Sample records for wave forces

  1. Breakpoint Forcing Revisited: Phase Between Forcing and Response

    NASA Astrophysics Data System (ADS)

    Contardo, S.; Symonds, G.; Dufois, F.

    2018-02-01

    Using the breakpoint forcing model, for long wave generation in the surf zone, expressions for the phase difference between the breakpoint-forced long waves and the incident short wave groups are obtained. Contrary to assumptions made in previous studies, the breakpoint-forced long waves and incident wave groups are not in phase and outgoing breakpoint-forced long waves and incident wave groups are not π out of phase. The phase between the breakpoint-forced long wave and the incident wave group is shown to depend on beach geometry and wave group parameters. The breakpoint-forced incoming long wave lags behind the wave group, by a phase smaller than π/2. The phase lag decreases as the beach slope decreases and the group frequency increases, approaching approximately π/16 within reasonable limits of the parameter space. The phase between the breakpoint-forced outgoing long wave and the wave group is between π/2 and π and it increases as the beach slope decreases and the group frequency increases, approaching 15π/16 within reasonable limits of the parameter space. The phase between the standing long wave (composed of the incoming long wave and its reflection) and the incident wave group tends to zero when the wave group is long compared to the surf zone width. These results clarify the phase relationships in the breakpoint forcing model and provide a new base for the identification of breakpoint forcing signal from observations, laboratory experiments and numerical modeling.

  2. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    PubMed

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  3. Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Rosenlof, K. H.

    1996-01-01

    The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.

  4. Contradictory Evidence on Wave Forcing of Tropical Upwelling in the Brewer-Dobson Circulation - A Suggested Resolution

    NASA Technical Reports Server (NTRS)

    Zhou, Tiehan; Geller, Marvin A.; Lin, Wuyin

    2011-01-01

    ERA-40 data are analyzed to demonstrate that wave forcing at lower latitudes plays a crucial role in driving the tropical upwelling portion of the Brewer-Dobson circulation. It is shown that subtropical wave forcing is correlated with tropical upwelling on both intraseasonal and interannual time scales when transient waves are taken into account, and that tropical wave forcing exerts its influence on tropical upwelling via its body force on the zonal mean flow.

  5. Transition of torque pattern in undulatory locomotion due to wave number variation in resistive force dominated media

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Ming, Tingyu

    2016-11-01

    In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).

  6. Viscous Effects on Wave Forces on A Submerged Horizontal Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Teng, Bin; Mao, Hong-Fei; Lu, Lin

    2018-06-01

    Numerical simulations are carried out for wave action on a submerged horizontal circular cylinder by means of a viscous fluid model, and it is focused on the examination of the discrepancies between the viscous fluid results and the potential flow solutions. It is found that the lift force resulted from rotational flow on the circular cylinder is always in anti-phase with the inertia force and induces the discrepancies between the results. The influence factors on the magnitude of the lift force, especially the correlation between the stagnation-point position and the wave amplitude, and the effect of the vortex shedding are investigated by further examination on the flow fields around the cylinder. The viscous numerical calculations at different wave frequencies showed that the wave frequency has also significant influence on the wave forces. Under higher frequency and larger amplitude wave action, vortex shedding from the circular cylinder will appear and influence the wave forces on the cylinder substantially.

  7. Remote Sensing Characterization of Two-dimensional Wave Forcing in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Carini, R. J.; Chickadel, C. C.; Jessup, A. T.

    2016-02-01

    In the surf zone, breaking waves drive longshore currents, transport sediment, shape bathymetry, and enhance air-sea gas and particle exchange. Furthermore, wave group forcing influences the generation and duration of rip currents. Wave breaking exhibits large gradients in space and time, making it challenging to measure in situ. Remote sensing technologies, specifically thermal infrared (IR) imagery, can provide detailed spatial and temporal measurements of wave breaking at the water surface. We construct two-dimensional maps of active wave breaking from IR imagery collected during the Surf Zone Optics Experiment in September 2010 at the US Army Corps of Engineers' Field Research Facility in Duck, NC. For each breaker identified in the camera's field of view, the crest-perpendicular length of the aerated breaking region (roller length) and wave direction are estimated and used to compute the wave energy dissipation rate. The resultant dissipation rate maps are analyzed over different time scales: peak wave period, infragravity wave period, and tidal wave period. For each time scale, spatial maps of wave breaking are used to characterize wave forcing in the surf zone for a variety of wave conditions. The following phenomena are examined: (1) wave dissipation rates over the bar (location of most intense breaking) have increased variance in infragravity wave frequencies, which are different from the peak frequency of the incoming wave field and different from the wave forcing variability at the shoreline, and (2) wave forcing has a wider spatial distribution during low tide than during high tide due to depth-limited breaking over the barred bathymetry. Future work will investigate the response of the variability in wave setup, longshore currents and rip currents, to the variability in wave forcing in the surf zone.

  8. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  9. The response of stationary planetary waves to tropospheric forcing

    NASA Technical Reports Server (NTRS)

    Alpert, J. C.; Geller, M. A.; Avery, S. K.

    1983-01-01

    The lower boundary forcing of airflow over topography, and the internal forcing that results from the geographical distribution of diabatic heating, are studied in light of a steady state, linear, quasi-geostrophic model of stationary waves on a sphere. The lower boundary vertical motions forced by airflow over topography depend on whether the horizontal deflection of airflow around topographic features is taken into account, the level of the wind profile at which flow over topography is assumed to take place, and the topographic data set that was used in the forcing formulation. The lower boundary forcing is taken to be given by the observed stationary planetary wave in lower boundary geopotential height, and the internal forcing is computed using the planetary wave propagation equation on the observed wave structure.

  10. Characteristics of finite amplitude stationary gravity waves in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Young, Richard E.; Walterscheid, Richard L.; Schubert, Gerald; Pfister, Leonhard; Houben, Howard; Bindschadler, Duane L.

    1994-01-01

    This paper extends the study of stationary gravity waves generated near the surface of Venus reported previously by Young et al. to include finite amplitude effects associated with large amplitude waves. Waves are forced near the surface of Venus by periodic forcing. The height-dependent profiles of static stability and mean wind in the Venus atmosphere play a very important role in the evolution of the nonlinear behavior of the waves, just as they do in the linear wave solutions. Certain wave properties are qualitatively consistent with linear wave theory, such as wave trapping, resonance, and wave evanescence for short horizontal wavelenghts. However, the finite amplitude solutions also exhibit many other interesting features. In particular, for forcing amplitudes representative of those that could be expected in mountainous regions such as Aphrodite Terra, waves generated near the surface can reach large amplitudes at and above cloud levels, with clear signatures in the circulation pattern. At still higher levels, the waves can reach large enough amplitude to break, unless damping rates above the clouds are sufficient to limit wave amplitude growth. Well below cloud levels the waves develop complex flow patterns as the result of finite amplitude wave-wave interactions, and waves are generated having considerably shorter horizontal wavelenghts than that associated with the forcing near the surface. Nonlinear interactions can excite waves that are resonant with the background wind and static stability fields even when the primary surface forcing does not, and these waves can dominate the wave spectrum near cloud levels. A global map of Venus topographic slopes derived from Magellan altimetry data shows that slopes of magnitude comparable to or exceeding that used to force the model are ubiquitous over the surface.

  11. Calculations of Alfven Wave Driving Forces, Plasma Flow and Current Drive in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Elfimov, Artur; Galvao, Ricardo; Amarante-Segundo, Gesil; Nascimento, Ivan

    2000-10-01

    A general form of time-averaged poloidal ponderomotive forces induced by fast and kinetic Alfvin waves by direct numerical calculations and in geometric optics approximation are analyzed on the basis of the collisionless two fluid (ions and electrons) magneto-hydrodynamics equation. Analytical approximations are used to clarify the effect of Larmour radius on radio-frequency (RF) ponderomotive forces and on poloidal flows induced by them in tokamak plasmas.The RF ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The gradient electromagnetic stress force is combined with fluid dynamic (Reynolds) stress force. It is shown that accounting only Reynolds stress term can overestimate the plasma flow and it is found that the finite ion Larmor radius effect play fundamental role in ponderomotive forces that can drive a poloidal flow, which is larger than a flow driven by a wave momentum transfer force. Finally, balancing the RF forces by the electron-ion friction and viscous force the current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code [Phys. Plasmas, v.6 (1999) p.2437]. Strongly sheared current and plasma flow waves is found.

  12. Self-similar gravity wave spectra resulting from the modulation of bound waves

    NASA Astrophysics Data System (ADS)

    Michel, Guillaume; Semin, Benoît; Cazaubiel, Annette; Haudin, Florence; Humbert, Thomas; Lepot, Simon; Bonnefoy, Félicien; Berhanu, Michaël; Falcon, Éric

    2018-05-01

    We experimentally study the properties of nonlinear surface gravity waves in a large-scale basin. We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction conditions. For the 1D forcing, we find a discrete wave-energy spectrum dominated at high frequencies by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g., to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase velocity as the one of the carrier. When a narrow frequency random modulation is applied to this carrier, the high-frequency part of the wave-energy spectrum becomes continuous with the same frequency-power law. Similar results are found for the 2D forcing when a random modulation is also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave spectra are dominated at high frequencies by the presence of bound waves, even in the configuration where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of the spectrum is found to depend on the forcing amplitude with the same trend as the one found in previous gravity wave turbulence experiments. Such a set of bound waves may thus explain this dependence that was previously poorly understood.

  13. Breakpoint-forced and bound long waves in the nearshore: A model comparison

    USGS Publications Warehouse

    List, Jeffrey H.; ,

    1993-01-01

    A finite-difference model is used to compare long wave amplitudes arising from two-group forced generation mechanisms in the nearshore: long waves generated at a time-varying breakpoint and the shallow-water extension of the bound long wave. Plane beach results demonstrate that the strong frequency selection in the outgoing wave predicted by the breakpoint-forcing mechanism may not be observable in field data due to this wave's relatively small size and its predicted phase relation with the bound wave. Over a bar/trough nearshore, it is shown that a strong frequency selection in shoreline amplitudes is not a unique result of the time-varying breakpoint model, but a general result of the interaction between topography and any broad-banded forcing of nearshore long waves.

  14. Wave-induced hydraulic forces on submerged aquatic plants in shallow lakes.

    PubMed

    Schutten, J; Dainty, J; Davy, A J

    2004-03-01

    Hydraulic pulling forces arising from wave action are likely to limit the presence of freshwater macrophytes in shallow lakes, particularly those with soft sediments. The aim of this study was to develop and test experimentally simple models, based on linear wave theory for deep water, to predict such forces on individual shoots. Models were derived theoretically from the action of the vertical component of the orbital velocity of the waves on shoot size. Alternative shoot-size descriptors (plan-form area or dry mass) and alternative distributions of the shoot material along its length (cylinder or inverted cone) were examined. Models were tested experimentally in a flume that generated sinusoidal waves which lasted 1 s and were up to 0.2 m high. Hydraulic pulling forces were measured on plastic replicas of Elodea sp. and on six species of real plants with varying morphology (Ceratophyllum demersum, Chara intermedia, Elodea canadensis, Myriophyllum spicatum, Potamogeton natans and Potamogeton obtusifolius). Measurements on the plastic replicas confirmed predicted relationships between force and wave phase, wave height and plant submergence depth. Predicted and measured forces were linearly related over all combinations of wave height and submergence depth. Measured forces on real plants were linearly related to theoretically derived predictors of the hydraulic forces (integrals of the products of the vertical orbital velocity raised to the power 1.5 and shoot size). The general applicability of the simplified wave equations used was confirmed. Overall, dry mass and plan-form area performed similarly well as shoot-size descriptors, as did the conical or cylindrical models of shoot distribution. The utility of the modelling approach in predicting hydraulic pulling forces from relatively simple plant and environmental measurements was validated over a wide range of forces, plant sizes and species.

  15. Effects of Internal Waves on Sound Propagation in the Shallow Waters of the Continental Shelves

    DTIC Science & Technology

    2016-09-01

    experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for the effects of...internal waves in the experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for...IN THE SHALLOW WATERS OF THE CONTINENTAL SHELVES ..................................4  1.  Internal Tides—Internal Waves Generated by Tidal Forcing

  16. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  17. Large-scale laboratory observations of wave forces on a highway bridge superstructure.

    DOT National Transportation Integrated Search

    2011-10-01

    The experimental setup and data are presented for a laboratory experiment conducted to examine realistic wave forcing on a highway bridge : superstructure. The experiments measure wave conditions along with the resulting forces, pressures, and struct...

  18. Effects of subsurface ocean dynamics on instability waves in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Lawrence, Sean P.; Allen, Myles R.; Anderson, David L. T.; Llewellyn-Jones, David T.

    1998-08-01

    Tropical instability waves in a primitive equation model of the tropical Pacific Ocean, forced with analyzed wind stresses updated daily, show unexpectedly close phase correspondence with observation through the latter half of 1992. This suggests that these waves are not pure instabilities developing from infinitesimal disturbances, but that their phases and phase speeds are at least partially determined by the wind stress forcing. To quantify and explain this observation, we perfomed several numerical experiments, which indicate that remotely forced Rossby waves can influence both the phase and phase speed of tropical instability waves. We suggest that a remote wind forcing determines the high model/observation phase correspondence of tropical instability waves through a relatively realistic simulation of equatorial Kelvin and Rossby wave activity.

  19. Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouzit, Omar; Tribeche, Mouloud

    2015-10-15

    The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ∼ 1, i.e., as the polarization force becomes close to the electrostatic onemore » (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.« less

  20. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    NASA Astrophysics Data System (ADS)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-12-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  1. Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping

    2017-05-01

    Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.

  2. Upstream-advancing waves generated by three-dimensional moving disturbances

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Joon; Grimshaw, Roger H. J.

    1990-02-01

    The wave field resulting from a surface pressure or a bottom topography in a horizontally unbounded domain is studied. Upstream-advancing waves successively generated by various forcing disturbances moving with near-resonant speeds are found by numerically solving a forced Kadomtsev-Petviashvili (fKP) equation, which shows in its simplest form the interplay of a basic linear wave operator, longitudinal and transverse dispersion, nonlinearity, and forcing. Curved solitary waves are found as a slowly varying similarity solution of the Kadomtsev-Petviashvili (KP) equation, and are favorably compared with the upstream-advancing waves numerically obtained.

  3. Current-wave spectra coupling project. Volume III. Cumulative distribution of forces on structures subjected to the combined action of currents and random waves for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane. [CUFOR code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venezian, G.; Bretschneider, C.L.

    1980-08-01

    This volume details a new methodology to analyze statistically the forces experienced by a structure at sea. Conventionally a wave climate is defined using a spectral function. The wave climate is described using a joint distribution of wave heights and periods (wave lengths), characterizing actual sea conditions through some measured or estimated parameters like the significant wave height, maximum spectral density, etc. Random wave heights and periods satisfying the joint distribution are then generated. Wave kinetics are obtained using linear or non-linear theory. In the case of currents a linear wave-current interaction theory of Venezian (1979) is used. The peakmore » force experienced by the structure for each individual wave is identified. Finally, the probability of exceedance of any given peak force on the structure may be obtained. A three-parameter Longuet-Higgins type joint distribution of wave heights and periods is discussed in detail. This joint distribution was used to model sea conditions at four potential OTEC locations. A uniform cylindrical pipe of 3 m diameter, extending to a depth of 550 m was used as a sample structure. Wave-current interactions were included and forces computed using Morison's equation. The drag and virtual mass coefficients were interpolated from published data. A Fortran program CUFOR was written to execute the above procedure. Tabulated and graphic results of peak forces experienced by the structure, for each location, are presented. A listing of CUFOR is included. Considerable flexibility of structural definition has been incorporated. The program can easily be modified in the case of an alternative joint distribution or for inclusion of effects like non-linearity of waves, transverse forces and diffraction.« less

  4. Effects of wave-induced forcing on a circulation model of the North Sea

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian

    2017-04-01

    The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.

  5. Effects of wave-induced forcing on a circulation model of the North Sea

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian

    2017-01-01

    The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.

  6. Flutter and forced response of mistuned rotors using standing wave analysis

    NASA Technical Reports Server (NTRS)

    Dugundji, J.; Bundas, D. J.

    1983-01-01

    A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motions, and mistuning effects in rotors.

  7. Flutter and forced response of mistuned rotors using standing wave analysis

    NASA Technical Reports Server (NTRS)

    Bundas, D. J.; Dungundji, J.

    1983-01-01

    A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motion, and mistuning effects in rotors.

  8. A model for the generation of two-dimensional surf beat

    USGS Publications Warehouse

    List, Jeffrey H.

    1992-01-01

    A finite difference model predicting group-forced long waves in the nearshore is constructed with two interacting parts: an incident wave model providing time-varying radiation stress gradients across the nearshore, and a long-wave model which solves the equations of motion for the forcing imposed by the incident waves. Both shallow water group-bound long waves and long waves generated by a time-varying breakpoint are simulated. Model-generated time series are used to calculate the cross correlation between wave groups and long waves through the surf zone. The cross-correlation signal first observed by Tucker (1950) is well predicted. For the first time, this signal is decomposed into the contributions from the two mechanisms of leaky mode forcing. Results show that the cross-correlation signal can be explained by bound long waves which are amplified, though strongly modified, through the surf zone before reflection from the shoreline. The breakpoint-forced long waves are added to the bound long waves at a phase of pi/2 and are a secondary contribution owing to their relatively small size.

  9. Scattering of accelerated wave packets

    NASA Astrophysics Data System (ADS)

    Longhi, S.; Horsley, S. A. R.; Della Valle, G.

    2018-03-01

    Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.

  10. 3D Numerical Simulation of the Wave and Current Loads on a Truss Foundation of the Offshore Wind Turbine During the Extreme Typhoon Event

    NASA Astrophysics Data System (ADS)

    Lin, C. W.; Wu, T. R.; Chuang, M. H.; Tsai, Y. L.

    2015-12-01

    The wind in Taiwan Strait is strong and stable which offers an opportunity to build offshore wind farms. However, frequently visited typhoons and strong ocean current require more attentions on the wave force and local scour around the foundation of the turbine piles. In this paper, we introduce an in-house, multi-phase CFD model, Splash3D, for solving the flow field with breaking wave, strong turbulent, and scour phenomena. Splash3D solves Navier-Stokes Equation with Large-Eddy Simulation (LES) for the fluid domain, and uses volume of fluid (VOF) with piecewise linear interface reconstruction (PLIC) method to describe the break free-surface. The waves were generated inside the computational domain by internal wave maker with a mass-source function. This function is designed to adequately simulate the wave condition under observed extreme events based on JONSWAP spectrum and dispersion relationship. Dirichlet velocity boundary condition is assigned at the upper stream boundary to induce the ocean current. At the downstream face, the sponge-layer method combined with pressure Dirichlet boundary condition is specified for dissipating waves and conducting current out of the domain. Numerical pressure gauges are uniformly set on the structure surface to obtain the force distribution on the structure. As for the local scour around the foundation, we developed Discontinuous Bi-viscous Model (DBM) for the development of the scour hole. Model validations were presented as well. The force distribution under observed irregular wave condition was extracted by the irregular-surface force extraction (ISFE) method, which provides a fast and elegant way to integrate the force acting on the surface of irregular structure. From the Simulation results, we found that the total force is mainly induced by the impinging waves, and the force from the ocean current is about 2 order of magnitude smaller than the wave force. We also found the dynamic pressure, wave height, and the projection area of the structure are the main factors to the total force. Detailed results and discussion are presented as well.

  11. Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity

    NASA Astrophysics Data System (ADS)

    Kiladis, G. N.; Biello, J. A.; Straub, K. H.

    2012-12-01

    It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG waves will be presented, and the seasonality of these statistical associations will be discussed. Extratropical forcing of equatorial waves appears to be most efficient during the solstice seasons by waves originating within the winter hemisphere and interacting with convection in the summer hemisphere. A companion presentation by J. Biello will examine the theoretical basis for these interactions.

  12. Dynamics of ultraharmonic resonances in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lubow, Stephen H.

    1992-01-01

    The mildly nonlinear response of a fluid disk with pressure, viscosity, and self-gravity to spiral stellar forcing is considered as a model of the interstellar medium in spiral galaxies. Nonlinear effects are analyzed through a quasi-linear flow analysis ordered by successive powers of a dimensionless spiral perturbing force, which is the ratio of imposed nonaxisymmetric gravitational to axisymmetric gravitational forces. Waves with mn arms are launched from a position where the wavenumber of a free wave matches n times the wavenumber of the spiral forcing. The launched short wave in the gas is an interarm feature that is more tightly wrapped than the stellar wave. The gas wave extracts energy and angular momentum from the stellar wave, causing it to damp. The application of the results to the stellar disk alone reveals even stronger damping, as stars undergo Landau damping of the short wave. For parameters in M81, damping times are less than 10 exp 9 yr.

  13. Ponderomotive Force in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  14. Pondermotive versus mirror force in creation of the filamentary cavities in auroral plasma

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1994-01-01

    Recently rocket observations on spikelets of lower-hybrid waves along with strong density cavities and transversely heated ions were reported. The observed thin filamentary cavities oriented along the magnetic field in the auroral plasma have density depletions up to several tens of percent. These observations have been interpreted in terms of a theory for lower-hybrid wave condensation and collapse. The modulational instability leading to the wave consensation of the lower-hybrid waves yields only weak density perturbations, which cannot explain the above strong density depletions. The wave collapse theory is based on the nonlinear pondermotive force in a homogeneous ambient plasma and the density depletion is determined by the balance between the wave pressure (pondermotive force) and the plasma pressure. In the auroral plasma, the balance is achieved in a time tau(sub wc) equal to or less than 1 ms. It is shown here that the mirror force, acting on the transversely heated ions at a relatively long time scale, is an effective mechanism for creating the strong plasma cavities. We suggest that the process of wave condensation, through the pondermotive force causing generation of short wavelength waves from relatively long wavelength waves, is a dominant process until the former waves evolve and become effective in the transverse heating of ions. As soon as this happens, mirror force on ions becomes an important factor in the creation of the density cavities, which may further trap and enhance the waves. Results from a model of cavity formation by transverse ion heating show that the observed depletions in the density cavities can be produced by the heating rates determined by the observed wave amplitudes near the lower-hybrid frequency. It is found that the creation of a strong density cavity takes a few minutes.

  15. Generalized analytical model for benthic water flux forced by surface gravity waves

    USGS Publications Warehouse

    King, J.N.; Mehta, A.J.; Dean, R.G.

    2009-01-01

    A generalized analytical model for benthic water flux forced by linear surface gravity waves over a series of layered hydrogeologic units is developed by adapting a previous solution for a hydrogeologic unit with an infinite thickness (Case I) to a unit with a finite thickness (Case II) and to a dual-unit system (Case III). The model compares favorably with laboratory observations. The amplitude of wave-forced benthic water flux is shown to be directly proportional to the amplitude of the wave, the permeability of the hydrogeologic unit, and the wave number and inversely proportional to the kinematic viscosity of water. A dimensionless amplitude parameter is introduced and shown to reach a maximum where the product of water depth and the wave number is 1.2. Submarine groundwater discharge (SGD) is a benthic water discharge flux to a marine water body. The Case I model estimates an 11.5-cm/d SGD forced by a wave with a 1 s period and 5-cm amplitude in water that is 0.5-m deep. As this wave propagates into a region with a 0.3-m-thick hydrogeologic unit, with a no-flow bottom boundary, the Case II model estimates a 9.7-cm/d wave-forced SGD. As this wave propagates into a region with a 0.2-m-thick hydrogeologic unit over an infinitely thick, more permeable unit, the Case III quasi-confined model estimates a 15.7-cm/d wave-forced SGD. The quasi-confined model has benthic constituent flux implications in coral reef, karst, and clastic regions. Waves may undermine tracer and seepage meter estimates of SGD at some locations. Copyright 2009 by the American Geophysical Union.

  16. Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Luo, Zhangai

    1993-01-01

    We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.

  17. Can a minimalist model of wind forced baroclinic Rossby waves produce reasonable results?

    NASA Astrophysics Data System (ADS)

    Watanabe, Wandrey B.; Polito, Paulo S.; da Silveira, Ilson C. A.

    2016-04-01

    The linear theory predicts that Rossby waves are the large scale mechanism of adjustment to perturbations of the geophysical fluid. Satellite measurements of sea level anomaly (SLA) provided sturdy evidence of the existence of these waves. Recent studies suggest that the variability in the altimeter records is mostly due to mesoscale nonlinear eddies and challenges the original interpretation of westward propagating features as Rossby waves. The objective of this work is to test whether a classic linear dynamic model is a reasonable explanation for the observed SLA. A linear-reduced gravity non-dispersive Rossby wave model is used to estimate the SLA forced by direct and remote wind stress. Correlations between model results and observations are up to 0.88. The best agreement is in the tropical region of all ocean basins. These correlations decrease towards insignificance in mid-latitudes. The relative contributions of eastern boundary (remote) forcing and local wind forcing in the generation of Rossby waves are also estimated and suggest that the main wave forming mechanism is the remote forcing. Results suggest that linear long baroclinic Rossby wave dynamics explain a significant part of the SLA annual variability at least in the tropical oceans.

  18. Wave‐induced Hydraulic Forces on Submerged Aquatic Plants in Shallow Lakes

    PubMed Central

    SCHUTTEN, J.; DAINTY, J.; DAVY, A. J.

    2004-01-01

    • Background and Aims Hydraulic pulling forces arising from wave action are likely to limit the presence of freshwater macrophytes in shallow lakes, particularly those with soft sediments. The aim of this study was to develop and test experimentally simple models, based on linear wave theory for deep water, to predict such forces on individual shoots. • Methods Models were derived theoretically from the action of the vertical component of the orbital velocity of the waves on shoot size. Alternative shoot‐size descriptors (plan‐form area or dry mass) and alternative distributions of the shoot material along its length (cylinder or inverted cone) were examined. Models were tested experimentally in a flume that generated sinusoidal waves which lasted 1 s and were up to 0·2 m high. Hydraulic pulling forces were measured on plastic replicas of Elodea sp. and on six species of real plants with varying morphology (Ceratophyllum demersum, Chara intermedia, Elodea canadensis, Myriophyllum spicatum, Potamogeton natans and Potamogeton obtusifolius). • Key Results Measurements on the plastic replicas confirmed predicted relationships between force and wave phase, wave height and plant submergence depth. Predicted and measured forces were linearly related over all combinations of wave height and submergence depth. Measured forces on real plants were linearly related to theoretically derived predictors of the hydraulic forces (integrals of the products of the vertical orbital velocity raised to the power 1·5 and shoot size). • Conclusions The general applicability of the simplified wave equations used was confirmed. Overall, dry mass and plan‐form area performed similarly well as shoot‐size descriptors, as did the conical or cylindrical models of shoot distribution. The utility of the modelling approach in predicting hydraulic pulling forces from relatively simple plant and environmental measurements was validated over a wide range of forces, plant sizes and species. PMID:14988098

  19. Key features of wave energy.

    PubMed

    Rainey, R C T

    2012-01-28

    For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays.

  20. Analysis of Real Ship Rolling Dynamics under Wave Excitement Force Composed of Sums of Cosine Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y. S.; Cai, F.; Xu, W. M.

    2011-09-28

    The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums ofmore » cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.« less

  1. Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid.

    PubMed

    Lopes, J Henrique; Azarpeyvand, Mahdi; Silva, Glauber T

    2016-01-01

    In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N objects suspended in an inviscid fluid are theoretically analyzed. We utilize the partial-wave expansion method with translational addition theorem and re-expansion of multipole series to solve the related multiple scattering problem. We show that the acoustic interaction force and torque can be obtained using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets' radii are comparable to the wavelength (i.e., Mie scattering regime). The results show that the acoustic interaction forces present an oscillatory spatial distribution which follows the pattern formed by interference between the external and rescattered waves. In addition, acoustic interaction torques arise on the absorbing droplets whenever a nonsymmetric wavefront is formed by the external and rescattered waves' interference.

  2. Estimation of excitation forces for wave energy converters control using pressure measurements

    NASA Astrophysics Data System (ADS)

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  3. Bottom boundary layer forced by finite amplitude long and short surface waves motions

    NASA Astrophysics Data System (ADS)

    Elsafty, H.; Lynett, P.

    2018-04-01

    A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave nonlinearity.

  4. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    PubMed

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  5. Regarding tracer transport in Mars' winter atmosphere in the presence of nearly stationary, forced planetary waves

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffrey L.; Haberle, R. M.; Houben, Howard C.

    1993-01-01

    Large-scale transport of volatiles and condensates on Mars, as well as atmospheric dust, is ultimately driven by the planet's global-scale atmospheric circulation. This circulation arises in part from the so-called mean meridional (Hadley) circulation that is associated with rising/poleward motion in low latitudes and sinking/equatorward motion in middle and high latitudes. Intimately connected to the mean circulation is an eddy-driven component due to large-scale wave activity in the planet's atmosphere. During winter this wave activity arises both from traveling weather systems (i.e., barotropic and baroclinic disturbances) and from 'forced' disturbances (e.g., the thermal tides and surface-forced planetary waves). Possible contributions to the effective (net) transport circulation from forced planetary waves are investigated.

  6. The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean

    NASA Astrophysics Data System (ADS)

    Rimac, A.; Eden, C.; von Storch, J.

    2012-12-01

    Coexistence of stable stratification, the meridional overturning circulation and meso-scale eddies and their influence on the ocean's circulation still raise complex questions concerning the ocean energetics. Oceanic general circulation is mainly forced by the wind field and deep water tides. Its essential energetics are the conversion of kinetic energy of the winds and tides into oceanic potential and kinetic energy. Energy needed for the circulation is bound to internal wave fields. Direct internal wave generation by the wind at the sea surface is one of the sources of this energy. Previous studies using mixed-layer type of models and low frequency wind forcings (six-hourly and daily) left room for improvement. Using mixed-layer models it is not possible to assess the distribution of near-inertial energy into the deep ocean. Also, coarse temporal resolution of wind forcing strongly underestimates the near-inertial wave energy. To overcome this difficulty we use a high resolution ocean model with high frequency wind forcings. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal (250km versus 40km) and temporal resolution (six versus one-hourly). In our study we answer the following questions: How big is the wind kinetic energy input to the near-inertial waves? Is the kinetic energy of the near-inertial waves enhanced when high-frequency wind forcings are used? If so, by how much and why, due to higher level of temporal wind variability or due to better spatial representation of the near-inertial waves? How big is the total power of near-inertial waves generated by the wind at the surface of the ocean? We run the model for one year. Our model results show that the near-inertial waves are excited both using wind forcings of high and low horizontal and temporal resolution. Near-inertial energy is almost two times higher when we force the model with high frequency wind forcings. The influence on the energy mostly depends on the time difference between two forcing fields while the spatial difference has little influence.

  7. Observation of `third sound' in superfluid 3He

    NASA Astrophysics Data System (ADS)

    Schechter, A. M. R.; Simmonds, R. W.; Packard, R. E.; Davis, J. C.

    1998-12-01

    Waves on the surface of a fluid provide a powerful tool for studying the fluid itself and the surrounding physical environment. For example, the wave speed is determined by the force per unit mass at the surface, and by the depth of the fluid: the decreasing speed of ocean waves as they approach the shore reveals the changing depth of the sea and the strength of gravity. Other examples include propagating waves in neutron-star oceans and on the surface of levitating liquid drops. Although gravity is a common restoring force, others exist, including the electrostatic force which causes a thin liquid film to adhere to a solid. Usually surface waves cannot occur on such thin films because viscosity inhibits their motion. However, in the special case of thin films of superfluid 4He, surface waves do exist and are called `third sound'. Here we report the detection of similar surface waves in thin films of superfluid 3He. We describe studies of the speed of these waves, the properties of the surface force, and the film's superfluid density.

  8. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  9. Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading

    NASA Astrophysics Data System (ADS)

    Seeram, Madhuri; Manohar, Y.

    2018-06-01

    In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.

  10. Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading

    NASA Astrophysics Data System (ADS)

    Seeram, Madhuri; Manohar, Y.

    2018-02-01

    In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.

  11. Mechanism of travelling-wave transport of particles

    NASA Astrophysics Data System (ADS)

    Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki

    2006-03-01

    Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency.

  12. Wave forcing and morphological changes of New Caledonia lagoon islets: Insights on their possible relations

    NASA Astrophysics Data System (ADS)

    Aucan, Jérôme; Vendé-Leclerc, Myriam; Dumas, Pascal; Bricquir, Marianne

    2017-10-01

    In the present study, we examine how waves may contribute to the morphological changes of islets in the New Caledonia lagoon. We collected in situ wave data to investigate their characteristics. Three types of waves are identified and quantified: (1) high-frequency waves generated within the lagoon, (2) low-frequency waves originating from swells in the Tasman Sea, and (3) infragravity waves. We found out that high-frequency waves are the dominant forcing on the islets during typical wind events throughout the year, while infragravity waves, likely generated by the breaking of low-frequency waves, dominate during seasonal swell events. During swell events, low-frequency waves can also directly propagate to the islets through channels across the barrier reef, or be tidally modulated across the barrier reef before reaching the islets. Topographic surveys and beach profiles on one islet indicate areas with seasonal morphological changes and other areas with longer, interannual or decadal, erosion patterns. Although more data are needed to validate this hypothesis, we suspect that a relation exists between wave forcing and morphological changes of the islets.

  13. Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation

    NASA Technical Reports Server (NTRS)

    Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven

    2016-01-01

    This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.

  14. Characteristics of solitary waves, quasiperiodic solutions, homoclinic breather solutions and rogue waves in the generalized variable-coefficient forced Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Zou, Li

    2017-12-01

    In this paper, the generalized variable-coefficient forced Kadomtsev-Petviashvili (gvcfKP) equation is investigated, which can be used to characterize the water waves of long wavelength relating to nonlinear restoring forces. Using a dependent variable transformation and combining the Bell’s polynomials, we accurately derive the bilinear expression for the gvcfKP equation. By virtue of bilinear expression, its solitary waves are computed in a very direct method. By using the Riemann theta function, we derive the quasiperiodic solutions for the equation under some limitation factors. Besides, an effective way can be used to calculate its homoclinic breather waves and rogue waves, respectively, by using an extended homoclinic test function. We hope that our results can help enrich the dynamical behavior of the nonlinear wave equations with variable-coefficient.

  15. Analysis and numerical study of inertia-gravity waves generated by convection in the tropics

    NASA Astrophysics Data System (ADS)

    Evan, Stephanie

    2011-12-01

    Gravity waves transport momentum and energy upward from the troposphere and by dissipation affect the large-scale structure of the middle atmosphere. An accurate representation of these waves in climate models is important for climate studies, but is still a challenge for most global and climate models. In the tropics, several studies have shown that mesoscale gravity waves and intermediate scale inertia-gravity waves play an important role in the dynamics of the upper atmosphere. Despite observational evidence for the importance of forcing of the tropical circulation by inertia-gravity waves, their exact properties and forcing of the tropical stratospheric circulation are not fully understood. In this thesis, properties of tropical inertia-gravity waves are investigated using radiosonde data from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset and high-resolution numerical experiments. Few studies have characterized inertia-gravity wave properties using radiosonde profiles collected on a campaign basis. We first examine the properties of intermediate-scale inertia-gravity waves observed during the 2006 TWP-ICE campaign in Australia. We show that the total vertical flux of horizontal momentum associated with the waves is of the same order of magnitude as previous observations of Kelvin waves. This constitutes evidence for the importance of the forcing of the tropical circulation by intermediate-scale inertia-gravity waves. Then, we focus on the representation of inertia-gravity waves in analysis data. The wave event observed during TWP-ICE is also present in the ECMWF data. A comparison between the characteristics of the inertia-gravity wave derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this wave event but with a larger vertical wavelength. The Weather Research and Forecasting (WRF) modeling system is used to understand the representation of the wave event in the ECMWF data. The model is configured as a tropical channel with a high top at 1 hPa. WRF is used with the same horizontal resolution (˜ 40 km) as the operational ECMWF in 2006 while using a finer vertical grid-spacing than ECMWF. Different experiments are performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions and vertical resolution. We demonstrate that high vertical resolution would be required for ECMWF to accurately resolve the vertical structure of inertia-gravity waves and their effect on the middle atmosphere circulation. Lastly we perform WRF simulations in January 2006 and 2007 to assess gravity wave forcing of the tropical stratospheric circulation. In these simulations a large part of the gravity wave spectrum is explicitly simulated. The WRF model is able to reproduce the evolution of the mean tropical stratospheric zonal wind when compared to observational data and the ECMWF reanalysis. It is shown that gravity waves account for 60% up to 80% of the total wave forcing of the tropical stratospheric circulation. We also compute wave forcing associated with intermediate-scale inertiagravity waves. In the WRF simulations this wave type represents ˜ 30% of the total gravity wave forcing. This suggests that intermediate-scale inertia-gravity waves can play an important role in the tropical middle-atmospheric circulation. In addition, the WRF high-resolution simulations are used to provide some guidance for constraining gravity wave parameterizations in coarse-grid climate models.

  16. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitri, F.G., E-mail: mitri@chevron.com

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to anmore » equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.« less

  17. Single cell manipulation utilizing femtosecond laser-induced shock and stress waves

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh

    2017-02-01

    When an intense femtosecond laser pulse is focused into a culture medium through an objective lens, an impulsive force is loaded on the cells with generations of the shock and stress waves at the laser focal point. The shock and stress waves were acted to single cells in the vicinity of the laser focal point as an impulsive force. We have applied the impulsive force to manipulate single cells. As the transient intensity of the impulsive force is over 1000 times stronger than the force due to optical tweezers, drastic single manipulation which is difficult by the optical tweezers can be realized. The generation process of the impulsive force and behavior of animal cell after loading the impulsive force were reviewed, and then our original quantification method of the impulsive force utilizing atomic force microscope (AFM) was introduced with its applications for evaluating adhesions between animal cells and between sub-organelles in plant cell.

  18. Transmitral flow velocity-contour variation after premature ventricular contractions: a novel test of the load-independent index of diastolic filling.

    PubMed

    Boskovski, Marko T; Shmuylovich, Leonid; Kovács, Sándor J

    2008-12-01

    The new echocardiography-based, load-independent index of diastolic filling (LIIDF) M was assessed using load-/shape-varying E-waves after premature ventricular contractions (PVCs). Twenty-six PVCs in 15 subjects from a preexisting simultaneous echocardiography-catheterization database were selected. Perturbed load-state beats, defined as the first two post-PVC E-waves, and steady-state E-waves, were subjected to conventional and model-based analysis. M, a dimensionless index, defined by the slope of the peak driving-force vs. peak (filling-opposing) resistive-force regression, was determined from steady-state E-waves alone, and from load-perturbed E-waves combined with a matched number of subsequent beats. Despite high degrees of E-wave shape variation, M derived from load-varying, perturbed beats and M derived from steady-state beats alone were indistinguishable. Because the peak driving-force vs. peak resistive-force relation determining M remains highly linear in the extended E-wave shape and load variation regime observed, we conclude that M is a robust LIIDF.

  19. A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, James R.

    1997-01-01

    A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.

  20. Active-Controlled Fluid Film Based on Wave-Bearing Technology

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Hendricks, Robert C.

    2011-01-01

    It has been known since 1967 that the steady-state and dynamic performance, including the stability of a wave bearing, are highly dependent on the wave amplitude. A wave-bearing profile can be readily obtained by elastically distorting the stationary bearing sleeve surface. The force that distorts the elastic sleeve surface could be an applied force or pressure. The magnitude and response of the distorting force would be defined by the relation between the bearing surface stiffness and the bearing pressure, or load, in a feedback loop controller. Using such devices as piezoelectric or other electromechanical elements, one could step control or fully control the bearing. The selection between these systems depends on the manner in which the distortion forces are applied, the running speed, and the reaction time of the feedback loop. With these techniques, both liquid- (oil-) or gas- (air-) lubricated wave bearings could be controlled. This report gives some examples of the dependency of the bearing's performance on the wave amplitude. The analysis also was proven experimentally.

  1. Wavelength dependence of eddy dissipation and Coriolis force in the dynamics of gravity wave driven fluctuations in the OH nightglow

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.

    1988-01-01

    This paper examines the effect of inclusion of Coriolis force and eddy dissipation in the gravity wave dynamics theory of Walterscheid et al. (1987). It was found that the values of the ratio 'eta' (where eta is a complex quantity describing the ralationship between the intensity oscillation about the time-averaged intensity, and the temperature oscillation about the time-averaged temperature) strongly depend on the wave period and the horizontal wavelength; thus, if comparisons are to be made between observations and theory, horizontal wavelengths will need to be measured in conjunction with the OH nightglow measurements. For the waves with horizontal wavelengths up to 1000 km, the eddy dissipation was found to dominate over the Coriolis force in the gravity wave dynamics and also in the associated values of eta. However, for waves with horizontal wavelengths of 10,000 km or more, the Coriolis force cannot be neglected; it has to be taken into account along with the eddy dissipation.

  2. Breaking phase focused wave group loads on offshore wind turbine monopiles

    NASA Astrophysics Data System (ADS)

    Ghadirian, A.; Bredmose, H.; Dixen, M.

    2016-09-01

    The current method for calculating extreme wave loads on offshore wind turbine structures is based on engineering models for non-breaking regular waves. The present article has the aim of validating previously developed models at DTU, namely the OceanWave3D potential flow wave model and a coupled OceanWave3D-OpenFOAM solver, against measurements of focused wave group impacts on a monopile. The focused 2D and 3D wave groups are reproduced and the free surface elevation and the in-line forces are compared to the experimental results. In addition, the pressure distribution on the monopile is examined at the time of maximum force and discussed in terms of shape and magnitude. Relative pressure time series are also compared between the simulations and experiments and detailed pressure fields for a 2D and 3D impact are discussed in terms of impact type. In general a good match for free surface elevation, in-line force and wave-induced pressures is found.

  3. A high-resolution OGCM simulation of the Tropical Pacific Ocean during the 1985-1994 TOGA period. Part I: Long equatorial waves

    NASA Technical Reports Server (NTRS)

    Boulanger, J. P.; Delecluse, F.; Maes, C.; Levy, C.

    1995-01-01

    A high resolution oceanic general circulation model of the three topical oceans is used to investigate long equatorial wave activity in the Pacific Ocean during the 1985-1994 TOGA period. Zonal wind stress forcing and simulated dynamic height are interpreted using techniques previously applied to data. Kelvin and first Rossby waves are observed propagating during all the period. A seasonal cycle and interannual anomalies are computed for each long equatorial wave. The east Pacific basin is mainly dominated by seasonal cycle variations while strong interannual anomalies are observed west of the dateline. Long wave interannual anomalies are then compared to wave coefficients simulated by a simple wind-forced model. Our results outline the major role played by wind forcing on interannual time scales in generating long equatorial waves. However, near both eastern and western boundaries, some differences can be attributed to long wave reflections. A comparison to wave coefficients calculated from GEOSAT sea-level data gives some insight of the model behavior.

  4. Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs.

    PubMed

    Baldock, T E; Golshani, A; Callaghan, D P; Saunders, M I; Mumby, P J

    2014-06-15

    A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Clustering of cycloidal wave energy converters

    DOEpatents

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  6. Longitudinally polarized shear wave optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Miao, Yusi; Zhu, Jiang; Qi, Li; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Chen, Zhongping

    2017-02-01

    Shear wave measurement enables quantitative assessment of tissue viscoelasticity. In previous studies, a transverse shear wave was measured using optical coherence elastography (OCE), which gives poor resolution along the force direction because the shear wave propagates perpendicular to the applied force. In this study, for the first time to our knowledge, we introduce an OCE method to detect a longitudinally polarized shear wave that propagates along the force direction. The direction of vibration induced by a piezo transducer (PZT) is parallel to the direction of wave propagation, which is perpendicular to the OCT beam. A Doppler variance method is used to visualize the transverse displacement. Both homogeneous phantoms and a side-by-side two-layer phantom were measured. The elastic moduli from mechanical tests closely matched to the values measured by the OCE system. Furthermore, we developed 3D computational models using finite element analysis to confirm the shear wave propagation in the longitudinal direction. The simulation shows that a longitudinally polarized shear wave is present as a plane wave in the near field of planar source due to diffraction effects. This imaging technique provides a novel method for the assessment of elastic properties along the force direction, which can be especially useful to image a layered tissue.

  7. Optimal Length Scale for a Turbulent Dynamo.

    PubMed

    Sadek, Mira; Alexakis, Alexandros; Fauve, Stephan

    2016-02-19

    We demonstrate that there is an optimal forcing length scale for low Prandtl number dynamo flows that can significantly reduce the required energy injection rate. The investigation is based on simulations of the induction equation in a periodic box of size 2πL. The flows considered are the laminar and turbulent ABC flows forced at different forcing wave numbers k_{f}, where the turbulent case is simulated using a subgrid turbulence model. At the smallest allowed forcing wave number k_{f}=k_{min}=1/L the laminar critical magnetic Reynolds number Rm_{c}^{lam} is more than an order of magnitude smaller than the turbulent critical magnetic Reynolds number Rm_{c}^{turb} due to the hindering effect of turbulent fluctuations. We show that this hindering effect is almost suppressed when the forcing wave number k_{f} is increased above an optimum wave number k_{f}L≃4 for which Rm_{c}^{turb} is minimum. At this optimal wave number, Rm_{c}^{turb} is smaller by more than a factor of 10 than the case forced in k_{f}=1. This leads to a reduction of the energy injection rate by 3 orders of magnitude when compared to the case where the system is forced at the largest scales and thus provides a new strategy for the design of a fully turbulent experimental dynamo.

  8. Ponderomotive Forces in Cosmos

    NASA Astrophysics Data System (ADS)

    Lundin, R.; Guglielmi, A.

    2006-12-01

    This review is devoted to ponderomotive forces and their importance for the acceleration of charged particles by electromagnetic waves in space plasmas. Ponderomotive forces constitute time-averaged nonlinear forces acting on a media in the presence of oscillating electromagnetic fields. Ponderomotive forces represent a useful analytical tool to describe plasma acceleration. Oscillating electromagnetic fields are also related with dissipative processes, such as heating of particles. Dissipative processes are, however, left outside these discussions. The focus will be entirely on the (conservative) ponderomotive forces acting in space plasmas. The review consists of seven sections. In Section 1, we explain the rational for using the auxiliary ponderomotive forces instead of the fundamental Lorentz force for the study of particle motions in oscillating fields. In Section 2, we present the Abraham, Miller, Lundin-Hultqvist and Barlow ponderomotive forces, and the Bolotovsky-Serov ponderomotive drift. The hydrodynamic, quasi-hydrodynamic, and ‘`test-particle’' approaches are used for the study of ponderomotive wave-particle interaction. The problems of self-consistency and regularization are discussed in Section 3. The model of static balance of forces (Section 4) exemplifies the interplay between thermal, gravitational and ponderomotive forces, but it also introduces a set of useful definitions, dimensionless parameters, etc. We analyze the Alfvén and ion cyclotron waves in static limit with emphasis on the specific distinction between traveling and standing waves. Particular attention has been given to the impact of traveling Alfvén waves on the steady state anabatic wind that blows over the polar regions (Section~5). We demonstrate the existence of a wave-induced cold anabatic wind. We also show that, at a critical point, the ponderomotive acceleration of the wind is a factor of 3 greater than the thermal acceleration. Section 6 demonstrates various manifestations of ponderomotive forces in the Earth's magnetosphere, for instance the ionospheric plasma acceleration and outflow. The polar wind and the auroral density cavities are considered in relation to results from the Freja and Viking satellites. The high-altitude energization and escape of ions is discussed. The ponderomotive anharmonicity of standing Alfvén waves is analyzed from ground based ULF wave measurements. The complexity of the many challenging problems related with plasma processes near the magnetospheric boundaries is discussed in the light of recent Cluster observations. At the end of Section 6, we consider the application of ponderomotive forces to the diversity of phenomena on the Sun, in the interstellar environment, on newborn stars, pulsars and active galaxies. We emphasize the role of forcing of magnetized plasmas in general and ponderomotive forcing in particular, presenting some simple conceivable scenarios for massive outflow and jets from astrophysical objects.

  9. Attributing anthropogenic impact on regional heat wave events using CAM5 model large ensemble simulations

    NASA Astrophysics Data System (ADS)

    Lo, S. H.; Chen, C. T.

    2017-12-01

    Extreme heat waves have serious impacts on society. It was argued that the anthropogenic forcing might substantially increase the risk of extreme heat wave events (e.g. over western Europe in 2003 and over Russia in 2010). However, the regional dependence of such anthropogenic impact and the sensitivity of the attributed risk to the definition of heat wave still require further studies. In our research framework, the change in the frequency and severity of a heat wave event under current conditions is calculated and compared with the probability and magnitude of the event if the effects of particular external forcing, such as due to human influence, had been absent. In our research, we use the CAM5 large ensemble simulation from the CLIVAR C20C+ Detection and Attribution project (http://portal.nersc.gov/c20c/main.html, Folland et al. 2014) to detect the heat wave events occurred in both historical all forcing run and natural forcing only run. The heat wave events are identified by partial duration series method (Huth et al., 2000). We test the sensitivity of heat wave thresholds from daily maximum temperature (Tmax) in warm season (from May to September) between 1959 and 2013. We consider the anthropogenic effect on the later period (2000-2013) when the warming due to human impact is more evident. Using Taiwan and surrounding area as our preliminary research target, We found the anthropogenic effect will increase the heat wave day per year from 30 days to 75 days and make the mean starting(ending) day for heat waves events about 15-30 days earlier(later). Using the Fraction of Attribution Risk analysis to estimate the risk of frequency of heat wave day, our results show the anthropogenic forcing very likely increase the heat wave days over Taiwan by more than 50%. Further regional differences and sensitivity of the attributed risk to the definition of heat wave will be compared and discussed.

  10. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    PubMed

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto-fluidics would benefit from the results of the present investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates.

    PubMed

    Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2018-04-01

    Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios <16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  12. Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas

    NASA Astrophysics Data System (ADS)

    Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta

    2018-04-01

    Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.

  13. Ocean Wave Simulation Based on Wind Field

    PubMed Central

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718

  14. Ocean Wave Simulation Based on Wind Field.

    PubMed

    Li, Zhongyi; Wang, Hao

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  15. Interference of Locally Forced Internal Waves in Non-Uniform Stratifications

    NASA Astrophysics Data System (ADS)

    Supekar, Rohit; Peacock, Thomas

    2017-11-01

    Several studies have investigated the effect of constructive or destructive interference on the transmission of internal waves propagating through non-uniform stratifications. Such studies have been performed for internal waves that are spatiotemporally harmonic. To understand the effect of localization, we perform a theoretical and experimental study of the transmission of two-dimensional internal waves that are generated by a spatiotemporally localized boundary forcing. This is done by considering an idealized problem and applying a weakly viscous semi-analytic linear model. Parametric studies using this model show that localization leads to the disappearance of transmission peaks and troughs that would otherwise be present for a harmonic forcing. Laboratory experiments that we perform provide a clear indication of this physical effect. Based on the group velocity and angle of propagation of the internal waves, a practical criteria that assesses when the transmission peaks or troughs are evident, is obtained. It is found that there is a significant difference in the predicted energy transfer due to a harmonic and non-harmonic forcing which has direct implications to various physical forcings such as a storm over the ocean.

  16. Tunnel effect wave energy detection

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  17. Guidelines for Finite Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media

    PubMed Central

    Palmeri, Mark L.; Qiang, Bo; Chen, Shigao; Urban, Matthew W.

    2017-01-01

    Ultrasound shear wave elastography is emerging as an important imaging modality for evaluating tissue material properties. In its practice, some systematic biases have been associated with ultrasound frequencies, focal depths and configuration, transducer types (linear versus curvilinear), along with displacement estimation and shear wave speed estimation algorithms. Added to that, soft tissues are not purely elastic, so shear waves will travel at different speeds depending on their spectral content, which can be modulated by the acoustic radiation force excitation focusing, duration and the frequency-dependent stiffness of the tissue. To understand how these different acquisition and material property parameters may affect measurements of shear wave velocity, simulations of the propagation of shear waves generated by acoustic radiation force excitations in viscoelastic media are a very important tool. This article serves to provide an in-depth description of how these simulations are performed. The general scheme is broken into three components: (1) simulation of the three-dimensional acoustic radiation force push beam, (2) applying that force distribution to a finite element model, and (3) extraction of the motion data for post-processing. All three components will be described in detail and combined to create a simulation platform that is powerful for developing and testing algorithms for academic and industrial researchers involved in making quantitative shear wave-based measurements of tissue material properties. PMID:28026760

  18. Impact of tropical cyclones on modeled extreme wind-wave climate

    DOE PAGES

    Timmermans, Ben; Stone, Daithi; Wehner, Michael; ...

    2017-02-16

    Here, the effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ~1.0° and ~0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21stmore » century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.« less

  19. Impact of tropical cyclones on modeled extreme wind-wave climate

    NASA Astrophysics Data System (ADS)

    Timmermans, Ben; Stone, Dáithí; Wehner, Michael; Krishnan, Harinarayan

    2017-02-01

    The effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ˜1.0° and ˜0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21st century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.

  20. P-Wave Indices and Risk of Ischemic Stroke: A Systematic Review and Meta-Analysis.

    PubMed

    He, Jinli; Tse, Gary; Korantzopoulos, Panagiotis; Letsas, Konstantinos P; Ali-Hasan-Al-Saegh, Sadeq; Kamel, Hooman; Li, Guangping; Lip, Gregory Y H; Liu, Tong

    2017-08-01

    Atrial cardiomyopathy is associated with an increased risk of ischemic stroke. P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area are electrocardiographic parameters that have been used to assess left atrial abnormalities related to developing atrial fibrillation. The aim of this systematic review and meta-analysis was to examine their values for predicting ischemic stroke risk. PubMed and EMBASE databases were searched until December 2016 for studies that evaluated the association between P-wave indices and stroke risk. Both fixed- and random-effects models were used to calculate the overall effect estimates. Ten studies examining P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area were included. P-wave terminal force in lead V 1 was found to be an independent predictor of stroke as both a continuous variable (odds ratio [OR] per 1 SD change, 1.18; 95% confidence interval [CI], 1.12-1.25; P <0.0001) and categorical variable (OR, 1.59; 95% CI, 1.10-2.28; P =0.01). P-wave duration was a significant predictor of incident ischemic stroke when analyzed as a categorical variable (OR, 1.86; 95% CI, 1.37-2.52; P <0.0001) but not when analyzed as a continuous variable (OR, 1.05; 95% CI, 0.98-1.13; P =0.15). Maximum P-wave area also predicted the risk of incident ischemic stroke (OR per 1 SD change, 1.10; 95% CI, 1.04-1.17). P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area are useful electrocardiographic markers that can be used to stratify the risk of incident ischemic stroke. © 2017 American Heart Association, Inc.

  1. Nonlinear critical-layer evolution of a forced gravity wave packet

    NASA Astrophysics Data System (ADS)

    Campbell, L. J.; Maslowe, S. A.

    2003-10-01

    In this paper, numerical simulations are presented of the nonlinear critical-layer evolution of a forced gravity wave packet in a stratified shear flow. The wave packet, localized in the horizontal direction, is forced at the lower boundary of a two-dimensional domain and propagates vertically towards the critical layer. The wave mean-flow interactions in the critical layer are investigated numerically and contrasted with the results obtained using a spatially periodic monochromatic forcing. With the horizontally localized forcing, the net absorption of the disturbance at the critical layer continues for large time and the onset of the nonlinear breakdown is delayed compared with the case of monochromatic forcing. There is an outward flux of momentum in the horizontal direction so that the horizontal extent of the packet increases with time. The extent to which this happens depends on a number of factors including the amplitude and horizontal length of the forcing. It is also seen that the prolonged absorption of the disturbance stabilizes the solution to the extent that it is always convectively stable; the local Richardson number remains positive well into the nonlinear regime. In this respect, our results for the localized forcing differ from those in the case of monochromatic forcing where significant regions with negative Richardson number appear.

  2. Relative role of subinertial and superinertial modes in the coastal long wave response forced by the landfall of a tropical cyclone

    NASA Astrophysics Data System (ADS)

    Ke, Ziming; Yankovsky, Alexander E.

    2011-06-01

    A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (˜10 m s -1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site.

  3. Experimental Investigation of Irregular Wave Cancellation Using a Cycloidal Wave Energy Converter

    DTIC Science & Technology

    2012-07-01

    83388 EXPERIMENTAL INVESTIGATION OF IRREGULAR WAVE CANCELLATION USING A CYCLOIDAL WAVE ENERGY CONVERTER Stefan G. Siegel∗ Department of Aeronautics...United States Air Force Academy Air Force Academy, Colorado, 80840 USA Email: stefan @siegels.us Casey Fagley Department of Aeronautics United States Air...would like to acknowledge fruitful discussion with Dr. Jürgen Seidel and Dr. Tiger Jeans. This material is based upon activities supported by the

  4. Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere.

    PubMed

    Mitri, F G; Fellah, Z E A

    2011-08-01

    The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Laser-driven deflection arrangements and methods involving charged particle beams

    DOEpatents

    Plettner, Tomas [San Ramon, CA; Byer, Robert L [Stanford, CA

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  6. The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean

    NASA Astrophysics Data System (ADS)

    Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten

    2013-04-01

    The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.

  7. Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations.

    PubMed

    Mitri, F G; Fatemi, M

    2005-05-01

    An object placed in an acoustic field is known to experience a force due to the transfer of momentum from the wave to the object itself. This force is known to be steady when the incident field is considered to be continuous with constant amplitude. One may define the dynamic (oscillatory) radiation force for a continuous wave-field whose intensity varies slowly with time. This paper extends the theory of the dynamic acoustic radiation force resulting from an amplitude-modulated progressive plane wave-field incident on solid cylinders to the case of solid cylindrical shells with particular emphasis on their thickness and contents of their hollow regions. A new factor corresponding to the dynamic radiation force is defined as Y(d) and stands for the dynamic radiation force per unit energy density and unit cross sectional surface. The results of numerical calculations are presented, indicating the ways in which the form of the dynamic radiation force function curves are affected by variations in the material mechanical parameters and by changes in the interior fluid inside the shell's hollow region. It was shown that the dynamic radiation force function Y(d) deviates from the static radiation force function for progressive waves Y(p) when the modulation frequency increases. These results indicate that the theory presented here is broader than the existing theory on cylinders.

  8. Defects formation and wave emitting from defects in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni

    2016-05-01

    Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.

  9. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.

    PubMed

    Erpelding, Todd N; Hollman, Kyle W; O'Donnell, Matthew

    2007-02-01

    Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young's modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200 and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size.

  10. Bubble-Based Acoustic Radiation Force Using Chirp Insonation to Reduce Standing Wave Effects

    PubMed Central

    Erpelding, Todd N.; Hollman, Kyle W.; O’Donnell, Matthew

    2007-01-01

    Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young’s modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200, and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size. PMID:17306697

  11. Dynamical relationship between wind speed magnitude and meridional temperature contrast: Application to an interannual oscillation in Venusian middle atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaru; Takahashi, Masaaki

    2018-03-01

    We derive simple dynamical relationships between wind speed magnitude and meridional temperature contrast. The relationship explains scatter plot distributions of time series of three variables (maximum zonal wind speed UMAX, meridional wind speed VMAX, and equator-pole temperature contrast dTMAX), which are obtained from a Venus general circulation model with equatorial Kelvin-wave forcing. Along with VMAX and dTMAX, UMAX likely increases with the phase velocity and amplitude of a forced wave. In the scatter diagram of UMAX versus dTMAX, points are plotted along a linear equation obtained from a thermal-wind relationship in the cloud layer. In the scatter diagram of VMAX versus UMAX, the apparent slope is somewhat steep in the high UMAX regime, compared with the low UMAX regime. The scatter plot distributions are qualitatively consistent with a quadratic equation obtained from a diagnostic equation of the stream function above the cloud top. The plotted points in the scatter diagrams form a linear cluster for weak wave forcing, whereas they form a small cluster for strong wave forcing. An interannual oscillation of the general circulation forming the linear cluster in the scatter diagram is apparent in the experiment of weak 5.5-day wave forcing. Although a pair of equatorial Kelvin and high-latitude Rossby waves with a same period (Kelvin-Rossby wave) produces equatorward heat and momentum fluxes in the region below 60 km, the equatorial wave does not contribute to the long-period oscillation. The interannual fluctuation of the high-latitude jet core leading to the time variation of UMAX is produced by growth and decay of a polar mixed Rossby-gravity wave with a 14-day period.

  12. Warm Season Subseasonal Variability and Climate Extremes in the Northern Hemisphere: The Role of Stationary Rossby Waves

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Suarez, Max

    2010-01-01

    This study examines the nature of boreal summer subseasonal atmospheric variability based on the new NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) for the period 1979-2010. An analysis of the June, July and August subseasonal 250hPa v-wind anomalies shows distinct Rossby wave-like structures that appear to be guided by the mean jets. On monthly subseasonal time scales, the leading waves (the first 10 rotated empirical orthogonal functions or REOFs of the 250hPa v-wind) explain about 50% of the Northern Hemisphere vwind variability, and account for more than 30% (60%) of the precipitation (surface temperature) variability over a number of regions of the northern middle and high latitudes, including the U.S. northern Great Plains, parts of Canada, Europe, and Russia. The first REOF in particular, consists of a Rossby wave that extends across northern Eurasia where it is a dominant contributor to monthly surface temperature and precipitation variability, and played an important role in the 2003 European and 2010 Russian heat waves. While primarily subseasonal in nature, the Rossby waves can at times have a substantial seasonal mean component. This is exemplified by REOF 4 which played a major role in the development of the most intense anomalies of the U.S. 1988 drought (during June) and the 1993 flooding (during July), though differed in the latter event by also making an important contribution to the seasonal mean anomalies. A stationary wave model (SWM) is used to reproduce some of the basic features of the observed waves and provide insight into the nature of the forcing. In particular, the responses to a set of idealized forcing functions are used to map the optimal forcing patterns of the leading waves. Also, experiments to reproduce the observed waves with the SWM using MERRA-based estimates of the forcing indicate that the wave forcing is dominated by sub-monthly vorticity transients.

  13. Extended optical theorem in isotropic solids and its application to the elastic radiation force

    NASA Astrophysics Data System (ADS)

    Leão-Neto, J. P.; Lopes, J. H.; Silva, G. T.

    2017-04-01

    In this article, we derive the extended optical theorem for the elastic-wave scattering by a spherical inclusion (with and without absorption) in a solid matrix. This theorem expresses the extinction cross-section, i.e., the time-averaged power extracted from the incoming beam per its intensity, regarding the partial-wave expansion coefficients of the incident and scattered waves. We also establish the connection between the optical theorem and the elastic radiation force by a plane wave in a linear and isotropic solid. We obtain the absorption, scattering, and extinction efficiencies (the corresponding power per characteristic incident intensity per sphere cross-section area) for a plane wave and a spherically focused beam. We discuss to which extent the radiation force theory for plane waves can be used to the focused beam case. Considering an iron sphere embedded in an aluminum matrix, we numerically compute the scattering and elastic radiation force efficiencies. The radiation force on a stainless steel sphere embedded in a tissue-like medium (soft solid) is also computed. In this case, resonances are observed in the force as a function of the sphere size parameter (the wavenumber times the sphere radius). Remarkably, the relative difference between our findings and previous lossless liquid models is about 100% in the long-wavelength limit. Regarding some applications, the obtained results have a direct impact on ultrasound-based elastography techniques and ultrasonic nondestructive testing, as well as implantable devices activated by ultrasound.

  14. Regionally dependent summer heat wave response to increased surface temperature in the US

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Dong, S.; Kirtman, B. P.; Goni, G. J.; Lee, S. K.; Atlas, R. M.; West, R.

    2017-12-01

    Climate projections for the 21st Century suggest an increase in the occurrence of heat waves. However, the time it takes for the externally forced signal of climate change to emerge against the background of natural variability (i.e., Time of Emergence, ToE) particularly on the regional scale makes reliable future projection of heat waves challenging. Here, we combine observations and model simulations under present and future climate forcing to assess internal variability versus external forcing in modulating US heat waves. We characterized the most common heat wave patterns over the US by the use of clustering of extreme events by their spatial distribution. For each heat wave cluster, we assess changes in the probability density function (PDF) of summer temperature extremes by modeling the PDF as a stochastically generated skewed (SGS) distribution. The probability of necessary causation for each heat wave cluster was also quantified, allowing to make assessments of heat extreme attribution to anthropogenic climate change. The results suggest that internal variability will dominate heat wave occurrence over the Great Plains with ToE occurring in the 2050s (2070s) and of occurrence of ratio of warm-to-cold extremes of 1.7 (1.7) for the Northern (Southern) Plains. In contrast, external forcing will dominate over the Western (Great Lakes) region with ToE occurring as early as in the 2020s (2030s) and warm-to-cold extremes ratio of 6.4 (10.2), suggesting caution in attributing heat extremes to external forcing due to their regional dependence.

  15. Solitary wave runup and force on a vertical barrier

    NASA Astrophysics Data System (ADS)

    Liu, Philip L.-F.; Al-Banaa, Khaled

    2004-04-01

    In this paper we investigate the interaction between a solitary wave and a thin vertical barrier. A set of laboratory experiments was performed with different values of incident wave height to water depth ratio, H/h, and the draught of the barrier to water depth ratio, D/h. While wave gauges were used to measure the reflected and transmitted waves, pressure transducers were installed on both sides of the barrier, enabling the calculation of wave force. The particle image velocimetry (PIV) technique is also employed to measure the velocity field in the vicinity of the barrier. A numerical model, based on the Reynolds-averaged Navier Stokes (RANS) equations and the k - epsilon turbulence closure model, was first checked with experimental data and then employed to obtain additional results for the range of parameters where the laboratory experiments were not performed. Using both experimental data and numerical results, formulae for the maximum runup height, and the maximum wave force are derived in terms of H/h and D/h.

  16. Acoustic Radiation Force of a Quasi-Gaussian Beam on an Elastic Sphere in a Fluid.

    PubMed

    Nikolaeva, A V; Sapozhnikov, O A; Bailey, M R

    2016-09-01

    Acoustic radiation force has many applications. One of the related technologies is the ability to noninvasively expel stones from the kidney. To optimize the procedure it is important to develop theoretical approaches that can provide rapid calculations of the radiation force depending in stone size and elastic properties, together with ultrasound beam diameter, intensity, and frequency. We hypothesize that the radiation force nonmonotonically depends on the ratio between the acoustic beam width and stone diameter because of coupling between the acoustic wave in the fluid and shear waves in the stone. Testing this hypothesis by considering a spherical stone and a quasi-Gaussian beam was performed in the current work. The calculation of the radiation force was conducted for elastic spheres of two types. Dependence of the magnitude of the radiation force on the beam diameter at various fixed values of stone diameters was modeled. In addition to using real material properties, speed of shear wave in the stone was varied to reveal the importance of shear waves in the stone. It was found that the radiation force reaches its maximum at the beamwidth comparable to the stone diameter; the gain in the force magnitude can reach 40% in comparison with the case of a narrow beam.

  17. Numerical analysis for sea wave loading on the pile foundation of detached structures by using CADMAS-SURF

    NASA Astrophysics Data System (ADS)

    Matsuda, Tatsuya; Miura, Kinya; Sawada, Yayoi

    2017-10-01

    This study investigated the characteristics of wave forces loading on the detached structure that consisted of an upper structure and a pile foundation. In this study, structure stability was also considered on the results obtained from previous studies on the instability of seabed induced by wave force. When a wave force acted on the structure, an external force acted on the pile foundation as if pulling out the foundation on the outer harbor side and pushing it in on the inner harbor. The effective stress in seabed was increase so the pile foundation was considered to maintain sufficient bearing capacity. Subsequently, when the bearing capacity of the ground was decreased because the water pressure in the ground surface layer decreased, the pile foundation will be aggravated settled down. The external force acting on the pile foundation was not same on outer harbor and inner harbor with the form of the upper structure. As a result, we found that the strain will be generated on the structure.

  18. Estimation of viscoelastic parameters in Prony series from shear wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu; Lee, Hyoung-Ki

    2016-06-21

    When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.

  19. A model for wave control on coral breakage and species distribution in the Hawaiian Islands

    USGS Publications Warehouse

    Storlazzi, C.D.; Brown, E.K.; Field, M.E.; Rodgers, K.; Jokiel, P.L.

    2005-01-01

    The fringing reef off southern Molokai, Hawaii, is currently being studied as part of a multi-disciplinary project led by the US Geological Survey. As part of this study, modeling and field observations were utilized to help understand the physical controls on reef morphology and the distribution of different coral species. A model was developed that calculates wave-induced hydrodynamic forces on corals of a specific form and mechanical strength. From these calculations, the wave conditions under which specific species of corals would either be stable or would break due to the imposed wave-induced forces were determined. By combining this hydrodynamic force-balance model with various wave model output for different oceanographic conditions experienced in the study area, we were able to map the locations where specific coral species should be stable (not subject to frequent breakage) in the study area. The combined model output was then compared with data on coral species distribution and coral cover at 12 sites along Molokai's south shore. Observations and modeling suggest that the transition from one coral species to another may occur when the ratio of the coral colony's mechanical strengths to the applied (wave-induced) forces may be as great as 5:1, and not less than 1:1 when corals would break. This implies that coral colony's mechanical strength and wave-induced forces may be important in defining gross coral community structure over large (orders of 10's of meters) spatial scales. ?? Springer-Verlag 2004.

  20. GPU-based Green's function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models.

    PubMed

    Yang, Yiqun; Urban, Matthew W; McGough, Robert J

    2018-05-15

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.

  1. On the nature of fast sausage waves in coronal loops

    NASA Astrophysics Data System (ADS)

    Bahari, Karam

    2018-05-01

    The effect of the parameters of coronal loops on the nature of fast sausage waves are investigated. To do this three models of the coronal loop considered, a simple loop model, a current-carrying loop model and a model with radially structured density called "Inner μ" profile. For all the models the Magnetohydrodynamic (MHD) equations solved analytically in the linear approximation and the restoring forces of oscillations obtained. The ratio of the magnetic tension force to the pressure gradient force obtained as a function of the distance from the axis of the loop. In the simple loop model for all values of the loop parameters the fast sausages wave have a mixed nature of Alfvénic and fast MHD waves, in the current-carrying loop model with thick annulus and low density contrast the fast sausage waves can be considered as purely Alfvénic wave in the core region of the loop, and in the "Inner μ" profile for each set of the parameters of the loop the wave can be considered as a purely Alfvénic wave in some regions of the loop.

  2. On the Mathematical Modeling of Single and Multiple Scattering of Ultrasonic Guided Waves by Small Scatterers: A Structural Health Monitoring Measurement Model

    NASA Astrophysics Data System (ADS)

    Strom, Brandon William

    In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.

  3. Maintenance of Austral Summertime Upper-Tropospheric Circulation over Tropical South America: The Bolivian High-Nordeste Low System.

    NASA Astrophysics Data System (ADS)

    Chen, Tsing-Chang; Weng, Shu-Ping; Schubert, Siegfried

    1999-07-01

    Using the NASA/GEOS reanalysis data for 1980-95, the austral-summer stationary eddies in the tropical-subtropical Southern Hemisphere are examined in two wave regimes: long and short wave (wave 1 and waves 2-6, respectively). The basic structure of the Bolivian high-Nordeste low (BH-NL) system is formed by a short-wave train across South America but modulated by the long-wave regime. The short-wave train exhibits a monsoonlike vertical phase reversal in the midtroposphere and a quarter-wave phase shift relative to the divergent circulation. As inferred from (a) the spatial relationship between the streamfunction and velocity potential and (b) the structure of the divergent circulation, the short-wave train forming the BH-NL system is maintained by South American local heating and remote African heating, while the long-wave regime is maintained by western tropical Pacific heating.The maintenance of the stationary waves in the two wave regimes is further illustrated by a simple diagnostic scheme that includes the velocity-potential maintenance equation (which links velocity potential and diabatic heating) and the streamfunction budget (which is the inverse Laplacian transform of the vorticity equation). Some simple relationships between streamfunction and velocity potential for both wave regimes are established to substantiate the links between diabatic heating and streamfunction; of particular interest is a Sverdrup balance in the short-wave regime. This simplified vorticity equation explains the vertical structure of the short-wave train associated with the BH-NL system and its spatial relationship with the divergent circulation.Based upon the diagnostic analysis of its maintenance a simple forced barotropic model is adopted to simulate the BH-NL system with idealized forcings, which imitates the real 200-mb divergence centers over South America, Africa, and the tropical Pacific. Numerical simulations demonstrate that the formation of the BH-NL system is affected not only by the African remote forcing, but also by the tropical Pacific forcing.

  4. Spiral waves in driven dusty plasma medium: Generalized hydrodynamic fluid description

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Patel, Bhavesh; Das, Amita

    2018-04-01

    Spiral waves are observed in many natural phenomena. They have been extensively represented by the mathematical FitzHugh-Nagumo model [Barkley et al., Phys. Rev. A 42, 2489 (1990)] of excitable media. Also, in incompressible fluid simulations, the excitation of thermal spiral waves has been reported by Li et al. [Phys. of Fluids 22, 011701 (2010)]. In the present paper, the spatiotemporal development of spiral waves in the context of weak and strong coupling limits has been shown. While the weakly coupled medium has been represented by a simple fluid description, for strong coupling, a generalized visco-elastic fluid description has been employed. The medium has been driven by an external force in the form of a rotating electric field. It is shown that when the amplitude of force is small, the density perturbations in the medium are also small. In this case, the excitations do not develop as a spiral wave. Only when the amplitude of force is high so as to drive the density perturbations to nonlinear amplitudes does the spiral density wave formation occurs. The role of the forcing frequency and the effect of strong coupling and the sound velocity of medium in the formation and evolution of spiral waves have been investigated in detail.

  5. Amplitude equations for breathing spiral waves in a forced reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-01

    Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment.

  6. Finite-size radiation force correction for inviscid spheres in standing waves.

    PubMed

    Marston, Philip L

    2017-09-01

    Yosioka and Kawasima gave a widely used approximation for the acoustic radiation force on small liquid spheres surrounded by an immiscible liquid in 1955. Considering the liquids to be inviscid with negligible thermal dissipation, in their approximation the force on the sphere is proportional to the sphere's volume and the levitation position in a vertical standing wave becomes independent of the size. The analysis given here introduces a small correction term proportional to the square of the sphere's radius relative to the aforementioned small-sphere force. The significance of this term also depends on the relative density and sound velocity of the sphere. The improved approximation is supported by comparison with the exact partial-wave-series based radiation force for ideal fluid spheres in ideal fluids.

  7. Pressure-gradient-driven nearshore circulation on a beach influenced by a large inlet-tidal shoal system

    USGS Publications Warehouse

    Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.

    2011-01-01

    The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.

  8. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.

    PubMed

    Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R

    2008-08-01

    Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.

  9. Evaluation of CMIP5 and CORDEX Derived Wind Wave Climate in Arabian Sea and Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Behera, M. R.

    2017-12-01

    Climate change impact on surface ocean wave parameters need robust assessment for effective coastal zone management. Climate model skill to simulate dynamical General Circulation Models (GCMs) and Regional Circulation Models (RCMs) forced wind-wave climate over northern Indian Ocean is assessed in the present work. The historical dynamical wave climate is simulated using surface winds derived from four GCMs and four RCMs, participating in the Coupled Model Inter-comparison Project (CMIP5) and Coordinated Regional Climate Downscaling Experiment (CORDEX-South Asia), respectively, and their ensemble are used to force a spectral wave model. The surface winds derived from GCMs and RCMs are corrected for bias, using Quantile Mapping method, before being forced to the spectral wave model. The climatological properties of wave parameters (significant wave height (Hs), mean wave period (Tp) and direction (θm)) are evaluated relative to ERA-Interim historical wave reanalysis datasets over Arabian Sea (AS) and Bay of Bengal (BoB) regions of the northern Indian Ocean for a period of 27 years. We identify that the nearshore wave climate of AS is better predicted than the BoB by both GCMs and RCMs. Ensemble GCM simulated Hs in AS has a better correlation with ERA-Interim ( 90%) than in BoB ( 80%), whereas ensemble RCM simulated Hs has a low correlation in both regions ( 50% in AS and 45% in BoB). In AS, ensemble GCM simulated Tp has better predictability ( 80%) compared to ensemble RCM ( 65%). However, neither GCM nor RCM could satisfactorily predict Tp in nearshore BoB. Wave direction is poorly simulated by GCMs and RCMs in both AS and BoB, with correlation around 50% with GCMs and 60% with RCMs wind derived simulations. However, upon comparing individual RCMs with their parent GCMs, it is found that few of the RCMs predict wave properties better than their parent GCMs. It may be concluded that there is no consistent added value by RCMs over GCMs forced wind-wave climate over northern Indian Ocean. We also identify that there is little to no significance of choosing a finer resolution GCM ( 1.4°) over a coarse GCM ( 2.8°) in improving skill of GCM forced dynamical wave simulations.

  10. Reducing the wave drag of wing airfoils in transonic flow regimes by the force action of airfoil surface elements on the flow

    NASA Astrophysics Data System (ADS)

    Aul'chenko, S. M.; Zamuraev, V. P.

    2012-11-01

    Mathematical modeling of the influence of forced oscillations of surface elements of a wing airfoil on the shock-wave structure of transonic flow past it has been carried out. The qualitative and quantitative influence of the oscillation parameters on the wave drag of the airfoil has been investigated.

  11. Arbitrary amplitude dust kinetic Alfvén solitary waves in the presence of polarization force

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Kaur, Nimardeep; Saini, N. S.

    2018-02-01

    In this investigation, the effect of polarization force on dust kinetic Alfvén solitary waves (DKASWs) in a magnetized dusty plasma consisting of dust fluid, electrons, and positively charged ions is studied. By incorporating density non-uniformity and polarization force in the fluid model equations, the energy balance equation is derived, and from the expression for Sagdeev pseudopotential, the existence conditions for solitary structures in terms of Mach number are determined. From the numerical analysis of Sagdeev pseudopotential, compressive and rarefactive DKASWs at sub- and super-Alfvénic speeds are observed. These waves are significantly affected by varying polarization force, angle of propagation, plasma beta, and Mach number.

  12. Analysis of Oblique Wave Interaction with a Comb-Type Caisson Breakwater

    NASA Astrophysics Data System (ADS)

    Wang, Xinyu; Liu, Yong; Liang, Bingchen

    2018-04-01

    This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the geometrical shape of breakwater. By using periodic boundary condition and separation of variables, series solutions of velocity potentials in inner and outer regions are developed. Unknown expansion coefficients in series solutions are determined by matching velocity and pressure of continuous conditions on the interface between two regions. Then, hydrodynamic quantities involving reflection coefficients and wave forces acting on breakwater are estimated. Analytical solution is validated by a multi-domain boundary element method solution for the present problem. Diffusion reflection due to periodic variations in breakwater shape and corresponding surface elevations around the breakwater are analyzed. Numerical examples are also presented to examine effects of caisson parameters on total wave forces acting on caissons and total wave forces acting on side plates. Compared with a traditional vertical wall breakwater, the wave force acting on a suitably designed comb-type caisson breakwater can be significantly reduced. This study can give a better understanding of the hydrodynamic performance of comb-type caisson breakwaters.

  13. Internal Gravity Waves Forced by an Isolated Mountain

    NASA Astrophysics Data System (ADS)

    Nikitina, L.; Campbell, L.

    2009-12-01

    Density-stratified fluid flow over topography such as mountains, hills and ridges may give rise to internal gravity waves which transport and distribute energy away from their source and have profound effects on the general circulation of the atmosphere and ocean. Much of our knowledge of internal gravity wave dynamics has been acquired from theoretical studies involving mathematical analyses of simplified forms of the governing equations, as well as numerical simulations at varying levels of approximation. In this study, both analytical and numerical methods are used to examine the nonlinear dynamics of gravity waves forced by an isolated mountain. The topography is represented by a lower boundary condition on a two-dimensional rectangular domain and the waves are represented as a perturbation to the background shear flow, thus allowing the use of weakly-nonlinear and multiple-scale asymptotic analyzes. The waves take the form of a packet, localized in the horizontal direction and comprising a continuous spectrum of horizontal wavenumbers centered at zero. For horizontally-localized wave packets, such as those forced by a mountain range with multiple peaks, there are generally two horizontal scales, the fast (short) scale which is defined by the oscillations within the packet and the slow (large) scale which is defined by the horizontal extent of the packet. In the case of an isolated mountain that we examine here, the multiple-scaling procedure is simplified by the absence of a fast spatial scale. The problem is governed by two small parameters that define the height and width of the mountain and approximate solutions are derived in terms of these parameters. Numerical solutions are also carried out to simulate nonlinear critical-level interactions such as the transfer of energy to the background flow by the wave packet, wave reflection and static instability and, eventually, wave breaking leading to turbulence. It is found that for waves forced by an isolated mountain the time frame within which these nonlinear effects become significant depends on both the mountain height and width and that they begin to occur at least an order of magnitude later and the configuration thus remains stable longer than in the case of waves forced by a mountain range of equivalent height.

  14. Modifiying shallow-water equations as a model for wave-vortex turbulence

    NASA Astrophysics Data System (ADS)

    Mohanan, A. V.; Augier, P.; Lindborg, E.

    2017-12-01

    The one-layer shallow-water equations is a simple two-dimensional model to study the complex dynamics of the oceans and the atmosphere. We carry out forced-dissipative numerical simulations, either by forcing medium-scale wave modes, or by injecting available potential energy (APE). With pure wave forcing in non-rotating cases, a statistically stationary regime is obtained for a range of forcing Froude numbers Ff = ɛ /(kf c), where ɛ is the energy dissipation rate, kf the forcing wavenumber and c the wave speed. Interestingly, the spectra scale as k-2 and third and higher order structure functions scale as r. Such statistics is a manifestation of shock turbulence or Burgulence, which dominate the flow. Rotating cases exhibit some inverse energy cascade, along with a stronger forward energy cascade, dominated by wave-wave interactions. We also propose two modifications to the classical shallow-water equations to construct a toy model. The properties of the model are explored by forcing in APE at a small and a medium wavenumber. The toy model simulations are then compared with results from shallow-water equations and a full General Circulation Model (GCM) simulation. The most distinctive feature of this model is that, unlike shallow-water equations, it avoids shocks and conserves quadratic energy. In Fig. 1, for the shallow-water equations, shocks appear as thin dark lines in the divergence (∇ .{u}) field, and as discontinuities in potential temperature (θ ) field; whereas only waves appear in the corresponding fields from toy model simulation. Forward energy cascade results in a wave field with k-5/3 spectrum, along with equipartition of KE and APE at small scales. The vortical field develops into a k-3 spectrum. With medium forcing wavenumber, at large scales, energy converted from APE to KE undergoes inverse cascade as a result of nonlinear fluxes composed of vortical modes alone. Gradually, coherent vortices emerge with a strong preference for anticyclonic motion. The model can serve as a closer representation of real geophysical turbulence than the classical shallow-water equations. Fig 1. Divergence and potential temperature fields of shallow-water (top row) and toy model (bottom row) simulations.

  15. Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind-Wave Coupling

    DTIC Science & Technology

    2015-09-30

    Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind- Wave Coupling Peter S. Guest (NPS Technical Contact) Naval...surface fluxes and ocean waves in coupled models in the Beaufort and Chukchi Seas. 2. Understand the physics of heat and mass transfer from the ocean...to the atmosphere. 3. Improve forecasting of waves on the open ocean and in the marginal ice zone. 2 OBJECTIVES 1. Quantifying the open-ocean

  16. Conjoined Cochlear Models:. the Twamp and the Sandwich

    NASA Astrophysics Data System (ADS)

    Hubbard, Allyn

    2009-02-01

    A new model of the cochlea is created by joining parts of the traveling-wave amplifier (TWAMP) and the Sandwich models. The lossy, untuned traveling-wave line of the TWAMP is retained, but the TWAMP's tuned traveling-wave line is replaced by the Sandwich's traveling-wave line that represents the reticular lamina (RL) and scala tympani. The model combines stereocilliary forces, which act between the tectorial membrane (TM) and RL, with somatic outer hair cell forces that power the Sandwich.

  17. Flexural waves induced by electro-impulse deicing forces

    NASA Technical Reports Server (NTRS)

    Gien, P. H.

    1990-01-01

    The generation, reflection and propagation of flexural waves created by electroimpulsive deicing forces are demonstrated both experimentally and analytically in a thin circular plate and a thin semicylindrical shell. Analytical prediction of these waves with finite element models shows good correlation with acceleration and displacement measurements at discrete points on the structures studied. However, sensitivity to spurious flexural waves resulting from the spatial discretization of the structures is shown to be significant. Consideration is also given to composite structures as an extension of these studies.

  18. The First Ionization Potential Effect from the Ponderomotive Force: On the Polarization and Coronal Origin of Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Laming, J. Martin

    2017-08-01

    We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.

  19. The First Ionization Potential Effect from the Ponderomotive Force: On the Polarization and Coronal Origin of Alfvén Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laming, J. Martin, E-mail: laming@nrl.navy.mil

    We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. Inmore » closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.« less

  20. Reconstruction of piano hammer force from string velocity.

    PubMed

    Chaigne, Antoine

    2016-11-01

    A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.

  1. Tunnel effect measuring systems and particle detectors

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1994-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  2. Tunnel effect measuring systems and particle detectors

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1993-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  3. Lift, drag and thrust measurement in a hypersonic impulse facility

    NASA Technical Reports Server (NTRS)

    Tuttle, S. L.; Mee, D. J.; Simmons, J. M.

    1995-01-01

    This paper reports the extension of the stress wave force balance to the measurement of forces on models which are non-axisymmetric or which have non-axisymmetric load distributions. Recent results are presented which demonstrate the performance of the stress wave force balance for drag measurement, for three-component force measurement and preliminary results for thrust measurement on a two-dimensional scramjet nozzle. In all cases, the balances respond within a few hundred microseconds.

  4. Numerical simulation of wave-current interaction under strong wind conditions

    NASA Astrophysics Data System (ADS)

    Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier

    2017-04-01

    Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).

  5. Salient features of solitary waves in dusty plasma under the influence of Coriolis force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, G. C.; Nag, Apratim; Department of Physics, G. C. College, Silchar-788004

    The main interest is to study the nonlinear acoustic wave in rotating dusty plasma augmented through the derivation of a modified Sagdeev potential equation. Small rotation causes the interaction of Coriolis force in the dynamical system, and leads to the complexity in the derivation of the nonlinear wave equation. As a result, the finding of solitary wave propagation in dusty plasma ought to be of merit. However, the nonlinear wave equation has been successfully solved by the use of the hyperbolic method. Main emphasis has been given to the changes on the evolution and propagation of soliton, and the variationmore » caused by the dusty plasma constituents as well as by the Coriolis force have been highlighted. Some interesting nonlinear wave behavior has been found which can be elaborately studied for the interest of laboratory and space plasmas. Further, to support the theoretical investigations, numeric plasma parameters have been taken for finding the inherent features of solitons.« less

  6. Ionospheric plasma outflow in response to transverse ion heating: Self-consistent macroscopic treatment

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1994-01-01

    We examined the various likely processes for creating the cavities and found that the mirror force acting on the transversely heated ions is the most likely mechanism. The pondermotive force causing the wave collapse was found to be a much weaker force than the mirror force on the transversely heated ions observed inside the cavities along with the lower hybrid waves. Using a hydrodynamic model for the polar wind we modeled the cavity formation and found that for the heating rate obtained from the observed waves, the mirror force does create cavities with depletions as observed. Some initial results from this study were published in a recent Geophysical Research Letters and were reported in the Fall AGU meeting in San Francisco. We have continued this investigation using a large-scale semikinetic model.

  7. Vacillations induced by interference of stationary and traveling planetary waves

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.; Garcia, Rolando R.

    1987-01-01

    The interference pattern produced when a traveling planetary wave propagates over a stationary forced wave is explored, examining the interference signature in a variety of diagnostics. The wave field is first restricted to a diatomic spectrum consisting of two components: a single stationary wave and a single monochromatic traveling wave. A simple barotropic normal mode propagating over a simple stationary plane wave is considered, and closed form solutions are obtained. The wave fields are then restricted spatially, providing more realistic structures without sacrificing the advantages of an analytical solution. Both stationary and traveling wave fields are calculated numerically with the linearized Primitive Equations in a realistic basic state. The mean flow reaction to the fluctuating eddy forcing which results from interference is derived. Synoptic geopotential behavior corresponding to the combined wave and mean flow fields is presented, and the synoptic signature in potential vorticity on isentropic surfaces is examined.

  8. On the Causes of and Long Term Changes in Eurasian Heat Waves

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Koster, Randal; Suarez, Max

    2012-01-01

    The MERRA reanalysis, other observations, and the GEOS-S model have been used to diagnose the causes of Eurasian heat waves including the recent extreme events that occurred in Europe during 2003 and in Russia during 2010. The results show that such extreme events are an amplification of natural patterns of atmospheric variability (in this case a particular large-scale atmospheric planetary wave) that develop over the Eurasian continent as a result of internal atmospheric forcing. The amplification occurs when the wave occasionally becomes locked in place for several weeks to months resulting in extreme heat and drying with the location depending on the phase of the upper atmospheric wave. Model experiments suggest that forcing from both the ocean (SST) and land playa role phase-locking the waves. An ensemble of very long GEOS-S model simulations (spanning the 20th century) forced with observed SST and greenhouse gases show that the model is capable of generating very similar heat waves, and that they have become more extreme in the last thirty years as a result of the overall warming of the Asian continent.

  9. Acoustic radiation force control: Pulsating spherical carriers.

    PubMed

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required power supply for distinct cases of zero, negative and positive radiation force states along with the frequency dependent asymmetry index. In addition, considering the effect of phase difference between the incident wave field and the pulsating object, and its possible variation with respect to spatial position of object, some practical points about the spatial average of generated radiation force, the optimal state of operation, the stability of zero radiation force states and the possibly of precise motion control are discussed. This work would extend the novel concept of smart carriers to and may be helpful for robust single-beam acoustic handling techniques. Furthermore, the shown capability of precise motion control may be considered as a new way toward smart acoustic driven micro-mechanisms and micro-machines. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of wave formation and the dependence on the parameters of the model.

  11. Amplitude equations for breathing spiral waves in a forced reaction-diffusion system.

    PubMed

    Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-14

    Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment. © 2011 American Institute of Physics

  12. Effects of eddy viscosity and thermal conduction and Coriolis force in the dynamics of gravity wave driven fluctuations in the OH nightglow

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.

    1988-01-01

    The chemical-dynamical model of Walterscheid et al. (1987), which describes wave-driven fluctuations in OH nightglow, was modified to include the effects of both eddy thermal conduction and viscosity, as well as the Coriolis force (with the shallow atmosphere approximation). Using the new model, calculations were performed for the same nominal case as used by Walterscheid et al. but with only wave periods considered. For this case, the Coriolis force was found to be unimportant at any wave period. For wave periods greater than 2 or 3 hours, the inclusion of thermal conduction alone greatly modified the results (in terms of a complex ratio 'eta' which expresses the relationship between the intensity oscillation about the time-averaged intensity and the temperature oscillation about the time-averaged temperature); this effect was reduced with the further inclusion of the eddy viscosity.

  13. Response spectrum method for extreme wave loading with higher order components of drag force

    NASA Astrophysics Data System (ADS)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Ali, Dastan Diznab Mohammad; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-03-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  14. Stress Wave Attenuation in Aluminum Alloy and Mild Steel Specimens Under SHPB Tensile Testing

    NASA Astrophysics Data System (ADS)

    Pothnis, J. R.; Ravikumar, G.; Arya, H.; Yerramalli, Chandra S.; Naik, N. K.

    2018-02-01

    Investigations on the effect of intensity of incident pressure wave applied through the striker bar on the specimen force histories and stress wave attenuation during split Hopkinson pressure bar (SHPB) tensile testing are presented. Details of the tensile SHPB along with Lagrangian x- t diagram of the setup are included. Studies were carried out on aluminum alloy 7075 T651 and IS 2062 mild steel. While testing specimens using the tensile SHPB setup, it was observed that the force calculated from the transmitter bar strain gauge was smaller than the force obtained from the incident bar strain gauge. This mismatch between the forces in the incident bar and the transmitter bar is explained on the basis of stress wave attenuation in the specimens. A methodology to obtain force histories using the strain gauges on the specimen during SHPB tensile testing is also presented. Further, scanning electron microscope images and photomicrographs are given. Correlation between the microstructure and mechanical properties is explained. Further, uncertainty analysis was conducted to ascertain the accuracy of the results.

  15. Balancing Power Absorption and Structural Loading for an Asymmetric Heave Wave-Energy Converter in Regular Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-06-24

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less

  16. GPU-based Green’s function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models

    NASA Astrophysics Data System (ADS)

    Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.

    2018-05-01

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.

  17. Enhancing Variable Friction Tactile Display Using an Ultrasonic Travelling Wave.

    PubMed

    Ghenna, Sofiane; Vezzoli, Eric; Giraud-Audine, Christophe; Giraud, Frederic; Amberg, Michel; Lemaire-Semail, Betty

    2017-01-01

    In Variable Friction Tactile Displays, an ultrasonic standing wave can be used to reduce the friction coefficient between a user's finger sliding and a vibrating surface. However, by principle, the effect is limited by a saturation due to the contact mechanics, and very low friction levels require very high vibration amplitudes. Besides, to be effective, the user's finger has to move. We present a device which uses a travelling wave rather than a standing wave. We present a control that allows to realize such a travelling wave in a robust way, and thus can be implemented on various plane surfaces. We show experimentally that the force produced by the travelling wave has two superimposed contributions. The first one is equal to the friction reduction produced by a standing of the same vibration amplitude. The second produces a driving force in the opposite direction of the travelling wave. As a result, the modulation range of the tangential force on the finger can be extended to zero and even negative values. Moreover, the effect is dependant on the relative direction of exploration with regards to the travelling wave, which is perceivable and confirmed by a psycho-physical study.

  18. Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model

    NASA Astrophysics Data System (ADS)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-04-01

    The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.

  19. Selection of Multiarmed Spiral Waves in a Regular Network of Neurons

    PubMed Central

    Hu, Bolin; Ma, Jun; Tang, Jun

    2013-01-01

    Formation and selection of multiarmed spiral wave due to spontaneous symmetry breaking are investigated in a regular network of Hodgkin-Huxley neuron by changing the excitability and imposing spatial forcing currents on the neurons in the network. The arm number of the multiarmed spiral wave is dependent on the distribution of spatial forcing currents and excitability diversity in the network, and the selection criterion for supporting multiarmed spiral waves is discussed. A broken spiral segment is measured by a short polygonal line connected by three adjacent points (controlled nodes), and a double-spiral wave can be developed from the spiral segment. Multiarmed spiral wave is formed when a group of double-spiral waves rotate in the same direction in the network. In the numerical studies, a group of controlled nodes are selected and spatial forcing currents are imposed on these nodes, and our results show that l-arm stable spiral wave (l = 2, 3, 4,...8) can be induced to occupy the network completely. It is also confirmed that low excitability is critical to induce multiarmed spiral waves while high excitability is important to propagate the multiarmed spiral wave outside so that distinct multiarmed spiral wave can occupy the network completely. Our results confirm that symmetry breaking of target wave in the media accounts for emergence of multiarmed spiral wave, which can be developed from a group of spiral waves with single arm under appropriate condition, thus the potential formation mechanism of multiarmed spiral wave in the media is explained. PMID:23935966

  20. Wave Dynamics and Transport in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Holton, James R.; Alexander, M. Joan

    1999-01-01

    The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.

  1. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  2. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE PAGES

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.; ...

    2017-04-18

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  3. The forcing of monthly precipitation variability over Southwest Asia during the Boreal cold season

    USGS Publications Warehouse

    Hoell, Andrew; Shukla, Shraddhanand; Barlow, Mathew; Cannon, Forest; Kelley, Colin; Funk, Christopher C.

    2015-01-01

    Southwest Asia, deemed as the region containing the countries of Afghanistan, Iran, Iraq and Pakistan, is water scarce and receives nearly 75% of its annual rainfall during8 the boreal cold season of November-April. The forcing of Southwest Asia precipitation has been previously examined for the entire boreal cold season from the perspective of climate variability originating over the Atlantic and tropical Indo-Pacific Oceans. Here, we examine the inter-monthly differences in precipitation variability over Southwest Asia and the atmospheric conditions directly responsible in forcing monthly November-April precipitation. Seasonally averaged November-April precipitation over Southwest Asia is significantly correlated with sea surface temperature (SST) patterns consistent with Pacific Decadal Variability (PDV), the El Nino-Southern Oscillation (ENSO) and the warming trend of SST (Trend). On the contrary, the precipitation variability during individual months of November-April are unrelated and are correlated with SST signatures that include PDV, ENSO and Trend in different combinations. Despite strong inter-monthly differences in precipitation variability during November- April over Southwest Asia, similar atmospheric circulations, highlighted by a stationary equivalent barotropic Rossby wave centered over Iraq, force the monthly spatial distributions of precipitation. Tropospheric waves on the eastern side of the equivalent barotropic Rossby wave modifies the flux of moisture and advects the mean temperature gradient, resulting in temperature advection that is balanced by vertical motions over Southwest Asia. The forcing of monthly Southwest Asia precipitation by equivalent barotropic Rossby waves is different than the forcing by baroclinic Rossby waves associated with tropically-forced-only modes of climate variability.

  4. Terror Operations: Case Studies in Terrorism (U.S. Army TRADOC G2 Handbook No. 1.01)

    DTIC Science & Technology

    2007-07-25

    sails into the waves Flanked by arrogance, haughtiness and false power. To her doom she moves quickly A dinghy awaits her, riding the waves . 192...and move the bodies to a second floor classroom. Six wounded hostages had been murdered during the night with gunshots.) DS, 26 Morning...terrorist threats to U.S. military forces. A common situational awareness by U.S. military forces considers three principal venues for armed forces: forces

  5. Evanescent-wave bonding between optical waveguides.

    PubMed

    Povinelli, Michelle L; Loncar, Marko; Ibanescu, Mihai; Smythe, Elizabeth J; Johnson, Steven G; Capasso, Federico; Joannopoulos, John D

    2005-11-15

    Forces arising from overlap between the guided waves of parallel, microphotonic waveguides are calculated. Both attractive and repulsive forces, determined by the choice of relative input phase, are found. Using realistic parameters for a silicon-on-insulator material system, we estimate that the forces are large enough to cause observable displacements. Our results illustrate the potential for a broader class of optically tunable microphotonic devices and microstructured artificial materials.

  6. Generation of internal solitary waves by frontally forced intrusions in geophysical flows.

    PubMed

    Bourgault, Daniel; Galbraith, Peter S; Chavanne, Cédric

    2016-12-06

    Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.

  7. The Triggering of Large-Scale Waves by CME Initiation

    NASA Astrophysics Data System (ADS)

    Forbes, Terry

    Studies of the large-scale waves generated at the onset of a coronal mass ejection (CME) can provide important information about the processes in the corona that trigger and drive CMEs. The size of the region where the waves originate can indicate the location of the magnetic forces that drive the CME outward, and the rate at which compressive waves steepen into shocks can provide a measure of how the driving forces develop in time. However, in practice it is difficult to separate the effects of wave formation from wave propagation. The problem is particularly acute for the corona because of the multiplicity of wave modes (e.g. slow versus fast MHD waves) and the highly nonuniform structure of the solar atmosphere. At the present time large-scale numerical simulations provide the best hope for deconvolving wave propagation and formation effects from one another.

  8. Implementation and modification of a three-dimensional radiation stress formulation for surf zone and rip-current applications

    USGS Publications Warehouse

    Kumar, N.; Voulgaris, G.; Warner, John C.

    2011-01-01

    Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5?? to 10?? in comparison to normally incident waves. ?? 2011 Elsevier B.V.

  9. A note on free and forced Rossby wave solutions: The case of a straight coast and a channel

    NASA Astrophysics Data System (ADS)

    Graef, Federico

    2017-03-01

    The free Rossby wave (RW) solutions in an ocean with a straight coast when the offshore wavenumber of incident (l1) and reflected (l2) wave are equal or complex are discussed. If l1 = l2 the energy streams along the coast and a uniformly valid solution cannot be found; if l1,2 are complex it yields the sum of an exponentially decaying and growing (away from the coast) Rossby wave. The channel does not admit these solutions as free modes. If the wavenumber vectors of the RWs are perpendicular to the coast, the boundary condition of no normal flow is trivially satisfied and the value of the streamfunction does not need to vanish at the coast. A solution that satisfies Kelvin's theorem of time-independent circulation at the coast is proposed. The forced RW solutions when the ocean's forcing is a single Fourier component are studied. If the forcing is resonant, i.e. a free Rossby wave (RW), the linear response will depend critically on whether the wave carries energy perpendicular to the channel or not. In the first case, the amplitude of the response is linear in the direction normal to the channel, y, and in the second it has a parabolic profile in y. Examples of these solutions are shown for channels with parameters resembling the Mozambique Channel, the Tasman Sea, the Denmark Strait and the English Channel. The solutions for the single coast are unbounded, except when the forcing is a RW trapped against the coast. If the forcing is non-resonant, exponentially decaying or trapped RWs could be excited in the coast and both the exponentially ;decaying; and exponentially ;growing; RW could be excited in the channel.

  10. Excitation and propagation of nonlinear waves in a rotating fluid

    NASA Astrophysics Data System (ADS)

    Hanazaki, Hideshi

    1993-09-01

    A numerical study of the nonlinear waves excited in an axisymmetric rotating flow through a circular tube is described. The waves are excited by either an undulation of the tube wall or an obstacle on the axis of the tube. The results are compared with the weakly nonlinear theory (forced KdV equation). The computations are done when the upstream swirling velocity is that of Burgers' vortex type. The flow behaves like the solution of the forced KdV equation, and the upstream advancing of the waves appear even when the flow is critical or slightly supercritical to the fastest inertial wave mode.

  11. Wind-forced modulations in crossing sea states over infinite depth water

    NASA Astrophysics Data System (ADS)

    Debsarma, Suma; Senapati, Sudipta; Das, K. P.

    2014-09-01

    The present work is motivated by the work of Leblanc ["Amplification of nonlinear surface waves by wind," Phys. Fluids 19, 101705 (2007)] which showed that Stokes waves grow super exponentially under fair wind as a result of modulational instability. Here, we have studied the effect of wind in a situation of crossing sea states characterized by two obliquely propagating wave systems in deep water. It is found that the wind-forced uniform wave solution in crossing seas grows explosively with a super-exponential growth rate even under a steady horizontal wind flow. This is an important piece of information in the context of the formation of freak waves.

  12. Ultrasound shear wave simulation based on nonlinear wave propagation and Wigner-Ville Distribution analysis

    NASA Astrophysics Data System (ADS)

    Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan

    2017-03-01

    This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.

  13. Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.

    2017-12-01

    Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.

  14. Generation of intermittent gravitocapillary waves via parametric forcing

    NASA Astrophysics Data System (ADS)

    Castillo, Gustavo; Falcón, Claudio

    2018-04-01

    We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.

  15. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassindale, P. G.; Drinkwater, B. W.; Phillips, D. B.

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces aremore » separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.« less

  16. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less

  17. Trapping force and optical lifting under focused evanescent wave illumination.

    PubMed

    Ganic, Djenan; Gan, Xiaosong; Gu, Min

    2004-11-01

    A physical model is presented to understand and calculate trapping force exerted on a dielectric micro-particle under focused evanescent wave illumination. This model is based on our recent vectorial diffraction model by a high numerical aperture objective operating under the total internal condition. As a result, trapping force in a focused evanescent spot generated by both plane wave (TEM00) and doughnut beam (TEM*01) illumination is calculated, showing an agreement with the measured results. It is also revealed by this model that unlike optical trapping in the far-field region, optical axial trapping force in an evanescent focal spot increases linearly with the size of a trapped particle. This prediction shows that it is possible to overcome the force of gravity to lift a polystyrene particle of up to 800 nm in radius with a laser beam of power 10 microW.

  18. Influence of excitability on unpinning and termination of spiral waves.

    PubMed

    Luengviriya, Jiraporn; Sutthiopad, Malee; Phantu, Metinee; Porjai, Porramain; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya

    2014-11-01

    Application of electrical forcing to release pinned spiral waves from unexcitable obstacles and to terminate the rotation of free spiral waves at the boundary of excitable media has been investigated in thin layers of the Belousov-Zhabotinsky (BZ) reaction, prepared with different initial concentrations of H_{2}SO_{4}. Increasing [H_{2}SO_{4}] raises the excitability of the reaction and reduces the core diameter of free spiral waves as well as the wave period. An electric current with density stronger than a critical value Junpin causes a pinned spiral wave to drift away from the obstacle. For a given obstacle size, Junpin increases with [H_{2}SO_{4}]. Under an applied electrical current, the rotation center of a free spiral wave drifts along a straight path to the boundary. When the current density is stronger than a critical value Jterm, the spiral tip is forced to hit the boundary, where the spiral wave is terminated. Similar to Junpin for releasing a pinned spiral wave, Jterm also increases with [H_{2}SO_{4}]. These experimental findings were confirmed by numerical simulations using the Oregonator model, in which the excitability was adjusted via the ratio of the excitation rate to the recovery rate of the BZ reaction. Therefore, our investigation shows that decreasing the excitability can facilitate elimination of spiral waves by electrical forcing, either in the presence of obstacles or not.

  19. The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere - Relationship to the QBO

    NASA Technical Reports Server (NTRS)

    Takahashi, Masaaki; Holton, James R.

    1991-01-01

    Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. The possible role of these two wave modes has been tested in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, but it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase.

  20. The KP Approximation Under a Weak Coriolis Forcing

    NASA Astrophysics Data System (ADS)

    Melinand, Benjamin

    2018-02-01

    In this paper, we study the asymptotic behavior of weakly transverse water-waves under a weak Coriolis forcing in the long wave regime. We derive the Boussinesq-Coriolis equations in this setting and we provide a rigorous justification of this model. Then, from these equations, we derive two other asymptotic models. When the Coriolis forcing is weak, we fully justify the rotation-modified Kadomtsev-Petviashvili equation (also called Grimshaw-Melville equation). When the Coriolis forcing is very weak, we rigorously justify the Kadomtsev-Petviashvili equation. This work provides the first mathematical justification of the KP approximation under a Coriolis forcing.

  1. Free and forced vibrations of a tyre using a wave/finite element approach

    NASA Astrophysics Data System (ADS)

    Waki, Y.; Mace, B. R.; Brennan, M. J.

    2009-06-01

    Free and forced vibrations of a tyre are predicted using a wave/finite element (WFE) approach. A short circumferential segment of the tyre is modelled using conventional finite element (FE) methods, a periodicity condition applied and the mass and stiffness matrices post-processed to yield wave properties. Since conventional FE methods are used, commercial FE packages and existing element libraries can be utilised. An eigenvalue problem is formulated in terms of the transfer matrix of the segment. Zhong's method is used to improve numerical conditioning. The eigenvalues and eigenvectors give the wavenumbers and wave mode shapes, which in turn define transformations between the physical and wave domains. A method is described by which the frequency dependent material properties of the rubber components of the tyre can be included without the need to remesh the structure. Expressions for the forced response are developed which are numerically well-conditioned. Numerical results for a smooth tyre are presented. Dispersion curves for real, imaginary and complex wavenumbers are shown. The propagating waves are associated with various forms of motion of the tread supported by the stiffness of the side wall. Various dispersion phenomena are observed, including curve veering, non-zero cut-off and waves for which the phase velocity and the group velocity have opposite signs. Results for the forced response are compared with experimental measurements and good agreement is seen. The forced response is numerically determined for both finite area and point excitations. It is seen that the size of area of the excitation is particularly important at high frequencies. When the size of the excitation area is small enough compared to the tread thickness, the response at high frequencies becomes stiffness-like (reactive) and the effect of shear stiffness becomes important.

  2. Coronal Jet Collimation by Nonlinear Induced Flows

    NASA Astrophysics Data System (ADS)

    Vasheghani Farahani, S.; Hejazi, S. M.

    2017-08-01

    Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma-β. As the shear flow and plasma-β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.

  3. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves.

    PubMed

    Johnson, Kennita A; Vormohr, Hannah R; Doinikov, Alexander A; Bouakaz, Ayache; Shields, C Wyatt; López, Gabriel P; Dayton, Paul A

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  4. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves

    NASA Astrophysics Data System (ADS)

    Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  5. Acoustic attraction, repulsion and radiation force cancellation on a pair of rigid particles with arbitrary cross-sections in 2D: Circular cylinders example

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-11-01

    The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers. Potential applications concern the prediction of the forces used in acoustically-engineered metamaterials with reconfigurable periodicities, cloaking devices, and liquid crystals to name a few examples.

  6. Remote recoil: a new wave mean interaction effect

    NASA Astrophysics Data System (ADS)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the atmosphere and may be important for the development of future gravity-wave parametrization schemes in numerical models of the global atmospheric circulation. At present, all such schemes neglect remote-recoil effects caused by horizontally inhomogeneous mean flows. Taking these effects into account should make the parametrization schemes significantly more accurate.

  7. Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field.

    PubMed

    Mitri, F G

    2005-08-01

    The theory of the acoustic radiation force acting on elastic spherical shells suspended in a plane standing wave field is developed in relation to their thickness and the content of their hollow regions. The theory is modified to include the effect of a hysteresis type of absorption of compressional and shear waves in the material. The fluid-loading effect on the acoustic radiation force function Y(st) is analyzed as well. Results of numerical calculations are presented for a number of elastic and viscoelastic materials, with the hollow region filled with water or air. These results show how the damping due to absorption, the change of the interior fluid inside the shells' hollow regions, and the exterior fluid surrounding their structures, affect the acoustic radiation force.

  8. Mid-Twenty-First-Century Changes in Global Wave Energy Flux: Single-Model, Single-Forcing and Single-Scenario Ensemble Projections

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Lemos, Gil; Dobrynin, Mikhail; Behrens, Arno; Staneva, Joanna; Miranda, Pedro

    2017-04-01

    The knowledge of ocean surface wave energy fluxes (or wave power) is of outmost relevance since wave power has a direct impact in coastal erosion, but also in sediment transport and beach nourishment, and ship, as well as in coastal and offshore infrastructures design. Changes in the global wave energy flux pattern can alter significantly the impact of waves in continental shelf and coastal areas. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit under the auspices of the COWCLIP (coordinated ocean wave climate projections) project, and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (fifth assessment report). In the present study the impact of a warmer climate in the near future global wave energy flux climate is investigated through a 4-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is reduced, leaving only room for the climate change signal. The four ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1976 to 2005. The projected changes in the global wave energy flux climate are analyzed for the 2031-2060 period.

  9. Experimental and calculative estimation of femtosecond laser induced-impulsive force in culture medium solution with motion analysis of polymer micro-beads

    NASA Astrophysics Data System (ADS)

    Yamakawa, Takeshi; Maruyama, Akihiro; Uedan, Hirohisa; Iino, Takanori; Hosokawa, Yoichiroh

    2015-03-01

    A new methodology to estimate the dynamics of femtosecond laser-induced impulsive force generated into water under microscope was developed. In this method, the position shift of the bead in water before and after the femtosecond laser irradiation was investigated experimentally and compared with motion equation assuming stress wave propagation with expansion and collapse the cavitation bubble. In the process of the comparison, parameters of force and time of the stress wave were determined. From these results, dynamics of propagations of shock and stress waves, cavitation bubble generation, and these actions to micro-objects were speculated.

  10. Effects of eddy initial conditions on nonlinear forcing of planetary scale waves by amplifying baroclinic eddies

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    1986-01-01

    The previous study of Young and Villere concerning growth of planetary scale waves forced by wave-wave interactions of amplifying intermediate scale baroclinic eddies is extended to investigate effects of different eddy initial conditions. A global, spectral, primitive equation model is used for the calculations. For every set of eddy initial conditions considered, growth rates of planetary modes are considerably greater than growth rates computed from linear instability theory for a fixed zonally independent basic state. However, values of growth rates ranged over a factor of 3 depending on the particular set of eddy initial conditions used. Nonlinear forcing of planetary modes via wave-wave coupling becomes more important than baroclinic growth on the basic state at small values of the intermediate-scale modal amplitudes. The relative importance of direct transfer of kinetic energy from intermediate scales of motion to a planetary mode, compared to baroclinic conversion of available potential energy to kinetic energy within that planetary mode, depends on the individual case. In all cases, however, the transfer of either kinetic or available potential energy to the planetary modes was accomplished principally by wave-wave transfer from intermediate scale eddies, rather than from the zonally averaged state. The zonal wavenumber 2 planetary mode was prominent in all solutions, even in those for which eddy initial conditions were such that a different planetary mode was selectively forced at the start. General characteristics of the structural evolution of the planetary wave components of total heat and momentum flux, and modal structures themselves, were relatively insensitive to variations in eddy initial conditions, even though quantitative details varied from case to case.

  11. Investigation of the relationship between hurricane waves and extreme runup

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Stockdon, H. F.

    2006-12-01

    In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.

  12. Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinxing, E-mail: lijx@pku.edu.cn; Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095; Bortnik, Jacob

    2015-05-15

    Test particle simulation is a useful method for studying both linear and nonlinear wave-particle interactions in the magnetosphere. The gyro-averaged equations of particle motion for first-order and other cyclotron harmonic resonances with oblique whistler-mode waves were first derived by Bell [J. Geophys. Res. 89, 905 (1984)] and the most recent relativistic form was given by Ginet and Albert [Phys. Fluids B 3, 2994 (1991)], and Bortnik [Ph.D. thesis (Stanford University, 2004), p. 40]. However, recently we found there was a (−1){sup l−1} term difference between their formulas of perpendicular motion for the lth-order resonance. This article presents the detailed derivationmore » process of the generalized resonance formulas, and suggests a check of the signs for self-consistency, which is independent of the choice of conventions, that is, the energy variation equation resulting from the momentum equations should not contain any wave magnetic components, simply because the magnetic field does not contribute to changes of particle energy. In addition, we show that the wave centripetal force, which was considered small and was neglect in previous studies of nonlinear interactions, has a profound time derivative and can significantly enhance electron phase trapping especially in high frequency waves. This force can also bounce the low pitch angle particles out of the loss cone. We justify both the sign problem and the missing wave centripetal force by demonstrating wave-particle interaction examples, and comparing the gyro-averaged particle motion to the full particle motion under the Lorentz force.« less

  13. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  14. Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves

    NASA Astrophysics Data System (ADS)

    Li, Jinxing; Bortnik, Jacob; Xie, Lun; Pu, Zuyin; Chen, Lunjin; Ni, Binbin; Tao, Xin; Thorne, Richard M.; Fu, Suiyan; Yao, Zhonghua; Guo, Ruilong

    2015-05-01

    Test particle simulation is a useful method for studying both linear and nonlinear wave-particle interactions in the magnetosphere. The gyro-averaged equations of particle motion for first-order and other cyclotron harmonic resonances with oblique whistler-mode waves were first derived by Bell [J. Geophys. Res. 89, 905 (1984)] and the most recent relativistic form was given by Ginet and Albert [Phys. Fluids B 3, 2994 (1991)], and Bortnik [Ph.D. thesis (Stanford University, 2004), p. 40]. However, recently we found there was a ( - 1 ) l - 1 term difference between their formulas of perpendicular motion for the lth-order resonance. This article presents the detailed derivation process of the generalized resonance formulas, and suggests a check of the signs for self-consistency, which is independent of the choice of conventions, that is, the energy variation equation resulting from the momentum equations should not contain any wave magnetic components, simply because the magnetic field does not contribute to changes of particle energy. In addition, we show that the wave centripetal force, which was considered small and was neglect in previous studies of nonlinear interactions, has a profound time derivative and can significantly enhance electron phase trapping especially in high frequency waves. This force can also bounce the low pitch angle particles out of the loss cone. We justify both the sign problem and the missing wave centripetal force by demonstrating wave-particle interaction examples, and comparing the gyro-averaged particle motion to the full particle motion under the Lorentz force.

  15. Wave ensemble forecast system for tropical cyclones in the Australian region

    NASA Astrophysics Data System (ADS)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  16. Experiments on waves under impulsive wind forcing in view of the Phillips (1957) theory

    NASA Astrophysics Data System (ADS)

    Shemer, Lev; Zavadsky, Andrey

    2016-11-01

    Only limited information is currently available on the initial stages of wind-waves growth from rest under sudden wind forcing; the mechanisms leading to the appearance of waves are still not well understood. In the present work, waves emerging in a small-scale laboratory facility under the action of step-like turbulent wind forcing are studied using capacitance and laser slope gauges. Measurements are performed at a number of fetches and for a range of wind velocities. Taking advantage of the fully automated experimental procedure, at least 100 independent realizations are recorded for each wind velocity at every fetch. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters as a function of time elapsed from the blower activation. The accumulated results on the temporal variation of wind-wave field initially at rest allow quantitative comparison with the theory of Phillips (1957). Following Phillips, appearance of the initial detectable ripples was considered first, while the growth of short gravity waves at later times was analyzed separately. Good qualitative and partial quantitative agreement between the Phillips predictions and the measurements was obtained for both those stages of the initial wind-wave field evolution.

  17. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    NASA Astrophysics Data System (ADS)

    Lipkens, Bart; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    2015-10-01

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of one particle then consists of two components, the incident sound wave and the scattered field generated by the neighboring particle. The radiation force calculation then includes the contributions of these two fields and incorporates the mutual particle influence. In this investigation the droplet/particle influence on each other has been analyzed theoretically by using the method developed by Gorkov and modified by Ilinskii et al.

  18. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipkens, Bart, E-mail: blipkens@wne.edu; Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. Anmore » often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of one particle then consists of two components, the incident sound wave and the scattered field generated by the neighboring particle. The radiation force calculation then includes the contributions of these two fields and incorporates the mutual particle influence. In this investigation the droplet/particle influence on each other has been analyzed theoretically by using the method developed by Gorkov and modified by Ilinskii et al.« less

  19. On some basic principles of the wave planetology illustrated by real shapes and tectonic patterns of celestial bodies

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2011-10-01

    The physical background. Celestial bodies move in orbits and keep them due to equality of centrifugal and attractio n forces. These forces are oppositely directed. There is a third force -the inert ia-gravity one directed at the right angle to mentioned above and, thus, not interfering with them (Fig. 1). This force is caused by moving all celestial bodies in non -circular keplerian orbits with periodically changing accelerations. A clear illustration of status of this third force is a stretched rope never achieving a straight line because of the not compensated rope weight acting at the right angle to the stretching force s. In the cas e of cosmic bodies this "not compens ated" inertia-gravity force is absorbed in a cosmic body mass making this mass to warp, undulate. This warping in form of standing waves in rotating bodies is decomposed in four interfering direct ions (ortho - and diagonal) (Fig. 2) producing uplifted (+, ++), subsided (-, --) and neutral (0) blocks (Fig. 2). An interfe rence of fundamental waves 1 long 2π R ma kes always pres ent in bodies tectonic dichotomy: an oppos ition of two hemispheres-segments - one uplifted, another subsided (Fig. 2-6). The first overtone of the wave 1 - wave 2 long πR ma kes tectonic sectors superimposed on segments -hemispheres (Fig. 2, 7, 8). Along with the segment -sectoral pattern in cosmic bodies tectonic granulation develops (Fig. 9, 10). The granule sizes are inversely proportional to orbital frequencies [1-3]. The sectoral tectonic blocks are clearly visible also on Venus and icy satellites of Saturn, especially on polar views. Earth and photosphere are remarkable reference points of this fundamental dependence: orbits - tectonic granulation (Fig. 9, 10).

  20. Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes

    NASA Astrophysics Data System (ADS)

    Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert

    2018-05-01

    Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.

  1. Stochastic generation of MAC waves and implications for convection in Earth's core

    NASA Astrophysics Data System (ADS)

    Buffett, Bruce; Knezek, Nicholas

    2018-03-01

    Convection in Earth's core can sustain magnetic-Archemedes-Coriolis (MAC) waves through a variety of mechanisms. Buoyancy and Lorentz forces are viable sources for wave motion, together with the effects of magnetic induction. We develop a quantitative description for zonal MAC waves and assess the source mechanisms using a numerical dynamo model. The largest sources at conditions accessible to the dynamo model are due to buoyancy forces and magnetic induction. However, when these sources are extrapolated to conditions expected in Earth's core, the Lorentz force emerges as the dominant generation mechanism. This source is expected to produce wave velocities of roughly 2 km yr-1 when the internal magnetic field is characterized by a dimensionless Elsasser number of roughly Λ ≈ 10 and the root-mean-square convective velocity defines a magnetic Reynolds number of Rm ≈ 103. Our preferred model has a radially varying stratification and a constant (radial) background magnetic field. It predicts a broad power spectrum for the wave velocity with most power distributed across periods from 30 to 100 yr.

  2. Disentangling the triadic interactions in Navier-Stokes equations.

    PubMed

    Sahoo, Ganapati; Biferale, Luca

    2015-10-01

    We study the role of helicity in the dynamics of energy transfer in a modified version of the Navier-Stokes equations with explicit breaking of the mirror symmetry. We select different set of triads participating in the dynamics on the basis of their helicity content. In particular, we remove the negative helically polarized Fourier modes at all wave numbers except for those falling on a localized shell of wave number, |k| ~ k(m). Changing k(m) to be above or below the forcing scale, k(f), we are able to assess the energy transfer of triads belonging to different interaction classes. We observe that when the negative helical modes are present only at a wave number smaller than the forced wave numbers, an inverse energy cascade develops with an accumulation of energy on a stationary helical condensate. Vice versa, when negative helical modes are present only at a wave number larger than the forced wave numbers, a transition from backward to forward energy transfer is observed in the regime when the minority modes become energetic enough.

  3. Physical response of a back-barrier estuary to a post-tropical cyclone

    USGS Publications Warehouse

    Beudin, Alexis; Ganju, Neil Kamal; Defne, Zafer; Aretxabaleta, Alfredo

    2017-01-01

    This paper presents a modeling investigation of the hydrodynamic and sediment transport response of Chincoteague Bay (VA/MD, USA) to Hurricane Sandy using the Coupled Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling system. Several simulation scenarios with different combinations of remote and local forces were conducted to identify the dominant physical processes. While 80% of the water level increase in the bay was due to coastal sea level at the peak of the storm, a rich spatial and temporal variability in water surface slope was induced by local winds and waves. Local wind increased vertical mixing, horizontal exchanges, and flushing through the inlets. Remote waves (swell) enhanced southward flow through wave setup gradients between the inlets, and increased locally generated wave heights. Locally generated waves had a negligible effect on water level but reduced the residual flow up to 70% due to enhanced apparent roughness and breaking-induced forces. Locally generated waves dominated bed shear stress and sediment resuspension in the bay. Sediment transport patterns mirrored the interior coastline shape and generated deposition on inundated areas. The bay served as a source of fine sediment to the inner shelf, and the ocean-facing barrier island accumulated sand from landward-directed overwash. Despite the intensity of the storm forcing, the bathymetric changes in the bay were on the order of centimeters. This work demonstrates the spectrum of responses to storm forcing, and highlights the importance of local and remote processes on back-barrier estuarine function.

  4. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.

  5. Nonlinear longitudinal resonance interaction of energetic charged particles and VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Tkalcevic, S.

    1982-01-01

    The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.

  6. The dynamics of a forced coupled network of active elements

    NASA Astrophysics Data System (ADS)

    Parks, Helen F.; Ermentrout, Bard; Rubin, Jonathan E.

    2011-03-01

    This paper presents the derivation and analysis of mathematical models motivated by the experimental induction of contour phosphenes in the retina. First, a spatially discrete chain of periodically forced coupled oscillators is considered via reduction to a chain of scalar phase equations. Each isolated oscillator locks in a 1:2 manner with the forcing so that there is intrinsic bistability, with activity peaking on either the odd or even cycles of the forcing. If half the chain is started on the odd cycle and half on the even cycle (“split state”), then with sufficiently strong coupling, a wave can be produced that can travel in either direction due to symmetry. Numerical and analytic methods are employed to determine the size of coupling necessary for the split state solution to destabilize such that waves appear. Taking a continuum limit, we reduce the chain to a partial differential equation. We use a Melnikov function to compute, to leading order, the speed of the traveling wave solution to the partial differential equation as a function of the form of coupling and the forcing parameters and compare our result to the numerically computed discrete and continuum wave speeds.

  7. Pushing, pulling and electromagnetic radiation force cloaking by a pair of conducting cylindrical particles

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2018-02-01

    The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their size parameters. This study provides a complete analytical method and computations for the longitudinal and transverse radiation force components in the multiple scattering of EM plane progressive waves with potential applications in particle manipulation, optically-engineered metamaterials with reconfigurable periodicities and cloaking devices to name a few examples.

  8. Beating HF waves to generate VLF waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2012-03-01

    Beat-wave generation of very low frequency (VLF) waves by two HF heaters in the ionosphere is formulated theoretically and demonstrated experimentally. The heater-induced differential thermal pressure force and ponderomotive force, which dominate separately in the D and F regions of the ionosphere, drive an electron current for the VLF emission. A comparison, applying appropriate ionospheric parameters shows that the ponderomotive force dominates in beat-wave generation of VLF waves. Three experiments, one in the nighttime in the absence of D and E layers and two in the daytime in the presence of D and E layers, were performed. X mode HF heaters of slightly different frequencies were transmitted at CW full power. VLF waves at 10 frequencies ranging from 3.5 to 21.5 kHz were generated. The frequency dependencies of the daytime and nighttime radiation intensities are quite similar, but the nighttime radiation is much stronger than the daytime one at the same radiation frequency. The intensity ratio is as large as 9 dB at 11.5 kHz. An experiment directly comparing VLF waves generated by the beat-wave approach and by the amplitude modulation (AM) approach was also conducted. The results rule out the likely contribution of the AM mechanism acting on the electrojet and indicate that beat-wave in the VLF range prefers to be generated in the F region of the ionosphere through the ponderomotive nonlinearity, consistent with the theory. In the nighttime experiment, the ionosphere was underdense to the HF heaters, suggesting a likely setting for effective beat-wave generation of VLF waves by the HF heaters.

  9. Acoustic radiation force expansions in terms of partial wave phase shifts for scattering: Applications

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2016-11-01

    When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.

  10. Photon polarizability and its effect on the dispersion of plasma waves

    NASA Astrophysics Data System (ADS)

    Dodin, I. Y.; Ruiz, D. E.

    2017-04-01

    High-frequency photons travelling in plasma exhibit a linear polarizability that can influence the dispersion of linear plasma waves. We present a detailed calculation of this effect for Langmuir waves as a characteristic example. Two alternative formulations are given. In the first formulation, we calculate the modified dispersion of Langmuir waves by solving the governing equations for the electron fluid, where the photon contribution enters as a ponderomotive force. In the second formulation, we provide a derivation based on the photon polarizability. Then, the calculation of ponderomotive forces is not needed, and the result is more general.

  11. Photon polarizability and its effect on the dispersion of plasma waves

    DOE PAGES

    Dodin, I. Y.; Ruiz, D. E.

    2017-03-06

    High-frequency photons travelling in plasma exhibit a linear polarizability that can influence the dispersion of linear plasma waves. We present a detailed calculation of this effect for Langmuir waves as a characteristic example. Here, two alternative formulations are given. In the first formulation, we calculate the modified dispersion of Langmuir waves by solving the governing equations for the electron fluid, where the photon contribution enters as a ponderomotive force. In the second formulation, we provide a derivation based on the photon polarizability. Then, the calculation of ponderomotive forces is not needed, and the result is more general.

  12. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-12-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  13. Analytical Model of Inlet Growth and Equilibrium Cross-Sectional Area

    DTIC Science & Technology

    2016-04-01

    performance in a real-world setting. BACKGROUND: Long-term inlet stability in bar-built systems is determined by the tidal and wave forces that...across the node was limited due to convergence of the two incoming tidal waves . As such, the equivalent bay area was calculated using the midpoint as a...sediment transport is driven by tides and does not incorporate other forcing and associated sediment pathways. The ratio of wave to tidal energy is an

  14. Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves

    DTIC Science & Technology

    2015-09-30

    propagation in very fine-grained sediments (silt and clay ). OBJECTIVES 1) The scientific objective of the deep-water ambient noise research is to...forces in silts and clays and the role they play in controlling wave speeds and attenuations. On a 2 quantum mechanical level, these forces are... clays . APPROACH 1) Deep-water ambient noise Three deep-diving, autonomous instrument platforms, known as Deep Sound I, II, & III, have been

  15. Effect of polarization force on the Jeans instability in collisional dusty plasmas

    NASA Astrophysics Data System (ADS)

    A, ABBASI; M, R. RASHIDIAN VAZIRI

    2018-03-01

    The Jeans instability in collisional dusty plasmas has been analytically investigated by considering the polarization force effect. Instabilities due to dust-neutral and ion-neutral drags can occur in electrostatic waves of collisional dusty plasmas with self-gravitating particles. In this study, the effect of gravitational force on heavy dust particles is considered in tandem with both the polarization and electrostatic forces. The theoretical framework has been developed and the dispersion relation and instability growth rate have been derived, assuming the plane wave approximation. The derived instability growth rate shows that, in collisional dusty plasmas, the Jeans instability strongly depends on the magnitude of the polarization force.

  16. Waves in Radial Gravity Using Magnetic Fluid

    NASA Technical Reports Server (NTRS)

    Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.

    1999-01-01

    Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to the oil/freon mixture and an argon ion laser generates a horizontal light that can be scanned vertically. Viewed from above, the experiment is a black circle with wave deformations surrounded by a light background. A contour of the image intensity at any light sheet position gives the surface of the ferrofluid "ocean" at that "latitude". Radial displacements of the waves as a function of longitude are obtained by subtracting the contour line positions from a no-motion contour at that laser sheet latitude. The experiments are run by traversing the forcing magnet with the laser sheet height fixed and images are frame grabbed to obtain a time-series at one latitude. The experiment is then re-run with another laser-sheet height to generate a full picture of the three-dimensional wave structure in the upper hemisphere of the ball as a function of time. We concentrate here on results of laboratory studies of waves that are important in Earth's atmosphere and especially the ocean. To get oceanic scaling in the laboratory, the experiment must rotate rapidly (4-second rotation period) so that the wave speed is slow compared to the planetary rotation speed as in the ocean. In the Pacific Ocean, eastward propagating Kelvin waves eventually run into the South American coast. Theory predicts that some of the wave energy should scatter into coastal-trapped Kelvin waves that propagate north and south along the coast. Some of this coastal wave energy might then scatter into mid-latitude Rossby waves that propagate back westward. Satellite observations of the Pacific Ocean sea-surface temperature and height seem to show signatures of westward propagating mid-latitude Rossby waves, 5 to 10 years after the 1982-83 El Nino. The observational data is difficult to interpret unambiguously owing to the large range of motions that fill the ocean at shorter timescales. This series of reflections giving eastward, north- ward, and then westward traveling waves is observed cleanly in the laboratory experiments, confirming the theoretical expectations.

  17. Longitudinal Waves Drive the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2000-05-01

    In Physics Essays 12: 3-10 I explain the placement of the planets in terms of low velocity waves emitted by the sun. Evidence for the wave pulse generated near the center of the sun is indicated by the initial high latitude sunspots observed on the butterfly diagram. The wave pulse carries charge with it as observed for similar waves in plants (W-waves). For the first half cycle negative charge is carried to the surface of the sun where much of the wave pulse radiates a wave crest into space while the charge slowly redistributes itself. Meanwhile the next wave pulse carrying excess positive charge moves outward. Rotating charge determines the polarity of the sun's magnetic poles so they reverse as the pulse moves outward. The wave pulse, which interacts strongly with force fields, is guided by centripetal force and gravity so that the pulse comes out near the sun's equator. W-waves produce an automatic return wave in the vacuum so that standing waves are produced in the space around the sun providing a template for the formation and stabilization planets. W-waves are hypothesized to provide self organization for both the universe and life. See the

  18. Coronal Jet Collimation by Nonlinear Induced Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasheghani Farahani, S.; Hejazi, S. M.

    2017-08-01

    Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale ofmore » influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma- β . As the shear flow and plasma- β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.« less

  19. Ponderomotive Force and Lower Hybrid Turbulence Effects in Space Plasmas Subjected to Large-Amplitude Low-Frequency Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Khazanov, George; Liemohn, M. W.; Stone, N. H.; Coffey, V. N.

    1997-01-01

    In the auroral region, simultaneous occurrences of upward-flowing ions and field-aligned electrons have been observed by the Viking satellite. The occurrence is strongly correlated with large amplitude low frequency fluctuations of the electric field. Large-amplitude shear Alfven waves have also been observed by sounding rockets in the auroral ionosphere. When such LF waves are propagating in a plasma, a ponderomotive force and other types of waves are produced which may lead to significant effects on the plasma. This force is directed toward decreasing density, providing the electromagnetic lift of the background plasma and an increase of collisionless plasma expansion. We find that even for modest wave strengths, the influence on the outflowing oxygen ions can be dramatic, increasing the high-altitude density by orders of magnitude. It is also demonstrated that large-amplitude low-frequency waves (LFW) may generate lower hybrid waves (LHW) in the auroral zone. The excitation of LHW by a LF wave may lead to the appearance of an additional channel of energy transfer from, for example, Alfven or fast magnetosonic waves, to particles. This process then influences the formation of the plasma distribution function at the expense of acceleration in the tail of the distribution during the collapse of the LHW. The ion energization due to the LHW can be comparable with that produced by the ponderomotive force of the LFW. It is shown that the LH turbulence leads to equalization of the ponderomotive acceleration of the different ion species. The mechanism of LHW excitation due to the oxygen ion relative drift in a plasma subjected to low-frequency waves is used for analysis of Viking satellite data for events in the cusp/cleft region. It is found that, in some cases, such a mechanism leads to LHW energy densities and ion distribution functions close to those observed.

  20. The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere: Relationship to the QBO. [QBO (quasi-biennial oscillation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, M.; Holton, J.R.

    1991-09-15

    Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. We have tested the possible role of these two wave modes in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, butmore » it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase. 12 refs., 22 figs.« less

  1. Major influence of a 'smoke and mirrors' effect caused by wave reflection on early diastolic coronary arterial wave intensity.

    PubMed

    Mynard, Jonathan P; Penny, Daniel J; Smolich, Joseph J

    2018-03-15

    Coronary wave intensity analysis (WIA) is an emerging technique for assessing upstream and downstream influences on myocardial perfusion. It is thought that a dominant backward decompression wave (BDW dia ) is generated by a distal suction effect, while early-diastolic forward decompression (FDW dia ) and compression (FCW dia ) waves originate in the aorta. We show that wave reflection also makes a substantial contribution to FDW dia , FCW dia and BDW dia , as quantified by a novel method. In 18 sheep, wave reflection accounted for ∼70% of BDW dia , whereas distal suction dominated in a computer model representing a hypertensive human. Non-linear addition/subtraction of mechanistically distinct waves (e.g. wave reflection and distal suction) obfuscates the true contribution of upstream and downstream forces on measured waves (the 'smoke and mirrors' effect). The mechanisms underlying coronary WIA are more complex than previously thought and the impact of wave reflection should be considered when interpreting clinical and experimental data. Coronary arterial wave intensity analysis (WIA) is thought to provide clear insight into upstream and downstream forces on coronary flow, with a large early-diastolic surge in coronary flow accompanied by a prominent backward decompression wave (BDW dia ), as well as a forward decompression wave (FDW dia ) and forward compression wave (FCW dia ). The BDW dia is believed to arise from distal suction due to release of extravascular compression by relaxing myocardium, while FDW dia and FCW dia are thought to be transmitted from the aorta into the coronary arteries. Based on an established multi-scale computational model and high-fidelity measurements from the proximal circumflex artery (Cx) of 18 anaesthetized sheep, we present evidence that wave reflection has a major impact on each of these three waves, with a non-linear addition/subtraction of reflected waves obscuring the true influence of upstream and downstream forces through concealment and exaggeration, i.e. a 'smoke and mirrors' effect. We also describe methods, requiring additional measurement of aortic WIA, for unravelling the separate influences of wave reflection versus active upstream/downstream forces on coronary waves. Distal wave reflection accounted for ∼70% of the BDW dia in sheep, but had a lesser influence (∼25%) in the computer model representing a hypertensive human. Negative reflection of the BDW dia at the coronary-aortic junction attenuated the Cx FDW dia (by ∼40% in sheep) and augmented Cx FCW dia (∼5-fold), relative to the corresponding aortic waves. We conclude that wave reflection has a major influence on early-diastolic WIA, and thus needs to be considered when interpreting coronary WIA profiles. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  2. Fatigue analysis of the bow structure of FPSO

    NASA Astrophysics Data System (ADS)

    Hu, Zhi-Qiang; Gao, Zhen; Gu, Yong-Ning

    2003-06-01

    The bow structure of FPSO moored by the single mooring system is rather complicated. There are many potential hot spots in connection parts of structures between the mooring support frame and the forecastle. Mooring forces, which are induced by wave excitation and transferred by the YOKE and the mooring support frame, may cause fatigue damage to the bow structure. Different from direct wave-induced-forces, the mooring force consists of wave frequency force (WF) and 2nd draft low frequency force (LF)[3], which are represented by two sets of short-term distribution respectively. Based on two sets of short-term distribution of mooring forces obtained by the model test, the fatigue damage of the bow structure of FPSO is analyzed, with emphasis on two points. One is the procedure and position selection for fatigue check, and the other is the application of new formulae for the calculation of accumulative fatigue damage caused by two sets of short-term distribution of hot spot stress range. From the results distinguished features of fatigue damage to the FPSO’s bow structure can be observed.

  3. Analysis of seismic body waves excited by the Mount Saint Helens eruption of May 18, 1980

    NASA Technical Reports Server (NTRS)

    Kanamori, H.; Given, J. W.; Lay, T.

    1982-01-01

    Seismic body waves which were excited by eruption of Mt. St. Helens, and recorded by the Global Digital Seismographic Network (GDSN) stations are analyzed to determine the nature and the time sequence of the events associated with the eruption. The polarity of teleseismic P waves (period 20 sec) is identical at six stations which are distributed over a wide azimuthal range. This observation, together with a very small S to P amplitude ratio (at 20 sec), suggests that the source is a nearly vertical single force that represents the counter force of the eruption. The time history of the vertical force suggests two distinct groups of events, about two minutes apart, each consisting of several subevents with a duration of about 25 sec. The magnitude of the force is approximately 2.6 to the 17th power dyne. this vertical force is in contrast with the long period (approximately 150 sec) southward horizontal single force which was determined by a previous study and interpreted to be due to the massive landslide.

  4. Scale-dependent Ocean Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, R. E.

    1995-01-01

    Wave turbulence is a common feature of nonlinear wave motions observed when external forcing acts during a long period of time, resulting in developed spectral cascades of energy, momentum, and other conserved integrals. In the ocean, wave turbulence occurs on various scales from capillary ripples, and those of baroclinic inertia-gravity, to Rossby waves. Oceanic wave motions are discussed.

  5. A consistent model for tsunami actions on buildings

    NASA Astrophysics Data System (ADS)

    Foster, A.; Rossetto, T.; Eames, I.; Chandler, I.; Allsop, W.

    2016-12-01

    The Japan (2011) and Indian Ocean (2004) tsunami resulted in significant loss of life, buildings, and critical infrastructure. The tsunami forces imposed upon structures in coastal regions are initially due to wave slamming, after which the quasi-steady flow of the sea water around buildings becomes important. An essential requirement in both design and loss assessment is a consistent model that can accurately predict these forces. A model suitable for predicting forces in the in the quasi-steady range has been established as part of a systematic programme of research by the UCL EPICentre to understand the fundamental physical processes of tsunami actions on buildings, and more generally their social and economic consequences. Using the pioneering tsunami generator at HR Wallingford, this study considers the influence of unsteady flow conditions on the forces acting upon a rectangular building occupying 10-80% of a channel for 20-240 second wave periods. A mathematical model based upon basic open-channel flow principles is proposed, which provides empirical estimates for drag and hydrostatic coefficients. A simple force prediction equation, requiring only basic flow velocity and wave height inputs is then developed, providing good agreement with the experimental results. The results of this study demonstrate that the unsteady forces from the very long waves encountered during tsunami events can be predicted with a level of accuracy and simplicity suitable for design and risk assessment.

  6. Study of hydrodynamic characteristics of a Sharp Eagle wave energy converter

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-qun; Sheng, Song-wei; You, Ya-ge; Huang, Zhen-xin; Wang, Wen-sheng

    2017-06-01

    According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.

  7. Absorption, scattering, and radiation force efficiencies in the longitudinal wave scattering by a small viscoelastic particle in an isotropic solid.

    PubMed

    Lopes, J H; Leão-Neto, J P; Silva, G T

    2017-11-01

    Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.

  8. Investigating the generation of Love waves in secondary microseisms using 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Wenk, Stefan; Hadziioannou, Celine; Pelties, Christian; Igel, Heiner

    2014-05-01

    Longuet-Higgins (1950) proposed that secondary microseismic noise can be attributed to oceanic disturbances by surface gravity wave interference causing non-linear, second-order pressure perturbations at the ocean bottom. As a first approximation, this source mechanism can be considered as a force acting normal to the ocean bottom. In an isotropic, layered, elastic Earth model with plain interfaces, vertical forces generate P-SV motions in the vertical plane of source and receiver. In turn, only Rayleigh waves are excited at the free surface. However, several authors report on significant Love wave contributions in the secondary microseismic frequency band of real data measurements. The reason is still insufficiently analysed and several hypothesis are under debate: - The source mechanism has strongest influence on the excitation of shear motions, whereas the source direction dominates the effect of Love wave generation in case of point force sources. Darbyshire and Okeke (1969) proposed the topographic coupling effect of pressure loads acting on a sloping sea-floor to generate the shear tractions required for Love wave excitation. - Rayleigh waves can be converted into Love waves by scattering. Therefore, geometric scattering at topographic features or internal scattering by heterogeneous material distributions can cause Love wave generation. - Oceanic disturbances act on large regions of the ocean bottom, and extended sources have to be considered. In combination with topographic coupling and internal scattering, the extent of the source region and the timing of an extended source should effect Love wave excitation. We try to elaborate the contribution of different source mechanisms and scattering effects on Love to Rayleigh wave energy ratios by 3D numerical simulations. In particular, we estimate the amount of Love wave energy generated by point and extended sources acting on the free surface. Simulated point forces are modified in their incident angle, whereas extended sources are adapted in their spatial extent, magnitude and timing. Further, the effect of variations in the correlation length and perturbation magnitude of a random free surface topography as well as an internal random material distribution are studied.

  9. The GISS global climate-middle atmosphere model. II - Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag

    NASA Technical Reports Server (NTRS)

    Rind, D.; Suozzo, R.; Balachandran, N. K.

    1988-01-01

    The variability which arises in the GISS Global Climate-Middle Atmosphere Model on two time scales is reviewed: interannual standard deviations, derived from the five-year control run, and intraseasonal variability as exemplified by statospheric warnings. The model's extratropical variability for both mean fields and eddy statistics appears reasonable when compared with observations, while the tropical wind variability near the stratopause may be excessive possibly, due to inertial oscillations. Both wave 1 and wave 2 warmings develop, with connections to tropospheric forcing. Variability on both time scales results from a complex set of interactions among planetary waves, the mean circulation, and gravity wave drag. Specific examples of these interactions are presented, which imply that variability in gravity wave forcing and drag may be an important component of the variability of the middle atmosphere.

  10. Granular resistive force theory explains the neuromechanical phase lag during sand-swimming

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Sharpe, Sarah; Goldman, Daniel

    2012-11-01

    Undulatory locomotion is a common gait used by a diversity of animals in a range of environments. This mode of locomotion is characterized by the propagation of a traveling wave of body bending, which propels the animal in the opposite direction of the wave. Previous studies of undulatory locomotion in fluids, on land, and even within sand revealed that the wave of muscle activation progresses faster than the traveling wave of curvature. This leads to an increasing phase lag between activation and curvature at more posterior segments, known as the neuromechanical phase lag. In this study, we compare biological measurements of phase lag during the sand-swimming of the sandfish lizard to predictions of a simple model of undulatory swimming that consists of prescribed kinematics and granular resistive forces. The neuromechanical phase lag measured using electromyography (EMG) quantitatively matches the predicted phase lag between the local body curvature and torque exerted by granular resistive forces. Two effects are responsible for the phase lag in this system: the yaw motion of the body and different integration length over a traveling force pattern for different positions along the body.

  11. What Controls the Temperature of the Arctic Stratosphere during the Spring?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.

  12. Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid

    PubMed Central

    Sapozhnikov, Oleg A.; Bailey, Michael R.

    2013-01-01

    A theoretical approach is developed to calculate the radiation force of an arbitrary acoustic beam on an elastic sphere in a liquid or gas medium. First, the incident beam is described as a sum of plane waves by employing conventional angular spectrum decomposition. Then, the classical solution for the scattering of a plane wave from an elastic sphere is applied for each plane-wave component of the incident field. The net scattered field is expressed as a superposition of the scattered fields from all angular spectrum components of the incident beam. With this formulation, the incident and scattered waves are superposed in the far field to derive expressions for components of the radiation stress tensor. These expressions are then integrated over a spherical surface to analytically describe the radiation force on an elastic sphere. Limiting cases for particular types of incident beams are presented and are shown to agree with known results. Finally, the analytical expressions are used to calculate radiation forces associated with two specific focusing transducers. PMID:23363086

  13. Wave scheduling - Decentralized scheduling of task forces in multicomputers

    NASA Technical Reports Server (NTRS)

    Van Tilborg, A. M.; Wittie, L. D.

    1984-01-01

    Decentralized operating systems that control large multicomputers need techniques to schedule competing parallel programs called task forces. Wave scheduling is a probabilistic technique that uses a hierarchical distributed virtual machine to schedule task forces by recursively subdividing and issuing wavefront-like commands to processing elements capable of executing individual tasks. Wave scheduling is highly resistant to processing element failures because it uses many distributed schedulers that dynamically assign scheduling responsibilities among themselves. The scheduling technique is trivially extensible as more processing elements join the host multicomputer. A simple model of scheduling cost is used by every scheduler node to distribute scheduling activity and minimize wasted processing capacity by using perceived workload to vary decentralized scheduling rules. At low to moderate levels of network activity, wave scheduling is only slightly less efficient than a central scheduler in its ability to direct processing elements to accomplish useful work.

  14. Fluid film force control in lubricated journal bearings by means of a travelling wave generated with a piezoelectric actuators' system

    NASA Astrophysics Data System (ADS)

    Iula, Antonio; Lamberti, Nicola; Savoia, Alessandro; Caliano, Giosue

    2012-05-01

    In this work an experimental evaluation of the possiblity to influence and control the fluid film forces in the gap of a lubricated journal bearing by means of a rotating travelling wave is carried out. The travellig wave is generated by two power actuators opportunely positioned on the outer surface of the bearing and electrically driven with a phase shift of 90°. Each transducer is designed to work at the natural frequency of the radial nonaxisymmetrical mode 0-5 (23.6 kHz). Experimental results show that the travelling wave is capable to control the motion of an oil drop on the inner surface of the bearing and that it is capable to put in rotation a rotor layed on the drop oil via the viscous forces in the oil drop itself.

  15. A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.

    1985-01-01

    Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.

  16. Forced wave induced by an atmospheric pressure disturbance moving towards shore

    NASA Astrophysics Data System (ADS)

    Chen, Yixiang; Niu, Xiaojing

    2018-05-01

    Atmospheric pressure disturbances moving over a vast expanse of water can induce different wave patterns, which can be determined by the Froude number Fr. Generally, Fr = 1 is a critical value for the transformation of the wave pattern and the well-known Proudman resonance happens when Fr = 1. In this study, the forced wave induced by an atmospheric pressure disturbance moving over a constant slope from deep sea to shore is numerically investigated. The wave pattern evolves from a concentric-circle type into a triangular type with the increase of the Froude number, as the local water depth decreases, which is in accord with the analysis in the unbounded flat-bottom cases. However, a hysteresis effect has been observed, which implies the obvious amplification of the forced wave induced by a pressure disturbance can not be simply predicted by Fr = 1. The effects of the characteristic parameters of pressure disturbances and slope gradient have been discussed. The results show that it is not always possible to observe significant peak of the maximum water elevation before the landing of pressure disturbances, and a significant peak can be generated by a pressure disturbance with small spatial scale and fast moving velocity over a milder slope. Besides, an extremely high run-up occurs when the forced wave hits the shore, which is an essential threat to coastal security. The results also show that the maximum run-up is not monotonously varying with the increase of disturbance moving speed and spatial scale. There exists a most dangerous speed and scale which may cause disastrous nearshore surge.

  17. Forced sound transmission through a finite-sized single leaf panel subject to a point source excitation.

    PubMed

    Wang, Chong

    2018-03-01

    In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0  is also given.

  18. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  19. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  20. Equatorial waves in a stratospheric GCM: Effects of vertical resolution. [GCM (general circulation model)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boville, B.A.; Randel, W.J.

    1992-05-01

    Equatorially trapped wave modes, such as Kelvin and mixed Rossby-gravity waves, are believed to play a crucial role in forcing the quasi-biennial oscillation (QBO) of the lower tropical stratosphere. This study examines the ability of a general circulation model (GCM) to simulate these waves and investigates the changes in the wave properties as a function of the vertical resolution of the model. The simulations produce a stratopause-level semiannual oscillation but not a QBO. An unfortunate property of the equatorially trapped waves is that they tend to have small vertical wavelengths ([le] 15 km). Some of the waves, believed to bemore » important in forcing the QBO, have wavelengths as short as 4 km. The short vertical wavelengths pose a stringent computational requirement for numerical models whose vertical grid spacing is typically chosen based on the requirements for simulating extratropical Rossby waves (which have much longer vertical wavelengths). This study examines the dependence of the equatorial wave simulation of vertical resolution using three experiments with vertical grid spacings of approximately 2.8, 1.4, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and inertio-gravity waves are identified in the simulations. At high vertical resolution, the simulated waves are shown to correspond fairly well to the available observations. The properties of the relatively slow (and vertically short) waves believed to play a role in the QBO vary significantly with vertical resolution. Vertical grid spacings of about 1 km or less appear to be required to represent these waves adequately. The simulated wave amplitudes are at least as large as observed, and the waves are absorbed in the lower stratosphere, as required in order to force the QBO. However, the EP flux divergence associated with the waves is not sufficient to explain the zonal flow accelerations found in the QBO. 39 refs., 17 figs., 1 tab.« less

  1. Damping of Quasi-stationary Waves Between Two Miscible Liquids

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    2002-01-01

    Two viscous miscible liquids with an initially sharp interface oriented vertically inside a cavity become unstable against oscillatory external forcing due to Kelvin-Helmholtz instability. The instability causes growth of quasi-stationary (q-s) waves at the interface between the two liquids. We examine computationally the dynamics of a four-mode q-s wave, for a fixed energy input, when one of the components of the external forcing is suddenly ceased. The external forcing consists of a steady and oscillatory component as realizable in a microgravity environment. Results show that when there is a jump discontinuity in the oscillatory excitation that produced the four-mode q-s wave, the interface does not return to its equilibrium position, the structure of the q-s wave remains imbedded between the two fluids over a long time scale. The damping characteristics of the q-s wave from the time history of the velocity field show overdamped and critically damped response; there is no underdamped oscillation as the flow field approaches steady state. Viscous effects serve as a dissipative mechanism to effectively damp the system. The stability of the four-mode q-s wave is dependent on both a geometric length scale as well as the level of background steady acceleration.

  2. Perpendicular momentum input of lower hybrid waves and its influence on driving plasma rotation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xiaoyin

    The mechanism of perpendicular momentum input of lower hybrid waves and its influence on plasma rotation are studied. Discussion for parallel momentum input of lower hybrid waves is presented for comparison. It is found out that both toroidal and poloidal projections of perpendicular momentum input of lower hybrid waves are stronger than those of parallel momentum input. The perpendicular momentum input of lower hybrid waves therefore plays a dominant role in forcing the changes of rotation velocity observed during lower hybrid current drive. Lower hybrid waves convert perpendicular momentum carried by the waves into the momentum of dc electromagnetic fieldmore » by inducing a resonant-electron flow across flux surfaces therefore charge separation and a radial dc electric field. The dc field releases its momentum into plasma through the Lorentz force acting on the radial return current driven by the radial electric field. Plasma is spun up by the Lorentz force. An improved quasilinear theory with gyro-phase dependent distribution function is developed to calculate the radial flux of resonant electrons. Rotations are determined by a set of fluid equations for bulk electrons and ions, which are solved numerically by applying a finite-difference method. Analytical expressions for toroidal and poloidal rotations are derived using the same hydrodynamic model.« less

  3. Separation of traveling and standing waves in a finite dispersive string with partial or continuous viscoelastic foundation

    NASA Astrophysics Data System (ADS)

    Cheng, Xiangle; Blanchard, Antoine; Tan, Chin An; Lu, Huancai; Bergman, Lawrence A.; McFarland, D. Michael; Vakakis, Alexander F.

    2017-12-01

    The free and forced vibrations of a linear string with a local spring-damper on a partial elastic foundation, as well as a linear string on a viscoelastic foundation conceptualized as a continuous distribution of springs and dampers, are studied in this paper. Exact, analytical results are obtained for the free and forced response to a harmonic excitation applied at one end of the string. Relations between mode complexity and energy confinement with the dispersion in the string system are examined for the steady-state forced vibration, and numerical methods are applied to simulate the transient evolution of energy propagation. Eigenvalue loci veering and normal mode localization are observed for weakly coupled subsystems, when the foundation stiffness is sufficiently large, for both the spatially symmetric and asymmetric systems. The forced vibration results show that nonproportional damping-induced mode complexity, for which there are co-existing regions of purely traveling waves and standing waves, is attainable for the dispersive string system. However, this wave transition phenomenon depends strongly on the location of the attached discrete spring-damper relative to the foundation and whether the excitation frequency Ω is above or below the cutoff frequency ωc. When Ω<ωc, the wave transition cannot be attained for a string on an elastic foundation, but is possible if the string is on a viscoelastic foundation. Although this study is primarily formulated for a harmonic boundary excitation at one end of the string, generalization of the mode complexity can be deduced for the steady-state forced response of the string-foundation system to synchronous end excitations and is confirmed numerically. This work represents a novel study to understand the wave transitions in a dispersive structural system and lays the groundwork for potentially effective passive vibration control strategies.

  4. Forced Gravity Waves and the Tropospheric Response to Convection

    NASA Astrophysics Data System (ADS)

    Halliday, O. J.; Griffiths, S. D.; Parker, D. J.; Stirling, A.

    2017-12-01

    It has been known for some time that gravity waves facilitate atmospheric adjustment to convective heating. Further, convectively forced gravity waves condition the neighboring atmosphere for the initiation and / or suppression of convection. Despite this, the radiation of gravity waves in macro-scale models (which are typically forced at the grid-scale, by existing parameterization schemes) is not well understood. We present here theoretical and numerical work directed toward improving our understanding of convectively forced gravity wave effects at the mesoscale. Using the linear hydrostatic equations of motion for an incompressible (but non-Boussinesq) fluid with vertically varying buoyancy frequency, we find a radiating solution to prescribed sensible heating. We then interrogate the spatial and temporal sensitivity of the vertical velocity and potential temperature response to different heating functions, considering the remote and near-field forced response both to steady and pulsed heating. We find that the meso-scale tropospheric response to convection is significantly dependent on the upward radiation characteristics of the gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and stratification of the domain. Moving from a trapped to upwardly-radiating solution there is a 50% reduction in tropospherically averaged vertical velocity, but significant perturbations persist for up to 4 hours in the far-field. We find the tropospheric adjustment to be sensitive to the horizontal length scale which characterizes the heating, observing a 20% reduction in vertical velocity when comparing the response from a 10 km to a 100 km heat source. We assess the implications for parameterization of convection in coarse-grained models in the light of these findings. We show that an idealized `full-physics' nonlinear simulation of deep convection in the UK Met Office Unified Model is qualitatively described by the linear solution: departures are quantified and explored.

  5. Northern Hemisphere winter-like stratospheric variability in an idealized GCM using tropospheric heating perturbations

    NASA Astrophysics Data System (ADS)

    Lindgren, E. A.; Sheshadri, A.; Plumb, R. A.

    2017-12-01

    Tropospheric heating perturbations are used to create Northern Hemisphere winter-like stratospheric variability in an idealized atmospheric GCM. Model results with wave 1 and 2 heating perturbations are compared to a model with wave 2 topography, which has previously been shown to produce a realistic sudden stratospheric warming frequency. It is found that both wave 1 and wave 2 heating perturbations cause both split and displacement sudden warmings. This is different from the wave 2 topographic forcing, which only produces splits. Furthermore, the tropospheric heating is shown to produce more reasonable annular mode timescales in the troposphere compared to the topographic forcing. It is argued that the model with wave 2 tropospheric heating perturbation is better at simulating Northern Hemisphere stratospheric variability compared to the model with wave 2 topographic forcing. The long-term variability of zonal winds in the wave 2 heating run is also investigated, under both perpetual winter conditions and with a seasonal cycle. It is found that midlatitude winds in the perpetual winter version of the model exhibit variability on timescales of around 1000 days. These variations are thought to be connected to the QBO-like oscillations in tropical winds found in the model. This connection is further explored in the seasonal cycle version of the model as well as full GCMs with QBOs, where the correlations between tropical winds and polar vortex strength are investigated.

  6. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    PubMed

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Tsunami Simulators in Physical Modelling Laboratories - From Concept to Proven Technique

    NASA Astrophysics Data System (ADS)

    Allsop, W.; Chandler, I.; Rossetto, T.; McGovern, D.; Petrone, C.; Robinson, D.

    2016-12-01

    Before 2004, there was little public awareness around Indian Ocean coasts of the potential size and effects of tsunami. Even in 2011, the scale and extent of devastation by the Japan East Coast Tsunami was unexpected. There were very few engineering tools to assess onshore impacts of tsunami, so no agreement on robust methods to predict forces on coastal defences, buildings or related infrastructure. Modelling generally used substantial simplifications of either solitary waves (far too short durations) or dam break (unrealistic and/or uncontrolled wave forms).This presentation will describe research from EPI-centre, HYDRALAB IV, URBANWAVES and CRUST projects over the last 10 years that have developed and refined pneumatic Tsunami Simulators for the hydraulic laboratory. These unique devices have been used to model generic elevated and N-wave tsunamis up to and over simple shorelines, and at example defences. They have reproduced full-duration tsunamis including the Mercator trace from 2004 at 1:50 scale. Engineering scale models subjected to those tsunamis have measured wave run-up on simple slopes, forces on idealised sea defences and pressures / forces on buildings. This presentation will describe how these pneumatic Tsunami Simulators work, demonstrate how they have generated tsunami waves longer than the facility within which they operate, and will highlight research results from the three generations of Tsunami Simulator. Of direct relevance to engineers and modellers will be measurements of wave run-up levels and comparison with theoretical predictions. Recent measurements of forces on individual buildings have been generalized by separate experiments on buildings (up to 4 rows) which show that the greatest forces can act on the landward (not seaward) buildings. Continuing research in the 70m long 4m wide Fast Flow Facility on tsunami defence structures have also measured forces on buildings in the lee of a failed defence wall.

  8. Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability and sustainability

    USGS Publications Warehouse

    Shope, James B.; Storlazzi, Curt; Erikson, Li; Hegermiller, Christie

    2016-01-01

    Waves are the dominant influence on coastal morphology and ecosystem structure of tropical Pacific islands. Wave heights, periods, and directions for the 21st century were projected using near-surface wind fields from four atmosphere-ocean coupled global climate models (GCM) under representative concentration pathways (RCP) 4.5 and 8.5. GCM-derived wind fields forced the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters around 25 islands in the mid to western tropical Pacific Ocean for historical (1976–2005), mid-, and end-of-century time periods. Extreme significant wave heights decreased (~10.0%) throughout the 21st century under both climate scenarios compared to historical wave conditions and the higher radiative forcing 8.5 scenario displayed a greater and more widespread decrease in extreme significant wave heights compared to the lower forcing 4.5 scenario. An exception was for the end-of-century June–August season. Offshore of islands in the central equatorial Pacific, extreme significant wave heights displayed the largest changes from historical values. The frequency of extreme events during December–February decreased under RCP 8.5, whereas the frequency increased under RCP 4.5. Mean wave directions often rotated more than 30° clockwise at several locations during June–August, which could indicate a weakening of the trade winds’ influence on extreme wave directions and increasing dominance of Southern Ocean swell or eastern shift of storm tracks. The projected changes in extreme wave heights, directions of extreme events, and frequencies at which extreme events occur will likely result in changes to the morphology and sustainability of island nations.

  9. Understanding Rossby wave trains forced by the Indian Ocean Dipole

    NASA Astrophysics Data System (ADS)

    McIntosh, Peter C.; Hendon, Harry H.

    2018-04-01

    Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.

  10. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.

    PubMed

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping

    2015-05-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.

  11. Mesoscale Simulations of Gravity Waves During the 2008-2009 Major Stratospheric Sudden Warming

    NASA Technical Reports Server (NTRS)

    Limpasuvan, Varavut; Alexander, M. Joan; Orsolini, Yvan J.; Wu, Dong L.; Xue, Ming; Richter, Jadwiga H.; Yamashita, Chihoko

    2011-01-01

    A series of 24 h mesoscale simulations (of 10 km horizontal and 400 m vertical resolution) are performed to examine the characteristics and forcing of gravity waves (GWs) relative to planetary waves (PWs) during the 2008-2009 major stratospheric sudden wam1ing (SSW). Just prior to SSW occurrence, widespread westward propagating GWs are found along the vortex's edge and associated predominantly with major topographical features and strong near-surface winds. Momentum forcing due to GWs surpasses PW forcing in the upper stratosphere and tends to decelerate the polar westerly jet in excess of 30 m/s/d. With SSW onset, PWs dominate the momentum forcing, providing decelerative effects in excess of 50 m/s/d throughout the upper polar stratosphere. GWs related to topography become less widespread largely due to incipient wind reversal as the vortex starts to elongate. During the SSW maturation and early recovery, the polar vortex eventually splits and both wave signatures and forcing greatly subside. Nonetheless, during SSW, westward and eastward propagating GWs are found in the polar region and may be generated in situ by flow adjustment processes in the stratosphere or by secondary GW breaking. The simulated large-scale features agree well with those resolved in satellite observations and analysis products.

  12. The Thermal Phase Curve Offset on Tidally and Nontidally Locked Exoplanets: A Shallow Water Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penn, James; Vallis, Geoffrey K, E-mail: jp492@exeter.ac.uk, E-mail: g.vallis@exeter.ac.uk

    2017-06-20

    Using a shallow water model with time-dependent forcing, we show that the peak of an exoplanet thermal phase curve is, in general, offset from the secondary eclipse when the planet is rotating. That is, the planetary hot spot is offset from the point of maximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset are functions of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady state in the reference frame of the moving forcing. The model is an extension ofmore » the well-studied Matsuno–Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planet’s surface) exceeds that of the gravity waves, then the hot spot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wave speed of the system, the hottest point may lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics, as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.« less

  13. A novel 3D-printed mechanical actuator using centrifugal force for magnetic resonance elastography.

    PubMed

    Neumann, Wiebke; Schad, Lothar R; Zollner, Frank G

    2017-07-01

    Magnetic resonance elastography (MRE) is a technique for the quantification of tissue stiffness during MR examinations. It requires consistent methods for mechanical shear wave induction to the region of interest in the human body to reliably quantify elastic properties of soft tissues. This work proposes a novel 3D-printed mechanical actuator using the principle of centrifugal force for wave induction. The driver consists of a 3D-printed turbine vibrator powered by compressed air (located inside the scanner room) and an active driver controlling the pressure of inflowing air (placed outside the scanner room). The generated force of the proposed actuator increases for higher actuation frequencies as opposed to conventionally used air cushions. There, the displacement amplitude decreases with increasing actuation frequency resulting in a smaller signal-to-noise ratio. An initial phantom study is presented which demonstrates the feasibility of the actuator for MRE. The wave-actuation frequency was regulated in a range between 15 Hz and 60 Hz for force measurements and proved sufficiently stable (± 0.3 Hz) for any given nominal frequency. The generated forces depend on the weight of the eccentric unbalance within the turbine and ranged between 0.67 N to 2.70 N (for 15 Hz) and 3.09 N to 7.77 N (for 60 Hz). Therefore, the generated force of the presented actuator increases with rotational speed of the turbine and offers an elegant solution for sufficiently large wave actuation at higher frequencies. In future work, we will investigate an optimal ratio of the weight of unbalance to the size of turbine for appropriately large but tolerable wave actuation for a given nominal frequency.

  14. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numericalmore » simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.« less

  15. Ambient seismic wave field

    PubMed Central

    NISHIDA, Kiwamu

    2017-01-01

    The ambient seismic wave field, also known as ambient noise, is excited by oceanic gravity waves primarily. This can be categorized as seismic hum (1–20 mHz), primary microseisms (0.02–0.1 Hz), and secondary microseisms (0.1–1 Hz). Below 20 mHz, pressure fluctuations of ocean infragravity waves reach the abyssal floor. Topographic coupling between seismic waves and ocean infragravity waves at the abyssal floor can explain the observed shear traction sources. Below 5 mHz, atmospheric disturbances may also contribute to this excitation. Excitation of primary microseisms can be attributed to topographic coupling between ocean swell and seismic waves on subtle undulation of continental shelves. Excitation of secondary microseisms can be attributed to non-linear forcing by standing ocean swell at the sea surface in both pelagic and coastal regions. Recent developments in source location based on body-wave microseisms enable us to estimate forcing quantitatively. For a comprehensive understanding, we must consider the solid Earth, the ocean, and the atmosphere as a coupled system. PMID:28769015

  16. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    NASA Astrophysics Data System (ADS)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  17. Sexual victimization among a national probability sample of adolescent women.

    PubMed

    Raghavan, Ramesh; Bogart, Laura M; Elliott, Marc N; Vestal, Katherine D; Schuster, Mark A

    2004-01-01

    Forced sexual intercourse is becoming more salient for adolescent women nationwide, but little is known about sexual revictimization and its mediators among adolescents in middle and high school. Data on 7,545 adolescent women who participated in both Wave 1 (April-December 1995) and Wave 2 (1996) of the National Longitudinal Study of Adolescent Health were used in logistic regression analyses to identify predictors of completed forced sexual intercourse, estimate prevalence of sexual revictimization and determine mediators of the relationship between history of forced sex and sexual revictimization. At Wave 1, 7% of adolescent women reported having been forced into sexual intercourse. Of these, 8% were revictimized in the following year. In multivariate analyses, predictors of sexual victimization by Wave 1 included having been in a romantic relationship in the past 18 months (odds ratio, 2.1), having been exposed to violence in the past year (1.9), alcohol use in the last year (1.7), marijuana use in the last 30 days (1.5) and increasing levels of emotional distress (1.4). Predictors of sexual victimization between waves included having had sex by the first wave (2.3), alcohol use (2.0), recent cocaine use (4.7), rising levels of emotional distress (1.4) and genital touching within romantic relationships (2.7). Health care providers, teachers and school counselors can play key roles in identifying adolescent women at high risk for sexual victimization and revictimization by being attuned to adolescents' mental health symptoms, substance use and levels of sexual activity.

  18. Expansion of a quantum wave packet in a one-dimensional disordered potential in the presence of a uniform bias force

    NASA Astrophysics Data System (ADS)

    Crosnier de Bellaistre, C.; Trefzger, C.; Aspect, A.; Georges, A.; Sanchez-Palencia, L.

    2018-01-01

    We study numerically the expansion dynamics of an initially confined quantum wave packet in the presence of a disordered potential and a uniform bias force. For white-noise disorder, we find that the wave packet develops asymmetric algebraic tails for any ratio of the force to the disorder strength. The exponent of the algebraic tails decays smoothly with that ratio and no evidence of a critical behavior on the wave density profile is found. Algebraic localization features a series of critical values of the force-to-disorder strength where the m th position moment of the wave packet diverges. Below the critical value for the m th moment, we find fair agreement between the asymptotic long-time value of the m th moment and the predictions of diagrammatic calculations. Above it, we find that the m th moment grows algebraically in time. For correlated disorder, we find evidence of systematic delocalization, irrespective to the model of disorder. More precisely, we find a two-step dynamics, where both the center-of-mass position and the width of the wave packet show transient localization, similar to the white-noise case, at short time and delocalization at sufficiently long time. This correlation-induced delocalization is interpreted as due to the decrease of the effective de Broglie wavelength, which lowers the effective strength of the disorder in the presence of finite-range correlations.

  19. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).

    PubMed

    Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian

    2017-10-11

    Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.

  20. Autogenic and Allogenic: Emergent Coastline Patterns Interact With Forcing Variations

    NASA Astrophysics Data System (ADS)

    Murray, A. B.; Alvarez Antolinez, J. A.; Mendez, F. J.; Moore, L. J.; Wood, J.; Farley, G.

    2017-12-01

    A range of coastline shapes can emerge from large-scale morphodynamic interactions. Coastline shape determines local wave influences. Local wave influences (fluxes of alongshore momentum), determine sediment fluxes, and gradients in these sediment fluxes, in turn, alter coastline shape. Modeling studies show that such feedbacks lead to an instability, and to subsequent finite-amplitude interactions, producing self-organized patterns and emergent structures including sandwaves, capes, and spits (e.g. Ashton and Murray, 2006; Ashton et al., 2015); spiral bays on rocky coastlines (e.g. Barkwith et al., 2014); and convex, spit-bounded coastlines (Ells et al., in prep.). Coastline shapes depend sensitively on wave climate, defined as the angular distribution of wave influences on alongshore sediment transport. Therefore, shifts in wave climate arising from shifts in storms (decadal scale fluctuations or longer-term trends) will tend to change coastline shape. Previous efforts have detected changing coastline shape, likely related to changing influence from hurricane-generated waves, as expressed in changes in the location and intensity of coastal erosion zones along the cuspate capes in North Carolina, USA (Moore et al., 2013). These efforts involved the assumption that coastline response to changing forcing occurs in a quasi-equilibrium manner. However, in some cases coastline responses can exhibit long-term memory and path dependence (Thomas et al., 2016). Recently, we have hindcast the wave climate affecting the North Carolina coast since 1870, using a series of statistical analyses to downscale from basin-scale surface pressure fields to regional deep-water wave climate, and then a numerical transformation to local offshore wave climate. We used this wave climate as input for the Coastline Evolution Model (CEM). The results show that the emergent coastline features respond to decadal-scale shifts in wave climate, but with time lags that complicate the relationship between forcing and coastline shape. Comparisons between model predictions and observed shoreline-change patterns support the suggestion that the relationship between emergent coastline behaviours (autogenic processes) and external influences (autogenic forcing) involves such memory effects (Antolinez et al., in revision).

  1. Control of the flow over wing airfoils in transonic regimes by means of force action of surface elements on the flow

    NASA Astrophysics Data System (ADS)

    Aul'chenko, S. M.; Zamuraev, V. P.

    2012-09-01

    Mathematical modeling of the effect of force oscillations of surface elements of a wing airfoil on the shock-wave structure of the transonic flow over it is implemented. The qualitative and quantitative effect of the oscillation parameters on the airfoil wave drag is investigated.

  2. How Reflected Wave Fronts Dynamically Establish Hooke's Law in a Spring

    ERIC Educational Resources Information Center

    Fahy, Stephen; O'Riordan, John; O'Sullivan, Colm; Twomey, Patrick

    2012-01-01

    A simple benchtop experiment in which a moving cart collides with a fixed spring is described. Force-time and force-distance data recorded during the collision display the transit of compression wave fronts through the spring following impact. These data can be used by students to develop a computational model of the dynamics of this simple…

  3. Three-Component Force Measurements on a Scramjet in a Reflected-Shock Tunnel

    NASA Technical Reports Server (NTRS)

    Tsai, C.-Y.; Bakos, R. J.; Mee, D. J.

    1998-01-01

    A three-component stress-wave force-balance for a large scramjet has been designed, calibrated and tested in the HYPULSE reflected shock tunnel at GASL Inc., New York. The scramjet model is over 3-foot long and weighs in excess of 90 Ibm. The stress-wave force-balance is comprised of three stress bars which are attached to the model. Calibration results indicate that the force balance responds well within about 1 ms and that the sensitivity of the balance to the distribution of load is not large. Results with and without fuel injection were obtained in the tunnel operated for Mach 7 and Mach 10 flight simulation. These tests showed the force-balance can resolve axial force increments due to combustion of about 40 lb in the presence of model lift forces of 500-700 lb.

  4. Basinwide response of the Atlantic Meridional Overturning Circulation to interannual wind forcing

    NASA Astrophysics Data System (ADS)

    Zhao, Jian

    2017-12-01

    An eddy-resolving Ocean general circulation model For the Earth Simulator (OFES) and a simple wind-driven two-layer model are used to investigate the role of momentum fluxes in driving the Atlantic Meridional Overturning Circulation (AMOC) variability throughout the Atlantic basin from 1950 to 2010. Diagnostic analysis using the OFES results suggests that interior baroclinic Rossby waves and coastal topographic waves play essential roles in modulating the AMOC interannual variability. The proposed mechanisms are verified in the context of a simple two-layer model with realistic topography and only forced by surface wind. The topographic waves communicate high-latitude anomalies into lower latitudes and account for about 50% of the AMOC interannual variability in the subtropics. In addition, the large scale Rossby waves excited by wind forcing together with topographic waves set up coherent AMOC interannual variability patterns across the tropics and subtropics. The comparisons between the simple model and OFES results suggest that a large fraction of the AMOC interannual variability in the Atlantic basin can be explained by wind-driven dynamics.

  5. A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves

    NASA Technical Reports Server (NTRS)

    Sassi, Fabrizio; Garcia, Rolando R.

    1994-01-01

    A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.

  6. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean

    NASA Astrophysics Data System (ADS)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.

    2016-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  7. The influence of wave-, wind- and tide-forced currents on headland sand bypassing - Study case: Santa Catarina Island north shore, Brazil

    NASA Astrophysics Data System (ADS)

    Vieira da Silva, Guilherme; Toldo, Elírio E., Jr.; Klein, Antonio H. da F.; Short, Andrew D.

    2018-07-01

    Investigations of headland sand bypassing are still an under-reported subject in the literature. This paper aims to understand the contribution of currents forced by different mechanisms such as tides, winds (i.e. local wind acting over the ocean surface generating currents, without considering wave generation) and waves (as they approach/break on the coast) to headland sand bypassing. The study was carried out in an area comprising a series of seven headlands with varying wave exposure due to changes in shoreline orientation and increasing tidal influence close to a relatively large bay. This paper uses a calibrated and validated process-based model (Delft3D) to simulate a series of scenarios including spring and neap tides during flood and ebb conditions and a range of wind and wave scenarios that encompass both average and extreme conditions. The results indicate that waves are the main driving force for the headland bypassing as they transport sand at rates two orders of magnitude higher than tide- or wind-driven sediment transport. The tide-driven currents can only transport sediment during spring tides in locations where the currents are intensified. It is also demonstrated that the wave direction plays an important role in sediment transport. In exposed areas with larger headlands a combination of wave directions is required to first transport sediment offshore (out of the beach) and secondly to transport sediment alongshore and back to the next beach. Whereas in areas with little variation in wave direction exposure, the same oblique wave direction is responsible for the entire headland bypassing process. This is the first time the contribution of tide-, winds- and wave-generated sediment transport to headland bypassing have been studied.

  8. Robustness of free and pinned spiral waves against breakup by electrical forcing in excitable chemical media.

    PubMed

    Phantu, Metinee; Sutthiopad, Malee; Luengviriya, Jiraporn; Müller, Stefan C; Luengviriya, Chaiya

    2017-04-01

    We present an investigation on the breakup of free and pinned spiral waves under an applied electrical current in the Belousov-Zhabotinsky reaction. Spiral fronts propagating towards the negative electrode are decelerated. A breakup of the spiral waves occurs when some segments of the fronts are stopped by a sufficiently strong electrical current. In the absence of obstacles (i.e., free spiral waves), the critical value of the electrical current for the wave breakup increases with the excitability of the medium. For spiral waves pinned to circular obstacles, the critical electrical current increases with the obstacle diameter. Analysis of spiral dynamics shows that the enhancement of the robustness against the breakup of both free and pinned spiral waves is originated by the increment of wave speed when either the excitability is strengthened or the obstacle size is enlarged. The experimental findings are reproduced by numerical simulations using the Oregonator model. In addition, the simulations reveal that the robustness against the forced breakup increases with the activator level in both cases of free and pinned spiral waves.

  9. The Gravity Wave Response Above Deep Convection in a Squall Line Simulation

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, J. R.; Durran, D. R.

    1995-01-01

    High-frequency gravity waves generated by convective storms likely play an important role in the general circulation of the middle atmosphere. Yet little is known about waves from this source. This work utilizes a fully compressible, nonlinear, numerical, two-dimensional simulation of a midlatitude squall line to study vertically propagating waves generated by deep convection. The model includes a deep stratosphere layer with high enough resolution to characterize the wave motions at these altitudes. A spectral analysis of the stratospheric waves provides an understanding of the necessary characteristics of the spectrum for future studies of their effects on the middle atmosphere in realistic mean wind scenarios. The wave spectrum also displays specific characteristics that point to the physical mechanisms within the storm responsible for their forcing. Understanding these forcing mechanisms and the properties of the storm and atmosphere that control them are crucial first steps toward developing a parameterization of waves from this source. The simulation also provides a description of some observable signatures of convectively generated waves, which may promote observational verification of these results and help tie any such observations to their convective source.

  10. Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone

    NASA Astrophysics Data System (ADS)

    Moura, T.; Baldock, T. E.

    2017-04-01

    A novel remote sensing methodology to determine the dominant infragravity mechanism in the inner surf and swash zone in the field is presented. Video observations of the breakpoint motion are correlated with the shoreline motion and inner surf zone water levels to determine the relationship between the time-varying breakpoint oscillations and the shoreline motion. The results of 13 field data sets collected from three different beaches indicate that, inside the surf zone, the dominance of bound wave or breakpoint forcing is strongly dependent on the surf zone width and the type of short wave breaking. Infragravity generation by bound wave release was stronger for conditions with relatively narrow surf zones and plunging waves; breakpoint forcing was dominant for wider surf zones and spilling breaker conditions.

  11. Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Collins, David J.; Ai, Ye; Neild, Adrian

    2017-04-01

    Periodic pattern generation using time-averaged acoustic forces conventionally requires the intersection of counterpropagating wave fields, where suspended micro-objects in a microfluidic system collect along force potential minimizing nodal or antinodal lines. Whereas this effect typically requires either multiple transducer elements or whole channel resonance, we report the generation of scalable periodic patterning positions without either of these conditions. A single propagating surface acoustic wave interacts with the proximal channel wall to produce a knife-edge effect according to the Huygens-Fresnel principle, where these cylindrically propagating waves interfere with classical wave fronts emanating from the substrate. We simulate these conditions and describe a model that accurately predicts the lateral spacing of these positions in a robust and novel approach to acoustic patterning.

  12. Nonlinear aspects of acoustic radiation force in biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrovsky, Lev, E-mail: Lev.A.Ostrovsky@noaa.gov; Tsyuryupa, Sergey; Sarvazyan, Armen, E-mail: armen@artannlabs.com

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  13. Nonlinear aspects of acoustic radiation force in biomedical applications

    NASA Astrophysics Data System (ADS)

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-10-01

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual "finger" for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  14. US Drought-Heat Wave Relationships in Past Versus Current Climates

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Hoerling, M. P.; Eischeid, J.; Liu, Z.

    2017-12-01

    This study explores the relationship between droughts and heat waves over various regions of the contiguous United States that are distinguished by so-called energy-limited versus water-limited climatologies. We first examine the regional sensitivity of heat waves to soil moisture variability under 19th century climate conditions, and then compare to sensitivities under current climate that has been subjected to human-induced change. Our approach involves application of the conditional statistical framework of vine copula. Vine copula is known for its flexibility in reproducing various dependence structures exhibited by climate variables. Here we highlight its feature for evaluating the importance of conditional relationships between variables and processes that capture underlying physical factors involved in their interdependence during drought/heat waves. Of particular interest is identifying changes in coupling strength between heat waves and land surface conditions that may yield more extreme events as a result of land surface feedbacks. We diagnose two equilibrium experiments a coupled climate model (CESM1), one subjected to Year-1850 external forcing and the other to Year-2000 radiative forcing. We calculate joint heat wave/drought relationships for each climate state, and also calculate their change as a result of external radiative forcing changes across this 150-yr period. Our results reveal no material change in the dependency between heat waves and droughts, aside from small increases in coupling strength over the Great Plains. Overall, hot U.S. summer droughts of 1850-vintage do not become hotter in the current climate -- aside from the warming contribution of long-term climate change, in CESM1. The detectability of changes in hotter droughts as a consequence of anthropogenic forced changes in this single effect, i.e. coupling strength between soil moisture and hot summer temperature, is judged to be low at this time.

  15. Mirror force induced wave dispersion in Alfvén waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiano, P. A.; Johnson, J. R.

    2013-06-15

    Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvén waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror forcemore » effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.« less

  16. Seagrass blade motion under waves and its impact on wave decay

    NASA Astrophysics Data System (ADS)

    Luhar, M.; Infantes, E.; Nepf, H.

    2017-05-01

    The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).

  17. Measuring the radiation force of megahertz ultrasound acting on a solid spherical scatterer

    NASA Astrophysics Data System (ADS)

    Nikolaeva, A. V.; Tsysar, S. A.; Sapozhnikov, O. A.

    2016-01-01

    The paper considers the problem of precise measurement of the acoustic radiation force of an ultrasonic beam on targets in the form of solid spherical scatterers. Using known analytic relations, a numerical model is developed to perform calculations for different sizes of spherical scatterers and arbitrary frequencies of the incident acoustic wave. A novel method is proposed for measuring the radiation force, which is based on the principle of acoustic echolocation. The radiation force is measured experimentally in a wide range of incident wave intensities using two chosen methods differing in the way the location of the target is controlled.

  18. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  19. Precise measurement of surface plasmon forces at a metal-dielectric interface using a calibrated evanescent wave

    NASA Astrophysics Data System (ADS)

    Liu, Lulu; Woolf, Alex

    2015-03-01

    By observing the motion of an optically trapped microscopic colloid, sub-piconewton static and dynamical forces have been measured using a technique called photonic force microscopy. This technique, though potentially powerful, has in the past struggled to make precise measurements in the vicinity of a reflective or metallic interface, due to distortions of the optical field. We introduce a new in-situ, contact-free calibration method for particle tracking using an evanescent wave, and demonstrate its expanded capability by the precise measurement of forces of interaction between a single colloid and the optical field generated by a propagating surface plasmon polariton on gold.

  20. Universal spin-momentum locked optical forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalhor, Farid; Thundat, Thomas; Jacob, Zubin, E-mail: zjacob@purdue.edu

    2016-02-08

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reportedmore » phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.« less

  1. Wave-current interactions in three dimensions: why 3D radiation stresses are not practical

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice

    2017-04-01

    The coupling of ocean circulation and wave models is based on a wave-averaged mass and momentum conservation equations. Whereas several equivalent equations for the evolution of the current momentum have been proposed, implemented, and used, the possibility to formulate practical equations for the total momentum, which is the sum of the current and wave momenta, has been obscured by a series of publications. In a recent update on previous derivations, Mellor (J. Phys. Oceanogr. 2015) proposed a new set of wave-forced total momentum equations. Here we show that this derivation misses a term that integrates to zero over the vertical. This is because he went from his depth-integrated eq. (28) to the 3D equation (30) by simply removing the integral, but any extra zero-integrating term can be added. Corrected for this omission, the equations of motion are equivalent to the earlier equations by Mellor (2003) which are correct when expressed in terms of wave-induced pressure, horizontal velocity and vertical displacement. Namely the total momentum evolution is driven by the horizontal divergence of a horizontal momentum flux, ----- --- ∂^s- Sαβ = ^uα^uβ + δαβ ∂ς (^p- g^s) (1) and the vertical divergence of a vertical flux, Sαz = (p^-g^s)∂^s/∂xα, (2) where p is the wave-induced non-hydrostatic pressure, s is the wave-induced vertical displacement, and u^ α is the horizontal wave-induced velocity in direction α. So far, so good. Problems arise when p and s are evaluated. Indeend, Ardhuin et al. (J. Phys. Oceanogr. 2008) showed that, over a sloping bottom ∂Sαβ/∂xβ is of order of the slope, hence a consistent wave forcing requires an estimation of Sαz that must be estimated to first order in the bottom slope. For this, Airy wave theory, i.e. cosh(kz-+-kh) p ≃ ga cosh (kD ) cosψ, (3) is not enough. Ardhuin et al. (2008) has shown that using an exact solution of the Laplace equations the vertical flux can indeed be computed. The alternative of neglecting completely Sαz, as suggested by Mellor (2011) for small slopes, will always generate spurious currents because of the unbalanced forcing ∂Sαβ/∂xβ. Fortunately, there are many explicit versions of the wave-averaged equations without the wave momentum in them (Suzuki and Fox-Kemper 2016), with or without vortex force which are all consistent with the exact 3D equations of Andrews and McIntyre (1978). There is thus no need to stumble again and again on this fundamental problem of vertical momentum flux, which is a flux of wave momentum. The problem simply goes away by writing the equations for the current momentum only, without the problematic wave momentum. The current and wave momentum are coupled by forcing terms, and the wave momentum can be solved in 2D, the vertical distribution of momentum being maintained by the complex flux Sαz.

  2. Dynamics of Proton Spin: Role of qqq Force

    NASA Astrophysics Data System (ADS)

    Mitra, A. N.

    The analytic structure of the qqq wave function, obtained recently in the high momentum regime of QCD, is employed for the formulation of baryonic transition amplitudes via quark loops. A new aspect of this study is the role of a direct (Y -shaped, Mercedes-Benz type) qqq force in generating the qqq wave function The dynamics is that of a Salpeter-like equation (3D support for the kernel) formulated covariantly on the light front, a la Markov-Yukawa Transversality Principle (MYTP) which warrants a 2-way interconnection between the 3D and 4D Bethe-Salpeter (BSE) forms for 2 as well as 3 fermion quarks. The dynamics of this 3-body force shows up through a characteristic singularity in the hypergeometric differential equation for the 3D wave function ϕ, corresponding to a negative eigenvalue of the spin operator iσ1·σ2 × σ3 which is an integral part of the qqq force. As a first application of this wave function to the problem of the proton spin anomaly, the two-gluon contribution to the anomaly yields an estimate of the right sign, although somewhat smaller in magnitude.

  3. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  4. Acoustic Attraction

    NASA Astrophysics Data System (ADS)

    Oviatt, Eric; Patsiaouris, Konstantinos; Denardo, Bruce

    2009-11-01

    A sound source of finite size produces a diverging traveling wave in an unbounded fluid. A rigid body that is small compared to the wavelength experiences an attractive radiation force (toward the source). An attractive force is also exerted on the fluid itself. The effect can be demonstrated with a styrofoam ball suspended near a loudspeaker that is producing sound of high amplitude and low frequency (for example, 100 Hz). The behavior can be understood and roughly calculated as a time-averaged Bernoulli effect. A rigorous scattering calculation yields a radiation force that is within a factor of two of the Bernoulli result. For a spherical wave, the force decreases as the inverse fifth power of the distance from the source. Applications of the phenomenon include ultrasonic filtration of liquids and the growth of supermassive black holes that emit sound waves in a surrounding plasma. An experiment is being conducted in an anechoic chamber with a 1-inch diameter aluminum ball that is suspended from an analytical balance. Directly below the ball is a baffled loudspeaker that exerts an attractive force that is measured by the balance.

  5. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  6. Calculation of the acoustic radiation force on coated spherical shells in progressive and standing plane waves.

    PubMed

    Mitri, F G

    2006-07-01

    In this paper, analytical equations are derived for the time-averaged radiation force induced by progressive and standing acoustic waves incident on elastic spherical shells covered with a layer of viscoelastic and sound-absorbing material. The fluid surrounding the shells is considered compressible and nonviscous. The incident field is assumed to be moderate so that the scattered field from the shells is taken to linear approximation. The analytical results are illustrated by means of a numerical example in which the radiation force function curves are displayed, with particular emphasis on the coating thickness and the content of the hollow region of the shells. The fluid-loading on the radiation force function curves is analysed as well. This study attempts to generalize the various treatments of radiation force due to both progressive and standing waves on spherically-shaped structures immersed in ideal fluids. The results show that various ways can be effectively used for damping resonance peaks, such as by changing the fluid in the interior hollow region of the shells or by changing the coating thickness.

  7. An Asymptotic and Stochastic Theory for the Effects of Surface Gravity Waves on Currents and Infragravity Waves

    NASA Astrophysics Data System (ADS)

    McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.

    2004-12-01

    Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some preliminary solutions using it. McWilliams, J.C., J.M. Restrepo, & E.M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 511, 135-178. Sullivan, P.P., J.C. McWilliams, & W.K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. J. Fluid Mech. 507, 143-174.

  8. A diffraction correction for storage and loss moduli imaging using radiation force based elastography.

    PubMed

    Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc

    2017-01-07

    Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G') and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G' and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green's function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G' and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.

  9. A diffraction correction for storage and loss moduli imaging using radiation force based elastography

    NASA Astrophysics Data System (ADS)

    Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc

    2017-01-01

    Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.

  10. An analytical study of M2 tidal waves in the Taiwan Strait using an extended Taylor method

    NASA Astrophysics Data System (ADS)

    Wu, Di; Fang, Guohong; Cui, Xinmei; Teng, Fei

    2018-02-01

    The tides in the Taiwan Strait (TS) feature large semidiurnal lunar (M2) amplitudes. An extended Taylor method is employed in this study to provide an analytical model for the M2 tide in the TS. The strait is idealized as a rectangular basin with a uniform depth, and the Coriolis force and bottom friction are retained in the governing equations. The observed tides at the northern and southern openings are used as open boundary conditions. The obtained analytical solution, which consists of a stronger southward propagating Kelvin wave, a weaker northward propagating Kelvin wave, and two families of Poincaré modes trapped at the northern and southern openings, agrees well with the observations in the strait. The superposition of two Kelvin waves basically represents the observed tidal pattern, including an anti-nodal band in the central strait, and the cross-strait asymmetry (greater amplitudes in the west and smaller in the east) of the anti-nodal band. Inclusion of Poincaré modes further improves the model result in that the cross-strait asymmetry can be better reproduced. To explore the formation mechanism of the northward propagating wave in the TS, three experiments are carried out, including the deep basin south of the strait. The results show that the southward incident wave is reflected to form a northward wave by the abruptly deepened topography south of the strait, but the reflected wave is slightly weaker than the northward wave obtained from the above analytical solution, in which the southern open boundary condition is specified with observations. Inclusion of the forcing at the Luzon Strait strengthens the northward Kelvin wave in the TS, and the forcing is thus of some (but lesser) importance to the M2 tide in the TS.

  11. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajabi, Majid, E-mail: majid_rajabi@iust.ac.ir; Mojahed, Alireza

    2016-09-15

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered asmore » a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.« less

  12. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions).

    PubMed

    Bulanov, Sergei V; Esirkepov, Timur Zh; Kando, Masaki; Koga, James K; Bulanov, Stepan S

    2011-11-01

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.

  13. Precision force sensing with optically-levitated nanospheres

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew

    2017-04-01

    In high vacuum, optically-trapped dielectric nanospheres achieve excellent decoupling from their environment and experience minimal friction, making them ideal for precision force sensing. We have shown that 300 nm silica spheres can be used for calibrated zeptonewton force measurements in a standing-wave optical trap. In this optical potential, the known spacing of the standing wave anti-nodes can serve as an independent calibration tool for the displacement spectrum of the trapped particle. I will describe our progress towards using these sensors for tests of the Newtonian gravitational inverse square law at micron length scales. Optically levitated dielectric objects also show promise for a variety of other precision sensing applications, including searches for gravitational waves and other experiments in quantum optomechanics. National Science Foundation PHY-1205994, PHY-1506431, PHY-1509176.

  14. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki

    2011-11-15

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to themore » nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.« less

  15. Wave-Current Conditions and Navigation Safety at an Inlet Entrance

    DTIC Science & Technology

    2015-06-26

    effects of physical processes. Wave simulations with refraction, shoaling, and breaking provide estimates of wave-related parameters of interest to...summer and winter months and to better understand the cause- effect relationship between navigability conditions at Tillamook Inlet and characteristics of...the Coriolis force, wind stress, wave stress, bottom stress, vegetation flow drag, bottom friction, wave roller, and turbulent diffusion. Governing

  16. Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate.

    PubMed

    Mordant, Nicolas; Miquel, Benjamin

    2017-10-01

    We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.

  17. Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate

    NASA Astrophysics Data System (ADS)

    Mordant, Nicolas; Miquel, Benjamin

    2017-10-01

    We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.

  18. Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure.

    PubMed

    Hu, Zhan; Yao, Peng; van der Wal, Daphne; Bouma, Tjeerd J

    2017-08-02

    Short-term bed-level dynamics has been identified as one of the main factors affecting biota establishment or retreat on tidal flats. However, due to a lack of proper instruments and intensive labour involved, the pattern and drivers of daily bed-level dynamics are largely unexplored in a spatiotemporal context. In this study, 12 newly-developed automatic bed-level sensors were deployed for nearly 15 months on two tidal flats with contrasting wave exposure, proving an unique dataset of daily bed-level changes and hydrodynamic forcing. By analysing the data, we show that (1) a general steepening trend exists on both tidal flats, even with contrasting wave exposure and different bed sediment grain size; (2) daily morphodynamics level increases towards the sea; (3) tidal forcing sets the general morphological evolution pattern at both sites; (4) wave forcing induces short-term bed-level fluctuations at the wave-exposed site, but similar effect is not seen at the sheltered site with smaller waves; (5) storms provoke aggravated erosion, but the impact is conditioned by tidal levels. This study provides insights in the pattern and drivers of daily intertidal bed-level dynamics, thereby setting a template for future high-resolution field monitoring programmes and inviting in-depth morphodynamic modelling for improved understanding and predictive capability.

  19. Dynamics of Internal Tides Over a Shallow Ridge Investigated With a High-Resolution Downscaling Regional Ocean Model

    NASA Astrophysics Data System (ADS)

    Masunaga, Eiji; Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu

    2018-04-01

    This study investigates the dynamics of tidally induced internal waves over a shallow ridge, the Izu-Ogasawara Ridge off the Japanese mainland, using a downscaled high-resolution regional ocean numerical model. Both the Kuroshio and tides contribute to the field of currents in the study area. The model results show strong internal tidal energy fluxes over the ridge, exceeding 3.5 kW m-1, which are higher than the fluxes along the Japanese mainland. The flux in the upstream side of the Kuroshio is enhanced by an interaction of internal waves and currents. The tidal forcing induces 92% of the total internal wave energy flux, exhibiting the considerable dominance of tides in internal waves. The tidal forcing enhances the kinetic energy, particularly in the northern area of the ridge where the Kuroshio Current is not a direct influence. The tidal forcing contributes to roughly 30% of the total kinetic energy in the study area.

  20. A numerical study of nonlinear waves in a transcritical flow of stratified fluid past an obstacle

    NASA Astrophysics Data System (ADS)

    Hanazaki, Hideshi

    1992-10-01

    A numerical study of the flow of stratified fluid past an obstacle in a horizontal channel is described. Upstream advancing of waves near critically (resonance) appears in the case of ordinary two-layer flow, in which case the flow is described well by the solution of the forced extended Korteweg-de Vries (KdV) equation which has a cubic nonlinear term. It is shown theoretically that the upstream waves in the general two-layer flow cannot be well described by the forced KdV equation except when the wave amplitude is very small. The critical-level flow is also governed by the forced extended KdV equation. However, because of the smallness of the coefficient of the quadratic nonlinear term, the bore cannot propagate upstream at exact resonance. The results for the linearly stratified Boussinesq flow show good agreement with the solution of the Grimshaw and Yi (1991) equation, at least for exact resonance.

  1. The forced sound transmission of finite single leaf walls using a variational technique.

    PubMed

    Brunskog, Jonas

    2012-09-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.

  2. Second order kinetic theory of parallel momentum transport in collisionless drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang, E-mail: lyang13@mails.tsinghua.edu.cn; Southwestern Institute of Physics, Chengdu 610041; Gao, Zhe

    A second order kinetic model for turbulent ion parallel momentum transport is presented. A new nonresonant second order parallel momentum flux term is calculated. The resonant component of the ion parallel electrostatic force is the momentum source, while the nonresonant component of the ion parallel electrostatic force compensates for that of the nonresonant second order parallel momentum flux. The resonant component of the kinetic momentum flux can be divided into three parts, including the pinch term, the diffusive term, and the residual stress. By reassembling the pinch term and the residual stress, the residual stress can be considered as amore » pinch term of parallel wave-particle resonant velocity, and, therefore, may be called as “resonant velocity pinch” term. Considering the resonant component of the ion parallel electrostatic force is the transfer rate between resonant ions and waves (or, equivalently, nonresonant ions), a conservation equation of the parallel momentum of resonant ions and waves is obtained.« less

  3. Near-resonant excitation and propagation of eccentric density waves by external forcing. [in accretion disks

    NASA Technical Reports Server (NTRS)

    Ostriker, Eve C.; Shu, Frank H.; Adams, Fred C.

    1992-01-01

    An overview is presented of the astronomical evidence that relatively massive, distended, gaseous disks form as a natural by-product of the process of star formation, and also the numerical evidence that SLING-amplified eccentric modes in the outer parts of such disks can drive one-armed spiral density waves in the inner parts by near-resonant excitation and propagation. An ordinary differential equation (ODE) of the second order that approximately governs the nonlocalized forcing of waves in a disk satisfying Lindblad resonance almost everywhere is derived. When transformed and appended with an extra model term, this ODE implies, for free waves, the usual asymptotic results of the WKBJ dispersion relationship and the propagation Goldreich-Tremaine (1978) formula for the resonant torque exerted on a localized Lindblad resonance. An analytical solution is given for the rate of energy and angular momentum transfer by nonlocalized near-resonant forcing in the case when the disk has power-law dependences on the radius of the surface density and temperature.

  4. Calibration and Validation of Inertial Measurement Unit for Wave Resolving Drifters

    DTIC Science & Technology

    2013-12-01

    wave field just described experiences accelerations due to both the wave induced pressure variations and the force of gravity. The gravitational ...with the vertical component also containing the gravitational acceleration constant (i.e., 9.81m/s2). B. SURFACE WAVE ORBITAL MOTION SIMULATOR...18 C. ACCELERATION TO DISPLACEMENT .................................................19 IV

  5. Three-dimensional Crack Depth Profile Assessment using Near-Field Surface Acoustic Wave Signal Response (Postprint)

    DTIC Science & Technology

    2012-02-01

    release; distribution unlimited. See additional restrictions described on inside pages STINFO COPY AIR FORCE RESEARCH...LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE...AFRL/RXLP) Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson Air Force Base, OH 45433-7750 Air Force

  6. Nonlinear Acoustic Propagation into the Seafloor

    NASA Astrophysics Data System (ADS)

    McDonald, B. Edward

    2006-05-01

    Explosions near the seafloor result in shock waves entering a much more complicated medium than water or air. Nonlinearities may be increased by two processes inherent to granular media: (1) a poroelastic nonlinearity comparable to the addition of bubbles to water, and (2) the Hertz force resulting from elastic deformation of grains, proportional to the Youngs modulus of the grains times the strain rate to the power 3/2. These two types of nonlinearity for shock propagation into the seafloor are investigated using a variant of the NPE model. The traditional Taylor series expansion of the equation of state (pressure as a function of density) is not appropriate to the Hertz force in the limit of small strain. We present a simple nonlinear wave equation model for compressional waves in marine sediments that retains the Hertz force explicitly with overdensity to the power 3/2. Numerical results for shock propagation are compared with similarity solutions for quadratic nonlinearity and for the fractional nonlinearity of the Hertz force.

  7. Equivalence of expressions for the radiation force on cylinders and application to elliptical cylinders

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Marston, Philip L.

    2005-09-01

    Using an appropriate grouping of terms, a radiation force expression for cylinders in a standing wave based on far-field scattering [W. Wei, D. B. Thiessen, and P. L. Marston, J. Acoust. Soc. Am. 116, 202-208 (2004)] is transformed to an expression given elsewhere [F. G. Mitri, Eur. Phys. J. B 44, 71-78 (2005)]. Mitri's result is from a near-field derivation for the specific case of a circular cylinder. In the usual case, in an ideal lossless media the far-field derivation is not an approximation. The far-field derivation also applies to noncircular objects having mirror symmetry about the incident wave vector. Some general and historical aspects of far-field derivations of optical and acoustical radiation force (going back to 1909) will be noted. Our formulation yields a simple low-frequency approximation for the radiation force on elliptical cylinders by introducing approximations for the partial-wave scattering coefficients of elliptical cylinders first derived by Rayleigh. [Work supported by NASA.

  8. Long-wave radiative forcing due to desert dust

    NASA Astrophysics Data System (ADS)

    Gunn, L. N.; Collins, W.

    2011-12-01

    Radiative forcing due to aerosols has been identified by the IPCC as a major contributor to the total radiative forcing uncertainty budget. Optically thick plumes of dust and pollutants extending out from Africa and Asia can be lifted into the middle troposphere and often are transported over synoptic length scales. These events can decrease the upwelling long-wave fluxes at the top of the atmosphere, especially in the mid-infrared "window". Although the long-wave effects of dust are included in model simulations, they are hard to validate in the absence of satellite-driven global estimates. Using hyper spectral satellite measurements (from NASA's AIRS instrument) it is possible to estimate the effect of dust on the outgoing long-wave radiation directly from the measured spectra, by differencing the simulated clear sky radiance spectra (which are calculated using ECMWF analysis) and the observed dust filled radiance spectra (observations from AIRS). We will summarize this method and show global estimates of the dust radiative effect in the long-wave. These global estimates will be used to validate GCM model output and help us to improve our understanding of dust in the global energy budget.

  9. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less

  10. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less

  11. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    NASA Astrophysics Data System (ADS)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO). Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from Garcez Faria et al. (1998, 2000). Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).

  12. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits.

    PubMed

    Heuner, Maike; Silinski, Alexandra; Schoelynck, Jonas; Bouma, Tjeerd J; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species--known as ecosystem engineers--are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced.

  13. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits

    PubMed Central

    Schoelynck, Jonas; Bouma, Tjeerd J.; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species—known as ecosystem engineers—are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced. PMID:26367004

  14. Modelling wave-induced sea ice break-up in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Montiel, F.; Squire, V. A.

    2017-10-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.

  15. Modelling wave-induced sea ice break-up in the marginal ice zone

    PubMed Central

    Squire, V. A.

    2017-01-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ. PMID:29118659

  16. Modelling wave-induced sea ice break-up in the marginal ice zone.

    PubMed

    Montiel, F; Squire, V A

    2017-10-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.

  17. Shear wave elastography with a new reliability indicator.

    PubMed

    Dietrich, Christoph F; Dong, Yi

    2016-09-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.

  18. Shear wave elastography with a new reliability indicator

    PubMed Central

    Dong, Yi

    2016-01-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies. PMID:27679731

  19. Hydrodynamic force characteristics in the splash zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daliri, M.R.; Haritos, N.

    1996-12-31

    A comprehensive experimental study concerned with the hydrodynamic force characteristics of both rigid and compliant surface piercing cylinders, with a major focus on the local nature of these characteristics as realized in the splash zone and in the fully submerged zone immediately below this region, has been in progress at the University of Melbourne for the last three years. This paper concentrates on a portion of this study associated with uni-directional regular wave inputs with wave steepness (H/{lambda}) in the range 0.0005--0.1580 and Keulegan-Carpenter (KC) numbers in the range 2--15 which encompasses inertia force dominant (KC<5) to drag force significantmore » conditions (5« less

  20. Effect of dispersion forces on the capillary-wave fluctuations of liquid surfaces.

    PubMed

    Chacón, Enrique; Fernández, Eva M; Tarazona, Pedro

    2014-04-01

    We present molecular dynamics evidence for the nonanalytic effects of the long-range dispersion forces on the capillary waves fluctuations of a Lennard-Jones liquid surface. The results of the intrinsic sampling method, for the analysis of the instantaneous interfacial shape, are obtained in large systems for several cut-off distances of the potential tail, and they show good agreement with the theoretical prediction by Napiórkowski and Dietrich, based on a density functional analysis. The enhancement of the capillary waves is quantified to be within 1% for a simple liquid near its triple point.

  1. Wave drag on floating bodies

    PubMed Central

    Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Élie; Chevy, Frédéric

    2011-01-01

    We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary. PMID:21876186

  2. Radiation force on a single atom in a cavity

    NASA Technical Reports Server (NTRS)

    Kim, M. S.

    1992-01-01

    We consider the radiation pressure microscopically. Two perfectly conducting plates are parallelly placed in a vacuum. As the vacuum field hits the plates they get pressure from the vacuum. The excessive outside modes of the vacuum field push the plates together, which is known as the Casimer force. We investigate the quantization of the standing wave between the plates to study the interaction between this wave and the atoms on the plates or between the plates. We show that even the vacuum field pushes the atom to place it at nodes of the standing wave.

  3. The Role of the Indian Ocean Sector for Prediction of the Coupled Indo-Pacific System: Impact of Atmospheric Coupling

    NASA Technical Reports Server (NTRS)

    Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.

    2017-01-01

    Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30 deg. S to 10 deg. S and 0 deg. N to 25 deg. N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.

  4. The role of the Indian Ocean sector for prediction of the coupled Indo-Pacific system: Impact of atmospheric coupling

    NASA Astrophysics Data System (ADS)

    Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.

    2017-04-01

    Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30°S-10°S and 0°N-25°N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.

  5. Traveling waves in a spring-block chain sliding down a slope

    NASA Astrophysics Data System (ADS)

    Morales, J. E.; James, G.; Tonnelier, A.

    2017-07-01

    Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.

  6. An Investigation of the Influence of Waves on Sediment Processes in Skagit Bay

    DTIC Science & Technology

    2012-09-30

    parameterizations common to most surface wave models, including wave generation by wind , energy dissipation from whitecapping, and quadruplet wave-wave...supply and wind on tidal flat sediment transport. It will be used to evaluate the capabilities of state-of-the-art open source sediment models and to...N00014-08-1-1115 which supported the hydrodynamic model development. Wind forcing for the wave and hydrodynamic models for realistic experiments will

  7. Traveling waves in a spring-block chain sliding down a slope.

    PubMed

    Morales, J E; James, G; Tonnelier, A

    2017-07-01

    Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.

  8. Waves in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2016-09-01

    Impact of the pulsed braking force on the axial gas circulation and gas content in centrifuges for uranium isotope separation was investigated by the method of numerical simulation. Pulsed brake of the rotating gas by the momentum source results into generation of the waves which propagate along the rotor of the centrifuge. The waves almost doubles the axial circulation flux in the working camera in compare with the case of the steady state breaking force with the same average power in the model under the consideration. Flux through the hole in the bottom baffle on 15% exceeds the flux in the stationary case for the same pressure and temperature in the model. We argue that the waves reduce the pressure in the GC on the same 15%.

  9. Wave propagation characteristics of a magnetic granular chain

    NASA Astrophysics Data System (ADS)

    Leng, Dingxin; Liu, Guijie; Sun, Lingyu; Wang, Xiaojie

    2017-10-01

    We investigate the wave propagation characteristics of a horizontal alignment of magnetic grains under a non-uniform magnetic field. The magnetic force of each grain is obtained using Maxwell's principle. The contact interaction of grains is based on Hertz potential. The effects of magnetic field strength on the dynamic responses of a granular chain under strong, intermediate, and weak amplitudes of incident impulses in comparison with static precompression force are studied. Different wave propagation modes induced by the magnetic field are observed. The applied field strength demonstrably reinforces the granular-position-dependent behaviors of decreasing amplitude and increasing wave propagation velocity. The magnetic field-induced features of a magnetic granular chain have potential applications in adaptive structures for shock attenuation.

  10. The measurement of shock waves following heel strike while running.

    PubMed

    Dickinson, J A; Cook, S D; Leinhardt, T M

    1985-01-01

    A non-invasive method for demonstrating the shock wave which propagates through the skeletal system following heel strike is described. This wave was not seen in force plate studies where adequate shock absorption was provided by running shoes. In the present study six subjects ran across a force plate without shoes before and after they were fatigued on a treadmill to demonstrate possible changes in the heel strike transient. Most of the parameters measured were not altered by fatigue, and a relationship between the shock wave and height, but not the weight of the runner was demonstrated. The different mechanisms leading to this phenomenon, and its implication in the areas of osteoarthritic degeneration and running mechanics are discussed.

  11. Atmospheric waves on Venus as seen by the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Häusler, B.; Hinson, D. P.; Tyler, G. L.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.

    2013-09-01

    Next to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves and turbulence play a significant role in the development and maintenance of atmospheric super rotation.

  12. The effect of aerosols on northern hemisphere wintertime stationary waves

    NASA Astrophysics Data System (ADS)

    Lewinschal, Anna; Ekman, Annica M. L.

    2010-05-01

    Aerosol particles have a considerable impact on the energy budget of the atmosphere because of their ability to scatter and absorb incoming solar radiation. Since the beginning of the industrialisation a large increase has been seen mainly in the concentrations of sulphate and black carbon as a result of combustion of fossil fuel and biomass burning. Aerosol particles have a relatively short residence time in the atmosphere why the aerosol concentration shows a large variation spatially as well as in time where high concentrations are found close to emission sources. This leads to a highly varying radiative forcing pattern which modifies temperature gradients which in turn can alter the pressure distribution and lead to changes in the circulation in the atmosphere. In this study, the effect on the wintertime planetary scale waves on the northern hemisphere is specifically considered together with the regional climate impact due to changes in the stationary waves. To investigate the effect of aerosols on the circulation a global general circulation model based on the ECMWF operational forecast model is used (EC-Earth). The aerosol description in EC-Earth consists of prescribed monthly mean mass concentration fields of five different types of aerosols: sulphate, black carbon, organic carbon, dust and sea salt. Only the direct radiative effect is considered and the different aerosol types are treated as external mixtures. Changes in the stationary wave pattern are determined by comparing model simulations using present-day and pre-industrial concentrations of aerosol particles. Since the planetary scale waves largely influence the storm tracks and are an important part of the meridional heat transport, changes in the wave pattern may have substantial impact on the climate globally and locally. By looking at changes in the model simulations globally it can be found that the aerosol radiative forcing has the potential to change the stationary wave pattern. Furthermore, it shows that regional changes in the climate occur also where the radiative forcing from aerosol particles is not particularly strong, which would indicate that the large scale dynamical response to aerosol forcing can induce changes in temperature, precipitation and wind patterns outside the region where the forcing is initially located.

  13. Critical Points and Traveling Wave in Locomotion: Experimental Evidence and Some Theoretical Considerations.

    PubMed

    Saltiel, Philippe; d'Avella, Andrea; Tresch, Matthew C; Wyler, Kuno; Bizzi, Emilio

    2017-01-01

    The central pattern generator (CPG) architecture for rhythm generation remains partly elusive. We compare cat and frog locomotion results, where the component unrelated to pattern formation appears as a temporal grid, and traveling wave respectively. Frog spinal cord microstimulation with N-methyl-D-Aspartate (NMDA), a CPG activator, produced a limited set of force directions, sometimes tonic, but more often alternating between directions similar to the tonic forces. The tonic forces were topographically organized, and sites evoking rhythms with different force subsets were located close to the constituent tonic force regions. Thus CPGs consist of topographically organized modules. Modularity was also identified as a limited set of muscle synergies whose combinations reconstructed the EMGs. The cat CPG was investigated using proprioceptive inputs during fictive locomotion. Critical points identified both as abrupt transitions in the effect of phasic perturbations, and burst shape transitions, had biomechanical correlates in intact locomotion. During tonic proprioceptive perturbations, discrete shifts between these critical points explained the burst durations changes, and amplitude changes occurred at one of these points. Besides confirming CPG modularity, these results suggest a fixed temporal grid of anchoring points, to shift modules onsets and offsets. Frog locomotion, reconstructed with the NMDA synergies, showed a partially overlapping synergy activation sequence. Using the early synergy output evoked by NMDA at different spinal sites, revealed a rostrocaudal topographic organization, where each synergy is preferentially evoked from a few, albeit overlapping, cord regions. Comparing the locomotor synergy sequence with this topography suggests that a rostrocaudal traveling wave would activate the synergies in the proper sequence for locomotion. This output was reproduced in a two-layer model using this topography and a traveling wave. Together our results suggest two CPG components: modules, i.e., synergies; and temporal patterning, seen as a temporal grid in the cat, and a traveling wave in the frog. Animal and limb navigation have similarities. Research relating grid cells to the theta rhythm and on segmentation during navigation may relate to our temporal grid and traveling wave results. Winfree's mathematical work, combining critical phases and a traveling wave, also appears important. We conclude suggesting tracing, and imaging experiments to investigate our CPG model.

  14. Investigating gravity waves evidences in the Venus upper atmosphere

    NASA Astrophysics Data System (ADS)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide

    2014-05-01

    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  15. Tidally influenced alongshore circulation at an inlet-adjacent shoreline

    USGS Publications Warehouse

    Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.

    2013-01-01

    The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.

  16. Effects of wind waves versus ship waves on tidal marsh plants: a flume study on different life stages of Scirpus maritimus.

    PubMed

    Silinski, Alexandra; Heuner, Maike; Schoelynck, Jonas; Puijalon, Sara; Schröder, Uwe; Fuchs, Elmar; Troch, Peter; Bouma, Tjeerd J; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival.

  17. Effects of Wind Waves versus Ship Waves on Tidal Marsh Plants: A Flume Study on Different Life Stages of Scirpus maritimus

    PubMed Central

    Schoelynck, Jonas; Puijalon, Sara; Schröder, Uwe; Fuchs, Elmar; Troch, Peter; Bouma, Tjeerd J.; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival. PMID:25799017

  18. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    USGS Publications Warehouse

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).

  19. An exploration in acoustic radiation force experienced by cylindrical shells via resonance scattering theory.

    PubMed

    Rajabi, Majid; Behzad, Mehdi

    2014-04-01

    In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Modelling the descent of nitric oxide during the elevated stratopause event of January 2013

    NASA Astrophysics Data System (ADS)

    Orsolini, Yvan J.; Limpasuvan, Varavut; Pérot, Kristell; Espy, Patrick; Hibbins, Robert; Lossow, Stefan; Raaholt Larsson, Katarina; Murtagh, Donal

    2017-03-01

    Using simulations with a whole-atmosphere chemistry-climate model nudged by meteorological analyses, global satellite observations of nitrogen oxide (NO) and water vapour by the Sub-Millimetre Radiometer instrument (SMR), of temperature by the Microwave Limb Sounder (MLS), as well as local radar observations, this study examines the recent major stratospheric sudden warming accompanied by an elevated stratopause event (ESE) that occurred in January 2013. We examine dynamical processes during the ESE, including the role of planetary wave, gravity wave and tidal forcing on the initiation of the descent in the mesosphere-lower thermosphere (MLT) and its continuation throughout the mesosphere and stratosphere, as well as the impact of model eddy diffusion. We analyse the transport of NO and find the model underestimates the large descent of NO compared to SMR observations. We demonstrate that the discrepancy arises abruptly in the MLT region at a time when the resolved wave forcing and the planetary wave activity increase, just before the elevated stratopause reforms. The discrepancy persists despite doubling the model eddy diffusion. While the simulations reproduce an enhancement of the semi-diurnal tide following the onset of the 2013 SSW, corroborating new meteor radar observations at high northern latitudes over Trondheim (63.4°N), the modelled tidal contribution to the forcing of the mean meridional circulation and to the descent is a small portion of the resolved wave forcing, and lags it by about ten days.

  1. Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea

    NASA Astrophysics Data System (ADS)

    Cardona, Yuley; Bracco, Annalisa

    The South China Sea is a marginal basin with a complex circulation influenced by the East Asian Monsoon, river discharge and intricate bathymetry. As a result, both the mesoscale eddy field and the near-inertial energy distribution display large spatial variability and they strongly influence the oceanic transport and mixing. With an ensemble of numerical integrations using a regional ocean model, this work investigates how the temporal resolution of the atmospheric forcing fields modifies the horizontal and vertical velocity patterns and impacts the transport properties in the basin. The response of the mesoscale circulation in the South China Sea is investigated under three different forcing conditions: monthly, daily and 6-hourly momentum and heat fluxes. While the horizontal circulation does not display significant differences, the representation of the vertical velocity field displays high sensitivity to the frequency of the wind forcing. If the wind field contains energy at the inertial frequency or higher (daily and 6-hourly cases), then submesoscale fronts, vortex Rossby waves and near inertial waves are excited as ageostrophic expression of the vigorous eddy field. Those quasi- and near-inertial waves dominate the vertical velocity field in the mixed layer (vortex Rossby waves) and below the first hundred meters (near inertial waves) and they are responsible for the differences in the vertical transport properties under the various forcing fields as quantified by frequency spectra, vertical velocity profiles and vertical dispersion of Lagrangian tracers.

  2. Identification of impact force acting on composite laminated plates using the radiated sound measured with microphones

    NASA Astrophysics Data System (ADS)

    Atobe, Satoshi; Nonami, Shunsuke; Hu, Ning; Fukunaga, Hisao

    2017-09-01

    Foreign object impact events are serious threats to composite laminates because impact damage leads to significant degradation of the mechanical properties of the structure. Identification of the location and force history of the impact that was applied to the structure can provide useful information for assessing the structural integrity. This study proposes a method for identifying impact forces acting on CFRP (carbon fiber reinforced plastic) laminated plates on the basis of the sound radiated from the impacted structure. Identification of the impact location and force history is performed using the sound pressure measured with microphones. To devise a method for identifying the impact location from the difference in the arrival times of the sound wave detected with the microphones, the propagation path of the sound wave from the impacted point to the sensor is examined. For the identification of the force history, an experimentally constructed transfer matrix is employed to relate the force history to the corresponding sound pressure. To verify the validity of the proposed method, impact tests are conducted by using a CFRP cross-ply laminate as the specimen, and an impulse hammer as the impactor. The experimental results confirm the validity of the present method for identifying the impact location from the arrival time of the sound wave detected with the microphones. Moreover, the results of force history identification show the feasibility of identifying the force history accurately from the measured sound pressure using the experimental transfer matrix.

  3. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; Vainchtein, A.; Rubin, J. E.

    2016-06-01

    Motivated by earlier studies of artificial perceptions of light called phosphenes, we analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolution and stability of planar fronts. Our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.

  4. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    DOE PAGES

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; ...

    2016-02-27

    Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less

  5. Radiative amplification of sound waves in the winds of O and B stars

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.; Hartmann, L.; Raymond, J. C.

    1979-01-01

    The velocity perturbation associated with an outwardly propagating sound wave in a radiation-driven stellar wind gives rise to a periodic Doppler shifting of absorption lines formed in the flow. A linearized theory applicable to optically thin waves is used to show that the resulting fluctuation in the absorption-line force can cause the wave amplitude to grow. Detailed calculations of the acceleration due to a large number of lines indicate that significant amplification can occur throughout the high-velocity portion of winds in which the dominant force-producing lines have appreciable optical depths. In the particular case of the wind of Zeta Pup (O4f), it is found that the e-folding distance for wave growth is considerably shorter than the scale lengths over which the physical properties of the flow vary. A qualitative estimate of the rate at which mechanical energy due to nonlinear waves can be dissipated suggests that this mechanism may be important in heating the supersonic portion of winds of early-type stars.

  6. Computational process to study the wave propagation In a non-linear medium by quasi- linearization

    NASA Astrophysics Data System (ADS)

    Sharath Babu, K.; Venkata Brammam, J.; Baby Rani, CH

    2018-03-01

    Two objects having distinct velocities come into contact an impact can occur. The impact study i.e., in the displacement of the objects after the impact, the impact force is function of time‘t’ which is behaves similar to compression force. The impact tenure is very short so impulses must be generated subsequently high stresses are generated. In this work we are examined the wave propagation inside the object after collision and measured the object non-linear behavior in the one-dimensional case. Wave transmission is studied by means of material acoustic parameter value. The objective of this paper is to present a computational study of propagating pulsation and harmonic waves in nonlinear media using quasi-linearization and subsequently utilized the central difference scheme. This study gives focus on longitudinal, one- dimensional wave propagation. In the finite difference scheme Non-linear system is reduced to a linear system by applying quasi-linearization method. The computed results exhibit good agreement on par with the selected non-liner wave propagation.

  7. A projection-based model reduction strategy for the wave and vibration analysis of rotating periodic structures

    NASA Astrophysics Data System (ADS)

    Beli, D.; Mencik, J.-M.; Silva, P. B.; Arruda, J. R. F.

    2018-05-01

    The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.

  8. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.

    Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less

  9. Two Long-Wave Infrared Spectral Polarimeters for Use in Understanding Polarization Phenomenology

    DTIC Science & Technology

    2002-05-01

    3550 Aberdeen SE Kirtland Air Force Base, New Mexico 87117 Abstract. Spectrally varying long-wave infrared ( LWIR ) polarization measurements can be used...to identify materials and to discriminate samples from a cluttered background. Two LWIR instruments have been built and fielded by the Air Force...Research Laboratory: a multispectral LWIR imaging polarimeter (LIP) and a full-Stokes Fourier transform in- frared (FTIR) spectral polarimeter (FSP

  10. Recent Naval Postgraduate School Publications.

    DTIC Science & Technology

    1985-09-30

    of the performance of a new storm tracking methodology Prepared for Naval Environmental Prediction Res. Facility Monterey, Calif., Naval Postgraduate...Aerospace Sci. Mtg., Jr’., 1983. Sarpkaya, T; Storm , M A ydrodynamic forces from combined wave and current flow on smooth and rough circular cylinders...Houston, Tx., May, 1982. IN Proc 1982 Offshore Technol. Conf., vol. 1, p.731-736, (1982). Sarpkaya, T; Storm , M A ydrodynamic forces from combined wave

  11. Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation

    NASA Astrophysics Data System (ADS)

    Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.

    2013-12-01

    Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.

  12. Surface plasmon oscillations in a semi-bounded semiconductor plasma

    NASA Astrophysics Data System (ADS)

    M, SHAHMANSOURI; A, P. MISRA

    2018-02-01

    We study the dispersion properties of surface plasmon (SP) oscillations in a semi-bounded semiconductor plasma with the effects of the Coulomb exchange (CE) force associated with the spin polarization of electrons and holes as well as the effects of the Fermi degenerate pressure and the quantum Bohm potential. Starting from a quantum hydrodynamic model coupled to the Poisson equation, we derive the general dispersion relation for surface plasma waves. Previous results in this context are recovered. The dispersion properties of the surface waves are analyzed in some particular cases of interest and the relative influence of the quantum forces on these waves are also studied for a nano-sized GaAs semiconductor plasma. It is found that the CE effects significantly modify the behaviors of the SP waves. The present results are applicable to understand the propagation characteristics of surface waves in solid density plasmas.

  13. Oscillation of a polymer gel entrained with a periodic force.

    PubMed

    Shiota, Takaya; Ikura, Yumihiko S; Nakata, Satoshi

    2013-02-21

    The oscillation of a polymer gel induced by the Belousov-Zhabotinsky (BZ) reaction was investigated under an external force composed of a square wave. The oscillation of the BZ reaction entrained to the periodic force and the features of this entrainment changed depending on the period and duty cycle of the square wave. The experimental results suggest that the change in the volume of the gel also gave feedback to the BZ reaction. The mechanism of entrainment is discussed in relation to the compression of the gel and the reaction-diffusion system in the BZ reaction.

  14. Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.

    2007-01-01

    A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.

  15. Modeling the effects of UV variability and the QBO on the troposphere-stratosphere system. Part I: The middle atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, N.K.; Rind, D.

    1995-08-01

    Results of experiments with a GCM involving changes in UV input ({plus_minus}25%, {plus_minus}10%, {plus_minus}5% at wavelengths below 0.3 {mu}m) and simulated equatorial QBO are presented, with emphasis on the middle atmosphere response. The UV forcing employed is larger than observed during the last solar cycle and does not vary with wavelength, hence the relationship of these results to those from actual solar UV forcing should be treated with caution. The QBO alters the location of the zero wind line and the horizontal shear of the zonal wind in the low to middle stratosphere, while the UV change alters the magnitudemore » of the polar jet and the vertical shear of the zonal wind. Both mechanisms thus affect planetary wave propagation. The east phase of the QBO leads to tropical cooling and high-latitude warming in the lower stratosphere, with opposite effects in the upper stratosphere. This quadrupole pattern is also seen in the observations. The high-latitude responses are due to altered planetary wave effects, while the model`s tropical response in the upper stratosphere is due to gravity wave drag. Increased UV forcing warms tropical latitudes in the middle atmosphere, resulting in stronger extratropical west winds, an effect which peaks in the upper stratosphere/lower mesosphere with the more extreme UV forcing but at lower altitudes and smaller wind variations with the more realistic forcing. The increased vertical gradient of the zonal wind leads to increased vertical propagation of planetary waves, altering energy convergences and temperatures. The exact altitudes affected depend upon the UV forcing applied. Results with combined QBO and UV forcing show that in the Northern Hemisphere, polar warming for the east QBO is stronger when the UV input is reduced by 25% and 5% as increased wave propagation to high latitudes (east QBO effect) is prevented from then propagating vertically (reduced UV effect). 30 refs., 14 figs., 6 tabs.« less

  16. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder

    NASA Astrophysics Data System (ADS)

    Liang, Shen; Chaohui, Wang

    2018-03-01

    In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.

  17. Solitary waves in the nonlinear Dirac equation in the presence of external driving forces

    DOE PAGES

    Mertens, Franz G.; Cooper, Fred; Quintero, Niurka R.; ...

    2016-01-05

    In this paper, we consider the nonlinear Dirac (NLD) equation in (1 + 1) dimensions with scalar–scalar self interaction g 2/κ + 1 (Ψ¯Ψ) κ + 1 in the presence of external forces as well as damping of the form f(x) - iμγ 0Ψ, where both f and Ψ are two-component spinors. We develop an approximate variational approach using collective coordinates (CC) for studying the time dependent response of the solitary waves to these external forces. This approach predicts intrinsic oscillations of the solitary waves, i.e. the amplitude, width and phase all oscillate with the same frequency. The translational motionmore » is also affected, because the soliton position oscillates around a mean trajectory. For κ = 1 we solve explicitly the CC equations of the variational approximation for slow moving solitary waves in a constant external force without damping and find reasonable agreement with solving numerically the CC equations. Finally, we then compare the results of the variational approximation with no damping with numerical simulations of the NLD equation for κ = 1, when the components of the external force are of the form f j = r j exp(–iΚx) and again find agreement if we take into account a certain linear excitation with specific wavenumber that is excited together with the intrinsic oscillations such that the momentum in a transformed NLD equation is conserved.« less

  18. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-07-01

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  19. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambroziński, Łukasz; AGH University of Science and Technology, Krakow 30059; Pelivanov, Ivan, E-mail: ivanp3@uw.edu

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking softmore » biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.« less

  20. A three-dimensional simulation of the equatorial quasi-biennial oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, M.; Boville, B.A.

    1992-06-15

    A simulation of the equatorial quasi-biennial oscillation (QBO) has been obtained using a three-dimensional mechanistic model of the stratosphere. The model is a simplified form of the NCAR CCM (Community Climate Model) in which the troposphere has been replaced with a specified geopotential distribution near the tropical tropopause and most of the physical parameterizations have been removed. A Kelvin wave and a Rossby-gravity wave are forced at the bottom boundary as in previous one- and two-dimensional models. The model reproduces most of the principal features of the observed QBO, as do previous models with lower dimensionality. The principal difference betweenmore » the present model and previous QBO models is that the wave propagation is explicitly represented, allowing wave-wave interactions to take place. It is found that these interactions significantly affect the simulated oscillation. The interaction of the Rossby-gravity waves with the Kelvin waves results in about twice as much easterly compared to westerly forcing being required in order to obtain a QBO. 26 refs., 12 figs.« less

  1. Spatiotemporally Resolved Acoustics in a Photoelastic Granular Material

    NASA Astrophysics Data System (ADS)

    Owens, Eli; Daniels, Karen

    2010-03-01

    In granular materials, stress transmission is manifested as force chains that propagate through the material in a branching structure. We send acoustic pulses into a two dimensional photoelastic granular material in which force chains are visible and investigate how the force chains influence the amplitude, speed, and dispersion of the sound waves. We observe particle scale dynamics using two methods, movies which provide spatiotemporally resolved measurements and accelerometers within individual grains. The movies allow us to visualize the sound's path through the material, revealing that the sound travels primarily along the force chains. Using the brightness of the photoelastic particles as a measure of the force chain strength, we observe that the sound travels both faster and at higher amplitude along the strong force chains. An exception to this trend is seen in transient force chains that only exist while the sound is closing particle contacts. We also measure the frequency dependence of the amplitude, speed, and dispersion of the sound wave.

  2. Effects of contrasting wave conditions on scour and drag on pioneer tidal marsh plants

    NASA Astrophysics Data System (ADS)

    Silinski, Alexandra; Heuner, Maike; Troch, Peter; Puijalon, Sara; Bouma, Tjeerd J.; Schoelynck, Jonas; Schröder, Uwe; Fuchs, Elmar; Meire, Patrick; Temmerman, Stijn

    2016-02-01

    Tidal marshes are increasingly valued for protecting shorelines against wave impact, but waves in turn may limit the initial establishment of tidal marsh pioneer plants. In estuaries, the shorelines typically experience a wide range of wave periods, varying from short period wind waves (usually of around 1-2 s in fair weather conditions) to long ship-generated waves, with secondary waves in the order of 2-7 s and primary waves with periods that can exceed 1 min. Waves are known to create sediment scour around, as well as to exert drag forces on obstacles such as seedlings and adults of establishing pioneer plant species. In intertidal systems, these two mechanisms have been identified as main causes for limiting potential colonization of bare tidal flats. In this paper, we want to assess to which extent common quantitative formulae for predicting local scour and drag forces on rigid cylindrical obstacles are valid for the estimation of scour and drag on slightly flexible plants with contrasting morphology, and hence applicable to predict plant establishment and survival under contrasting wave conditions. This has been tested in a full-scale wave flume experiment on two pioneer species (Scirpus maritimus and Scirpus tabernaemontani) and two life stages (seedlings and adults of S. maritimus) as well as on cylindrical reference sticks, which we have put under a range of wave periods (2-10 s), intended to mimic natural wind waves (short period waves) and ship-induced waves (artificial long period waves), at three water levels (5, 20, 35 cm). Our findings suggest that at very shallow water depths (5 cm) particular hydrodynamic conditions are created that lead to drag and scour that deviate from predictions. For higher water levels (20, 35 cm) scour can be well predicted for all wave conditions by an established formula for wave-induced scour around rigid cylinders. Drag forces can be relatively well predicted after introducing experimentally derived drag coefficients that are specific for the different plant morphologies. Best predictions were found for plants with a simple near-cylindrical morphology such as S. tabernaemontani, but are less accurate for plants of more complex structure such as S. maritimus, particularly for long period waves. In conclusion, our study offers valuable insights towards predicting/modelling the conditions under which seedlings and shoots of pioneer species can establish, and elucidates that long waves are more likely to counteract successful plant establishment than natural short waves.

  3. Seismic sources

    DOEpatents

    Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

    1987-04-20

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

  4. The acoustic radiation force on a heated (or cooled) rigid sphere - Theory

    NASA Technical Reports Server (NTRS)

    Lee, C. P.; Wang, T. G.

    1984-01-01

    A finite amplitude sound wave can exert a radiation force on an object due to second-order effect of the wave field. The radiation force on a rigid small sphere (i.e., in the long wavelength limit), which has a temperature different from that of the environment, is presently studied. This investigation assumes no thermally induced convection and is relevant to material processing in the absence of gravity. Both isotropic and nonisotropic temperature profiles are considered. In this calculation, the acoustic effect and heat transfer process are essentially decoupled because of the long wavelength limit. The heat transfer information required for determining the force is contained in the parameters, which are integrals over the temperature distribution.

  5. Emerging trends in the sea state of the Beaufort and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Thomson, Jim; Fan, Yalin; Stammerjohn, Sharon; Stopa, Justin; Rogers, W. Erick; Girard-Ardhuin, Fanny; Ardhuin, Fabrice; Shen, Hayley; Perrie, Will; Shen, Hui; Ackley, Steve; Babanin, Alex; Liu, Qingxiang; Guest, Peter; Maksym, Ted; Wadhams, Peter; Fairall, Chris; Persson, Ola; Doble, Martin; Graber, Hans; Lund, Bjoern; Squire, Vernon; Gemmrich, Johannes; Lehner, Susanne; Holt, Benjamin; Meylan, Mike; Brozena, John; Bidlot, Jean-Raymond

    2016-09-01

    The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.

  6. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  7. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    PubMed

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  8. Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakeslee, Samuel Norman; Toman, William I.; Williams, Richard B.

    The California Wave Energy Test Center (CalWave) Feasibility Study project was funded over multiple phases by the Department of Energy to perform an interdisciplinary feasibility assessment to analyze the engineering, permitting, and stakeholder requirements to establish an open water, fully energetic, grid connected, wave energy test center off the coast of California for the purposes of advancing U.S. wave energy research, development, and testing capabilities. Work under this grant included wave energy resource characterization, grid impact and interconnection requirements, port infrastructure and maritime industry capability/suitability to accommodate the industry at research, demonstration and commercial scale, and macro and micro sitingmore » considerations. CalWave Phase I performed a macro-siting and down-selection process focusing on two potential test sites in California: Humboldt Bay and Vandenberg Air Force Base. This work resulted in the Vandenberg Air Force Base site being chosen as the most favorable site based on a peer reviewed criteria matrix. CalWave Phase II focused on four siting location alternatives along the Vandenberg Air Force Base coastline and culminated with a final siting down-selection. Key outcomes from this work include completion of preliminary engineering and systems integration work, a robust turnkey cost estimate, shoreside and subsea hazards assessment, storm wave analysis, lessons learned reports from several maritime disciplines, test center benchmarking as compared to existing international test sites, analysis of existing applicable environmental literature, the completion of a preliminary regulatory, permitting and licensing roadmap, robust interaction and engagement with state and federal regulatory agency personnel and local stakeholders, and the population of a Draft Federal Energy Regulatory Commission (FERC) Preliminary Application Document (PAD). Analysis of existing offshore oil and gas infrastructure was also performed to assess the potential value and re-use scenarios of offshore platform infrastructure and associated subsea power cables and shoreside substations. The CalWave project team was well balanced and was comprised of experts from industry, academia, state and federal regulatory agencies. The result of the CalWave feasibility study finds that the CalWave Test Center has the potential to provide the most viable path to commercialization for wave energy in the United States.« less

  9. The influence of the equatorial QBO on sudden stratospheric warmings

    NASA Technical Reports Server (NTRS)

    Holton, James R.; Austin, John

    1991-01-01

    A global primitive-equation model of the stratosphere and mesosphere is integrated for specified planetary-wave forcing at the 100-mb level with mean zonal flow conditions corresponding to the westerly and easterly phases of the equatorial QBO, respectively. The responses in the two QBO phases were compared for integrations with wavenumber-1 forcing-amplitude maxima at 100 mb and 60 deg N varying from 100 to 400 m. The phase of the QBO had little effect on the results in the weak-wave (100-m) cases, which did not produce warmings, and strong-wave (400-m) cases, which produced major sudden warmings.

  10. Low Frequency Ocean Ambient Noise: Measurements and Theory,

    DTIC Science & Technology

    1987-12-14

    entrained gas bubbles which result from wave breaking and which are forced by intense velocity of the gravity-capil- lary waves. For wind speeds with a...ternal force acting on the volume and has a dipole character. These two terms could be important in the incorporation of entrained bubble oscil- lation and...Applied Research Lab, Penn. State Univ., State College, PA 16804 Mellen, R.H., 1987: private communication. Minnaert, M., 1933: ’ Musical Air-Bubbles

  11. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE PAGES

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  12. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Fisch, N. J.

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  13. Radiative-photochemical response of the mesosphere to dynamical forcing

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.

    1981-01-01

    Combination of the chemical continuity equation for odd oxygen with the second law of thermodynamics yields analytic solutions which describe the coupled behavior of temperature and ozone perturbations in response to an externally specified forcing. The results appear in a form which allows easy physical interpretation of the coupling between radiative and photochemical processes. When the forcing is chosen to mimic a planetary scale wave, the theory shows that photochemical acceleration of radiative damping reduces the amplitude of the temperature perturbation by an amount which increases with the wave period. Although ozone fluctuations are anti-correlated with those in temperature, minima in ozone do not coincide exactly in longitude with temperature maxima. The percentage variation in ozone increases upward and is always larger than that in temperature at the same pressure. This demonstrates that variations in ozone on constant pressure surfaces may serve as a sensitive indicator of wave activity in the mesosphere.

  14. Particle orbits in a force-balanced, wave-driven, rotating torus

    NASA Astrophysics Data System (ADS)

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.

  15. Arctic-North Pacific Coupled Impacts on the Late Autumn Cold in North America

    NASA Technical Reports Server (NTRS)

    Sung, Mi-Kyung; Kim, Baek-Min; Baik, Eun-Hyuk; Lim, Young-Kwon; Kim, Seong-Joong

    2016-01-01

    The Pacific Decadal Oscillation (PDO) is known to bring an anomalously cold (warm) period to southeastern (northwestern) North America during the cold season of its positive phase through a Rossby wave linkage. This study provides evidence that the remote connection between the North Pacific and the downstream temperature over central North America is strengthened by the warm arctic conditions over the Chukchi and East Siberian Sea, especially in the late autumn season. The modulation effect of the Arctic manifests itself as an altered Rossby wave response to a transient vorticity forcing that results from an equatorward storm track shift, which is induced collaboratively by the PDO and the warm Arctic. This observational finding is supported by two independent modeling experiments: 1) an idealized coupled GCM experiment being nudged toward the warm arctic surface condition and 2) a simple stationary wave model (SWM) experiment forced by transient eddy forcing.

  16. Estimation of the Kelvin wave contribution to the semiannual oscillation

    NASA Technical Reports Server (NTRS)

    Hitchman, Matthew H.; Leovy, Conway B.

    1988-01-01

    Daily temperature data acquired during the Limb Infrared Monitor of the Stratosphere experiment are used to study the behavior of Kelvin waves in the equatorial middle atmosphere. It is suggested that Kelvin wave packets of different zonal wave numbers propagate separately and may be forced separately. Two Kelvin wave regimes were identified during the October 1978 to May 1979 data period. Most of the properties of the observed waves are shown to be consistent with slowly-varying theory. Results suggest that gravity waves may contribute significantly to the equatorial stratopause semiannual oscillation.

  17. Development of wave and surge atlas for the design and protection of coastal bridges in South Louisiana : [research project capsule].

    DOT National Transportation Integrated Search

    2015-03-01

    The recently completed Louisiana Department of Transportation and Development : (DOTD) Storm Surge and Wave Atlas contains signi cant hydraulic information that will : be useful in analyzing storm surge and wave forces on existing and new coastal ...

  18. In vivo noninvasive method for measuring local wave velocity in femoral arteries of pig

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Kinnick, Randall; Pislaru, Cristina; Fatemi, Mostafa; Greenleaf, James

    2005-09-01

    We have proposed generating a bending wave in the arterial wall using ultrasound radiation force and measuring the wave velocity along the arterial wall [Zhang et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 642-652 (2005)]. Here, we report the results of in vivo studies on pigs. The pig was anesthetized, and a micromanometer tip catheter was inserted into the femoral artery to measure luminal pressure. A water bath was created on the animal's groin to allow unimpeded access of the ultrasound beams to the femoral artery. The femoral artery was first located using a 13-MHz linear-array transducer. Then, a vibro-acoustography image was obtained to ensure precise positioning of the excitation force relative to the artery. The artery was excited by the force transducer and the resulting vibration of the arterial wall was measured by a sensing Doppler transceiver. Measured wave velocity was 3.1 m/s at 300 Hz. With this new method wave velocity over a distance of 5 mm, and therefore stiffness of arteries, can be measured locally and non-invasively. Measurement time is short in a few tens of milliseconds, which allows pressure dependence and pharmacological effect on the wall properties to be measured at different cardiac times.

  19. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    PubMed

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  20. Faraday wave patterns on a square cell network

    NASA Astrophysics Data System (ADS)

    Peña-Polo, Franklin; Vargas, Carlos A.; Vásquez-González, Benjamín; Medina, Abraham; Trujillo, Leonardo; Klapp, Jaime; Sigalotti, Leonardo Di G.

    2017-05-01

    We present the experimental observations of the Faraday instability when the vibrated liquid is contained in a network of small square cells for exciting frequencies in the range 10≤ F≤ 24 Hz. A sweep of the parameter space has been performed to investigate the amplitudes and frequencies of the driving force for which different patterns form over the network. Regular patterns in the form of square lattices are observed for driving frequencies in the range 10≤ F<14 Hz, while ordered matrices of oscillons are formed for 1423 Hz, disordered periodic patterns appear within individual cells for a small range of amplitudes. In this case, the wave field is dominated by oscillating blobs that interact on the capillary-gravity scale. A Pearson correlation analysis of the recorded videos shows that for all ordered patterns, the surface waves are periodic and correspond to Faraday waves of dominant frequency equal to half the excitation frequency (i.e., f=F/2). In contrast, the oscillons formed for 1423 Hz are not subharmonic and correspond to periodic harmonic waves with f=nF/2 (for n=2,4,\\ldots ). We find that the experimentally determined minimum forcing necessary to destabilize the rest state and generate surface waves is consistent with a recent stability analysis of stationary solutions as derived from a new dispersion relation for time-periodic waves with nonzero forcing and dissipation.

  1. Conservation Laws and Ponderomotive Force for Non-WKB, MHD Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Webb, G. M.; Zank, G. P.; Kaghashvili, E. K.; Ratkiewicz, R. E.

    2004-12-01

    The interaction of non-WKB Alfvén waves in the Solar Wind was investigated by Heinemann and Olbert (1980), MacGregor and Charbonneau (1994) and others. MacGregor and Charbonneau (1994) investigated non-WKB Alfvén wave driven winds. We discuss both the canonical and physical wave stress energy tensors for non-WKB, MHD waves and the ponderomotive force exerted by the waves on the wind for the case where both compressible (magneto-acoustic type waves) and incompressible waves (Alfvén waves) are present. The equations for the waves include the effects of wave mixing (i.e. the interaction of the waves with each other via gradients in the background flow). Wave mixing is known to be an important element of turbulence theory in the Solar Wind. However, only the wave mixing of Alfvénic type disturbances have been accounted for in present models of Solar Wind turbulence (e.g. Zhou and Matthaeus, 1990), which use Elssässer variables to describe the perturbations. The relationship between the present analysis and nearly incompressible MHD (reduced MHD) is at present unclear. Also unclear is the relationship between the present analysis and theories using wave-mean field interactions (e.g. Grimshaw (1984), Holm (1999)). The analysis is based on a theory for wave and background stress-energy tensors developed by Webb et al. (2004a,b) using a Lagrangian formulation of the total system of waves and background plasma (see e.g. Dewar (1970) for the WKB case). Conservation laws for the total system of waves and background plasma result from application of Noether's theorems relating Lie symmetries of the action to conservation laws.

  2. Propulsive Forces of a Biomimetic Undulating Fin

    NASA Astrophysics Data System (ADS)

    Kalumuck, Kenneth; Brandt, Alan; Armand, Mehran

    2007-11-01

    Understanding gained from much recent work on force production mechanisms of aquatic organisms holds great promise for improved undersea vehicle propulsion and maneuvering. One class of fish locomotion is that of the median fin utilized by animals such as squid, cuttlefish, knifefish, and seahorse. It is characterized by undulatory motion that creates traveling waves along the fin. Results of experiments conducted on a submerged mechanical underwater undulating fin test bed are presented. The 0.5 m long fin is mounted to a cylindrical body and consists of a flexible skin attached to ribs driven by an adjustable cam mechanism and variable speed motor that enables changing the characteristics of the undulating wave(s). Forces produced were measured in a captive mode under quiescent conditions as well in the presence of an ambient current. Propulsive forces are characterized as a function of the fin width, oscillation frequency, amplitude, and wavelength. Free swimming experiments were also conducted to determine the point of self propulsion. Flow field structure visualization using dye tracers is presented for selected cases. Estimates of performance and applications for use with larger scale vehicles are discussed.

  3. Amplitude-modulated acoustic radiation force experienced by elastic and viscoelastic spherical shells in progressive waves.

    PubMed

    Mitri, F G; Fellah, Z E A

    2006-07-01

    The dynamic acoustic radiation force resulting from a dual-frequency beam incident on spherical shells immersed in an inviscid fluid is examined theoretically in relation to their thickness and the contents of their interior hollow regions. The theory is modified to include a hysteresis type of absorption inside the shells' material. The results of numerical calculations are presented for stainless steel and absorbing lucite (PolyMethyMethacrylAte) shells with the hollow region filled with water or air. Significant differences occur when the interior fluid inside the hollow region is changed from water to air. It is shown that the dynamic radiation force function Yd deviates from the static radiation force function Yp when the modulation size parameter deltax = mid R:x2 - x1mid R: (x1 = k1a, x2 = k2a, k1 and k2 are the wave vectors of the incident ultrasound waves, and a is the outer radius of the shell) starts to exceed the width of the resonance peaks in the Yp curves.

  4. Internal Wave Apparatus for Copepod Behavior Assays

    NASA Astrophysics Data System (ADS)

    Jung, S.; Haas, K. A.; Webster, D. R.

    2015-11-01

    Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves are generated through oscillations of the pycnocline in stratified waters and thereby create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. Thus, a coupled quantification of copepod behavior and hydrodynamic cues will provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in a two-layer stratification. Three cases are chosen with density jump ranging between 0.75 - 1.5 kg/m3. Analytical analysis of the two-layer system provides guidance of the target forcing frequency to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location are used to quantify the wave characteristics. A copepod behavior assay is conducted, and sample trajectories are analyzed to identify copepod response to internal wave structure.

  5. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.

    PubMed

    Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring; Bruus, Henrik

    2012-11-21

    We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles and the Stokes drag force from the induced acoustic streaming flow. These forces are calculated numerically in two steps. First, the thermoacoustic equations are solved to first order in the imposed ultrasound field taking into account the micrometer-thin but crucial thermoviscous boundary layer near the rigid walls. Second, the products of the resulting first-order fields are used as source terms in the time-averaged second-order equations, from which the net acoustic forces acting on the particles are determined. The resulting acoustophoretic particle velocities are quantified for experimentally relevant parameters using a numerical particle-tracking scheme. The model shows the transition in the acoustophoretic particle motion from being dominated by streaming-induced drag to being dominated by radiation forces as a function of particle size, channel geometry, and material properties.

  6. Mechanics of the acoustic radiation force in tissue-like solids

    NASA Astrophysics Data System (ADS)

    Dontsov, Egor V.

    The acoustic radiation force (ARF) is a phenomenon affiliated with the nonlinear effects of high-intensity wave propagation. It represents the mean momentum transfer from the sound wave to the medium, and allows for an effective computation of the mean motion (e.g. acoustic streaming in fluids) induced by a high-intensity sound wave. Nowadays, the high-intensity focused ultrasound is frequently used in medical diagnosis applications due to its ability to "push" inside the tissue with the radiation body force and facilitate the local quantification of tissue's viscoelastic properties. The main objectives of this study include: i) the theoretical investigation of the ARF in fluids and tissue-like solids generated respectively by the amplitude modulated plane wave and focused ultrasound; ii) computation of the nonlinear acoustic wave propagation when the amplitude of the focused ultrasound field is modulated by a low-frequency signal, and iii) modeling of the ARF-induced motion in tissue-like solids for the purpose of quantifying their nonlinear elasticity via the magnitude of the ARF. Regarding the first part, a comparison with the existing theory of the ARF reveals a number of key features that are brought to light by the new formulation, including the contributions to the ARF of ultrasound modulation and thermal expansion, as well as the precise role of constitutive nonlinearities in generating the sustained body force in tissue-like solids by a focused ultrasound beam. In the second part, the hybrid time-frequency domain algorithm for the numerical analysis of the nonlinear wave equation is proposed. The approach is validated by comparing the results to the finite-difference modeling in time domain. Regarding the third objective, the Fourier transform approach is used to compute the ARF-induced shear wave motion in tissue-mimicking phantoms. A comparison between the experiment (tests performed at the Mayo Clinic) and model permitted the estimation of a particular coefficient of nonlinear tissue elasticity from the amplitude of the ARF-generated shear waves. For completeness, the ARF estimates of this coefficient are verified via an established technique known as acoustoelasticity.

  7. Investigation of shock-acoustic-wave interaction in transonic flow

    NASA Astrophysics Data System (ADS)

    Feldhusen-Hoffmann, Antje; Statnikov, Vladimir; Klaas, Michael; Schröder, Wolfgang

    2018-01-01

    The buffet flow field around supercritical airfoils is dominated by self-sustained shock wave oscillations on the suction side of the wing. Theories assume that this unsteadiness is driven by an acoustic feedback loop of disturbances in the flow field downstream of the shock wave whose upstream propagating part is generated by acoustic waves. Therefore, in this study, first variations in the sound pressure level of the airfoil's trailing-edge noise during a buffet cycle, which force the shock wave to move upstream and downstream, are detected, and then, the sensitivity of the shock wave oscillation during buffet to external acoustic forcing is analyzed. Time-resolved standard and tomographic particle-image velocimetry (PIV) measurements are applied to investigate the transonic buffet flow field over a supercritical DRA 2303 airfoil. The freestream Mach number is M_{∞} = 0.73, the angle of attack is α = {3.5}°, and the chord-based Reynolds number is Re_c = 1.9× 10^6. The perturbed Lamb vector field, which describes the major acoustic source term of trailing-edge noise, is determined from the tomographic PIV data. Subsequently, the buffet flow field is disturbed by an artificially generated acoustic field, the acoustic intensity of which is comparable to the Lamb vector that is determined from the PIV data. The results confirm the hypothesis that buffet is driven by an acoustic feedback loop and show the shock wave oscillation to directly respond to external acoustic forcing. That is, the amplitude modulation frequency of the artificial acoustic perturbation determines the shock oscillation.

  8. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests

    NASA Astrophysics Data System (ADS)

    Stewart, Gordon; Muskulus, Michael

    2016-09-01

    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  9. Mixing and Formation of Layers by Internal Wave Forcing

    NASA Astrophysics Data System (ADS)

    Dossmann, Yvan; Pollet, Florence; Odier, Philippe; Dauxois, Thierry

    2017-12-01

    The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are not fully described. In the ocean interior, the triadic resonant instability is an intrinsic destabilization process that may enhance the energy cascade away from topographies. The present study focuses on the integrated impact of mixing processes induced by a propagative normal mode-1 over long-term experiments in an idealized setup. The internal wave dynamics and the evolution of the density profile are followed using the light attenuation technique. Diagnostics of the turbulent diffusivity KT and background potential energy BPE are provided. Mixing effects result in a partially mixed layer colocated with the region of maximum shear induced by the forcing normal mode. The maximum measured turbulent diffusivity is 250 times larger than the molecular value, showing that diapycnal mixing is largely enhanced by small-scale turbulent processes. Intermittency and reversible energy transfers are discussed to bridge the gap between the present diagnostic and the larger values measured in Dossmann et al. (). The mixing efficiency η is assessed by relating the BPE growth to the linearized KE input. One finds a value of Γ=12-19%, larger than the mixing efficiency in the case of breaking interfacial wave. After several hours of forcing, the development of staircases in the density profile is observed. This mechanism has been previously observed in experiments with weak homogeneous turbulence and explained by Phillips (1972) argument. The present experiments suggest that internal wave forcing could also induce the formation of density interfaces in the ocean.

  10. Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less

  11. Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off

    DOE PAGES

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2017-12-11

    The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less

  12. Tsunami Simulators in Physical Modelling - Concept to Practical Solutions

    NASA Astrophysics Data System (ADS)

    Chandler, Ian; Allsop, William; Robinson, David; Rossetto, Tiziana; McGovern, David; Todd, David

    2017-04-01

    Whilst many researchers have conducted simple 'tsunami impact' studies, few engineering tools are available to assess the onshore impacts of tsunami, with no agreed methods available to predict loadings on coastal defences, buildings or related infrastructure. Most previous impact studies have relied upon unrealistic waveforms (solitary or dam-break waves and bores) rather than full-duration tsunami waves, or have used simplified models of nearshore and over-land flows. Over the last 10+ years, pneumatic Tsunami Simulators for the hydraulic laboratory have been developed into an exciting and versatile technology, allowing the forces of real-world tsunami to be reproduced and measured in a laboratory environment for the first time. These devices have been used to model generic elevated and N-wave tsunamis up to and over simple shorelines, and at example coastal defences and infrastructure. They have also reproduced full-duration tsunamis including Mercator 2004 and Tohoku 2011, both at 1:50 scale. Engineering scale models of these tsunamis have measured wave run-up on simple slopes, forces on idealised sea defences, pressures / forces on buildings, and scour at idealised buildings. This presentation will describe how these Tsunami Simulators work, demonstrate how they have generated tsunami waves longer than the facilities within which they operate, and will present research results from three generations of Tsunami Simulators. Highlights of direct importance to natural hazard modellers and coastal engineers include measurements of wave run-up levels, forces on single and multiple buildings and comparison with previous theoretical predictions. Multiple buildings have two malign effects. The density of buildings to flow area (blockage ratio) increases water depths and flow velocities in the 'streets'. But the increased building densities themselves also increase the cost of flow per unit area (both personal and monetary). The most recent study with the Tsunami Simulators therefore focussed on the influence of multiple buildings (up to 4 rows) which showed (for instance) that the greatest forces can act on the landward (not seaward) rows of buildings. Studies in the 70m long, 4m wide main channel of the Fast Flow Facility on tsunami defence structures have also measured forces on buildings in the lee of a failed defence wall and tsunami induced scour. Supporting presentations at this conference: McGovern et al on tsunami induced scour at coastal structures and Foster et al on building loads.

  13. Modelling of squall with the generalised kinetic equation

    NASA Astrophysics Data System (ADS)

    Annenkov, Sergei; Shrira, Victor

    2014-05-01

    We study the long-term evolution of random wind waves using the new generalised kinetic equation (GKE). The GKE derivation [1] does not assume the quasi-stationarity of a random wave field. In contrast with the Hasselmann kinetic equation, the GKE can describe fast spectral changes occurring when a wave field is driven out of a quasi-equilibrium state by a fast increase or decrease of wind, or by other factors. In these cases, a random wave field evolves on the dynamic timescale typical of coherent wave processes, rather than on the kinetic timescale predicted by the conventional statistical theory. Besides that, the generalised theory allows to trace the evolution of higher statistical moments of the field, notably the kurtosis, which is important for assessing the risk of freak waves and other applications. A new efficient and highly parallelised algorithm for the numerical simulation of the generalised kinetic equation is presented and discussed. Unlike in the case of the Hasselmann equation, the algorithm takes into account all (resonant and non-resonant) nonlinear wave interactions, but only approximately resonant interactions contribute to the spectral evolution. However, counter-intuitively, all interactions contribute to the kurtosis. Without forcing or dissipation, the algorithm is shown to conserve the relevant integrals. We show that under steady wind forcing the wave field evolution predicted by the GKE is close to the predictions of the conventional statistical theory, which is applicable in this case. In particular, we demonstrate the known long-term asymptotics for the evolution of the spectrum. When the wind forcing is not steady (in the simplest case, an instant increase or decrease of wind occurs), the generalised theory is the only way to study the spectral evolution, apart from the direct numerical simulation. The focus of the work is a detailed analysis of the fast evolution after an instant change of forcing, and of the subsequent transition to the new quasi-stationary state of a wave field. It is shown that both increase and decrease of wind lead to a significant transient increase of the dynamic kurtosis, although these changes remain small compared to the changes of the other component of the kurtosis, which is due to bound harmonics. A special consideration is given to the case of the squall, i.e. an instant and large (by a factor of 2-4) increase of wind, which lasts for O(102) characteristic wave periods. We show that fast adjustment processes lead to the formation of a transient spectrum, which has a considerably narrower peak than the spectra developed under a steady forcing. These transient spectra differ qualitatively from those predicted by the Hasselmann kinetic equation under the squall with the same parameters. 1. S.Annenkov, V.Shrira (2006) Role of non-resonant interactions in evolution of nonlinear random water wave fields, J. Fluid Mech. 561, 181-207.

  14. Force-controlled absorption in a fully-nonlinear numerical wave tank

    NASA Astrophysics Data System (ADS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-09-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.

  15. Evidence of Boundary Reflection of Kelvin and First-Mode Rossby Waves from Topex/Poseidon Sea Level Data

    NASA Technical Reports Server (NTRS)

    Boulanger, Jean-Philippe; Fu, Lee-Lueng

    1996-01-01

    The TOPEX/POSEIDON sea level data lead to new opportunities to investigate some theoretical mechanisms suggested to be involved in the El Nino-Southern Oscillation phenomenon in the tropical Pacific ocean. In particular, we are interested in studying the western boundary reflection, a process crucial for the delayed action oscillator theory, by using the TOPEX/POSEIDON data from November 1992 to May 1995. We first projected the sea level data onto Kelvin and first-mode Ross waves. Then we estimated the contribution of wind forcing to these waves by using a single baroclinic mode simple wave model forced by the ERS-1 wind data. Wave propagation was clearly observed with amplitudes well explained by the wind forcing in the ocean interior. Evidence of wave reflection was detected at both the western and eastern boundaries of the tropical Pacific ocean. At the eastern boundary, Kelvin waves were seen to reflect as first-mode Rossby waves during the entire period. The reflection efficiency (in terms of wave amplitude) of the South American coasts was estimated to be 80% of that of an infinite meridional wall. At the western boundary, reflection was observed in April-August 1993, in January-June 1994, and, later, in December 1994 to February 1995. Although the general roles of these reflection events in the variability observed in the equatorial Pacific ocean are not clear, the data suggest that the reflections in January-June 1994 have played a role in the onset of the warm conditions observed in late 1994 to early 1995. Indeed, during the January-June 1994 period, as strong downwelling first-mode Rossby waves reflected into downwelling Kelvin waves, easterly wind and cold sea surface temperature anomalies located near the date line weakened and eventually reversed in June-July 1994. The presence of the warm anomalies near the date line then favored convection and westerly wind anomalies that triggered strong downwelling Kelvin waves propagating throughout the basin simultaneously with the beginning of the 1994-1995 warm conditions.

  16. The polarized Debye sheath effect on Kadomtsev-Petviashvili electrostatic structures in strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahmansouri, M.; Alinejad, H.

    2015-04-15

    We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.

  17. Computational Investigation of Helical Traveling Wave Tube Transverse RF Field Forces

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A.

    1998-01-01

    In a previous study using a fully three-dimensional (3D) helical slow-wave circuit cold- test model it was found, contrary to classical helical circuit analyses, that transverse FF electric fields have significant amplitudes compared with the longitudinal component. The RF fields obtained using this helical cold-test model have been scaled to correspond to those of an actual TWT. At the output of the tube, RF field forces reach 61%, 26% and 132% for radial, azimuthal and longitudinal components, respectively, compared to radial space charge forces indicating the importance of considering them in the design of electron beam focusing.

  18. Wave-current interaction in Willapa Bay

    USGS Publications Warehouse

    Olabarrieta, Maitane; Warner, John C.; Kumar, Nirnimesh

    2011-01-01

    This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary.

  19. Exploring hydrocarbon-bearing shale formations with multi-component seismic technology and evaluating direct shear modes produced by vertical-force sources

    NASA Astrophysics Data System (ADS)

    Alkan, Engin

    It is essential to understand natural fracture systems embedded in shale-gas reservoirs and the stress fields that influence how induced fractures form in targeted shale units. Multicomponent seismic technology and elastic seismic stratigraphy allow geologic formations to be better images through analysis of different S-wave modes as well as the P-wave mode. Significant amounts of energy produced by P-wave sources radiate through the Earth as downgoing SV-wave energy. A vertical-force source is an effective source for direct SV radiation and provides a pure shear-wave mode (SV-SV) that should reveal crucial information about geologic surfaces located in anisotropic media. SV-SV shear wave modes should carry important information about petrophysical characteristics of hydrocarbon systems that cannot be obtained using other elastic-wave modes. Regardless of the difficulties of extracting good-quality SV-SV signal, direct shear waves as well as direct P and converted S energy should be accounted for in 3C seismic studies. Acquisition of full-azimuth seismic data and sampling data at small intervals over long offsets are required for detailed anisotropy analysis. If 3C3D data can be acquired with improved signal-to-noise ratio, more uniform illumination of targets, increased lateral resolution, more accurate amplitude attributes, and better multiple attenuation, such data will have strong interest by the industry. The objectives of this research are: (1) determine the feasibility of extracting direct SV-SV common-mid-point sections from 3-C seismic surveys, (2) improve the exploration for stratigraphic traps by developing systematic relationship between petrophysical properties and combinations of P and S wave modes, (3) create compelling examples illustrating how hydrocarbon-bearing reservoirs in low-permeable rocks (particularly anisotropic shale formations) can be better characterized using different Swave modes (P-SV, SV-SV) in addition to the conventional P-P modes, and (4) analyze P and S radiation patterns produced by a variety of seismic sources. The research done in this study has contributed to understanding the physics involved in direct-S radiation from vertical-force source stations. A U.S. Patent issued to the Board of Regents of the University of Texas System now protects the intellectual property the Exploration Geophysics Laboratory has developed related to S-wave generation by vertical-force sources. The University's Office of Technology Commercialization is actively engaged in commercializing this new S-wave reflection seismic technology on behalf of the Board of Regents.

  20. Meteorologic, oceanographic, and geomorphic controls on circulation and residence time in a coral reef-lined embayment: Faga'alu Bay, American Samoa

    NASA Astrophysics Data System (ADS)

    Storlazzi, C. D.; Cheriton, O. M.; Messina, A. M.; Biggs, T. W.

    2018-06-01

    Water circulation over coral reefs can determine the degree to which reef organisms are exposed to the overlying waters, so understanding circulation is necessary to interpret spatial patterns in coral health. Because coral reefs often have high geomorphic complexity, circulation patterns and the duration of exposure, or "local residence time" of a water parcel, can vary substantially over small distances. Different meteorologic and oceanographic forcings can further alter residence time patterns over reefs. Here, spatially dense Lagrangian surface current drifters and Eulerian current meters were used to characterize circulation patterns and resulting residence times over different regions of the reefs in Faga'alu Bay, American Samoa, during three distinct forcing periods: calm, strong winds, and large waves. Residence times varied among different geomorphic zones of the reef and were reflected in the spatially varying health of the corals across the embayment. The relatively healthy, seaward fringing reef consistently had the shortest residence times, as it was continually flushed by wave breaking at the reef crest, whereas the degraded, sheltered, leeward fringing reef consistently had the longest residence times, suggesting this area is more exposed to land-based sources of pollution. Strong wind forcing resulted in the longest residence times by pinning the water in the bay, whereas large wave forcing flushed the bay and resulted in the shortest residence times. The effect of these different forcings on residence times was fairly consistent across all reef geomorphic zones, with the shift from wind to wave forcing shortening mean residence times by approximately 50%. Although ecologically significant to the coral organisms in the nearshore reef zones, these shortened residence times were still 2-3 times longer than those associated with the seaward fringing reef across all forcing conditions, demonstrating how the geomorphology of a reef environment sets a first-order control on reef health.

  1. FY16 NRL DoD High Performance Computing Modernization Program

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  2. Intra-seasonal sea level variability along the west coast of India

    NASA Astrophysics Data System (ADS)

    Dhage, Laxmikant; Strub, P. Ted

    2016-11-01

    The importance of local versus distant forcing is studied for the wind-driven intra-seasonal (30-120 day) sea level anomaly (SLA) variations along the west coast of India. Significant correlations of altimeter-derived SLA on the west coast are found with the mid-basin SLA east of Sri Lanka and SLA as far as Sumatra and the equator, with increased lags, connecting with the remote forcing from the equator in the form of reflected Rossby waves. The highest correlations between SLA on the west coast and winds are found with the winds at the southern tip of India. Coherence calculations help to identify the importance of a narrow band (40-60 day) for the interactions of winds with the intra-seasonal SLA variations. A multivariate regression model, along with the coherences within this narrower band, suggest the lags of SLA on the west coast with winds to range from 0 to 2 days with the local forcing to 11-13 days with the forcing along south east coast of India. Hovmöller diagrams illustrate the propagation of signals by estimating phase speed for Rossby waves (57 cm/s) across the Indian Ocean from Sumatra and Coastal Trapped Waves (CTWs) along the west coast of India (178 cm/s). Propagation from the south-east coast of India is not as robust as Rossby waves from Sumatra.

  3. Phase synchronization of baroclinic waves in a differentially heated rotating annulus experiment subject to periodic forcing with a variable duty cycle

    NASA Astrophysics Data System (ADS)

    Read, P. L.; Morice-Atkinson, X.; Allen, E. J.; Castrejón-Pita, A. A.

    2017-12-01

    A series of laboratory experiments in a thermally driven, rotating fluid annulus are presented that investigate the onset and characteristics of phase synchronization and frequency entrainment between the intrinsic, chaotic, oscillatory amplitude modulation of travelling baroclinic waves and a periodic modulation of the (axisymmetric) thermal boundary conditions, subject to time-dependent coupling. The time-dependence is in the form of a prescribed duty cycle in which the periodic forcing of the boundary conditions is applied for only a fraction δ of each oscillation. For the rest of the oscillation, the boundary conditions are held fixed. Two profiles of forcing were investigated that capture different parts of the sinusoidal variation and δ was varied over the range 0.1 ≤δ≤1 . Reducing δ was found to act in a similar way to a reduction in a constant coupling coefficient in reducing the width of the interval in forcing frequency or period over which complete synchronization was observed (the "Arnol'd tongue") with respect to the detuning, although for the strongest pulse-like forcing profile some degree of synchronization was discernible even at δ=0.1 . Complete phase synchronization was obtained within the Arnol'd tongue itself, although the strength of the amplitude modulation of the baroclinic wave was not significantly affected. These experiments demonstrate a possible mechanism for intraseasonal and/or interannual "teleconnections" within the climate system of the Earth and other planets that does not rely on Rossby wave propagation across the planet along great circles.

  4. Mesoscale disturbances in the tropical stratosphere excited by convection - Observations and effects on the stratospheric momentum budget

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Scott, Stanley; Loewenstein, Max; Bowen, Stuart; Legg, Marion

    1993-01-01

    Aircraft temperature and pressure measurements as well as satellite imagery are used to establish the amplitudes and the space and time scale of potential temperature disturbances over convective systems. A conceptual model is proposed for the generation of mesoscale gravity waves by convection. The momentum forcing that a reasonable distribution of convection might exert on the tropical stratosphere through convectively excited mesoscale gravity waves of the observed amplitudes is estimated. Aircraft measurements show that presence of mesoscale disturbances in the lower stratospheric temperature, disturbances that appear to be associated with underlying convection. If the disturbances are convectively excited mesoscale gravity waves, their amplitude is sufficient that their breakdown in the upper stratosphere will exert a zonal force comparable to but probably smaller than the planetary-scale Kelvin waves.

  5. Surface‐wave Green’s tensors in the near field

    USGS Publications Warehouse

    Haney, Matt; Nakahara, Hisashi

    2014-01-01

    We demonstrate the connection between theoretical expressions for the correlation of ambient noise Rayleigh and Love waves and the exact surface‐wave Green’s tensors for a point force. The surface‐wave Green’s tensors are well known in the far‐field limit. On the other hand, the imaginary part of the exact Green’s tensors, including near‐field effects, arises in correlation techniques such as the spatial autocorrelation (SPAC) method. Using the imaginary part of the exact Green’s tensors from the SPAC method, we find the associated real part using the Kramers–Kronig relations. The application of the Kramers–Kronig relations is not straightforward, however, because the causality properties of the different tensor components vary. In addition to the Green’s tensors for a point force, we also derive expressions for a general point moment tensor source.

  6. A coupled wave-hydrodynamic model of an atoll with high friction: Mechanisms for flow, connectivity, and ecological implications

    NASA Astrophysics Data System (ADS)

    Rogers, Justin S.; Monismith, Stephen G.; Fringer, Oliver B.; Koweek, David A.; Dunbar, Robert B.

    2017-02-01

    We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. This is the first time the vortex force formalism has been applied in a highly frictional reef environment. The model results agree well with field observations considering the model complexity in terms of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary conditions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by waves and tides, with strong waves from the north driving flow from north to south across the atoll, and from east to west through the lagoon system. Bottom stress is significant for depths less than about 60 m, and in addition to the model bathymetry, is important for correct representation of flow in the model. Connectivity within the atoll system shows that the general trends follow the mean flow paths. However, some connectivity exists between all regions of the atoll system due to nonlinear processes such as eddies and tidal phasing. Moderate wave stress, short travel time (days since entering the reef system), and low temperature appear to be the most ideal conditions for high coral cover at this site.

  7. A coupled wave-hydrodynamic model of a highly frictional atoll reef system: mechanisms for flow, connectivity, and ecological implications

    NASA Astrophysics Data System (ADS)

    Rogers, J.; Monismith, S. G.; Fringer, O. B.; Koweek, D.; Dunbar, R. B.

    2016-12-01

    We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. This is the first time the vortex force formalism has been applied in a highly frictional reef environment. The model results agree well with field observations considering the model complexity in terms of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary conditions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by waves and tides, with strong waves from the north driving flow from north to south across the atoll, and from east to west through the lagoon system. Bottom stress is significant for depths less than about 60 m, and in addition to the model bathymetry, is important for correct representation of flow in the model. Connectivity within the atoll system shows that the general trends follow the mean flow paths. However, some connectivity exists between all regions of the atoll system due to nonlinear processes such as eddies and tidal phasing. While high mean flow and travel time less than 20 hours appears to differentiate very productive coral regions, low temperature and moderate wave stress appear to be the most ideal conditions for high coral cover on Palmyra.

  8. Electromagnetic forces in negative-refractive-index metamaterials: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Galiatsatos, Pavlos G.

    2008-04-01

    According to the theory of Veselago, when a particle immersed within a metamaterial with negative refractive index is illuminated by plane wave, it experiences a reversed radiation force due to the antiparallel directions of the phase velocity and energy flow. By employing an ab initio method, we show that, in the limit of zero losses, the effect of reversed radiation pressure is generally true only for the specular beam. Waves generated by diffraction of the incident light at the surface of the slab of the metamaterial can produce a total force which is parallel to the radiation flow. However, when the actual losses of the materials are taken into account, the phenomenon of reversed radiation force is evident within the whole range of a negative refractive index band.

  9. Restrictions on the Quasi-Linear Description of Electron-Chorus Interaction in the Earth's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Sibeck, David G.

    2013-01-01

    The interaction of electrons with coherent chorus waves in the random phase approximation can be described as quasi-linear diffusion for waves with amplitudes below some limit. The limit is calculated for relativistic and non-relativistic electrons. For stronger waves, the friction force should be taken into account.

  10. Waves, Hydrodynamics and Sediment Transport Modeling at Grays Harbor, WA

    DTIC Science & Technology

    2010-12-01

    Grays Harbor Federal navigation project. At the same time, offshore wind and wave data were available from NDBC Buoy 46029 and CDIP Buoy 036 / NDBC...is forced by the regional ADCIRC water levels and currents, surface wind field, and offshore waves based on the CDIP Buoy 036 (NDBC 46211). Figures

  11. Propagation of a fluidization - combustion wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.

    1994-05-01

    A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.

  12. Influence of Wave Energetics on Nearshore Storms and Adjacent Shoreline Morphology

    NASA Astrophysics Data System (ADS)

    Wadman, H. M.; McNinch, J. E.; Hanson, J.

    2008-12-01

    Large-scale climatic forcings (such as NAO and ENSO) are known to induce fluctuations in regional storm frequency and intensity. Morphology-based studies have traditionally focused on individual storms and their influence on the nearshore coastal wave regime and shoreline response. Few studies have attempted to link long-term observed changes in shoreline position, beach, and nearshore morphology with large-scale climatic forcings that influence regional storm patterns. In order to predict the response of coastlines to future sea level rise and climate change, we need to understand how changes in the frequency of storms affecting nearshore regions (nearshore storms) may influence trends in shoreline position and nearshore morphology. Nearly 30 years of wave data (deep and shallow) collected off of Duck, NC are examined for trends in storm frequency and/or intensity. Changes in shoreline position and shoreface elevation, as observed from monthly beach transects over the same period, are also investigated in light of the observed trends in hydrodynamic forcings. Our preliminary analysis was unable to identify any consistent linear trends (increases or decreases) in frequency or intensity over the ~30-year time period in either the offshore wave heights or the nearshore storm record. These data might suggest that previous observations of recent increases in storm intensity and frequency, speculated to be due to climate change, might be spatially limited. Future analyses will partition the contributions from individual wind sea and swell events in order to better identify long-term trends in wave energetics from the various wave generation regions in the Atlantic. At this location, offshore wave height and the nearshore storm record are dominated by seasonal fluctuations and a strong interdecadal- to decadal periodicity. Previous research in Duck, NC has suggested that changes in shoreline position and shoreface elevations are related both to seasonal trends as well as "storm groupiness". Our analyses support these findings, but also identify interdecadal- to decadal trends in the nearshore morphology. Despite these fluctuations, the overall position of the shoreline and elevation of the shoreface shows little net change over the 30 years investigated. We hypothesize that the interdecadal- to decadal periodicity in the morphology is driven largely by the influences of large-scale climatic forcings on the nearshore wave regime as reflected in the storm record. We also explore the relationship between morphological periodicity, storm and wave height periodicity, and climatic fluctuations.

  13. Numerical simulation of pounding damage to caisson under storm surge

    NASA Astrophysics Data System (ADS)

    Yu, Chen

    2018-06-01

    In this paper, a new method for the numerical simulation of structural model is proposed, which is employed to analyze the pounding response of caissons subjected to storm surge loads. According to the new method, the simulation process is divided into two steps. Firstly, the wave propagation caused by storm surge is simulated by the wave-generating tool of Flow-3D, and recording the wave force time history on the caisson. Secondly, a refined 3D finite element model of caisson is established, and the wave force load is applied on the caisson according to the measured data in the first step for further analysis of structural pounding response using the explicit solver of LSDYNA. The whole simulation of pounding response of a caisson caused by "Sha Lijia" typhoon is carried out. The results show that the different wave direction results in the different angle caisson collisions, which will lead to different failure mode of caisson, and when the angle of 60 between wave direction and front/back wall is simulated, the numerical pounding failure mode is consistent with the situation.

  14. Numerical simulation of the wave-induced non-linear bending moment of ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, J.; Wang, Z.; Gu, X.

    1995-12-31

    Ships traveling in moderate or rough seas may experience non-linear bending moments due to flare effect and slamming loads. The numerical simulation of the total wave-induced bending moment contributed from both the wave frequency component induced by wave forces and the high frequency whipping component induced by slamming actions is very important in predicting the responses and ensuring the safety of the ship in rough seas. The time simulation is also useful for the reliability analysis of ship girder strength. The present paper discusses four different methods of the numerical simulation of wave-induced non-linear vertical bending moment of ships recentlymore » developed in CSSRC, including the hydroelastic integral-differential method (HID), the hydroelastic differential analysis method (HDA), the combined seakeeping and structural forced vibration method (CSFV), and the modified CSFV method (MCSFV). Numerical predictions are compared with the experimental results obtained from the elastic ship model test of S-175 container ship in regular and irregular waves presented by Watanabe Ueno and Sawada (1989).« less

  15. Very Long Wave Length IR Detectors

    DTIC Science & Technology

    2015-02-01

    STINFO COPY AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE...to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE...NAME(S) AND ADDRESS(ES) Air Force Research Laboratory Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750 Air

  16. Force Generation by Flapping Foils

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P. R.; Donnelly, M.

    1996-11-01

    Aquatic animals like fish use flapping caudal fins to produce axial and cross-stream forces. During WW2, German scientists had built and tested an underwater vehicle powered by similar flapping foils. We have examined the forces produced by a pair of flapping foils. We have examined the forced produced by a pair of flapping foils attached to the tail end of a small axisymmetric cylinder. The foils operate in-phase (called waving), or in anti-phase (called clapping). In a low-speed water tunnel, we have undertaken time-dependent measurements of axial and cross-stream forces and moments that are exerted by the vortex shedding process over the entire body. Phase-matched LDV measurements of vorticity-velocity vectors, as well as limited flow visualization of the periodic vortex shedding process have also been carried out. The direction of the induced velocity within a pair of shed vortices determines the nature of the forces produced, viz., thrust or drag or cross-stream forces. The clapping mode produces a widely dispersed symmetric array of vortices which results in axial forces only (thrust and rag). On the other hand, the vortex array is staggered in the waving mode and cross-stream (maneuvering) forces are then generated.

  17. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V

    2013-04-30

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features ofmore » the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)« less

  18. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity

    NASA Astrophysics Data System (ADS)

    Das, S.; Sahoo, T.; Meylan, M. H.

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  19. On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse

    PubMed Central

    2016-01-01

    Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550763

  20. SENSITIVITY OF HELIOSEISMIC TRAVEL TIMES TO THE IMPOSITION OF A LORENTZ FORCE LIMITER IN COMPUTATIONAL HELIOSEISMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Hamed; Cally, Paul S., E-mail: hamed.moradi@monash.edu

    The rapid exponential increase in the Alfvén wave speed with height above the solar surface presents a serious challenge to physical modeling of the effects of magnetic fields on solar oscillations, as it introduces a significant Courant-Friedrichs-Lewy time-step constraint for explicit numerical codes. A common approach adopted in computational helioseismology, where long simulations in excess of 10 hr (hundreds of wave periods) are often required, is to cap the Alfvén wave speed by artificially modifying the momentum equation when the ratio between the Lorentz and hydrodynamic forces becomes too large. However, recent studies have demonstrated that the Alfvén wave speedmore » plays a critical role in the MHD mode conversion process, particularly in determining the reflection height of the upwardly propagating helioseismic fast wave. Using numerical simulations of helioseismic wave propagation in constant inclined (relative to the vertical) magnetic fields we demonstrate that the imposition of such artificial limiters significantly affects time-distance travel times unless the Alfvén wave-speed cap is chosen comfortably in excess of the horizontal phase speeds under investigation.« less

  1. On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse.

    PubMed

    Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon's shadow cools part of the Earth's surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  2. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity.

    PubMed

    Das, S; Sahoo, T; Meylan, M H

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  3. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.

  4. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2015-01-01

    Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).

  5. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    PubMed Central

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew

    2015-01-01

    Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970

  6. Transformation of body force localized near the surface of a half-space into equivalent surface stresses.

    PubMed

    Rouge, Clémence; Lhémery, Alain; Ségur, Damien

    2013-10-01

    An electromagnetic acoustic transducer (EMAT) or a laser used to generate elastic waves in a component is often described as a source of body force confined in a layer close to the surface. On the other hand, models for elastic wave radiation more efficiently handle sources described as distributions of surface stresses. Equivalent surface stresses can be obtained by integrating the body force with respect to depth. They are assumed to generate the same field as the one that would be generated by the body force. Such an integration scheme can be applied to Lorentz force for conventional EMAT configuration. When applied to magnetostrictive force generated by an EMAT in a ferromagnetic material, the same scheme fails, predicting a null stress. Transforming body force into equivalent surface stresses therefore, requires taking into account higher order terms of the force moments, the zeroth order being the simple force integration over the depth. In this paper, such a transformation is derived up to the second order, assuming that body forces are localized at depths shorter than the ultrasonic wavelength. Two formulations are obtained, each having some advantages depending on the application sought. They apply regardless of the nature of the force considered.

  7. Reading Hertz's own dipole theory

    NASA Astrophysics Data System (ADS)

    Aničin, B. A.

    2008-01-01

    It is well known that the discoverer of radio waves, Heinrich Hertz, was the first man to apply Maxwell's electrodynamic theory to a problem in radio wave propagation. In this paper, we scrutinize his near-field lines of force using computers and his theory. In one of his four figures, a feature was found which was not to be obtained by computation. This feature, a self-intersecting line of force, more or less a figure of eight, appears strange to the eye. The clarity of the original work by H Hertz on electromagnetic waves should be of great value in both physics and engineering courses. This holds in particular for his Q function, almost completely forgotten today.

  8. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    NASA Astrophysics Data System (ADS)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  9. Revisiting the "thermospheric spoon" mechanism of the thermosphere and ionosphere semiannual oscillation

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Jones, M., Jr.; Picone, J. M.; Drob, D. P.; Siskind, D. E.

    2017-12-01

    The thermosphere-ionosphere (T-I) exhibits a strong ( ±20%) semiannual oscillation (SAO) in globally averaged mass and electron density; the source of the SAO is still unclear. Two prominent proposed mechanisms are: (1) the "thermospheric spoon" mechanism (TSM) [Fuller-Rowell, 1998], which is a resolved-scale, seasonally dependent mixing process that drives an SAO through interhemispheric meridional and vertical transport of constituents and (2) seasonal variations in eddy diffusion (Kzz) associated with breaking gravity waves ("Kzz hypothesis") [Qian et al. 2009]. In this study, we use the National Center for atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), to investigate the source of the T-I SAO. We performed numerical experiments over a continuous calendar year assuming constant solar and geomagnetic forcing and several configurations of lower atmospheric tidal forcing, lower atmospheric gravity wave forcing, and the obliquity of Earth's rotational axis with respect to the ecliptic plane. The prominent results are as follows: (1) In the absence of lower atmospheric gravity wave and tidal forcing a 30% SAO in globally averaged mass density (with respect to its global annual average) is simulated in the TIME-GCM, suggesting that seasonally-varying Kzz driven by breaking gravity waves is not the primary driver of the T-I SAO; (2) When the Earth's obliquity is set to zero (i.e., perpetual equinox) the T-I SAO is reduced to 2%; (3) When Earth's obliquity is set to 11.75° (i.e., half its actual value), the mass density SAO is 10%; (4) The meridional and vertical transport patterns in the simulations are consistent with the TSM, except that coupling with the upper mesospheric circulation also contributes to the T-I SAO; and (5) Inclusion of lower atmospheric tidal and gravity wave forcing weakens the TSM and thus damps the T-I SAO. These results suggest that the TSM accurately describes the primary source of the T-I SAO.

  10. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.

    PubMed

    Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F

    2018-01-01

    Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue viscoelasticity reliably. Moreover, the results showed the strong frequency dependence of viscoelastic parameters in tissue mimicking phantoms and healthy liver.

  11. Particle motions beneath irrotational water waves

    NASA Astrophysics Data System (ADS)

    Bakhoday-Paskyabi, Mostafa

    2015-08-01

    Neutral and buoyant particle motions in an irrotational flow are investigated under the passage of linear, nonlinear gravity, and weakly nonlinear solitary waves at a constant water depth. The developed numerical models for the particle trajectories in a non-turbulent flow incorporate particle momentum, size, and mass (i.e., inertial particles) under the influence of various surface waves such as Korteweg-de Vries waves which admit a three parameter family of periodic cnoidal wave solutions. We then formulate expressions of mass-transport velocities for the neutral and buoyant particles. A series of test cases suggests that the inertial particles possess a combined horizontal and vertical drifts from the locations of their release, with a fall velocity as a function of particle material properties, ambient flow, and wave parameters. The estimated solutions exhibit good agreement with previously explained particle behavior beneath progressive surface gravity waves. We further investigate the response of a neutrally buoyant water parcel trajectories in a rotating fluid when subjected to a series of wind and wave events. The results confirm the importance of the wave-induced Coriolis-Stokes force effect in both amplifying (destroying) the pre-existing inertial oscillations and in modulating the direction of the flow particles. Although this work has mainly focused on wave-current-particle interaction in the absence of turbulence stochastic forcing effects, the exercise of the suggested numerical models provides additional insights into the mechanisms of wave effects on the passive trajectories for both living and nonliving particles such as swimming trajectories of plankton in non-turbulent flows.

  12. Waves and instabilities in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  13. Waves in the Mesosphere of Venus as seen by the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Häusler, B.; Hinson, D. P.; Tyler, G.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.

    2013-10-01

    The Venus Express Radio Science Experiment (VeRa) has retrieved more than 700 profiles of the mesosphere and troposphere of Venus. These profiles cover a wide range of latitudes and local times, enabling study of atmospheric wave phenomena over a range spatial scales at altitudes of 40-90 km. In addition to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves, and turbulence play a significant role in the development and maintenance of atmospheric super-rotation. Small-scale temperature variations with vertical wavelengths of 4 km or less have wave amplitudes reaching TBD km in the stable atmosphere above the tropopause, in contrast with much weaker temperature perturbations observed in the middle cloud layer below. The strength of gravity waves increases with latitude in both hemispheres. The results suggest that convection at low latitudes and topographical forcing at high northern latitudes—possibly in combination with convection and/or Kelvin-Helmholtz instabilities—play key roles in the genesis of gravity waves. Further, thermal tides also play an important role in the mesosphere. Diurnal and semi-diurnal wave modes are observed at different latitudes and altitudes. The latitudinal and height dependence of the thermal tide modes will be investigated.

  14. Internally driven inertial waves in geodynamo simulations

    NASA Astrophysics Data System (ADS)

    Ranjan, A.; Davidson, P. A.; Christensen, U. R.; Wicht, J.

    2018-05-01

    Inertial waves are oscillations in a rotating fluid, such as the Earth's outer core, which result from the restoring action of the Coriolis force. In an earlier work, it was argued by Davidson that inertial waves launched near the equatorial regions could be important for the α2 dynamo mechanism, as they can maintain a helicity distribution which is negative (positive) in the north (south). Here, we identify such internally driven inertial waves, triggered by buoyant anomalies in the equatorial regions in a strongly forced geodynamo simulation. Using the time derivative of vertical velocity, ∂uz/∂t, as a diagnostic for traveling wave fronts, we find that the horizontal movement in the buoyancy field near the equator is well correlated with a corresponding movement of the fluid far from the equator. Moreover, the azimuthally averaged spectrum of ∂uz/∂t lies in the inertial wave frequency range. We also test the dispersion properties of the waves by computing the spectral energy as a function of frequency, ϖ, and the dispersion angle, θ. Our results suggest that the columnar flow in the rotation-dominated core, which is an important ingredient for the maintenance of a dipolar magnetic field, is maintained despite the chaotic evolution of the buoyancy field on a fast timescale by internally driven inertial waves.

  15. Analysis of Transient Shear Wave in Lossy Media.

    PubMed

    Parker, Kevin J; Ormachea, Juvenal; Will, Scott; Hah, Zaegyoo

    2018-07-01

    The propagation of shear waves from impulsive forces is an important topic in elastography. Observations of shear wave propagation can be obtained with numerous clinical imaging systems. Parameter estimations of the shear wave speed in tissues, and more generally the viscoelastic parameters of tissues, are based on some underlying models of shear wave propagation. The models typically include specific choices of the spatial and temporal shape of the impulsive force and the elastic or viscoelastic properties of the medium. In this work, we extend the analytical treatment of 2-D shear wave propagation in a biomaterial. The approach applies integral theorems relevant to the solution of the generalized Helmholtz equation, and does not depend on a specific rheological model of the tissue's viscoelastic properties. Estimators of attenuation and shear wave speed are derived from the analytical solutions, and these are applied to an elastic phantom, a viscoelastic phantom and in vivo liver using a clinical ultrasound scanner. In these samples, estimated shear wave group velocities ranged from 1.7 m/s in the liver to 2.5 m/s in the viscoelastic phantom, and these are lower-bounded by independent measurements of phase velocity. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  16. Baroclinic stationary waves in aquaplanet models

    NASA Astrophysics Data System (ADS)

    Lucarini, V.; Zappa, G.

    2012-04-01

    An aquaplanet model is used to study the nature of the highly persistent low frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, we find that a quasi-stationary (QS) wave five belongs to a wave packet obeying a well defined dispersion relation with eastward group velocity. The components of the dispersion relation with k>5 baroclinically convert eddy available potential energy into eddy kinetic energy, while those with k<5 are baroclinically neutral. In agreement with the Green's model of baroclinic instability, the wave five is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of waves, only acts as a positive feedback on its predominantly baroclinic energetics. The QS wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. We also find that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave energy is then trapped in the wave guide created by the upper tropospheric jet stream. In agreement with Green's theory, as the equator to pole SST difference is reduced the stationary marginally stable component shifts toward higher wavenumbers, while the wave five becomes neutral and westward propagating. Some properties of the aquaplanet QS waves are found in interesting agreement with a low frequency wave observed by Salby (1982) in the southern hemisphere DJF, so that this perspective on low frequency variability might be, apart from its value in terms of basic geophysical fluid dynamics, of specific interest for studying the Earth's atmosphere.

  17. Large wave at Daytona Beach, Florida, explained as a squall-line surge

    USGS Publications Warehouse

    Sallenger, A.H.; List, J.H.; Gelfenbaum, G.; Stumpf, R.P.; Hansen, M.

    1995-01-01

    On a clear calm evening during July 1992, an anomalously large wave, reportedly 6 m high struck the Daytona Beach, Florida area. It is hypothesized that a squall line and associated pressure jump, travelling at the speed of a free gravity wave, coupled resonantly with the sea surface forming the large wave or "squall-line surge'. The wave was forced along the length of the squall line, with the greatest amplitude occurring at the water depth satisfying the resonant condition. -from Authors

  18. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    NASA Astrophysics Data System (ADS)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  19. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  20. Introduction to Radar Polarimetry

    DTIC Science & Technology

    1991-04-23

    Coulomb force 11 1,2 Static etectric fields 13 1.3 Summary 15 2 ELECTROMAGNETIC WAVES 16 2.1 Harmonic plane waves 16 2.2 The average intensity of a...harmonic plane wave 17 2.3 Spherical harmonic waves 18 2.4 Summary 19 3 THE POLARIZATION OF AN ELECTROMAGNETIC WAVE 20 3.1 The polarization ellipse 20 3.2...CHANGE OF POLARIZATION 31 4.1 Simple examples 31 4.2 Scattering at a plane interface 33 4.3 Summary 36 5 THE SCATTERING MATRIX 37 5.1 Transmission

  1. The Craik-Leibovich Vortex Force as a Skin Effect

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2013-11-01

    The Craik-Leibovich (CL) equations are a surface-wave filtered version of the instantaneous Navier-Stokes equations in which the rectified effects of the surface waves are captured through a so-called ``vortex force'' term: the cross-product of the Stokes, or Lagrangian, mass drift associated with the filtered surface waves and the filtered vorticity vector. For locally generated wind waves, the Stokes drift is very strongly surface confined. In this scenario, the induced body force may be represented as a surface, or skin, effect. Using matched asymptotic analysis in this limit, we derive effective boundary conditions (BCs) for the flow beneath the Stokes drift layer (i.e. in the bulk of the mixed layer). We establish the regime of validity of the resulting formulation by performing linear stability analyses and numerical simulations of both the asymptotic model and the full CL equations for a variety of vertical Stokes drift profiles. The effective BC formulation offers both theoretical and computational advantages, and should be particularly useful for LES of Langmuir turbulence for which the need to resolve very small scale near-surface flow structures imposes severe computational constraints. GPC would like to acknowledge funding from the NSF award 0934827, administered by the Physical Oceanography Program.

  2. Nonlinearity Role in Long-Term Interaction of the Ocean Gravity Waves

    DTIC Science & Technology

    2012-09-30

    3 4 =s We found that in the fetch-limited case the wind forcing index s is similar to the time domain situation, and the wind forcing is given by...of its evolution. Fig.5 gives a graphical summary of four reference cases of self-similar evolution of wind-driven waves. These cases are shown as...different R, tangents of one-parametric dependencies H~TR height-to-period in logarithmic axes. Reference cases of growing wind sea are shown as

  3. FY16 NRL DoD High Performance Computing Modernization Program Annual Reports

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  4. Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model

    DTIC Science & Technology

    2013-08-26

    Teixeira, J., Peng, M., Hogan, T.F., Pauley, R., 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models...Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model David S. Trossman a,⇑, Brian K. Arbic a, Stephen T...input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds

  5. Swell and Sea in the Emerging Arctic Ocean

    DTIC Science & Technology

    2014-01-01

    exchanges of momentum, heat, and gases occur [Steele et al., 1989;Melville, 1996]. At the coasts, surface waves can force circulation and cause erosion...significant in forcing ice retreat [ Parkinson and Comiso, 2013], the waves asso- ciated with that storm were not modeled to be as large as the September storm...action at the Arctic coast, Geophys. Res. Lett., 38, L17503, doi:10.1029/2011GL048681. Parkinson , C. L., and J. C. Comiso (2013), On the 2012 record

  6. Forces Exerted by Waves on a Pipeline at or Near the Ocean Bottom

    DTIC Science & Technology

    1977-10-01

    horizontal anl . vertical range of the force data over the two wave cycles, and an envelope curve was drawn over these points. Examination of these plots as a...0. t.64 .396 14.30 .*If? 7.4% 7.94 7.94 31.29 * 6034 .043 -43.67 o0£a .260 0. 3.80 .986 1-4.8 .6192 1.2d. 9.26 IN 26 20.40 *4563 2.61 25057 3221 .250

  7. Solitonic properties for a forced generalized variable-coefficient Korteweg-de Vries equation for the atmospheric blocking phenomenon

    NASA Astrophysics Data System (ADS)

    Chai, Jun; Tian, Bo; Qu, Qi-Xing; Zhen, Hui-Ling; Chai, Han-Peng

    2018-07-01

    In this paper, investigation is given to a forced generalized variable-coefficient Korteweg-de Vries equation for the atmospheric blocking phenomenon. Based on the Lax pair, under certain variable-coefficient-dependent constraints, we present an infinite sequence of the conservation laws. Through the Riccati equations obtained from the Lax pair, a Wahlquist-Estabrook-type Bäcklund transformation (BT) is derived, based on which the nonlinear superposition formula as well as one- and two-soliton-like solutions are obtained. Via the truncated Painlevé expansion, we give a Painlevé BT, along with the one-soliton-like solutions. With the Painlevé BT, bilinear forms are constructed, and we get a bilinear BT as well as the corresponding one-soliton-like solutions. Bell-type bright and dark soliton-like waves and kink-type soliton-like waves are observed, respectively. Graphic analysis shows that (1) the velocities of the soliton-like waves are related to h(t), d(t), f(t) and R(t), while the soliton-like wave amplitudes just depend on f(t), and (2) with the nonzero f(t) and R(t), soliton-like waves propagate on the varying backgrounds, where h(t), d(t) and f(t) are the dispersive, dissipative and line-damping coefficients, respectively, R(t) is the external-force term, and t is the scaled time coordinate.

  8. Tidal dissipation in rotating fluid bodies: the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Lin, Yufeng; Ogilvie, Gordon I.

    2018-02-01

    We investigate effects of the presence of a magnetic field on tidal dissipation in rotating fluid bodies. We consider a simplified model consisting of a rigid core and a fluid envelope, permeated by a background magnetic field (either a dipolar field or a uniform axial field). The wave-like tidal responses in the fluid layer are in the form of magnetic Coriolis waves, which are restored by both the Coriolis force and the Lorentz force. Energy dissipation occurs through viscous damping and Ohmic damping of these waves. Our numerical results show that the tidal dissipation can be dominated by Ohmic damping even with a weak magnetic field. The presence of a magnetic field smooths out the complicated frequency dependence of the dissipation rate, and broadens the frequency spectrum of the dissipation rate, depending on the strength of the background magnetic field. However, the frequency-averaged dissipation is independent of the strength and structure of the magnetic field, and of the dissipative parameters in the approximation that the wave-like response is driven only by the Coriolis force acting on the non-wavelike tidal flow. Indeed, the frequency-averaged dissipation quantity is in good agreement with previous analytical results in the absence of magnetic fields. Our results suggest that the frequency-averaged tidal dissipation of the wave-like perturbations is insensitive to detailed damping mechanisms and dissipative properties.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less

  10. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to saturate to a constant value due to the effects of nonlinear viscous damping. A qualitatively similar behaviour has also been predicted for the damping of nonlinear density waves, as described within a streamline formalism (Borderies, Goldreich & Tremaine [1985]). The damping lengths which follow from the weakly nonlinear model depend more or less strongly on a set of different input parameters, such as the viscosity and the surface density of the unperturbed ring state. Further, they depend on the wave's amplitude at resonance. For a real wave, which has been excited by an external satellite, this amplitude can be deduced from the magnitude of the satellite's forcing potential. Appart from that, hydrodynamical simulations are being developed to study the nonlinear damping of resonantly forced density waves.

  11. Spin dynamics of qqq wave function on light front in high momentum limit of QCD: Role of qqq force

    NASA Astrophysics Data System (ADS)

    Mitra, A. N.

    2008-04-01

    The contribution of a spin-rich qqq force (in conjunction with pairwise qq forces) to the analytical structure of the qqq wave function is worked out in the high momentum regime of QCD where the confining interaction may be ignored, so that the dominant effect is Coulombic. A distinctive feature of this study is that the spin-rich qqq force is generated by a ggg vertex (a genuine part of the QCD Lagrangian) wherein the 3 radiating gluon lines end on as many quark lines, giving rise to a (Mercedes-Benz type) Y-shaped diagram. The dynamics is that of a Salpeter-like equation (3D support for the kernel) formulated covariantly on the light front, a la Markov-Yukawa Transversality Principle (MYTP) which warrants a 2-way interconnection between the 3D and 4D Bethe-Salpeter (BSE) forms for 2 as well as 3 fermion quarks. With these ingredients, the differential equation for the 3D wave function ϕ receives well-defined contributions from the qq and qqq forces. In particular a negative eigenvalue of the spin operator iσ1 · σ2 × σ3 which is an integral part of the qqq force, causes a characteristic singularity in the differential equation, signalling the dynamical effect of a spin-rich qqq force not yet considered in the literature. The potentially crucial role of this interesting effect vis-a-vis the so-called 'spin anomaly' of the proton, is a subject of considerable physical interest.

  12. Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm) - Volume #2 - Appendices #16-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooher, Brendan; Toman, William I.; Davy, Doug M.

    The California Wave Energy Test Center (CalWave) Feasibility Study project was funded over multiple phases by the Department of Energy to perform an interdisciplinary feasibility assessment to analyze the engineering, permitting, and stakeholder requirements to establish an open water, fully energetic, grid connected, wave energy test center off the coast of California for the purposes of advancing U.S. wave energy research, development, and testing capabilities. Work under this grant included wave energy resource characterization, grid impact and interconnection requirements, port infrastructure and maritime industry capability/suitability to accommodate the industry at research, demonstration and commercial scale, and macro and micro sitingmore » considerations. CalWave Phase I performed a macro-siting and down-selection process focusing on two potential test sites in California: Humboldt Bay and Vandenberg Air Force Base. This work resulted in the Vandenberg Air Force Base site being chosen as the most favorable site based on a peer reviewed criteria matrix. CalWave Phase II focused on four siting location alternatives along the Vandenberg Air Force Base coastline and culminated with a final siting down-selection. Key outcomes from this work include completion of preliminary engineering and systems integration work, a robust turnkey cost estimate, shoreside and subsea hazards assessment, storm wave analysis, lessons learned reports from several maritime disciplines, test center benchmarking as compared to existing international test sites, analysis of existing applicable environmental literature, the completion of a preliminary regulatory, permitting and licensing roadmap, robust interaction and engagement with state and federal regulatory agency personnel and local stakeholders, and the population of a Draft Federal Energy Regulatory Commission (FERC) Preliminary Application Document (PAD). Analysis of existing offshore oil and gas infrastructure was also performed to assess the potential value and re-use scenarios of offshore platform infrastructure and associated subsea power cables and shoreside substations. The CalWave project team was well balanced and was comprised of experts from industry, academia, state and federal regulatory agencies. The result of the CalWave feasibility study finds that the CalWave Test Center has the potential to provide the most viable path to commercialization for wave energy in the United States.« less

  13. Dispersal of Sediment in the Western Adriatic during Energetic Wintertime Forcing

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Sherwood, C. R.; Mullenbach, B. L.; Pullen, J. D.

    2003-12-01

    EuroSTRATAFORM aims to relate sediment delivery and reworking to seabed morphology and stratigraphy through observations and modeling of water column transport. The Po River dominates buoyancy and sediment input into the Adriatic Sea, but small Apeninne rivers (the Chienti, Pescara, etc.) may produce locally important signals. Sedimentation is influenced by fluvial supply, resuspension by waves and currents, and transport by oceanographic currents forced by winds and buoyancy. Transport is likely highest during times of energetic forcing; including Bora events with northeasterly winds and Sirocco events with southeasterly winds. It is difficult, from field measurements alone, to characterize dispersal and convergence patterns over the relevant spatial scales. We applied a three-dimensional hydrodynamic model that includes fluvial delivery, transport, resuspension, and deposition of sediment to quantify sediment dispersal with a 2-km resolution over the entire Adriatic. Circulation calculations were driven by spatially- and temporally-varying wind fields for the Fall / Winter of 2002 / 2003 and realistic Po and Apennine river discharges. Waves were hindcast with the SWAN model. Dispersion of both resuspended and river-derived sediment was estimated for periods that contained intense Bora and Sirocco winds. Predicted sediment dispersal rates and patterns are sensitive to forcing winds, buoyancy flux, and wave patterns. Higher sediment flux was predicted during Bora conditions than during Sirocco conditions. Sirocco winds weaken the Western Adriatic Coastal Current (WACC), and because they tend to concentrate over the Eastern Adriatic, they often fail to create especially energetic waves in the Western Adriatic. Bora wind conditions, on the other hand, intensify the WACC and can build high wave energies over the northwestern Adriatic. Most of the sediment transport occurs during Bora, with a net southward flux. These predictions will be compared to field observations made as part of the EuroSTRATAFORM experiment.

  14. 75 FR 5708 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... suspended by wave action near the bottom, and are moved by bottom currents or directly as bedload. Tidal, wind and wave forces contribute to generating bottom currents, which act in relation to the sediment... littoral zone, limit wave effects due to mounding, and keep material from reentering the navigation channel...

  15. Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account. The time dependent part of the ponderomotive force is discussed.

  16. Avoided-Level-Crossing Spectroscopy with Dressed Matter Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckardt, Andre; Holthaus, Martin

    2008-12-12

    We devise a method for probing resonances of macroscopic matter waves in shaken optical lattices by monitoring their response to slow parameter changes, and show that such resonances can be disabled by particular choices of the driving amplitude. The theoretical analysis of this scheme reveals far-reaching analogies between dressed atoms and time periodically forced matter waves.

  17. Avoided-Level-Crossing Spectroscopy with Dressed Matter Waves

    NASA Astrophysics Data System (ADS)

    Eckardt, André; Holthaus, Martin

    2008-12-01

    We devise a method for probing resonances of macroscopic matter waves in shaken optical lattices by monitoring their response to slow parameter changes, and show that such resonances can be disabled by particular choices of the driving amplitude. The theoretical analysis of this scheme reveals far-reaching analogies between dressed atoms and time periodically forced matter waves.

  18. Atmospheric planetary-wave response to external forcing

    NASA Technical Reports Server (NTRS)

    Stevens, D. E.; Reiter, E. R.

    1983-01-01

    A summary of the progress report is given, covering the following areas: atmospheric circulation, planetary waves, adaption of the model to the Cyber 205, continental heat flux anomalies, and nonlinear evolution of inertial instabilities in the tropics.

  19. Plane waves in magneto-thermoelastic anisotropic medium based on (L-S) theory under the effect of Coriolis and centrifugal forces

    NASA Astrophysics Data System (ADS)

    Alesemi, Meshari

    2018-04-01

    The objective of this research is to illustrate the effectiveness of the thermal relaxation time based on the theory of Lord-Shulman (L-S), Coriolis and Centrifugal Forces on the reflection coefficients of plane waves in an anisotropic magneto-thermoelastic medium. Assuming the elastic medium is rotating with stable angular velocity and the imposed magnetic field is parallel to the boundary of the half-space. The basic equations of a transversely isotropic rotating magneto-thermoelastic medium are formulated according to thermoelasticity theory of Lord-Shulman (L-S). Next to that, getting the velocity equation which is illustrated to show existence of three quasi-plane waves propagating in the medium. The amplitude ratios coefficients of these plane waves have been given and then computed numerically and plotted graphically to demonstrate the influences of the rotation on the Zinc material.

  20. Separation control by vortex generator devices in a transonic channel flow

    NASA Astrophysics Data System (ADS)

    Bur, Reynald; Coponet, Didier; Carpels, Yves

    2009-12-01

    An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.

  1. Patterns in the Waves

    NASA Astrophysics Data System (ADS)

    Coco, G.; Guza, R. T.; Garnier, R.; Lomonaco, P.; Lopez De San Roman Blanco, B.; Dalrymple, R. A.; Xu, M.

    2014-12-01

    Edge waves, gravity waves trapped close to the shoreline by refraction, can in some cases form a standing wave pattern with alongshore periodic sequence of high and low runup. Nonlinear mechanisms for generation of edge waves by monochromatic waves incident on a planar beach from deep water have been elaborated theoretically and in the lab. Edge waves have been long considered a potential source for alongshore periodic morphological patterns in the swash (e.g., beach cusps), and edge-wave based predictions of cusp spacing compare qualitatively well with many field observations. We will discuss the extension of lab observations and numerical modeling to include incident waves with significant frequency and directional bandwidth. Laboratory experiments were performed at the Cantabria Coastal and Ocean Basin. The large rectangular basin (25 m cross-shore by 32 m alongshore) was heavily instrumented, had reflective sidewalls, and a steep concrete beach (slope 1:5) with a constant depth (1m) section between the wavemaker and beach. With monochromatic, normally incident waves we observed the expected, previously described subharmonic observations. Edge wave vertical heights at the shoreline reached 80cm, and edge wave uprushes exceeded the sloping beach freeboard. When frequency and frequency-directional spread are increased, the excited edge wave character changes substantially. In some cases, subharmonic excitation is suppressed completely. In other cases, edge waves are excited intermittently and unpredictably. The spatially and temporally steady forcing required for strong, persistent subharmonic instability is lacking with even modestly spread (direction and frequency) incident waves. An SPH numerical model is capable of reproducing aspects of the observations. It seems unlikely to us that subhamonic edge waves alone are responsible for most cusp formation on natural beaches. The steady incident wave forcing needed to initiate subharmonic growth, and to maintain subharmonics long enough to build cups, are abundantly present with an incident plane wave, but lacking in many natural settings. Although subharmonic edge waves can potentially start the initial spacing, positive feedback between flow and morphology are likely critical to cusp growth.

  2. Segregation of helicity in inertial wave packets

    NASA Astrophysics Data System (ADS)

    Ranjan, A.

    2017-03-01

    Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.

  3. Migrating diurnal tide variability induced by propagating planetary waves

    NASA Astrophysics Data System (ADS)

    Chang, Loren C.

    The migrating diurnal tide is one of the dominant dynamical features in the low latitudes of the Earth's Mesosphere and Lower Thermosphere (MLT) region, representing the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. Ground-based observations of the tide have resolved short term variations attributed to nonlinear interactions between the tide and planetary waves also in the region. However, the conditions, effects, and mechanisms of a planetary wave - tidal interaction are still unclear. These questions are addressed using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) to examine two types of planetary waves, known to attain significant amplitudes in the low latitude and equatorial region where the migrating diurnal tide is dominant. The quasi-two day wave (QTDW) can rapidly amplify to large amplitudes from the summer hemisphere during post-solstice periods, while ultra fast Kelvin (UFK) waves occur sporadically in the temperature and zonal wind fields of the equatorial lower thermosphere. While child waves resulting from a nonlinear interaction are resolved in both cases, the response of the tidal structure and amplitudes to the two planetary waves differs significantly. In the case of the QTDW, the migrating diurnal tide displays a general amplitude decrease of 20 - 40%, as well as a shortening of vertical wavelength by roughly 4 km. Nonlinear advection is found to result in energy transfer to and from the tide, resulting in latitudinal smoothing of the tidal structure. The QTDW also produces significant changes to the mean zonal winds in the equator and at summer mid to high latitudes that can also account for changes in tidal amplitude and vertical wavelength. Filtering of gravity waves by the altered mean winds can also result in changes to the zonal mean zonal winds in the tropics. However, gravity wave momentum forcing on the tide is smaller than the advective tendencies throughout most of the MLT region, and cannot iv directly account for the changes in the tide during the QTDW model simulation. In the case of the UFK wave, baseline tidal amplitudes are found to show much smaller changes of 10% or less, despite the larger amplitudes of the UFK wave in the lower thermosphere region compared to the QTDW. Analysis of the nonlinear advective tendencies shows smaller magnitudes than those in the the case of the QTDW, with interaction regions limited primarily to a smaller region in latitude and altitude. Increased tidal convergence in the tropical lower thermosphere is attributed to eastward forcing of the background zonal mean winds by the UFK wave. Increasing the UFK wave forcing by an order of magnitude, although unrealistic, results in changes to the tide comparable in magnitude to the case of the QTDW. While child waves generated by nonlinear advection are present with both of the propagating planetary waves examined, the QTDW produces much greater tidal variability through both nonlinear and linear advection due to its broader horizontal and vertical structure, compared to the UFK wave. Planetary wave induced background atmosphere changes can also drive tidal variability, suggesting that changes to the tidal response in the MLT can also result from this indirect coupling mechanism, in addition to nonlinear advection.

  4. Climate-driven variations in thermal forcing across a nearshore reef system during a marine heat wave and its potential impact on coral calcification

    NASA Astrophysics Data System (ADS)

    Falter, J.; Zhang, Z.; Lowe, R.; Foster, T.; McCulloch, M. T.

    2016-02-01

    We examined the oceanic and atmospheric forces driving seasonal and spatial variability in water temperature across backreef and lagoonal habitats at Coral Bay at Ningaloo Reef, Western Australia before, during, and after a historically unprecedented marine heat wave and resulting mass bleaching event in 2010-2011. Local deviations in the mean daily temperature of nearshore reef waters from offshore values were a linear function of the combined effect of net atmospheric heating and offshore wave height and period . While intra-annual variation in local heat exchange was driven mainly by seasonal changes in short-wave radiation; intra-annual variation in local cooling was driven mostly by changes in relative humidity (r2 = 0.60) and wind speed (r2 = 0.31) which exhibited no apparent seasonality. We demonstrate good agreement between nearshore reef temperatures modeled from offshore sea surface temperatures (SST), offshore wave forcing, and local atmospheric heat fluxes with observed temperatures using a simple linear model (r2 = 0.31 to 0.69, root-mean-square error = 0.4°C to 0.9°C). Using these modeled nearshore reef temperature records, we show that during the heat wave local thermal stresses across the reef reached as high as 18-34 °C-weeks and were being both intensified and accelerated by regional climate forcing when compared with offshore waters (12.6 °C-weeks max). Measurements of coral calcification made in Coral Bay following the bleaching event appear to lack any distinct seasonality; possibly due to the long-term effects of acute thermal stress. However, similarly minimal seasonality in calcification rates had also been observed in an Acropora-dominated community at Ningaloo years before the heat wave as well as more recently in coral from regions in WA that had avoided mass bleaching. These observations, in conjunction with observations that most of the bleached communities within Coral Bay had recovered their color within 3-6 months of the bleaching event, suggest that how reef building coral respond to a severe thermal stress event can be somewhat nuanced depending on the local and regional setting.

  5. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    NASA Technical Reports Server (NTRS)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In the tropics, only with the AD parameterization can the model produce realistic semiannual oscillations.

  6. Wind Generated Rogue Waves in an Annular Wave Flume.

    PubMed

    Toffoli, A; Proment, D; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M

    2017-04-07

    We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an unlimited-fetch condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.

  7. Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force

    PubMed Central

    Akbaş, Şeref Doğuşcan

    2014-01-01

    This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050

  8. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers

    PubMed Central

    Wu, Mu-ying; Ling, Dong-xiong; Ling, Lin; Li, William; Li, Yong-qing

    2017-01-01

    Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints. PMID:28211526

  9. Acoustic levitation of an object larger than the acoustic wavelength.

    PubMed

    Andrade, Marco A B; Okina, Fábio T A; Bernassau, Anne L; Adamowski, Julio C

    2017-06-01

    Levitation and manipulation of objects by sound waves have a wide range of applications in chemistry, biology, material sciences, and engineering. However, the current acoustic levitation techniques are mainly restricted to particles that are much smaller than the acoustic wavelength. In this work, it is shown that acoustic standing waves can be employed to stably levitate an object much larger than the acoustic wavelength in air. The levitation of a large slightly curved object weighting 2.3 g is demonstrated by using a device formed by two 25 kHz ultrasonic Langevin transducers connected to an aluminum plate. The sound wave emitted by the device provides a vertical acoustic radiation force to counteract gravity and a lateral restoring force that ensure horizontal stability to the levitated object. In order to understand the levitation stability, a numerical model based on the finite element method is used to determine the acoustic radiation force that acts on the object.

  10. Dynamical criterion for a marginally unstable, quasi-linear behavior in a two-layer model

    NASA Technical Reports Server (NTRS)

    Ebisuzaki, W.

    1988-01-01

    A two-layer quasi-geostrophic flow forced by meridional variations in heating can be in regimes ranging from radiative equilibrium to forced geostrophic turbulence. Between these extremes is a regime where the time-mean (zonal) flow is marginally unstable. Using scaling arguments, it is concluded that such a marginally unstable state should occur when a certain parameter, measuring the strength of wave-wave interactions relative to the beta effect and advection by the thermal wind, is small. Numerical simulations support this proposal. A transition from the marginally unstable regime to a more nonlinear regime is then examined through numerical simulations with different radiative forcings. It is found that transition is not caused by secondary instability of waves in the marginally unstable regime. Instead, the time-mean flow can support a number of marginally unstable normal modes. These normal modes interact with each other, and if they are of sufficient amplitude, the flow enters a more nonlinear regime.

  11. Simulations of Variability and Waves at Cloud Altitudes Using a Venus Middle Atmosphere General Circulation Model

    NASA Astrophysics Data System (ADS)

    Parish, H. F.; Mitchell, J.

    2017-12-01

    We have developed a Venus general circulation model, the Venus Middle atmosphere Model (VMM), to simulate the atmosphere from just below the cloud deck 40 km altitude to around 100 km altitude. Our primary goal is to assess the influence of waves on the variability of winds and temperatures observed around Venus' cloud deck. Venus' deep atmosphere is not simulated directly in the VMM model, so the effects of waves propagating upwards from the lower atmosphere is represented by forcing at the lower boundary of the model. Sensitivity tests allow appropriate amplitudes for the wave forcing to be determined by comparison with Venus Express and probe measurements and allow the influence of waves on the cloud-level atmosphere to be investigated. Observations at cloud altitudes are characterized by waves with a wide variety of periods and wavelengths, including gravity waves, thermal tides, Rossby waves, and Kelvin waves. These waves may be generated within the cloud deck by instabilities, or may propagate up from the deep atmosphere. Our development of the VMM is motivated by the fact that the circulation and dynamics between the surface and the cloud levels are not well measured and wind velocities below 40 km altitude cannot be observed remotely, so we focus on the dynamics at cloud levels and above. Initial results from the VMM with a simplified radiation scheme have been validated by comparison with Pioneer Venus and Venus Express observations and show reasonable agreement with the measurements.

  12. Stress Wave Source Characterization: Impact, Fracture, and Sliding Friction

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory Christofer

    Rapidly varying forces, such as those associated with impact, rapid crack propagation, and fault rupture, are sources of stress waves which propagate through a solid body. This dissertation investigates how properties of a stress wave source can be identified or constrained using measurements recorded at an array of sensor sites located far from the source. This methodology is often called the method of acoustic emission and is useful for structural health monitoring and the noninvasive study of material behavior such as friction and fracture. In this dissertation, laboratory measurements of 1--300 mm wavelength stress waves are obtained by means of piezoelectric sensors which detect high frequency (10 kHz--3MHz) motions of a specimen's surface, picometers to nanometers in amplitude. Then, stress wave source characterization techniques are used to study ball impact, drying shrinkage cracking in concrete, and the micromechanics of stick-slip friction of Poly(methyl methacrylate) (PMMA) and rock/rock interfaces. In order to quantitatively relate recorded signals obtained with an array of sensors to a particular stress wave source, wave propagation effects and sensor distortions must be accounted for. This is achieved by modeling the physics of wave propagation and transduction as linear transfer functions. Wave propagation effects are precisely modeled by an elastodynamic Green's function, sensor distortion is characterized by an instrument response function, and the stress wave source is represented with a force moment tensor. These transfer function models are verified though calibration experiments which employ two different mechanical calibration sources: ball impact and glass capillary fracture. The suitability of the ball impact source model, based on Hertzian contact theory, is experimentally validated for small (˜1 mm) balls impacting massive plates composed of four different materials: aluminum, steel, glass, and PMMA. Using this transfer function approach and the two mechanical calibration sources, four types of piezoelectric sensors were calibrated: three commercially available sensors and the Glaser-type conical piezoelectric sensor, which was developed in the Glaser laboratory. The distorting effects of each sensor are modeled using autoregressive-moving average (ARMA) models, and because vital phase information is robustly incorporated into these models, they are useful for simulating or removing sensor-induced distortions, so that a displacement time history can be retrieved from recorded signals. The Glaser-type sensor was found to be very well modeled as a unidirectional displacement sensor which detects stress wave disturbances down to about 1 picometer in amplitude. Finally, the merits of a fully calibrated experimental system are demonstrated in a study of stress wave sources arising from sliding friction, and the relationship between those sources and earthquakes. A laboratory friction apparatus was built for this work which allows the micro-mechanisms of friction to be studied with stress wave analysis. Using an array of 14 Glaser-type sensors, and precise models of wave propagation effects and the sensor distortions, the physical origins of the stress wave sources are explored. Force-time functions and focal mechanisms are determined for discrete events found amid the "noise" of friction. These localized events are interpreted to be the rupture of micrometer-sized contacts, known as asperities. By comparing stress wave sources from stick-slip experiments on plastic/plastic and rock/rock interfaces, systematic differences were found. The rock interface produces very rapid (<1 microsecond) implosive forces indicative of brittle asperity failure and fault gouge formation, while rupture on the plastic interface releases only shear force and produces a source more similar to earthquakes commonly recorded in the field. The difference between the mechanisms is attributed to the vast differences in the hardness and melting temperatures of the two materials, which affect the distribution of asperities as well as their failure behavior. With proper scaling, the strong link between material properties and laboratory earthquakes will aid in our understanding of fault mechanics and the generation of earthquakes and seismic tremor.

  13. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  14. The role of precipitation in aerosol-induced changes in northern hemisphere wintertime stationary waves

    NASA Astrophysics Data System (ADS)

    Lewinschal, A.; Ekman, A. M. L.; Körnich, H.

    2012-04-01

    Aerosol particles have a considerable impact on the energy budget of the atmosphere due to their ability to scatter and absorb incoming solar radiation. Persistent particle emissions in certain regions of the world have lead to quasi-permanent aerosol forcing patterns. This spatially varying forcing pattern has the potential to modify temperature gradients that in turn alter pressure gradients and the atmospheric circulation. This study focuses on the effect of aerosol direct radiative forcing on northern hemisphere wintertime stationary waves. A global general circulation model based on the ECMWF operational forecast model is applied (EC-Earth). Aerosols are prescribed as monthly mean mixing ratios of sulphate, black carbon, organic carbon, dust and sea salt. Only the direct aerosol effect is considered. The climatic change is defined as the difference between model simulations using present-day and pre-industrial concentrations of aerosol particles. Data from 40-year long simulations using a coupled ocean-atmosphere model system are used. In EC-Earth, the high aerosol loading over South Asia leads to a surface cooling, which appears to enhance the South Asian winter monsoon and weaken the Indian Ocean Walker circulation. The anomalous Walker circulation leads to changes in tropical convective precipitation and consequent changes in latent heat release which effectively acts to generate planetary scale waves propagating into the extra-tropics. Using a steady-state linear model we verify that the aerosol-induced anomalous convective precipitation is a crucial link between the wave changes and the direct aerosol radiative forcing.

  15. Particle separation by phase modulated surface acoustic waves.

    PubMed

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  16. Modélisation morphodynamique cross-shore d'un estran vaseux

    NASA Astrophysics Data System (ADS)

    Waeles, Benoı̂t; Le Hir, Pierre; Silva Jacinto, Ricardo

    2004-08-01

    Numerical experiments were performed to simulate the profile evolution of an intertidal mudflat with a 1D cross-shore morphodynamical model. First, the hydrodynamical forcing is a cross-shore tidal current due to semi-diurnal variations of the free surface elevation at the open boundary. Further, considering the conservation of the action density of surface gravity waves, a wave height (and resulting bottom shear stress) calculation is added to the morphodynamical model. Results of the numerical experiments show that the shape of the profile reaches equilibrium. The mudflat progrades continually when the forcing is tide only, whereas it can be steady under the simultaneous action of tide and waves. To cite this article: B. Waeles et al., C. R. Geoscience 336 (2004).

  17. Modeled alongshore circulation and morphologic evolution onshore of a large submarine canyon

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.; Raubenheimer, B.; List, J. H.; Elgar, S.; Guza, R. T.; Lippmann, T. C.

    2012-12-01

    Alongshore circulation and morphologic evolution observed at an ocean beach during the Nearshore Canyon Experiment, onshore of a large submarine canyon in San Diego, CA (USA), are investigated using a two-dimensional depth-averaged numerical model (Delft3D). The model is forced with waves observed in ~500 m water depth and tidal constituents derived from satellite altimetry. Consistent with field observations, the model indicates that refraction of waves over the canyon results in wave focusing ~500 m upcoast of the canyon and shadowing onshore of the canyon. The spatial variability in the modeled wave field results in a corresponding non-uniform alongshore circulation field. In particular, when waves approach from the northwest the alongshore flow converges near the wave focal zone, while waves that approach from the southwest result in alongshore flow that diverges away from the wave focal zone. The direction and magnitude of alongshore flows are determined by a balance between the (often opposing) radiation stress and alongshore pressure gradients, consistent with observations and previous results. The largest observed morphologic evolution, vertical accretion of about 1.5 m in about 3 m water depth near the wave focal zone, occurred over a one-week period when waves from the northwest reached heights of 1.8 m. The model, with limited tuning, replicates the magnitude and spatial extent of the observed accretion and indicates that net accretion of the cross-shore profile was owing to alongshore transport from converging alongshore flows. The good agreement between the observed and modeled morphology change allows for an in-depth examination of the alongshore force balance that resulted in the sediment convergence. These results indicate that, at least in this case, a depth-averaged hydrodynamic model can replicate observed surfzone morphologic change resulting from forcing that is strongly non-uniform in the alongshore. Funding was provided by the Office of Naval Research, The National Science Foundation, a Woods Hole Oceanographic Institution and United States Geological Survey joint postdoctoral fellowship, and a National Security Science and Engineering Faculty Fellowship.

  18. Shear wave elasticity imaging based on acoustic radiation force and optical detection.

    PubMed

    Cheng, Yi; Li, Rui; Li, Sinan; Dunsby, Christopher; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing

    2012-09-01

    Tissue elasticity is closely related to the velocity of shear waves within biologic tissue. Shear waves can be generated by an acoustic radiation force and tracked by, e.g., ultrasound or magnetic resonance imaging (MRI) measurements. This has been shown to be able to noninvasively map tissue elasticity in depth and has great potential in a wide range of clinical applications including cancer and cardiovascular diseases. In this study, a highly sensitive optical measurement technique is proposed as an alternative way to track shear waves generated by the acoustic radiation force. A charge coupled device (CCD) camera was used to capture diffuse photons from tissue mimicking phantoms illuminated by a laser source at 532 nm. CCD images were recorded at different delays after the transmission of an ultrasound burst and were processed to obtain the time of flight for the shear wave. A differential measurement scheme involving generation of shear waves at two different positions was used to improve the accuracy and spatial resolution of the system. The results from measurements on both homogeneous and heterogeneous phantoms were compared with measurements from other instruments and demonstrate the feasibility and accuracy of the technique for imaging and quantifying elasticity. The relative error in estimation of shear wave velocity can be as low as 3.3% with a spatial resolution of 2 mm, and increases to 8.8% with a spatial resolution of 1 mm for the medium stiffness phantom. The system is shown to be highly sensitive and is able to track shear waves propagating over several centimetres given the ultrasound excitation amplitude and the phantom material used in this study. It was also found that the reflection of shear waves from boundaries between regions with different elastic properties can cause significant bias in the estimation of elasticity, which also applies to other shear wave tracking techniques. This bias can be reduced at the expense of reduced spatial resolution. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters

    NASA Astrophysics Data System (ADS)

    Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei

    2016-12-01

    The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.

  20. Mass, Energy, Space And Time Systemic Theory---MEST

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2010-03-01

    Things have their physical system of the mass, energy, space and time of themselves-MEST. The matter have the physical systemic moel like that the mass-energy is center and the space-time is around. The time is from the frequency of wave, the space is from the amplitude of wave. What is the physical effection of the wave. The gravity and inertial force is from the wave. Not only the planets have the mass and the kinetic energy, but also it have the wave and the wave energy. According to the equivalence principle of the general relativity, there is the equation: ma=mg and mv^2 /2= δmc^2. The energy equation of the planets: E=mv^2=mgr (v is velocity) be bring put forward. In quantum mechanics, according to the quantum light theory and the de Broglie's theory , there are the equation of the wave: E=hν, p=h/λ (h is Planck constant, p is momentum, λ is the wavelengh), and there is the equation of the wave: E=mc^2. So the energy equation of the planets: E=mv^2 = mv^2 /2 + δmc^2 (mv^2 /2= δmc^2 ) be bring put forward. The equation: δmc^2 show that the planets have the wave of itself, and the wave give the planets the energy. So it do not fall from the heaven. When the matter go into the heaven, it need get the wave energy (like the potential energy). So we can make a new light-flight with the light-driving force.

  1. Dynamic groundwater flows and geochemistry in a sandy nearshore aquifer over a wave event

    NASA Astrophysics Data System (ADS)

    Malott, Spencer; O'Carroll, Denis M.; Robinson, Clare E.

    2016-07-01

    Dynamic coastal forcing influences the transport of pollutants in nearshore aquifers and their ultimate flux to coastal waters. In this study, field data are presented that show, for the first time, the influence of a period of intensified wave conditions (wave event) on nearshore groundwater flows and geochemistry in a sandy beach. Field measurements at a freshwater beach allow wave effects to be quantified without other complex forcing that are present along marine shorelines (e.g., tides). Pressure transducer data obtained over an isolated wave event reveal the development of transient groundwater flow recirculations. The groundwater flows were simulated in FEFLOW using a phase-averaged wave setup approach to represent waves acting on the sediment-water interface. Comparison of measured and simulated data indicates that consideration of wave setup alone is able to adequately capture wave-induced perturbations in groundwater flows. While prior studies have shown sharp pH and redox spatial zonations in nearshore aquifers, this study reveals rapid temporal variations in conductivity, pH, and redox (ORP) in shallow sediments (up to 0.5 m depth) in response to varying wave conditions. Comparison of head gradients with calculated conductivity and pH mixing ratios indicates the controlling effect of the wave-induced water exchange and flows in driving the observed geochemical dynamics. While we are not able to conclusively determine the extent to which temporal variations are caused by conservative mixing versus reactive processes, the pH and ORP variations observed will have significant implications for the fate of reactive pollutants discharging through sandy nearshore aquifers.

  2. The forced vibration of one-dimensional multi-coupled periodic structures: An application to finite element analysis

    NASA Astrophysics Data System (ADS)

    Mead, Denys J.

    2009-01-01

    A general theory for the forced vibration of multi-coupled one-dimensional periodic structures is presented as a sequel to a much earlier general theory for free vibration. Starting from the dynamic stiffness matrix of a single multi-coupled periodic element, it derives matrix equations for the magnitudes of the characteristic free waves excited in the whole structure by prescribed harmonic forces and/or displacements acting at a single periodic junction. The semi-infinite periodic system excited at its end is first analysed to provide the basis for analysing doubly infinite and finite periodic systems. In each case, total responses are found by considering just one periodic element. An already-known method of reducing the size of the computational problem is reexamined, expanded and extended in detail, involving reduction of the dynamic stiffness matrix of the periodic element through a wave-coordinate transformation. Use of the theory is illustrated in a combined periodic structure+finite element analysis of the forced harmonic in-plane motion of a uniform flat plate. Excellent agreement between the computed low-frequency responses and those predicted by simple engineering theories validates the detailed formulations of the paper. The primary purpose of the paper is not towards a specific application but to present a systematic and coherent forced vibration theory, carefully linked with the existing free-wave theory.

  3. Restoration of the contact surface in FORCE-type centred schemes I: Homogeneous two-dimensional shallow water equations

    NASA Astrophysics Data System (ADS)

    Canestrelli, Alberto; Toro, Eleuterio F.

    2012-10-01

    Recently, the FORCE centred scheme for conservative hyperbolic multi-dimensional systems has been introduced in [34] and has been applied to Euler and relativistic MHD equations, solved on unstructured meshes. In this work we propose a modification of the FORCE scheme, named FORCE-Contact, that provides improved resolution of contact and shear waves. This paper presents the technique in full detail as applied to the two-dimensional homogeneous shallow water equations. The improvements due to the new method are particularly evident when an additional equation is solved for a tracer, since the modified scheme exactly resolves isolated and steady contact discontinuities. The improvement is considerable also for slowly moving contact discontinuities, for shear waves and for steady states in meandering channels. For these types of flow fields, the numerical results provided by the new FORCE-Contact scheme are comparable with, and sometimes better than, the results obtained from upwind schemes, such as Roes scheme for example. In a companion paper, a similar approach to restoring the missing contact wave and preserving well-balanced properties for non-conservative one- and two-layer shallow water equations is introduced. However, the procedure is general and it is in principle applicable to other multidimensional hyperbolic systems in conservative and non-conservative form, such as the Euler equations for compressible gas dynamics.

  4. Process Contributions to Cool Java SST Anomalies at the Onset of Positive Indian Ocean Dipole Events

    NASA Astrophysics Data System (ADS)

    Delman, A. S.; McClean, J.; Sprintall, J.; Talley, L. D.

    2016-12-01

    The seasonal upwelling region along the south coast of Java is the first area to exhibit the negative SST anomalies associated with positive Indian Ocean Dipole (pIOD) events. The seasonal cooling in austral winter is driven by local wind forcing; however, recent observational studies have suggested that the anomalous Java cooling that starts during May-July of pIOD years is driven largely by intraseasonal wind variability along the equator, which forces upwelling Kelvin waves that propagate to the coast of Java. Using observations and an eddy-active ocean GCM simulation, the impacts of local wind stress and remotely-forced Kelvin waves are assessed and compared to the effects of mesoscale eddies and outflows from nearby Lombok Strait. A Kelvin wave coefficient computed from altimetry data shows anomalous levels of upwelling Kelvin wave activity during May-July of all pIOD years, indicating that Kelvin waves are an important and perhaps necessary precondition for pIOD events. Correlation analyses also suggest that flows through Lombok Strait and winds along the Indonesian Throughflow may be influential, though their impacts are more difficult to isolate. Composite temperature budgets from the ocean GCM indicate that advection and diabatic vertical mixing are the primary mechanisms for anomalous mixed layer cooling south of Java. The advection term is further decomposed by linearly regressing model velocity and temperature anomalies onto indices representing each process. According to this process decomposition, the local wind stress and Kelvin waves together account for most of the anomalous advective cooling, though the anomalous cooling effect of local wind stress may be overestimated in the model due to wind and stratification biases. The process decomposition also shows a very modest warming effect from mesoscale eddies. These results demonstrate both the IOD's resemblance to ENSO in the importance of Kelvin waves for its evolution, and notable differences from ENSO that arise from the complex interplay of local winds, planetary waves, stratification, eddies, and topography in the Indonesian region.

  5. CYCLOTRON-WAVE INSTABILITIES,

    DTIC Science & Technology

    Interactions of waves on electron streams or plasmas are studied for several geometric configurations of finite cross section in a finite magnetic...velocity parallel to the magnetic field. It is further assumed that either macroscopic neutrality exists or static spacecharge forces are negligible. For...the most part the quasi-static analysis is used. For the case of two drifting streams cyclotron waves act to giveinstabilities which are either

  6. Was there a basis for anticipating the 2010 Russian heat wave?

    NASA Astrophysics Data System (ADS)

    Dole, Randall; Hoerling, Martin; Perlwitz, Judith; Eischeid, Jon; Pegion, Philip; Zhang, Tao; Quan, Xiao-Wei; Xu, Taiyi; Murray, Donald

    2011-03-01

    The 2010 summer heat wave in western Russia was extraordinary, with the region experiencing the warmest July since at least 1880 and numerous locations setting all-time maximum temperature records. This study explores whether early warning could have been provided through knowledge of natural and human-caused climate forcings. Model simulations and observational data are used to determine the impact of observed sea surface temperatures (SSTs), sea ice conditions and greenhouse gas concentrations. Analysis of forced model simulations indicates that neither human influences nor other slowly evolving ocean boundary conditions contributed substantially to the magnitude of this heat wave. They also provide evidence that such an intense event could be produced through natural variability alone. Analysis of observations indicate that this heat wave was mainly due to internal atmospheric dynamical processes that produced and maintained a strong and long-lived blocking event, and that similar atmospheric patterns have occurred with prior heat waves in this region. We conclude that the intense 2010 Russian heat wave was mainly due to natural internal atmospheric variability. Slowly varying boundary conditions that could have provided predictability and the potential for early warning did not appear to play an appreciable role in this event.

  7. Bubbling route to strange nonchaotic attractor in a nonlinear series LCR circuit with a nonsinusoidal force.

    PubMed

    Senthilkumar, D V; Srinivasan, K; Thamilmaran, K; Lakshmanan, M

    2008-12-01

    We identify an unconventional route to the creation of a strange nonchaotic attractor (SNA) in a quasiperiodically forced electronic circuit with a nonsinusoidal (square wave) force as one of the quasiperiodic forces through numerical and experimental studies. We find that bubbles appear in the strands of the quasiperiodic attractor due to the instability induced by the additional square-wave-type force. The bubbles then enlarge and get increasingly wrinkled as a function of the control parameter. Finally, the bubbles get extremely wrinkled (while the remaining parts of the strands of the torus remain largely unaffected) resulting in the creation of the SNA; we term this the bubbling route to the SNA. We characterize and confirm this creation from both experimental and numerical data using maximal Lyapunov exponents and their variance, Poincaré maps, Fourier amplitude spectra, and spectral distribution functions. We also strongly confirm the creation of a SNA via the bubbling route by the distribution of the finite-time Lyapunov exponents.

  8. Hydrodynamic force characteristics of slender cylinders in the splash zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haritos, N.; Daliri, M.R.

    1995-12-31

    This paper presents results from a pilot experimental program of research being performed on segmented vertical surface-piercing cylinders in the Department of Civil and Environmental Engineering at The University of Melbourne. The primary aim of this investigation is to determine the influence of the splash zone on the hydrodynamic force characteristics of such cylinders to wave loading in the Morison regime. This influence is assessed from a comparison of the observed force characteristics of instrumented segments located in the splash zone with the corresponding results obtained from similarly instrumented segments located in the fully submerged zone and from those obtainedmore » for the cylinder as a whole via measurements of the cylinder tip restraint force. Results to hand for uni-directional regular waves suggest that there appears to be a mild frequency dependence in the inertia force coefficient in the splash zone which only marginally exceeds the corresponding values observed for a submerged segment immediately below this zone.« less

  9. Intestinal biomechanics simulator for robotic capsule endoscope validation.

    PubMed

    Slawinski, Piotr R; Oleynikov, Dmitry; Terry, Benjamin S

    2015-01-01

    This work describes the development and validation of a novel device which simulates important forces experienced by Robotic Capsule Endoscopes (RCE) in vivo in the small intestine. The purpose of the device is to expedite and lower the cost of RCE development. Currently, there is no accurate in vitro test method nor apparatus to validate new RCE designs; therefore, RCEs are tested in vivo at a cost of ∼$1400 per swine test. The authors have developed an in vitro RCE testing device which generates two peristaltic waves to accurately simulate the two biomechanical actions of the human small intestine that are most relevant to RCE locomotion: traction force and contact force. The device was successfully calibrated to match human physiological ranges for traction force (4-40 gf), contact force (80-500 gf) and peristaltic wave propagation speed (0.08-2 cm s(-1)) for a common RCE capsule geometry of 3.5 cm length and 1.5 cm diameter.

  10. Amplification of nonlinear surface waves by wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leblanc, Stephane

    2007-10-15

    A weakly nonlinear analysis is conducted to study the evolution of slowly varying wavepackets with small but finite amplitudes, that evolve at the interface between air and water under the effect of wind. In the inviscid assumption, wave envelopes are governed by cubic nonlinear Schroedinger or Davey-Stewartson equations forced by a linear term corresponding to Miles' mechanism of wave generation. Under fair wind, it is shown that Stokes waves grow exponentially and that Benjamin-Feir instability becomes explosive.

  11. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  12. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94

    NASA Astrophysics Data System (ADS)

    Newberger, P. A.; Allen, J. S.

    2007-08-01

    A three-dimensional primitive-equation model for application to the nearshore surf zone has been developed. This model, an extension of the Princeton Ocean Model (POM), predicts the wave-averaged circulation forced by breaking waves. All of the features of the original POM are retained in the extended model so that applications can be made to regions where breaking waves, stratification, rotation, and wind stress make significant contributions to the flow behavior. In this study we examine the effects of breaking waves and wind stress. The nearshore POM circulation model is embedded within the NearCom community model and is coupled with a wave model. This combined modeling system is applied to the nearshore surf zone off Duck, North Carolina, during the DUCK94 field experiment of October 1994. Model results are compared to observations from this experiment, and the effects of parameter choices are examined. A process study examining the effects of tidal depth variation on depth-dependent wave-averaged currents is carried out. With identical offshore wave conditions and model parameters, the strength and spatial structure of the undertow and of the alongshore current vary systematically with water depth. Some three-dimensional solutions show the development of shear instabilities of the alongshore current. Inclusion of wave-current interactions makes an appreciable difference in the characteristics of the instability.

  13. Numerical simulations of internal wave generation by convection in water.

    PubMed

    Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton J; Vasil, Geoffrey M; Brown, Benjamin P; Quataert, Eliot; Oishi, Jeffrey S

    2015-06-01

    Water's density maximum at 4°C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4°C, but stably stratified above 4°C. We present numerical simulations of a waterlike fluid near its density maximum in a two-dimensional domain. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. To isolate the physical mechanism exciting internal waves, we use the spectral code dedalus to run several simplified model simulations of our more detailed simulation. We use data from the full simulation as source terms in two simplified models of internal-wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via the mechanical oscillator effect. We find excellent agreement between the waves generated in the full simulation and the simplified simulation implementing the bulk excitation mechanism. The interface forcing simulations overexcite high-frequency waves because they assume the excitation is by the "impulsive" penetration of plumes, which spreads energy to high frequencies. However, we find that the real excitation is instead by the "sweeping" motion of plumes parallel to the interface. Our results imply that the bulk excitation mechanism is a very accurate heuristic for internal-wave generation by convection.

  14. Wave-vortex interactions in the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Guo, Yuan; Bühler, Oliver

    2014-02-01

    This is a theoretical study of wave-vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave-vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave-vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  15. Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays

    NASA Astrophysics Data System (ADS)

    O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.

    2016-02-01

    Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.

  16. Water-waves frequency upshift of the spectral mean due to wind forcing

    NASA Astrophysics Data System (ADS)

    Eeltink, Debbie; Chabchoub, Amin; Brunetti, Maura; Kasparian, Jerome; Kimmoun, Olivier; Branger, Hubert

    2017-04-01

    The effect of wind forcing on monochromatic modulated water waves was investigated both numerically and experimentally in the context of the Modified Non-Linear Schrödinger (MNLS) equation framework. While wind is usually associated with a frequency downshift of the dominant spectral peak, we show that it may induce an upshift of the spectral mean due to an asymmetric amplification of the spectrum. Here the weighted average spectral mean is equal to the ratio of the momentum of the envelope to its norm and it detects any asymmetries in the spectrum (Segur et al. 2005). Wind can however indirectly induce frequency downshifts, by promoting dissipative effects like wave breaking. We highlight that the definition of the up- and downshift in terms of peak frequency or average frequency is critical for a relevant discussion. In our model, the wind input consists of a leading order forcing term that amplifies all frequencies equally and induces a broadening of the spectrum, and a higher order asymmetric term (Brunetti et al. 2014; Brunetti & Kasparian 2014) that amplifies higher frequencies more than lower ones and induces a permanent upshift of the spectral mean. The effect of MNLS + wind is exactly opposite to MNLS + viscosity, where the lower order viscosity terms damp the whole spectrum, while the higher order viscosity terms damp higher frequencies more than lower ones and thus causes a permanent downshift, as evidenced by Carter & Govan (2016). We corroborated the model with wave tank experiments conducted in the IRPHE/Pytheas large wind-wave facility located in Marseille, France. Wave data analysis show the temporary downshift in the spectral peak sense caused by the wind, and the temporary upshift in the spectral mean sense characteristic of the MNLS. As the tank-length was limited, we used long-range simulations to obtain upshift in the spectral mean sense caused by the wind. The limit of the model is reached when breaking events occur. We acknowledge financial support from the Swiss National Science Foundation (project 200021-155970), the Labex MEC (French ANR-10-LABX-0092) and the A*MIDEX project (ANR-11-IDEX-0001-02). • Brunetti, M. and Kasparian, J. 2014 "Modulational instability in wind-forced waves". Physics Letters A, 378: 48, 3626-3630. • Brunetti, M., Marchiando, N., Berti, N. and Kasparian, J. 2014 "Nonlinear fast growth of water waves under wind forcing". Physics Letters A 378: 1415, 1025-1030. • Carter, J. D. and Govan, A. 2016 "Frequency downshift in a viscous fluid." Eur. Journ. Mech. - B/Fluids 59: 177-185. • Segur, H., Henderson, D., Carter, J., Hammack, J., Li, C.-M., Pheiff, D. and Socha, K. 2005 "Stabilizing the Benjamin-Feir instability". Journ. Fluid Mechanics, 539: 229-271.

  17. 33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...

  18. 33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...

  19. 33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...

  20. 33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...

  1. 33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...

  2. Magnetic skyrmion bubble motion driven by surface acoustic waves

    DOE PAGES

    Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.

    2018-03-12

    Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.

  3. A Numerical Study on the Influence of the Mid-Atlantic Ridge on Nonlinear Barotropic and First-Mode Baroclinic Rossby Waves Generated by Seasonal Winds.

    DTIC Science & Technology

    1986-12-01

    ridge. Sponge layers protect all boundaries except the eastern one from wave reflexion. The model is forced by a purely fluctuating wind stress curl...which propagate westward. This is a new feature of the time- dependent wind driven ocean circulation. Barnier uses a wind stress curl field patterned...forced by a purely fluctuating wind stress curl derived from the most significant EOF’s of the FGGE winds. A flat bottom and a ridge experiment are

  4. Magnetic skyrmion bubble motion driven by surface acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.

    Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.

  5. General stability of memory-type thermoelastic Timoshenko beam acting on shear force

    NASA Astrophysics Data System (ADS)

    Apalara, Tijani A.

    2018-03-01

    In this paper, we consider a linear thermoelastic Timoshenko system with memory effects where the thermoelastic coupling is acting on shear force under Neumann-Dirichlet-Dirichlet boundary conditions. The same system with fully Dirichlet boundary conditions was considered by Messaoudi and Fareh (Nonlinear Anal TMA 74(18):6895-6906, 2011, Acta Math Sci 33(1):23-40, 2013), but they obtained a general stability result which depends on the speeds of wave propagation. In our case, we obtained a general stability result irrespective of the wave speeds of the system.

  6. Development and applications of a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System

    NASA Astrophysics Data System (ADS)

    Warner, J. C.; Armstrong, B. N.; He, R.; Zambon, J. B.; Olabarrieta, M.; Voulgaris, G.; Kumar, N.; Haas, K. A.

    2012-12-01

    Understanding processes responsible for coastal change is important for managing both our natural and economic coastal resources. Coastal processes respond from both local scale and larger regional scale forcings. Understanding these processes can lead to significant insight into how the coastal zone evolves. Storms are one of the primary driving forces causing coastal change from a coupling of wave and wind driven flows. Here we utilize a numerical modeling approach to investigate these dynamics of coastal storm impacts. We use the Coupled Ocean - Atmosphere - Wave - Sediment Transport (COAWST) Modeling System that utilizes the Model Coupling Toolkit to exchange prognostic variables between the ocean model ROMS, atmosphere model WRF, wave model SWAN, and the Community Sediment Transport Modeling System (CSTMS) sediment routines. The models exchange fields of sea-surface temperature, ocean currents, water levels, bathymetry, wave heights, lengths, periods, bottom orbital velocities, and atmospheric surface heat and momentum fluxes, atmospheric pressure, precipitation, and evaporation. Data fields are exchanged using regridded flux conservative sparse matrix interpolation weights computed from the SCRIP spherical coordinate remapping interpolation package. We describe the modeling components and the model field exchange methods. As part of the system, the wave and ocean models run with cascading, refined, spatial grids to provide increased resolution, scaling down to resolve nearshore wave driven flows simulated by the vortex force formulation, all within selected regions of a larger, coarser-scale coastal modeling system. The ocean and wave models are driven by the atmospheric component, which is affected by wave dependent ocean-surface roughness and sea surface temperature which modify the heat and momentum fluxes at the ocean-atmosphere interface. We describe the application of the modeling system to several regions of multi-scale complexity to identify the significance of larger scale forcing cascading down to smaller scales and to investigate the interactions of the coupled system with increasing degree of model-model interactions. Three examples include the impact of Hurricane Ivan in 2004 in the Gulf of Mexico, Hurricane Ida in 2009 that evolved into a tropical storm on the US East coast, and passage of strong cold fronts across the US southeast. Results identify that hurricane intensity is extremely sensitive to sea-surface temperature, with a reduction in intensity when the atmosphere is coupled to the ocean model due to rapid cooling of the ocean from the surface through the mixed layer. Coupling of the ocean to the atmosphere also results in decreased boundary layer stress and coupling of the waves to the atmosphere results in increased sea-surface stress. Wave results are sensitive to both ocean and atmospheric coupling due to wave-current interactions with the ocean and wave-growth from the atmospheric wind stress. Sediment resuspension at regional scale during the hurricane is controlled by shelf width and wave propagation during hurricane approach. Results from simulation of passage of cold fronts suggest that synoptic meteorological systems can strongly impact surf zone and inner shelf response, therefore act as a strong driver for long term littoral sediment transport. We will also present some of the challenges faced to develop the modeling system.

  7. Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model

    NASA Astrophysics Data System (ADS)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-08-01

    Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.

  8. Viscoelastic characterization of dispersive media by inversion of a general wave propagation model in optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Zvietcovich, Fernando; Rolland, Jannick P.; Grygotis, Emma; Wayson, Sarah; Helguera, Maria; Dalecki, Diane; Parker, Kevin J.

    2018-02-01

    Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface wave propagation to estimate frequency-dependent wave speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters which is important for tissue engineering applications.

  9. Wave trapping by dual porous barriers near a wall in the presence of bottom undulation

    NASA Astrophysics Data System (ADS)

    Kaligatla, R. B.; Manisha; Sahoo, T.

    2017-09-01

    Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.

  10. Embedding the photon with its relativistic mass as a particle into the electromagnetic wave.

    PubMed

    Altmann, Konrad

    2018-01-22

    The particle picture presented by the author in the paper "A particle picture of the optical resonator" [K. Altmann, ASSL 2014 Conference Paper ATu2A.29], which shows that the probability density of a photon propagating with a Gaussian wave can be computed by the use of a Schrödinger equation, is generalized to the case of a wave with arbitrary shape of the phase front. Based on a consideration of the changing propagation direction of the relativistic mass density propagating with the electromagnetic wave, a transverse force acting on the photon is derived. The expression obtained for this force makes it possible to show that the photon moves within a transverse potential that in combination with a Schrödinger equation allows to describe the transverse quantum mechanical motion of the photon by the use of matter wave theory, even though the photon has no rest mass. The obtained results are verified for the plane, the spherical, and the Gaussian wave. Additional verification could be provided also by the fact that the mathematical equation describing the Guoy phase shift could be derived from this particle picture in full agreement with wave optics. One more verification could be obtained by the fact that within the range of the validity of paraxial wave optics, Snell's law could also be derived from this particle picture. Numerical validation of the obtained results for the case of the general wave is under development.

  11. A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves

    NASA Astrophysics Data System (ADS)

    Liu, Li-qin; Liu, Ya-liu; Xu, Wan-hai; Li, Yan; Tang, You-gang

    2018-03-01

    The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship's manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.

  12. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  13. Lee waves, benign and malignant

    NASA Technical Reports Server (NTRS)

    Wurtele, M. G.; Datta, A.

    1992-01-01

    The flow of an incompressible, stratified fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as incompressible; and even the linear approximation will explain many of the phenomena observed in the lee of mountains. However, nonlinearities arise in two ways: (1) through the large (scaled) size of the mountain, and (2) from dynamically singular levels in the fluid field. These produce a complicated array of phenomena that present hazards to aircraft and to lee surface areas. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km attitude), where recent observations show them to be of a length scale that must involve the Coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the waves are studied with a view to their potential impact on the projected National Aerospace Plane. This paper presents the results of analyses and state-of-the-art numerical simulations, validated where possible by observational data.

  14. A WAVE2–Arp2/3 actin nucleator apparatus supports junctional tension at the epithelial zonula adherens

    PubMed Central

    Verma, Suzie; Han, Siew Ping; Michael, Magdalene; Gomez, Guillermo A.; Yang, Zhe; Teasdale, Rohan D.; Ratheesh, Aparna; Kovacs, Eva M.; Ali, Radiya G.; Yap, Alpha S.

    2012-01-01

    The epithelial zonula adherens (ZA) is a specialized adhesive junction where actin dynamics and myosin-driven contractility coincide. The junctional cytoskeleton is enriched in myosin II, which generates contractile force to support junctional tension. It is also enriched in dynamic actin filaments, which are replenished by ongoing actin assembly. In this study we sought to pursue the relationship between actin assembly and junctional contractility. We demonstrate that WAVE2–Arp2/3 is a major nucleator of actin assembly at the ZA and likely acts in response to junctional Rac signaling. Furthermore, WAVE2–Arp2/3 is necessary for junctional integrity and contractile tension at the ZA. Maneuvers that disrupt the function of either WAVE2 or Arp2/3 reduced junctional tension and compromised the ability of cells to buffer side-to-side forces acting on the ZA. WAVE2–Arp2/3 disruption depleted junctions of both myosin IIA and IIB, suggesting that dynamic actin assembly may support junctional tension by facilitating the local recruitment of myosin. PMID:23051739

  15. A WAVE2-Arp2/3 actin nucleator apparatus supports junctional tension at the epithelial zonula adherens.

    PubMed

    Verma, Suzie; Han, Siew Ping; Michael, Magdalene; Gomez, Guillermo A; Yang, Zhe; Teasdale, Rohan D; Ratheesh, Aparna; Kovacs, Eva M; Ali, Radiya G; Yap, Alpha S

    2012-12-01

    The epithelial zonula adherens (ZA) is a specialized adhesive junction where actin dynamics and myosin-driven contractility coincide. The junctional cytoskeleton is enriched in myosin II, which generates contractile force to support junctional tension. It is also enriched in dynamic actin filaments, which are replenished by ongoing actin assembly. In this study we sought to pursue the relationship between actin assembly and junctional contractility. We demonstrate that WAVE2-Arp2/3 is a major nucleator of actin assembly at the ZA and likely acts in response to junctional Rac signaling. Furthermore, WAVE2-Arp2/3 is necessary for junctional integrity and contractile tension at the ZA. Maneuvers that disrupt the function of either WAVE2 or Arp2/3 reduced junctional tension and compromised the ability of cells to buffer side-to-side forces acting on the ZA. WAVE2-Arp2/3 disruption depleted junctions of both myosin IIA and IIB, suggesting that dynamic actin assembly may support junctional tension by facilitating the local recruitment of myosin.

  16. Engines for the Cosmos

    NASA Technical Reports Server (NTRS)

    Rodgers, Stephen L.; Reisz, Al; Wyckoff, James (Technical Monitor)

    2002-01-01

    Galactic forces spiral across the cosmos fueled by nuclear fission and fusion and atoms in plasmatic states with throes of constraints of gravitational forces and magnetic fields, In their wanderings these galaxies spew light, radiation, atomic and subatomic particles throughout the universe. Throughout the ages of man visions of journeying through the stars have been wondered. If humans and human devices from Earth are to go beyond the Moon and journey into deep space, it must be accomplished with like forces of the cosmos such as electrical fields, magnetic fields, ions, electrons and energies generated from the manipulation of subatomic and atomic particles. Forms of electromagnetic waves such as light, radio waves and lasers must control deep space engines. We won't get far on our Earth accustomed hydrocarbon fuels.

  17. Oscillating microbubbles for selective particle sorting in acoustic microfluidic devices

    NASA Astrophysics Data System (ADS)

    Rogers, Priscilla; Xu, Lin; Neild, Adrian

    2012-05-01

    In this study, acoustic waves were used to excite a microbubble for selective particle trapping and sorting. Excitation of the bubble at its volume resonance, as necessary to drive strong fluid microstreaming, resulted in the particles being either selectively attracted to the bubble or continuing to follow the local microstreamlines. The operating principle exploited two acoustic phenomena acting on the particle suspension: the drag force arising from the acoustic microstreaming and the secondary Bjerknes force, i.e. the attractive radiation force produced between an oscillating bubble and a non-buoyant particle. It was also found that standing wave fields within the fluid chamber could be used to globally align bubbles and particles for local particle sorting by the bubble.

  18. Moon Connection with MEGA and Giant Earthquakes in Subduction Zones during One Solar Cycle

    NASA Astrophysics Data System (ADS)

    Hagen, M. T.; Azevedo, A. T.

    2016-12-01

    We investigated in this paper the possible influences of the moon on earthquakes during one Solar cycle. The Earth - Moon gravitational force produces a variation in the perigee force that may trigger seismological events. The oscillation force creates a wave that is generated by the moon rotation around the earth, which takes a month. The wave complete a cycle after 13- 14 months in average and the period is roughly 5400 hours as calculated. The major moon phases which are New and Full Moon is when the perigee force is stronger. The Solar Wind charges the Moon during the New phases. The plasmasphere charges the satellite during the Full Moon. Both create the Spring Tides what affects mostly the subduction zones connected with the Mega and Giant events in Pacific areas. Moon - Earth connections are resilient in locations with convergent tectonic plates. Inserted:

  19. Tropical Forcing of the Summer East Atlantic Pattern

    NASA Astrophysics Data System (ADS)

    Wulff, C. Ole; Greatbatch, Richard J.; Domeisen, Daniela I. V.; Gollan, Gereon; Hansen, Felicitas

    2017-11-01

    The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing El Niño-Southern Oscillation phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SSTs) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.

  20. Acoustically mediated long-range interaction among multiple spherical particles exposed to a plane standing wave

    NASA Astrophysics Data System (ADS)

    Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou

    2016-11-01

    In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = -1 or -2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction.

Top