The generation of Bloch surface waves as a function of azimuthal angle have similar characteristics to conventional grating coupled Bloch surface waves. However, azimuthal generated Bloch surface waves have enhanced angular sensitivity compared to conventional polar angle coupled modes, which makes them appropriate for detecting tiny variations in surface refractive index due to the addition of nano-particles such as protein molecules.
2009-01-01
attenuation and mass transport of a water -mud system due to a solitary wave on the free surface has been modeled by using the Chebyshev-Chebyshev...in Lagrangian coordinates and perturbation equations for shallow water waves were 3 derived. An iteration-by-subdomain technique was introduced to...found. Although the model is focused on solitary waves and Newtonian fluid-mud, the methodology can be extended to oscillatory, nonlinear water waves
NASA Astrophysics Data System (ADS)
Kim, Yong W.
Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.
Guided wave phenomena in millimeter wave integrated circuits and components
NASA Astrophysics Data System (ADS)
Itoh, Tatsuo
1993-01-01
Representative projects from Army Research Office are summarized. Following the narrative descriptions with appropriate illustrations, a complete list of articles published in scientific journals and those presented at national and international conferences is provided. Lists of personnel and advanced degrees are also included. The projects were carried out at The University of Texas at Austin and later at UCLA. Topics covered include: quasi-optical technique; active antenna; active filter; traveling wave transistor; slow wave, planar transmission line; and discontinuities.
Noise suppression in surface microseismic data by τ-p transform
Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael
2013-01-01
Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.
Non-contact single shot elastography using line field low coherence holography
Liu, Chih-Hao; Schill, Alexander; Wu, Chen; Singh, Manmohan; Larin, Kirill V.
2016-01-01
Optical elastic wave imaging is a powerful technique that can quantify local biomechanical properties of tissues. However, typically long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate non-contact single shot elastographic holography using a line-field interferometer integrated with an air-pulse delivery system. The propagation of the air-pulse induced elastic wave was imaged in real time, and required a single excitation for a line-scan measurement. Results on tissue-mimicking phantoms and chicken breast muscle demonstrated the feasibility of this technique for accurate assessment of tissue biomechanical properties with an acquisition time of a few milliseconds using parallel acquisition. PMID:27570694
NASA Astrophysics Data System (ADS)
Shortell, Matthew P.; Althomali, Marwan A. M.; Wille, Marie-Luise; Langton, Christian M.
2017-11-01
We demonstrate a simple technique for quantitative ultrasound imaging of the cortical shell of long bone replicas. Traditional ultrasound computed tomography instruments use the transmitted or reflected waves for separate reconstructions but suffer from strong refraction artefacts in highly heterogenous samples such as bones in soft tissue. The technique described here simplifies the long bone to a two-component composite and uses both the transmitted and reflected waves for reconstructions, allowing the speed of sound and thickness of the cortical shell to be calculated accurately. The technique is simple to implement, computationally inexpensive and sample positioning errors are minimal.
Detection of sinkholes or anomalies using full seismic wave fields.
DOT National Transportation Integrated Search
2013-04-01
This research presents an application of two-dimensional (2-D) time-domain waveform tomography for detection of embedded sinkholes and anomalies. The measured seismic surface wave fields were inverted using a full waveform inversion (FWI) technique, ...
Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR).
Mehta, S; Antich, P
1997-01-01
There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.
Analysis of an axial compressor blade vibration based on wave reflection theory
NASA Technical Reports Server (NTRS)
Owczarek, J. A.
1983-01-01
The paper describes application of the theory of wave reflection in turbomachines to rotor blade vibrations measured in an axial compressor stage. The blade vibrations analyzed could not be predicted using various flutter prediction techniques. The wave reflection theory, first advanced in 1966, is expanded, and more general equations for the rotor blade excitation frequencies are derived. The results of the analysis indicate that all examined rotor blade vibrations can be explained by forced excitations caused by reflecting waves (pressure pulses). Wave reflections between the rotor blades and both the upstream and downstream stator vanes had to be considered.
Lamb waves in phononic crystal slabs with square or rectangular symmetries
NASA Astrophysics Data System (ADS)
Brunet, Thomas; Vasseur, Jérôme; Bonello, Bernard; Djafari-Rouhani, Bahram; Hladky-Hennion, Anne-Christine
2008-08-01
We report on both numerical and experimental results showing the occurrence of band gaps for Lamb waves propagating in phononic crystal plates. The structures are made of centered rectangular and square arrays of holes drilled in a silicon plate. A supercell plane wave expansion method is used to calculate the band structures and to predict the position and the magnitude of the gaps. The band structures of phononic crystal slabs are then measured using a laser ultrasonic technique. Lamb waves in the megahertz range and with wave vectors ranging over more than the first two reduced Brillouin zones are investigated.
Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)
NASA Technical Reports Server (NTRS)
Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)
1997-01-01
There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.
Estimation of wave phase speed and nearshore bathymetry from video imagery
Stockdon, H.F.; Holman, R.A.
2000-01-01
A new remote sensing technique based on video image processing has been developed for the estimation of nearshore bathymetry. The shoreward propagation of waves is measured using pixel intensity time series collected at a cross-shore array of locations using remotely operated video cameras. The incident band is identified, and the cross-spectral matrix is calculated for this band. The cross-shore component of wavenumber is found as the gradient in phase of the first complex empirical orthogonal function of this matrix. Water depth is then inferred from linear wave theory's dispersion relationship. Full bathymetry maps may be measured by collecting data in a large array composed of both cross-shore and longshore lines. Data are collected hourly throughout the day, and a stable, daily estimate of bathymetry is calculated from the median of the hourly estimates. The technique was tested using 30 days of hourly data collected at the SandyDuck experiment in Duck, North Carolina, in October 1997. Errors calculated as the difference between estimated depth and ground truth data show a mean bias of -35 cm (rms error = 91 cm). Expressed as a fraction of the true water depth, the mean percent error was 13% (rms error = 34%). Excluding the region of known wave nonlinearities over the bar crest, the accuracy of the technique improved, and the mean (rms) error was -20 cm (75 cm). Additionally, under low-amplitude swells (wave height H ???1 m), the performance of the technique across the entire profile improved to 6% (29%) of the true water depth with a mean (rms) error of -12 cm (71 cm). Copyright 2000 by the American Geophysical Union.
Transverse vibration technique to identify deteriorated wood floor systems
R.J. Ross; X. Wang; M.O. Hunt; L.A. Soltis
2002-01-01
The Forest Products Laboratory, USDA Forest Service, has been developing nondestructive evaluation (NDE) techniques to identify degradation of wood in structures and the performance characteristics that remain in the structure. This work has focused on using dynamic testing techniques, particularly stress wave and ultrasonic transmission NDE techniques for both...
Investigation of Pressurized Wave Bearings
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Dimofte, Florin
2003-01-01
The wave bearing has been pioneered and developed by Dr. Dimofte over the past several years. This bearing will be the main focus of this research. It is believed that the wave bearing offers a number of advantages over the foil bearing, which is the bearing that NASA is currently pursuing for turbomachinery applications. The wave bearing is basically a journal bearing whose film thickness varies around the circumference approximately sinusoidally, with usually 3 or 4 waves. Being a rigid geometry bearing, it provides precise control of shaft centerlines. The wave profile also provides good load capacity and makes the bearing very stable. Manufacturing techniques have been devised that should allow the production of wave bearings almost as cheaply as conventional full-circular bearings.
Speckle reduction in optical coherence tomography images based on wave atoms
Du, Yongzhao; Liu, Gangjun; Feng, Guoying; Chen, Zhongping
2014-01-01
Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better representation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppression degree in the denoised images is controlled by an adjustable parameter that determines the threshold in the wave atoms domain. The experimental results show that the proposed method can effectively remove the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also compared with the wavelet and curvelet thresholding techniques. PMID:24825507
Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves
NASA Astrophysics Data System (ADS)
Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei
2018-05-01
Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.
Nostradamus: The radar that wanted to be a seismometer
NASA Astrophysics Data System (ADS)
Occhipinti, Giovanni; Dorey, Philippe; Farges, Thomas; Lognonné, Philippe
2010-09-01
Surface waves emitted after large earthquakes are known to induce, by dynamic coupling, atmospheric infrasonic waves propagating upward through the neutral and ionized atmosphere. Those waves have been detected in the past at ionospheric heights using a variety of techniques, such as HF Doppler sounding or GPS receivers. The HF Doppler technique, particularly sensitive to the ionospheric signature of Rayleigh waves is used here to show ionospheric perturbations consistent with the propagation of Rayleigh wave phases R1 and R2 following the Sumatra earthquake on the 28 March 2005 (M = 8.6). This is in our knowledge the first time that the phase R2 is detected by ionospheric sounding. In addition, we prove here that the ionospheric signature of R2 is also observed by over-the-horizon (OTH) Radar. The latter was never used before to detect seismic signature in the ionosphere. Adding the OTH Radar to the list of the “ionospheric seismometers” we discuss and compare the performances of the three different instruments mentioned above, namely HF Doppler sounding, GPS receivers and OTH radar.
High performance millimeter-wave microstrip circulators and isolators
NASA Technical Reports Server (NTRS)
Shih, Ming; Pan, J. J.
1990-01-01
Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance.
Focusing optical waves with a rotationally symmetric sharp-edge aperture
NASA Astrophysics Data System (ADS)
Hu, Yanwen; Fu, Shenhe; Li, Zhen; Yin, Hao; Zhou, Jianying; Chen, Zhenqiang
2018-04-01
While there has been various kinds of patterned structures proposed for wave focusing, these patterned structures usually involve complicated lithographic techniques since the element size of the patterned structures should be precisely controlled in microscale or even nanoscale. Here we propose a new and straightforward method for focusing an optical plane wave in free space with a rotationally symmetric sharp-edge aperture. The focusing phenomenon of wave is realized by superposition of a portion of the higher-order symmetric plane waves generated from the sharp edges of the apertures, in contrast to previously focusing techniques which usually depend on a curved phase. We demonstrate both experimentally and theoretically the focusing effect with a series of apertures having different rotational symmetry, and find that the intensity of the hotspots could be controlled by the symmetric strength of the sharp-edge apertures. The presented results would advance the conventional wisdom that light would diffract in all directions and become expanding when it propagates through an aperture. The proposed method is easy to be processed, and might open potential applications in interferometry, image, and superresolution.
Faranosov, Georgy A; Bychkov, Oleg P
2017-01-01
The interaction of a plane acoustic wave with two-dimensional model of nozzle edge and trailing edge is investigated theoretically by means of the Wiener-Hopf technique. The nozzle edge and the trailing edge are simulated by two half-planes with offset edges. Shear layer behind the nozzle edge is represented by a vortex sheet supporting Kelvin-Helmholtz instability waves. The considered configuration combines two well-known models (nozzle edge and trailing edge), and reveals additional interesting physical aspects. To obtain the solution, the matrix Wiener-Hopf equation is solved in conjunction with a requirement that the full Kutta condition is imposed at the edges. Factorization of the kernel matrix is performed by the combination of Padé approximation and the pole removal technique. This procedure is used to obtain numerical results. The results indicate that the diffracted acoustic field may be significantly intensified due to scattering of hydrodynamic instability waves into sound waves provided that the trailing edge is close enough to the vortex sheet. Similar mechanism may be responsible for the intensification of jet noise near a wing.
Prediction and near-field observation of skull-guided acoustic waves
NASA Astrophysics Data System (ADS)
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-06-01
Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.
Prediction and near-field observation of skull-guided acoustic waves.
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-06-21
Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.
S-matrix method for the numerical determination of bound states.
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Madan, R. N.
1973-01-01
A rapid numerical technique for the determination of bound states of a partial-wave-projected Schroedinger equation is presented. First, one needs to integrate the equation only outwards as in the scattering case, and second, the number of trials necessary to determine the eigenenergy and the corresponding eigenfunction is considerably less than in the usual method. As a nontrivial example of the technique, bound states are calculated in the exchange approximation for the e-/He+ system and l equals 1 partial wave.
Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi
2014-01-20
The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.
Floré, Vincent; Willems, Rik
2012-12-01
In this review, we focus on temporal variability of cardiac repolarization. This phenomenon has been related to a higher risk for ventricular arrhythmia and is therefore interesting as a marker of sudden cardiac death risk. We review two non-invasive clinical techniques quantifying repolarization variability: T-wave alternans (TWA) and beat-to-beat variability of repolarization (BVR). We discuss their pathophysiological link with ventricular arrhythmia and the current clinical relevance of these techniques.
NASA Astrophysics Data System (ADS)
Bukchin, B. G.
1995-08-01
A special case of the seismic source, where the stress glut tensor can be expressed as a product of a uniform moment tensor and a scalar function of spatial coordinates and time, is considered. For such a source, a technique of determining stress glut moments of total degree 2 from surface wave amplitude spectra is described. The results of application of this technique for the estimation of spatio-temporal characteristics of the Georgian earthquake, 29.04.91 are presented.
Design Methodology and Experimental Verification of Serpentine/Folded Waveguide TWTs
2016-03-17
FW), oscillation, serpentine, stopband, traveling -wave tube (TWT), vacuum electronics. I. INTRODUCTION DEVELOPMENT of high-power broadband vacuum elec...tron devices (VEDs) beyond Ka-band using conventional coupled-cavity and helix traveling -wave tube (TWT) RF cir- cuit fabrication techniques is...between the two positions is simply ks times the relative distance along the waveguide axis. However, from the beam–wave interaction standpoint, the
Terahertz near-field imaging of surface plasmon waves in graphene structures
Mitrofanov, O.; Yu, W.; Thompson, R. J.; ...
2015-09-08
In this study, we introduce a near-field scanning probe terahertz (THz) microscopy technique for probing surface plasmon waves on graphene. Based on THz time-domain spectroscopy method, this near-field imaging approach is well suited for studying the excitation and evolution of THz plasmon waves on graphene as well as for mapping of graphene properties at THz frequencies on the sub-wavelength scale.
Wave Current Interactions and Wave-blocking Predictions Using NHWAVE Model
2013-03-01
Navier-Stokes equation. In this approach, as with previous modeling techniques, there is difficulty in simulating the free surface that inhibits accurate...hydrostatic, free - surface , rotational flows in multiple dimensions. It is useful in predicting transformations of surface waves and rapidly varied...Stelling, G., and M. Zijlema, 2003: An accurate and efficient finite-differencing algorithm for non-hydrostatic free surface flow with application to
Time-dependent wave splitting and source separation
NASA Astrophysics Data System (ADS)
Grote, Marcus J.; Kray, Marie; Nataf, Frédéric; Assous, Franck
2017-02-01
Starting from classical absorbing boundary conditions, we propose a method for the separation of time-dependent scattered wave fields due to multiple sources or obstacles. In contrast to previous techniques, our method is local in space and time, deterministic, and avoids a priori assumptions on the frequency spectrum of the signal. Numerical examples in two space dimensions illustrate the usefulness of wave splitting for time-dependent scattering problems.
The propagation of wind errors through ocean wave hindcasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holthuijsen, L.H.; Booij, N.; Bertotti, L.
1996-08-01
To estimate uncertainties in wave forecast and hindcasts, computations have been carried out for a location in the Mediterranean Sea using three different analyses of one historic wind field. These computations involve a systematic sensitivity analysis and estimated wind field errors. This technique enables a wave modeler to estimate such uncertainties in other forecasts and hindcasts if only one wind analysis is available.
Cheng, Yuhua; Deng, Yiming; Cao, Jing; Xiong, Xin; Bai, Libing; Li, Zhaojun
2013-01-01
In this article, the state-of-the-art multi-wave and hybrid imaging techniques in the field of nondestructive evaluation and structural health monitoring were comprehensively reviewed. A new direction for assessment and health monitoring of various structures by capitalizing the advantages of those imaging methods was discussed. Although sharing similar system configurations, the imaging physics and principles of multi-wave phenomena and hybrid imaging methods are inherently different. After a brief introduction of nondestructive evaluation (NDE), structure health monitoring (SHM) and their related challenges, several recent advances that have significantly extended imaging methods from laboratory development into practical applications were summarized, followed by conclusions and discussion on future directions. PMID:24287536