Sample records for wave function localization

  1. Chemical Bonding: The Orthogonal Valence-Bond View

    PubMed Central

    Sax, Alexander F.

    2015-01-01

    Chemical bonding is the stabilization of a molecular system by charge- and spin-reorganization processes in chemical reactions. These processes are said to be local, because the number of atoms involved is very small. With multi-configurational self-consistent field (MCSCF) wave functions, these processes can be calculated, but the local information is hidden by the delocalized molecular orbitals (MO) used to construct the wave functions. The transformation of such wave functions into valence bond (VB) wave functions, which are based on localized orbitals, reveals the hidden information; this transformation is called a VB reading of MCSCF wave functions. The two-electron VB wave functions describing the Lewis electron pair that connects two atoms are frequently called covalent or neutral, suggesting that these wave functions describe an electronic situation where two electrons are never located at the same atom; such electronic situations and the wave functions describing them are called ionic. When the distance between two atoms decreases, however, every covalent VB wave function composed of non-orthogonal atomic orbitals changes its character from neutral to ionic. However, this change in the character of conventional VB wave functions is hidden by its mathematical form. Orthogonal VB wave functions composed of orthonormalized orbitals never change their character. When localized fragment orbitals are used instead of atomic orbitals, one can decide which local information is revealed and which remains hidden. In this paper, we analyze four chemical reactions by transforming the MCSCF wave functions into orthogonal VB wave functions; we show how the reactions are influenced by changing the atoms involved or by changing their local symmetry. Using orthogonal instead of non-orthogonal orbitals is not just a technical issue; it also changes the interpretation, revealing the properties of wave functions that remain otherwise undetected. PMID:25906476

  2. Scanning tunneling microscopy current from localized basis orbital density functional theory

    NASA Astrophysics Data System (ADS)

    Gustafsson, Alexander; Paulsson, Magnus

    2016-03-01

    We present a method capable of calculating elastic scanning tunneling microscopy (STM) currents from localized atomic orbital density functional theory (DFT). To overcome the poor accuracy of the localized orbital description of the wave functions far away from the atoms, we propagate the wave functions, using the total DFT potential. From the propagated wave functions, the Bardeen's perturbative approach provides the tunneling current. To illustrate the method we investigate carbon monoxide adsorbed on a Cu(111) surface and recover the depression/protrusion observed experimentally with normal/CO-functionalized STM tips. The theory furthermore allows us to discuss the significance of s - and p -wave tips.

  3. Algebraic Theory of Crystal Vibrations: Localization Properties of Wave Functions in Two-Dimensional Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietz, Barbara; Iachello, Francesco; Macek, Michal

    The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less

  4. Algebraic Theory of Crystal Vibrations: Localization Properties of Wave Functions in Two-Dimensional Lattices

    DOE PAGES

    Dietz, Barbara; Iachello, Francesco; Macek, Michal

    2017-08-07

    The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less

  5. Generation of intermittent gravitocapillary waves via parametric forcing

    NASA Astrophysics Data System (ADS)

    Castillo, Gustavo; Falcón, Claudio

    2018-04-01

    We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.

  6. Stimulated Brillouin scattering in the field of a two-dimensionally localized pumping wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solikhov, D. K., E-mail: davlat56@mail.ru; Dvinin, S. A., E-mail: dvinin@phys.msu.ru

    2016-06-15

    Stimulated Brillouin scattering of electromagnetic waves in the field of a two-dimensionally localized pump wave at arbitrary scattering angles in the regime of forward scattering is analyzed. Spatial variations in the amplitudes of interacting waves are studied for different values of the pump field and different dimensions of the pump wave localization region. The intensity of scattered radiation is determined as a function of the scattering angle and the dimensions of the pump wave localization region. It is shown that the intensity increases with increasing scattering angle.

  7. On the asymptotic evolution of finite energy Airy wave functions.

    PubMed

    Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S

    2015-06-15

    In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.

  8. Computing wave functions in multichannel collisions with non-local potentials using the R-matrix method

    NASA Astrophysics Data System (ADS)

    Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena

    2017-09-01

    The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.

  9. Modeling resting-state functional networks when the cortex falls asleep: local and global changes.

    PubMed

    Deco, Gustavo; Hagmann, Patric; Hudetz, Anthony G; Tononi, Giulio

    2014-12-01

    The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Stable and unstable roots of ion temperature gradient driven mode using curvature modified plasma dispersion functions

    NASA Astrophysics Data System (ADS)

    Gültekin, Ö.; Gürcan, Ö. D.

    2018-02-01

    Basic, local kinetic theory of ion temperature gradient driven (ITG) mode, with adiabatic electrons is reconsidered. Standard unstable, purely oscillating as well as damped solutions of the local dispersion relation are obtained using a bracketing technique that uses the argument principle. This method requires computing the plasma dielectric function and its derivatives, which are implemented here using modified plasma dispersion functions with curvature and their derivatives, and allows bracketing/following the zeros of the plasma dielectric function which corresponds to different roots of the ITG dispersion relation. We provide an open source implementation of the derivatives of modified plasma dispersion functions with curvature, which are used in this formulation. Studying the local ITG dispersion, we find that near the threshold of instability the unstable branch is rather asymmetric with oscillating solutions towards lower wave numbers (i.e. drift waves), and damped solutions toward higher wave numbers. This suggests a process akin to inverse cascade by coupling to the oscillating branch towards lower wave numbers may play a role in the nonlinear evolution of the ITG, near the instability threshold. Also, using the algorithm, the linear wave diffusion is estimated for the marginally stable ITG mode.

  11. Wavelets and spacetime squeeze

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1993-01-01

    It is shown that the wavelet is the natural language for the Lorentz covariant description of localized light waves. A model for covariant superposition is constructed for light waves with different frequencies. It is therefore possible to construct a wave function for light waves carrying a covariant probability interpretation. It is shown that the time-energy uncertainty relation (Delta(t))(Delta(w)) is approximately 1 for light waves is a Lorentz-invariant relation. The connection between photons and localized light waves is examined critically.

  12. A Study of Regional Wave Source Time Functions of Central Asian Earthquakes

    NASA Astrophysics Data System (ADS)

    Xie, J.; Perry, M. R.; Schult, F. R.; Wood, J.

    2014-12-01

    Despite the extensive use of seismic regional waves in seismic event identification and attenuation tomography, very little is known on how seismic sources radiate energy into these waves. For example, whether regional Lg wave has the same source spectrum as that of the local S has been questioned by Harr et al. and Frenkel et al. three decades ago; many current investigators assume source spectra in Lg, Sn, Pg, Pn and Lg coda waves have either the same or very similar corner frequencies, in contrast to local P and S spectra whose corner frequencies differ. The most complete information on how the finite source ruptures radiate energy into regional waves is contained in the time domain source time functions (STFs). To estimate the STFs of regional waves using the empirical Green's function (EGF) method, we have been substantially modifying a semi-automotive computer procedure to cope with the increasingly diverse and inconsistent naming patterns of new data files from the IRIS DMC. We are applying the modified procedure to many earthquakes in central Asia to study the STFs of various regional waves to see whether they have the same durations and pulse shapes, and how frequently source directivity occur. When applicable, we also examine the differences between STFs of local P and S waves and those of regional waves. The result of these analyses will be presented at the meeting.

  13. Anderson localization of shear waves observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Papazoglou, S.; Klatt, D.; Braun, J.; Sack, I.

    2010-07-01

    In this letter we present for the first time an experimental investigation of shear wave localization using motion-sensitive magnetic resonance imaging (MRI). Shear wave localization was studied in gel phantoms containing arrays of randomly positioned parallel glass rods. The phantoms were exposed to continuous harmonic vibrations in a frequency range from 25 to 175 Hz, yielding wavelengths on the order of the elastic mean free path, i.e. the Ioffe-Regel criterion of Anderson localization was satisfied. The experimental setup was further chosen such that purely shear horizontal waves were induced to avoid effects due to mode conversion and pressure waves. Analysis of the distribution of shear wave intensity in experiments and simulations revealed a significant deviation from Rayleigh statistics indicating that shear wave energy is localized. This observation is further supported by experiments on weakly scattering samples exhibiting Rayleigh statistics and an analysis of the multifractality of wave functions. Our results suggest that motion-sensitive MRI is a promising tool for studying Anderson localization of time-harmonic shear waves, which are increasingly used in dynamic elastography.

  14. Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations

    NASA Astrophysics Data System (ADS)

    Huang, Li-Li; Qiao, Zhi-Jun; Chen, Yong

    2018-02-01

    Based on nonlocal symmetry method, localized excitations and interactional solutions are investigated for the reduced Maxwell-Bloch equations. The nonlocal symmetries of the reduced Maxwell-Bloch equations are obtained by the truncated Painleve expansion approach and the Mobious invariant property. The nonlocal symmetries are localized to a prolonged system by introducing suitable auxiliary dependent variables. The extended system can be closed and a novel Lie point symmetry system is constructed. By solving the initial value problems, a new type of finite symmetry transformations is obtained to derive periodic waves, Ma breathers and breathers travelling on the background of periodic line waves. Then rich exact interactional solutions are derived between solitary waves and other waves including cnoidal waves, rational waves, Painleve waves, and periodic waves through similarity reductions. In particular, several new types of localized excitations including rogue waves are found, which stem from the arbitrary function generated in the process of similarity reduction. By computer numerical simulation, the dynamics of these localized excitations and interactional solutions are discussed, which exhibit meaningful structures.

  15. Charge transport calculations by a wave-packet dynamical approach using maximally localized Wannier functions based on density functional theory: Application to high-mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2017-01-01

    We present a wave-packet dynamical approach to charge transport using maximally localized Wannier functions based on density functional theory including van der Waals interactions. We apply it to the transport properties of pentacene and rubrene single crystals and show the temperature-dependent natures from bandlike to thermally activated behaviors as a function of the magnitude of external static disorder. We compare the results with those obtained by the conventional band and hopping models and experiments.

  16. On exact traveling-wave solutions for local fractional Korteweg-de Vries equation.

    PubMed

    Yang, Xiao-Jun; Tenreiro Machado, J A; Baleanu, Dumitru; Cattani, Carlo

    2016-08-01

    This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces.

  17. Exact density functional and wave function embedding schemes based on orbital localization

    NASA Astrophysics Data System (ADS)

    Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály

    2016-08-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  18. Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?

    PubMed

    Lesku, John A; Vyssotski, Alexei L; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C

    2011-08-22

    The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.

  19. Long-range traveling waves of activity triggered by local dichoptic stimulation in V1 of behaving monkeys

    PubMed Central

    Yang, Zhiyong; Heeger, David J.; Blake, Randolph

    2014-01-01

    Traveling waves of cortical activity, in which local stimulation triggers lateral spread of activity to distal locations, have been hypothesized to play an important role in cortical function. However, there is conflicting physiological evidence for the existence of spreading traveling waves of neural activity triggered locally. Dichoptic stimulation, in which the two eyes view dissimilar monocular patterns, can lead to dynamic wave-like fluctuations in visual perception and therefore, provides a promising means for identifying and studying cortical traveling waves. Here, we used voltage-sensitive dye imaging to test for the existence of traveling waves of activity in the primary visual cortex of awake, fixating monkeys viewing dichoptic stimuli. We find clear traveling waves that are initiated by brief, localized contrast increments in one of the monocular patterns and then, propagate at speeds of ∼30 mm/s. These results demonstrate that under an appropriate visual context, circuitry in visual cortex in alert animals is capable of supporting long-range traveling waves triggered by local stimulation. PMID:25343785

  20. Whistler wave generation by electron temperature anisotropy during asymmetric magnetic reconnection in space

    NASA Astrophysics Data System (ADS)

    Swerdlow, Josh; Yoo, Jongsoo; Kim, Eun-Hwa; Yamada, Masaaki; Ji, Hantao

    2017-10-01

    Generation of whistler waves during asymmetric reconnection is studied by analyzing data from a MMS (Magnetospheric Multiscale) event. In particular, the possible role of electron temperature anisotropy in excitation of whistler waves on the magnetosphere side is discussed. The local electron distribution function is fitted into a sum of bi-Maxwellian distribution functions. Then, the dispersion relation solver, WHAMP (waves in homogeneous, anisotropic, multicomponent plasmas), is used to obtain the local dispersion relation and growth rate of the whistler waves. We compare the theoretical calculations with the measured dispersion relation. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  1. Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors.

    PubMed

    Bitter, M; Milner, V

    2016-09-30

    The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum-the hallmark of dynamical localization-is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.

  2. Sound field reconstruction within an entire cavity by plane wave expansions using a spherical microphone array.

    PubMed

    Wang, Yan; Chen, Kean

    2017-10-01

    A spherical microphone array has proved effective in reconstructing an enclosed sound field by a superposition of spherical wave functions in Fourier domain. It allows successful reconstructions surrounding the array, but the accuracy will be degraded at a distance. In order to extend the effective reconstruction to the entire cavity, a plane-wave basis in space domain is used owing to its non-decaying propagating characteristic and compared with the conventional spherical wave function method in a low frequency sound field within a cylindrical cavity. The sensitivity to measurement noise, the effects of the numbers of plane waves, and measurement positions are discussed. Simulations show that under the same measurement conditions, the plane wave function method is superior in terms of reconstruction accuracy and data processing efficiency, that is, the entire sound field imaging can be achieved by only one time calculation instead of translations of local sets of coefficients with respect to every measurement position into a global one. An experiment was conducted inside an aircraft cabin mock-up for validation. Additionally, this method provides an alternative possibility to recover the coefficients of high order spherical wave functions in a global coordinate system without coordinate translations with respect to local origins.

  3. Adjoint eigenfunctions of temporally recurrent single-spiral solutions in a simple model of atrial fibrillation.

    PubMed

    Marcotte, Christopher D; Grigoriev, Roman O

    2016-09-01

    This paper introduces a numerical method for computing the spectrum of adjoint (left) eigenfunctions of spiral wave solutions to reaction-diffusion systems in arbitrary geometries. The method is illustrated by computing over a hundred eigenfunctions associated with an unstable time-periodic single-spiral solution of the Karma model on a square domain. We show that all leading adjoint eigenfunctions are exponentially localized in the vicinity of the spiral tip, although the marginal modes (response functions) demonstrate the strongest localization. We also discuss the implications of the localization for the dynamics and control of unstable spiral waves. In particular, the interaction with no-flux boundaries leads to a drift of spiral waves which can be understood with the help of the response functions.

  4. Adjoint eigenfunctions of temporally recurrent single-spiral solutions in a simple model of atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Marcotte, Christopher D.; Grigoriev, Roman O.

    2016-09-01

    This paper introduces a numerical method for computing the spectrum of adjoint (left) eigenfunctions of spiral wave solutions to reaction-diffusion systems in arbitrary geometries. The method is illustrated by computing over a hundred eigenfunctions associated with an unstable time-periodic single-spiral solution of the Karma model on a square domain. We show that all leading adjoint eigenfunctions are exponentially localized in the vicinity of the spiral tip, although the marginal modes (response functions) demonstrate the strongest localization. We also discuss the implications of the localization for the dynamics and control of unstable spiral waves. In particular, the interaction with no-flux boundaries leads to a drift of spiral waves which can be understood with the help of the response functions.

  5. The "Fermi hole" and the correlation introduced by the symmetrization or the anti-symmetrization of the wave function.

    PubMed

    Giner, Emmanuel; Tenti, Lorenzo; Angeli, Celestino; Malrieu, Jean-Paul

    2016-09-28

    The impact of the antisymmetrization is often addressed as a local property of the many-electron wave function, namely that the wave function should vanish when two electrons with parallel spins are in the same position in space. In this paper, we emphasize that this presentation is unduly restrictive: we illustrate the strong non-local character of the antisymmetrization principle, together with the fact that it is a matter of spin symmetry rather than spin parallelism. To this aim, we focus our attention on the simplest representation of various states of two-electron systems, both in atomic (helium atom) and molecular (H 2 and the π system of the ethylene molecule) cases. We discuss the non-local property of the nodal structure of some two-electron wave functions, both using analytical derivations and graphical representations of cuttings of the nodal hypersurfaces. The attention is then focussed on the impact of the antisymmetrization on the maxima of the two-body density, and we show that it introduces strong correlation effects (radial and/or angular) with a non-local character. These correlation effects are analyzed in terms of inflation and depletion zones, which are easily identifiable, thanks to the nodes of the orbitals composing the wave function. Also, we show that the correlation effects induced by the antisymmetrization occur also for anti-parallel spins since all M s components of a given spin state have the same N-body densities. Finally, we illustrate that these correlation effects occur also for the singlet states, but they have strictly opposite impacts: the inflation zones in the triplet become depletion zones in the singlet and vice versa.

  6. Electromagnetic or other directed energy pulse launcher

    DOEpatents

    Ziolkowski, Richard W.

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  7. Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors

    NASA Astrophysics Data System (ADS)

    Bitter, M.; Milner, V.

    2016-09-01

    The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum—the hallmark of dynamical localization—is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.

  8. 14 CFR 171.261 - Localizer performance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Hz and 150 Hz wave form, the modulation tones must be phase-locked so that within the half course sector, the demodulated 90 Hz and 150 Hz wave forms pass through zero in the same direction within 20... runway and approach direction, on the same radio frequency carrier, as used for the localizer function...

  9. Variation Process of Radiation Belt Electron Fluxes due to Interaction With Chorus and EMIC Rising-tone Emissions Localized in Longitude

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Omura, Y.

    2017-12-01

    Using results of test particle simulations of a large number of electrons interacting with a pair of chorus emissions, we create Green's functions to model the electron distribution function after all of the possible interactions with the waves [Omura et al., 2015]. Assuming that the waves are generated in a localized range of longitudes in the dawn side, we repeat taking the convolution integral of the Green's function with the distribution function of the electrons injected into the generation region of the localized waves. From numerical and theoretical analyses, we find that electron acceleration process only takes place efficiently below 4 MeV. Because extremely relativistic electrons go through the wave generation region rapidly due to grad-B0 and curvature drift, they don't have enough interaction time to be accelerated. In setting up the electrons after all interaction with chorus emissions as initial electron distribution function, we also compute the loss process of radiation belt electron fluxes due to interaction with EMIC rising-tone emissions generated in a localized range of longitudes in the dusk side [Kubota and Omura,2017]. References: (1) Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562, doi:10.1002/2015JA021563. (2) Kubota, Y., and Y. Omura (2017), Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Physics, 122, 293-309, doi:10.1002/2016JA023267.

  10. Arterial wave intensity and ventricular-arterial coupling by vascular ultrasound: rationale and methods for the automated analysis of forwards and backwards running waves.

    PubMed

    Rakebrandt, F; Palombo, C; Swampillai, J; Schön, F; Donald, A; Kozàkovà, M; Kato, K; Fraser, A G

    2009-02-01

    Wave intensity (WI) in the circulation is estimated noninvasively as the product of instantaneous changes in pressure and velocity. We recorded diameter as a surrogate for pressure, and velocity in the right common carotid artery using an Aloka SSD-5500 ultrasound scanner. We developed automated software, applying the water hammer equation to obtain local wave speed from the slope of a pressure/velocity loop during early systole to separate net WI into individual forwards and backwards-running waves. A quality index was developed to test for noisy data. The timing, duration, peak amplitude and net energy of separated WI components were measured in healthy subjects with a wide age range. Age and arterial stiffness were independent predictors of local wave speed, whereas backwards-travelling waves correlated more strongly with ventricular systolic function than with age-related changes in arterial stiffness. Separated WI offers detailed insight into ventricular-arterial interactions that may be useful for assessing the relative contributions of ventricular and vascular function to wave travel.

  11. Numerical investigation of electron localization in polymer chains

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Stafström, Sven

    1998-01-01

    Using finite-size scaling, we have calculated the localization-delocalization phase diagrams for electronic wave functions in different disordered polymeric systems. The disorder considered here simulates finite polymer chain lengths, breaks in the conjugation, and disorder in an external potential. It is shown that a system of interacting chains, even at rather weak interchain interactions, allows for enough flexibility for the scattered waves to avoid dephasing and localization. Localization and the metal-insulator transition in highly conducting polymers are discussed in view of these results.

  12. Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space

    NASA Astrophysics Data System (ADS)

    Ruggeri, Michele; Moroni, Saverio; Holzmann, Markus

    2018-05-01

    We show that the recently introduced iterative backflow wave function can be interpreted as a general neural network in continuum space with nonlinear functions in the hidden units. Using this wave function in variational Monte Carlo simulations of liquid 4He in two and three dimensions, we typically find a tenfold increase in accuracy over currently used wave functions. Furthermore, subsequent stages of the iteration procedure define a set of increasingly good wave functions, each with its own variational energy and variance of the local energy: extrapolation to zero variance gives energies in close agreement with the exact values. For two dimensional 4He, we also show that the iterative backflow wave function can describe both the liquid and the solid phase with the same functional form—a feature shared with the shadow wave function, but now joined by much higher accuracy. We also achieve significant progress for liquid 3He in three dimensions, improving previous variational and fixed-node energies.

  13. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    NASA Astrophysics Data System (ADS)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  14. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  15. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-04

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  16. The Strange (Hi)story of Particles and Waves

    NASA Astrophysics Data System (ADS)

    Zeh, H. Dieter

    2016-03-01

    This is an attempt of a non-technical but conceptually consistent presentation of quantum theory in a historical context. While the first part is written for a general readership, Section 5 may appear a bit provocative to some quantum physicists. I argue that the single-particle wave functions of quantum mechanics have to be correctly interpreted as field modes that are "occupied once" (i.e. first excited states of the corresponding quantum oscillators in the case of boson fields). Multiple excitations lead to apparent many-particle wave functions, while the quantum states proper are defined by wave function(al)s on the "configuration" space of fundamental fields, or on another, as yet elusive, fundamental local basis.

  17. Location of EMIC Wave Events Relative to the Plasmapause: Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Tetrick, S.; Engebretson, M. J.; Posch, J. L.; Kletzing, C.; Smith, C. W.; Wygant, J. R.; Gkioulidou, M.; Reeves, G. D.; Fennell, J. F.

    2015-12-01

    Many early theoretical studies of electromagnetic ion cyclotron (EMIC) waves generated in Earth's magnetosphere predicted that the equatorial plasmapause (PP) would be a preferred location for their generation. However, several large statistical studies in the past two decades, most notably Fraser and Nguyen [2001], have provided little support for this location. In this study we present a survey of the most intense EMIC waves observed by the EMFISIS fluxgate magnetometer on the Van Allen Probes-A spacecraft (with apogee at 5.9 RE) from its launch through the end of 2014, and have compared their location with simultaneous electron density data obtained by the EFW electric field instrument and ring current ion flux data obtained by the HOPE and RBSPICE instruments. We show distributions of these waves as a function of distance inside or outside the PP as a function of local time sector, frequency band (H+, He+, or both), and timing relative to magnetic storms and substorms. Most EMIC waves in this data set occurred within 1 RE of the PP in all local time sectors, but very few were limited to ± 0.1 RE, and most of these occurred in the 06-12 MLT sector during non-storm conditions. The majority of storm main phase waves in the dusk sector occurred inside the PP. He+ band waves dominated at most local times inside the PP, and H+ band waves were never observed there. Although the presence of elevated fluxes of ring current protons was common to all events, the configuration of lower energy ion populations varied as a function of geomagnetic activity and storm phase.

  18. Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Del Pozzo, W.; Berry, C. P. L.; Ghosh, A.; Haines, T. S. F.; Singer, L. P.; Vecchio, A.

    2018-06-01

    We reconstruct posterior distributions for the position (sky area and distance) of a simulated set of binary neutron-star gravitational-waves signals observed with Advanced LIGO and Advanced Virgo. We use a Dirichlet Process Gaussian-mixture model, a fully Bayesian non-parametric method that can be used to estimate probability density functions with a flexible set of assumptions. The ability to reliably reconstruct the source position is important for multimessenger astronomy, as recently demonstrated with GW170817. We show that for detector networks comparable to the early operation of Advanced LIGO and Advanced Virgo, typical localization volumes are ˜104-105 Mpc3 corresponding to ˜102-103 potential host galaxies. The localization volume is a strong function of the network signal-to-noise ratio, scaling roughly ∝ϱnet-6. Fractional localizations improve with the addition of further detectors to the network. Our Dirichlet Process Gaussian-mixture model can be adopted for localizing events detected during future gravitational-wave observing runs, and used to facilitate prompt multimessenger follow-up.

  19. Solving the Schroedinger Equation of Atoms and Molecules without Analytical Integration Based on the Free Iterative-Complement-Interaction Wave Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsuji, H.; Nakashima, H.; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510

    2007-12-14

    A local Schroedinger equation (LSE) method is proposed for solving the Schroedinger equation (SE) of general atoms and molecules without doing analytic integrations over the complement functions of the free ICI (iterative-complement-interaction) wave functions. Since the free ICI wave function is potentially exact, we can assume a flatness of its local energy. The variational principle is not applicable because the analytic integrations over the free ICI complement functions are very difficult for general atoms and molecules. The LSE method is applied to several 2 to 5 electron atoms and molecules, giving an accuracy of 10{sup -5} Hartree in total energy.more » The potential energy curves of H{sub 2} and LiH molecules are calculated precisely with the free ICI LSE method. The results show the high potentiality of the free ICI LSE method for developing accurate predictive quantum chemistry with the solutions of the SE.« less

  20. Inhibition of quantum transport due to 'scars' of unstable periodic orbits

    NASA Technical Reports Server (NTRS)

    Jensen, R. V.; Sanders, M. M.; Saraceno, M.; Sundaram, B.

    1989-01-01

    A new quantum mechanism for the suppression of chaotic ionization of highly excited hydrogen atoms explains the appearance of anomalously stable states in the microwave ionization experiments of Koch et al. A novel phase-space representation of the perturbed wave functions reveals that the inhibition of quantum transport is due to the selective excitation of wave functions that are highly localized near unstable periodic orbits in the chaotic classical phase space. The 'scarred' wave functions provide a new basis for the quantum description of a variety of classically chaotic systems.

  1. Physical response of a back-barrier estuary to a post-tropical cyclone

    USGS Publications Warehouse

    Beudin, Alexis; Ganju, Neil Kamal; Defne, Zafer; Aretxabaleta, Alfredo

    2017-01-01

    This paper presents a modeling investigation of the hydrodynamic and sediment transport response of Chincoteague Bay (VA/MD, USA) to Hurricane Sandy using the Coupled Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling system. Several simulation scenarios with different combinations of remote and local forces were conducted to identify the dominant physical processes. While 80% of the water level increase in the bay was due to coastal sea level at the peak of the storm, a rich spatial and temporal variability in water surface slope was induced by local winds and waves. Local wind increased vertical mixing, horizontal exchanges, and flushing through the inlets. Remote waves (swell) enhanced southward flow through wave setup gradients between the inlets, and increased locally generated wave heights. Locally generated waves had a negligible effect on water level but reduced the residual flow up to 70% due to enhanced apparent roughness and breaking-induced forces. Locally generated waves dominated bed shear stress and sediment resuspension in the bay. Sediment transport patterns mirrored the interior coastline shape and generated deposition on inundated areas. The bay served as a source of fine sediment to the inner shelf, and the ocean-facing barrier island accumulated sand from landward-directed overwash. Despite the intensity of the storm forcing, the bathymetric changes in the bay were on the order of centimeters. This work demonstrates the spectrum of responses to storm forcing, and highlights the importance of local and remote processes on back-barrier estuarine function.

  2. Localization in quantum field theory

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.

    In non-relativistic quantum mechanics, Born’s principle of localization is as follows: For a single particle, if a wave function ψK vanishes outside a spatial region K, it is said to be localized in K. In particular, if a spatial region K‧ is disjoint from K, a wave function ψK‧ localized in K‧ is orthogonal to ψK. Such a principle of localization does not exist compatibly with relativity and causality in quantum field theory (QFT) (Newton and Wigner) or interacting point particles (Currie, Jordan and Sudarshan). It is replaced by symplectic localization of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localization gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with “continuous” spin. This review outlines the basic principles underlying symplectic localization and shows or mentions its deep implications. In particular, it has the potential to affect relativistic quantum information theory and black hole physics.

  3. Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity

    PubMed Central

    Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming

    2016-01-01

    The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634

  4. STM contrast of a CO dimer on a Cu(1 1 1) surface: a wave-function analysis.

    PubMed

    Gustafsson, Alexander; Paulsson, Magnus

    2017-12-20

    We present a method used to intuitively interpret the scanning tunneling microscopy (STM) contrast by investigating individual wave functions originating from the substrate and tip side. We use localized basis orbital density functional theory, and propagate the wave functions into the vacuum region at a real-space grid, including averaging over the lateral reciprocal space. Optimization by means of the method of Lagrange multipliers is implemented to perform a unitary transformation of the wave functions in the middle of the vacuum region. The method enables (i) reduction of the number of contributing tip-substrate wave function combinations used in the corresponding transmission matrix, and (ii) to bundle up wave functions with similar symmetry in the lateral plane, so that (iii) an intuitive understanding of the STM contrast can be achieved. The theory is applied to a CO dimer adsorbed on a Cu(1 1 1) surface scanned by a single-atom Cu tip, whose STM image is discussed in detail by the outlined method.

  5. STM contrast of a CO dimer on a Cu(1 1 1) surface: a wave-function analysis

    NASA Astrophysics Data System (ADS)

    Gustafsson, Alexander; Paulsson, Magnus

    2017-12-01

    We present a method used to intuitively interpret the scanning tunneling microscopy (STM) contrast by investigating individual wave functions originating from the substrate and tip side. We use localized basis orbital density functional theory, and propagate the wave functions into the vacuum region at a real-space grid, including averaging over the lateral reciprocal space. Optimization by means of the method of Lagrange multipliers is implemented to perform a unitary transformation of the wave functions in the middle of the vacuum region. The method enables (i) reduction of the number of contributing tip-substrate wave function combinations used in the corresponding transmission matrix, and (ii) to bundle up wave functions with similar symmetry in the lateral plane, so that (iii) an intuitive understanding of the STM contrast can be achieved. The theory is applied to a CO dimer adsorbed on a Cu(1 1 1) surface scanned by a single-atom Cu tip, whose STM image is discussed in detail by the outlined method.

  6. Heterogeneity and nearest-neighbor coupling can explain small-worldness and wave properties in pancreatic islets

    NASA Astrophysics Data System (ADS)

    Cappon, Giacomo; Pedersen, Morten Gram

    2016-05-01

    Many multicellular systems consist of coupled cells that work as a syncytium. The pancreatic islet of Langerhans is a well-studied example of such a microorgan. The islets are responsible for secretion of glucose-regulating hormones, mainly glucagon and insulin, which are released in distinct pulses. In order to observe pulsatile insulin secretion from the β-cells within the islets, the cellular responses must be synchronized. It is now well established that gap junctions provide the electrical nearest-neighbor coupling that allows excitation waves to spread across islets to synchronize the β-cell population. Surprisingly, functional coupling analysis of calcium responses in β-cells shows small-world properties, i.e., a high degree of local coupling with a few long-range "short-cut" connections that reduce the average path-length greatly. Here, we investigate how such long-range functional coupling can appear as a result of heterogeneity, nearest-neighbor coupling, and wave propagation. Heterogeneity is also able to explain a set of experimentally observed synchronization and wave properties without introducing all-or-none cell coupling and percolation theory. Our theoretical results highlight how local biological coupling can give rise to functional small-world properties via heterogeneity and wave propagation.

  7. Resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-06-01

    Advanced wave model used to evaluate ICRH in tokamaks typically used warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. A bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits is presented. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  8. Localization of holes near charged defects in orbitally degenerate, doped Mott insulators

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-05-01

    We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.

  9. Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodriguez, Raul D.; Sheremet, Evgeniya; Deckert-Gaudig, Tanja; Chaneac, Corinne; Hietschold, Michael; Deckert, Volker; Zahn, Dietrich R. T.

    2015-05-01

    Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced.Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01277e

  10. Metadisorder for designer light in random systems

    PubMed Central

    Yu, Sunkyu; Piao, Xianji; Hong, Jiho; Park, Namkyoo

    2016-01-01

    Disorder plays a critical role in signal transport by controlling the correlation of a system, as demonstrated in various complex networks. In wave physics, disordered potentials suppress wave transport, because of their localized eigenstates, from the interference between multiple scattering paths. Although the variation of localization with tunable disorder has been intensively studied as a bridge between ordered and disordered media, the general trend of disorder-enhanced localization has remained unchanged, and the existence of complete delocalization in highly disordered potentials has not been explored. We propose the concept of “metadisorder”: randomly coupled optical systems in which eigenstates can be engineered to achieve unusual localization. We demonstrate that one of the eigenstates in a randomly coupled system can always be arbitrarily molded, regardless of the degree of disorder, by adjusting the self-energy of each element. Ordered waves with the desired form are then achieved in randomly coupled systems, including plane waves and globally collective resonances. We also devise counterintuitive functionalities in disordered systems, such as “small-world–like” transport from non–Anderson-type localization, phase-conserving disorder, and phase-controlled beam steering. PMID:27757414

  11. Mechano-electrical feedback explains T-wave morphology and optimizes cardiac pump function: insight from a multi-scale model.

    PubMed

    Hermeling, Evelien; Delhaas, Tammo; Prinzen, Frits W; Kuijpers, Nico H L

    2012-01-01

    In the ECG, T- and R-wave are concordant during normal sinus rhythm (SR), but discordant after a period of ventricular pacing (VP). Experiments showed that the latter phenomenon, called T-wave memory, is mediated by a mechanical stimulus. By means of a mathematical model, we investigated the hypothesis that slow acting mechano-electrical feedback (MEF) explains T-wave memory. In our model, electromechanical behavior of the left ventricle (LV) was simulated using a series of mechanically and electrically coupled segments. Each segment comprised ionic membrane currents, calcium handling, and excitation-contraction coupling. MEF was incorporated by locally adjusting conductivity of L-type calcium current (g(CaL)) to local external work. In our set-up, g(CaL) could vary up to 25%, 50%, 100% or unlimited amount around its default value. Four consecutive simulations were performed: normal SR (with MEF), acute VP, sustained VP (with MEF), and acutely restored SR. MEF led to T-wave concordance in normal SR and to discordant T-waves acutely after restoring SR. Simulated ECGs with a maximum of 25-50% adaptation closely resembled those during T-wave memory experiments in vivo and also provided the best compromise between optimal systolic and diastolic function. In conclusion, these simulation results indicate that slow acting MEF in the LV can explain a) the relatively small differences in systolic shortening and mechanical work during SR, b) the small dispersion in repolarization time, c) the concordant T-wave during SR, and d) T-wave memory. The physiological distribution in electrophysiological properties, reflected by the concordant T-wave, may serve to optimize cardiac pump function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Matrix product state representation of quasielectron wave functions

    NASA Astrophysics Data System (ADS)

    Kjäll, J.; Ardonne, E.; Dwivedi, V.; Hermanns, M.; Hansson, T. H.

    2018-05-01

    Matrix product state techniques provide a very efficient way to numerically evaluate certain classes of quantum Hall wave functions that can be written as correlators in two-dimensional conformal field theories. Important examples are the Laughlin and Moore-Read ground states and their quasihole excitations. In this paper, we extend the matrix product state techniques to evaluate quasielectron wave functions, a more complex task because the corresponding conformal field theory operator is not local. We use our method to obtain density profiles for states with multiple quasielectrons and quasiholes, and to calculate the (mutual) statistical phases of the excitations with high precision. The wave functions we study are subject to a known difficulty: the position of a quasielectron depends on the presence of other quasiparticles, even when their separation is large compared to the magnetic length. Quasielectron wave functions constructed using the composite fermion picture, which are topologically equivalent to the quasielectrons we study, have the same problem. This flaw is serious in that it gives wrong results for the statistical phases obtained by braiding distant quasiparticles. We analyze this problem in detail and show that it originates from an incomplete screening of the topological charges, which invalidates the plasma analogy. We demonstrate that this can be remedied in the case when the separation between the quasiparticles is large, which allows us to obtain the correct statistical phases. Finally, we propose that a modification of the Laughlin state, that allows for local quasielectron operators, should have good topological properties for arbitrary configurations of excitations.

  13. Structures of Xishan village landslide in Li County, Sichuan, China, inferred from high-frequency receiver functions of local earthquakes

    NASA Astrophysics Data System (ADS)

    Wei, Z.; Chu, R.

    2017-12-01

    Teleseismic receiver function methods are widely used to study the deep structural information beneath the seismic station. However, teleseismic waveforms are difficult to extract the high-frequency receiver function, which are insufficient to constrain the shallow structure because of the inelastic attenuation effect of the earth. In this study, using the local earthquake waveforms collected from 3 broadband stations deployed on the Xishan village landslide in Li County in Sichuan Province, we used the high-frequency receiver function method to study the shallow structure beneath the landslide. We developed the Vp-k (Vp/Vs) staking method of receiver functions, and combined with the H-k stacking and waveform inversion methods of receiver functions to invert the landslide's thickness, S-wave velocity and average Vp/Vs ratio beneath these stations, and compared the thickness with the borehole results. Our results show small-scale lateral variety of velocity structure, a 78-143m/s lower S-wave velocity in the bottom layer and 2.4-3.1 Vp/Vs ratio in the landslide. The observed high Vp/Vs ratio and low S-wave velocity in the bottom layer of the landslide are consistent with low electrical resistivity and water-rich in the bottom layer, suggesting a weak shear strength and potential danger zone in landslide h1. Our study suggest that the local earthquake receiver function can obtain the shallow velocity structural information and supply some seismic constrains for the landslide catastrophe mitigation.

  14. Distribution of Localized States from Fine Analysis of Electron Spin Resonance Spectra in Organic Transistors

    NASA Astrophysics Data System (ADS)

    Matsui, Hiroyuki; Mishchenko, Andrei S.; Hasegawa, Tatsuo

    2010-02-01

    We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.

  15. Distribution of localized states from fine analysis of electron spin resonance spectra in organic transistors.

    PubMed

    Matsui, Hiroyuki; Mishchenko, Andrei S; Hasegawa, Tatsuo

    2010-02-05

    We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.

  16. Controlling matter waves in momentum space

    NASA Astrophysics Data System (ADS)

    Lin, De-Hone

    2014-07-01

    The transformation design method of momentum for matter waves in a harmonic trap is proposed. As applications, we design (1) a momentum invisibility cloak to control the distribution of a wave function in momentum space, (2) a quantum localization cloak that localizes a matter wave around zero momentum, and (3) the unusual quantum states of momentum space. Comprehension of these momentum cloaks in position space through the Fourier transformation is presented. In contrast to the construct of quantum cloaks in position space, the momentum cloaks presented here can only be reached by controlling the spring parameter of the trap and offering a potential there, without needing to control the effective mass of quantum particles themselves. The presented discussions also provide a possible inspiration to help localize and maintain a quantum state in momentum space by way of controlling the shape of a trap and a supplied potential.

  17. Absolute Scale Quantitative Off-Axis Electron Holography at Atomic Resolution

    NASA Astrophysics Data System (ADS)

    Winkler, Florian; Barthel, Juri; Tavabi, Amir H.; Borghardt, Sven; Kardynal, Beata E.; Dunin-Borkowski, Rafal E.

    2018-04-01

    An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe2 flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.

  18. Estimating Seismic Moment From Broadband P-Waves for Tsunami Warnings.

    NASA Astrophysics Data System (ADS)

    Hirshorn, B. F.

    2006-12-01

    The Richard H. Hagemeyer Pacific Tsunami Warning Center (PTWC), located in Ewa Beach, Oahu, Hawaii, is responsible for issuing local, regional, and distant tsunami warnings to Hawaii, and for issuing regional and distant tsunami warnings to the rest of the Pacific Basin, exclusive of the US West Coast. The PTWC must provide these tsunami warnings as soon as technologically possible, based entirely on estimates of a potentially tsunamigenic earthquake's source parameters. We calculate the broadband P-wave moment magnitude, Mwp, from the P or pP wave velocity seismograms [Tsuboi et al., 1995, 1999]. This method appears to work well for regional and teleseismic events [ Tsuboi et al (1999], Whitmore et al (2002), Hirshorn et al (2004) ]. Following Tsuboi, [1995], we consider the displacement record of the P-wave portion of the broadband seismograms as an approximate source time function and integrate this record to obtain the moment rate function, Mo(t), and the moment magnitude [Hanks and Kanamori, 1972] as a function of time, Mw(t). We present results for Mwp for local, regional, and teleseismic broad band recordings for earthquakes in the Mw 5 to 9.3 range. As large Hawaii events are rare, we tested this local case using other Pacific events in the magnitude 5.0 to 7.5 range recorded by nearby stations. Signals were excluded, however, if the epicentral distance was so small (generally less than 1 degree) that there was contamination by the S-wave too closely following the P-waves. Scatter plots of Mwp against the Harvard Mw for these events shows that Mwp does predict Mw well from seismograms recorded at local, regional, and teleseismic distances. For some complex earthquakes, eg. the Mw 8.4(HRV) Peru earthquake of June 21, 2001, Mwp underestimates Mw if the first moment release is not the largest. Our estimates of Mwp for the Mw 9.3 Summatra-Andaman Island's earthquake of December 26, 2004 and for the Mw 8.7 (HRV) Summatra event of March 28, 2005, were Mwp 8.1, Mwp 8.7 respectively, from p-waves recorded at 15 - 90 degrees from each hypocenter.

  19. Nonlocality of the original Einstein-Podolsky-Rosen state

    NASA Astrophysics Data System (ADS)

    Cohen, O.

    1997-11-01

    We examine the properties and behavior of the original Einstein-Podolsky-Rosen (EPR) wave function [Phys. Rev. 47, 777 (1935)] and related Gaussian-correlated wave functions. We assess the degree of entanglement of these wave functions and consider an argument of Bell [Ann. (N.Y.) Acad. Sci. 480, 263 (1986)] based on the Wigner phase-space distribution [Phys. Rev. 40, 749 (1932)], which implies that the original EPR correlations can accommodate a local hidden-variable description. We extend Bell's analysis to the related Gaussian wave functions. We then show that it is possible to identify definite nonlocal aspects for the original EPR state and related states. We describe possible experiments that would demonstrate these nonlocal features through violations of Bell inequalities. The implications of our results, and in particular their relevance for the causal interpretation of quantum mechanics, are considered.

  20. Ultra-Flexibility and Unusual Electronic, Magnetic and Chemical Properties of Waved Graphenes and Nanoribbons

    PubMed Central

    Pan, Hui; Chen, Bin

    2014-01-01

    Two-dimensional materials have attracted increasing attention because of their particular properties and potential applications in next-generation nanodevices. In this work, we investigate the physical and chemical properties of waved graphenes/nanoribbons based on first-principles calculations. We show that waved graphenes are compressible up to a strain of 50% and ultra-flexible because of the vanishing in-plane stiffness. The conductivity of waved graphenes is reduced due to charge decoupling under high compression. Our analysis of pyramidalization angles predicts that the chemistry of waved graphenes can be easily controlled by modulating local curvatures. We further demonstrate that band gaps of armchair waved graphene nanoribbons decrease with the increase of compression if they are asymmetrical in geometry, while increase if symmetrical. For waved zigzag nanoribbons, their anti-ferromagnetic states are strongly enhanced by increasing compression. The versatile functions of waved graphenes enable their applications in multi-functional nanodevices and sensors. PMID:24569444

  1. Spectral Characterization of the Wave Energy Resource for Puerto Rico (PR) and the United States Virgin Islands (USVI)

    NASA Astrophysics Data System (ADS)

    Garcia, C. G.; Canals, M.; Irizarry, A. A.

    2016-02-01

    Nowadays a significant amount of wave energy assessments have taken place due to the development of the ocean energy markets worldwide. Energy contained in surface gravity waves is scattered along frequency components that can be described using wave spectra. Correspondingly, characterization and quantification of harvestable wave energy is inherently dictated by the nature of the two-dimensional wave spectrum. The present study uses spectral wave data from the operational SWAN-based CariCOOS Nearshore Wave Model to evaluate the capture efficiency of multiple wave energy converters (WEC). This study revolves around accurately estimating available wave energy as a function of varying spectral distributions, effectively providing a detailed insight concerning local wave conditions for PR and USVI and the resulting available-energy to generated-power ratio. Results in particular, provide a comprehensive characterization of three years' worth of SWAN-based datasets by outlining where higher concentrations of wave energy are localized in the spectrum. Subsequently, the aforementioned datasets were processed to quantify the amount of energy incident on two proposed sites located in PR and USVI. Results were largely influenced by local trade wind activity, which drive predominant sea states, and the amount of North-Atlantic swells that propagate towards the region. Each wave event was numerically analyzed in the frequency domain to evaluate the capacity of a WEC to perform under different spectral distribution scenarios, allowing for a correlation between electrical power output and spectral energy distribution to be established.

  2. The magnetic particle in a box: Analytic and micromagnetic analysis of probe-localized spin wave modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adur, Rohan, E-mail: adur@physics.osu.edu; Du, Chunhui; Manuilov, Sergei A.

    2015-05-07

    The dipole field from a probe magnet can be used to localize a discrete spectrum of standing spin wave modes in a continuous ferromagnetic thin film without lithographic modification to the film. Obtaining the resonance field for a localized mode is not trivial due to the effect of the confined and inhomogeneous magnetization precession. We compare the results of micromagnetic and analytic methods to find the resonance field of localized modes in a ferromagnetic thin film, and investigate the accuracy of these methods by comparing with a numerical minimization technique that assumes Bessel function modes with pinned boundary conditions. Wemore » find that the micromagnetic technique, while computationally more intensive, reveals that the true magnetization profiles of localized modes are similar to Bessel functions with gradually decaying dynamic magnetization at the mode edges. We also find that an analytic solution, which is simple to implement and computationally much faster than other methods, accurately describes the resonance field of localized modes when exchange fields are negligible, and demonstrating the accessibility of localized mode analysis.« less

  3. Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopar, Víctor A.

    Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studiedmore » phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.« less

  4. Statistical properties and correlation functions for drift waves

    NASA Technical Reports Server (NTRS)

    Horton, W.

    1986-01-01

    The dissipative one-field drift wave equation is solved using the pseudospectral method to generate steady-state fluctuations. The fluctuations are analyzed in terms of space-time correlation functions and modal probability distributions. Nearly Gaussian statistics and exponential decay of the two-time correlation functions occur in the presence of electron dissipation, while in the absence of electron dissipation long-lived vortical structures occur. Formulas from renormalized, Markovianized statistical turbulence theory are given in a local approximation to interpret the dissipative turbulence.

  5. Spin flux and magnetic solitons in an interacting two-dimensional electron gas: Topology of two-valued wave functions

    NASA Astrophysics Data System (ADS)

    John, Sajeev; Golubentsev, Andrey

    1995-01-01

    It is suggested that an interacting many-electron system in a two-dimensional lattice may condense into a topological magnetic state distinct from any discussed previously. This condensate exhibits local spin-1/2 magnetic moments on the lattice sites but is composed of a Slater determinant of single-electron wave functions which exist in an orthogonal sector of the electronic Hilbert space from the sector describing traditional spin-density-wave or spiral magnetic states. These one-electron spinor wave functions have the distinguishing property that they are antiperiodic along a closed path encircling any elementary plaquette of the lattice. This corresponds to a 2π rotation of the internal coordinate frame of the electron as it encircles the plaquette. The possibility of spinor wave functions with spatial antiperiodicity is a direct consequence of the two-valuedness of the internal electronic wave function defined on the space of Euler angles describing its spin. This internal space is the topologically, doubly-connected, group manifold of SO(3). Formally, these antiperiodic wave functions may be described by passing a flux which couples to spin (rather than charge) through each of the elementary plaquettes of the lattice. When applied to the two-dimensional Hubbard model with one electron per site, this new topological magnetic state exhibits a relativistic spectrum for charged, quasiparticle excitations with a suppressed one-electron density of states at the Fermi level. For a topological antiferromagnet on a square lattice, with the standard Hartree-Fock, spin-density-wave decoupling of the on-site Hubbard interaction, there is an exact mapping of the low-energy one-electron excitation spectrum to a relativistic Dirac continuum field theory. In this field theory, the Dirac mass gap is precisely the Mott-Hubbard charge gap and the continuum field variable is an eight-component Dirac spinor describing the components of physical electron-spin amplitude on each of the four sites of the elementary plaquette in the original Hubbard model. Within this continuum model we derive explicitly the existence of hedgehog Skyrmion textures as local minima of the classical magnetic energy. These magnetic solitons carry a topological winding number μ associated with the vortex rotation of the background magnetic moment field by a phase angle 2πμ along a path encircling the soliton. Such solitons also carry a spin flux of μπ through the plaquette on which they are centered. The μ=1 hedgehog Skyrmion describes a local transition from the topological (antiperiodic) sector of the one-electron Hilbert space to the nontopological sector. We derive from first principles the existence of deep level localized electronic states within the Mott-Hubbard charge gap for the μ=1 and 2 solitons. The spectrum of localized states is symmetric about E=0 and each subgap electronic level can be occupied by a pair of electrons in which one electron resides primarily on one sublattice and the second electron on the other sublattice. It is suggested that flux-carrying solitons and the subgap electronic structure which they induce are important in understanding the physical behavior of doped Mott insulators.

  6. Analysis of STM images with pure and CO-functionalized tips: A first-principles and experimental study

    NASA Astrophysics Data System (ADS)

    Gustafsson, Alexander; Okabayashi, Norio; Peronio, Angelo; Giessibl, Franz J.; Paulsson, Magnus

    2017-08-01

    We describe a first-principles method to calculate scanning tunneling microscopy (STM) images, and compare the results to well-characterized experiments combining STM with atomic force microscopy (AFM). The theory is based on density functional theory with a localized basis set, where the wave functions in the vacuum gap are computed by propagating the localized-basis wave functions into the gap using a real-space grid. Constant-height STM images are computed using Bardeen's approximation method, including averaging over the reciprocal space. We consider copper adatoms and single CO molecules adsorbed on Cu(111), scanned with a single-atom copper tip with and without CO functionalization. The calculated images agree with state-of-the-art experiments, where the atomic structure of the tip apex is determined by AFM. The comparison further allows for detailed interpretation of the STM images.

  7. Local U(2,2) symmetry in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    1998-12-01

    Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.

  8. Localizing high-lying Rydberg wave packets with two-color laser fields

    NASA Astrophysics Data System (ADS)

    Larimian, Seyedreza; Lemell, Christoph; Stummer, Vinzenz; Geng, Ji-Wei; Roither, Stefan; Kartashov, Daniil; Zhang, Li; Wang, Mu-Xue; Gong, Qihuang; Peng, Liang-You; Yoshida, Shuhei; Burgdörfer, Joachim; Baltuška, Andrius; Kitzler, Markus; Xie, Xinhua

    2017-08-01

    We demonstrate control over the localization of high-lying Rydberg wave packets in argon atoms with phase-locked orthogonally polarized two-color laser fields. With a reaction microscope, we measure ionization signals of high-lying Rydberg states induced by a weak dc field and blackbody radiation as a function of the relative phase between the two-color fields. We find that the dc-field-ionization yield of high-lying Rydberg argon atoms oscillates with the relative two-color phase with a period of 2 π while the photoionization signal by blackbody radiation shows a period of π . Accompanying simulations show that these observations are a clear signature of the asymmetric localization of electrons recaptured into very elongated (low angular momentum) high-lying Rydberg states after conclusion of the laser pulse. Our findings thus open an effective pathway to control the localization of high-lying Rydberg wave packets.

  9. Myocardial effects of local shock wave therapy in a Langendorff model.

    PubMed

    Becker, M; Goetzenich, A; Roehl, A B; Huebel, C; de la Fuente, M; Dietz-Laursonn, K; Radermacher, K; Rossaint, R; Hein, M

    2014-01-01

    Applying shock waves to the heart has been reported to stimulate the heart and alter cardiac function. We hypothesized that shock waves could be used to diagnose regional viability. We used a Langendorff model to investigate the acute effects of shock waves at different energy levels and times related to systole, cycle duration and myocardial function. We found only a small time window to use shock waves. Myocardial fibrillation or extrasystolic beats will occur if the shock wave is placed more than 15 ms before or 30 ms after the onset of systole. Increased contractility and augmented relaxation were observed after the second beat, and these effects decreased after prolonging the shock wave delay from 15 ms before to 30 ms after the onset of systole. An energy dependency could be found only after short delays (-15 ms). The involved processes might include post-extrasystolic potentiation and simultaneous pacing. In summary, we found that low-energy shock waves can be a useful tool to stimulate the myocardium at a distance and influence function. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Numerical evaluation of longitudinal motions of Wigley hulls advancing in waves by using Bessho form translating-pulsating source Green'S function

    NASA Astrophysics Data System (ADS)

    Xiao, Wenbin; Dong, Wencai

    2016-06-01

    In the framework of 3D potential flow theory, Bessho form translating-pulsating source Green's function in frequency domain is chosen as the integral kernel in this study and hybrid source-and-dipole distribution model of the boundary element method is applied to directly solve the velocity potential for advancing ship in regular waves. Numerical characteristics of the Green function show that the contribution of local-flow components to velocity potential is concentrated at the nearby source point area and the wave component dominates the magnitude of velocity potential in the far field. Two kinds of mathematical models, with or without local-flow components taken into account, are adopted to numerically calculate the longitudinal motions of Wigley hulls, which demonstrates the applicability of translating-pulsating source Green's function method for various ship forms. In addition, the mesh analysis of discrete surface is carried out from the perspective of ship-form characteristics. The study shows that the longitudinal motion results by the simplified model are somewhat greater than the experimental data in the resonant zone, and the model can be used as an effective tool to predict ship seakeeping properties. However, translating-pulsating source Green function method is only appropriate for the qualitative analysis of motion response in waves if the ship geometrical shape fails to satisfy the slender-body assumption.

  11. Nonlocal Symmetries, Conservation Laws and Interaction Solutions of the Generalised Dispersive Modified Benjamin-Bona-Mahony Equation

    NASA Astrophysics Data System (ADS)

    Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Wang, Xiu-Bin; Zhang, Tian-Tian

    2018-05-01

    We consider the generalised dispersive modified Benjamin-Bona-Mahony equation, which describes an approximation status for long surface wave existed in the non-linear dispersive media. By employing the truncated Painlevé expansion method, we derive its non-local symmetry and Bäcklund transformation. The non-local symmetry is localised by a new variable, which provides the corresponding non-local symmetry group and similarity reductions. Moreover, a direct method can be provided to construct a kind of finite symmetry transformation via the classic Lie point symmetry of the normal prolonged system. Finally, we find that the equation is a consistent Riccati expansion solvable system. With the help of the Jacobi elliptic function, we get its interaction solutions between solitary waves and cnoidal periodic waves.

  12. Comparison of localized basis and plane-wave basis for density-functional calculations of organic molecules on metals

    NASA Astrophysics Data System (ADS)

    Lee, Kyuho; Yu, Jaejun; Morikawa, Yoshitada

    2007-01-01

    Localized pseudoatomic orbitals (PAOs) are mainly optimized and tested for the strong chemical bonds within molecules and solids with their proven accuracy and efficiency, but are prone to significant basis set superposition error (BSSE) for weakly interacting systems. Here we test the accuracy of PAO basis in comparison with the BSSE-free plane-wave basis for the physisorption of pentacene molecule on Au (001) by calculating the binding energy, adsorption height, and energy level alignment. We show that both the large cutoff radius for localized PAOs and the counter-poise correction for BSSE are necessary to obtain well-converged physical properties. Thereby obtained results are as accurate as the plane-wave basis results. The comparison with experiment is given as well.

  13. Improved distorted wave theory with the localized virial conditions

    NASA Astrophysics Data System (ADS)

    Hahn, Y. K.; Zerrad, E.

    2009-12-01

    The distorted wave theory is operationally improved to treat the full collision amplitude, such that the corrections to the distorted wave Born amplitude can be systematically calculated. The localized virial conditions provide the tools necessary to test the quality of successive approximations at each stage and to optimize the solution. The details of the theoretical procedure are explained in concrete terms using a collisional ionization model and variational trial functions. For the first time, adjustable parameters associated with an approximate scattering solution can be fully determined by the theory. A small number of linear parameters are introduced to examine the convergence property and the effectiveness of the new approach.

  14. Continuous Shear Wave Elastography: a New Method to Measure in-vivo Viscoelastic Properties of Tendons

    PubMed Central

    Cortes, Daniel H.; Suydam, Stephen M.; Silbernagel, Karin Grävare; Buchanan, Thomas S.; Elliott, Dawn M.

    2015-01-01

    Viscoelastic mechanical properties are frequently altered after tendon injuries and during recovery. Therefore, non-invasive measurements of shear viscoelastic properties may help evaluate tendon recovery and compare the effectiveness of different therapies. The objectives of this study are to present an elastography method to measure localized viscoelastic properties of tendon and to present initial results in healthy and injured human Achilles and semitendinosus tendons. The technique used an external actuator to generate the shear waves in the tendon at different frequencies and plane wave imaging to measure shear wave displacements. For each of the excitation frequencies, maps of direction specific wave speeds were calculated using Local Frequency Estimation. Maps of viscoelastic properties were obtained using a pixel wise curve-fit of wave speed and frequency. The method was validated by comparing measurements of wave speed in agarose gels to those obtained using magnetic resonance elastography. Measurements in human healthy Achilles tendons revealed a pronounced increase in wave speed as function of frequency that highlights the importance of tendon viscoelasticity. Additionally, the viscoelastic properties of the Achilles tendon were larger than those reported for other tissues. Measurements in a tendinopathic Achilles tendon showed that it is feasible to quantify local viscoeasltic properties. Similarly, measurement in the semitendinosus tendon showed a substantial differences in viscoelastic properties between the healthy and contralateral tendons. Consequently, this technique has the potential of evaluating localized changes in tendon viscoelastic properties due to injury and during recovery in a clinical setting. PMID:25796414

  15. Assigning the Cerium Oxidation State for CH2CeF2 and OCeF2 Based on Multireference Wave Function Analysis.

    PubMed

    Mooßen, Oliver; Dolg, Michael

    2016-06-09

    The geometric and electronic structure of the recently experimentally studied molecules ZCeF2 (Z = CH2, O) was investigated by density functional theory (DFT) and wave function-based ab initio methods. Special attention was paid to the Ce-Z metal-ligand bonding, especially to the nature of the interaction between the Ce 4f and the Z 2p orbitals and the possible multiconfigurational character arising from it, as well as to the assignment of an oxidation state of Ce reflecting the electronic structure. Complete active space self-consistent field (CASSCF) calculations were performed, followed by orbital rotations in the active orbital space. The methylene compound CH2CeF2 has an open-shell singlet ground state, which is characterized by a two-configurational wave function in the basis of the strongly mixed natural CASSCF orbitals. The system can also be described in a very compact way by the dominant Ce 4f(1) C 2p(1) configuration, if nearly pure Ce 4f and C 2p orbitals are used. In the basis of these localized orbitals, the molecule is almost monoconfigurational and should be best described as a Ce(III) system. The singlet ground state of the oxygen OCeF2 complex is of closed-shell character when a monoconfigurational wave function with very strongly mixed Ce 4f and O 2p CASSCF natural orbitals is used for the description. The transformation to orbitals localized on the cerium and oxygen atoms leads to a multiconfigurational wave function and reveals characteristics of a mixed valent Ce(IV)/Ce(III) compound. Additionally, the interactions of the localized active orbitals were analyzed by evaluating the expectation values of the charge fluctuation operator and the local spin operator. The Ce 4f and C 2p orbital interaction of the CH2CeF2 compound is weakly covalent and resembles the interaction of the H 1s orbitals in a stretched hydrogen dimer. In contrast, the interaction of the localized active orbitals for OCeF2 shows ionic character. Calculated vibrational Ce-C and Ce-O stretching frequencies at the DFT, CASSCF, second-order Rayleigh-Schrödinger perturbation theory (RS2C), multireference configuration interaction (MRCI), as well as single, doubles, and perturbative triples coupled cluster (CCSD(T)) level are reported and compared to experimental infrared absorption data in a Ne and Ar matrix.

  16. Derivative expansion of wave function equivalent potentials

    NASA Astrophysics Data System (ADS)

    Sugiura, Takuya; Ishii, Noriyoshi; Oka, Makoto

    2017-04-01

    Properties of the wave function equivalent potentials introduced by the HAL QCD collaboration are studied in a nonrelativistic coupled-channel model. The derivative expansion is generalized, and then applied to the energy-independent and nonlocal potentials. The expansion coefficients are determined from analytic solutions to the Nambu-Bethe-Salpeter wave functions. The scattering phase shifts computed from these potentials are compared with the exact values to examine the convergence of the expansion. It is confirmed that the generalized derivative expansion converges in terms of the scattering phase shift rather than the functional structure of the non-local potentials. It is also found that the convergence can be improved by tuning either the choice of interpolating fields or expansion scale in the generalized derivative expansion.

  17. A switchable spin-wave signal splitter for magnonic networks

    NASA Astrophysics Data System (ADS)

    Heussner, F.; Serga, A. A.; Brächer, T.; Hillebrands, B.; Pirro, P.

    2017-09-01

    The influence of an inhomogeneous magnetization distribution on the propagation of caustic-like spin-wave beams in unpatterned magnetic films has been investigated by utilizing micromagnetic simulations. Our study reveals a locally controllable and reconfigurable tractability of the beam directions. This feature is used to design a device combining split and switch functionalities for spin-wave signals on the micrometer scale. A coherent transmission of spin-wave signals through the device is verified. This attests the applicability in magnonic networks where the information is encoded in the phase of the spin waves.

  18. Localization or tunneling in asymmetric double-well potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Dae-Yup, E-mail: dsong@sunchon.ac.kr

    An asymmetric double-well potential is considered, assuming that the wells are parabolic around the minima. The WKB wave function of a given energy is constructed inside the barrier between the wells. By matching the WKB function to the exact wave functions of the parabolic wells on both sides of the barrier, for two almost degenerate states, we find a quantization condition for the energy levels which reproduces the known energy splitting formula between the two states. For the other low-lying non-degenerate states, we show that the eigenfunction should be primarily localized in one of the wells with negligible magnitude inmore » the other. Using Dekker’s method (Dekker, 1987), the present analysis generalizes earlier results for weakly biased double-well potentials to systems with arbitrary asymmetry.« less

  19. Localized transversal-rotational modes in linear chains of equal masses.

    PubMed

    Pichard, H; Duclos, A; Groby, J-P; Tournat, V; Gusev, V E

    2014-01-01

    The propagation and localization of transversal-rotational waves in a two-dimensional granular chain of equal masses are analyzed in this study. The masses are infinitely long cylinders possessing one translational and one rotational degree of freedom. Two dispersive propagating modes are predicted in this granular crystal. By considering the semi-infinite chain with a boundary condition applied at its beginning, the analytical study demonstrates the existence of localized modes, each mode composed of two evanescent modes. Their existence, position (either in the gap between the propagating modes or in the gap above the upper propagating mode), and structure of spatial localization are analyzed as a function of the relative strength of the shear and bending interparticle interactions and for different boundary conditions. This demonstrates the existence of a localized mode in a semi-infinite monatomic chain when transversal-rotational waves are considered, while it is well known that these types of modes do not exist when longitudinal waves are considered.

  20. Information transport in classical statistical systems

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-02-01

    For "static memory materials" the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are "quantum simulators". For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.

  1. Pseudopotential plane-wave calculation of the structural properties of yttrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Chou, M.Y.

    1991-11-01

    The structural properties of hexagonal-close-packed yttrium are studied by using the plane-wave basis within the pseudopotential method and local-density-functional approximation. By employing a soft'' pseudopotential proposed by Troullier and Martins, satisfactory convergence is achieved with a plane-wave energy cutoff of 30--40 Ry for this early-transition-metal element. The overall results for the structural properties are in good agreement with experiment. It is found that the charge overlap between core and valence electrons has a substantial effect on the accuracy of the calculated structural properties. Two different calculations are performed with and without the outer-core 4{ital p} orbital included as a valencemore » state. In addition, as found in some other local-density calculations, the uncertainty in the results due to different exchange-correlation energy functionals may not be negligible in transition metals.« less

  2. Acoustic metamaterials: From local resonances to broad horizons

    PubMed Central

    Ma, Guancong; Sheng, Ping

    2016-01-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. PMID:26933692

  3. Global excitation of wave phenomena in a dissipative multiconstituent medium. I - Transfer function of the earth's thermosphere. II - Impulsive perturbations in the earth's thermosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.

    1984-01-01

    A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.

  4. Description of waves in inhomogeneous domains using Heun's equation

    NASA Astrophysics Data System (ADS)

    Bednarik, M.; Cervenka, M.

    2018-04-01

    There are a number of model equations describing electromagnetic, acoustic or quantum waves in inhomogeneous domains and some of them are of the same type from the mathematical point of view. This isomorphism enables us to use a unified approach to solving the corresponding equations. In this paper, the inhomogeneity is represented by a trigonometric spatial distribution of a parameter determining the properties of an inhomogeneous domain. From the point of view of modeling, this trigonometric parameter function can be smoothly connected to neighboring constant-parameter regions. For this type of distribution, exact local solutions of the model equations are represented by the local Heun functions. As the interval for which the solution is sought includes two regular singular points. For this reason, a method is proposed which resolves this problem only based on the local Heun functions. Further, the transfer matrix for the considered inhomogeneous domain is determined by means of the proposed method. As an example of the applicability of the presented solutions the transmission coefficient is calculated for the locally periodic structure which is given by an array of asymmetric barriers.

  5. From plane waves to local Gaussians for the simulation of correlated periodic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, George H., E-mail: george.booth@kcl.ac.uk; Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of themore » basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.« less

  6. Enhanced hydrological extremes in the western United States under global warming through the lens of water vapor wave activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jian; Xue, Daokai; Gao, Yang

    Understanding how regional hydrological extremes would respond to warming is a grand challenge to the community of climate change research. To address this challenge, we construct an analysis framework based on column integrated water vapor (CWV) wave activity to diagnose the wave component of the hydrological cycle that contributes to hydrological extremes. By applying the analysis to the historical and future climate projections from the CMIP5 models, we found that the wet-versus-dry disparity of daily net precipitation along a zonal band can increase at a super Clausius-Clapeyron rate due to the enhanced stirring length of wave activity at the polewardmore » flank of the mean storm track. The local variant of CWV wave activity reveals the unique characteristics of atmospheric rivers (ARs) in terms of their transport function, enhanced mixing and hydrological cycling rate (HC). Under RCP8.5, the local moist wave activity increases by ~40% over the northeastern Pacific by the end of the 21st century, indicating more ARs hitting the west coast, giving rise to a ~20% increase in the related hydrological extremes - $ despite a weakening of the local HC.« less

  7. Speed hysteresis and noise shaping of traveling fronts in neural fields: role of local circuitry and nonlocal connectivity

    NASA Astrophysics Data System (ADS)

    Capone, Cristiano; Mattia, Maurizio

    2017-01-01

    Neural field models are powerful tools to investigate the richness of spatiotemporal activity patterns like waves and bumps, emerging from the cerebral cortex. Understanding how spontaneous and evoked activity is related to the structure of underlying networks is of central interest to unfold how information is processed by these systems. Here we focus on the interplay between local properties like input-output gain function and recurrent synaptic self-excitation of cortical modules, and nonlocal intermodular synaptic couplings yielding to define a multiscale neural field. In this framework, we work out analytic expressions for the wave speed and the stochastic diffusion of propagating fronts uncovering the existence of an optimal balance between local and nonlocal connectivity which minimizes the fluctuations of the activation front propagation. Incorporating an activity-dependent adaptation of local excitability further highlights the independent role that local and nonlocal connectivity play in modulating the speed of propagation of the activation and silencing wavefronts, respectively. Inhomogeneities in space of local excitability give raise to a novel hysteresis phenomenon such that the speed of waves traveling in opposite directions display different velocities in the same location. Taken together these results provide insights on the multiscale organization of brain slow-waves measured during deep sleep and anesthesia.

  8. Electromagnetic pulses, localized and causal

    NASA Astrophysics Data System (ADS)

    Lekner, John

    2018-01-01

    We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.

  9. Hole localization in Fe2O3 from density functional theory and wave-function-based methods

    NASA Astrophysics Data System (ADS)

    Ansari, Narjes; Ulman, Kanchan; Camellone, Matteo Farnesi; Seriani, Nicola; Gebauer, Ralph; Piccinin, Simone

    2017-08-01

    Hematite (α -Fe2O3 ) is a promising photocatalyst material for water splitting, where photoinduced holes lead to the oxidation of water and the release of molecular oxygen. In this work, we investigate the properties of holes in hematite using density functional theory (DFT) calculations with hybrid functionals. We find that holes form small polarons and, depending on the fraction of exact exchange included in the PBE0 functional, the site where the holes localize changes from Fe to O. We find this result to be independent of the size and structure of the system: small Fe2O3 clusters with tetrahedral coordination, larger clusters with octahedral coordination, Fe2O3 (001) surfaces in contact with water, and bulk Fe2O3 display a very similar behavior in terms of hole localization as a function of the fraction of exact exchange. We then use wave-function-based methods such as coupled cluster with single and double excitations and Møller-Plesset second-order perturbation theory applied on a cluster model of Fe2O3 to shed light on which of the two solutions is correct. We find that these high-level quantum chemistry methods suggest holes in hematite are localized on oxygen atoms. We also explore the use of the DFT +U approach as a computationally convenient way to overcome the known limitations of generalized gradient approximation functionals and recover a gap in line with experiments and hole localization on oxygen in agreement with quantum chemistry methods.

  10. On the importance of local orbitals using second energy derivatives for d and f electrons

    NASA Astrophysics Data System (ADS)

    Karsai, Ferenc; Tran, Fabien; Blaha, Peter

    2017-11-01

    The all-electron linearized augmented plane wave (LAPW) methods are among the most accurate to solve the Kohn-Sham equations of density functional theory for periodic solids. In the LAPW methods, the unit cell is partitioned into spheres surrounding the atoms, inside which the wave functions are expanded into spherical harmonics, and the interstitial region, where the wave functions are expanded in Fourier series. Recently, Michalicek et al. (2013) reported an analysis of the so-called linearization error, which is inherent to the basis functions inside the spheres, and advocated the use of local orbital basis functions involving the second energy derivative of the radial part (HDLO). In the present work, we report the implementation of such basis functions into the WIEN2k code, and discuss in detail the improvement in terms of accuracy. From our tests, which involve atoms from the whole periodic table, it is concluded that for ground-state properties (e.g., equilibrium volume) the use of HDLO is necessary only for atoms with d or f electrons in the valence and large atomic spheres. For unoccupied states which are not too high above the Fermi energy, HDLO systematically improve the band structure, which may be of importance for the calculation of optical properties.

  11. A new wave front shape-based approach for acoustic source localization in an anisotropic plate without knowing its material properties.

    PubMed

    Sen, Novonil; Kundu, Tribikram

    2018-07-01

    Estimating the location of an acoustic source in a structure is an important step towards passive structural health monitoring. Techniques for localizing an acoustic source in isotropic structures are well developed in the literature. Development of similar techniques for anisotropic structures, however, has gained attention only in the recent years and has a scope of further improvement. Most of the existing techniques for anisotropic structures either assume a straight line wave propagation path between the source and an ultrasonic sensor or require the material properties to be known. This study considers different shapes of the wave front generated during an acoustic event and develops a methodology to localize the acoustic source in an anisotropic plate from those wave front shapes. An elliptical wave front shape-based technique was developed first, followed by the development of a parametric curve-based technique for non-elliptical wave front shapes. The source coordinates are obtained by minimizing an objective function. The proposed methodology does not assume a straight line wave propagation path and can predict the source location without any knowledge of the elastic properties of the material. A numerical study presented here illustrates how the proposed methodology can accurately estimate the source coordinates. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with time–space modulation

    NASA Astrophysics Data System (ADS)

    Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming

    2018-05-01

    Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.

  13. Numerical simulations (2D) on the influence of pre-existing local structures and seismic source characteristics in earthquake-volcano interactions

    NASA Astrophysics Data System (ADS)

    Farías, Cristian; Galván, Boris; Miller, Stephen A.

    2017-09-01

    Earthquake triggering of hydrothermal and volcanic systems is ubiquitous, but the underlying processes driving these systems are not well-understood. We numerically investigate the influence of seismic wave interaction with volcanic systems simulated as a trapped, high-pressure fluid reservoir connected to a fluid-filled fault system in a 2-D poroelastic medium. Different orientations and earthquake magnitudes are studied to quantify dynamic and static stress, and pore pressure changes induced by a seismic event. Results show that although the response of the system is mainly dominated by characteristics of the radiated seismic waves, local structures can also play an important role on the system dynamics. The fluid reservoir affects the seismic wave front, distorts the static overpressure pattern induced by the earthquake, and concentrates the kinetic energy of the incoming wave on its boundaries. The static volumetric stress pattern inside the fault system is also affected by the local structures. Our results show that local faults play an important role in earthquake-volcanic systems dynamics by concentrating kinetic energy inside and acting as wave-guides that have a breakwater-like behavior. This generates sudden changes in pore pressure, volumetric expansion, and stress gradients. Local structures also influence the regional Coulomb yield function. Our results show that local structures affect the dynamics of volcanic and hydrothermal systems, and should be taken into account when investigating triggering of these systems from nearby or distant earthquakes.

  14. Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution

    NASA Astrophysics Data System (ADS)

    Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard

    2015-08-01

    Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.

  15. Continuous Shear Wave Elastography: A New Method to Measure Viscoelastic Properties of Tendons in Vivo.

    PubMed

    Cortes, Daniel H; Suydam, Stephen M; Silbernagel, Karin Grävare; Buchanan, Thomas S; Elliott, Dawn M

    2015-06-01

    Viscoelastic mechanical properties are frequently altered after tendon injuries and during recovery. Therefore, non-invasive measurements of shear viscoelastic properties may help evaluate tendon recovery and compare the effectiveness of different therapies. The objectives of this study were to describe an elastography method for measuring localized viscoelastic properties of tendons and to discuss the initial results in healthy and injured human Achilles and semitendinosus tendons. The technique used an external actuator to generate the shear waves in the tendon at different frequencies and plane wave imaging to measure shear wave displacements. For each of the excitation frequencies, maps of direction-specific wave speeds were calculated using local frequency estimation. Maps of viscoelastic properties were obtained using a pixel-wise curve fit of wave speed and frequency. The method was validated by comparing measurements of wave speed in agarose gels with those obtained using magnetic resonance elastography. Measurements in human healthy Achilles tendons revealed a pronounced increase in wave speed as a function of frequency, which highlights the importance of tendon viscoelasticity. Additionally, the viscoelastic properties of the Achilles tendon were larger than those reported for other tissues. Measurements in a tendinopathic Achilles tendon indicated that it is feasible to quantify local viscoelastic properties. Similarly, measurement in the semitendinosus tendon revealed substantial differences in viscoelastic properties between the healthy and contralateral tendons. Consequently, this technique has the potential to evaluate localized changes in tendon viscoelastic properties caused by injury and during recovery in a clinical setting. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2017-12-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3} ) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3} . A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  17. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2018-06-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3}) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3}. A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  18. Effects of dust polarity and nonextensive electrons on the dust-ion acoustic solitons and double layers in earth atmosphere

    NASA Astrophysics Data System (ADS)

    Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh

    2018-05-01

    Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.

  19. Fate of the open-shell singlet ground state in the experimentally accessible acenes: A quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Dupuy, Nicolas; Casula, Michele

    2018-04-01

    By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes' ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hégely, Bence; Nagy, Péter R.; Kállay, Mihály, E-mail: kallay@mail.bme.hu

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up themore » system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.« less

  1. Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet

    NASA Astrophysics Data System (ADS)

    Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.

  2. The problem of hole localization in inner-shell states of N2 and CO2 revisited with complete active space self-consistent field approach.

    PubMed

    Rocha, Alexandre B; de Moura, Carlos E V

    2011-12-14

    Potential energy curves for inner-shell states of nitrogen and carbon dioxide molecules are calculated by inner-shell complete active space self-consistent field (CASSCF) method, which is a protocol, recently proposed, to obtain specifically converged inner-shell states at multiconfigurational level. This is possible since the collapse of the wave function to a low-lying state is avoided by a sequence of constrained optimization in the orbital mixing step. The problem of localization of K-shell states is revisited by calculating their energies at CASSCF level based on both localized and delocalized orbitals. The localized basis presents the best results at this level of calculation. Transition energies are also calculated by perturbation theory, by taking the above mentioned MCSCF function as zeroth order wave function. Values for transition energy are in fairly good agreement with experimental ones. Bond dissociation energies for N(2) are considerably high, which means that these states are strongly bound. Potential curves along ground state normal modes of CO(2) indicate the occurrence of Renner-Teller effect in inner-shell states. © 2011 American Institute of Physics

  3. AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia)

    NASA Astrophysics Data System (ADS)

    Hendriyana, Andri; Bauer, Klaus; Muksin, Umar; Weber, Michael

    2018-05-01

    We present a new workflow for the localization of seismic events which is based on a diffraction stacking approach. In order to address the effects from complex source radiation patterns, we suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original waveform data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. We demonstrate that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P and S waves due to inaccurate velocity models, we separate the P and S waves from the mAIC function by making use of polarization attributes. Then, the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results. The workflow of the diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for nine months around the Tarutung pull-apart basin were analysed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung basin. Two lineaments striking N-S were found in the centre of the Tarutung basin which support independent results from structural geology.

  4. Explicit inclusion of nonlocality in ( d , p ) transfer reactions

    DOE PAGES

    Titus, L. J.; Nunes, F. M.; Potel, G.

    2016-01-06

    Traditionally, nucleon-nucleus optical potentials are made local for convenience. In recent work we studied the effects of including nonlocal interactions explicitly in the final state for (d,p) reactions, within the distorted wave Born approximation. Our goal in this work is to develop an improved formalism for nonlocal interactions that includes deuteron breakup and to use it to study the effects of including nonlocal interactions in transfer (d,p) reactions, in both the deuteron and the proton channel. We extend the finite-range adiabatic distorted wave approximation to include nonlocal nucleon optical potentials. We apply our method to (d,p) reactions on 16O, 40Ca,more » 48Ca, 126Sn, 132Sn, and 208Pb at 10, 20 and 50 MeV. Here, we find that nonlocality in the deuteron scattering state reduces the amplitude of the wave function in the nuclear interior, and shifts the wave function outward. In many cases, this has the effect of increasing the transfer cross section at the first peak of the angular distributions. This increase was most significant for heavy targets and for reactions at high energies. Lastly, our systematic study shows that, if only local optical potentials are used in the analysis of experimental (d, p) transfer cross sections, the extracted spectroscopic factors may be incorrect by up to 40% due to the local approximation.« less

  5. Localized water reverberation phases and its impact on back-projection images

    NASA Astrophysics Data System (ADS)

    Yue, H.; Castillo, J.; Yu, C.; Meng, L.; Zhan, Z.

    2017-12-01

    Coherent radiators imaged by back-projections (BP) are commonly interpreted as part of the rupture process. Nevertheless, artifacts introduced by structure related phases are rarely discriminated from the rupture process. In this study, we adopt the logic of empirical Greens' function analysis (EGF) to discriminate between rupture and structure effect. We re-examine the waveforms and BP images of the 2012 Mw 7.2 Indian Ocean earthquake and an EGF event (Mw 6.2). The P wave codas of both events present similar shape with characteristic period of approximately 10 s, which are back-projected as coherent radiators near the trench. S wave BP doesn't image energy radiation near the trench. We interpret those coda waves as localized water reverberation phases excited near the trench. We perform a 2D waveform modeling using realistic bathymetry model, and find that the sharp near-trench bathymetry traps the acoustic water waves forming localized reverberation phases. These waves can be imaged as coherent near-trench radiators with similar features as that in the observations. We present a set of methodology to discriminate between the rupture and propagation effects in BP images, which can serve as a criterion of subevent identification.

  6. Effects of Regional Climate Change on the Wave Conditions in the Western Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dreier, N.; Fröhle, P.

    2017-12-01

    The local wave climate in the Western Baltic Sea is mainly generated by the local wind field over the area. Long-term changes of the local wind conditions that are induced e.g. by regional climate change, directly affect the local wave climate and other local wind driven coastal processes like e.g. the longshore sediment transport. The changes of the local wave climate play an important role for the safe functional and structural design of new, or the adaption of existing, coastal protection structures as well as for the assessment of long-term morphological changes of the coastline. In this study, the wave model SWAN is used for the calculation of hourly wave conditions in the Western Baltic Sea between 1960 and 2100. Future wind conditions from two regional climate models (Cosmo-CLM and REMO) that have been forced by different future greenhouse gas emission scenarios used within AR4 (A1B, B1) and AR5 (RCP4.5 and RCP8.5) of IPCC are used as input for the wave model. The changes of the average wave conditions are analyzed from comparisons between the 30 years averages for the future (e.g. 2071-2100) and the reference period 1971-2000. Regarding the emission scenarios A1B and B1, a significant change of the 30 years averages of significant wave height at westerly wind exposed locations with predominant higher values up to +10% is found (cf. Fig. 1). In contrast, the change of the 30 years averages of significant wave height is more weak at easterly wind exposed locations, resulting in higher and lower values between -5% to +5%. Moreover, more wave events from W-NW and fewer events from N-NE can be expected, due to changes of the frequency of occurrence of the 30 years averages of mean wave direction. The changes of extreme wave heights are analyzed based on methods of extreme value analysis and the time series of wave parameters at selected locations nearby the German Baltic Sea coast. No robust changes of the significant wave heights with a return period of 200 years are found for the emission scenarios A1B and B1. Both increases and decreases of the extreme wave heights are possible within a range of -18% to +18% (-0.5m to +0.5m). In the presentation, we will show results from the assessment of the changes of the wave conditions for the emission scenarios RCP4.5 and RCP8.5 and discuss possible impacts for the German Baltic Sea coast.

  7. A numerical solution method for acoustic radiation from axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Caruthers, John E.; Raviprakash, G. K.

    1995-01-01

    A new and very efficient numerical method for solving equations of the Helmholtz type is specialized for problems having axisymmetric geometry. It is then demonstrated by application to the classical problem of acoustic radiation from a vibrating piston set in a stationary infinite plane. The method utilizes 'Green's Function Discretization', to obtain an accurate resolution of the waves using only 2-3 points per wave. Locally valid free space Green's functions, used in the discretization step, are obtained by quadrature. Results are computed for a range of grid spacing/piston radius ratios at a frequency parameter, omega R/c(sub 0), of 2 pi. In this case, the minimum required grid resolution appears to be fixed by the need to resolve a step boundary condition at the piston edge rather than by the length scale imposed by the wave length of the acoustic radiation. It is also demonstrated that a local near-field radiation boundary procedure allows the domain to be truncated very near the radiating source with little effect on the solution.

  8. Global Characteristics of Electromagnetic Ion Cyclotron Waves Deduced From Swarm Satellites

    NASA Astrophysics Data System (ADS)

    Kim, Hyangpyo; Hwang, Junga; Park, Jaeheung; Bortnik, Jacob; Lee, Jaejin

    2018-02-01

    It is well known that electromagnetic ion cyclotron (EMIC) waves play an important role in controlling particle dynamics inside the Earth's magnetosphere, especially in the outer radiation belt. In order to understand the results of wave-particle interactions due to EMIC waves, it is important to know how the waves are distributed and what features they have. In this paper, we present some statistical analyses on the spatial distribution of EMIC waves in the low Earth orbit by using Swarm satellites from December 2013 to June 2017 ( 3.5 years) as a function of magnetic local time, magnetic latitude, and magnetic longitude. We also study the wave characteristics such as ellipticity, wave normal angle, peak frequency, and wave power using our automatic wave detection algorithm based on the method of Bortnik et al. (2007, https://doi.org/10.1029/2006JA011900). We also investigate the geomagnetic control of the EMIC waves by comparing with geomagnetic activity represented by Kp and Dst indices. We find that EMIC waves are detected with a peak occurrence rate at midlatitude including subauroral region, dawn sector (3-7 magnetic local time), and linear polarization dominated with an oblique propagating direction to the background magnetic field. In addition, our result shows that the waves have some relation with geomagnetic activity; that is, they occur preferably during the geomagnetic storm's late recovery phase at low Earth orbit.

  9. Quantum phase space with a basis of Wannier functions

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Wu, Fan; Wu, Biao

    2018-02-01

    A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.

  10. VLF Wave Local Acceleration & ULF Wave Radial Diffusion: The Importance of K-Dependent PSD Analysis for Diagnosing the cause of Radiation Belt Acceleration.

    NASA Astrophysics Data System (ADS)

    Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.

    2017-12-01

    We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.

  11. The normalized magnetic helicity spectrum as a function of the angle between the local mean magnetic field and the flow direction of the solar wind: First results using high resolution magnetic field data from the Wind spacecraft

    NASA Astrophysics Data System (ADS)

    Podesta, J. J.

    2011-12-01

    This year, for the first time, the reduced normalized magnetic helicity spectrum has been analyzed as a function of the angle θ between the local mean magnetic field and the flow direction of the solar wind using wavelet techniques. In fast wind, at scales localized near kρp = 1 and kc/ωpp = 1, where ρp is the thermal proton gyro-radius and c/ωpp is the proton inertial length, the analysis reveals two distinct populations of fluctuations. There is a population of fluctuations at oblique angles, centered about an angle of 90 degrees, which are right hand polarized in the spacecraft frame and are believed to be associated with kinetic Alfven waves although the signal covers a wide range of oblique angles and a satisfactory interpretation of their spectrum through comparison with theory has not yet been obtained. A second population of fluctuations is found at angles near zero degrees which are left-hand polarized in the spacecraft frame. The data indicates that these are parallel propagating electromagnetic waves consisting either of left-hand polarized ion cyclotron waves propagating predominantly away from the sun or right-hand polarized whistler waves propagating predominantly toward the sun along the local mean magnetic field. As a consequence of the Doppler shift, both types of waves have the same polarization in the spacecraft frame. Unfortunately, the wave polarization in the plasma frame is difficult to determine using magnetic field data alone. Whether the observed waves are right- or left hand polarized in the plasma frame is a fundamental problem for future investigations. The analyses of spacecraft data performed so far have assumed that the solar wind velocity is directed radially outward from the sun. However, in the ecliptic plane at 1 AU, the flow direction typically deviates from the radial direction by a few degrees, sometimes more, and this adversely affects measurements of the angular helicity spectrum. To correct this, new measurements obtained using data from the Wind spacecraft use the scale dependent local mean solar wind velocity when computing the angle from the data. The first results from this study are presented here.

  12. ULF waves and plasma stability in different regions of the magnetosheath

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Escoubet, C. Philippe; Grison, Benjamin

    2016-04-01

    We present a statistical study of the occurrence and properties of ultra low frequency waves in the magnetosheath and interpret the results in terms of the competition of mirror and Alfvén-ion-cyclotron (AIC) instabilities. Both mirror and AIC waves are generated in high beta plasma of the magnetosheath when ion temperature anisotropy exceeds the threshold of the respective instabilities. These waves are frequently observed in the terrestrial and planetary magnetosheaths, but their distribution within the magnetosheath is inhomogeneous and their character varies as a function of location, local and upstream plasma parameters. We studied the spatial distribution of the two wave modes in the magnetosheath together with the local plasma parameters important for the stability of ULF waves. This analysis was performed on a dataset of all magnetosheath crossings observed by Cluster spacecraft over two years. For each observation we used bow shock, magnetopause and magnetosheath flow models to identify the relative position of the spacecraft with respect to magnetosheath boundaries and local properties of the upstream shock crossing. A strong dependence of parameters characterizing plasma stability and mirror/AIC wave occurrence on upstream ΘBn and MA is identified. The occurrence of mirror and AIC modes was compared against the respective instability thresholds and it was observed that AIC waves occurred nearly exclusively under mirror stable conditions. This is interpreted in terms of the different character of non-linear saturation of the two modes.

  13. Progress on the development of FullWave, a Hot and Cold Plasma Parallel Full Wave Code

    NASA Astrophysics Data System (ADS)

    Spencer, J. Andrew; Svidzinski, Vladimir; Zhao, Liangji; Kim, Jin-Soo

    2017-10-01

    FullWave is being developed at FAR-TECH, Inc. to simulate RF waves in hot inhomogeneous magnetized plasmas without making small orbit approximations. FullWave is based on a meshless formulation in configuration space on non-uniform clouds of computational points (CCP) adapted to better resolve plasma resonances, antenna structures and complex boundaries. The linear frequency domain wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. The details of FullWave and some preliminary results will be presented, including: 1) a monitor function based on analytic solutions of the cold-plasma dispersion relation; 2) an adaptive CCP based on the monitor function; 3) construction of the finite differences for approximation of derivatives on adaptive CCP; 4) results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach for ECRH, ICRH and Lower Hybrid range of frequencies. Work is supported by the U.S. DOE SBIR program.

  14. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi

    2012-06-01

    Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.

  15. Metal-dielectric metamaterials for guided wave silicon photonics.

    PubMed

    Lupu, A; Dubrovina, N; Ghasemi, R; Degiron, A; de Lustrac, A

    2011-11-21

    The aim of the present paper is to investigate the potential of metallic metamaterials for building optical functions in guided wave optics at 1.5 µm. A significant part of this work is focused on the optimization of the refractive index variation associated with localized plasmon resonances. The minimization of metal related losses is specifically addressed as well as the engineering of the resonance frequency of the localized plasmons. Our numerical modeling results show that a periodic chain of gold cut wires placed on the top of a 100 nm silicon waveguide makes it possible to achieve a significant index variation in the vicinity of the metamaterial resonance and serve as building blocks for implementing optical functions. The considered solutions are compatible with current nano-fabrication technologies. © 2011 Optical Society of America

  16. Critical anisotropies of a geometrically frustrated triangular-lattice antiferromagnet

    NASA Astrophysics Data System (ADS)

    Swanson, M.; Haraldsen, J. T.; Fishman, R. S.

    2009-05-01

    This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the one-, two-, three-, four-, and eight-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The two-, four-, and eight-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the two-SL/three-SL and three-SL/four-SL phase boundaries, where the three-SL phase has the higher critical anisotropy.

  17. Critical Anisotropies of a Geometrically-Frustrated Triangular-Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Mason R; Haraldsen, Jason T; Fishman, Randy Scott

    2009-01-01

    This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically-frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the 1, 2, 3, 4, and 8-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The 2, 4, and 8-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the 2-SL/3-SLmore » and 3-SL/4-SL phase boundaries, where the 3-SL phase has the higher critical anisotropy.« less

  18. The FLAME-slab method for electromagnetic wave scattering in aperiodic slabs

    NASA Astrophysics Data System (ADS)

    Mansha, Shampy; Tsukerman, Igor; Chong, Y. D.

    2017-12-01

    The proposed numerical method, "FLAME-slab," solves electromagnetic wave scattering problems for aperiodic slab structures by exploiting short-range regularities in these structures. The computational procedure involves special difference schemes with high accuracy even on coarse grids. These schemes are based on Trefftz approximations, utilizing functions that locally satisfy the governing differential equations, as is done in the Flexible Local Approximation Method (FLAME). Radiation boundary conditions are implemented via Fourier expansions in the air surrounding the slab. When applied to ensembles of slab structures with identical short-range features, such as amorphous or quasicrystalline lattices, the method is significantly more efficient, both in runtime and in memory consumption, than traditional approaches. This efficiency is due to the fact that the Trefftz functions need to be computed only once for the whole ensemble.

  19. Statistical Downscaling in Multi-dimensional Wave Climate Forecast

    NASA Astrophysics Data System (ADS)

    Camus, P.; Méndez, F. J.; Medina, R.; Losada, I. J.; Cofiño, A. S.; Gutiérrez, J. M.

    2009-04-01

    Wave climate at a particular site is defined by the statistical distribution of sea state parameters, such as significant wave height, mean wave period, mean wave direction, wind velocity, wind direction and storm surge. Nowadays, long-term time series of these parameters are available from reanalysis databases obtained by numerical models. The Self-Organizing Map (SOM) technique is applied to characterize multi-dimensional wave climate, obtaining the relevant "wave types" spanning the historical variability. This technique summarizes multi-dimension of wave climate in terms of a set of clusters projected in low-dimensional lattice with a spatial organization, providing Probability Density Functions (PDFs) on the lattice. On the other hand, wind and storm surge depend on instantaneous local large-scale sea level pressure (SLP) fields while waves depend on the recent history of these fields (say, 1 to 5 days). Thus, these variables are associated with large-scale atmospheric circulation patterns. In this work, a nearest-neighbors analog method is used to predict monthly multi-dimensional wave climate. This method establishes relationships between the large-scale atmospheric circulation patterns from numerical models (SLP fields as predictors) with local wave databases of observations (monthly wave climate SOM PDFs as predictand) to set up statistical models. A wave reanalysis database, developed by Puertos del Estado (Ministerio de Fomento), is considered as historical time series of local variables. The simultaneous SLP fields calculated by NCEP atmospheric reanalysis are used as predictors. Several applications with different size of sea level pressure grid and with different temporal domain resolution are compared to obtain the optimal statistical model that better represents the monthly wave climate at a particular site. In this work we examine the potential skill of this downscaling approach considering perfect-model conditions, but we will also analyze the suitability of this methodology to be used for seasonal forecast and for long-term climate change scenario projection of wave climate.

  20. Conservation of wave action. [in discrete oscillating system

    NASA Technical Reports Server (NTRS)

    Hayes, W. D.

    1974-01-01

    It is pointed out that two basic principles appear in the theory of wave propagation, including the existence of a phase variable and a law governing the intensity, in terms of a conservation law. The concepts underlying such a conservation law are explored. The waves treated are conservative in the sense that they obey equations derivable from a variational principle applied to a Lagrangian functional. A discrete oscillating system is considered. The approach employed also permits in a natural way the definition of a local action density and flux in problems in which the waves are modal or general.

  1. Spectral properties of Langmuir and beam-mode waves observed inside terrestrial foreshock by Cluster spacecraf

    NASA Astrophysics Data System (ADS)

    Pisa, D.; Soucek, J.; Santolik, O.

    2016-12-01

    Electrostatic plasma waves are commonly observed in the upstream regions of planetary shocks. Solar wind electrons accelerated at the shock front are reflected back into the solar wind and form electron beams. The electron distribution becomes unstable and electrostatic waves are generated inside the foreshock region. The processes of generation and evolution of electrostatic waves significantly depend on the solar wind plasma conditions and generally exhibit complex behavior. Langmuir waves can be identified as intense narrowband emission at the local plasma frequency and weaker broadband beam-mode waves below and above the plasma frequency deeper in the downstream region. We present a long-term survey of Langmuir and beam-mode waves in the vicinity of the plasma frequency observed upstream of the terrestrial bow shock by the Cluster spacecraft. Using solar wind data and bow shock positions from OMNI, as well as in-situ measurements of interplanetary magnetic field, we have mapped all available spacecraft positions into foreshock coordinates. For a study of plasma waves, we have used spectra and local plasma frequencies obtained from a passive and active mode of the WHISPER instrument. We show a spatial distribution of wave frequencies and spectral widths as a function of foreshock positions and solar wind conditions.

  2. Effect of wave localization on plasma instabilities

    NASA Astrophysics Data System (ADS)

    Levedahl, William Kirk

    1987-10-01

    The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.

  3. Real-space mapping of topological invariants using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Carvalho, D.; García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.

    2018-03-01

    Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant by evaluating the system locally, and thus require information about the wave functions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.

  4. Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model

    NASA Astrophysics Data System (ADS)

    Sun, Weitao; Ba, Jing; Carcione, José M.

    2016-04-01

    Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic properties of rocks and fluid patch distributions is important to interpret the observed seismic wave phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation process in a double-porosity media saturated with two immiscible fluids. The double-porosity rock consists of a solid matrix with unique host porosity and inclusions which contain the second type of pores. Two immiscible fluids are considered in concentric spherical patches, where the inner pocket and the outer sphere are saturated with different fluids. The kinetic and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated through oscillations in spherical coordinates. The wave propagation equations of the TLP model are based on Biot's theory and the corresponding Lagrangian equations. The P-wave dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow (related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis from the Christoffel equations. Numerical examples and laboratory measurements indicate that P-wave dispersion and attenuation are significantly influenced by the spatial distributions of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in reasonably good agreement with White's and Johnson's models. However, differences in phase velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distribution should be taken into account when describing the P-wave dispersion and attenuation in partially saturated rocks.

  5. Dunkl operator, integrability, and pairwise scattering in rational Calogero model

    NASA Astrophysics Data System (ADS)

    Karakhanyan, David

    2017-05-01

    The integrability of the Calogero model can be expressed as zero curvature condition using Dunkl operators. The corresponding flat connections are non-local gauge transformations, which map the Calogero wave functions to symmetrized wave functions of the set of N free particles, i.e. it relates the corresponding scattering matrices to each other. The integrability of the Calogero model implies that any k-particle scattering is reduced to successive pairwise scatterings. The consistency condition of this requirement is expressed by the analog of the Yang-Baxter relation.

  6. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    NASA Astrophysics Data System (ADS)

    de Wijs, G. A.; Laskowski, R.; Blaha, P.; Havenith, R. W. A.; Kresse, G.; Marsman, M.

    2017-02-01

    We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.

  7. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations.

    PubMed

    de Wijs, G A; Laskowski, R; Blaha, P; Havenith, R W A; Kresse, G; Marsman, M

    2017-02-14

    We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.

  8. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu

    2015-07-28

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  9. A generalized plasma dispersion function for electron damping in tokamak plasmas

    DOE PAGES

    Berry, L. A.; Jaeger, E. F.; Phillips, C. K.; ...

    2016-10-14

    Radio frequency wave propagation in finite temperature, magnetized plasmas exhibits a wide range of physics phenomena. The plasma response is nonlocal in space and time, and numerous modes are possible with the potential for mode conversions and transformations. Additionally, diffraction effects are important due to finite wavelength and finite-size wave launchers. Multidimensional simulations are required to describe these phenomena, but even with this complexity, the fundamental plasma response is assumed to be the uniform plasma response with the assumption that the local plasma current for a Fourier mode can be described by the Stix conductivity. But, for plasmas with non-uniformmore » magnetic fields, the wave vector itself is nonlocal. When resolved into components perpendicular (k ) and parallel (k ||) to the magnetic field, locality of the parallel component can easily be violated when the wavelength is large. The impact of this inconsistency is that estimates of the wave damping can be incorrect (typically low) due to unresolved resonances. For the case of ion cyclotron damping, this issue has already been addressed by including the effect of parallel magnetic field gradients. In this case, a modified plasma response (Z function) allows resonance broadening even when k || = 0, and this improves the convergence and accuracy of wave simulations. In our paper, we extend this formalism to include electron damping and find improved convergence and accuracy for parameters where electron damping is dominant, such as high harmonic fast wave heating in the NSTX-U tokamak, and helicon wave launch for off-axis current drive in the DIII-D tokamak.« less

  10. Solar Wind - Magnetosheath - Magnetopause Interactions in Global Hybrid-Vlasov Simulations

    NASA Astrophysics Data System (ADS)

    Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Hietala, H.; Cassak, P.; Walsh, B.; Juusola, L.; Jarvinen, R.; von Alfthan, S.; Palmroth, M.

    2017-12-01

    We present results of interactions of solar wind and Earth's magnetosphere in global hybrid-Vlasov simulations carried out using the Vlasiator model. Vlasiator propagates ions as velocity distribution functions by solving the Vlasov equation and electrons are treated as charge-neutralizing massless fluid. Vlasiator simulations show a strong coupling between the ion scale and global scale physics. Global scale phenomena affect the local physics and the local phenomena impact the global system. Our results have shown that mirror mode waves growing in the quasi-perpendicular magnetosheath have an impact on the local reconnection rates at the dayside magnetopause. Furthermore, multiple X-line reconnection at the dayside magnetopause leads to the formation of magnetic islands (2D flux transfer events), which launch bow waves upstream propagating through the magnetosheath. These steep bow waves have the ability to accelerate ions in the magnetosheath. When the bow waves reach the bow shock they are able to bulge the shock locally. The bulge in the shock decreases the angle between the interplanetary magnetic field and the shock normal and allows ions to be reflected back to the solar wind along the magnetic field lines. Consequently, Vlasiator simulations show that magnetosheath fluctuations affect magnetopause reconnection and reconnection may influence particle acceleration and reflection in the magnetosheath and solar wind.

  11. Effect of wave localization on plasma instabilities. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Levedahl, William Kirk

    1987-01-01

    The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.

  12. Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor.

    PubMed

    Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique

    2015-12-11

    Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor-equivalent to a two-dimensional Anderson-like model-we experimentally study Anderson localization in dimension 2 and we observe localized wave function dynamics. We also show that the localization length depends exponentially on the disorder strength and anisotropy and is in quantitative agreement with the predictions of the self-consistent theory for the 2D Anderson localization.

  13. Using Local Perturbations To Manipulate and Control Pointer States in Quantum Dot Systems

    NASA Astrophysics Data System (ADS)

    Akis, Richard; Speyer, Gil; Ferry, David; Brunner, Roland

    2012-02-01

    Recently, scanning gate microscopy (SGM) was used to image scarred wave functions in an open InAs quantum dot[1]. The SGM tip provides a local potential perturbation and imaging is performed by measuring changes in conductance. Scarred wave functions, long associated with quantum chaos, have been shown in open dots to correspond to pointer states[2], eigenstates that survive the decoherence process that occurs via coupling to the environment. Pointer states modulate the conductance, yielding periodic fluctuations and the scars, normally thought unstable, are stabilized by quantum Darwinism [3]. We shall show that, beyond probing, pointer states can be manipulated by local perturbations. Particularly interesting effects occur in coupled quantum dot arrays, where a pointer state localized in one dot can be shifted over into another with a perturbation in a completely different part of the system. These nonlocal effects may perhaps be exploited to give such systems an exotic functionality. [1] A. M. Burke, R. Akis, T. E. Day, Gil Speyer, D. K. Ferry, and B. R. Bennett, Phys. Rev. Lett. 104, 176801 (2010). [2] D. K. Ferry, R. Akis, and J. P. Bird, Phys. Rev. Lett. 104, 176801 (2004). [3] R. Brunner, R. Akis,D. K. Ferry, F. Kuchar,and R. Meisels, Phys. Rev. Lett. 101, 024102 (2008).

  14. Density functional theory calculations of 95Mo NMR parameters in solid-state compounds.

    PubMed

    Cuny, Jérôme; Furet, Eric; Gautier, Régis; Le Pollès, Laurent; Pickard, Chris J; d'Espinose de Lacaillerie, Jean-Baptiste

    2009-12-21

    The application of periodic density functional theory-based methods to the calculation of (95)Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid-state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented-wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for (95)Mo EFG tensor calculation. CS tensors are calculated using the recently developed gauge-including projector augmented-wave (GIPAW) method. This work is the first application of the GIPAW method to a 4d transition-metal nucleus. The effects of ultra-soft pseudo-potential parameters, exchange-correlation functionals and structural parameters are precisely examined. Comparison with experimental results allows the validation of this computational formalism.

  15. Newtonian self-gravitation in the neutral meson system

    NASA Astrophysics Data System (ADS)

    Großardt, André; Hiesmayr, Beatrix C.

    2015-03-01

    We derive the effect of the Schrödinger-Newton equation, which can be considered as a nonrelativistic limit of classical gravity, for a composite quantum system in the regime of high energies. Such meson-antimeson systems exhibit very unique properties, e.g., distinct masses due to strong and electroweak interactions. This raises an immediate question: what does one mean by mass in gravity for a state that is a superposition of mass eigenstates due to strong and electroweak interactions? We find conceptually different physical scenarios due to lacking of a clear physical guiding principle to explain which mass is the relevant one and due to the fact that it is not clear how the flavor wave function relates to the spatial wave function. There seems to be no principal contradiction. However, a nonlinear extension of the Schrödinger equation in this manner strongly depends on the relation between the flavor wave function and spatial wave function and its particular shape. In opposition to the continuous spontaneous localization collapse models we find a change in the oscillating behavior and not in the damping of the flavor oscillation.

  16. Orbital dependent functionals: An atom projector augmented wave method implementation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao

    This thesis explores the formulation and numerical implementation of orbital dependent exchange-correlation functionals within electronic structure calculations. These orbital-dependent exchange-correlation functionals have recently received renewed attention as a means to improve the physical representation of electron interactions within electronic structure calculations. In particular, electron self-interaction terms can be avoided. In this thesis, an orbital-dependent functional is considered in the context of Hartree-Fock (HF) theory as well as the Optimized Effective Potential (OEP) method and the approximate OEP method developed by Krieger, Li, and Iafrate, known as the KLI approximation. In this thesis, the Fock exchange term is used as a simple well-defined example of an orbital-dependent functional. The Projected Augmented Wave (PAW) method developed by P. E. Blochl has proven to be accurate and efficient for electronic structure calculations for local and semi-local functions because of its accurate evaluation of interaction integrals by controlling multiple moments. We have extended the PAW method to treat orbital-dependent functionals in Hartree-Fock theory and the Optimized Effective Potential method, particularly in the KLI approximation. In the course of study we develop a frozen-core orbital approximation that accurately treats the core electron contributions for above three methods. The main part of the thesis focuses on the treatment of spherical atoms. We have investigated the behavior of PAW-Hartree Fock and PAW-KLI basis, projector, and pseudopotential functions for several elements throughout the periodic table. We have also extended the formalism to the treatment of solids in a plane wave basis and implemented PWPAW-KLI code, which will appear in future publications.

  17. A complete active space valence bond method with nonorthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Hirao, Kimihiko; Nakano, Haruyuki; Nakayama, Kenichi

    1997-12-01

    A complete active space self-consistent field (SCF) wave function is transformed into a valence bond type representation built from nonorthogonal orbitals, each strongly localized on a single atom. Nonorthogonal complete active space SCF orbitals are constructed by Ruedenberg's projected localization procedure so that they have maximal overlaps with the corresponding minimum basis set of atomic orbitals of the free-atoms. The valence bond structures which are composed of such nonorthogonal quasiatomic orbitals constitute the wave function closest to the concept of the oldest and most simple valence bond method. The method is applied to benzene, butadiene, hydrogen, and methane molecules and compared to the previously proposed complete active space valence bond approach with orthogonal orbitals. The results demonstrate the validity of the method as a powerful tool for describing the electronic structure of various molecules.

  18. Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional

    NASA Astrophysics Data System (ADS)

    Chacón, Enrique; Tarazona, Pedro

    2016-06-01

    We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.

  19. Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional.

    PubMed

    Chacón, Enrique; Tarazona, Pedro

    2016-06-22

    We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.

  20. Seismic tomography of northeastern Tibetan Plateau from body wave arrival times and surface wave dispersion data

    NASA Astrophysics Data System (ADS)

    Fang, H.; Yao, H.; Zhang, H.

    2017-12-01

    Reliable crustal and upper mantle structure is important to understand expansion of material from the Tibetan plateau to its northeastern margin. Previous studies have used either ambient noise tomography or body wave traveltime tomography to obtain the crustal velocity models in northeastern Tibetan Plateau. However, clear differences appear in these models obtained using different datasets. Here we propose to jointly invert local and teleseismic body wave arrival times and surface wave dispersion data from ambient noise cross correlation to obtain a unified P and S wavespeed model of the crust and upper mantle in NE Tibetan Plateau. Following Fang et al. (2016), we adopt the direct inversion strategy for surface wave data (Fang et al., 2015), which eliminates the need to construct the phase/group velocity maps and allows the straightforward incorporation of surface wave dispersion data into the body wave inversion framework. For body wave data including both local and teleseismic arrival times, we use the fast marching method (Rawlinson et al., 2004) in order to trace multiple seismic phases simultaneously. The joint inversion method takes advantage of the complementary strengths of different data types, with local body wave data constraining more on the P than S wavespeed in the crust, surface wave data most sensitive to S wavespeed in the crust and upper mantle, teleseismic body wave data resolving the upper mantle structure. A series of synthetic tests will be used to show the robustness and superiority of the joint inversion method. Besides, the inverted model will be validated by waveform simulation and comparison with other studies, like receiver function imaging. The resultant P and S wavespeed models, as well as the derived Vp/Vs model, will be essential to understand the regional tectonics of the northeastern Tibetan Plateau, and to address the related geodynamic questions of the Tibetan Plateau formation and expansion.

  1. Numerical Simulation of Monitoring Corrosion in Reinforced Concrete Based on Ultrasonic Guided Waves

    PubMed Central

    Zheng, Zhupeng; Lei, Ying; Xue, Xin

    2014-01-01

    Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale. PMID:25013865

  2. Standing Helicon Wave Induced by a Rapidly Bent Magnetic Field in Plasmas.

    PubMed

    Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira

    2016-04-01

    An electron energy probability function and a rf magnetic field are measured in a rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of a spatially localized change of a refractive index.

  3. Standing Helicon Wave Induced by a Rapidly Bent Magnetic Field in Plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira

    2016-04-01

    An electron energy probability function and a rf magnetic field are measured in a rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of a spatially localized change of a refractive index.

  4. Climate-driven variations in thermal forcing across a nearshore reef system during a marine heat wave and its potential impact on coral calcification

    NASA Astrophysics Data System (ADS)

    Falter, J.; Zhang, Z.; Lowe, R.; Foster, T.; McCulloch, M. T.

    2016-02-01

    We examined the oceanic and atmospheric forces driving seasonal and spatial variability in water temperature across backreef and lagoonal habitats at Coral Bay at Ningaloo Reef, Western Australia before, during, and after a historically unprecedented marine heat wave and resulting mass bleaching event in 2010-2011. Local deviations in the mean daily temperature of nearshore reef waters from offshore values were a linear function of the combined effect of net atmospheric heating and offshore wave height and period . While intra-annual variation in local heat exchange was driven mainly by seasonal changes in short-wave radiation; intra-annual variation in local cooling was driven mostly by changes in relative humidity (r2 = 0.60) and wind speed (r2 = 0.31) which exhibited no apparent seasonality. We demonstrate good agreement between nearshore reef temperatures modeled from offshore sea surface temperatures (SST), offshore wave forcing, and local atmospheric heat fluxes with observed temperatures using a simple linear model (r2 = 0.31 to 0.69, root-mean-square error = 0.4°C to 0.9°C). Using these modeled nearshore reef temperature records, we show that during the heat wave local thermal stresses across the reef reached as high as 18-34 °C-weeks and were being both intensified and accelerated by regional climate forcing when compared with offshore waters (12.6 °C-weeks max). Measurements of coral calcification made in Coral Bay following the bleaching event appear to lack any distinct seasonality; possibly due to the long-term effects of acute thermal stress. However, similarly minimal seasonality in calcification rates had also been observed in an Acropora-dominated community at Ningaloo years before the heat wave as well as more recently in coral from regions in WA that had avoided mass bleaching. These observations, in conjunction with observations that most of the bleached communities within Coral Bay had recovered their color within 3-6 months of the bleaching event, suggest that how reef building coral respond to a severe thermal stress event can be somewhat nuanced depending on the local and regional setting.

  5. Focusing Leaky Waves: A Class of Electromagnetic Localized Waves with Complex Spectra

    NASA Astrophysics Data System (ADS)

    Fuscaldo, Walter; Comite, Davide; Boesso, Alessandro; Baccarelli, Paolo; Burghignoli, Paolo; Galli, Alessandro

    2018-05-01

    Localized waves, i.e., the wide class of limited-diffraction, limited-dispersion solutions to the wave equation are generally characterized by real wave numbers. We consider the role played by localized waves with generally complex "leaky" wave numbers. First, the impact of the imaginary part of the wave number (i.e., the leakage constant) on the diffractive (spatial broadening) features of monochromatic localized solutions (i.e., beams) is rigorously evaluated. Then general conditions are derived to show that only a restricted class of spectra (either real or complex) allows for generating a causal localized wave. It turns out that backward leaky waves fall into this category. On this ground, several criteria for the systematic design of wideband radiators, namely, periodic radial waveguides based on backward leaky waves, are established in the framework of leaky-wave theory. An effective design method is proposed to minimize the frequency dispersion of the proposed class of devices and the impact of the "leakage" on the dispersive (temporal broadening) features of polychromatic localized solutions (i.e., pulses) is accounted for. Numerical results corroborate the concept, clearly highlighting the advantages and limitations of the leaky-wave approach for the generation of localized pulses at millimeter-wave frequencies, where energy focusing is in high demand in modern applications.

  6. Anomalous diffusion in a dynamical optical lattice

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Cooper, Nigel R.

    2018-02-01

    Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.

  7. Seismic structure beneath Mt Vesuvius from receiver function analysis and local earthquakes tomography: evidences for location and geometry of the magma chamber

    NASA Astrophysics Data System (ADS)

    Agostinetti, N. Piana; Chiarabba, C.

    2008-12-01

    The recognition and localization of magmatic fluids are pre-requisites for evaluating the volcano hazard of the highly urbanized area of Mt Vesuvius. Here we show evidence and constraints for the volumetric estimation of magmatic fluids underneath this sleeping volcano. We use Receiver Functions for teleseismic data recorded at a temporary broad-band station installed on the volcano to constrain the S-wave velocity structure in the crust. Receiver Functions are analysed and inverted using the Neighbourhood Algorithm approach. The 1-D S-velocity profile is jointly interpreted and discussed with a new Vp and Vp/Vs image obtained by applying double difference tomographic techniques to local earthquakes. Seismologic data define the geometry of an axial, cylindrical high Vp, high Vs body consisting of a shallow solidified materials, probably the remnants of the caldera, and ultramafic rocks paving the crustal magma chamber. Between these two anomalies, we find a small region where the shear wave velocity drops, revealing the presence of magma at relatively shallow depths. The volume of fluids (30 km3) is sufficient to contribute future explosive eruptions.

  8. Testing the Perey effect

    DOE PAGES

    Titus, L. J.; Nunes, Filomena M.

    2014-03-12

    Here, the effects of non-local potentials have historically been approximately included by applying a correction factor to the solution of the corresponding equation for the local equivalent interaction. This is usually referred to as the Perey correction factor. In this work we investigate the validity of the Perey correction factor for single-channel bound and scattering states, as well as in transfer (p, d) cross sections. Method: We solve the scattering and bound state equations for non-local interactions of the Perey-Buck type, through an iterative method. Using the distorted wave Born approximation, we construct the T-matrix for (p,d) on 17O, 41Ca,more » 49Ca, 127Sn, 133Sn, and 209Pb at 20 and 50 MeV. As a result, we found that for bound states, the Perey corrected wave function resulting from the local equation agreed well with that from the non-local equation in the interior region, but discrepancies were found in the surface and peripheral regions. Overall, the Perey correction factor was adequate for scattering states, with the exception of a few partial waves corresponding to the grazing impact parameters. These differences proved to be important for transfer reactions. In conclusion, the Perey correction factor does offer an improvement over taking a direct local equivalent solution. However, if the desired accuracy is to be better than 10%, the exact solution of the non-local equation should be pursued.« less

  9. The 2017 North Korea M6 seismic sequence: moment tensor, source time function, and aftershocks

    NASA Astrophysics Data System (ADS)

    Ni, S.; Zhan, Z.; Chu, R.; He, X.

    2017-12-01

    On September 3rd, 2017, an M6 seismic event occurred in North Korea, with location near previous nuclear test sites. The event features strong P waves and short period Rayleigh waves are observed in contrast to weak S waves, suggesting mostly explosion mechanism. We performed joint inversion for moment tensor and depth with both local and teleseismic waveforms, and find that the event is shallow with mostly isotropic yet substantial non-isotropic components. Deconvolution of seismic waveforms of this event with respect to previous nuclear test events shows clues of complexity in source time function. The event is followed by smaller earthquakes, as early as 8.5 minutes and lasted at least to October. The later events occurred in a compact region, and show clear S waves, suggesting double couple focal mechanism. Via analyzing Rayleigh wave spectrum, these smaller events are found to be shallow. Relative locations, difference in waveforms of the events are used to infer their possible links and generation mechanism.

  10. Non-Linear Interactions Determine the Impact of Sea-Level Rise on Estuarine Benthic Biodiversity and Ecosystem Processes

    PubMed Central

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C. L.

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches. PMID:23861863

  11. Non-linear interactions determine the impact of sea-level rise on estuarine benthic biodiversity and ecosystem processes.

    PubMed

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C L

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches.

  12. Finally making sense of the double-slit experiment.

    PubMed

    Aharonov, Yakir; Cohen, Eliahu; Colombo, Fabrizio; Landsberger, Tomer; Sabadini, Irene; Struppa, Daniele C; Tollaksen, Jeff

    2017-06-20

    Feynman stated that the double-slit experiment "…has in it the heart of quantum mechanics. In reality, it contains the only mystery" and that "nobody can give you a deeper explanation of this phenomenon than I have given; that is, a description of it" [Feynman R, Leighton R, Sands M (1965) The Feynman Lectures on Physics ]. We rise to the challenge with an alternative to the wave function-centered interpretations: instead of a quantum wave passing through both slits, we have a localized particle with nonlocal interactions with the other slit. Key to this explanation is dynamical nonlocality, which naturally appears in the Heisenberg picture as nonlocal equations of motion. This insight led us to develop an approach to quantum mechanics which relies on pre- and postselection, weak measurements, deterministic, and modular variables. We consider those properties of a single particle that are deterministic to be primal. The Heisenberg picture allows us to specify the most complete enumeration of such deterministic properties in contrast to the Schrödinger wave function, which remains an ensemble property. We exercise this approach by analyzing a version of the double-slit experiment augmented with postselection, showing that only it and not the wave function approach can be accommodated within a time-symmetric interpretation, where interference appears even when the particle is localized. Although the Heisenberg and Schrödinger pictures are equivalent formulations, nevertheless, the framework presented here has led to insights, intuitions, and experiments that were missed from the old perspective.

  13. Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation.

    PubMed

    Hu, Xiao-Rui; Lou, Sen-Yue; Chen, Yong

    2012-05-01

    In nonlinear science, it is very difficult to find exact interaction solutions among solitons and other kinds of complicated waves such as cnoidal waves and Painlevé waves. Actually, even if for the most well-known prototypical models such as the Kortewet-de Vries (KdV) equation and the Kadomtsev-Petviashvili (KP) equation, this kind of problem has not yet been solved. In this paper, the explicit analytic interaction solutions between solitary waves and cnoidal waves are obtained through the localization procedure of nonlocal symmetries which are related to Darboux transformation for the well-known KdV equation. The same approach also yields some other types of interaction solutions among different types of solutions such as solitary waves, rational solutions, Bessel function solutions, and/or general Painlevé II solutions.

  14. TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Vučičević, J.; Ayral, T.; Parcollet, O.

    2017-09-01

    We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.

  15. Entanglement entropy of critical spin liquids.

    PubMed

    Zhang, Yi; Grover, Tarun; Vishwanath, Ashvin

    2011-08-05

    Quantum spin liquids are phases of matter whose internal structure is not captured by a local order parameter. Particularly intriguing are critical spin liquids, where strongly interacting excitations control low energy properties. Here we calculate their bipartite entanglement entropy that characterizes their quantum structure. In particular we calculate the Renyi entropy S(2) on model wave functions obtained by Gutzwiller projection of a Fermi sea. Although the wave functions are not sign positive, S(2) can be calculated on relatively large systems (>324 spins) using the variational Monte Carlo technique. On the triangular lattice we find that entanglement entropy of the projected Fermi sea state violates the boundary law, with S(2) enhanced by a logarithmic factor. This is an unusual result for a bosonic wave function reflecting the presence of emergent fermions. These techniques can be extended to study a wide class of other phases.

  16. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves

    PubMed Central

    Zhao, Feng; He, Wei; Zhang, Yingze; Tian, Dehu; Zhao, Hongfang; Yu, Kunlun; Bai, Jiangbo

    2013-01-01

    Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon's model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves. PMID:25206506

  17. Wigner molecules in carbon-nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Secchi, Andrea; Rontani, Massimo

    2010-07-01

    We demonstrate that electrons in quantum dots defined by electrostatic gates in semiconductor nanotubes freeze orderly in space realizing a “Wigner molecule.” Our exact diagonalization calculations uncover the features of the electron molecule, which may be accessed by tunneling spectroscopy—indeed some of them have already been observed by Deshpande and Bockrath [Nat. Phys. 4, 314 (2008)]10.1038/nphys895. We show that numerical results are satisfactorily reproduced by a simple ansatz vibrational wave function: electrons have localized wave functions, like nuclei in an ordinary molecule, whereas low-energy excitations are collective vibrations of electrons around their equilibrium positions.

  18. Picture of the global field of quasi-monochromatic gravity waves observed by stratospheric balloons and MST radars

    NASA Technical Reports Server (NTRS)

    Yamanaka, M. D.

    1989-01-01

    In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.

  19. S-wave attenuation of the shallow sediments in the North China basin based on borehole seismograms of local earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Li, Zhiwei

    2018-06-01

    S-wave velocity and attenuation structures of shallow sediments play important roles in accurate prediction of strong ground motion. However, it is more difficult to investigate the attenuation than velocity structures. In this study, we developed a new approach for estimating frequency-dependent S-wave attenuation (Q_S^{ - 1}) structures of shallow sediments based on multiple time window analysis of borehole seismograms from local earthquakes. Multiple time windows for separating direct and surface-reflected S-waves in local earthquake waveforms at borehole stations are selected with a global optimization scheme. With respect to different time windows, the transfer functions between direct and surface-reflected S-waves are achieved with a weighted averaging scheme, based on which frequency dependent Q_S^{ - 1} values are obtained. Synthetic tests suggest that the proposed method can restore robust and reliableQ_S^{ - 1} values, especially when the dataset of local earthquakes is not abundant. We utilize this method for local earthquake waveforms at 14 borehole seismic stations in the North China basin, and obtain Q_S^{ - 1} values in 2 ˜ 10 Hz frequency band, as well as average {V_P}, {V_S} and {V_P}/{{}}{V_S} ratio for shallow sediments deep to a few hundred meters. Results suggest that Q_S^{ - 1} values are to 0.01˜0.06, and generally decrease with frequency. The average attenuation structure of shallow sediments within the depth of a few hundred meters beneath 14 borehole stations in the North China basin can be modeled as Q_S^{ - 1} = 0.056{f^{ - 0.61}}. It is generally consistent with the attenuation structure of sedimentary basins in other areas, such as Mississippi Embayment sediments in the United States and Sendai basin in Japan.

  20. Selection of intracellular calcium patterns in a model with clustered Ca2+ release channels

    NASA Astrophysics Data System (ADS)

    Shuai, J. W.; Jung, P.

    2003-03-01

    A two-dimensional model is proposed for intracellular Ca2+ waves, which incorporates both the discrete nature of Ca2+ release sites in the endoplasmic reticulum membrane and the stochastic dynamics of the clustered inositol 1,4,5-triphosphate (IP3) receptors. Depending on the Ca2+ diffusion coefficient and concentration of IP3, various spontaneous Ca2+ patterns, such as calcium puffs, local waves, abortive waves, global oscillation, and tide waves, can be observed. We further investigate the speed of the global waves as a function of the IP3 concentration and the Ca2+ diffusion coefficient and under what conditions the spatially averaged Ca2+ response can be described by a simple set of ordinary differential equations.

  1. Exciton confinement in strain-engineered metamorphic InAs/I nxG a1 -xAs quantum dots

    NASA Astrophysics Data System (ADS)

    Khattak, S. A.; Hayne, M.; Huang, J.; Vanacken, J.; Moshchalkov, V. V.; Seravalli, L.; Trevisi, G.; Frigeri, P.

    2017-11-01

    We report a comprehensive study of exciton confinement in self-assembled InAs quantum dots (QDs) in strain-engineered metamorphic I nxG a1 -xAs confining layers on GaAs using low-temperature magnetophotoluminescence. As the lattice mismatch (strain) between QDs and confining layers (CLs) increases from 4.8% to 5.7% the reduced mass of the exciton increases, but saturates at higher mismatches. At low QD-CL mismatch there is clear evidence of spillover of the exciton wave function due to small localization energies. This is suppressed as the In content x in the CLs decreases (mismatch and localization energy increasing). The combined effects of low effective mass and wave-function spillover at high x result in a diamagnetic shift coefficient that is an order of magnitude larger than for samples where In content in the barrier is low (mismatch is high and localization energy is large). Finally, an anomalously small measured Bohr radius in samples with the highest x is attributed to a combination of thermalization due to low localization energy, and its enhancement with magnetic field, a mechanism which results in small dots in the ensemble dominating the measured Bohr radius.

  2. Dirac electrons in Moiré superlattice: From two to three dimensions

    NASA Astrophysics Data System (ADS)

    Hu, Chen; Michaud-Rioux, Vincent; Kong, Xianghua; Guo, Hong

    2017-11-01

    Moiré patterns in van der Waals (vdW) heterostructures bring novel physical effects to the materials. We report theoretical investigations of the Moiré pattern formed by graphene (Gr) on hexagonal boron nitride (h BN). For both the two-dimensional (2D) flat-sheet and the freestanding three-dimensional (3D) wavelike film geometries, the behaviors of Dirac electrons are strongly modulated by the local high-symmetry stacking configurations of the Moiré pattern. In the 2D flat sheet, the secondary Dirac cone (SDC) dispersion emerges due to the stacking-selected localization of SDC wave functions, while the original Dirac cone (ODC) gap is suppressed due to an overall effect of ODC wave functions. In the freestanding 3D wavelike Moiré structure, we predict that a specific local stacking in the Moiré superlattice is promoted at the expense of other local stackings, leading to an electronic structure more similar to that of the perfectly matching flat Gr/h BN than that of the flat-sheet 2D Moiré pattern. To capture the overall picture of the Moiré superlattice, supercells containing 12 322 atoms are simulated by first principles.

  3. A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application

    NASA Astrophysics Data System (ADS)

    Schoon, Lena; Zülicke, Christoph

    2018-05-01

    For the local diagnosis of wave properties, we develop, validate, and apply a novel method which is based on the Hilbert transform. It is called Unified Wave Diagnostics (UWaDi). It provides the wave amplitude and three-dimensional wave number at any grid point for gridded three-dimensional data. UWaDi is validated for a synthetic test case comprising two different wave packets. In comparison with other methods, the performance of UWaDi is very good with respect to wave properties and their location. For a first practical application of UWaDi, a minor sudden stratospheric warming on 30 January 2016 is chosen. Specifying the diagnostics for hydrostatic inertia-gravity waves in analyses from the European Centre for Medium-Range Weather Forecasts, we detect the local occurrence of gravity waves throughout the middle atmosphere. The local wave characteristics are discussed in terms of vertical propagation using the diagnosed local amplitudes and wave numbers. We also note some hints on local inertia-gravity wave generation by the stratospheric jet from the detection of shallow slow waves in the vicinity of its exit region.

  4. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.

    PubMed

    Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa

    2013-10-15

    The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.

  5. Coupling of WRF meteorological model to WAM spectral wave model through sea surface roughness at the Balearic Sea: impact on wind and wave forecasts

    NASA Astrophysics Data System (ADS)

    Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.

    2012-04-01

    Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the scope of the 7th EU FP Project FIELD_AC, assesses the impact of coupling WAM and WRF on wind and wave forecasts on the Balearic Sea, and compares it with other possible improvements, like using available high-resolution circulation information from MyOcean GMES core services, or assimilating altimeter data on the Western Mediterranean. This is done in an ordered fashion following statistical design rules, which allows to extract main effects of each of the factors considered (coupling, better circulation information, data assimilation following Lionello et al., 1992) as well as two-factor interactions. Moreover, the statistical significance of these improvements can be tested in the future, though this requires maximum likelihood ratio tests with correlated data. Charnock, H. (1955) Wind stress on a water surface. Quart.J. Row. Met. Soc. 81: 639-640 Donelan, M. (1982) The dependence of aerodynamic drag coefficient on wave parameters. Proc. 1st Int. Conf. on Meteorology and Air-Sea Interactions of teh Coastal Zone. The Hague (Netherlands). AMS. 381-387 Janssen, P.A.E.M., Doyle, J., Bidlot, J., Hansen, B., Isaksen, L. and Viterbo, P. (1990) The impact of oean waves on the atmosphere. Seminars of the ECMWF. Lionello, P., Günther, H., and Janssen P.A.E.M. (1992) Assimilation of altimeter data in a global third-generation wave model. Journal of Geophysical Research 97 (C9): 453-474. Warner, J., Armstrong, B., He, R. and Zambon, J.B. (2010) Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Modelling 35: 230-244.

  6. Climatology of Global Swell-Atmosphere Interaction

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro

    2016-04-01

    At the ocean surface wind sea and swell waves coexist. Wind sea waves are locally generated growing waves strongly linked to the overlaying wind field. Waves that propagate away from their generation area, throughout entire ocean basins, are called swell. Swell waves do not receive energy from local wind. Ocean wind waves can be seen as the "gearbox" between the atmosphere and the ocean, and are of critical importance to the coupled atmosphere-ocean system, since they modulate most of the air-sea interaction processes and exchanges, particularly the exchange of momentum. This modulation is most of the times sea-state dependent, i.e., it is a function of the prevalence of one type of waves over the other. The wave age parameter, defined as the relative speed between the peak wave and the wind (c_p⁄U_10), has been largely used in different aspects of the air-sea interaction theory and in practical modeling solutions of wave-atmosphere coupled model systems. The wave age can be used to assess the development of the sea state but also the prevalence (domination) of wind sea or swell waves at the ocean surface. The presence of fast-running waves (swell) during light winds (at high wave age regimes) induces an upward momentum flux, directed from the water surface to the atmosphere. This upward directed momentum has an impact in the lower marine atmospheric boundary layer (MABL): on the one hand it changes the vertical wind speed profile by accelerating the flow at the first few meters (inducing the so called "wave-driven wind"), and on the other hand it changes the overall MABL turbulence structure by limiting the wind shear - in some observed and modeled situations the turbulence is said to have "collapse". The swell interaction with the lower MABL is a function of the wave age but also of the swell steepness, since steeper waves loose more energy into the atmosphere as their energy attenuates. This interaction can be seen as highest in areas where swells are steepest, but also where the wind speed is lowest and consequently the wave age is high. A detailed global climatology of the wave age and swell steepness parameters, based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis is presented. It will be shown, in line with previous studies, that the global climatological patterns of the wave age confirm the global dominance of the World Ocean by swell waves. The areas of the ocean where the highest interaction of swell waves and the lower atmosphere can be expected are also presented.

  7. Exact solution of equations for proton localization in neutron star matter

    NASA Astrophysics Data System (ADS)

    Kubis, Sebastian; Wójcik, Włodzimierz

    2015-11-01

    The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner-Seitz approximation of a spherically symmetric cell. The analysis of four different nuclear models suggests that the proton localization is likely to take place in the interior of a neutron star.

  8. Hidden order and flux attachment in symmetry-protected topological phases: A Laughlin-like approach

    NASA Astrophysics Data System (ADS)

    Ringel, Zohar; Simon, Steven H.

    2015-05-01

    Topological phases of matter are distinct from conventional ones by their lack of a local order parameter. Still in the quantum Hall effect, hidden order parameters exist and constitute the basis for the celebrated composite-particle approach. Whether similar hidden orders exist in 2D and 3D symmetry protected topological phases (SPTs) is a largely open question. Here, we introduce a new approach for generating SPT ground states, based on a generalization of the Laughlin wave function. This approach gives a simple and unifying picture of some classes of SPTs in 1D and 2D, and reveals their hidden order and flux attachment structures. For the 1D case, we derive exact relations between the wave functions obtained in this manner and group cohomology wave functions, as well as matrix product state classification. For the 2D Ising SPT, strong analytical and numerical evidence is given to show that the wave function obtained indeed describes the desired SPT. The Ising SPT then appears as a state with quasi-long-range order in composite degrees of freedom consisting of Ising-symmetry charges attached to Ising-symmetry fluxes.

  9. Steering, or maybe why Einstein did not go all the way to Bellʼs argument

    NASA Astrophysics Data System (ADS)

    Werner, R. F.

    2014-10-01

    It is shown that a main source of conflict between Einstein and the mainstream quantum physicists was his insistence that wave functions, like classical probability distributions, do not refer to individual particles and, in particular, do not describe individual systems completely. The EPR paper was written to argue for this position. By aiming at showing that wave functions are unsuitable as local hidden variables, the authors failed to see that a slight extension could have ruled out such local hidden variables in general. As background for this analysis of the EPR argument the notion of steering is described, and a version of the Bell argument is proved which emphasizes non-local signalling aspects. Finally, some background is given concerning a well-known paper by the present author, which is celebrating 25 years this year, and in which the first non-steering models were constructed. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.

  10. Asymptotic boundary conditions for dissipative waves: General theory

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  11. Matrix basis for plane and modal waves in a Timoshenko beam.

    PubMed

    Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia

    2016-11-01

    Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.

  12. Local entanglement entropy of fermions as a marker of quantum phase transition in the one-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Cha, Min-Chul; Chung, Myung-Hoon

    2018-05-01

    We study quantum phase transition of interacting fermions by measuring the local entanglement entropy in the one-dimensional Hubbard model. The reduced density matrices for blocks of a few sites are constructed from the ground state wave function in infinite systems by adopting the matrix product state representation where time-evolving block decimations are performed to obtain the lowest energy states. The local entanglement entropy, constructed from the reduced density matrices, as a function of the chemical potential shows clear signatures of the Mott transition. The value of the central charge, numerically determined from the universal properties of the local entanglement entropy, confirms that the transition is caused by the suppression of the charge degrees of freedom.

  13. Space-Time Characteristic Functions in Multivariate Logic and Possible Interpretation of Entanglement

    NASA Astrophysics Data System (ADS)

    Gaudeau de Gerlicz, Claude; Sechpine, Pierre; Bobola, Philippe; Antoine, Mathias

    The knowledge about hidden variables in physics, (Bohr's-Schrödinger theories) and their developments, boundaries seem more and more fuzzy at physical scales. Also some other new theories give to both time and space as much fuzziness. The classical theory, (school of Copenhagen's) and also Heisenberg and Louis de Broglie give us the idea of a dual wave and particle parts such the way we observe. Thus, the Pondichery interpretation recently developed by Cramer and al. gives to the time part this duality. According Cramer, there could be a little more to this duality, some late or advanced waves of time that have been confirmed and admitted as possible solutions with the Maxwell's equations. We developed here a possible pattern that could matched in the sequence between Space and both retarded and advanced time wave in the "Cramer handshake" in locality of the present when the observation is made everything become local.

  14. Localization of one-photon state in space and Einstein-Podolsky-Rosen paradox in spontaneous parametric down conversion

    NASA Technical Reports Server (NTRS)

    Penin, A. N.; Reutova, T. A.; Sergienko, A. V.

    1992-01-01

    An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function.

  15. Localization of one-photon state in space and Einstein-Podolsky-Rosen paradox in spontaneous parametric down conversion

    NASA Astrophysics Data System (ADS)

    Penin, A. N.; Reutova, T. A.; Sergienko, A. V.

    1992-02-01

    An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function.

  16. Deconvolution of acoustic emissions for source localization using time reverse modeling

    NASA Astrophysics Data System (ADS)

    Kocur, Georg Karl

    2017-01-01

    Impact experiments on small-scale slabs made of concrete and aluminum were carried out. Wave motion radiated from the epicenter of the impact was recorded as voltage signals by resonant piezoelectric transducers. Numerical simulations of the elastic wave propagation are performed to simulate the physical experiments. The Hertz theory of contact is applied to estimate the force impulse, which is subsequently used for the numerical simulation. Displacements at the transducer positions are calculated numerically. A deconvolution function is obtained by comparing the physical (voltage signal) and the numerical (calculated displacement) experiments. Acoustic emission signals due to pencil-lead breaks are recorded, deconvolved and applied for localization using time reverse modeling.

  17. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    USGS Publications Warehouse

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  18. Effect of Local Thermal Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakariakov, V. M.; Afanasyev, A. N.; Kumar, S.

    Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that represents a coronal loop or plume, is modeled accounting for the effects of finite gas pressure, weak nonlinearity, dissipation by thermal conduction and viscosity, and the misbalance between the cooling by optically thin radiation and unspecified heating of the plasma. An evolutionary equation of the Burgers–Malthus type is derived. It is shown that the cooling/heating misbalance, determined by the derivatives of the combined radiative cooling and heating function, with respect to the density, temperature, and magnetic field at the thermal equilibrium affect the wave rather strongly. Thismore » effect may either cause additional damping, or counteract it, or lead to the gradual amplification of the wave. In the latter case, the coronal plasma acts as an active medium for the slow magnetoacoustic waves. The effect of the cooling/heating misbalance could be important for coronal slow waves, and could be responsible for certain discrepancies between theoretical results and observations, in particular, the increased or decreased damping lengths and times, detection of the waves at certain heights only, and excitation of compressive oscillations. The results obtained open up a possibility for the diagnostics of the coronal heating function by slow magnetoacoustic waves.« less

  19. Modeling RF Fields in Hot Plasmas with Parallel Full Wave Code

    NASA Astrophysics Data System (ADS)

    Spencer, Andrew; Svidzinski, Vladimir; Zhao, Liangji; Galkin, Sergei; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a suite of full wave RF plasma codes. It is based on a meshless formulation in configuration space with adapted cloud of computational points (CCP) capability and using the hot plasma conductivity kernel to model the nonlocal plasma dielectric response. The conductivity kernel is calculated by numerically integrating the linearized Vlasov equation along unperturbed particle trajectories. Work has been done on the following calculations: 1) the conductivity kernel in hot plasmas, 2) a monitor function based on analytic solutions of the cold-plasma dispersion relation, 3) an adaptive CCP based on the monitor function, 4) stencils to approximate the wave equations on the CCP, 5) the solution to the full wave equations in the cold-plasma model in tokamak geometry for ECRH and ICRH range of frequencies, and 6) the solution to the wave equations using the calculated hot plasma conductivity kernel. We will present results on using a meshless formulation on adaptive CCP to solve the wave equations and on implementing the non-local hot plasma dielectric response to the wave equations. The presentation will include numerical results of wave propagation and absorption in the cold and hot tokamak plasma RF models, using DIII-D geometry and plasma parameters. Work is supported by the U.S. DOE SBIR program.

  20. 3D Numerical Simulation of the Wave and Current Loads on a Truss Foundation of the Offshore Wind Turbine During the Extreme Typhoon Event

    NASA Astrophysics Data System (ADS)

    Lin, C. W.; Wu, T. R.; Chuang, M. H.; Tsai, Y. L.

    2015-12-01

    The wind in Taiwan Strait is strong and stable which offers an opportunity to build offshore wind farms. However, frequently visited typhoons and strong ocean current require more attentions on the wave force and local scour around the foundation of the turbine piles. In this paper, we introduce an in-house, multi-phase CFD model, Splash3D, for solving the flow field with breaking wave, strong turbulent, and scour phenomena. Splash3D solves Navier-Stokes Equation with Large-Eddy Simulation (LES) for the fluid domain, and uses volume of fluid (VOF) with piecewise linear interface reconstruction (PLIC) method to describe the break free-surface. The waves were generated inside the computational domain by internal wave maker with a mass-source function. This function is designed to adequately simulate the wave condition under observed extreme events based on JONSWAP spectrum and dispersion relationship. Dirichlet velocity boundary condition is assigned at the upper stream boundary to induce the ocean current. At the downstream face, the sponge-layer method combined with pressure Dirichlet boundary condition is specified for dissipating waves and conducting current out of the domain. Numerical pressure gauges are uniformly set on the structure surface to obtain the force distribution on the structure. As for the local scour around the foundation, we developed Discontinuous Bi-viscous Model (DBM) for the development of the scour hole. Model validations were presented as well. The force distribution under observed irregular wave condition was extracted by the irregular-surface force extraction (ISFE) method, which provides a fast and elegant way to integrate the force acting on the surface of irregular structure. From the Simulation results, we found that the total force is mainly induced by the impinging waves, and the force from the ocean current is about 2 order of magnitude smaller than the wave force. We also found the dynamic pressure, wave height, and the projection area of the structure are the main factors to the total force. Detailed results and discussion are presented as well.

  1. Regional seismic wavefield computation on a 3-D heterogeneous Earth model by means of coupled traveling wave synthesis

    USGS Publications Warehouse

    Pollitz, F.F.

    2002-01-01

    I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ???0.01-0.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.

  2. Methods of localization of Lamb wave sources on thin plates

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2015-04-01

    Signal localization techniques are ubiquitous in both industry and academic communities. We propose a new localization method on plates which is based on energy amplitude attenuation and inverted source amplitude comparison. This inversion is tested on synthetic data using Lamb wave propagation direct model and on experimental dataset (recorded with 4 Brüel & Kjær Type 4374 miniature piezoelectric shock accelerometers (1-26 kHz frequency range)). We compare the performance of the technique to the classical source localization algorithms, arrival time localization, time reversal localization, localization based on energy amplitude. Furthermore, we measure and compare the accuracy of these techniques as function of sampling rate, dynamic range, geometry, Signal to Noise Ratio, and we show that this very versatile technique works better than classical ones over the sampling rates 100kHz - 1MHz. Experimental phase consists of a glass plate having dimensions of 80cmx40cm with a thickness of 1cm. Generated signals due to a wooden hammer hit or a steel ball hit are captured by sensors placed on the plate on different locations with the mentioned sensors. Numerical simulations are done using dispersive far field approximation of plate waves. Signals are generated using a hertzian loading over the plate. Using imaginary sources outside the plate boundaries the effect of reflections is also included. This proposed method, can be modified to be implemented on 3d environments, monitor industrial activities (e.g boreholes drilling/production activities) or natural brittle systems (e.g earthquakes, volcanoes, avalanches).

  3. Observations and modeling of EMIC wave properties in the presence of multiple ion species as function of magnetic local time

    NASA Astrophysics Data System (ADS)

    Lee, Justin H.; Angelopoulos, Vassilis

    2014-11-01

    Electromagnetic ion cyclotron (EMIC) wave generation and propagation in Earth's magnetosphere depend on readily measurable hot (a few to tens of keV) plasma sheet ions, elusive plasmaspheric or ionospheric cold (sub-eV to a few eV) ions, and partially heated warm ions (tens to hundreds of eV). Previous work has assumed all low-energy ions are cold and not considered possible effects of warm ions. Using measurements by multiple Time History of Events and Macroscale Interactions during Substorms spacecraft, we analyze four typical EMIC wave events in the four magnetic local time sectors and consider the properties of both cold and warm ions supplied from previous statistical studies to interpret the wave observations using linear theory. As expected, we find that dusk EMIC waves grow due to the presence of drifting hot anisotropic protons and cold plasmaspheric ions with a dominant cold proton component. Near midnight, EMIC waves are less common because warm heavy ions that suppress wave growth are more abundant there. The waves can grow when cold, plume-like density enhancements are present, however. Dawn EMIC waves, known for their peculiar properties, are generated away from the equator and change polarization during propagation through the warm plasma cloak. Noon EMIC waves can also be generated nonlocally and their properties modified during propagation by a plasmaspheric plume combined with low-energy ions from solar and terrestrial sources. Accounting for multiple ion species, measured wave dispersion, and propagation characteristics can explain previously elusive EMIC wave properties and are therefore important for future studies of EMIC wave effects on energetic particle depletion.

  4. Apparent Negative Reflection with the Gradient Acoustic Metasurface by Integrating Supercell Periodicity into the Generalized Law of Reflection.

    PubMed

    Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan

    2016-12-05

    As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell's law. However, the critical angle that derived from the generalized Snell's law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device.

  5. Nonlinear amplification of coherent waves in media with soliton-type refractive index pattern.

    PubMed

    Bugaychuk, S; Conte, R

    2012-08-01

    We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a local and a nonlocal nonlinear responses) and the relaxation is considered. A stable localized spatial structure in the form of a "dark" dissipative soliton is formed in the cavity in the steady state. The envelope of the intensity pattern, as well as of the dynamical grating amplitude, takes the shape of a tanh function. The obtained complex Ginzburg-Landau equation describes the dynamics of this envelope; at the same time, the evolution of this spatial structure changes the parameters of the output waves. New effects are predicted in this system due to the transformation of the dissipative soliton which takes place during the interaction of a pulse with a continuous wave, such as retention of the pulse shape during the transmission of impulses in a long nonlinear cavity, and giant amplification of a seed pulse, which takes energy due to redistribution of the pump continuous energy into the signal.

  6. 78 FR 2279 - Notice of Proposed Information Collection for Public Comment: Neighborhood Stabilization Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ..., implementation, inputs and outcomes at the local level. This is the second wave of interviews for the same study... the proper performance of the functions of the agency, including whether the information will have...

  7. On the relevance of source effects in geomagnetic pulsations for induction soundings

    NASA Astrophysics Data System (ADS)

    Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri

    2018-03-01

    This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  8. Metal-induced gap states in ferroelectric capacitors and its relationship with complex band structures

    NASA Astrophysics Data System (ADS)

    Junquera, Javier; Aguado-Puente, Pablo

    2013-03-01

    At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.

  9. Solving the Schrödinger equation of molecules by relaxing the antisymmetry rule: Inter-exchange theory.

    PubMed

    Nakatsuji, Hiroshi; Nakashima, Hiroyuki

    2015-05-21

    The Schrödinger equation (SE) and the antisymmetry principle constitute the governing principle of chemistry. A general method of solving the SE was presented before as the free complement (FC) theory, which gave highly accurate solutions for small atoms and molecules. We assume here to use the FC theory starting from the local valence bond wave function. When this theory is applied to larger molecules, antisymmetrizations of electronic wave functions become time-consuming and therefore, an additional breakthrough is necessary concerning the antisymmetry principle. Usually, in molecular calculations, we first construct the wave function to satisfy the antisymmetry rule, "electronic wave functions must be prescribed to be antisymmetric for all exchanges of electrons, otherwise bosonic interference may disturb the basis of the science." Starting from determinantal wave functions is typical. Here, we give an antisymmetrization theory, called inter-exchange (iExg) theory, by dividing molecular antisymmetrizations to those within atoms and between atoms. For the electrons belonging to distant atoms in a molecule, only partial antisymmetrizations or even no antisymmetrizations are necessary, depending on the distance between the atoms. So, the above antisymmetry rule is not necessarily followed strictly to get the results of a desired accuracy. For this and other reasons, the necessary parts of the antisymmetrization operations become very small as molecules become larger, leading finally to the operation counts of lower orders of N, the number of electrons. This theory creates a natural antisymmetrization method that is useful for large molecules.

  10. Evidence for the contemporary magmatic system beneath Long Valley Caldera from local earthquake tomography and receiver function analysis

    USGS Publications Warehouse

    Seccia, D.; Chiarabba, C.; De Gori, P.; Bianchi, I.; Hill, D.P.

    2011-01-01

    We present a new P wave and S wave velocity model for the upper crust beneath Long Valley Caldera obtained using local earthquake tomography and receiver function analysis. We computed the tomographic model using both a graded inversion scheme and a traditional approach. We complement the tomographic I/P model with a teleseismic receiver function model based on data from broadband seismic stations (MLAC and MKV) located on the SE and SW margins of the resurgent dome inside the caldera. The inversions resolve (1) a shallow, high-velocity P wave anomaly associated with the structural uplift of a resurgent dome; (2) an elongated, WNW striking low-velocity anomaly (8%–10 % reduction in I/P) at a depth of 6 km (4 km below mean sea level) beneath the southern section of the resurgent dome; and (3) a broad, low-velocity volume (–5% reduction in I/P and as much as 40% reduction in I/S) in the depth interval 8–14 km (6–12 km below mean sea level) beneath the central section of the caldera. The two low-velocity volumes partially overlap the geodetically inferred inflation sources that drove uplift of the resurgent dome associated with caldera unrest between 1980 and 2000, and they likely reflect the ascent path for magma or magmatic fluids into the upper crust beneath the caldera.

  11. Ray-tracing studies and path-integrated gains of ELF unducted whistler mode waves in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Goertz, C. K.

    1983-01-01

    Gyroresonance and Landau resonance interactions between unducted low-frequency whistler waves and trapped electrons in the earth's plasmasphere have been studied. Ray paths for waves launched near the plasmapause have been traced. In agreement with recent findings by Thorne et al. (1979), waves have been found which return through the equatorial zone with field-aligned wave normal angles. However, when the growth along the ray path is calculated for such waves, assuming an electron distribution function of the form E exp -n sin exp m alpha, it is found that for all the waves considered, the local growth rate becomes negative before plasmapause reflection, limiting the total gain to small values. Most waves reach zero gain before reflection. This is the result of Landau damping at oblique propagation angles, which necessarily occurs before reflection can take place. It is concluded that the concept of cyclic ray paths does not provide an explanation for the generation of unguided plasmaspheric hiss.

  12. Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Wolfrum, M.; Gurevich, S. V.; Omel'chenko, O. E.

    2016-02-01

    In this paper we study the transition to synchrony in an one-dimensional array of oscillators with non-local coupling. For its description in the continuum limit of a large number of phase oscillators, we use a corresponding Ott-Antonsen equation, which is an integro-differential equation for the evolution of the macroscopic profiles of the local mean field. Recently, it was reported that in the spatially extended case at the synchronisation threshold there appear partially coherent plane waves with different wave numbers, which are organised in the well-known Eckhaus scenario. In this paper, we show that for Kuramoto-Sakaguchi phase oscillators the phase lag parameter in the interaction function can induce a Benjamin-Feir-type instability of the partially coherent plane waves. The emerging collective macroscopic chaos appears as an intermediate stage between complete incoherence and stable partially coherent plane waves. We give an analytic treatment of the Benjamin-Feir instability and its onset in a codimension-two bifurcation in the Ott-Antonsen equation as well as a numerical study of the transition from phase turbulence to amplitude turbulence inside the Benjamin-Feir unstable region.

  13. Optical heterodyne detection for cavity ring-down spectroscopy

    DOEpatents

    Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.

    2000-07-25

    A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.

  14. Fracture and damage localization in volcanic edifice rocks from El Hierro, Stromboli and Tenerife.

    PubMed

    Harnett, Claire E; Benson, Philip M; Rowley, Pete; Fazio, Marco

    2018-01-31

    We present elastic wave velocity and strength data from a suite of three volcanic rocks taken from the volcanic edifices of El Hierro and Tenerife (Canary Islands, Spain), and Stromboli (Aeolian Islands, Italy). These rocks span a range of porosity and are taken from volcanoes that suffer from edifice instability. We measure elastic wave velocities at known incident angles to the generated through-going fault as a function of imposed strain, and examine the effect of the damage zone on P-wave velocity. Such data are important as field measurements of elastic wave tomography are key tools for understanding volcanic regions, yet hidden fractures are likely to have a significant effect on elastic wave velocity. We then use elastic wave velocity evolution to calculate concomitant crack density evolution which ranges from 0 to 0.17: highest values were correlated to the damage zone in rocks with the highest initial porosity.

  15. Covalent bonding effect on the mean excitation energy of H2 with the local plasma model

    NASA Technical Reports Server (NTRS)

    Kamaratos, E.

    1984-01-01

    Chemical bonding is taken into account explicitly in the determination of the mean excitation energy (I) for stopping power of H2 with the local plasma approximation by employing molecular electronic wave functions for H2 for the first time. This procedure leads to a new value for IH2 that is higher than all accepted experimental and theoretical values.

  16. Complex Modeling of the Seismic Structure of the Trans-European Suture Zone's Margin from Receiver Function Analysis

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, M.; Chrapkiewicz, K.; Lepore, S.; Polkowski, M.; Grad, M.

    2016-12-01

    The Trans-European Suture Zone (TESZ) is one of the most prominent suture zones in Europe separating the young Paleozoic Platform from the much older Precambrian East European Craton. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) are analyzed to investigate the crustal and upper mantle structure of the margin of the Trans-European Suture Zone (TESZ) in northern Poland. Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. Recorded seismograms are rotated from ZNE to LQT system with method using the properties of RF (Wilde-Piórko, 2015). Different techniques of receiver function interpretation are applied, including 1-D inversion of RF, 1-D forward modeling of RF, 2.5D forward modeling of RF, 1-D join inversion of RF and dispersion curves of surface wave, to find the best S-wave velocity model of the TESZ margin. A high-resolution 3D P-wave velocity model in the area of Poland (Grad et al. 2016) are used as a starting model. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  17. Bound states and propagating modes in quantum wires with sharp bends and/or constrictions

    NASA Astrophysics Data System (ADS)

    Razavy, M.

    1997-06-01

    A number of interesting problems of quantum wires with different geometries can be studied with the help of conformal mapping. These include crossed wires, twisting wires, conductors with constrictions, and wires with a bend. Here the Helmholz equation with Dirichlet boundary condition on the surface of the wire is transformed to a Schröautdinger-like equation with an energy-dependent nonseparable potential but with boundary conditions given on two straight lines. By expanding the wave function in terms of the Fourier series of one of the variables one obtains an infinite set of coupled ordinary differential equations. Only the propagating modes plus a few of the localized modes contribute significantly to the total wave function. Once the problem is solved, one can express the results in terms of the original variables using the inverse conformal mapping. As an example, the total wave function, the components of the current density, and the bound-state energy for a Γ-shaped quantum wire is calculated in detail.

  18. Renninger's Gedankenexperiment, the collapse of the wave function in a rigid quantum metamaterial and the reality of the quantum state vector.

    PubMed

    Savel'ev, Sergey E; Zagoskin, Alexandre M

    2018-06-25

    A popular interpretation of the "collapse" of the wave function is as being the result of a local interaction ("measurement") of the quantum system with a macroscopic system ("detector"), with the ensuing loss of phase coherence between macroscopically distinct components of its quantum state vector. Nevetheless as early as in 1953 Renninger suggested a Gedankenexperiment, in which the collapse is triggered by non-observation of one of two mutually exclusive outcomes of the measurement, i.e., in the absence of interaction of the quantum system with the detector. This provided a powerful argument in favour of "physical reality" of (nonlocal) quantum state vector. In this paper we consider a possible version of Renninger's experiment using the light propagation through a birefringent quantum metamaterial. Its realization would provide a clear visualization of a wave function collapse produced by a "non-measurement", and make the concept of a physically real quantum state vector more acceptable.

  19. Energy, momentum, and angular momentum of sound pulses.

    PubMed

    Lekner, John

    2017-12-01

    Pulse solutions of the wave equation can be expressed as superpositions of scalar monochromatic beam wavefunctions (solutions of the Helmholtz equation). This formulation leads to causal (unidirectional) propagation, in contrast to all currently known closed-form solutions of the wave equation. Application is made to the evaluation of the energy, momentum, and angular momentum of acoustic pulses, as integrals over the beam and pulse weight functions. Equivalence is established between integration over space of the energy, momentum, and angular momentum densities, and integration over the wavevector weight function. The inequality linking the total energy and the total momentum is made explicit in terms of the weight function formulation. It is shown that a general pulse can be viewed as a superposition of phonons, each with energy ℏck, z component of momentum ℏq, and z component of angular momentum ℏm. A closed-form solution of the wave equation is found, which is localized and causal, and its energy and momentum are evaluated explicitly.

  20. Weak phase stiffness and nature of the quantum critical point in underdoped cuprates

    DOE PAGES

    Yildirim, Yucel; Ku, Wei

    2015-11-02

    We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the “normal” pseudogap phase without any free parameter. In the prototypical (La 1–xSr x) 2CuO 4, a kinetics-driven d-wave superconductivity is obtained above the critical doping δ c ~ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Lastly, a striking mass divergencemore » is predicted at δ c that dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.« less

  1. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891

  2. JOZSO, a computer code for calculating broad neutron resonances in phenomenological nuclear potentials

    NASA Astrophysics Data System (ADS)

    Baran, Á.; Noszály, Cs.; Vertse, T.

    2018-07-01

    A renewed version of the computer code GAMOW (Vertse et al., 1982) is given in which the difficulties in calculating broad neutron resonances are amended. New types of phenomenological neutron potentials with strict finite range are built in. Landscape of the S-matrix can be generated on a given domain of the complex wave number plane and S-matrix poles in the domain are localized. Normalized Gamow wave functions and trajectories of given poles can be calculated optionally.

  3. Dynamic aspects of apparent attenuation and wave localization in layered media

    USGS Publications Warehouse

    Haney, M.M.; Van Wijk, K.

    2008-01-01

    We present a theory for multiply-scattered waves in layered media which takes into account wave interference. The inclusion of interference in the theory leads to a new description of the phenomenon of wave localization and its impact on the apparent attenuation of seismic waves. We use the theory to estimate the localization length at a CO2 sequestration site in New Mexico at sonic frequencies (2 kHz) by performing numerical simulations with a model taken from well logs. Near this frequency, we find a localization length of roughly 180 m, leading to a localization-induced quality factor Q of 360.

  4. The low-frequency continuum as observed in the solar wind from ISEE 3 - Thermal electrostatic noise

    NASA Technical Reports Server (NTRS)

    Hoang, S.; Steinberg, J.-L.; Epstein, G.; Tilloles, P.; Fainberg, J.; Stone, R. G.

    1980-01-01

    The low frequency continuum (LFC) noise between 30 and 200 kHz has been investigated from the ISEE 3 spacecraft in the solar wind by means of a radio astronomy experiment more sensitive than previously available. It is demonstrated that the LFC radiation observed in the solar wind is in the form of longitudinal plasma waves rather than transverse electromagnetic waves. The observed spectral characteristics are found to be a function of antenna length. In addition, both the absence of antenna spin modulation and the fact that these plasma waves do not propagate to large distances imply a local origin for the LFC.

  5. Time-Harmonic Gaussian Beams: Exact Solutions of the Helmhotz Equation in Free Space

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.

    2017-12-01

    An exact solution of the Helmholtz equation u xx + u yy + u zz + k 2 u = 0 is presented, which describes propagation of monochromatic waves in the free space. The solution has the form of a superposition of plane waves with a specific weight function dependent on a certain free parameter a. If ka→∞, the solution is localized in the Gaussian manner in a vicinity of a certain straight line and asymptotically coincides with the famous approximate solution known as the fundamental mode of a paraxial Gaussian beam. The asymptotics of the aforementioned exact solution does not include a backward wave.

  6. Logarithmic entanglement lightcone in many-body localized systems

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Li, Xiaopeng; Pixley, J. H.; Wu, Yang-Le; Das Sarma, S.

    2017-01-01

    We theoretically study the response of a many-body localized system to a local quench from a quantum information perspective. We find that the local quench triggers entanglement growth throughout the whole system, giving rise to a logarithmic lightcone. This saturates the modified Lieb-Robinson bound for quantum information propagation in many-body localized systems previously conjectured based on the existence of local integrals of motion. In addition, near the localization-delocalization transition, we find that the final states after the local quench exhibit volume-law entanglement. We also show that the local quench induces a deterministic orthogonality catastrophe for highly excited eigenstates, where the typical wave-function overlap between the pre- and postquench eigenstates decays exponentially with the system size.

  7. Attraction and repulsion of spiral waves by inhomogeneity of conduction anisotropy--a model of spiral wave interaction with electrical remodeling of heart tissue.

    PubMed

    Kuklik, Pawel; Sanders, Prashanthan; Szumowski, Lukasz; Żebrowski, Jan J

    2013-01-01

    Various forms of heart disease are associated with remodeling of the heart muscle, which results in a perturbation of cell-to-cell electrical coupling. These perturbations may alter the trajectory of spiral wave drift in the heart muscle. We investigate the effect of spatially extended inhomogeneity of transverse cell coupling on the spiral wave trajectory using a simple active media model. The spiral wave was either attracted or repelled from the center of inhomogeneity as a function of cell excitability and gradient of the cell coupling. High levels of excitability resulted in an attraction of the wave to the center of inhomogeneity, whereas low levels resulted in an escape and termination of the spiral wave. The spiral wave drift velocity was related to the gradient of the coupling and the initial position of the wave. In a diseased heart, a region of altered transverse coupling corresponds with local gap junction remodeling that may be responsible for stabilization-destabilization of spiral waves and hence reflect potentially important targets in the treatment of heart arrhythmias.

  8. Thalamic reticular nucleus induces fast and local modulation of arousal state

    PubMed Central

    Lewis, Laura D; Voigts, Jakob; Flores, Francisco J; Schmitt, L Ian; Wilson, Matthew A

    2015-01-01

    During low arousal states such as drowsiness and sleep, cortical neurons exhibit rhythmic slow wave activity associated with periods of neuronal silence. Slow waves are locally regulated, and local slow wave dynamics are important for memory, cognition, and behaviour. While several brainstem structures for controlling global sleep states have now been well characterized, a mechanism underlying fast and local modulation of cortical slow waves has not been identified. Here, using optogenetics and whole cortex electrophysiology, we show that local tonic activation of thalamic reticular nucleus (TRN) rapidly induces slow wave activity in a spatially restricted region of cortex. These slow waves resemble those seen in sleep, as cortical units undergo periods of silence phase-locked to the slow wave. Furthermore, animals exhibit behavioural changes consistent with a decrease in arousal state during TRN stimulation. We conclude that TRN can induce rapid modulation of local cortical state. DOI: http://dx.doi.org/10.7554/eLife.08760.001 PMID:26460547

  9. Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory.

    PubMed

    Gao, Jiali; Grofe, Adam; Ren, Haisheng; Bao, Peng

    2016-12-15

    A multistate density functional theory (MSDFT) is presented in which the energies and densities for the ground and excited states are treated on the same footing using multiconfigurational approaches. The method can be applied to systems with strong correlation and to correctly describe the dimensionality of the conical intersections between strongly coupled dissociative potential energy surfaces. A dynamic-then-static framework for treating electron correlation is developed to first incorporate dynamic correlation into contracted state functions through block-localized Kohn-Sham density functional theory (KSDFT), followed by diagonalization of the effective Hamiltonian to include static correlation. MSDFT can be regarded as a hybrid of wave function and density functional theory. The method is built on and makes use of the current approximate density functional developed in KSDFT, yet it retains its computational efficiency to treat strongly correlated systems that are problematic for KSDFT but too large for accurate WFT. The results presented in this work show that MSDFT can be applied to photochemical processes involving conical intersections.

  10. Matrix basis for plane and modal waves in a Timoshenko beam

    PubMed Central

    Tolfo, Daniela de Rosso; Tonetto, Leticia

    2016-01-01

    Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville’s technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form. PMID:28018668

  11. 2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2016-04-01

    Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  12. Scaling depth-induced wave-breaking in two-dimensional spectral wave models

    NASA Astrophysics Data System (ADS)

    Salmon, J. E.; Holthuijsen, L. H.; Zijlema, M.; van Vledder, G. Ph.; Pietrzak, J. D.

    2015-03-01

    Wave breaking in shallow water is still poorly understood and needs to be better parameterized in 2D spectral wave models. Significant wave heights over horizontal bathymetries are typically under-predicted in locally generated wave conditions and over-predicted in non-locally generated conditions. A joint scaling dependent on both local bottom slope and normalized wave number is presented and is shown to resolve these issues. Compared to the 12 wave breaking parameterizations considered in this study, this joint scaling demonstrates significant improvements, up to ∼50% error reduction, over 1D horizontal bathymetries for both locally and non-locally generated waves. In order to account for the inherent differences between uni-directional (1D) and directionally spread (2D) wave conditions, an extension of the wave breaking dissipation models is presented. By including the effects of wave directionality, rms-errors for the significant wave height are reduced for the best performing parameterizations in conditions with strong directional spreading. With this extension, our joint scaling improves modeling skill for significant wave heights over a verification data set of 11 different 1D laboratory bathymetries, 3 shallow lakes and 4 coastal sites. The corresponding averaged normalized rms-error for significant wave height in the 2D cases varied between 8% and 27%. In comparison, using the default setting with a constant scaling, as used in most presently operating 2D spectral wave models, gave equivalent errors between 15% and 38%.

  13. Diversity of sharp-wave-ripple LFP signatures reveals differentiated brain-wide dynamical events.

    PubMed

    Ramirez-Villegas, Juan F; Logothetis, Nikos K; Besserve, Michel

    2015-11-17

    Sharp-wave-ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R-triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions.

  14. Long-term history and immediate preceding state affect EEG slow wave characteristics at NREM sleep onset in C57BL/6 mice.

    PubMed

    Cui, N; Mckillop, L E; Fisher, S P; Oliver, P L; Vyazovskiy, V V

    2014-01-01

    The dynamics of cortical activity across the 24-h day and at vigilance state transitions is regulated by an interaction between global subcortical neuromodulatory influences and local shifts in network synchrony and excitability. To address the role of long-term and immediate preceding history in local and global cortical dynamics, we investigated cortical EEG recorded from both frontal and occipital regions during an undisturbed 24-h recording in mice. As expected, at the beginning of the light period, under physiologically increased sleep pressure, EEG slow waves were more frequent and had higher amplitude and slopes, compared to the rest of the light period. Within discrete NREM sleep episodes, the incidence, amplitude and slopes of individual slow waves increased progressively after episode onset in both derivations by approximately 10-30%. Interestingly, at the beginning of NREM sleep episodes slow waves in the frontal and occipital derivations frequently occurred in isolation, as quantified by longer latencies between consecutive slow waves in the two regions. Notably, slow waves during the initial period of NREM sleep following REM sleep episodes were significantly less frequent, lower in amplitude and exhibited shallower slopes, compared to those that occurred in NREM episodes after prolonged waking. Moreover, the latencies between consecutive frontal and occipital NREM slow waves were substantially longer when they occurred directly after REM sleep compared to following consolidated wakefulness. Overall these data reveal a complex picture, where both time of day and preceding state contribute to the characteristics and dynamics of slow waves within NREM sleep. These findings suggest that NREM sleep initiates in a more "local" fashion when it occurs following REM sleep episodes as opposed to sustained waking bouts. While the mechanisms and functional significance of such a re-setting of brain state after individual REM sleep episodes remains to be investigated, we suggest that it may be an essential feature of physiological sleep regulation.

  15. Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions

    DOE PAGES

    Lynn, J. E.; Tews, I.; Carlson, J.; ...

    2017-11-30

    Local chiral effective field theory interactions have recently been developed and used in the context of quantum Monte Carlo few- and many-body methods for nuclear physics. In this paper, we go over detailed features of local chiral nucleon-nucleon interactions and examine their effect on properties of the deuteron, paying special attention to the perturbativeness of the expansion. We then turn to three-nucleon interactions, focusing on operator ambiguities and their interplay with regulator effects. We then discuss the nuclear Green's function Monte Carlo method, going over both wave-function correlations and approximations for the two- and three-body propagators. Finally, following this, wemore » present a range of results on light nuclei: Binding energies and distribution functions are contrasted and compared, starting from several different microscopic interactions.« less

  16. Liquid?solid helium interface: some conceptual questions

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2003-12-01

    I raise, and discuss qualitatively, some conceptual issues concerning the interface between the crystalline solid and superfluid liquid phases of 4He emphasizing, in particular, the fact that the ground-state wave functions of the two phases are prima facie qualitatively quite different, in that the superfluid liquid phase possesses off-diagonal long-range order (ODLRO), while the crystalline solid does not. The fact that the statics and dynamics of the interface do not appear to be particularly sensitive to the presence of ODLRO in the liquid is tentatively explained by the fact that because of a subtlety associated with the Bose statistics obeyed by the atoms, the solid and liquid wave functions are not locally very different.

  17. Elasticity of water-saturated rocks as a function of temperature and pressure.

    NASA Technical Reports Server (NTRS)

    Takeuchi, S.; Simmons, G.

    1973-01-01

    Compressional and shear wave velocities of water-saturated rocks were measured as a function of both pressure and temperature near the melting point of ice to confining pressure of 2 kb. The pore pressure was kept at about 1 bar before the water froze. The presence of a liquid phase (rather than ice) in microcracks of about 0.3% porosity affected the compressional wave velocity by about 5% and the shear wave velocity by about 10%. The calculated effective bulk modulus of the rocks changes rapidly over a narrow range of temperature near the melting point of ice, but the effective shear modulus changes gradually over a wider range of temperature. This phenomenon, termed elastic anomaly, is attributed to the existence of liquid on the boundary between rock and ice due to local stresses and anomalous melting of ice under pressure.

  18. Particle swarm optimization and gravitational wave data analysis: Performance on a binary inspiral testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Yan; Mohanty, Soumya D.; Center for Gravitational Wave Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520

    2010-03-15

    The detection and estimation of gravitational wave signals belonging to a parameterized family of waveforms requires, in general, the numerical maximization of a data-dependent function of the signal parameters. Because of noise in the data, the function to be maximized is often highly multimodal with numerous local maxima. Searching for the global maximum then becomes computationally expensive, which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach to reducing computational costs in such applications. We report results from a first investigation of the particle swarm optimization method in this context. The method ismore » applied to a test bed motivated by the problem of detection and estimation of a binary inspiral signal. Our results show that particle swarm optimization works well in the presence of high multimodality, making it a viable candidate method for further applications in gravitational wave data analysis.« less

  19. Statistics of the detection rates for tensor and scalar gravitational waves from the Local Galaxy universe

    NASA Astrophysics Data System (ADS)

    Baryshev, Yu. V.; Paturel, G.

    2001-05-01

    We use data on the local 3-dimensional galaxy distribution for studying the statistics of the detection rates of gravitational waves (GW) coming from supernova explosions. We consider both tensor and scalar gravitational waves which are possible in a wide range of relativistic and quantum gravity theories. We show that statistics of GW events as a function of sidereal time can be used for distinction between scalar and tensor gravitational waves because of the anisotropy of spatial galaxy distribution. For calculation of the expected amplitudes of GW signals we use the values of the released GW energy, frequency and duration of GW pulse which are consistent with existing scenarios of SN core collapse. The amplitudes of the signals produced by Virgo and the Great Attractor clusters of galaxies is expressed as a function of the sidereal time for resonant bar detectors operating now (IGEC) and for forthcoming laser interferometric detectors (VIRGO). Then, we calculate the expected number of GW events as a function of sidereal time produced by all the galaxies within 100 Mpc. In the case of axisymmetric rotational core collapse which radiates a GW energy of 10-9Msunc2, only the closest explosions can be detected. However, in the case of nonaxisymmetric supernova explosion, due to such phenomena as centrifugal hangup, bar and lump formation, the GW radiation could be as strong as that from a coalescing neutron-star binary. For radiated GW energy higher than 10-6Msunc2 and sensitivity of detectors at the level h ~ 10-23 it is possible to detect Virgo cluster and Great Attractor, and hence to use the statistics of GW events for testing gravity theories.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Y.; Neal, C.; Salari, K.

    Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time formore » each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.« less

  1. The local nanohertz gravitational-wave landscape from supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.

    2017-12-01

    Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.

  2. Wave-function-based approach to quasiparticle bands: Insight into the electronic structure of c-ZnS

    NASA Astrophysics Data System (ADS)

    Stoyanova, A.; Hozoi, L.; Fulde, P.; Stoll, H.

    2011-05-01

    Ab initio wave-function-based methods are employed for the study of quasiparticle energy bands of zinc-blende ZnS, with focus on the Zn 3d “semicore” states. The relative energies of these states with respect to the top of the S 3p valence bands appear to be poorly described as compared to experimental values not only within the local density approximation (LDA), but also when many-body corrections within the GW approximation are applied to the LDA or LDA + U mean-field solutions [T. Miyake, P. Zhang, M. L. Cohen, and S. G. Louie, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.245213 74, 245213 (2006)]. In the present study, we show that for the accurate description of the Zn 3d states a correlation treatment based on wave-function methods is needed. Our study rests on a local Hamiltonian approach which rigorously describes the short-range polarization and charge redistribution effects around an extra hole or electron placed into the valence respective conduction bands of semiconductors and insulators. The method also facilitates the computation of electron correlation effects beyond relaxation and polarization. The electron correlation treatment is performed on finite clusters cut off the infinite system. The formalism makes use of localized Wannier functions and embedding potentials derived explicitly from prior periodic Hartree-Fock calculations. The on-site and nearest-neighbor charge relaxation lead to corrections of several eV to the Hartree-Fock band energies and gap. Corrections due to long-range polarization are of the order of 1.0 eV. The dispersion of the Hartree-Fock bands is only slightly affected by electron correlations. We find the Zn 3d “semicore” states to lie ~9.0 eV below the top of the S 3p valence bands, in very good agreement with values from valence-band x-ray photoemission.

  3. SEISMIC SOURCE SCALING AND DISCRIMINATION IN DIVERSE TECTONIC ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, R E; Mayeda, K; Walter, W R

    2007-07-10

    The objectives of this study are to improve low-magnitude regional seismic discrimination by performing a thorough investigation of earthquake source scaling using diverse, high-quality datasets from varied tectonic regions. Local-to-regional high-frequency discrimination requires an estimate of how earthquakes scale with size. Walter and Taylor (2002) developed the MDAC (Magnitude and Distance Amplitude Corrections) method to empirically account for these effects through regional calibration. The accuracy of these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity. Unfortunately our knowledge of source scaling at small magnitudes (i.e., m{sub b}more » < {approx}4.0) is poorly resolved. It is not clear whether different studies obtain contradictory results because they analyze different earthquakes, or because they use different methods. Even in regions that are well studied, such as test sites or areas of high seismicity, we still rely on empirical scaling relations derived from studies taken from half-way around the world at inter-plate regions. We investigate earthquake sources and scaling from different tectonic settings, comparing direct and coda wave analysis methods. We begin by developing and improving the two different methods, and then in future years we will apply them both to each set of earthquakes. Analysis of locally recorded, direct waves from events is intuitively the simplest way of obtaining accurate source parameters, as these waves have been least affected by travel through the earth. But there are only a limited number of earthquakes that are recorded locally, by sufficient stations to give good azimuthal coverage, and have very closely located smaller earthquakes that can be used as an empirical Green's function (EGF) to remove path effects. In contrast, coda waves average radiation from all directions so single-station records should be adequate, and previous work suggests that the requirements for the EGF event are much less stringent. We can study more earthquakes using the coda-wave methods, while using direct wave methods for the best recorded subset of events so as to investigate any differences between the results of the two approaches. Finding 'perfect' EGF events for direct wave analysis is difficult, as is ascertaining the quality of a particular EGF event. We develop a multi-taper method to obtain time-domain source-time-functions by frequency division. If an earthquake and EGF event pair are able to produce a clear, time-domain source pulse then we accept the EGF event. We then model the spectral (amplitude) ratio to determine source parameters from both direct P and S waves. We use the well-recorded sequence of aftershocks of the M5 Au Sable Forks, NY, earthquake to test the method and also to obtain some of the first accurate source parameters for small earthquakes in eastern North America. We find that the stress drops are high, confirming previous work suggesting that intraplate continental earthquakes have higher stress drops than events at plate boundaries. We simplify and improve the coda wave analysis method by calculating spectral ratios between different sized earthquakes. We first compare spectral ratio performance between local and near-regional S and coda waves in the San Francisco Bay region for moderate-sized events. The average spectral ratio standard deviations using coda are {approx}0.05 to 0.12, roughly a factor of 3 smaller than direct S-waves for 0.2 < f < 15.0 Hz. Also, direct wave analysis requires collocated pairs of earthquakes whereas the event-pairs (Green's function and target events) can be separated by {approx}25 km for coda amplitudes without any appreciable degradation. We then apply coda spectral ratio method to the 1999 Hector Mine mainshock (M{sub w} 7.0, Mojave Desert) and its larger aftershocks. We observe a clear departure from self-similarity, consistent with previous studies using similar regional datasets.« less

  4. A Finite-Orbit-Width Fokker-Planck solver for modeling of energetic particle interactions with waves, with application to Helicons in ITER

    NASA Astrophysics Data System (ADS)

    Petrov, Yuri V.; Harvey, R. W.

    2017-10-01

    The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios.

  5. First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model

    PubMed Central

    Barbagallo, Gabriele; d’Agostino, Marco Valerio; Placidi, Luca; Neff, Patrizio

    2016-01-01

    In this paper, we propose the first estimate of some elastic parameters of the relaxed micromorphic model on the basis of real experiments of transmission of longitudinal plane waves across an interface separating a classical Cauchy material (steel plate) and a phononic crystal (steel plate with fluid-filled holes). A procedure is set up in order to identify the parameters of the relaxed micromorphic model by superimposing the experimentally based profile of the reflection coefficient (plotted as function of the wave-frequency) with the analogous profile obtained via numerical simulations. We determine five out of six constitutive parameters which are featured by the relaxed micromorphic model in the isotropic case, plus the determination of the micro-inertia parameter. The sixth elastic parameter, namely the Cosserat couple modulus μc, still remains undetermined, since experiments on transverse incident waves are not yet available. A fundamental result of this paper is the estimate of the non-locality intrinsically associated with the underlying microstructure of the metamaterial. We show that the characteristic length Lc measuring the non-locality of the phononic crystal is of the order of 13 of the diameter of its fluid-filled holes. PMID:27436984

  6. First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model.

    PubMed

    Madeo, Angela; Barbagallo, Gabriele; d'Agostino, Marco Valerio; Placidi, Luca; Neff, Patrizio

    2016-06-01

    In this paper, we propose the first estimate of some elastic parameters of the relaxed micromorphic model on the basis of real experiments of transmission of longitudinal plane waves across an interface separating a classical Cauchy material (steel plate) and a phononic crystal (steel plate with fluid-filled holes). A procedure is set up in order to identify the parameters of the relaxed micromorphic model by superimposing the experimentally based profile of the reflection coefficient (plotted as function of the wave-frequency) with the analogous profile obtained via numerical simulations. We determine five out of six constitutive parameters which are featured by the relaxed micromorphic model in the isotropic case, plus the determination of the micro-inertia parameter. The sixth elastic parameter, namely the Cosserat couple modulus μ c , still remains undetermined, since experiments on transverse incident waves are not yet available. A fundamental result of this paper is the estimate of the non-locality intrinsically associated with the underlying microstructure of the metamaterial. We show that the characteristic length L c measuring the non-locality of the phononic crystal is of the order of [Formula: see text] of the diameter of its fluid-filled holes.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsuji, Hiroshi, E-mail: h.nakatsuji@qcri.or.jp; Nakashima, Hiroyuki

    The Schrödinger equation (SE) and the antisymmetry principle constitute the governing principle of chemistry. A general method of solving the SE was presented before as the free complement (FC) theory, which gave highly accurate solutions for small atoms and molecules. We assume here to use the FC theory starting from the local valence bond wave function. When this theory is applied to larger molecules, antisymmetrizations of electronic wave functions become time-consuming and therefore, an additional breakthrough is necessary concerning the antisymmetry principle. Usually, in molecular calculations, we first construct the wave function to satisfy the antisymmetry rule, “electronic wave functionsmore » must be prescribed to be antisymmetric for all exchanges of electrons, otherwise bosonic interference may disturb the basis of the science.” Starting from determinantal wave functions is typical. Here, we give an antisymmetrization theory, called inter-exchange (iExg) theory, by dividing molecular antisymmetrizations to those within atoms and between atoms. For the electrons belonging to distant atoms in a molecule, only partial antisymmetrizations or even no antisymmetrizations are necessary, depending on the distance between the atoms. So, the above antisymmetry rule is not necessarily followed strictly to get the results of a desired accuracy. For this and other reasons, the necessary parts of the antisymmetrization operations become very small as molecules become larger, leading finally to the operation counts of lower orders of N, the number of electrons. This theory creates a natural antisymmetrization method that is useful for large molecules.« less

  8. ERK-MAPK Drives Lamellipodia Protrusion by Activating the WAVE2 Regulatory Complex

    PubMed Central

    Mendoza, Michelle C.; Emrah, E.; Zhang, Wenjuan; Ballif, Bryan A.; Elliott, Hunter L.; Danuser, Gaudenz; Blenis, John

    2011-01-01

    Summary Cell movement begins with a leading edge protrusion, which is stabilized by nascent adhesions and retracted by mature adhesions. The ERK-MAPK (extracellular signal regulated kinasemitogen-activated protein kinase) localizes to protrusions and adhesions, but how it regulates motility is not understood. We demonstrate ERK controls protrusion initiation and protrusion speed. Lamellipodial protrusions are generated via the WRC (WAVE2 Regulatory Complex), which activates the Arp2/3 actin nucleator for actin assembly. The WRC must be phosphorylated to be activated, but the sites and kinases that regulate its intermolecular changes and membrane recruitment are unknown. We show ERK co-localizes with the WRC at lamellipodial leading edges and directly phosphorylates two WRC components: WAVE2 and Abi1. The phosphorylations are required for functional WRC interaction with Arp2/3 and actin during cell protrusion. Thus, ERK coordinates adhesion disassembly with WRC activation and actin polymerization to promote productive leading edge advancement during cell migration. PMID:21419341

  9. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  10. Observations of Seasonal Morphological Evolution at a Moderately Energetic Beach in Rincón, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Rivera Nieves, A.; Loubriel, M.; Rodriguez-Abudo, S.; Canals, M.; Salgado-Domínguez, G.

    2016-02-01

    Seasonal variations in the wave climate near Rincón, Puerto Rico include high winter swells associated with meteorological disturbances in the north and mid Atlantic, short period waves resulting from local storms, and the occasional south swell. The resulting beach morphology is therefore a complex function of the wave climate, wave-induced currents, and local and remote meteorology, among others. Over the past 75 years, this particular stretch of beach has suffered severe erosion problems, losing as much as 100 meters of beach width at particular locations. The purpose of this study is to develop a high-resolution time series of beach morphology to examine in more detail the seasonal variations at the site. Beach profiles will be collected on a weekly basis using an RTK GPS system at three permanent stations spanning 2 km of coast. Sediment samples will be collected along the profiles to identify sediment properties associated with distinct morphological features, while digital photographs will provide a qualitative sense of beach width. The resulting morphological changes will be assessed in light of the Rincon's directional Waverider buoy data and CariCOOS' SWAN high-resolution wave model. This study will provide quantifiable insights into seasonal erosion/accretion trends at a highly touristic stretch of coast in the US Caribbean.

  11. Closed form solutions of two time fractional nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan

    2018-06-01

    In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.

  12. Bose-Einstein condensation in microgravity.

    PubMed

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

  13. Apparent Negative Reflection with the Gradient Acoustic Metasurface by Integrating Supercell Periodicity into the Generalized Law of Reflection

    PubMed Central

    Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan

    2016-01-01

    As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell’s law. However, the critical angle that derived from the generalized Snell’s law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device. PMID:27917909

  14. Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations.

    PubMed

    Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg

    2017-05-09

    A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.

  15. Investigation into the bistatic evolution of the acoustic scattering from a cylindrical shell using time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique

    2018-01-01

    The time and frequency analyses of the acoustic scattering by an elastic cylindrical shell in bistatic method show that the arrival times of the echoes and the resonance frequencies of the elastic waves propagating in and around the cylindrical shell are a function of the bistatic angle, β, between the emitter and receiver transducers. The aim of this work is to explain the observed results in time and frequency domains using time-frequency analysis and graphical interpretations. The performance of four widely used time-frequency representations, the Smoothed Pseudo Wigner-Ville (SPWV), the Spectrogram (SP), the reassignment SPWV, and the reassignment SP, are studied. The investigation into the evolution of the time-frequency plane as a function of the bistatic angle β shows that there are the waves propagating in counter-clockwise direction (labeled wave+) and the waves which propagate in clockwise direction (labeled waves-). In this paper the A, S0, and A1 circumferential waves are investigated. The graphical interpretations are used to explain the formation mechanism of these waves and the acoustic scattering in monostatic and bistatic configurations. The delay between the echoes of the waves+ and those of the waves- is expressed in the case of the circumnavigating wave (Scholte-Stoneley wave). This study shows that the observed waves at β = 0 ° and β = 18 0 ° are the result of the constructive interferences between the waves+ and the waves-. A comparative study of the physical properties (group velocity dispersion and cut-off frequency) of the waves+, the waves- and the waves observed in monostatic configuration is conducted. Furthermore, it is shown that the ability of the time-frequency representation to highlight the waves+ and the waves- is very useful, for example, for the detection and the localization of defaults, the classification purposes, etc.

  16. The Contribution of Coseismic Displacements due to Splay Faults Into the Local Wavefield of the 1964 Alaska Tsunami

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Ruppert, N.; Fisher, M.; West, D.; Hansen, R.

    2008-12-01

    The Alaska Earthquake Information Center conducts tsunami inundation mapping for coastal communities in Alaska. For many locations in the Gulf of Alaska, the 1964 tsunami generated by the Mw9.2 Great Alaska earthquake may be the worst-case tsunami scenario. We use the 1964 tsunami observations to verify our numerical model of tsunami propagation and runup, therefore it is essential to use an adequate source function of the 1964 earthquake to reduce the level of uncertainty in the modeling results. It was shown that the 1964 co-seismic slip occurred both on the megathrust and crustal splay faults (Plafker, 1969). Plafker (2006) suggested that crustal faults were a major contributor to vertical displacements that generated local tsunami waves. Using eyewitness arrival times of the highest observed waves, he suggested that the initial tsunami wave was higher and closer to the shore, than if it was generated by slip on the megathrust. We conduct a numerical study of two different source functions of the 1964 tsunami to test whether the crustal splay faults had significant effects on local tsunami runup heights and arrival times. The first source function was developed by Johnson et al. (1996) through joint inversion of the far-field tsunami waveforms and geodetic data. The authors did not include crustal faults in the inversion, because the contribution of these faults to the far-field tsunami was negligible. The second is the new coseismic displacement model developed by Suito and Freymueller (2008, submitted). This model extends the Montague Island fault farther along the Kenai Peninsula coast and thus reduces slip on the megathrust in that region. We also use an improved geometry of the Patton Bay fault based on the deep crustal seismic reflection and earthquake data. We propagate tsunami waves generated by both source models across the Pacific Ocean and record wave amplitudes at the locations of the tide gages that recorded the 1964 tsunami. As expected, the two sources produce very similar waveforms in the far field that are also in good agreement with the tide gage records. In order to study the near-field tsunami effects, we will construct embedded telescoping bathymetry grids around tsunami generation area to calculate tsunami arrival times and sea surface heights for both source models of the 1964 earthquake, and use available observation data to verify the model results.

  17. Crustal seismic structure beneath the southwest Yunnan region from joint inversion of body-wave and surface wave data

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Thurber, C. H.; Zeng, X.; Zhang, L.

    2016-12-01

    Data from 71 broadband stations of a dense transportable array deployed in southwest Yunnan makes it possible to improve the resolution of the seismic model in this region. Continuous waveforms from 12 permanent stations of the China National Seismic Network were also used in this study. We utilized one-year continuous vertical component records to compute ambient noise cross-correlation functions (NCF). More than 3,000 NCFs were obtained and used to measure group velocities between 5 and 25 seconds with the frequency-time analysis method. This frequency band is most sensitive to crustal seismic structure, especially the upper and middle crust. The group velocity at short-period shows a clear azimuthal anisotropy with a north-south fast direction. The fast direction is consistent with previous seismic results revealed from shear wave splitting. More than 2,000 group velocity measurements were employed to invert the surface wave dispersion data for group velocity maps. We applied a finite difference forward modeling algorithm with an iterative inversion. A new body-wave and surface wave joint inversion algorithm (Fang et al., 2016) was utilized to improve the resolution of both P and S models. About 60,000 P wave and S wave arrivals from 1,780 local earthquakes, which occurred from May 2011 to December 2013 with magnitudes larger than 2.0, were manually picked. The new high-resolution seismic structure shows good consistency with local geological features, e.g. Tengchong Volcano. The earthquake locations also were refined with our new velocity model.

  18. Auto Correlation Analysis of Coda Waves from Local Earthquakes for Detecting Temporal Changes in Shallow Subsurface Structures: the 2011 Tohoku-Oki, Japan Earthquake

    NASA Astrophysics Data System (ADS)

    Nakahara, Hisashi

    2015-02-01

    For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can be applied to many records on the surface in regions where no boreholes are available.

  19. Numerical investigation of freak waves

    NASA Astrophysics Data System (ADS)

    Chalikov, D.

    2009-04-01

    Paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme (‘freak') waves. The method of solution of 2-D potential wave's equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. The shape of freak waves varies within a wide range: some of them are sharp-crested, others are asymmetric, with a strong forward inclination. Some of them can be very big, but not steep enough to create dangerous conditions for vessels (but not for fixed objects). Initial generation of extreme waves can occur merely as a result of group effects, but in some cases the largest wave suddenly starts to grow. The growth is followed sometimes by strong concentration of wave energy around a peak vertical. It is taking place in the course of a few peak wave periods. The process starts with an individual wave in a physical space without significant exchange of energy with surrounding waves. Sometimes, a crest-to-trough wave height can be as large as nearly three significant wave heights. On the average, only one third of all freak waves come to breaking, creating extreme conditions, however, if a wave height approaches the value of three significant wave heights, all of the freak waves break. The most surprising result was discovery that probability of non-dimensional freak waves (normalized by significant wave height) is actually independent of density of wave energy. It does not mean that statistics of extreme waves does not depend on wave energy. It just proves that normalization of wave heights by significant wave height is so effective, that statistics of non-dimensional extreme waves tends to be independent of wave energy. It is naive to expect that high order moments such as skewness and kurtosis can serve as predictors or even indicators of freak waves. Firstly, the above characteristics cannot be calculated with the use of spectrum usually determined with low accuracy. Such calculations are definitely unstable to a slight perturbation of spectrum. Secondly, even if spectrum is determined with high accuracy (for example calculated with the use of exact model), the high order moments cannot serve as the predictors, since they change synchronically with variations of extreme wave heights. Appearance of freak waves occurs simultaneously with increase of the local kurtosis, hence, kurtosis is simply a passive indicator of the same local geometrical properties of a wave field. This effect disappears completely, if spectrum is calculated over a very wide ensemble of waves. In this case existence of a freak wave is just disguised by other, non freak waves. Thirdly, all high order moments are dependant of spectral presentation - they increase with increasing of spectral resolution and cut-frequency. Statistics of non-dimensional waves as well as emergence of extreme waves is the innate property of a nonlinear wave field. Probability function for steep waves has been constructed. Such type function can be used for development of operational forecast of freak waves based on a standard forecast provided by the 3-d generation wave prediction model (WAVEWATCH or WAM).

  20. Systematic approach to cutoff frequency selection in continuous-wave electron paramagnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hirata, Hiroshi; Itoh, Toshiharu; Hosokawa, Kouichi; Deng, Yuanmu; Susaki, Hitoshi

    2005-08-01

    This article describes a systematic method for determining the cutoff frequency of the low-pass window function that is used for deconvolution in two-dimensional continuous-wave electron paramagnetic resonance (EPR) imaging. An evaluation function for the criterion used to select the cutoff frequency is proposed, and is the product of the effective width of the point spread function for a localized point signal and the noise amplitude of a resultant EPR image. The present method was applied to EPR imaging for a phantom, and the result of cutoff frequency selection was compared with that based on a previously reported method for the same projection data set. The evaluation function has a global minimum point that gives the appropriate cutoff frequency. Images with reasonably good resolution and noise suppression can be obtained from projections with an automatically selected cutoff frequency based on the present method.

  1. Calcium spikes, waves and oscillations in a large, patterned epithelial tissue

    PubMed Central

    Balaji, Ramya; Bielmeier, Christina; Harz, Hartmann; Bates, Jack; Stadler, Cornelia; Hildebrand, Alexander; Classen, Anne-Kathrin

    2017-01-01

    While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells. The spatiotemporal characteristics of intercellular waves and oscillations arise as emergent properties of calcium mobilization within a sheet of gap-junction coupled cells and are influenced by cell size and environmental history. While the in vivo function of spikes, waves and oscillations requires further characterization, our genetic experiments suggest that core calcium signaling components guide actomyosin organization. Our study thus suggests a possible role for calcium signaling in epithelia but importantly, introduces a model epithelium enabling the dissection of cellular mechanisms supporting the initiation, transmission and regeneration of long-range intercellular calcium waves and the emergence of oscillations in a highly coupled multicellular sheet. PMID:28218282

  2. Electrostatic instability of ring current protons beyond the plasmapause during injection events

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Fredricks, R. W.; White, R.

    1972-01-01

    The stability of ring current protons with an injection spectrum modeled by an m = 2 mirror distribution function was examined for typical ring current parameters. It was found that the high frequency loss cone mode can be excited at wave numbers K lambda sub Di about = to 0.1 to 0.5, at frequencies omega about = to (0.2 to 0.6) omega sub pi and with growth rates up to gamma/omega about = to 0.03. These waves interact with the main body of the proton distribution and propagate nearly perpendicular to the local magnetic field. Cold particle partial densities tend to reduce the growth rate so that the waves are quenched at or near to the plasmapause boundary. Wave e-folding lengths are comparable to 0.1 R sub e, compared to the value of about 4 R sub e found for ion cyclotron waves at the same plasma conditions.

  3. Subwavelength wave manipulation in a thin surface-wave bandgap crystal.

    PubMed

    Gao, Zhen; Wang, Zhuoyuan; Zhang, Baile

    2018-01-01

    It has been recently reported that the unit cell of wire media metamaterials can be tailored locally to shape the flow of electromagnetic waves at deep-subwavelength scales [Nat. Phys.9, 55 (2013)NPAHAX1745-247310.1038/nphys2480]. However, such bulk structures have a thickness of at least the order of wavelength, thus hindering their applications in the on-chip compact plasmonic integrated circuits. Here, based upon a Sievenpiper "mushroom" array [IEEE Trans. Microwave Theory Tech.47, 2059 (1999)IETMAB0018-948010.1109/22.798001], which is compatible with standard printed circuit board technology, we propose and experimentally demonstrate the subwavelength manipulation of surface waves on a thin surface-wave bandgap crystal with a thickness much smaller than the wavelength (1/30th of the operating wavelength). Functional devices including a T-shaped splitter and sharp bend are constructed with good performance.

  4. Wave scattering of complex local site in a layered half-space by using a multidomain IBEM: incident plane SH waves

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Yin, Xiao

    2016-06-01

    A multidomain indirect boundary element method (IBEM) is proposed to study the wave scattering of plane SH waves by complex local site in a layered half-space. The new method, using both the full-space and layered half-space Green's functions as its fundamental solutions can also be regarded as a coupled method of the full-space IBEM and half-space IBEM. First, the whole model is decomposed into independent closed regions and an opened layered half-space region with all of the irregular interfaces; then, fictitious uniformly distributed loads are applied separately on the boundaries of each region, and scattered fields of the closed regions and the opened layered half-space region are constructed by calculating the full-space and layered half-space Green's functions, respectively; finally, all of the regions are assembled to establish the linear algebraic system that arises from discretization. The densities of the distributed loads are determined directly by solving the algebraic system. The accuracy and capability of the new approach are verified extensively by comparing its results with those of published approaches for a class of hills, valleys and embedded inclusions. And the capability of the new method is further displayed when it is used to investigate a hill-triple layered valley-hill coupled topography in a multilayered half-space. All of the numerical calculations presented in this paper demonstrate that the new method is very suitable for solving multidomain coupled multilayered wave scattering problems with the merits of high accuracy and representing the scattered fields in different kinds of regions more reasonably and flexibly.

  5. Process based modeling of total longshore sediment transport

    USGS Publications Warehouse

    Haas, K.A.; Hanes, D.M.

    2004-01-01

    Waves, currents, and longshore sand transport are calculated locally as a function of position in the nearshore region using process based numerical models. The resultant longshore sand transport is then integrated across the nearshore to provide predictions of the total longshore transport of sand due to waves and longshore currents. Model results are in close agreement with the I1-P1 correlation described by Komar and Inman (1970) and the CERC (1984) formula. Model results also indicate that the proportionality constant in the I1-P1 formula depends weakly upon the sediment size, the shape of the beach profile, and the particular local sediment flux formula that is employed. Model results indicate that the various effects and influences of sediment size tend to cancel out, resulting in little overall dependence on sediment size.

  6. Conservation laws for waves on a string from isometries and conformal isometries of the Minkowski metric

    NASA Astrophysics Data System (ADS)

    Miller, Brandon; Menon, Balraj

    Noether's theorems describe the interplay between variational symmetries (symmetries of the action functional) and local conservation laws admitted by a physical system. In Lagrangian field theories defined on a differentiable manifold  endowed with a metric g, the variational symmetries are intimately tied to the isometries of the metric g. We highlight this connection by relating the variational symmetries of waves on a string to the isometries and conformal isometries of the Minkowski metric. The associated local conservation laws and conserved quantities for this physical system are determined and their physical significance discussed. The geometric nature of these conservation laws are further elucidated by discussing their Poisson bracket formulation in the Hamiltonian framework. This work was partially supported by the UCA Robert Noyce Scholars Program.

  7. Local vertical motions and kinetic temperature from AE-C as evidence for aurora-induced gravity waves

    NASA Technical Reports Server (NTRS)

    Spencer, N. W.; Theis, R. F.; Wharton, L. E.; Carignan, G. R.

    1976-01-01

    In situ measurements of local vertical neutral particle motions have been made using the Neutral Atmosphere Temperature Instrument (NATE) on Atmosphere Explorer-C from observations of the direction of flow of neutral particles into the antechamber of the sensor (mass spectrometer). Values ranging from a few to more than 80 meters per second have been observed. The data show vertical motions greater than a few meters per second to be present most of the time, the magnitude being a function of many factors including magnetic activity, location, and magnetic storm history. In a specific case, it is concluded that the observed vertical motions and kinetic temperature are evidence of a travelling disturbance originating as a gravity wave in the auroral zone.

  8. Semiclassical approach to atomic decoherence by gravitational waves

    NASA Astrophysics Data System (ADS)

    Quiñones, D. A.; Varcoe, B. T. H.

    2018-01-01

    A new heuristic model of interaction of an atomic system with a gravitational wave (GW) is proposed. In it, the GW alters the local electromagnetic field of the atomic nucleus, as perceived by the electron, changing the state of the system. The spectral decomposition of the wave function is calculated, from which the energy is obtained. The results suggest a shift in the difference of the atomic energy levels, which will induce a small detuning to a resonant transition. The detuning increases with the quantum numbers of the levels, making the effect more prominent for Rydberg states. We performed calculations on the Rabi oscillations of atomic transitions, estimating how they would vary as a result of the proposed effect.

  9. ULF waves at comets Halley and Giacobini-Zinner - Comparison with simulations

    NASA Astrophysics Data System (ADS)

    Le, G.; Russell, C. T.; Gary, S. P.; Smith, E. J.; Riedler, W.; Schwingenschuh, K.

    1989-09-01

    A comparison is made between observations and numerical simulations of magnetic fluctuations near the proton and water group ion cyclotron frequencies as a function of distance from the comets Halley and Giacobini-Zinner. The amplitude of waves due to different cyclotron resonant instabilities is monitored by examining the amplitude of waves near the gyrofrequency of the respective ions, measured in by the ICE spacecraft. The results are compared with a one-dimensional electromagnetic hybrid simulation of two-ion pickup based on the predictions of Gary et al. (1989). The observations are consistent with the prediction that amplitudes are dependent on the properties of the injected beams and the local injection rate.

  10. Deriving inertial wave characteristics from surface drifter velocities - Frequency variability in the tropical Pacific

    NASA Technical Reports Server (NTRS)

    Poulain, Pierre-Marie; Luther, Douglas S.; Patzert, William C.

    1992-01-01

    Two techniques were developed for estimating statistics of inertial oscillations from satellite-tracked drifters that overcome the difficulties inherent in estimating such statistics from data dependent upon space coordinates that are a function of time. Application of these techniques to tropical surface drifter data collected during the NORPAX, EPOCS, and TOGA programs reveals a latitude-dependent, statistically significant 'blue shift' of inertial wave frequency. The latitudinal dependence of the blue shift is similar to predictions based on 'global' internal-wave spectral models, with a superposition of frequency shifting due to modification of the effective local inertial frequency by the presence of strongly sheared zonal mean currents within 12 deg of the equator.

  11. Gravitational wave memory in an expanding universe

    NASA Astrophysics Data System (ADS)

    Tolish, Alexander; Wald, Robert

    2016-03-01

    We investigate the gravitational wave memory effect in an expanding FLRW spacetime. We find that if the gravitational field is decomposed into gauge-invariant scalar, vector, and tensor modes after the fashion of Bardeen, only the tensor mode gives rise to memory, and this memory can be calculated using the retarded Green's function associated with the tensor wave equation. If locally similar radiation source events occur on flat and FLRW backgrounds, we find that the resulting memories will differ only by a redshift factor, and we explore whether or not this factor depends on the expansion history of the FLRW universe. We compare our results to related work by Bieri, Garfinkle, and Yau.

  12. Model of electron lifetimes inside the plasmasphere calculated using a CRRES derived hiss wave amplitude model

    NASA Astrophysics Data System (ADS)

    Orlova, Ksenia; Spasojevic, Maria; Shprits, Yuri

    Particle populations in the inner magnetosphere can change by orders of magnitude on very short time scales. For the last decade observations and theoretical computations showed that resonant interaction of electrons with various plasma waves plays an important role in acceleration and loss mechanisms. Using data from the CRRES plasma wave experiment, we develop quadratic fits to the mean of the wave amplitude squared for plasmaspheric hiss as a function of geomagnetic activity (Kp) and magnetic latitude (lambda) for the dayside (6

  13. Development of Physics-Based Hurricane Wave Response Functions: Application to Selected Sites on the U.S. Gulf Coast

    NASA Astrophysics Data System (ADS)

    McLaughlin, P. W.; Kaihatu, J. M.; Irish, J. L.; Taylor, N. R.; Slinn, D.

    2013-12-01

    Recent hurricane activity in the Gulf of Mexico has led to a need for accurate, computationally efficient prediction of hurricane damage so that communities can better assess risk of local socio-economic disruption. This study focuses on developing robust, physics based non-dimensional equations that accurately predict maximum significant wave height at different locations near a given hurricane track. These equations (denoted as Wave Response Functions, or WRFs) were developed from presumed physical dependencies between wave heights and hurricane characteristics and fit with data from numerical models of waves and surge under hurricane conditions. After curve fitting, constraints which correct for fully developed sea state were used to limit the wind wave growth. When applied to the region near Gulfport, MS, back prediction of maximum significant wave height yielded root mean square errors between 0.22-0.42 (m) at open coast stations and 0.07-0.30 (m) at bay stations when compared to the numerical model data. The WRF method was also applied to Corpus Christi, TX and Panama City, FL with similar results. Back prediction errors will be included in uncertainty evaluations connected to risk calculations using joint probability methods. These methods require thousands of simulations to quantify extreme value statistics, thus requiring the use of reduced methods such as the WRF to represent the relevant physical processes.

  14. Variable-range-hopping magnetoresistance

    NASA Astrophysics Data System (ADS)

    Azbel, Mark Ya

    1991-03-01

    The hopping magnetoresistance R of a two-dimensional insulator with metallic impurities is considered. In sufficiently weak magnetic fields it increases or decreases depending on the impurity density n: It decreases if n is low and increases if n is high. In high magnetic fields B, it always exponentially increases with √B . Such fields yield a one-dimensional temperature dependence: lnR~1/ √T . The calculation provides an accurate leading approximation for small impurities with one eigenstate in their potential well. In the limit of infinitesimally small impurities, an impurity potential is described by a generalized function. This function, similar to a δ function, is localized at a point, but, contrary to a δ function in the dimensionality above 1, it has finite eigenenergies. Such functions may be helpful in the study of scattering and localization of any waves.

  15. Quantum Dynamics and a Semiclassical Description of the Photon.

    ERIC Educational Resources Information Center

    Henderson, Giles

    1980-01-01

    Uses computer graphics and nonstationary, superposition wave functions to reveal the dynamic quantum trajectories of several molecular and electronic transitions. These methods are then coupled with classical electromagnetic theory to provide a conceptually clear picture of the emission process and emitted radiation localized in time and space.…

  16. Distortion of Dynamical Systems in the Context of Focusing the Chaos Around the Point

    NASA Astrophysics Data System (ADS)

    Pawlak, Ryszard J.

    In the paper, we examine local aspects of chaos for self-functions on topological manifolds. For this purpose, issues related to focal entropy points and homoclinic points are used. We consider also distortion of dynamical systems which is a theoretical analogue to wave interference.

  17. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    NASA Astrophysics Data System (ADS)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  18. Positron and electron energy bands in several ionic crystals using restricted Hartree-Fock method

    NASA Astrophysics Data System (ADS)

    Kunz, A. B.; Waber, J. T.

    1981-08-01

    Using a restricted Hartree-Fock formalism and suitably localized and symmetrized wave functions, both the positron and electron energy bands were calculated for NaF, MgO and NiO. The lowest positron state at Γ 1 lies above the vacuum level and negative work functions are predicted. Positron annihilation rates were calculated and found to be in good agreement with measured lifetimes.

  19. Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph

    NASA Astrophysics Data System (ADS)

    Noja, Diego; Pelinovsky, Dmitry; Shaikhova, Gaukhar

    2015-07-01

    We develop a detailed analysis of edge bifurcations of standing waves in the nonlinear Schrödinger (NLS) equation on a tadpole graph (a ring attached to a semi-infinite line subject to the Kirchhoff boundary conditions at the junction). It is shown in the recent work [7] by using explicit Jacobi elliptic functions that the cubic NLS equation on a tadpole graph admits a rich structure of standing waves. Among these, there are different branches of localized waves bifurcating from the edge of the essential spectrum of an associated Schrödinger operator. We show by using a modified Lyapunov-Schmidt reduction method that the bifurcation of localized standing waves occurs for every positive power nonlinearity. We distinguish a primary branch of never vanishing standing waves bifurcating from the trivial solution and an infinite sequence of higher branches with oscillating behavior in the ring. The higher branches bifurcate from the branches of degenerate standing waves with vanishing tail outside the ring. Moreover, we analyze stability of bifurcating standing waves. Namely, we show that the primary branch is composed by orbitally stable standing waves for subcritical power nonlinearities, while all nontrivial higher branches are linearly unstable near the bifurcation point. The stability character of the degenerate branches remains inconclusive at the analytical level, whereas heuristic arguments based on analysis of embedded eigenvalues of negative Krein signatures support the conjecture of their linear instability at least near the bifurcation point. Numerical results for the cubic NLS equation show that this conjecture is valid and that the degenerate branches become spectrally stable far away from the bifurcation point.

  20. Regional Wave Climates along Eastern Boundary Currents

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Soares, Pedro

    2016-04-01

    Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or, particularly in the lee of headlands, or even more prevalent and more energized than swell. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.

  1. Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier

    NASA Astrophysics Data System (ADS)

    Brächer, T.; Heussner, F.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Hillebrands, B.; Pirro, P.

    2018-03-01

    We present a time-resolved study of the evolution of the spin-wave intensity and phase in a local parametric spin-wave amplifier at pumping powers close to the threshold of parametric generation. We show that the phase of the amplified spin waves is determined by the phase of the incoming signal-carrying spin waves and that it can be preserved on long time scales as long as the energy input by the input spin waves is provided. In contrast, the phase-information is lost in such a local spin-wave amplifier as soon as the input spin-wave is switched off. These findings are an important benchmark for the use of parametric amplifiers in logic circuits relying on the spin-wave phase as information carrier.

  2. Quantum formalism for classical statistics

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  3. Graded metascreens to enable a new degree of nanoscale light management

    PubMed Central

    Mohammadi Estakhri, Nasim; Argyropoulos, Christos; Alù, Andrea

    2015-01-01

    Optical metasurfaces, typically referred to as two-dimensional metamaterials, are arrays of engineered subwavelength inclusions suitably designed to tailor the light properties, including amplitude, phase and polarization state, over deeply subwavelength scales. By exploiting anomalous localized interactions of surface elements with optical waves, metasurfaces can go beyond the functionalities offered by conventional diffractive optical gratings. The innate simplicity of implementation and the distinct underlying physics of their wave–matter interaction distinguish metasurfaces from three-dimensional metamaterials and provide a valuable means of moulding optical waves in the desired manner. Here, we introduce a general approach based on the electromagnetic equivalence principle to develop and synthesize graded, non-periodic metasurfaces to generate arbitrarily prescribed distributions of electromagnetic waves. Graded metasurfaces are realized with a single layer of spatially modulated, electrically polarizable nanoparticles, tailoring the scattering response of the surface with nanoscale resolutions. We discuss promising applications based on the proposed local wave management technique, including the design of ultrathin optical carpet cloaks, alignment-free polarization beam splitters and a novel approach to enable broadband light absorption enhancement in thin-film solar cells. This concept opens up a practical route towards efficient planarized optical structures with potential impact on the integrated nanophotonic technology. PMID:26217059

  4. P- and S-wave models and statistical characterization of scatterers at the Solfatara Volcano using active seismic data from RICEN experiment

    NASA Astrophysics Data System (ADS)

    Serra, Marcello; Festa, Gaetano; Roux, Philippe; Vandemeulebrouck, Jean; Gresse, Marceau; Zollo, Aldo

    2017-04-01

    RICEN (Repeated and InduCed Earthquakes and Noise) is an active and passive experiment organized at the Solfatara volcano, in the framework of the European project MEDSUV. It was aimed to reveal and track the variations in the elastic properties of the medium at small scale through repeated observations over time. It covered an area of 90m x 115m by a regular grid of 240 receivers and 100 shotpoints at the center of the volcano. A Vibroseis truck was used as seismic source . We cross-correlated the seismograms by the source time function to obtain the Green's functions filtered in the frequency band excited by the source. To estimate the phase and the group velocities of the Rayleigh-waves we used the coherence of the signal along the seismic sections. In subgrids of 40m x 40m we realigned the waveforms or their envelope in different frequency bands, to maximize the amplitude of the stack function, the phase or the group velocities being those speeds proving this maximum. We jointly inverted the dispersion curves to obtain a locally layered 1-D medium in term of S-waves. Finally the collection of all the models provides us with a 3-D image of the investigated area. The S-wave velocity decreases toward the "Fangaia", due to the water saturation of the medium, as confirmed by geoelectric results. Since the Solfatara is a strongly heterogeneous medium, it is not possible to localize the velocity anomalies at different scales and a description of the medium through statistical parameters, such as the mean free path (MFP) and the transport mean free path (TMFP) was provided. The MFP was recovered from the ratio between coherent and incoherent intensities of the surface waves measured in different frequency bands. It decreases with frequency from about 40m at 8.5 Hz to 10m at 21.5 Hz, this behavior being typical of volcanic areas. The TMFP was measured fitting the decay of the coda of the energy at different distances. As expected it is larger than the MFP and strongly affected by inelastic attenuation of the medium. Finally, using a linear-array of 400 m crossing the explored area, we performed a beamforming analysis in order to infer the propagation properties of the first P-wave arrivals. From the complete array we selected subarrays of sources and receivers and, for all possible combinations of subarrays, we computed the spectrograms, and the P- wave velocity as a function of the subarray distance.

  5. Physical approach to quantum networks with massive particles

    NASA Astrophysics Data System (ADS)

    Andersen, Molte Emil Strange; Zinner, Nikolaj Thomas

    2018-04-01

    Assembling large-scale quantum networks is a key goal of modern physics research with applications in quantum information and computation. Quantum wires and waveguides in which massive particles propagate in tailored confinement is one promising platform for realizing a quantum network. In the literature, such networks are often treated as quantum graphs, that is, the wave functions are taken to live on graphs of one-dimensional edges meeting in vertices. Hitherto, it has been unclear what boundary conditions on the vertices produce the physical states one finds in nature. This paper treats a quantum network from a physical approach, explicitly finds the physical eigenstates and compares them to the quantum-graph description. The basic building block of a quantum network is an X-shaped potential well made by crossing two quantum wires, and we consider a massive particle in such an X well. The system is analyzed using a variational method based on an expansion into modes with fast convergence and it provides a very clear intuition for the physics of the problem. The particle is found to have a ground state that is exponentially localized to the center of the X well, and the other symmetric solutions are formed so to be orthogonal to the ground state. This is in contrast to the predictions of the conventionally used so-called Kirchoff boundary conditions in quantum graph theory that predict a different sequence of symmetric solutions that cannot be physically realized. Numerical methods have previously been the only source of information on the ground-state wave function and our results provide a different perspective with strong analytical insights. The ground-state wave function has a spatial profile that looks very similar to the shape of a solitonic solution to a nonlinear Schrödinger equation, enabling an analytical prediction of the wave number. When combining multiple X wells into a network or grid, each site supports a solitonlike localized state. These localized solutions only couple to each other and are able to jump from one site to another as if they were trapped in a discrete lattice.

  6. Log-amplitude variance and wave structure function: A new perspective for Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.B.; Ricklin, J.C.; Andrews, L.C.

    1993-04-01

    Two naturally linked pairs of nondimensional parameters are identified such that either pair, together with wavelength and path length, completely specifies the diffractive propagation environment for a lowest-order paraxial Gaussian beam. Both parameter pairs are intuitive, and within the context of locally homogeneous and isotropic turbulence they reflect the long-recognized importance of the Fresnel zone size in the behavior of Rytov propagation statistics. These parameter pairs, called, respectively, the transmitter and receiver parameters, also provide a change in perspective in the analysis of optical turbulence effects on Gaussian beams by unifying a number of behavioral traits previously observed or predicted,more » and they create an environment in which the determination of limiting interrelationships between beam forms is especially simple. The fundamental nature of the parameter pairs becomes apparent in the derived analytical expressions for the log-amplitude variance and the wave structure function. These expressions verify general optical turbulence-related characteristics predicted for Gaussian beams, provide additional insights into beam-wave behavior, and are convenient tools for beam-wave analysis. 22 refs., 10 figs., 2 tabs.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Lei, E-mail: bianlei@pku.edu.cn; Pang, Gang, E-mail: 1517191281@qq.com; Tang, Shaoqiang, E-mail: maotang@pku.edu.cn

    For the Schrödinger–Poisson system, we propose an ALmost EXact (ALEX) boundary condition to treat accurately the numerical boundaries. Being local in both space and time, the ALEX boundary conditions are demonstrated to be effective in suppressing spurious numerical reflections. Together with the Crank–Nicolson scheme, we simulate a resonant tunneling diode. The algorithm produces numerical results in excellent agreement with those in Mennemann et al. [1], yet at a much reduced complexity. Primary peaks in wave function profile appear as a consequence of quantum resonance, and should be considered in selecting the cut-off wave number for numerical simulations.

  8. A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion

    DOE PAGES

    Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.

    2017-08-08

    Here, we compare the reduced non-local electron transport model developed to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a one-dimensional hohlraum ablation problem. We find that the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced modelmore » reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region.« less

  9. Influence of the local-spin-density correlation functional on the stability of bcc ferromagnetic iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, D.; Clougherty, D.P.; MacLaren, J.M.

    1991-10-01

    The influence of local-spin-dependent correlation effects on the predicted stable ground-state phase of iron is reexamined with use of general-potential linearized augmented-plane-wave calculations. Differences in the form of the Vosko-Wilk-Nusair (VWN) local-spin-density functional used in previous studies are noted, since in previous studies significant additional approximations were made with respect to those of Vosko, Wilk, and Nusan (Can. J. Phys. 58, 1200 (1980)) and of MacLaren, Clougherty, and Albers (Phys. Rev. B 42, 3205 (1990)). While the results of previous linear muffin-tin orbital calculations using the VWN functional predict a bcc ferromagnetic ground state, the present calculations show that themore » VWN spin-correlation effects fail to stabilize a bcc ground state. Considerable sensitivity to the form of the spin interpolation is found.« less

  10. Localized waves in three-component coupled nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Chen, Yong

    2016-09-01

    We study the generalized Darboux transformation to the three-component coupled nonlinear Schrödinger equation. First- and second-order localized waves are obtained by this technique. In first-order localized wave, we get the interactional solutions between first-order rogue wave and one-dark, one-bright soliton respectively. Meanwhile, the interactional solutions between one-breather and first-order rogue wave are also given. In second-order localized wave, one-dark-one-bright soliton together with second-order rogue wave is presented in the first component, and two-bright soliton together with second-order rogue wave are gained respectively in the other two components. Besides, we observe second-order rogue wave together with one-breather in three components. Moreover, by increasing the absolute values of two free parameters, the nonlinear waves merge with each other distinctly. These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system. Project supported by the Global Change Research Program of China (Grant No. 2015CB953904), the National Natural Science Foundation of China (Grant Nos. 11275072 and 11435005), the Doctoral Program of Higher Education of China (Grant No. 20120076110024), the Network Information Physics Calculation of Basic Research Innovation Research Group of China (Grant No. 61321064), and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things, China (Grant No. ZF1213).

  11. Spherical space Bessel-Legendre-Fourier localized modes solver for electromagnetic waves.

    PubMed

    Alzahrani, Mohammed A; Gauthier, Robert C

    2015-10-05

    Maxwell's vector wave equations are solved for dielectric configurations that match the symmetry of a spherical computational domain. The electric or magnetic field components and the inverse of the dielectric profile are series expansion defined using basis functions composed of the lowest order spherical Bessel function, polar angle single index dependant Legendre polynomials and azimuthal complex exponential (BLF). The series expressions and non-traditional form of the basis functions result in an eigenvalue matrix formulation of Maxwell's equations that are relatively compact and accurately solvable on a desktop PC. The BLF matrix returns the frequencies and field profiles for steady states modes. The key steps leading to the matrix populating expressions are provided. The validity of the numerical technique is confirmed by comparing the results of computations to those published using complementary techniques.

  12. Three dimensional dust-acoustic solitary waves in an electron depleted dusty plasma with two-superthermal ion-temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borhanian, J.; Shahmansouri, M.

    2013-01-15

    A theoretical investigation is carried out to study the existence and characteristics of propagation of dust-acoustic (DA) waves in an electron-depleted dusty plasma with two-temperature ions, which are modeled by kappa distribution functions. A three-dimensional cylindrical Kadomtsev-Petviashvili equation governing evolution of small but finite amplitude DA waves is derived by means of a reductive perturbation method. The influence of physical parameters on solitary wave structure is examined. Furthermore, the energy integral equation is used to study the existence domains of the localized structures. It is found that the present model can be employed to describe the existence of positive asmore » well as negative polarity DA solitary waves by selecting special values for parameters of the system, e.g., superthermal index of cold and/or hot ions, cold to hot ion density ratio, and hot to cold ion temperature ratio. This model may be useful to understand the excitation of nonlinear DA waves in astrophysical objects.« less

  13. Slanted snaking of localized Faraday waves

    NASA Astrophysics Data System (ADS)

    Pradenas, Bastián; Araya, Isidora; Clerc, Marcel G.; Falcón, Claudio; Gandhi, Punit; Knobloch, Edgar

    2017-06-01

    We report on an experimental, theoretical, and numerical study of slanted snaking of spatially localized parametrically excited waves on the surface of a water-surfactant mixture in a Hele-Shaw cell. We demonstrate experimentally the presence of a hysteretic transition to spatially extended parametrically excited surface waves when the acceleration amplitude is varied, as well as the presence of spatially localized waves exhibiting slanted snaking. The latter extend outside the hysteresis loop. We attribute this behavior to the presence of a conserved quantity, the liquid volume trapped within the meniscus, and introduce a universal model based on symmetry arguments, which couples the wave amplitude with such a conserved quantity. The model captures both the observed slanted snaking and the presence of localized waves outside the hysteresis loop, as demonstrated by numerical integration of the model equations.

  14. Helical localized wave solutions of the scalar wave equation.

    PubMed

    Overfelt, P L

    2001-08-01

    A right-handed helical nonorthogonal coordinate system is used to determine helical localized wave solutions of the homogeneous scalar wave equation. Introducing the characteristic variables in the helical system, i.e., u = zeta - ct and v = zeta + ct, where zeta is the coordinate along the helical axis, we can use the bidirectional traveling plane wave representation and obtain sets of elementary bidirectional helical solutions to the wave equation. Not only are these sets bidirectional, i.e., based on a product of plane waves, but they may also be broken up into right-handed and left-handed solutions. The elementary helical solutions may in turn be used to create general superpositions, both Fourier and bidirectional, from which new solutions to the wave equation may be synthesized. These new solutions, based on the helical bidirectional superposition, are members of the class of localized waves. Examples of these new solutions are a helical fundamental Gaussian focus wave mode, a helical Bessel-Gauss pulse, and a helical acoustic directed energy pulse train. Some of these solutions have the interesting feature that their shape and localization properties depend not only on the wave number governing propagation along the longitudinal axis but also on the normalized helical pitch.

  15. How Accurately Does the Free Complement Wave Function of a Helium Atom Satisfy the Schroedinger Equation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2008-12-12

    The local energy defined by H{psi}/{psi} must be equal to the exact energy E at any coordinate of an atom or molecule, as long as the {psi} under consideration is exact. The discrepancy from E of this quantity is a stringent test of the accuracy of the calculated wave function. The H-square error for a normalized {psi}, defined by {sigma}{sup 2}{identical_to}<{psi}|(H-E){sup 2}|{psi}>, is also a severe test of the accuracy. Using these quantities, we have examined the accuracy of our wave function of a helium atom calculated using the free complement method that was developed to solve the Schroedinger equation.more » Together with the variational upper bound, the lower bound of the exact energy calculated using a modified Temple's formula ensured the definitely correct value of the helium fixed-nucleus ground state energy to be -2.903 724 377 034 119 598 311 159 245 194 4 a.u., which is correct to 32 digits.« less

  16. Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD

    NASA Astrophysics Data System (ADS)

    Aoki, S.

    We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.

  17. [A comparative study of the renal damage produced after the extracorporeal shock wave lithotripsy according to the lithiasis location].

    PubMed

    Cancho Gil, Ma J; Díz Rodríguez, R; Vírseda Chamorro, M; Alpuente Román, C; Cabrera Cabrera, J A; Paños Lozano, P

    2005-04-01

    The Extracorporeal shock waves lithotripsy (ESWL) is fundamental in the treatment of lithiasis. However, there are evidences that it can produce renal damage. The objective of our study is to determine the degree of affectation of the glomerular and tubular function after ESWL, and the influence of the lithiasis location on the type of renal damage. A prospective longitudinal study was carried out in 14 patients with normal renal function subjected to ESWL. We determined the basal level, and the levels at the 24 hours, at the 4th and the 10th day post ESWL of: microalbuminuria (MA) (that values the glomerular function), and N-acetyl glucosamide (NAG) and alanine aminopeptidase (AAP), (that value the tubular function). The basal levels of of MA, NAG and AAP didn't show significant differences in connection with the localization of the stones. A significant increase was observed of the three parameters only 24 hours post ESWL. No significant differences were observed between the variation of the microalbuminuria levels, AAP and NAG and the treatment in relation to the localization of the stones. It exists a glomerular and tubular damage after ESWL. This damage is not related with the pelvic or calicial location of the stones. In patient with previous normal renal function, the renal damage recovers at the 4th day post ESWL.

  18. Feature Detection and Curve Fitting Using Fast Walsh Transforms for Shock Tracking: Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2017-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. Square waves make the system well suited for detecting and representing functions with discontinuities. Given a uniform distribution of 2p cells on a one-dimensional element, it has been proven that the inner product of the Walsh Root function for group p with every polynomial of degree < or = (p - 1) across the element is identically zero. It has also been proven that the magnitude and location of a discontinuous jump, as represented by a Heaviside function, are explicitly identified by its Fast Walsh Transform (FWT) coefficients. These two proofs enable an algorithm that quickly provides a Weighted Least Squares fit to distributions across the element that include a discontinuity. The detection of a discontinuity enables analytic relations to locally describe its evolution and provide increased accuracy. Time accurate examples are provided for advection, Burgers equation, and Riemann problems (diaphragm burst) in closed tubes and de Laval nozzles. New algorithms to detect up to two C0 and/or C1 discontinuities within a single element are developed for application to the Riemann problem, in which a contact discontinuity and shock wave form after the diaphragm bursts.

  19. Nonlinear VLF Wave Physics in the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Crabtree, C. E.; Tejero, E. M.; Ganguli, G.; Mithaiwala, M.; Rudakov, L.; Hospodarsky, G. B.; Kletzing, C.

    2014-12-01

    Electromagnetic VLF waves, such as whistler mode waves, both control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering and are responsible for the energization of electrons during storms. Traditional approaches to understanding the influence of waves on trapped electrons have assumed that the wave characteristics (frequency spectrum, wave-normal angle distribution, etc.) were both stationary in time and amplitude independent from event to event. In situ data from modern satellite missions, such as the Van Allen probes, are showing that this assumption may not be justified. In addition, recent theoretical results [Crabtree et al. 2012] show that the threshold for nonlinear wave scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear wave scattering (Nonlinear Landau Damping) is an amplitude dependent mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Nonlinear scattering can alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al., 2012]. Such nonlinear wave effects can dramatically reduce electron lifetimes. Nonlinear wave dynamics such as these occur when there are more than one wave present, such a condition necessarily violates the assumption of traditional wave-normal analysis [Santolik et al., 2003] which rely on the plane wave assumption. To investigate nonlinear wave dynamics using modern in situ data we apply the maximum entropy method [Skilling and Bryan, 1984] to solve for the wave distribution function [Storey and Lefeuvre, 1979] to yield the power distribution as a function of wave-normal angle and local azimuthal angle. We have validated this technique in the NRL space chamber and applied this methodology to Van Allen probe data to demonstrate that traditional wave-normal analaysis can give misleading results when multiple waves are present.

  20. Toward the detection of gravitational waves under non-Gaussian noises I. Locally optimal statistic.

    PubMed

    Yokoyama, Jun'ichi

    2014-01-01

    After reviewing the standard hypothesis test and the matched filter technique to identify gravitational waves under Gaussian noises, we introduce two methods to deal with non-Gaussian stationary noises. We formulate the likelihood ratio function under weakly non-Gaussian noises through the Edgeworth expansion and strongly non-Gaussian noises in terms of a new method we call Gaussian mapping where the observed marginal distribution and the two-body correlation function are fully taken into account. We then apply these two approaches to Student's t-distribution which has a larger tails than Gaussian. It is shown that while both methods work well in the case the non-Gaussianity is small, only the latter method works well for highly non-Gaussian case.

  1. Diffusion approximation with polarization and resonance effects for the modelling of seismic waves in strongly scattering small-scale media

    NASA Astrophysics Data System (ADS)

    Margerin, Ludovic

    2013-01-01

    This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.

  2. On Hokusai's Great wave off Kanagawa: localization, linearity and a rogue wave in sub-Antarctic waters.

    PubMed

    Dudley, J M; Sarano, V; Dias, F

    2013-06-20

    The Hokusai woodcut entitled The great wave off Kanagawa has been interpreted as an unusually large storm wave, likely to be classed as a rogue wave, and possibly generated from nonlinear wave dynamics (J. H. E. Cartwright and H. Nakamura, Notes Rec. R. Soc. 63 , 119-135 (2009)). In this paper, we present a complementary discussion of this hypothesis, discussing in particular how linear and nonlinear mechanisms can both contribute to the emergence of rogue wave events. By making reference to the Great wave 's simultaneous transverse and longitudinal localization, we show that the purely linear mechanism of directional focusing also predicts characteristics consistent with those of the Great wave . In addition, we discuss the properties of a particular rogue wave photographed on the open ocean in sub-Antarctic waters, which shows two-dimensional localization and breaking dynamics remarkably similar to Hokusai's depiction in the woodcut.

  3. On Hokusai's Great wave off Kanagawa: localization, linearity and a rogue wave in sub-Antarctic waters

    PubMed Central

    Dudley, J. M.; Sarano, V.; Dias, F.

    2013-01-01

    The Hokusai woodcut entitled The great wave off Kanagawa has been interpreted as an unusually large storm wave, likely to be classed as a rogue wave, and possibly generated from nonlinear wave dynamics (J. H. E. Cartwright and H. Nakamura, Notes Rec. R. Soc. 63, 119–135 (2009)). In this paper, we present a complementary discussion of this hypothesis, discussing in particular how linear and nonlinear mechanisms can both contribute to the emergence of rogue wave events. By making reference to the Great wave's simultaneous transverse and longitudinal localization, we show that the purely linear mechanism of directional focusing also predicts characteristics consistent with those of the Great wave. In addition, we discuss the properties of a particular rogue wave photographed on the open ocean in sub-Antarctic waters, which shows two-dimensional localization and breaking dynamics remarkably similar to Hokusai's depiction in the woodcut. PMID:24687148

  4. Sensitivity enhancement of traveling wave MRI using free local resonators: an experimental demonstration.

    PubMed

    Zhang, Xiaoliang

    2017-04-01

    Traveling wave MR uses the far fields in signal excitation and reception, therefore its acquisition efficiency is low in contrast to the conventional near field magnetic resonance (MR). Here we show a simple and efficient method based on the local resonator to improving sensitivity of traveling wave MR technique. The proposed method utilizes a standalone or free local resonator to amplify the radio frequency magnetic fields in the interested target. The resonators have no wire connections to the MR system and thus can be conveniently placed to any place around imaging simples. A rectangular loop L/C resonator to be used as the free local resonator was tuned to the proton Larmor frequency at 7T. Traveling wave MR experiments with and without the wireless free local resonator were performed on a living rat using a 7T whole body MR scanner. The signal-to-noise ratio (SNR) or sensitivity of the images acquired was compared and evaluated. In vivo 7T imaging results show that traveling wave MR with a wireless free local resonator placed near the head of a living rat achieves at least 10-fold SNR gain over the images acquired on the same rat using conventional traveling wave MR method, i.e. imaging with no free local resonators. The proposed free local resonator technique is able to enhance the MR sensitivity and acquisition efficiency of traveling wave MR at ultrahigh fields in vivo . This method can be a simple solution to alleviating low sensitivity problem of traveling wave MRI.

  5. Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C.-R., E-mail: crchoi@kaist.ac.kr; Dokgo, K.; Min, K.-W.

    The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can bemore » applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.« less

  6. Frequency and Wavevector Dependence of the Atomic Level Stress-Stress Correlation Function in a Model Supercooled Liquid

    NASA Astrophysics Data System (ADS)

    Levashov, Valentin A.; Morris, James R.; Egami, Takeshi

    2012-02-01

    Temporal and spatial correlations among the local atomic level shear stresses were studied for a model liquid iron by molecular dynamics simulation [PRL 106,115703]. Integration over time and space of the shear stress correlation function F(r,t) yields viscosity via Green-Kubo relation. The stress correlation function in time and space F(r,t) was Fourier transformed to study the dependence on frequency, E, and wave vector, Q. The results, F(Q,E), showed damped shear stress waves propagating in the liquid for small Q at high and low temperatures. We also observed additional diffuse feature that appears as temperature is reduced below crossover temperature of potential energy landscape at relatively low frequencies at small Q. We suggest that this additional feature might be related to dynamic heterogeneity and boson peaks. We also discuss a relation between the time-scale of the stress-stress correlation function and the alpha-relaxation time of the intermediate self-scattering function S(Q,E).

  7. In situ Observations of Magnetosonic Waves Modulated by Background Plasma Density

    NASA Astrophysics Data System (ADS)

    Yu, X.; Yuan, Z.; Huang, S.; Wang, D.; Funsten, H. O.

    2017-12-01

    We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to appear relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with 'ring' distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the background plasma density, the temporal variations of local wave growth rates calculated with the observed proton ring distributions, show a remarkable agreement with those of the observed wave amplitude. Therefore, the paper provides a direct proof that background plasma densities can modulate the amplitudes of magnetosonic waves through controlling the wave growth rates.

  8. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

    PubMed

    Nakatsuji, Hiroshi

    2012-09-18

    Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement functions because they are the elements of the complete functions for the system under consideration. We extended this idea to solve the relativistic DE and applied it to the hydrogen and helium atoms, without observing any problems such as variational collapse. Thereafter, we obtained very accurate solutions of the SE for the ground and excited states of the Born-Oppenheimer (BO) and non-BO states of very small systems like He, H(2)(+), H(2), and their analogues. For larger systems, however, the overlap and Hamiltonian integrals over the complement functions are not always known mathematically (integration difficulty); therefore we formulated the local SE (LSE) method as an integral-free method. Without any integration, the LSE method gave fairly accurate energies and wave functions for small atoms and molecules. We also calculated continuous potential curves of the ground and excited states of small diatomic molecules by introducing the transferable local sampling method. Although the FC-LSE method is simple, the achievement of chemical accuracy in the absolute energy of larger systems remains time-consuming. The development of more efficient methods for the calculations of ordinary molecules would allow researchers to make these calculations more easily.

  9. The use of remote sensing and linear wave theory to model local wave energy around Alphonse Atoll, Seychelles

    NASA Astrophysics Data System (ADS)

    Hamylton, S.

    2011-12-01

    This paper demonstrates a practical step-wise method for modelling wave energy at the landscape scale using GIS and remote sensing techniques at Alphonse Atoll, Seychelles. Inputs are a map of the benthic surface (seabed) cover, a detailed bathymetric model derived from remotely sensed Compact Airborne Spectrographic Imager (CASI) data and information on regional wave heights. Incident energy at the reef crest around the atoll perimeter is calculated as a function of its deepwater value with wave parameters (significant wave height and period) hindcast in the offshore zone using the WaveWatch III application developed by the National Oceanographic and Atmospheric Administration. Energy modifications are calculated at constant intervals as waves transform over the forereef platform along a series of reef profile transects running into the atoll centre. Factors for shoaling, refraction and frictional attenuation are calculated at each interval for given changes in bathymetry and benthic coverage type and a nominal reduction in absolute energy is incorporated at the reef crest to account for wave breaking. Overall energy estimates are derived for a period of 5 years and related to spatial patterning of reef flat surface cover (sand and seagrass patches).

  10. Characterization of Viscoelastic Materials Using Group Shear Wave Speeds.

    PubMed

    Rouze, Ned C; Deng, Yufeng; Trutna, Courtney A; Palmeri, Mark L; Nightingale, Kathryn R

    2018-05-01

    Recent investigations of viscoelastic properties of materials have been performed by observing shear wave propagation following localized, impulsive excitations, and Fourier decomposing the shear wave signal to parameterize the frequency-dependent phase velocity using a material model. This paper describes a new method to characterize viscoelastic materials using group shear wave speeds , , and determined from the shear wave displacement, velocity, and acceleration signals, respectively. Materials are modeled using a two-parameter linear attenuation model with phase velocity and dispersion slope at a reference frequency of 200 Hz. Analytically calculated lookup tables are used to determine the two material parameters from pairs of measured group shear wave speeds. Green's function calculations are used to validate the analytic model. Results are reported for measurements in viscoelastic and approximately elastic phantoms and demonstrate good agreement with phase velocities measured using Fourier analysis of the measured shear wave signals. The calculated lookup tables are relatively insensitive to the excitation configuration. While many commercial shear wave elasticity imaging systems report group shear wave speeds as the measures of material stiffness, this paper demonstrates that differences , , and of group speeds are first-order measures of the viscous properties of materials.

  11. Two-state model based on the block-localized wave function method

    NASA Astrophysics Data System (ADS)

    Mo, Yirong

    2007-06-01

    The block-localized wave function (BLW) method is a variant of ab initio valence bond method but retains the efficiency of molecular orbital methods. It can derive the wave function for a diabatic (resonance) state self-consistently and is available at the Hartree-Fock (HF) and density functional theory (DFT) levels. In this work we present a two-state model based on the BLW method. Although numerous empirical and semiempirical two-state models, such as the Marcus-Hush two-state model, have been proposed to describe a chemical reaction process, the advantage of this BLW-based two-state model is that no empirical parameter is required. Important quantities such as the electronic coupling energy, structural weights of two diabatic states, and excitation energy can be uniquely derived from the energies of two diabatic states and the adiabatic state at the same HF or DFT level. Two simple examples of formamide and thioformamide in the gas phase and aqueous solution were presented and discussed. The solvation of formamide and thioformamide was studied with the combined ab initio quantum mechanical and molecular mechanical Monte Carlo simulations, together with the BLW-DFT calculations and analyses. Due to the favorable solute-solvent electrostatic interaction, the contribution of the ionic resonance structure to the ground state of formamide and thioformamide significantly increases, and for thioformamide the ionic form is even more stable than the covalent form. Thus, thioformamide in aqueous solution is essentially ionic rather than covalent. Although our two-state model in general underestimates the electronic excitation energies, it can predict relative solvatochromic shifts well. For instance, the intense π →π* transition for formamide upon solvation undergoes a redshift of 0.3eV, compared with the experimental data (0.40-0.5eV).

  12. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    NASA Astrophysics Data System (ADS)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  13. Ratchet effect in the quantum kicked rotor and its destruction by dynamical localization

    NASA Astrophysics Data System (ADS)

    Hainaut, Clément; Rançon, Adam; Clément, Jean-François; Garreau, Jean Claude; Szriftgiser, Pascal; Chicireanu, Radu; Delande, Dominique

    2018-06-01

    We study experimentally a quantum kicked rotor with broken parity symmetry, supporting a ratchet effect due to the presence of a classical accelerator mode. We show that the short-time dynamics is very well described by the classical dynamics, characterized by a strongly asymmetric momentum distribution with directed motion on one side, and an anomalous diffusion on the other. At longer times, quantum effects lead to dynamical localization, causing an asymptotic resymmetrization of the wave function.

  14. Localized basis sets for unbound electrons in nanoelectronics.

    PubMed

    Soriano, D; Jacob, D; Palacios, J J

    2008-02-21

    It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of Gaussian basis sets, commonly used in first-principles codes. The possible usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.

  15. Surface Wave Propagation on a Laterally Heterogeneous Earth

    NASA Astrophysics Data System (ADS)

    Tromp, Jeroen

    1992-01-01

    Love and Rayleigh waves propagating on the surface of the Earth exhibit path, phase and amplitude anomalies as a result of the lateral heterogeneity of the mantle. In the JWKB approximation, these anomalies can be determined by tracing surface wave trajectories, and calculating phase and amplitude anomalies along them. A time- or frequency -domain JWKB analysis yields local eigenfunctions, local dispersion relations, and conservation laws for the surface wave energy. The local dispersion relations determine the surface wave trajectories, and the energy equations determine the surface wave amplitudes. On an anisotrophic Earth model the local dispersion relation and the local vertical eigenfunctions depend explicitly on the direction of the local wavevector. Apart from the usual dynamical phase, which is the integral of the local wavevector along a raypath, there is an additional variation is phase. This additional phase, which is an analogue of the Berry phase in adiabatic quantum mechanics, vanishes in a waveguide with a local vertical two-fold symmetry axis or a local horizontal mirror plane. JWKB theory breaks down in the vicinity of caustics, where neighboring rays merge and the surface wave amplitude diverges. Based upon a potential representation of the surface wave field, a uniformly valid Maslov theory can be obtained. Surface wave trajectories are determined by a system of four ordinary differential equations which define a three-dimensional manifold in four-dimensional phase space (theta,phi,k_theta,k _phi), where theta is colatitude, phi is longitude, and k_theta and k _phi are the covariant components of the wavevector. There are no caustics in phase space; it is only when the rays in phase space are projected onto configuration space (theta,phi), the mixed spaces (k_theta,phi ) and (theta,k_phi), or onto momentum space (k_theta,k _phi), that caustics occur. The essential strategy is to employ a mixed or momentum space representation of the wavefield in the vicinity of a configuration space caustic.

  16. Improvements in Gravitational-wave Sky Localization with Expanded Networks of Interferometers

    NASA Astrophysics Data System (ADS)

    Pankow, Chris; Chase, Eve A.; Coughlin, Scott; Zevin, Michael; Kalogera, Vassiliki

    2018-02-01

    A milestone of multi-messenger astronomy has been achieved with the detection of gravitational waves from a binary neutron star merger accompanied by observations of several associated electromagnetic counterparts. Joint observations can reveal details of the engines that drive the electromagnetic and gravitational-wave emission. However, locating and identifying an electromagnetic counterpart to a gravitational-wave event is heavily reliant on localization of the source through gravitational-wave information. We explore the sky localization of a simulated set of neutron star mergers as the worldwide network of gravitational-wave detectors evolves through the next decade, performing the first such study for neutron star–black hole binary sources. Currently, three detectors are observing with additional detectors in Japan and India expected to become operational in the coming years. With three detectors, we recover a median neutron star–black hole binary sky localization of 60 deg2 at the 90% credible level. As all five detectors become operational, sources can be localized to a median of 11 deg2 on the sky.

  17. Local Earthquake P-wave Tomography at Mount St. Helens with the iMUSH Broadband Array

    NASA Astrophysics Data System (ADS)

    Ulberg, C. W.; Creager, K. C.; Moran, S. C.; Abers, G. A.; Crosbie, K.; Crosson, R. S.; Denlinger, R. P.; Thelen, W. A.; Hansen, S. M.; Schmandt, B.; Kiser, E.; Levander, A.; Bachmann, O.

    2016-12-01

    We deployed 70 broadband seismometers in the summer of 2014 to image the seismic velocity structure beneath Mount St. Helens (MSH), Washington, as part of the collaborative imaging Magma Under St. Helens (iMUSH) project. Our goal is to illuminate the MSH magmatic system by integrating all portions of the iMUSH experiment, including active- and passive-source tomography, ambient-noise tomography, seismicity, receiver functions, magnetotellurics, and petrology. The broadband array has a diameter of 100 km centered on MSH with an average station spacing of 10 km, and was deployed through summer 2016. It is augmented by dozens of permanent stations in the area. We determine P-wave arrival times and also incorporate picks from the permanent network. There were more than 250 local events during the first year of iMUSH broadband recording, which have provided over 11,000 high-quality arrival times. The iMUSH experiment included 23 active shots in 2014 that were recorded with good signal-to-noise ratios across the entire array. Direct raypaths from local earthquakes and active shots reach 15-20 km depth beneath MSH. We use the program struct3DP to iteratively invert travel times to obtain a 3-D seismic velocity model and relocate hypocenters. Travel times are computed using a 3-D eikonal-equation solver. We are expanding our analysis to include S-wave arrivals from local events. The preliminary 3-D model shows low P-wave speeds along the St. Helens seismic zone, striking NNW-SSE of MSH from near the surface to where we lose resolution at 15-20km depth. This seismic zone coincides with a sharp boundary in Moho reflectivity that has been interpreted as the eastern boundary of a serpentinized mantle wedge (Hansen et al, 2016, submitted). We speculate that the seismic zone and low wave speeds are related to fluids rising from the eastern boundary of the wedge.

  18. Rotary seal with enhanced lubrication and contaminant flushing

    DOEpatents

    Dietle, Lannie L.

    2000-01-01

    A resilient, ring shaped interference-type hydrodynamic rotary seal having waves on the lubricant side which provide increased film thickness and flushing action by creating contact pressure induced angulated restrictions formed by abrupt restrictive diverters. The angulated restrictions are defined by projecting ridges, corners at the trailing edge of the waves, or simply by use of a converging shape at the trailing edge of the waves which is more abrupt than the gently converging hydrodynamic inlet shape at the leading edge of the waves. The abrupt restrictive diverter performs two functions; a restricting function and a diverting function. The angulated restrictions cause a local film thickness restriction which produces a damming effect preventing a portion of the lubricant from leaking out of the dynamic sealing interface at the trailing edge of the wave, and results in a much thicker lubricant film thickness under the waves. This contributes to more film thickness in the remainder of the dynamic sealing interface toward the environment because film thickness tends to decay gradually rather than abruptly due to the relative stiffness of the seal material. Because of the angle of the abrupt restrictive diverter relative to the relative rotation direction, in conjunction with the restriction or damming effect, a strong diverting action is produced which pumps lubricant across the dynamic sealing interface toward the environment. The lubricant diversion is caused by the component of the rotational velocity tangent to the abrupt restrictive diverter. The component of rotational velocity normal to the abrupt restrictive diverter causes a portion of the lubricant film to be pumped past the abrupt restrictive diverter, thereby assuring adequate lubrication thereof.

  19. Criticality of the electron-nucleus cusp condition to local effective potential-energy theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Xiaoyin; Sahni, Viraht; Graduate School of the City University of New York, 360 Fifth Avenue, New York, New York 10016

    2003-01-01

    Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on themore » assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.« less

  20. Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at s N N = 2.76 TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-04-08

    We report on measurements of a charge-dependent flow using a novel three-particle correlator with ALICE in Pb-Pb collisions at the CERN Large Hadron Collider (LHC), and discuss the implications for observation of local parity violation and the chiral magnetic wave (CMW) in heavy-ion collisions. Charge-dependent flow is reported for different collision centralities as a function of the event charge asymmetry. While our results are in qualitative agreement with expectations based on the CMW, the nonzero signal observed in higher harmonics correlations indicates a possible significant background contribution. We also present results on a differential correlator, where the flow of positivemore » and negative charges is reported as a function of the mean charge of the particles and their pseudorapidity separation. We argue that this differential correlator is better suited to distinguish the differences in positive and negative charges expected due to the CMW and the background effects, such as local charge conservation coupled with strong radial and anisotropic flow.« less

  1. Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at √{sN N}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-04-01

    We report on measurements of a charge-dependent flow using a novel three-particle correlator with ALICE in Pb-Pb collisions at the CERN Large Hadron Collider (LHC), and discuss the implications for observation of local parity violation and the chiral magnetic wave (CMW) in heavy-ion collisions. Charge-dependent flow is reported for different collision centralities as a function of the event charge asymmetry. While our results are in qualitative agreement with expectations based on the CMW, the nonzero signal observed in higher harmonics correlations indicates a possible significant background contribution. We also present results on a differential correlator, where the flow of positive and negative charges is reported as a function of the mean charge of the particles and their pseudorapidity separation. We argue that this differential correlator is better suited to distinguish the differences in positive and negative charges expected due to the CMW and the background effects, such as local charge conservation coupled with strong radial and anisotropic flow.

  2. Wigner molecules in carbon-nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo; Secchi, Andrea

    2010-03-01

    The paradigm of few-electron complexes in quantum dots (QDs) relies on the ``particle-in-a-box'' idea that lowest-energy orbitals are filled according to Pauli's exclusion principle. If Coulomb repulsion is sufficiently strong to overcome the kinetic energy cost of localization, a different scenario is predicted: a ``Wigner'' molecule (WM) forms, made of electrons frozen in space according to a geometrical pattern. Despite considerable experimental effort, evidence of the WM in semiconductor QDs has been elusive so far. Here we demonstrate theoretically that WMs occur in gate-defined QDs embedded in typical semiconducting carbon nanotubes (CNTs). Their signatures must be searched ---and indeed have already been observed [Deshpande and Bockrath, Nature Phys. 4, 314 (2008)] --- in tunneling spectra. Through exact diagonalisation (ED) calculations, we unveil the inherent features of the electron molecular states. We show that, like nuclei in a usual molecule, electrons have localized wave functions and hence negligible exchange interactions. The molecular excitations are vibrations around the equilibrium positions of electrons. ED results are well reproduced by an ansatz vibrational wave function, which provides a simple theoretical model for transport experiments in ultraclean CNTs.

  3. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.

    PubMed

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-12-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.

  4. On the Mechanism of D-Wave High TC Superconductivity by the Interplay of Jahn-Teller Physics and Mott Physics

    NASA Astrophysics Data System (ADS)

    Ushio, H.; Matsuno, S.; Kamimura, H.

    2011-01-01

    In the present paper we will discuss two important roles of the interplay of Jahn-Teller physics and Mott physics. One is the small Fermi surface. The "Fermi arcs" observed in ARPES should be one of the edges of small Fermi pockets, based on the Kamimura-Suwa model (K-S model). This prediction is consistent with ARPES results by Tanaka et al. Another is the mechanism of superconductivity in cuprates. This can be explained by the interplay of strong electron-phonon interactions and local AF order. It is shown that the characteristic phase difference of wave functions between up- and down-spin carriers in the presence of the local AF order leads to the superconducting gap of dx2-y2 symmetry even in the phonon-involved mechanism.

  5. Ultrasonic nondestructive testing of composite materials using disturbed coincidence conditions

    NASA Astrophysics Data System (ADS)

    Bause, F.; Olfert, S.; Schröder, A.; Rautenberg, J.; Henning, B.; Moritzer, E.

    2012-05-01

    In this contribution we present a new method detecting changes in the composite material's acoustic behavior by analyzing disturbed coincidence conditions on plate-like test samples. The coincidence condition for an undamaged GFRP test sample has been experimentally identified using Schlieren measurements. Disturbances of this condition follow from a disturbed acoustic behavior of the test sample which is an indicator for local damages in the region inspected. An experimental probe has been realized consisting of two piezoceramic elements adhered to the nonparallel sides of an isosceles trapezoidal body made of silicone. The base angles of the trapezoidal body have been chosen such that the incident wave meets pre-measured condition of coincidence. The receiving element receives the geometric reflection of the acoustic wave scattered at the test sample's surface which corresponds to the non-coupled part of the incident wave as send by the sending element. Analyzing the transfer function or impulse response of the electro-acoustic system (transmitter, scattering at test sample, receiver), it is possible to detect local disturbances with respect to Cramer's coincidence rule. Thus, it is possible to realize a very simple probe for local ultrasonic nondestructive testing of composite materials (as well as non-composite material) which can be integrated in a small practical device and is good for small size inspection areas.

  6. Astrophysical ZeV acceleration in the relativistic jet from an accreting supermassive blackhole

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-04-01

    An accreting supermassive blackhole, the central engine of active galactic nucleus (AGN), is capable of exciting extreme amplitude Alfven waves whose wavelength (wave packet) size is characterized by its clumpiness. The pondermotive force and wakefield are driven by these Alfven waves propagating in the AGN (blazar) jet, and accelerate protons/nuclei to extreme energies beyond Zetta-electron volt (ZeV=1021 eV). Such acceleration is prompt, localized, and does not suffer from the multiple scattering/bending enveloped in the Fermi acceleration that causes excessive synchrotron radiation loss beyond 1019 eV. The production rate of ZeV cosmic rays is found to be consistent with the observed gamma-ray luminosity function of blazars and their time variabilities.

  7. Deriving inertial wave characteristics from surface drifter velocities: Frequency variability in the Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Poulain, Pierre-Marie; Luther, Douglas S.; Patzert, William C.

    1992-11-01

    Two techniques have been developed for estimating statistics of inertial oscillations from satellite-tracked drifters. These techniques overcome the difficulties inherent in estimating such statistics from data dependent upon space coordinates that are a function of time. Application of these techniques to tropical surface drifter data collected during the NORPAX, EPOCS, and TOGA programs reveals a latitude-dependent, statistically significant "blue shift" of inertial wave frequency. The latitudinal dependence of the blue shift is similar to predictions based on "global" internal wave spectral models, with a superposition of frequency shifting due to modification of the effective local inertial frequency by the presence of strongly sheared zonal mean currents within 12° of the equator.

  8. Complexiton and solitary wave solutions of the coupled nonlinear Maccari’s system using two integration schemes

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru; Nuray, Elif

    2018-01-01

    In this paper, we consider a coupled nonlinear Maccari’s system (CNMS) which describes the motion of isolated waves localized in a small part of space. There are some integration tools that are adopted to retrieve the solitary wave solutions. They are the modified F-Expansion and the generalized projective Riccati equation methods. Topological, non-topological, complexiton, singular and trigonometric function solutions are derived. A comparison between the results in this paper and the well-known results in the literature is also given. The derived structures of the obtained solutions offer a rich platform to study the nonlinear CNMS. Numerical simulation of the obtained solutions are presented with interesting figures showing the physical meaning of the solutions.

  9. Local recovery of the compressional and shear speeds from the hyperbolic DN map

    NASA Astrophysics Data System (ADS)

    Stefanov, Plamen; Uhlmann, Gunther; Vasy, Andras

    2018-01-01

    We study the isotropic elastic wave equation in a bounded domain with boundary. We show that local knowledge of the Dirichlet-to-Neumann map determines uniquely the speed of the p-wave locally if there is a strictly convex foliation with respect to it, and similarly for the s-wave speed.

  10. The best of both Reps—Diabatized Gaussians on adiabatic surfaces

    NASA Astrophysics Data System (ADS)

    Meek, Garrett A.; Levine, Benjamin G.

    2016-11-01

    When simulating nonadiabatic molecular dynamics, choosing an electronic representation requires consideration of well-known trade-offs. The uniqueness and spatially local couplings of the adiabatic representation come at the expense of an electronic wave function that changes discontinuously with nuclear motion and associated singularities in the nonadiabatic coupling matrix elements. The quasi-diabatic representation offers a smoothly varying wave function and finite couplings, but identification of a globally well-behaved quasi-diabatic representation is a system-specific challenge. In this work, we introduce the diabatized Gaussians on adiabatic surfaces (DGAS) approximation, a variant of the ab initio multiple spawning (AIMS) method that preserves the advantages of both electronic representations while avoiding their respective pitfalls. The DGAS wave function is expanded in a basis of vibronic functions that are continuous in both electronic and nuclear coordinates, but potentially discontinuous in time. Because the time-dependent Schrödinger equation contains only first-order derivatives with respect to time, singularities in the second-derivative nonadiabatic coupling terms (i.e., diagonal Born-Oppenheimer correction; DBOC) at conical intersections are rigorously absent, though singular time-derivative couplings remain. Interpolation of the electronic wave function allows the accurate prediction of population transfer probabilities even in the presence of the remaining singularities. We compare DGAS calculations of the dynamics of photoexcited ethene to AIMS calculations performed in the adiabatic representation, including the DBOC. The 28 fs excited state lifetime observed in DGAS simulations is considerably shorter than the 50 fs lifetime observed in the adiabatic simulations. The slower decay in the adiabatic representation is attributable to the large, repulsive DBOC in the neighborhood of conical intersections. These repulsive DBOC terms are artifacts of the discontinuities in the individual adiabatic vibronic basis functions and therefore cannot reflect the behavior of the exact molecular wave function, which must be continuous.

  11. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves.

    PubMed

    Samaitis, Vykintas; Mažeika, Liudas

    2017-08-08

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system.

  12. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves

    PubMed Central

    Samaitis, Vykintas; Mažeika, Liudas

    2017-01-01

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system. PMID:28786924

  13. Spatial nonuniformity of excitation-contraction coupling causes arrhythmogenic Ca2+ waves in rat cardiac muscle.

    PubMed

    Wakayama, Yuji; Miura, Masahito; Stuyvers, Bruno D; Boyden, Penelope A; ter Keurs, Henk E D J

    2005-06-24

    Ca2+ waves underlying triggered propagated contractions (TPCs) are initiated in damaged regions in cardiac muscle and cause arrhythmias. We studied Ca2+ waves underlying TPCs in rat cardiac trabeculae under experimental conditions that simulate the functional nonuniformity caused by local mechanical or ischemic local damage of myocardium. A mechanical discontinuity along the trabeculae was created by exposing the preparation to a small jet of solution with a composition that reduces excitation-contraction coupling (ECC) in myocytes within that segment. The jet solution contained either caffeine (5 mmol/L), 2,3-butanedione monoxime (BDM; 20 mmol/L), or low Ca2+ concentration ([Ca2+]; 0.2 mmol/L). Force was measured with a silicon strain gauge and sarcomere length with laser diffraction techniques in 15 trabeculae. Simultaneously, [Ca2+]i was measured locally using epifluorescence of Fura-2. The jet of solution was applied perpendicularly to a small muscle region (200 to 300 microm) at constant flow. When the jet contained caffeine, BDM, or low [Ca2+], during the stimulated twitch, muscle-twitch force decreased and the sarcomeres in the exposed segment were stretched by shortening normal regions outside the jet. Typical protocols for TPC induction (7.5 s-2.5 Hz stimulus trains at 23 degrees C; [Ca2+]o=2.0 mmol/L) reproducibly generated Ca2+ waves that arose from the border between shortening and stretched regions. Such Ca2+ waves started during force-relaxation of the last stimulated twitch of the train and propagated (0.2 to 2.8 mm/sec) into segments both inside and outside of the jet. Arrhythmias, in the form of nondriven rhythmic activity, were induced when the amplitude of the Ca2+-wave was increased by raising [Ca2+]o. Arrhythmias disappeared rapidly when uniformity of ECC throughout the muscle was restored by turning the jet off. These results show, for the first time, that nonuniform ECC can cause Ca2+ waves underlying TPCs and suggest that Ca2+ dissociated from myofilaments plays an important role in the initiation of Ca2+ waves.

  14. Computing frequency by using generalized zero-crossing applied to intrinsic mode functions

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2006-01-01

    This invention presents a method for computing Instantaneous Frequency by applying Empirical Mode Decomposition to a signal and using Generalized Zero-Crossing (GZC) and Extrema Sifting. The GZC approach is the most direct, local, and also the most accurate in the mean. Furthermore, this approach will also give a statistical measure of the scattering of the frequency value. For most practical applications, this mean frequency localized down to quarter of a wave period is already a well-accepted result. As this method physically measures the period, or part of it, the values obtained can serve as the best local mean over the period to which it applies. Through Extrema Sifting, instead of the cubic spline fitting, this invention constructs the upper envelope and the lower envelope by connecting local maxima points and local minima points of the signal with straight lines, respectively, when extracting a collection of Intrinsic Mode Functions (IMFs) from a signal under consideration.

  15. Localization and mobility edges in one-dimensional deterministic potentials

    NASA Astrophysics Data System (ADS)

    Tong, Peiqing

    1994-10-01

    In this paper, we study the localization properties of the wave function of a one-dimensional tight-binding electron moving in an asymptotic periodic potential, Vn=λ cos(2πQn+παnν), where n is the site index and 0<ν<1. For Q rational, the electronic energy band consists of many subbands, and the number of subbands is determined by Q. For λ<2, there are two mobility edges where the eigenstates at the subband center are all extended, whereas the subband-edge states are all localized in every subband. We develop some heuristic arguments to calculate exactly the mobility edges for this model and carry out numerical work to study the localization properties of the model. Our theoretical results are essentially in exact agreement with the numerical results. We calculate the critical exponents δ and β at mobility edges. We also study the nature of the localized, extended eigenstates and mobility edges of this system as a function of λ, α, and ν.

  16. Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair; McCully, Curtis; Hosseinzadeh, Griffin; Howell, D. Andrew; Vasylyev, Sergiy; Poznanski, Dovi; Zaltzman, Michael; Maoz, Dan; Singer, Leo; Valenti, Stefano; Kasen, Daniel; Barnes, Jennifer; Piran, Tsvi; Fong, Wen-fai

    2017-10-01

    We present an implementation of the Gehrels et al. galaxy-targeted strategy for gravitational-wave (GW) follow-up using the Las Cumbres Observatory global network of telescopes. We use the Galaxy List for the Advanced Detector Era (GLADE) galaxy catalog, which we show is complete (with respect to a Schechter function) out to ˜300 Mpc for galaxies brighter than the median Schechter function galaxy luminosity. We use a prioritization algorithm to select the galaxies with the highest chance of containing the counterpart given their luminosity, their position, and their distance relative to a GW localization, and in which we are most likely to detect a counterpart given its expected brightness compared to the limiting magnitude of our telescopes. This algorithm can be easily adapted to any expected transient parameters and telescopes. We implemented this strategy during the second Advanced Detector Observing Run (O2) and followed the black hole merger GW170814 and the neutron star merger GW170817. For the latter, we identified an optical kilonova/macronova counterpart thanks to our algorithm selecting the correct host galaxy fifth in its ranked list among the 182 galaxies we identified in the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo localization. This also allowed us to obtain some of the earliest observations of the first optical transient ever triggered by a GW detection (as presented in a companion paper).

  17. Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcavi, Iair; McCully, Curtis; Hosseinzadeh, Griffin

    We present an implementation of the Gehrels et al. galaxy-targeted strategy for gravitational-wave (GW) follow-up using the Las Cumbres Observatory global network of telescopes. We use the Galaxy List for the Advanced Detector Era (GLADE) galaxy catalog, which we show is complete (with respect to a Schechter function) out to ∼300 Mpc for galaxies brighter than the median Schechter function galaxy luminosity. We use a prioritization algorithm to select the galaxies with the highest chance of containing the counterpart given their luminosity, their position, and their distance relative to a GW localization, and in which we are most likely tomore » detect a counterpart given its expected brightness compared to the limiting magnitude of our telescopes. This algorithm can be easily adapted to any expected transient parameters and telescopes. We implemented this strategy during the second Advanced Detector Observing Run (O2) and followed the black hole merger GW170814 and the neutron star merger GW170817. For the latter, we identified an optical kilonova/macronova counterpart thanks to our algorithm selecting the correct host galaxy fifth in its ranked list among the 182 galaxies we identified in the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo localization. This also allowed us to obtain some of the earliest observations of the first optical transient ever triggered by a GW detection (as presented in a companion paper).« less

  18. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  19. Waveform inversion of acoustic waves for explosion yield estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Rodgers, A. J.

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  20. Modeling of Outer Radiation Belt Electron Scattering due to Spatial and Spectral Properties of ULF Waves

    NASA Astrophysics Data System (ADS)

    Tornquist, Mattias

    The research presented in this thesis covers wave-particle interactions for relativistic (0.5-10 MeV) electrons in Earth's outer radiation belt (r = 3-7 RE, or L-shells: L = 3-7) interacting with magnetospheric Pc-5 (ULF) waves. This dissertation focuses on ideal models for short and long term electron energy and radial position scattering caused by interactions with ULF waves. We use test particle simulations to investigate these wave-particle interactions with ideal wave and magnetic dipole fields. We demonstrate that the wave-particle phase can cause various patterns in phase space trajectories, i.e. local acceleration, and that for a global electron population, for all initial conditions accounted for, has a negligible net energy scattering. Working with GSM polar coordinates, the relevant wave field components are EL, Ephi and Bz, where we find that the maximum energy scattering is 3-10 times more effective for Ephi compared to EL in a magnetic dipole field with a realistic dayside compression amplitude. We also evaluate electron interactions with two coexisting waves for a set of small frequency separations and phases, where it is confirmed that multi-resonant transport is possible for overlapping resonances in phase space when the Chirikov criterion is met (stochasticity parameter K = 1). The electron energy scattering enhances with decreasing frequency separation, i.e. increasing K, and is also dependent on the phases of the waves. The global acceleration is non-zero, can be onset in about 1 hour and last for > 4 hours. The adiabatic wave-particle interaction discussed up to this point can be regarded as short-term scattering ( tau ˜ hours ). When the physical problem extends to longer time scales (tau ˜ days ) the process ceases to be adiabatic due to the introduction of stochastic element in the system and becomes a diffusive process. We show that any mode in a broadband spectrum can contribute to the total diffusion rate for a particular drift frequency within the spectral band via dynamic phases. Each mode contributes maximally at a phase reset frequency fr = 2.63fk, where fk is the mode frequency. We experiment with electron diffusion due to interaction with wave broadband spectra in MLT sectors and find the phase reset effect being strongest when there is no azimuthal wave vector (msec = 0) within the sector. DLL rapidly coheres to the local PSD as the wave number increases and, for example, at msec = 1.00+/-0.25 the effect of phase resets is only 10-30% as strong as for msec = 0. Since phase resets depend on particle drift frequencies when MLT sectors are involved, a consequence is that DLL must adjust as a function of L-shell as well. For example, from the local PSD as the sole contributor to diffusion Schulz and Lanzerotte (1979) has shown that DLL ˜ L6 , but we prove that the function becomes DLL ˜ L5 with some variations due to fd and MLT sector width. The final part of this dissertation evaluates a pre storm commencement event on November 7, 2004, when Earth's magnetopause was struck by a high-speed solar wind with a mostly northward component of interplanetary magnetic field. We obtained a global MHD field simulated by the OpenGGC model for the interval 17:00-18:40 in universal time from NASA's Community Coordinated Modeling Center. Global distribution plots of the electric and magnetic field PSD reveal strong ULF waves spanning the whole dayside sector. There are distinct electric field modes at approximately 0.9, 2.3 and 3.7-6.3 mHz within the dayside sector, which we then used in test-particle simulations and the variance calculations in order to evaluate the diffusion coefficients. To ensure diffusion by sufficient stochasticity, we run the event by repeating the interval 10 times in series for a total duration of 12 hours. For the wave electric fields, the predicted diffusion coefficient due to local PSD matches the outcome from simulated electron scattering at 0.9 and 2.3 mHz. The diffusion due to the wider frequency band at 3.7-6.3 mHz does not fit the PSD profile alone, and requires phase resets in non-resonant modes within the spectrum to yield an agreement between the calculations and the simulations. Furthermore, only msec = 1 provides the correct solution. We have thus demonstrated the importance in including both the MLT sector width and wave number as additional significant factors apart from the local PSD in determining the diffusion coefficient for a realistic wave field. (Abstract shortened by UMI.).

  1. Alfvén wave interactions in the solar wind

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.

    2012-11-01

    Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.

  2. Adaptation of the projector-augmented-wave formalism to the treatment of orbital-dependent exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Holzwarth, N. A. W.

    2011-10-01

    This paper presents the formulation and numerical implementation of a self-consistent treatment of orbital-dependent exchange-correlation functionals within the projector-augmented-wave method of Blöchl [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.50.17953 50, 17953 (1994)] for electronic structure calculations. The methodology is illustrated with binding energy curves for C in the diamond structure and LiF in the rock salt structure, by comparing results from the Hartree-Fock (HF) formalism and the optimized effective potential formalism in the so-called KLI approximation [Krieger, Li, and Iafrate, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.45.101 45, 101 (1992)] with those of the local density approximation. While the work here uses pure Fock exchange only, the formalism can be extended to treat orbital-dependent functionals more generally.

  3. Critical Role of the Exchange Interaction for the Electronic Structure and Charge-Density-Wave Formation in TiSe2

    NASA Astrophysics Data System (ADS)

    Hellgren, Maria; Baima, Jacopo; Bianco, Raffaello; Calandra, Matteo; Mauri, Francesco; Wirtz, Ludger

    2017-10-01

    We show that the inclusion of screened exchange via hybrid functionals provides a unified description of the electronic and vibrational properties of TiSe2 . In contrast to local approximations in density functional theory, the explicit inclusion of exact, nonlocal exchange captures the effects of the electron-electron interaction needed to both separate the Ti -d states from the Se -p states and stabilize the charge-density-wave (CDW) (or low-T ) phase through the formation of a p -d hybridized state. We further show that this leads to an enhanced electron-phonon coupling that can drive the transition even if a small gap opens in the high-T phase. Finally, we demonstrate that the hybrid functionals can generate a CDW phase where the electronic bands, the geometry, and the phonon frequencies are in agreement with experiments.

  4. Theory of charge density wave depinning by electromechanical effect

    NASA Astrophysics Data System (ADS)

    Quémerais, P.

    2017-03-01

    We discuss the first theory for the depinning of low-dimensional, incommensurate, charge density waves (CDWs) in the strong electron-phonon (e-p) regime. Arguing that most real CDWs systems invariably develop a gigantic dielectric constant (GDC) at very low frequencies, we propose an electromechanical mechanism which is based on a local field effect. At zero electric field and large enough e-p coupling the structures are naturally pinned by the lattice due to its discreteness, and develop modulation functions which are characterized by discontinuities. When the electric field is turned on, we show that it exists a finite threshold value for the electric field above which the discontinuities of the modulation functions vanish due to CDW deformation. The CDW is then free to move. The signature of this pinning/depinning transition as a function of the increasing electric field can be directly observed in the phonon spectrum by using inelastic neutrons or X-rays experiments.

  5. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. Part I. Application of the Huzinaga equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.

  6. Ten reasons why a thermalized system cannot be described by a many-particle wave function

    NASA Astrophysics Data System (ADS)

    Drossel, Barbara

    2017-05-01

    It is widely believed that the underlying reality behind statistical mechanics is a deterministic and unitary time evolution of a many-particle wave function, even though this is in conflict with the irreversible, stochastic nature of statistical mechanics. The usual attempts to resolve this conflict for instance by appealing to decoherence or eigenstate thermalization are riddled with problems. This paper considers theoretical physics of thermalized systems as it is done in practice and shows that all approaches to thermalized systems presuppose in some form limits to linear superposition and deterministic time evolution. These considerations include, among others, the classical limit, extensivity, the concepts of entropy and equilibrium, and symmetry breaking in phase transitions and quantum measurement. As a conclusion, the paper suggests that the irreversibility and stochasticity of statistical mechanics should be taken as a real property of nature. It follows that a gas of a macroscopic number N of atoms in thermal equilibrium is best represented by a collection of N wave packets of a size of the order of the thermal de Broglie wave length, which behave quantum mechanically below this scale but classically sufficiently far beyond this scale. In particular, these wave packets must localize again after scattering events, which requires stochasticity and indicates a connection to the measurement process.

  7. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  8. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  9. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGES

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  10. A novel cooperative localization algorithm using enhanced particle filter technique in maritime search and rescue wireless sensor network.

    PubMed

    Wu, Huafeng; Mei, Xiaojun; Chen, Xinqiang; Li, Junjun; Wang, Jun; Mohapatra, Prasant

    2018-07-01

    Maritime search and rescue (MSR) play a significant role in Safety of Life at Sea (SOLAS). However, it suffers from scenarios that the measurement information is inaccurate due to wave shadow effect when utilizing wireless Sensor Network (WSN) technology in MSR. In this paper, we develop a Novel Cooperative Localization Algorithm (NCLA) in MSR by using an enhanced particle filter method to reduce measurement errors on observation model caused by wave shadow effect. First, we take into account the mobility of nodes at sea to develop a motion model-Lagrangian model. Furthermore, we introduce both state model and observation model to constitute a system model for particle filter (PF). To address the impact of the wave shadow effect on the observation model, we develop an optimal parameter derived by Kullback-Leibler divergence (KLD) to mitigate the error. After the optimal parameter is acquired, an improved likelihood function is presented. Finally, the estimated position is acquired. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Localization of ultra-low frequency waves in multi-ion plasmas of the planetary magnetosphere

    DOE PAGES

    Kim, Eun -Hwa; Johnson, Jay R.; Lee, Dong -Hun

    2015-01-01

    By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Lastly, our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH wavesmore » can be localized in different locations along the field line.« less

  12. The Role of Localized Compressional Ultra-low Frequency Waves in Energetic Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Rae, I. Jonathan; Murphy, Kyle R.; Watt, Clare E. J.; Halford, Alexa J.; Mann, Ian R.; Ozeke, Louis G.; Sibeck, David G.; Clilverd, Mark A.; Rodger, Craig J.; Degeling, Alex W.; Forsyth, Colin; Singer, Howard J.

    2018-03-01

    Typically, ultra-low frequency (ULF) waves have historically been invoked for radial diffusive transport leading to acceleration and loss of outer radiation belt electrons. At higher frequencies, very low frequency waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere of radiation belt electrons. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to a direct modulation of the loss cone via localized compressional ULF waves. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity, which greatly exceeds the change in pitch angle through conservation of the first and second adiabatic invariants. The precipitation response can be a complex interplay between electron energy, the localization of the waves, the shape of the phase space density profile at low pitch angles, ionospheric decay time scales, and the time dependence of the electron source; we show that two pivotal components not usually considered are localized ULF wave fields and ionospheric decay time scales. We conclude that enhanced precipitation driven by compressional ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm times.

  13. The point-characteristic function, wavefronts, and caustic of a spherical wave refracted by an arbitrary smooth surface.

    PubMed

    Marciano-Melchor, Magdalena; Navarro-Morales, Esperanza; Román-Hernández, Edwin; Santiago-Santiago, José Guadalupe; Silva-Ortigoza, Gilberto; Silva-Ortigoza, Ramón; Suárez-Xique, Román

    2012-06-01

    The aim of this paper is to obtain expressions for the k-function, the wavefront train, and the caustic associated with the light rays refracted by an arbitrary smooth surface after being emitted by a point light source located at an arbitrary position in a three-dimensional homogeneous optical medium. The general results are applied to a parabolic refracting surface. For this case, we find that when the point light source is off the optical axis, the caustic locally has singularities of the hyperbolic umbilic type, while the refracted wavefront, at the caustic region, locally has singularities of the cusp ridge and swallowtail types.

  14. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    USGS Publications Warehouse

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).

  15. Resonance fluorescence microscopy via three-dimensional atom localization

    NASA Astrophysics Data System (ADS)

    Panchadhyayee, Pradipta; Dutta, Bibhas Kumar; Das, Nityananda; Mahapatra, Prasanta Kumar

    2018-02-01

    A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman-Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement.

  16. Vibration band gaps for elastic metamaterial rods using wave finite element method

    NASA Astrophysics Data System (ADS)

    Nobrega, E. D.; Gautier, F.; Pelat, A.; Dos Santos, J. M. C.

    2016-10-01

    Band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators are investigated. New techniques to analyze metamaterial systems are using a combination of analytical or numerical method with wave propagation. One of them, called here wave spectral element method (WSEM), consists of combining the spectral element method (SEM) with Floquet-Bloch's theorem. A modern methodology called wave finite element method (WFEM), developed to calculate dynamic behavior in periodic acoustic and structural systems, utilizes a similar approach where SEM is substituted by the conventional finite element method (FEM). In this paper, it is proposed to use WFEM to calculate band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators of multi-degree-of-freedom (M-DOF). Simulated examples with band gaps generated by Bragg scattering and local resonators are calculated by WFEM and verified with WSEM, which is used as a reference method. Results are presented in the form of attenuation constant, vibration transmittance and frequency response function (FRF). For all cases, WFEM and WSEM results are in agreement, provided that the number of elements used in WFEM is sufficient to convergence. An experimental test was conducted with a real elastic metamaterial rod, manufactured with plastic in a 3D printer, without local resonance-type effect. The experimental results for the metamaterial rod with band gaps generated by Bragg scattering are compared with the simulated ones. Both numerical methods (WSEM and WFEM) can localize the band gap position and width very close to the experimental results. A hybrid approach combining WFEM with the commercial finite element software ANSYS is proposed to model complex metamaterial systems. Two examples illustrating its efficiency and accuracy to model an elastic metamaterial rod unit-cell using 1D simple rod element and 3D solid element are demonstrated and the results present good approximation to the experimental data.

  17. Seasonality of P wave microseisms from NCF-based beamforming using ChinArray

    NASA Astrophysics Data System (ADS)

    Wang, Weitao; Gerstoft, Peter; Wang, Baoshan

    2018-06-01

    Teleseismic P wave microseisms produce interference signals with high apparent velocity in noise cross-correlation functions (NCFs). Sources of P wave microseisms can be located with NCFs from seismic arrays. Using the vertical-vertical component NCFs from a large-aperture array in southwestern China (ChinArray), we studied the P wave source locations and their seasonality of microseisms at two period bands (8-12 and 4-8 s) with an NCF-based beamforming method. The sources of P, PP and PKPbc waves are located. The ambiguity between P and PP source locations is analysed using averaged significant ocean wave height and sea surface pressure as constraints. The results indicate that the persistent P wave sources are mainly located in the deep oceans such as the North Atlantic, North Pacific and Southern Ocean, in agreement with previous studies. The Gulf of Alaska is found to generate P waves favouring the 8-12 s period band. The seasonality of P wave sources is consistent with the hemispheric storm pattern, which is stronger in local winter. Using the identified sources, arrival times of the interference signals are predicted and agree well with observations. The interference signals exhibit seasonal variation, indicating that body wave microseisms in southwestern China are from multiple seasonal sources.

  18. Kinematic parameters of internal waves of the second mode in the South China Sea

    NASA Astrophysics Data System (ADS)

    Kurkina, Oxana; Talipova, Tatyana; Soomere, Tarmo; Giniyatullin, Ayrat; Kurkin, Andrey

    2017-10-01

    Spatial distributions of the main properties of the mode function and kinematic and non-linear parameters of internal waves of the second mode are derived for the South China Sea for typical summer conditions in July. The calculations are based on the Generalized Digital Environmental Model (GDEM) climatology of hydrological variables, from which the local stratification is evaluated. The focus is on the phase speed of long internal waves and the coefficients at the dispersive, quadratic and cubic terms of the weakly non-linear Gardner model. Spatial distributions of these parameters, except for the coefficient at the cubic term, are qualitatively similar for waves of both modes. The dispersive term of Gardner's equation and phase speed for internal waves of the second mode are about a quarter and half, respectively, of those for waves of the first mode. Similarly to the waves of the first mode, the coefficients at the quadratic and cubic terms of Gardner's equation are practically independent of water depth. In contrast to the waves of the first mode, for waves of the second mode the quadratic term is mostly negative. The results can serve as a basis for expressing estimates of the expected parameters of internal waves for the South China Sea.

  19. Amplitude-phase characteristics of electromagnetic fields diffracted by a hole in a thin film with realistic optical properties

    NASA Astrophysics Data System (ADS)

    Dorofeyev, Illarion

    2009-03-01

    Characteristics of a quasi-spherical wave front of an electromagnetic field diffracted by a subwavelength hole in a thin film with real optical properties are studied. Related diffraction problem is solved in general by use of the scalar and vector Green's theorems and related Green's function of a boundary-value problem. Local phase deviations of a diffracted wave front from an ideal spherical front are calculated. Diffracted patterns are calculated for the coherent incident fields in case of holes array in a screen of perfect conductivity.

  20. Observation of Noise Correlated by the Hawking Effect in a Water Tank.

    PubMed

    Euvé, L-P; Michel, F; Parentani, R; Philbin, T G; Rousseaux, G

    2016-09-16

    We measured the power spectrum and two-point correlation function for the randomly fluctuating free surface on the downstream side of a stationary flow with a maximum Froude number F_{max}≈0.85 reached above a localized obstacle. On such a flow the scattering of incident long wavelength modes is analogous to that responsible for black hole radiation (the Hawking effect). Our measurements of the noise show a clear correlation between pairs of modes of opposite energies. We also measure the scattering coefficients by applying the same analysis of correlations to waves produced by a wave maker.

  1. A statistical study of EMIC waves observed by Cluster: 1. Wave properties

    NASA Astrophysics Data System (ADS)

    Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.

    2015-07-01

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10 years (2001-2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  2. Propagation of Gaussian wave packets in complex media and application to fracture characterization

    NASA Astrophysics Data System (ADS)

    Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu

    2017-08-01

    Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model. For a layered medium containing fractures, our method can correctly recover the fracture density even with an inaccurate velocity model.

  3. Toward the detection of gravitational waves under non-Gaussian noises I. Locally optimal statistic

    PubMed Central

    YOKOYAMA, Jun’ichi

    2014-01-01

    After reviewing the standard hypothesis test and the matched filter technique to identify gravitational waves under Gaussian noises, we introduce two methods to deal with non-Gaussian stationary noises. We formulate the likelihood ratio function under weakly non-Gaussian noises through the Edgeworth expansion and strongly non-Gaussian noises in terms of a new method we call Gaussian mapping where the observed marginal distribution and the two-body correlation function are fully taken into account. We then apply these two approaches to Student’s t-distribution which has a larger tails than Gaussian. It is shown that while both methods work well in the case the non-Gaussianity is small, only the latter method works well for highly non-Gaussian case. PMID:25504231

  4. Discrete transparent boundary conditions for the mixed KDV-BBM equation

    NASA Astrophysics Data System (ADS)

    Besse, Christophe; Noble, Pascal; Sanchez, David

    2017-09-01

    In this paper, we consider artificial boundary conditions for the linearized mixed Korteweg-de Vries (KDV) and Benjamin-Bona-Mahoney (BBM) equation which models water waves in the small amplitude, large wavelength regime. Continuous (respectively discrete) artificial boundary conditions involve non local operators in time which in turn requires to compute time convolutions and invert the Laplace transform of an analytic function (respectively the Z-transform of an holomorphic function). In this paper, we propose a new, stable and fairly general strategy to carry out this crucial step in the design of transparent boundary conditions. For large time simulations, we also introduce a methodology based on the asymptotic expansion of coefficients involved in exact direct transparent boundary conditions. We illustrate the accuracy of our methods for Gaussian and wave packets initial data.

  5. Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization

    NASA Astrophysics Data System (ADS)

    Kitano, Ryuichiro; Li, Tianjun

    2003-06-01

    A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group.

  6. Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Mcentire, R. W.; Lui, A. T. Y.; Potemra, T. A.

    1990-01-01

    The AMPTE CCE spacecraft observed a transverse Pc 5 magnetic pulsation (period of about 200 s) at 2155-2310 UT on November 20, 1985, at a radial distance of 5.7 - 7.0 earth radii, at a magnetic latitude of 1.2 - 19 deg, and near 1300 magnetic local time. The magnetic pulsation exhibits properties consistent with a standing Alfven wave with a second-harmonic standing structure along the ambient magnetic field. The amplitude and the phase of the flux pulsation are found to be a function of the particle detector look direction and the particle energy. The observed energy dependence of the shift is interpreted as the result of a drift-bounce resonance of the ions with the wave. From this interpretation it follows that the wave propagated westward with an azimuthal wave number of approximately 100. Thus the study demonstrates that particle data can be useful for determining the spatial structure of some types of ULF waves.

  7. Quantitative modeling of coupled piezo-elastodynamic behavior of piezoelectric actuators bonded to an elastic medium for structural health monitoring: a review.

    PubMed

    Huang, Guoliang; Song, Fei; Wang, Xiaodong

    2010-01-01

    Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized.

  8. A laboratory study of the electromagnetic bias of rough surface scattering by water waves

    NASA Technical Reports Server (NTRS)

    Parsons, Chester L.; Miller, Lee S.

    1990-01-01

    The design, development, and use of a focused-beam radar to measure the electromagnetic bias introduced by the scattering of radar waves by a roughened water surface are discussed. The bias measurements were made over wide ranges of environmental conditions in a wavetank laboratory. Wave-elevation data were provided by standard laboratory capacitance probes. Backscattered radar power measurements coincident in time and space with the elevation data were produced by the radar. The two data sets are histogrammed to produce probability density functions for elevation and radar reflectivity, from which the electromagnetic bias is computed. The experimental results demonstrate that the electromagnetic bias is quite variable over the wide range of environmental conditions that can be produced in the laboratory. The data suggest that the bias is dependent upon the local wind field and on the amplitude and frequency of any background wave field that is present.

  9. Joint Inversion of Earthquake Source Parameters with local and teleseismic body waves

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ni, S.; Wang, Z.

    2011-12-01

    In the classical source parameter inversion algorithm of CAP (Cut and Paste method, by Zhao and Helmberger), waveform data at near distances (typically less than 500km) are partitioned into Pnl and surface waves to account for uncertainties in the crustal models and different amplitude weight of body and surface waves. The classical CAP algorithms have proven effective for resolving source parameters (focal mechanisms, depth and moment) for earthquakes well recorded on relatively dense seismic network. However for regions covered with sparse stations, it is challenging to achieve precise source parameters . In this case, a moderate earthquake of ~M6 is usually recorded on only one or two local stations with epicentral distances less than 500 km. Fortunately, an earthquake of ~M6 can be well recorded on global seismic networks. Since the ray paths for teleseismic and local body waves sample different portions of the focal sphere, combination of teleseismic and local body wave data helps constrain source parameters better. Here we present a new CAP mothod (CAPjoint), which emploits both teleseismic body waveforms (P and SH waves) and local waveforms (Pnl, Rayleigh and Love waves) to determine source parameters. For an earthquake in Nevada that is well recorded with dense local network (USArray stations), we compare the results from CAPjoint with those from the traditional CAP method involving only of local waveforms , and explore the efficiency with bootstraping statistics to prove the results derived by CAPjoint are stable and reliable. Even with one local station included in joint inversion, accuracy of source parameters such as moment and strike can be much better improved.

  10. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    NASA Technical Reports Server (NTRS)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  11. Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations.

    PubMed

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong; Chen, Yong

    2017-04-01

    We investigate the defocusing coupled nonlinear Schrödinger equations from a 3×3 Lax pair. The Darboux transformations with the nonzero plane-wave solutions are presented to derive the newly localized wave solutions including dark-dark and bright-dark solitons, breather-breather solutions, and different types of new vector rogue wave solutions, as well as interactions between distinct types of localized wave solutions. Moreover, we analyze these solutions by means of parameters modulation. Finally, the perturbed wave propagations of some obtained solutions are explored by means of systematic simulations, which demonstrates that nearly stable and strongly unstable solutions. Our research results could constitute a significant contribution to explore the distinct nonlinear waves (e.g., dark solitons, breather solutions, and rogue wave solutions) dynamics of the coupled system in related fields such as nonlinear optics, plasma physics, oceanography, and Bose-Einstein condensates.

  12. Extracorporeal shock wave therapy without local anesthesia for chronic lateral epicondylitis.

    PubMed

    Pettrone, Frank A; McCall, Brian R

    2005-06-01

    The use of extracorporeal shock wave therapy for the treatment of lateral epicondylitis is controversial. The purpose of this study was to evaluate the use of extracorporeal shock wave therapy without local anesthesia to treat chronic lateral epicondylitis. One hundred and fourteen patients with a minimum six-month history of lateral epicondylitis that was unresponsive to conventional therapy were randomized into double-blind active treatment and placebo groups. The protocol consisted of three weekly treatments of either low-dose shock wave therapy without anesthetic or a sham treatment. Patients had a physical examination, including provocation testing and dynamometry, at one, four, eight, and twelve weeks and at six and twelve months after treatment. Radiographs, laboratory studies, and electrocardiograms were also evaluated prior to participation and at twelve weeks. A visual analog scale was used to evaluate pain, and an upper extremity functional scale was used to assess function. Crossover to active treatment was initiated for nonresponsive patients who had received the placebo and met the inclusion criteria after twelve weeks. A total of 108 of the 114 randomized patients completed all treatments and the twelve weeks of follow-up required by the protocol. Sixty-one patients completed one year of follow-up, whereas thirty-four patients crossed over to receive active treatment. A significant difference (p = 0.001) in pain reduction was observed at twelve weeks in the intent-to-treat cohort, with an improvement in the pain score of at least 50% seen in 61% (thirty-four) of the fifty-six patients in the active treatment group who were treated according to protocol compared with 29% (seventeen) of the fifty-eight subjects in the placebo group. This improvement persisted in those followed to one year. Functional activity scores, activity-specific evaluation, and the overall impression of the disease state all showed significant improvement as well (p < 0.05). Crossover patients also showed significant improvement after twelve weeks of active treatment, with 56% (nineteen of thirty-four) achieving an improvement in the pain score of at least 50% (p < 0.0001). These results demonstrate that low-dose shock wave therapy without anesthetic is a safe and effective treatment for chronic lateral epicondylitis.

  13. Local Upper Mantle Upwelling beneath New England: Evidence from Seismic Anisotropy.

    NASA Astrophysics Data System (ADS)

    Levin, V. L.; Long, M. D.; Lopez, I.; Li, Y.; Skryzalin, P. A.

    2017-12-01

    The upper mantle beneath eastern North America contains regions where seismic wave speed is significantly reduced. As they cut across the trend of the Appalachian terranes, these anomalies likely post-date the Paleozoic assembly of Pangea. Most prominent of them, the North Appalachian Anomaly (NAA), has been alternatively explained by the localized disruption of lithospheric fabric, the passage of the Great Meteor Hot Spot, and the current local upwelling of the asthenosphere. Comprehensive mapping of shear wave splitting identified a local perturbation of an otherwise uniform regional pattern, with no apparent splitting occurring at a site within the NAA. To evaluate the reality of this apparent localized disruption in the anisotropic fabric of the upper mantle beneath northeastern North America we used observations of shear wave splitting from a set of long-running observatories not included in previous studies. Three methods of evaluating shear wave splitting (rotation-correlation, minimization of the transverse component, and the splitting intensity) yield complementary results. We show that splitting of core-refracted shear waves within the outline of the NAA is significantly weaker than towards its edges and beyond them (Figure 1). Average fast orientations are close to the absolute plate motion in the hot-spot reference frame, thus we can attribute a large fraction of this signal to the coherently sheared sub-lithospheric upper mantle. A decrease in average delay we observe, from 1 s outside the NAA to under 0.2 s within it, translates into a reduction of the vertical extent of the sheared layer from 130 km to 16 km (assuming 4% anisotropy), or alternatively into a weakening of the azimuthal anisotropy from 5% to 0.6% (assuming a 100 km thick layer). The splitting reduction within the NAA is consistent with a localized change in anisotropic fabric that would be expected in case of geologically recent sub-vertical flow overprinting the broadly uniform upper mantle fabric detected throughout the region. Figure 1. Splitting intensity (red circles) plotted over best-fitting sinusoidal functions (blue, parameters in upper right) and predictions based on average delays and fast polarizations (green, parameters in upper left). Outlines of the NAA at 200 km depth from tomographic studies using Earthscope data.

  14. Site-occupation embedding theory using Bethe ansatz local density approximations

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel

    2018-06-01

    Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.

  15. Bounds on quantum collapse models from matter-wave interferometry: calculational details

    NASA Astrophysics Data System (ADS)

    Toroš, Marko; Bassi, Angelo

    2018-03-01

    We present a simple derivation of the interference pattern in matter-wave interferometry predicted by a class of quantum master equations. We apply the obtained formulae to the following collapse models: the Ghirardi-Rimini-Weber (GRW) model, the continuous spontaneous localization (CSL) model together with its dissipative (dCSL) and non-Markovian generalizations (cCSL), the quantum mechanics with universal position localization (QMUPL), and the Diósi-Penrose (DP) model. We discuss the separability of the dynamics of the collapse models along the three spatial directions, the validity of the paraxial approximation, and the amplification mechanism. We obtain analytical expressions both in the far field and near field limits. These results agree with those already derived in the Wigner function formalism. We compare the theoretical predictions with the experimental data from two recent matter-wave experiments: the 2012 far-field experiment of Juffmann T et al (2012 Nat. Nanotechnol. 7 297-300) and the 2013 Kapitza-Dirac-Talbot-Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. Chem. Chem. Phys. 15 14696-700). We show the region of the parameter space for each collapse model that is excluded by these experiments. We show that matter-wave experiments provide model-insensitive bounds that are valid for a wide family of dissipative and non-Markovian generalizations.

  16. Molecular properties via a subsystem density functional theory formulation: a common framework for electronic embedding.

    PubMed

    Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas

    2012-01-28

    In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the special case in which coupled cluster theory is used to obtain the density and excitation energies of the active subsystem. A sample application is given to demonstrate the method. © 2012 American Institute of Physics

  17. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    PubMed

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  18. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: Application to SSSH

    NASA Astrophysics Data System (ADS)

    Kolmann, Stephen J.; Jordan, Meredith J. T.

    2010-02-01

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  19. Static and vibrational properties of equiatomic Na-based binary alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2007-09-01

    The computations of the static and vibrational properties of four equiatomic Na-based binary alloys viz. Na0.5Li0.5, Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5, to second order in local model potential is discussed in terms of real-space sum of Born von Karman central force constants. The local field correlation functions due to Hartree (H), Ichimaru Utsumi (IU) and Sarkar et al. (S) are used to investigate the influence of the screening effects on the aforesaid properties. Results for the lattice constants C11, C12, C44, C12 C44, C12/C44 and bulk modulus B obtained using the H-local field correction function have higher values in comparison with the results obtained for the same properties using IU- and S-local field correction functions. The results for the Shear modulus (C‧), deviation from Cauchy's relation, Poisson's ratio σ, Young modulus Y, propagation velocity of elastic waves, phonon dispersion curves and degree of anisotropy A are highly appreciable for the four equiatomic Na-based binary alloys.

  20. Auto correlation analysis of coda waves from local earthquakes for detecting temporal changes in shallow subsurface structures - The 2011 Tohoku-Oki, Japan, earthquake -

    NASA Astrophysics Data System (ADS)

    Nakahara, H.

    2013-12-01

    For monitoring temporal changes in subsurface structures, I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Because the use of coda waves requires earthquakes, time resolution for monitoring decreases. But at regions with high seismicity, it may be possible to monitor subsurface structures in sufficient time resolutions. Studying the 2011 Tohoku-Oki (Mw 9.0), Japan, earthquake for which velocity changes have been already reported by previous studies, I try to validate the method. KiK-net stations in northern Honshu are used in the analysis. For each moderate earthquake, normalized auto correlation functions of surface records are stacked with respect to time windows in S-wave coda. Aligning the stacked normalized auto correlation functions with time, I search for changes in arrival times of phases. The phases at lag times of less than 1s are studied because changes at shallow depths are focused. Based on the stretching method, temporal variations in the arrival times are measured at the stations. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. Amounts of the phase delays are in the order of 10% on average with the maximum of about 50% at some stations. For validation, the deconvolution analysis using surface and subsurface records at the same stations are conducted. The results show that the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percents, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable to detect larger changes. In spite of these disadvantages, this analysis is still attractive because it can be applied to many records on the surface in regions where no boreholes are available. Acknowledgements: Seismograms recorded by KiK-net managed by National Research Institute for Earth Science and Disaster Prevention (NIED) were used in this study. This study was partially supported by JST J-RAPID program and JSPS KAKENHI Grant Numbers 24540449 and 23540449.

  1. Nonlinear fractional waves at elastic interfaces

    NASA Astrophysics Data System (ADS)

    Kappler, Julian; Shrivastava, Shamit; Schneider, Matthias F.; Netz, Roland R.

    2017-11-01

    We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface.

  2. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Graczykowski, B.; Alzina, F.; Gomis-Bresco, J.; Sotomayor Torres, C. M.

    2016-01-01

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.

  3. Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity

    PubMed Central

    Maunsell, John H.R.

    2012-01-01

    Characterizing the functional connectivity between neurons is key for understanding brain function. We recorded spikes and local field potentials (LFP) from multi-electrode arrays implanted in monkey visual cortex to test the hypotheses that spikes generated outward traveling LFP waves and the strength of functional connectivity depended on stimulus contrast, as described recently. These hypotheses were proposed based on the observation that the latency of the peak negativity of the spike-triggered LFP average (STA) increased with distance between the spike and LFP electrodes, and the magnitude of the STA negativity and the distance over which it was observed decreased with increasing stimulus contrast. Detailed analysis of the shape of the STA, however, revealed contributions from two distinct sources – a transient negativity in the LFP locked to the spike (∼0 ms) that attenuated rapidly with distance, and a low frequency rhythm with peak negativity ∼25 ms after the spike that attenuated slowly with distance. The overall negative peak of the LFP, which combined both these components, shifted from ∼0 to ∼25 ms going from electrodes near the spike to electrodes far from the spike, giving an impression of a traveling wave, although the shift was fully explained by changing contributions from the two fixed components. The low frequency rhythm was attenuated during stimulus presentations, decreasing the overall magnitude of the STA. These results highlight the importance of accounting for the network activity while using STAs to determine functional connectivity. PMID:21880928

  4. Analysis of Spontaneous and Nerve-Evoked Calcium Transients in Intact Extraocular Muscles in Vitro

    PubMed Central

    Feng, Cheng-Yuan; Hennig, Grant W.; Corrigan, Robert D.; Smith, Terence K.; von Bartheld, Christopher S.

    2012-01-01

    Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2max duration of 2–12 s, velocity of 25–50 μm/s) and two fast “flash-like” types (Type 1, 30–90 ms; Type 2, 90–150 ms 1/2max duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs. PMID:22579493

  5. Realization of localized Bohr-like wave packets.

    PubMed

    Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J

    2008-06-20

    We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.

  6. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    DOE PAGES

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less

  7. Non-fluent aphasia and neural reorganization after speech therapy: insights from human sleep electrophysiology and functional magnetic resonance imaging.

    PubMed

    Sarasso, S; Santhanam, P; Määtta, S; Poryazova, R; Ferrarelli, F; Tononi, G; Small, S L

    2010-09-01

    Stroke is associated with long-term functional deficits. Behavioral interventions are often effective in promoting functional recovery and plastic changes. Recent studies in normal subjects have shown that sleep, and particularly slow wave activity (SWA), is tied to local brain plasticity and may be used as a sensitive marker of local cortical reorganization after stroke. In a pilot study, we assessed the local changes induced by a single exposure to a therapeutic session of IMITATE (Intensive Mouth Imitation and Talking for Aphasia Therapeutic Effects), a behavioral therapy used for recovery in patients with post-stroke aphasia. In addition, we measured brain activity changes with functional magnetic resonance imaging (fMRI) in a language observation task before, during and after the full IMITATE rehabilitative program. Speech production improved both after a single exposure and the full therapy program as measured by the Western Aphasia Battery (WAB) Repetition subscale. We found that IMITATE induced reorganization in functionally-connected, speech-relevant areas in the left hemisphere. These preliminary results suggest that sleep hd-EEGs, and the topographical analysis of SWA parameters, are well suited to investigate brain plastic changes underpinning functional recovery in neurological disorders.

  8. The functional organization of human epileptic hippocampus

    PubMed Central

    Klimes, Petr; Duque, Juliano J.; Brinkmann, Ben; Van Gompel, Jamie; Stead, Matt; St. Louis, Erik K.; Halamek, Josef; Jurak, Pavel

    2016-01-01

    The function and connectivity of human brain is disrupted in epilepsy. We previously reported that the region of epileptic brain generating focal seizures, i.e., the seizure onset zone (SOZ), is functionally isolated from surrounding brain regions in focal neocortical epilepsy. The modulatory effect of behavioral state on the spatial and spectral scales over which the reduced functional connectivity occurs, however, is unclear. Here we use simultaneous sleep staging from scalp EEG with intracranial EEG recordings from medial temporal lobe to investigate how behavioral state modulates the spatial and spectral scales of local field potential synchrony in focal epileptic hippocampus. The local field spectral power and linear correlation between adjacent electrodes provide measures of neuronal population synchrony at different spatial scales, ∼1 and 10 mm, respectively. Our results show increased connectivity inside the SOZ and low connectivity between electrodes in SOZ and outside the SOZ. During slow-wave sleep, we observed decreased connectivity for ripple and fast ripple frequency bands within the SOZ at the 10 mm spatial scale, while the local synchrony remained high at the 1 mm spatial scale. Further study of these phenomena may prove useful for SOZ localization and help understand seizure generation, and the functional deficits seen in epileptic eloquent cortex. PMID:27030735

  9. Microscopic theoretical study of frequency dependent dielectric constant of heavy fermion systems

    NASA Astrophysics Data System (ADS)

    Shadangi, Keshab Chandra; Rout, G. C.

    2017-05-01

    The dielectric polarization and the dielectric constant plays a vital role in the deciding the properties of the Heavy Fermion Systems. In the present communication we consider the periodic Anderson's Model which consists of conduction electron kinetic energy, localized f-electron kinetic energy and the hybridization between the conduction and localized electrons, besides the Coulomb correlation energy. We calculate dielectric polarization which involves two particle Green's functions which are calculated by using Zubarev's Green's function technique. Using the equations of motion of the fermion electron operators. Finally, the temperature and frequency dependent dielectric constant is calculated from the dielectric polarization function. The charge susceptibility and dielectric constant are computed numerically for different physical parameters like the position (Ef) of the f-electron level with respect to fermi level, the strength of the hybridization (V) between the conduction and localized f-electrons, Coulomb correlation potential temperature and optical phonon wave vector (q). The results will be discussed in a reference to the experimental observations of the dielectric constants.

  10. A comparison of non-local electron transport models relevant to inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Sherlock, Mark; Brodrick, Jonathan; Ridgers, Christopher

    2017-10-01

    We compare the reduced non-local electron transport model developed by Schurtz et al. to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a 1-dimensional hohlraum ablation problem. We find the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced model reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Single-image-based solution for optics temperature-dependent nonuniformity correction in an uncooled long-wave infrared camera.

    PubMed

    Cao, Yanpeng; Tisse, Christel-Loic

    2014-02-01

    In this Letter, we propose an efficient and accurate solution to remove temperature-dependent nonuniformity effects introduced by the imaging optics. This single-image-based approach computes optics-related fixed pattern noise (FPN) by fitting the derivatives of correction model to the gradient components, locally computed on an infrared image. A modified bilateral filtering algorithm is applied to local pixel output variations, so that the refined gradients are most likely caused by the nonuniformity associated with optics. The estimated bias field is subtracted from the raw infrared imagery to compensate the intensity variations caused by optics. The proposed method is fundamentally different from the existing nonuniformity correction (NUC) techniques developed for focal plane arrays (FPAs) and provides an essential image processing functionality to achieve completely shutterless NUC for uncooled long-wave infrared (LWIR) imaging systems.

  12. Local field in finite-size metamaterials: Application to composites of dielectrics and metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bordo, V. G.

    2018-03-01

    The theory of the optical response of a metamaterial slab which is represented by metal nanoparticles embedded in a dielectric matrix is developed. It is demonstrated that the account of the reflections from the slab boundaries essentially modifies the local field in the slab and leads to the anisotropy and spatial dispersion of its dielectric function as well as to the emergence of modes which do not exist in an infinite metamaterial. It is shown that these features introduce the existence of self-excited normal waves (polaritons) and mechanical excitons (polarization waves). These findings reveal that the metamaterial slab can be regarded as an active device ("plasmonic oscillator") which generates sustained polaritons in the presence of dissipation. A relation of this effect with the phenomenon of a plasmonic blackbody or perfect absorber, observed in such structures, is discussed and a possible mechanism of this phenomenon is proposed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirilo-Lombardo, Diego Julio; Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna

    The central role played by pseudodifferential operators in relativistic dynamics is known very well. In this work, operators like the Schrodinger one (e.g., square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by means of pure theoreticalmore » procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability: it is a non-local, Lorentz invariant and does not have the same problems as the “local”position operator proposed by Newton and Wigner. Physical examples, as zitterbewegung and rogue waves, are presented and deeply analyzed in this theoretical framework.« less

  14. Position-dependent radiative transfer as a tool for studying Anderson localization: Delay time, time-reversal and coherent backscattering

    NASA Astrophysics Data System (ADS)

    van Tiggelen, B. A.; Skipetrov, S. E.; Page, J. H.

    2017-05-01

    Previous work has established that the localized regime of wave transport in open media is characterized by a position-dependent diffusion coefficient. In this work we study how the concept of position-dependent diffusion affects the delay time, the transverse confinement, the coherent backscattering, and the time reversal of waves. Definitions of energy transport velocity of localized waves are proposed. We start with a phenomenological model of radiative transfer and then present a novel perturbational approach based on the self-consistent theory of localization. The latter allows us to obtain results relevant for realistic experiments in disordered quasi-1D wave guides and 3D slabs.

  15. Thermal Equilibrium of a Macroscopic Quantum System in a Pure State.

    PubMed

    Goldstein, Sheldon; Huse, David A; Lebowitz, Joel L; Tumulka, Roderich

    2015-09-04

    We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.

  16. On the response to ocean surface currents in synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Phillips, O. M.

    1984-01-01

    The balance of wave action spectral density for a fixed wave-number is expressed in terms of a new dimensionless function, the degree of saturation, b, and is applied to an analysis of the variations of this quantity (and local spectral level) at wave-numbers large compared to that of the spectral peak, that are produced by variations in the ocean surface currents in the presence of wind input and wave breaking. Particular care is taken to provide physically based representations of wind input and loss by wave breaking and a relatively convenient equation is derived that specifies the distribution of the degree of saturation in a current field, relative to its ambient (undisturbed) background in the absence of currents. The magnitude of the variations in b depends on two parameters, U(o)/c, where U/(o) is the velocity scale of the current and c the phase speed of the surface waves at the (fixed) wave-number considered or sampled by SAR, and S = (L/lambda) (u*/c)(2), where L is the length scale of the current distribution, lambda the wavelength of the surface waves the length scale of the current distribution, lambda the wavelength of the surface waves and u* the friction velocity of the wind.

  17. Testing local Lorentz invariance with gravitational waves

    DOE PAGES

    Kostelecký, V. Alan; Mewes, Matthew

    2016-04-20

    The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation. (C) 2016 The Authors. Published by Elsevier B.V.

  18. A novel segmentation method for uneven lighting image with noise injection based on non-local spatial information and intuitionistic fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Yu, Haiyan; Fan, Jiulun

    2017-12-01

    Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy theory. We regard an image as a gray wave in three-dimensional space, which is composed of many peaks and troughs, and these peaks and troughs can divide the image into many local sub-regions in different directions. Our algorithm computes the relative characteristic of each pixel located in the corresponding sub-region based on fuzzy membership function and uses it to replace its absolute characteristic (its gray level) to reduce the influence of uneven light on image segmentation. At the same time, the non-local adaptive spatial constraints of pixels are introduced to avoid noise interference with the search of local sub-regions and the computation of local characteristics. Moreover, edge information is also taken into account to avoid false peak and trough labeling. Finally, a global method based on intuitionistic fuzzy entropy is employed on the wave transformation image to obtain the segmented result. Experiments on several test images show that the proposed method has excellent capability of decreasing the influence of uneven illumination on images and noise injection and behaves more robustly than several classical global and local thresholding methods.

  19. Multiscale modeling of shock wave localization in porous energetic material

    NASA Astrophysics Data System (ADS)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.

    2018-01-01

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

  20. Control of propagation of spatially localized polariton wave packets in a Bragg mirror with embedded quantum wells

    NASA Astrophysics Data System (ADS)

    Sedova, I. E.; Chestnov, I. Yu.; Arakelian, S. M.; Kavokin, A. V.; Sedov, E. S.

    2018-01-01

    We considered the nonlinear dynamics of Bragg polaritons in a specially designed stratified semiconductor structure with embedded quantum wells, which possesses a convex dispersion. The model for the ensemble of single periodically arranged quantum wells coupled with the Bragg photon fields has been developed. In particular, the generalized Gross-Pitaevskii equation with the non-parabolic dispersion has been obtained for the Bragg polariton wave function. We revealed a number of dynamical regimes for polariton wave packets resulting from competition of the convex dispersion and the repulsive nonlinearity effects. Among the regimes are spreading, breathing and soliton propagation. When the control parameters including the exciton-photon detuning, the matter-field coupling and the nonlinearity are manipulated, the dynamical regimes switch between themselves.

  1. Current-induced dissipation in spectral wave models

    NASA Astrophysics Data System (ADS)

    Rapizo, H.; Babanin, A. V.; Provis, D.; Rogers, W. E.

    2017-03-01

    Despite many recent developments of the parameterization for wave dissipation in spectral models, it is evident that when waves propagate onto strong adverse currents the rate of energy dissipation is not properly estimated. The issue of current-induced dissipation is studied through a comprehensive data set in the tidal inlet of Port Phillip Heads, Australia. The wave parameters analyzed are significantly modulated by the tidal currents. Wave height in conditions of opposing currents (ebb tide) can reach twice the offshore value, whereas during coflowing currents (flood), it can be reduced to half. The wind-wave model SWAN is able to reproduce the tide-induced modulation of waves and the results show that the variation of currents is the dominant factor in modifying the wave field. In stationary simulations, the model provides an accurate representation of wave height for slack and flood tides. During ebb tides, wave energy is highly overestimated over the opposing current jet. None of the four parameterizations for wave dissipation tested performs satisfactorily. A modification to enhance dissipation as a function of the local currents is proposed. It consists of the addition of a factor that represents current-induced wave steepening and it is scaled by the ratio of spectral energy to the threshold breaking level. The new term asymptotes to the original form as the current in the wave direction tends to zero. The proposed modification considerably improves wave height and mean period in conditions of adverse currents, whereas the good model performance in coflowing currents is unaltered.

  2. Frenkel versus charge-transfer exciton dispersion in molecular crystals

    NASA Astrophysics Data System (ADS)

    Cudazzo, Pierluigi; Gatti, Matteo; Rubio, Angel; Sottile, Francesco

    2013-11-01

    By solving the many-body Bethe-Salpeter equation at finite momentum transfer, we characterize the exciton dispersion in two prototypical molecular crystals, picene and pentacene, in which localized Frenkel excitons compete with delocalized charge-transfer excitons. We explain the exciton dispersion on the basis of the interplay between electron and hole hopping and electron-hole exchange interaction, unraveling a simple microscopic description to distinguish Frenkel and charge-transfer excitons. This analysis is general and can be applied to other systems in which the electron wave functions are strongly localized, as in strongly correlated insulators.

  3. Peregrine rogue waves induced by the interaction between a continuous wave and a soliton.

    PubMed

    Yang, Guangye; Li, Lu; Jia, Suotang

    2012-04-01

    Based on the soliton solution on a continuous wave background for an integrable Hirota equation, the reduction mechanism and the characteristics of the Peregrine rogue wave in the propagation of femtosecond pulses of optical fiber are discussed. The results show that there exist two processes of the formation of the Peregrine rogue wave: one is the localized process of the continuous wave background, and the other is the reduction process of the periodization of the bright soliton. The characteristics of the Peregrine rogue wave are exhibited by strong temporal and spatial localization. Also, various initial excitations of the Peregrine rogue wave are performed and the results show that the Peregrine rogue wave can be excited by a small localized (single peak) perturbation pulse of the continuous wave background, even for the nonintegrable case. The numerical simulations show that the Peregrine rogue wave is unstable. Finally, through a realistic example, the influence of the self-frequency shift to the dynamics of the Peregrine rogue wave is discussed. The results show that in the absence of the self-frequency shift, the Peregrine rogue wave can split into several subpulses; however, when the self-frequency shift is considered, the Peregrine rogue wave no longer splits and exhibits mainly a peak changing and an increasing evolution property of the field amplitude.

  4. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    PubMed

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  5. Feature and Statistical Model Development in Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Inho

    All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network, are trained and utilized to interpret nonlinear far-field wave patterns. Next, a novel bridge scour estimation approach that comprises advantages of both empirical and data-driven models is developed. Two field datasets from the literature are used, and a Support Vector Machine (SVM), a machine-learning algorithm, is used to fuse the field data samples and classify the data with physical phenomena. The Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) is evaluated on the model performance objective functions to search for Pareto optimal fronts.

  6. S-wave velocities of the lithosphere-asthenosphere system in the Lesser Antilles from the joint inversion of surface wave dispersion and receiver function analysis

    NASA Astrophysics Data System (ADS)

    González, O'Leary; Clouard, Valerie; Tait, Stephen; Panza, Giuliano F.

    2018-06-01

    We present an overview of S-wave velocities (Vs) within the crust and upper mantle of the Lesser Antilles as determined with 19 seismic broadband stations. Receiver functions (RF) have been computed from teleseismic recordings of earthquakes, and Rayleigh wave group velocity dispersion relations have been taken from earlier surface wave tomographic studies in the Caribbean area. Local smoothness optimization (LSO) procedure has been applied, combined with an H-K stacking method, the spatial distribution of hypocenters of local earthquakes and of the energy they released, in order to identify an optimum 1D model of Vs below each station. Several features of the Caribbean plate and its interaction with the Atlantic subducting slab are visible in the resulting models: (a) relatively thick oceanic crust below these stations ranges from 21 km to 33 km, being slight thinner in the middle of the island arc; (b) crustal low velocity zones are present below stations SABA, SEUS, SKI, SMRT, CBE, DSD, GCMP and TDBA; (c) lithospheric thickness range from 40 km to 105 km but lithosphere-asthenosphere boundary was not straightforward to correlate between stations; (d) the aseismic mantle wedge between the Caribbean seismic lithosphere and the subducted slab varies in thickness as well as Vs values which are, in general, lower below the West of Martinique than below the West of Guadeloupe; (e) the depth of the subducted slab beneath the volcanic arc, appears to be greater to the North, and relatively shallower below some stations (e.g. DLPL, SAM, BIM and FDF) than was estimated in previous studies based on the depth-distribution of seismicity; f) the WBZ is >10-15 km deeper than the top of the slab below the Central Lesser Antilles (Martinique and Dominica) where the presence of partial melt in the mantle wedge seems also to be more evident.

  7. An estimate of equatorial wave energy flux at 9- to 90-day periods in the Central Pacific

    NASA Technical Reports Server (NTRS)

    Eriksen, Charles C.; Richman, James G.

    1988-01-01

    Deep fluctuations in current along the equator in the Central Pacific are dominated by coherent structures which correspond closely to narrow-band propagating equatorial waves. Currents were measured roughly at 1500 and 3000 m depths at five moorings between 144 and 148 deg W from January 1981 to March 1983, as part of the Pacific Equatorial Ocean Dynamics program. In each frequency band resolved, a single complex empirical orthogonal function accounts for half to three quarters of the observed variance in either zonal or meridional current. Dispersion for equatorial first meridional Rossby and Rossby gravity waves is consistent with the observed vertical-zonal coherence structure. The observations indicate that energy flux is westward and downward in long first meridional mode Rossby waves at periods 45 days and longer, and eastward and downward in short first meridional mode Rossby waves and Rossby-gravity waves at periods 30 days and shorter. A local minimum in energy flux occurs at periods corresponding to a maximum in upper-ocean meridional current energy contributed by tropical instability waves. Total vertical flux across the 9- to 90-day period range is 2.5 kW/m.

  8. -X Mixing in T- and V-Shaped Quantum Wires

    NASA Astrophysics Data System (ADS)

    di Carlo, A.; Pescetelli, S.; Kavokin, A.; Vladimirova, M.; Lugli, P.

    1997-11-01

    We have applied both tight-binding (TB) and multivalley envelope function (MEF) techniques to calculate the electronic states in T- and V-shaped realistic quantum wires taking into account -X mixing in the conduction band. Strong reduction of the electron quantization energy due to the off-resonant -X mixing has been found in all types of quantum wires. This effect appears to be tied to the localization of the electron wave function and to its overlap with atomic layers next to interfaces.

  9. Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: Tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet-triplet gaps

    NASA Astrophysics Data System (ADS)

    Brückner, Charlotte; Engels, Bernd

    2017-01-01

    Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.

    Here, we compare the reduced non-local electron transport model developed to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a one-dimensional hohlraum ablation problem. We find that the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced modelmore » reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region.« less

  11. Resonance fluorescence based two- and three-dimensional atom localization

    NASA Astrophysics Data System (ADS)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  12. The 60 GHz radiometric local vertical sensor experiment

    NASA Technical Reports Server (NTRS)

    Grauling, C. H., Jr.

    1973-01-01

    The experiment concept involves the use of millimeter wave radiation the atmospheric oxygen to provide vertical sensing information to a satellite-borne radiometer. The radiance profile studies require the calculation of ray brightness temperature as a function of tangential altitude and atmosphere model, and the computer program developed for this purpose is discussed. Detailed calculations have been made for a total of 12 atmosphere models, including some showing severe warning conditions. The experiment system analysis investigates the effect of various design choices on system behavior. Calculated temperature profiles are presented for a wide variety of frequencies, bandwidths, and atmosphere models. System performance is determined by the convolution of the brightness temperature and an assumed antenna pattern. A compensation scheme to account for different plateau temperatures is developed and demonstrated. The millimeter wave components developed for the local vertical sensor are discussed, with emphasis on the antenna, low noise mixer, and solid state local oscillator. It was concluded that a viable sensing technique exists, useful over a wide range of altitude with an accuracy generally on the order of 0.01 degree or better.

  13. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    NASA Astrophysics Data System (ADS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J.

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified.

  14. Localized parallel parametric generation of spin waves in a Ni{sub 81}Fe{sub 19} waveguide by spatial variation of the pumping field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern; Pirro, P.

    2014-03-03

    We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. Thismore » provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.« less

  15. EPR paradox, quantum nonlocality and physical reality

    NASA Astrophysics Data System (ADS)

    Kupczynski, M.

    2016-03-01

    Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are produced in irreducible random way.

  16. Neural-Network Quantum States, String-Bond States, and Chiral Topological States

    NASA Astrophysics Data System (ADS)

    Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio

    2018-01-01

    Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.

  17. A non-parametric method for automatic determination of P-wave and S-wave arrival times: application to local micro earthquakes

    NASA Astrophysics Data System (ADS)

    Rawles, Christopher; Thurber, Clifford

    2015-08-01

    We present a simple, fast, and robust method for automatic detection of P- and S-wave arrivals using a nearest neighbours-based approach. The nearest neighbour algorithm is one of the most popular time-series classification methods in the data mining community and has been applied to time-series problems in many different domains. Specifically, our method is based on the non-parametric time-series classification method developed by Nikolov. Instead of building a model by estimating parameters from the data, the method uses the data itself to define the model. Potential phase arrivals are identified based on their similarity to a set of reference data consisting of positive and negative sets, where the positive set contains examples of analyst identified P- or S-wave onsets and the negative set contains examples that do not contain P waves or S waves. Similarity is defined as the square of the Euclidean distance between vectors representing the scaled absolute values of the amplitudes of the observed signal and a given reference example in time windows of the same length. For both P waves and S waves, a single pass is done through the bandpassed data, producing a score function defined as the ratio of the sum of similarity to positive examples over the sum of similarity to negative examples for each window. A phase arrival is chosen as the centre position of the window that maximizes the score function. The method is tested on two local earthquake data sets, consisting of 98 known events from the Parkfield region in central California and 32 known events from the Alpine Fault region on the South Island of New Zealand. For P-wave picks, using a reference set containing two picks from the Parkfield data set, 98 per cent of Parkfield and 94 per cent of Alpine Fault picks are determined within 0.1 s of the analyst pick. For S-wave picks, 94 per cent and 91 per cent of picks are determined within 0.2 s of the analyst picks for the Parkfield and Alpine Fault data set, respectively. For the Parkfield data set, our method picks 3520 P-wave picks and 3577 S-wave picks out of 4232 station-event pairs. For the Alpine Fault data set, the method picks 282 P-wave picks and 311 S-wave picks out of a total of 344 station-event pairs. For our testing, we note that the vast majority of station-event pairs have analyst picks, although some analyst picks are excluded based on an accuracy assessment. Finally, our tests suggest that the method is portable, allowing the use of a reference set from one region on data from a different region using relatively few reference picks.

  18. Correspondence: Reply to ‘Phantom phonon localization in relaxors’

    DOE PAGES

    Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.

    2017-12-05

    The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less

  19. Correspondence: Reply to ‘Phantom phonon localization in relaxors’

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.

    The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less

  20. Area law from loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Hung, Ling-Yan; Marcianò, Antonino; Zhang, Mingyi

    2018-03-01

    We explore the constraints following from requiring the area law in the entanglement entropy in the context of loop quantum gravity. We find a unique solution to the single-link wave function in the large j limit, believed to be appropriate in the semiclassical limit. We then generalize our considerations to multilink coherent states, and find that the area law is preserved very generically using our single-link wave function as a building block. Finally, we develop the framework that generates families of multilink states that preserve the area law while avoiding macroscopic entanglement, the space-time analogue of "Schrödinger's cat." We note that these states, defined on a given set of graphs, are the ground states of some local Hamiltonian that can be constructed explicitly. This can potentially shed light on the construction of the appropriate Hamiltonian constraints in the LQG framework.

  1. Ab Initio study on structural, electronic, magnetic and dielectric properties of LSNO within Density Functional Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Petersen, John; Bechstedt, Friedhelm; Furthmüller, Jürgen; Scolfaro, Luisa

    LSNO (La2-xSrxNiO4) is of great interest due to its colossal dielectric constant (CDC) and rich underlying physics. While being an antiferromagnetic insulator, localized holes are present in the form of stripes in the Ni-O planes which are commensurate with the inverse of the Sr concentration. The stripes are a manifestation of charge density waves with period approximately 1/x and spin density waves with period approximately 2/x. Here, the spin ground state is calculated via LSDA + U with the PAW method implemented in VASP. Crystal structure and the effective Hubbard U parameter are optimized before calculating ɛ∞ within the independent particle approximation. ɛ∞ and the full static dielectric constant (including the lattice polarizability) ɛ0 are calculated within Density Functional Perturbation Theory.

  2. ISEE observations of low frequency waves and ion distribution function evolution in the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Gary, S. P.

    1990-01-01

    This paper describes ISEE plasma and magnetic fluctuation observations during two crossings of the plasma sheet boundary layer (PSBL) in the earth's magnetotail. Distribution function observations show that the counterstreaming ion components undergo pitch-angle scattering and evolve into a shell distribution in velocity space. This evolution is correlated with the development of low frequency, low amplitude magnetic fluctuations. However, the measured wave amplitudes are insufficient to accomplish the observed degree of ion pitch-angle scatttering locally; the near-earth distributions may be the result of processes occurring much farther down the magnetotail. Results show a clear correlation between the ion component beta and the relative streaming speed of the two components, suggesting that electromagnetic ion/ion instabilities do play an important role in the scattering of PSBL ions.

  3. Long-term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    An extensive body of research this quarter is documented. Further methodical analysis of temperature residuals in Cryogenic Limb Array Etalon Spectrometer (CLAES) Version 8 level 3AT data show signatures during December 1992 at middle and high northern latitudes that, when compared to Naval Research Laboratory/Mountain Wave Forecast Model (NRL)/(MWFM) mountain wave hindcasts, reveal evidence of long mountain waves in these data over Eurasia, Greenland, Scandinavia and North America. The explicit detection of gravity waves in limb-scanned Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) temperatures is modeled at length, to derive visibility functions. These insights are used to convert CRISTA gravity wave temperature residuals into data that more closely resemble gravity wave fluctuations detected in data from other satellite instruments, such as Microwave Limb Sounder (MLS), Limb Infrared Monitor of the Stratosphere (LIMS) and Global Positioning System/Meteorology (GPS)/(MET). Finally, newly issued mesospheric temperatures from inversion of CRISTA 15gin emissions are analyzed using a new method that uses separate Kalman fits to the ascending and descending node data. This allows us to study global gravity wave amplitudes at two local times, 12 hours apart. In the equatorial mesosphere, where a large diurnal tidal temperature signal exists, we see modulations of gravity wave activity that are consistent with gravity wave-tidal interactions produced by tidal temperature variability.

  4. Breathers and solitons on two different backgrounds in a generalized coupled Hirota system with four wave mixing

    NASA Astrophysics Data System (ADS)

    Xu, Han-Xiang; Yang, Zhan-Ying; Zhao, Li-Chen; Duan, Liang; Yang, Wen-Li

    2018-07-01

    We study breathers and solitons on different backgrounds in optical fiber system, which is governed by generalized coupled Hirota equations with four wave mixing effect. On plane wave background, a transformation between different types of solitons is discovered. Then, on periodic wave background, we find breather-like nonlinear localized waves of which formation mechanism are related to the energy conversion between two components. The energy conversion results from four wave mixing. Furthermore, we prove that this energy conversion is controlled by amplitude and period of backgrounds. Finally, solitons on periodic wave background are also exhibited. These results would enrich our knowledge of nonlinear localized waves' excitation in coupled system with four wave mixing effect.

  5. Acoustics of marine sediment under compaction: binary grain-size model and viscoelastic extension of Biot's theory.

    PubMed

    Leurer, Klaus C; Brown, Colin

    2008-04-01

    This paper presents a model of acoustic wave propagation in unconsolidated marine sediment, including compaction, using a concept of a simplified sediment structure, modeled as a binary grain-size sphere pack. Compressional- and shear-wave velocities and attenuation follow from a combination of Biot's model, used as the general framework, and two viscoelastic extensions resulting in complex grain and frame moduli, respectively. An effective-grain model accounts for the viscoelasticity arising from local fluid flow in expandable clay minerals in clay-bearing sediments. A viscoelastic-contact model describes local fluid flow at the grain contacts. Porosity, density, and the structural Biot parameters (permeability, pore size, structure factor) as a function of pressure follow from the binary model, so that the remaining input parameters to the acoustic model consist solely of the mass fractions and the known mechanical properties of each constituent (e.g., carbonates, sand, clay, and expandable clay) of the sediment, effective pressure, or depth, and the environmental parameters (water depth, salinity, temperature). Velocity and attenuation as a function of pressure from the model are in good agreement with data on coarse- and fine-grained unconsolidated marine sediments.

  6. Quantum nonlocality does not exist

    PubMed Central

    Tipler, Frank J.

    2014-01-01

    Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell’s inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming “nonlocality” are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in “collapse” versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer. PMID:25015084

  7. Quantum nonlocality does not exist.

    PubMed

    Tipler, Frank J

    2014-08-05

    Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.

  8. Confined states in photonic-magnonic crystals with complex unit cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadoenkova, Yu. S.; Novgorod State University, 173003 Veliky Novgorod; Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk

    2016-08-21

    We have investigated multifunctional periodic structures in which electromagnetic waves and spin waves can be confined in the same areas. Such simultaneous localization of both sorts of excitations can potentially enhance the interaction between electromagnetic waves and spin waves. The system we considered has a form of one dimensional photonic-magnonic crystal with two types of magnetic layers (thicker and thinner ones) separated by sections of the dielectric photonic crystals. We focused on the electromagnetic defect modes localized in the magnetic layers (areas where spin waves can be excited) and decaying in the sections of conventional (nonmagnetic) photonic crystals. We showedmore » how the change of relative thickness of two types of the magnetic layers can influence on the spectrum of spin waves and electromagnetic defect modes, both localized in magnetic parts of the system.« less

  9. 6.7 radio sky mapping from satellites at very low frequencies

    NASA Technical Reports Server (NTRS)

    Storey, L. R. O.

    1991-01-01

    Wave Distribution Function (WDF) analysis is a procedure for making sky maps of the sources of natural electromagnetic waves in space plasmas, given local measurements of some or all of the three magnetic and three electric field components. The work that still needs to be done on this subject includes solving basic methodological problems, translating the solution into efficient algorithms, and embodying the algorithms in computer software. One important scientific use of WDF analysis is to identify the mode of origin of plasmaspheric hiss. Some of the data from the Japanese satellite Akebono (EXOS D) are likely to be suitable for this purpose.

  10. Radio sky mapping from satellites at very low frequencies

    NASA Technical Reports Server (NTRS)

    Storey, L. R. O.

    1991-01-01

    Wave Distribution Function (WDF) analysis is a procedure for making sky maps of the sources of natural electromagnetic waves in space plasmas, given local measurements of some or all of the three magnetic and three electric field components. The work that still needs to be done on this subject includes solving basic methodological problems, translating the solution into efficient algorithms, and embodying the algorithms in computer software. One important scientific use of WDF analysis is to identify the mode of origin of plasmaspheric hiss. Some of the data from the Japanese satellite Akebono (EXOS D) are likely to be suitable for this purpose.

  11. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

    PubMed

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  12. Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium

    NASA Astrophysics Data System (ADS)

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-10-01

    In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan et al. [J. Opt. Soc. Am. B 10, 391 (1993)]. A set of self-consistent equations is presented, accounting for the multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in the frequency domain. The transport properties within, near the edge of, and nearly outside the localization regime are investigated for different parameters such as filling factor and system size. The results show that within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves follow an intuitive but expected picture. That is, they increase with traveling path as more and more random scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large enough, signifying the localization effect. For the cases where the frequencies are near the boundary of or outside the localization regime, the results of diffusive waves are compared with the diffusion approximation, showing less encouraging agreement as in other systems [Asatryan et al., Phys. Rev. E 67, 036605 (2003)].

  13. Uppermost synchronized generators of spike-wave activity are localized in limbic cortical areas in late-onset absence status epilepticus.

    PubMed

    Piros, Palma; Puskas, Szilvia; Emri, Miklos; Opposits, Gabor; Spisak, Tamas; Fekete, Istvan; Clemens, Bela

    2014-03-01

    Absence status (AS) epilepticus with generalized spike-wave pattern is frequently found in severely ill patients in whom several disease states co-exist. The cortical generators of the ictal EEG pattern and EEG functional connectivity (EEGfC) of this condition are unknown. The present study investigated the localization of the uppermost synchronized generators of spike-wave activity in AS. Seven patients with late-onset AS were investigated by EEG spectral analysis, LORETA (Low Resolution Electromagnetic Tomography) source imaging, and LSC (LORETA Source Correlation) analysis, which estimates cortico-cortical EEGfC among 23 ROIs (regions of interest) in each hemisphere. All the patients showed generalized ictal EEG activity. Maximum Z-scored spectral power was found in the 1-6 Hz and 12-14 Hz frequency bands. LORETA showed that the uppermost synchronized generators of 1-6 Hz band activity were localized in frontal and temporal cortical areas that are parts of the limbic system. For the 12-14 Hz band, abnormally synchronized generators were found in the antero-medial frontal cortex. Unlike the rather stereotyped spectral and LORETA findings, the individual EEGfC patterns were very dissimilar. The findings are discussed in the context of nonconvulsive seizure types and the role of the underlying cortical areas in late-onset AS. The diversity of the EEGfC patterns remains an enigma. Localizing the cortical generators of the EEG patterns contributes to understanding the neurophysiology of the condition. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  14. Adiabatic corrections to density functional theory energies and wave functions.

    PubMed

    Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas

    2008-09-25

    The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT.

  15. Formation of Schrödinger-cat states in the Morse potential: Wigner function picture.

    PubMed

    Foldi, Peter; Czirjak, Attila; Molnar, Balazs; Benedict, Mihaly

    2002-04-22

    We investigate the time evolution of Morse coherent states in the potential of the NO molecule. We present animated wave functions and Wigner functions of the system exhibiting spontaneous formation of Schrödinger-cat states at certain stages of the time evolution. These nonclassical states are coherent superpositions of two localized states corresponding to two di.erent positions of the center of mass. We analyze the degree of nonclassicality as the function of the expectation value of the position in the initial state. Our numerical calculations are based on a novel, essentially algebraic treatment of the Morse potential.

  16. Localized light waves: Paraxial and exact solutions of the wave equation (a review)

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.

    2007-04-01

    Simple explicit localized solutions are systematized over the whole space of a linear wave equation, which models the propagation of optical radiation in a linear approximation. Much attention has been paid to exact solutions (which date back to the Bateman findings) that describe wave beams (including Bessel-Gauss beams) and wave packets with a Gaussian localization with respect to the spatial variables and time. Their asymptotics with respect to free parameters and at large distances are presented. A similarity between these exact solutions and harmonic in time fields obtained in the paraxial approximation based on the Leontovich-Fock parabolic equation has been studied. Higher-order modes are considered systematically using the separation of variables method. The application of the Bateman solutions of the wave equation to the construction of solutions to equations with dispersion and nonlinearity and their use in wavelet analysis, as well as the summation of Gaussian beams, are discussed. In addition, solutions localized at infinity known as the Moses-Prosser “acoustic bullets”, as well as their harmonic in time counterparts, “ X waves”, waves from complex sources, etc., have been considered. Everywhere possible, the most elementary mathematical formalism is used.

  17. Towards a robust framework for Probabilistic Tsunami Hazard Assessment (PTHA) for local and regional tsunami in New Zealand

    NASA Astrophysics Data System (ADS)

    Mueller, Christof; Power, William; Fraser, Stuart; Wang, Xiaoming

    2013-04-01

    Probabilistic Tsunami Hazard Assessment (PTHA) is conceptually closely related to Probabilistic Seismic Hazard Assessment (PSHA). The main difference is that PTHA needs to simulate propagation of tsunami waves through the ocean and cannot rely on attenuation relationships, which makes PTHA computationally more expensive. The wave propagation process can be assumed to be linear as long as water depth is much larger than the wave amplitude of the tsunami. Beyond this limit a non-linear scheme has to be employed with significantly higher algorithmic run times. PTHA considering far-field tsunami sources typically uses unit source simulations, and relies on the linearity of the process by later scaling and combining the wave fields of individual simulations to represent the intended earthquake magnitude and rupture area. Probabilistic assessments are typically made for locations offshore but close to the coast. Inundation is calculated only for significantly contributing events (de-aggregation). For local and regional tsunami it has been demonstrated that earthquake rupture complexity has a significant effect on the tsunami amplitude distribution offshore and also on inundation. In this case PTHA has to take variable slip distributions and non-linearity into account. A unit source approach cannot easily be applied. Rupture complexity is seen as an aleatory uncertainty and can be incorporated directly into the rate calculation. We have developed a framework that manages the large number of simulations required for local PTHA. As an initial case study the effect of rupture complexity on tsunami inundation and the statistics of the distribution of wave heights have been investigated for plate-interface earthquakes in the Hawke's Bay region in New Zealand. Assessing the probability that water levels will be in excess of a certain threshold requires the calculation of empirical cumulative distribution functions (ECDF). We compare our results with traditional estimates for tsunami inundation simulations that do not consider rupture complexity. De-aggregation based on moment magnitude alone might not be appropriate, because the hazard posed by any individual event can be underestimated locally if rupture complexity is ignored.

  18. Variational model for one-dimensional quantum magnets

    NASA Astrophysics Data System (ADS)

    Kudasov, Yu. B.; Kozabaranov, R. V.

    2018-04-01

    A new variational technique for investigation of the ground state and correlation functions in 1D quantum magnets is proposed. A spin Hamiltonian is reduced to a fermionic representation by the Jordan-Wigner transformation. The ground state is described by a new non-local trial wave function, and the total energy is calculated in an analytic form as a function of two variational parameters. This approach is demonstrated with an example of the XXZ-chain of spin-1/2 under a staggered magnetic field. Generalizations and applications of the variational technique for low-dimensional magnetic systems are discussed.

  19. Wave dispersion and propagation in state-based peridynamics

    NASA Astrophysics Data System (ADS)

    Butt, Sahir N.; Timothy, Jithender J.; Meschke, Günther

    2017-11-01

    Peridynamics is a nonlocal continuum model which offers benefits over classical continuum models in cases, where discontinuities, such as cracks, are present in the deformation field. However, the nonlocal characteristics of peridynamics leads to a dispersive dynamic response of the medium. In this study we focus on the dispersion properties of a state-based linear peridynamic solid model and specifically investigate the role of the peridynamic horizon. We derive the dispersion relation for one, two and three dimensional cases and investigate the effect of horizon size, mesh size (lattice spacing) and the influence function on the dispersion properties. We show how the influence function can be used to minimize wave dispersion at a fixed lattice spacing and demonstrate it qualitatively by wave propagation analysis in one- and two-dimensional models of elastic solids. As a main contribution of this paper, we propose to associate peridynamic non-locality expressed by the horizon with a characteristic length scale related to the material microstructure. To this end, the dispersion curves obtained from peridynamics are compared with experimental data for two kinds of sandstone.

  20. Comparison of variational real-space representations of the kinetic energy operator

    NASA Astrophysics Data System (ADS)

    Skylaris, Chris-Kriton; Diéguez, Oswaldo; Haynes, Peter D.; Payne, Mike C.

    2002-08-01

    We present a comparison of real-space methods based on regular grids for electronic structure calculations that are designed to have basis set variational properties, using as a reference the conventional method of finite differences (a real-space method that is not variational) and the reciprocal-space plane-wave method which is fully variational. We find that a definition of the finite-difference method [P. Maragakis, J. Soler, and E. Kaxiras, Phys. Rev. B 64, 193101 (2001)] satisfies one of the two properties of variational behavior at the cost of larger errors than the conventional finite-difference method. On the other hand, a technique which represents functions in a number of plane waves which is independent of system size closely follows the plane-wave method and therefore also the criteria for variational behavior. Its application is only limited by the requirement of having functions strictly localized in regions of real space, but this is a characteristic of an increasing number of modern real-space methods, as they are designed to have a computational cost that scales linearly with system size.

  1. Optically generated ultrasound for enhanced drug delivery

    DOEpatents

    Visuri, Steven R.; Campbell, Heather L.; Da Silva, Luiz

    2002-01-01

    High frequency acoustic waves, analogous to ultrasound, can enhance the delivery of therapeutic compounds into cells. The compounds delivered may be chemotherapeutic drugs, antibiotics, photodynamic drugs or gene therapies. The therapeutic compounds are administered systemically, or preferably locally to the targeted site. Local delivery can be accomplished through a needle, cannula, or through a variety of vascular catheters, depending on the location of routes of access. To enhance the systemic or local delivery of the therapeutic compounds, high frequency acoustic waves are generated locally near the target site, and preferably near the site of compound administration. The acoustic waves are produced via laser radiation interaction with an absorbing media and can be produced via thermoelastic expansion, thermodynamic vaporization, material ablation, or plasma formation. Acoustic waves have the effect of temporarily permeabilizing the membranes of local cells, increasing the diffusion of the therapeutic compound into the cells, allowing for decreased total body dosages, decreased side effects, and enabling new therapies.

  2. Comprehensive Condition Survey and Storm Waves, Circulation, and Sediment Study, Dana Point Harbor, California

    DTIC Science & Technology

    2014-12-01

    waters; 3) west to northwest local sea; 4) prefrontal local sea; 5) tropical storm swell; and 6) extratropical cyclone in the southern hemisphere...14-13 58 Prefrontal local sea The coastal zone within the south Orange County area is vulnerable under extratropical winter storm conditions (a...wave characteristics for severe extratropical storms during the 39 yr time period (1970–2008) are comparable to peak storm wave heights that were

  3. Cross-Shore Exchange on Natural Beaches

    DTIC Science & Technology

    2014-09-01

    87   Figure 2.   Wave conditions measured by the ADCP in 13 m water depth of (a) root- mean-square wave height Hrms...horizontal velocity, Umean, measured in the reference level, ∑Tsig,pulse T3−hour ∑Tsig,pulse T3−hour xi (e) local water depth, h, and (f) local root...mean-square wave height normalized by the local water depth, Hrms/h, measured by ADCPin (blue) and ADCPout (red) during the 3HRLTs. Colored lines

  4. Majorana quasiparticles in semiconducting carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Marganska, Magdalena; Milz, Lars; Izumida, Wataru; Strunk, Christoph; Grifoni, Milena

    2018-02-01

    Engineering effective p -wave superconductors hosting Majorana quasiparticles (MQPs) is nowadays of particular interest, also in view of the possible utilization of MQPs in fault-tolerant topological quantum computation. In quasi-one-dimensional systems, the parameter space for topological superconductivity is significantly reduced by the coupling between transverse modes. Together with the requirement of achieving the topological phase under experimentally feasible conditions, this strongly restricts in practice the choice of systems which can host MQPs. Here, we demonstrate that semiconducting carbon nanotubes (CNTs) in proximity with ultrathin s -wave superconductors, e.g., exfoliated NbSe2, satisfy these needs. By precise numerical tight-binding calculations in the real space, we show the emergence of localized zero-energy states at the CNT ends above a critical value of the applied magnetic field, of which we show the spatial evolution. Knowing the microscopic wave functions, we unequivocally demonstrate the Majorana nature of the localized states. An effective four-band model in the k -space, with parameters determined from the numerical spectrum, is used to calculate the topological phase diagram and its phase boundaries in analytic form. Finally, the impact of symmetry breaking contributions, like disorder and an axial component of the magnetic field, is investigated.

  5. STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S., E-mail: yoonp@umd.edu

    2015-10-20

    In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for themore » Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.« less

  6. Dispersion transitions and pole-zero characteristics of finite inertially amplified acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Al Ba'ba'a, H.; DePauw, D.; Singh, T.; Nouh, M.

    2018-03-01

    This work presents a comprehensive analysis of wave dispersion patterns and band gap formation associated with Inertially Amplified Acoustic Metamaterials (IAAM). The findings explain the different mechanisms by which inertial amplification affect wave dispersion in the individual IAAM cell as well as the evolution of such effects in finite configurations of these cells. Derived expressions for acoustic wave dispersion in IAAMs reveal unique features including flat dispersion branches with zero group velocity and a transition from a metamaterial (local resonance) to a phononic behavior that is directly related to the location and magnitude of the inerter elements. Using a closed-form transfer function approach, the translation of such effects to IAAM realizations with a known number of cells is interpreted from the pole-zero distributions of the resultant finite structures. It is also shown that band gaps are not always necessarily enlarged in the presence of inertial amplification. Comparing with benchmark conventional acoustic metamaterials, the conditions leading up to favorable as well as inferior IAAM designs are fully derived. Finally, an alternative resonator-free acoustic metamaterial is presented and shown to exhibit local resonance effects under appropriately tuned conditions.

  7. Direct evidence for EMIC wave scattering of relativistic electrons in space

    NASA Astrophysics Data System (ADS)

    Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Blake, J. B.; Fennell, J. F.

    2016-07-01

    Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. By comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth's outer radiation belt.

  8. Predictions and Observations of Munitions Burial Under Intense Storm Waves at Duck, NC

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Klammer, H.; Sheremet, A.

    2017-12-01

    The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and surrogate munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability strongly suggests that the munitions sank into the bed, which would suggest an extreme state of sand agitation during the storm. We explore existing analytical solutions for the dynamic interaction between waves and sediment to predict munitions burial depths. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses were then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.

  9. Small-Scale, Local Area, and Transitional Millimeter Wave Propagation for 5G Communications

    NASA Astrophysics Data System (ADS)

    Rappaport, Theodore S.; MacCartney, George R.; Sun, Shu; Yan, Hangsong; Deng, Sijia

    2017-12-01

    This paper studies radio propagation mechanisms that impact handoffs, air interface design, beam steering, and MIMO for 5G mobile communication systems. Knife edge diffraction (KED) and a creeping wave linear model are shown to predict diffraction loss around typical building objects from 10 to 26 GHz, and human blockage measurements at 73 GHz are shown to fit a double knife-edge diffraction (DKED) model which incorporates antenna gains. Small-scale spatial fading of millimeter wave received signal voltage amplitude is generally Ricean-distributed for both omnidirectional and directional receive antenna patterns under both line-of-sight (LOS) and non-line-of-sight (NLOS) conditions in most cases, although the log-normal distribution fits measured data better for the omnidirectional receive antenna pattern in the NLOS environment. Small-scale spatial autocorrelations of received voltage amplitudes are shown to fit sinusoidal exponential and exponential functions for LOS and NLOS environments, respectively, with small decorrelation distances of 0.27 cm to 13.6 cm (smaller than the size of a handset) that are favorable for spatial multiplexing. Local area measurements using cluster and route scenarios show how the received signal changes as the mobile moves and transitions from LOS to NLOS locations, with reasonably stationary signal levels within clusters. Wideband mmWave power levels are shown to fade from 0.4 dB/ms to 40 dB/s, depending on travel speed and surroundings.

  10. Impact localization in dispersive waveguides based on energy-attenuation of waves with the traveled distance

    NASA Astrophysics Data System (ADS)

    Alajlouni, Sa'ed; Albakri, Mohammad; Tarazaga, Pablo

    2018-05-01

    An algorithm is introduced to solve the general multilateration (source localization) problem in a dispersive waveguide. The algorithm is designed with the intention of localizing impact forces in a dispersive floor, and can potentially be used to localize and track occupants in a building using vibration sensors connected to the lower surface of the walking floor. The lower the wave frequencies generated by the impact force, the more accurate the localization is expected to be. An impact force acting on a floor, generates a seismic wave that gets distorted as it travels away from the source. This distortion is noticeable even over relatively short traveled distances, and is mainly caused by the dispersion phenomenon among other reasons, therefore using conventional localization/multilateration methods will produce localization error values that are highly variable and occasionally large. The proposed localization approach is based on the fact that the wave's energy, calculated over some time window, decays exponentially as the wave travels away from the source. Although localization methods that assume exponential decay exist in the literature (in the field of wireless communications), these methods have only been considered for wave propagation in non-dispersive media, in addition to the limiting assumption required by these methods that the source must not coincide with a sensor location. As a result, these methods cannot be applied to the indoor localization problem in their current form. We show how our proposed method is different from the other methods, and that it overcomes the source-sensor location coincidence limitation. Theoretical analysis and experimental data will be used to motivate and justify the pursuit of the proposed approach for localization in a dispersive medium. Additionally, hammer impacts on an instrumented floor section inside an operational building, as well as finite element model simulations, are used to evaluate the performance of the algorithm. It is shown that the algorithm produces promising results providing a foundation for further future development and optimization.

  11. Seismic Constraints on Interior Solar Convection

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L.; DeRosa, Marc L.

    2010-01-01

    We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(solar) = 0.95 with spatial extent l < 30, where l is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R(solar) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.

  12. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  13. Microwave beam broadening due to turbulent plasma density fluctuations within the limit of the Born approximation and beyond

    NASA Astrophysics Data System (ADS)

    Köhn, A.; Guidi, L.; Holzhauer, E.; Maj, O.; Poli, E.; Snicker, A.; Weber, H.

    2018-07-01

    Plasma turbulence, and edge density fluctuations in particular, can under certain conditions broaden the cross-section of injected microwave beams significantly. This can be a severe problem for applications relying on well-localized deposition of the microwave power, like the control of MHD instabilities. Here we investigate this broadening mechanism as a function of fluctuation level, background density and propagation length in a fusion-relevant scenario using two numerical codes, the full-wave code IPF-FDMC and the novel wave kinetic equation solver WKBeam. The latter treats the effects of fluctuations using a statistical approach, based on an iterative solution of the scattering problem (Born approximation). The full-wave simulations are used to benchmark this approach. The Born approximation is shown to be valid over a large parameter range, including ITER-relevant scenarios.

  14. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  15. A projection-free method for representing plane-wave DFT results in an atom-centered basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnington, Benjamin D.; Schmidt, J. R., E-mail: schmidt@chem.wisc.edu

    2015-09-14

    Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strictmore » orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.« less

  16. A WAVE2–Arp2/3 actin nucleator apparatus supports junctional tension at the epithelial zonula adherens

    PubMed Central

    Verma, Suzie; Han, Siew Ping; Michael, Magdalene; Gomez, Guillermo A.; Yang, Zhe; Teasdale, Rohan D.; Ratheesh, Aparna; Kovacs, Eva M.; Ali, Radiya G.; Yap, Alpha S.

    2012-01-01

    The epithelial zonula adherens (ZA) is a specialized adhesive junction where actin dynamics and myosin-driven contractility coincide. The junctional cytoskeleton is enriched in myosin II, which generates contractile force to support junctional tension. It is also enriched in dynamic actin filaments, which are replenished by ongoing actin assembly. In this study we sought to pursue the relationship between actin assembly and junctional contractility. We demonstrate that WAVE2–Arp2/3 is a major nucleator of actin assembly at the ZA and likely acts in response to junctional Rac signaling. Furthermore, WAVE2–Arp2/3 is necessary for junctional integrity and contractile tension at the ZA. Maneuvers that disrupt the function of either WAVE2 or Arp2/3 reduced junctional tension and compromised the ability of cells to buffer side-to-side forces acting on the ZA. WAVE2–Arp2/3 disruption depleted junctions of both myosin IIA and IIB, suggesting that dynamic actin assembly may support junctional tension by facilitating the local recruitment of myosin. PMID:23051739

  17. A WAVE2-Arp2/3 actin nucleator apparatus supports junctional tension at the epithelial zonula adherens.

    PubMed

    Verma, Suzie; Han, Siew Ping; Michael, Magdalene; Gomez, Guillermo A; Yang, Zhe; Teasdale, Rohan D; Ratheesh, Aparna; Kovacs, Eva M; Ali, Radiya G; Yap, Alpha S

    2012-12-01

    The epithelial zonula adherens (ZA) is a specialized adhesive junction where actin dynamics and myosin-driven contractility coincide. The junctional cytoskeleton is enriched in myosin II, which generates contractile force to support junctional tension. It is also enriched in dynamic actin filaments, which are replenished by ongoing actin assembly. In this study we sought to pursue the relationship between actin assembly and junctional contractility. We demonstrate that WAVE2-Arp2/3 is a major nucleator of actin assembly at the ZA and likely acts in response to junctional Rac signaling. Furthermore, WAVE2-Arp2/3 is necessary for junctional integrity and contractile tension at the ZA. Maneuvers that disrupt the function of either WAVE2 or Arp2/3 reduced junctional tension and compromised the ability of cells to buffer side-to-side forces acting on the ZA. WAVE2-Arp2/3 disruption depleted junctions of both myosin IIA and IIB, suggesting that dynamic actin assembly may support junctional tension by facilitating the local recruitment of myosin.

  18. Encoding the structure of many-body localization with matrix product operators

    NASA Astrophysics Data System (ADS)

    Pekker, David; Clark, Bryan K.

    2015-03-01

    Anderson insulators are non-interacting disordered systems which have localized single particle eigenstates. The interacting analogue of Anderson insulators are the Many-Body Localized (MBL) phases. The natural language for representing the spectrum of the Anderson insulator is that of product states over the single-particle modes. We show that product states over Matrix Product Operators of small bond dimension is the corresponding natural language for describing the MBL phases. In this language all of the many-body eigenstates are encode by Matrix Product States (i.e. DMRG wave function) consisting of only two sets of low bond-dimension matrices per site: the Gi matrix corresponding to the local ground state on site i and the Ei matrix corresponding to the local excited state. All 2 n eigenstates can be generated from all possible combinations of these matrices.

  19. Review and New Results of Local Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi

    2011-10-01

    We briefly review various methods used in local helioseismology, and discuss our recent results on the acoustic waves scattered by sunspots. We use a deconvolution method to obtain the 2-D wavefunction of the scattered wave from the cross correlations between the incident wave and the signal at various points on the surface. The wavefunctions of scattered waves associated with various incident waves could be used to probe the sunspot. The interference fringes between the scattered wave and the incident wave are detected because the coherent time of the incident wave is of the order of wave period. These interference fringes play the same role as a hologram in optics. We demonstrate that these interference fringes (hologram) can be used to reconstruct the 2-D scattered wavefield of the sunspot.

  20. Innovative Technologies for Maskless Lithography and Non-Conventional Patterning

    DTIC Science & Technology

    2008-08-01

    wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases...transistors”, Transducers 2007, Lyon, France, 3EH5.P, 2007. 9. D. Huang and V. Subramanian “Iodine-doped pentacene schottky diodes for high-frequency RFID...wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases

  1. The role of localised Ultra-Low Frequency waves in energetic electron precipitation

    NASA Astrophysics Data System (ADS)

    Rae, J.; Murphy, K. R.; Watt, C.; Mann, I. R.; Ozeke, L.; Halford, A. J.; Sibeck, D. G.; Clilverd, M. A.; Rodger, C. J.; Degeling, A. W.; Singer, H. J.

    2016-12-01

    Electromagnetic waves play pivotal roles in radiation belt dynamics through a variety of different means. Typically, Ultra-Low Frequency (ULF) waves have historically been invoked for radial diffusive transport leading to both acceleration and loss of outer radiation belt electrons. Very-Low Frequency (VLF) and Extremely-Low Frequency (ELF) waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to direct modulation of the loss cone via localized compressional ULF waves. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity. We then perform statistical computations of the probability distribution to determine how likely a given magnetic perturbation would produce a given percentage change in the bounce loss-cone (BLC). We discuss the ramifications of the action of coherent, localized compressional ULF waves on drifting electron populations; their precipitation response can be a complex interplay between electron energy, the shape of the phase space density profile at pitch angles close to the loss cone, ionospheric decay timescales, and the time-dependence of the electron source. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. We determine that the two pivotal components not usually considered are localized ULF wave fields and ionospheric decay timescales. We conclude that ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm-times.

  2. Newtonian noise and ambient ground motion for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Beker, M. G.; van den Brand, J. F. J.; Hennes, E.; Rabeling, D. S.

    2012-06-01

    Fluctuations of the local gravitational field as a result of seismic and atmospheric displacements will limit the sensitivity of ground based gravitational wave detectors at frequencies below 10 Hz. We discuss the implications of Newtonian noise for future third generation gravitational wave detectors. The relevant seismic wave fields are predominately of human origin and are dependent on local infrastructure and population density. Seismic studies presented here show that considerable seismic noise reduction is possible compared to current detector locations. A realistic seismic amplitude spectral density of a suitably quiet site should not exceed 0.5 nm/(Hz/f)2 above 1 Hz. Newtonian noise models have been developed both analytically and by finite element analysis. These show that the contribution to Newtonian noise from surface waves due to distance sources significantly reduces with depth. Seismic displacements from local sources and body waves then become the dominant contributors to the Newtonian fluctuations.

  3. The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity

    NASA Astrophysics Data System (ADS)

    Orazzo, Annagrazia; Hoepffner, Jérôme

    2012-11-01

    At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.

  4. WAVE2 targeting to phosphatidylinositol 3,4,5-triphosphate mediated by insulin receptor substrate p53 through a complex with WAVE2.

    PubMed

    Takahashi, Kazuhide; Suzuki, Katsuo

    2010-11-01

    Membrane targeting of WAVE2 along microtubules to phosphatidylinositol 3,4,5-triphosphate (PIP(3)) in response to an extracellular stimulus requires Rac1, Pak1, stathmin, and EB1. However, whether WAVE2 interacts directly with PIP(3) or not remains unclear. We demonstrate that insulin-like growth factor I (IGF-I) induces WAVE2 membrane targeting, accompanied by phosphorylation of Pak1 at serine 199/204 (Ser199/204) and stathmin at Ser38 in the inner cytoplasmic region. This is spatially independent of the membrane region where the IGF-I receptor (IGF-IR) is locally activated. WAVE2, phosphorylated Pak1, and phosphorylated stathmin located at the microtubule ends began to accumulate at the leading edge of cells in close proximity to PIP(3) that was produced in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent manner. The PIP(3)-beads binding assay revealed that insulin receptor substrate p53 (IRSp53) and actin rather than WAVE2 bound to PIP(3). IRSp53 constitutively associated with WAVE2 and these two proteins colocalized with PIP(3) at the leading edge after IGF-I stimulation. Suppression of IRSp53 expression by two independent small interfering RNAs (siRNAs) completely inhibited IGF-I-induced membrane targeting and local accumulation of WAVE2 at the leading edge of cells. We propose that IRSp53 constitutively forms a complex with WAVE2 and is crucial for membrane targeting followed by local accumulation of WAVE2 at the leading edge of cells through linking WAVE2 to PIP(3) that is produced near locally activated IGF-IR in response to IGF-I. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. On the validity of the use of a localized approximation for helical beams. I. Formal aspects

    NASA Astrophysics Data System (ADS)

    Gouesbet, Gérard; André Ambrosio, Leonardo

    2018-03-01

    The description of an electromagnetic beam for use in light scattering theories may be carried out by using an expansion over vector spherical wave functions with expansion coefficients expressed in terms of Beam Shape Coefficients (BSCs). A celebrated method to evaluate these BSCs has been the use of localized approximations (with several existing variants). We recently established that the use of any existing localized approximation is of limited validity in the case of Bessel and Mathieu beams. In the present paper, we address a warning against the use of any existing localized approximation in the case of helical beams. More specifically, we demonstrate that a procedure used to validate any existing localized approximation fails in the case of helical beams. Numerical computations in a companion paper will confirm that existing localized approximations are of limited validity in the case of helical beams.

  6. Model for small arms fire muzzle blast wave propagation in air

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Desai, Sachi V.

    2011-11-01

    Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

  7. A dose related response of 6-OHDA on chicken spectral sensitivity and oscillatory potentials of recording electroretinograms.

    PubMed

    Li, X; Schaeffel, F; Konrad, K; Eberhart, Z

    1996-10-01

    To further study the contribution of dopamine system to the local growth controlling mechanisms, a dose related response of 6-hydroxydopamine (6-OHDA) was studied by recording electroretinograms (ERGs). The spectral sensitivity of the b-waves and spectral efficiency function of oscillatory potentials (OPs) including OP1, OP2 and OP3 in 4 different doses group were measured. The effect of ascorbate that must be contained in solution of 6-OHDA was first tested with the spectral sensitivity of the b-waves and a correlation between response of the OPs and age, as well as a difference in both own eyes was analyzed for determining an intra-subject and inter-subject variance. An enhanced response was found in OP1, OP2 with doses of 175 micrograms and OP3 with dose of 150 micrograms, and the effect of OPs was mainly in wavelength from 620 nm to 480 nm. No significant increase was found in the spectral sensitivity of the b-waves. The dose 200 micrograms seemed to be toxic to the retina estimated by both spectral sensitivity of the b-waves and spectral efficiency function of the OPs. The dose 175 micrograms and 150 micrograms of 6-OHDA yielded an effect on the chicken retina.

  8. Linear shock wave therapy in the treatment of erectile dysfunction.

    PubMed

    Pelayo-Nieto, M; Linden-Castro, E; Alias-Melgar, A; Espinosa-Pérez Grovas, D; Carreño-de la Rosa, F; Bertrand-Noriega, F; Cortez-Betancourt, R

    2015-09-01

    Linear Shock Wave Therapy (LSWT) is a new noninvasive therapy that uses low-intensity shock waves to induce local angiogenesis promising modality in the treatment of erectile dysfunction (ED). To evaluate the effectiveness of LSWT in men with vasculogenic erectile dysfunction (ED), in a Tertiary Care Center. Included 15 men aged 45-70 years, sexually active with mild and moderate vascular ED evaluated with the International Index of Erectile Function (IIEF). The study was conducted in three stage: screening, treatment and results. Treatment stage: 4 weekly sessions LSWT (RENOVA ®) 5000 waves (.09mJ/mm(2)). Erectile function was assessed with IIEFF-EF, SEP (Sexual Encounter Profile) and GAQ (Global Assessment Questions) at one and six months after treatment. The rate of success was 80% (12/15). Patients with mild ED (6/15) 40% and moderate ED (9/15) 60%. We found a positive association between IIEF-Basal (average 14.23 pts) and IIEF at one month and six months after therapy (19.69 pts) a difference of 5.46 pts. (P<.013). The feasibility and tolerability of this treatment, and rehabilitation potential features, make it this an attractive new treatment option for patients with ED. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. A statistical survey of ultralow-frequency wave power and polarization in the Hermean magnetosphere.

    PubMed

    James, Matthew K; Bunce, Emma J; Yeoman, Timothy K; Imber, Suzanne M; Korth, Haje

    2016-09-01

    We present a statistical survey of ultralow-frequency wave activity within the Hermean magnetosphere using the entire MErcury Surface, Space ENvironment, GEochemistry, and Ranging magnetometer data set. This study is focused upon wave activity with frequencies <0.5 Hz, typically below local ion gyrofrequencies, in order to determine if field line resonances similar to those observed in the terrestrial magnetosphere may be present. Wave activity is mapped to the magnetic equatorial plane of the magnetosphere and to magnetic latitude and local times on Mercury using the KT14 magnetic field model. Wave power mapped to the planetary surface indicates the average location of the polar cap boundary. Compressional wave power is dominant throughout most of the magnetosphere, while azimuthal wave power close to the dayside magnetopause provides evidence that interactions between the magnetosheath and the magnetopause such as the Kelvin-Helmholtz instability may be driving wave activity. Further evidence of this is found in the average wave polarization: left-handed polarized waves dominate the dawnside magnetosphere, while right-handed polarized waves dominate the duskside. A possible field line resonance event is also presented, where a time-of-flight calculation is used to provide an estimated local plasma mass density of ∼240 amu cm -3 .

  10. How the Electronic Structure in URu2Si2 Changes with Temperature: A High-Resolution Compton Scattering Study

    NASA Astrophysics Data System (ADS)

    Koizumi, Akihisa; Kubo, Yasunori; Motoyama, Gaku; Yamamura, Tomoo; Sakurai, Yoshiharu

    2018-06-01

    We have measured directional Compton profiles on the (001) plane in URu2Si2 single crystal at several temperatures. Two-dimensional electron occupation number densities (2D-EONDs) were obtained from the profiles through electron momentum reconstruction and Lock-Crisp-West folding analyses. We have also performed band calculations based on 5f-electron itinerant and localized models and derived theoretical 2D-EONDs for comparison. The experimental 2D-EOND at 300 K is well described by the localized model, and the 2D-EOND at 10 K is consistent with the theoretical one based on the itinerant model. The difference between 2D-EONDs at 30 and 100 K reflects a gradual change in the electronic structure, which reveals some of the crossover phenomena from localized to itinerant states. The change from localized to itinerant states is also reflected in a B(r) function, which is obtained in the reconstruction analysis and is an autocorrelation function of the wave function in the position space. The process by which the electronic structure in URu2Si2 changes is demonstrated through a series of experimental results.

  11. Experimental study on incident wave speed and the mechanisms of deflagration-to-detonation transition in a bent geometry

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, J.; Teo, C. J.; Chang, P. H.; Khoo, B. C.

    2018-03-01

    The study of deflagration-to-detonation transition (DDT) in bent tubes is important with many potential applications including fuel pipeline and mine tunnel designs for explosion prevention and detonation engines for propulsion. The aim of this study is to exploit low-speed incident shock waves for DDT using an S-shaped geometry and investigate its effectiveness as a DDT enhancement device. Experiments were conducted in a valveless detonation chamber using ethylene-air mixture at room temperature and pressure (303 K, 1 bar). High-speed Schlieren photography was employed to keep track of the wave dynamic evolution. Results showed that waves with velocity as low as 500 m/s can experience a successful DDT process through this S-shaped geometry. To better understand the mechanism, clear images of local explosion processes were captured in either the first curved section or the second curved section depending on the inlet wave velocity, thus proving that this S-shaped tube can act as a two-stage device for DDT. Owing to the curved wall structure, the passing wave was observed to undergo a continuous compression phase which could ignite the local unburnt mixture and finally lead to a local explosion and a detonation transition. Additionally, the phenomenon of shock-vortex interaction near the wave diffraction region was also found to play an important role in the whole process. It was recorded that this interaction could not only result in local head-on reflection of the reflected wave on the wall that could ignite the local mixture, and it could also contribute to the recoupling of the shock-flame complex when a detonation wave is successfully formed in the first curved section.

  12. Microstructure of wave propagation during combustion synthesis of advanced materials: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Hwang, Stephen

    Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between quasihomogeneous and relay-race mechanisms, as functions of the initial organization of the reaction medium (i.e. particle size and porosity). In conjunction with the experiments, a microheterogeneous cell model was developed that simulates the local propagation of the combustion wave. Accounting for the stochastically organized medium with non-uniform properties, calculated results for the microstructural parameters of the combustion wave, and their dependence on density and reactant particle size, were in good qualitative agreement with experimental data.

  13. Fine Spectral Properties of Langmuir Waves Observed Upstream of the Saturn's Bowshock by the Cassini Wideband Receiver

    NASA Astrophysics Data System (ADS)

    Hospodarsky, G. B.; Pisa, D.; Santolik, O.; Kurth, W. S.; Soucek, J.; Basovnik, M.; Gurnett, D. A.; Arridge, C. S.

    2015-12-01

    Langmuir waves are commonly observed in the upstream regions of planetary and interplanetary shock. Solar wind electrons accelerated at the shock front are reflected back into the solar wind and can form electron beams. In regions with beams, the electron distribution becomes unstable and electrostatic waves can be generated. The process of generation and the evolution of electrostatic waves strongly depends on the solar wind electron distribution and generally exhibits complex behavior. Langmuir waves can be identified as intense narrowband emission at a frequency very close to the local plasma frequency and weaker broadband waves below and above the plasma frequency deeper in the downstream region. We present a detailed study of Langmuir waves detected upstream of the Saturnian bowshock by the Cassini spacecraft. Using data from the Radio and Plasma Wave Science (RPWS), Magnetometer (MAG) and Cassini Plasma Spectrometer (CAPS) instruments we have analyzed several periods containing the extended waveform captures by the Wideband Receiver. Langmuir waves are a bursty emission highly controlled by variations in solar wind conditions. Unfortunately due to a combination of instrumental field of view and sampling period, it is often difficult to identify the electron distribution function that is unstable and able to generate Langmuir waves. We used an electrostatic version of particle-in-cell simulation of the Langmuir wave generation process to reproduce some of the more subtle observed spectral features and help understand the late stages of the instability and interactions in the solar wind plasma.

  14. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczykowski, B., E-mail: bartlomiej.graczykowski@icn.cat; Alzina, F.; Gomis-Bresco, J.

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection,more » and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.« less

  15. Reconstructing the Sky Location of Gravitational-Wave Detected Compact Binary Systems: Methodology for Testing and Comparison

    NASA Technical Reports Server (NTRS)

    Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; hide

    2014-01-01

    The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.

  16. Reconstructing the sky location of gravitational-wave detected compact binary systems: Methodology for testing and comparison

    NASA Astrophysics Data System (ADS)

    Sidery, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; Kalogera, V.; Mandel, I.; O'Shaughnessy, R.; Pitkin, M.; Price, L.; Raymond, V.; Röver, C.; Singer, L.; van der Sluys, M.; Smith, R. J. E.; Vecchio, A.; Veitch, J.; Vitale, S.

    2014-04-01

    The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiral-only signals from compact binary systems with a total mass of ≤20M⊙ and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor ≈20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor ≈1000 longer processing time.

  17. Geometrical optics in the near field: local plane-interface approach with evanescent waves.

    PubMed

    Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari

    2015-01-12

    We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.

  18. Long-term survey of lion-roar emissions inside the terrestrial magnetosheath obtained from the STAFF-SA measurements onboard the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Pisa, D.; Krupar, V.; Kruparova, O.; Santolik, O.

    2017-12-01

    Intense whistler-mode emissions known as 'lion-roars' are often observed inside the terrestrial magnetosheath, where the solar wind plasma flow slows down, and the local magnetic field increases ahead of a planetary magnetosphere. Plasma conditions in this transient region lead to the electron temperature anisotropy, which can result in the whistler-mode waves. The lion-roars are narrow-band emissions with typical frequencies between 0.1-0.5 Fce, where Fce is the electron cyclotron frequency. We present results of a long-term survey obtained by the Spatio Temporal Analysis Field Fluctuations - Spectral Analyzer (STAFF-SA) instruments on board the four Cluster spacecraft between 2001 and 2010. We have visually identified the time-frequency intervals with the intense lion-roar signature. Using the Singular Value Decomposition (SVD) method, we analyzed the wave propagation properties. We show the spatial, frequency and wave power distributions. Finally, the wave properties as a function of upstream solar wind conditions are discussed.

  19. Quantitative Modeling of Coupled Piezo-Elastodynamic Behavior of Piezoelectric Actuators Bonded to an Elastic Medium for Structural Health Monitoring: A Review

    PubMed Central

    Huang, Guoliang; Song, Fei; Wang, Xiaodong

    2010-01-01

    Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized. PMID:22319319

  20. Intracellular signal propagation in a two-dimensional autocatalytic reaction model.

    PubMed

    Castiglione, F; Bernaschi, M; Succi, S; Heinrich, R; Kirschner, M W

    2002-09-01

    We study a simple reaction scheme in a two-dimensional lattice of particles or molecules with a refractory state. We analyze the dynamics of the propagating front as a function of physical-chemical properties of the host medium. The anisotropy of the medium significantly affects the smoothness of the wave front. Similarly, if particles or molecules may diffuse slowly to neighboring sites, then the front wave is more likely to be irregular. Both situations affect the ability of the whole system to relax to the original state, which is a required feature in the biological cells. Attempts to map this simple reaction scheme to reactions involved in the intracellular pathways suggest that, in some cases, signal transduction might take both connotation of a random walk and a propagating wave, depending on the local density of the medium. In particular, a sufficient condition for the appearance of waves in high-density regions of the media, is the existence of at least one autocatalytic reaction in the chain of reactions characterizing the pathway.

  1. DOS cones along atomic chains

    NASA Astrophysics Data System (ADS)

    Kwapiński, Tomasz

    2017-03-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin-orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.

  2. Saturation of low-threshold two-plasmon parametric decay leading to excitation of one localized upper hybrid wave

    NASA Astrophysics Data System (ADS)

    Gusakov, E. Z.; Popov, A. Yu.; Saveliev, A. N.

    2018-06-01

    We analyze the saturation of the low-threshold absolute parametric decay instability of an extraordinary pump wave leading to the excitation of two upper hybrid (UH) waves, only one of which is trapped in the vicinity of a local maximum of the plasma density profile. The pump depletion and the secondary decay of the localized daughter UH wave are treated as the most likely moderators of a primary two-plasmon decay instability. The reduced equations describing the nonlinear saturation phenomena are derived. The general analytical consideration is accompanied by the numerical analysis performed under the experimental conditions typical of the off-axis X2-mode ECRH experiments at TEXTOR. The possibility of substantial (up to 20%) anomalous absorption of the pump wave is predicted.

  3. A k · p treatment of edge states in narrow 2D topological insulators, with standard boundary conditions for the wave function and its derivative.

    PubMed

    Klipstein, P C

    2018-07-11

    For 2D topological insulators with strong electron-hole hybridization, such as HgTe/CdTe quantum wells, the widely used 4  ×  4 k · p Hamiltonian based on the first electron and heavy hole sub-bands yields an equal number of physical and spurious solutions, for both the bulk states and the edge states. For symmetric bands and zero wave vector parallel to the sample edge, the mid-gap bulk solutions are identical to the edge solutions. In all cases, the physical edge solution is exponentially localized to the boundary and has been shown previously to satisfy standard boundary conditions for the wave function and its derivative, even in the limit of an infinite wall potential. The same treatment is now extended to the case of narrow sample widths, where for each spin direction, a gap appears in the edge state dispersions. For widths greater than 200 nm, this gap is less than half of the value reported for open boundary conditions, which are called into question because they include a spurious wave function component. The gap in the edge state dispersions is also calculated for weakly hybridized quantum wells such as InAs/GaSb/AlSb. In contrast to the strongly hybridized case, the edge states at the zone center only have pure exponential character when the bands are symmetric and when the sample has certain characteristic width values.

  4. A Density Functional Study of Atomic Hydrogen and Oxygen Chemisorptions on the (0001) Surface of Double Hexagonal Close Packed Americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, Pratik; Atta-Fynn, Raymond; Ray, Asok

    2008-03-01

    Ab initio total energy calculations within the framework of density functional theory have been performed for atomic hydrogen and oxygen chemisorptions on the (0001) surface of double hexagonal packed americium using a full-potential all-electron linearized augmented plane wave plus local orbitals (FLAPW+lo) method. The three-fold hollow hcp site was found to be the most stable site for H adsorption, while the two-fold bridge adsorption site was found to be the most stable site for O adsorption. Chemisorption energies and adsorption geometries for different adsorption sites will be discussed. The change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the adatom will be discussed. The implications of chemisorption on Am 5f electron localization-delocalization will also be discussed.

  5. Duality in Power-Law Localization in Disordered One-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Deng, X.; Kravtsov, V. E.; Shlyapnikov, G. V.; Santos, L.

    2018-03-01

    The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, 1 /ra . For randomly spaced particles, these models present an effective peculiar disorder that leads to surprising localization properties. We show that in one-dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law localized for any value of a >0 . Moreover, we show that our model is an example of a new universality class of models with power-law hopping, characterized by a duality between systems with long-range hops (a <1 ) and short-range hops (a >1 ), in which the wave function amplitude falls off algebraically with the same power γ from the localization center.

  6. The crypto-Hermitian smeared-coordinate representation of wave functions

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    2011-08-01

    In discrete-coordinate quantum models the kinematical observable of position need not necessarily be chosen local (i.e., diagonal). Its smearing is selected in the nearest-neighbor form of a real asymmetric (i.e., crypto-Hermitian) tridiagonal matrix Qˆ. Via Gauss-Hermite illustrative example we show how such an option restricts the class of admissible dynamical observables (sampled here just by the Hamiltonian).

  7. [Physical factors in the treatment and rehabilitation of patients with chronic prostatitis complicated by impotence].

    PubMed

    Karpukhin, I V; Bogomol'nyĭ, V A

    1999-01-01

    103 patients with chronic prostatitis complicated by erectile impotence were given combined treatment including shock-wave massage, mud applications, local vacuum magnetotherapy. This combination was found to stimulate copulative function, urodynamics of the lower urinary tracts, to produce an antiinflammatory effect. These benefits allow to recommend the above physical factors for management of chronic prostatitis patients with copulative dysfunction.

  8. Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.

    1993-01-01

    Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.

  9. Lightning and plasma wave observations from the galileo flyby of venus.

    PubMed

    Gurnett, D A; Kurth, W S; Roux, A; Gendrin, R; Kennel, C F; Bolton, S J

    1991-09-27

    During the Galileo flyby of Venus the plasma wave instrument was used to search for impulsive radio signals from lightning and to investigate locally generated plasma waves. A total of nine events were detected in the frequency range from 100 kilohertz to 5.6 megahertz. Although the signals are weak, lightning is the only known source of these signals. Near the bow shock two types of locally generated plasma waves were observed, low-frequency electromagnetic waves from about 5 to 50 hertz and electron plasma oscillation at about 45 kilohertz. The plasma oscillations have considerable fine structure, possibly because of the formation of soliton-like wave packets.

  10. Non-local features of a hydrodynamic pilot-wave system

    NASA Astrophysics Data System (ADS)

    Nachbin, Andre; Couchman, Miles; Bush, John

    2016-11-01

    A droplet walking on the surface of a vibrating fluid bath constitutes a pilot-wave system of the form envisaged for quantum dynamics by Louis de Broglie: a particle moves in resonance with its guiding wave field. We here present an examination of pilot-wave hydrodynamics in a confined domain. Specifically, we present a one-dimensional water wave model that describes droplets walking in single and multiple cavities. The cavities are separated by a submerged barrier, and so allow for the study of tunneling. They also highlight the non-local dynamical features arising due to the spatially-extended wave field. Results from computational simulations are complemented by laboratory experiments.

  11. Lightning and plasma wave observations from the Galileo flyby of Venus

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Roux, A.; Gendrin, R.; Kennel, C. F.; Bolton, S. J.

    1991-01-01

    Durig the Galileo flyby of Venus the plasma wave instrument was used to search for impulsive radio signals from lightning and to investigate locally generated plasma waves. A total of nine events were detected in the frequency range from 100 kilohertz to 5.6 megahertz. Although the signals are weak, lightning is the only known source of these signals. Near the bow shock two types of locally generated plasma waves were observed, low-frequency electromagnetic waves from about 5 to 50 hertz and electron plasma oscillation at about 45 kilohertz. The plasma oscillations have considerable fine structure, possibly because of the formation of soliton-like wave packets.

  12. Fermion localization on a split brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.

    2011-05-15

    In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.

  13. Thermoviscoplastic response of thin plates subjected to intense local heating

    NASA Technical Reports Server (NTRS)

    Byrom, Ted G.; Allen, David H.; Thornton, Earl A.

    1992-01-01

    A finite element method is employed to investigate the thermoviscoplastic response of a half-cylinder to intense localized transient heating. Thermoviscoplastic material behavior is characterized by the Bodner-Partom constitutive model. Structure geometry is modeled with a three-dimensional assembly of CST-DKT plate elements incorporating the large deflection von Karman assumptions. The paper compares the results of a dynamic analysis with a quasi-static analysis for the half-cylinder structure with a step-function transient temperature loading similar to that which may be encountered with shock wave interference on a hypersonic leading edge.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voskoboynikov, O., E-mail: vam@faculty.nctu.edu.tw

    We theoretically investigate suppression and recovery of the Aharonov-Bohm oscillations of the diamagnetic response of electrons (holes) confined in self-assembled In{sub c}Ga{sub 1−c}As/GaAs semiconductor reflection asymmetrical quantum rings. Based on the mapping method and gauge-origin-independent definition for the magnetic vector potential we simulate the energies and wave functions of the electron (hole) under external magnetic and electric fields. We examine the transformation of the ground state wave function of the electron (hole) in reflection asymmetrical rings from localized in one of the potential valleys (dotlike shape of the wave function) to distributed over all volume of the ring (ringlike shape)more » under an appropriate lateral electric field. This transformation greatly recovers the electron (hole) diamagnetic coefficient and Aharonov-Bohm oscillations of the diamagnetic response of the ring. However, the recovering electric field for the first Aharonov-Bohm diamagnetic oscillation of the electron is a suppressing one for the hole (and vice versa). This can block the recovery of the optical Aharonow-Bohm effect in In{sub c}Ga{sub 1−c}As/GaAs asymmetrically wobbled rings. However, the recovery of the Aharonov-Bohm oscillations for the independent electron (hole) by the external electric field remains interesting and feasible objective for the asymmetric rings.« less

  15. Regional Body-Wave Attenuation Using a Coda Source Normalization Method: Application to MEDNET Records of Earthquakes in Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, W R; Mayeda, K; Malagnini, L

    2007-02-01

    We develop a new methodology to determine apparent attenuation for the regional seismic phases Pn, Pg, Sn, and Lg using coda-derived source spectra. The local-to-regional coda methodology (Mayeda, 1993; Mayeda and Walter, 1996; Mayeda et al., 2003) is a very stable way to obtain source spectra from sparse networks using as few as one station, even if direct waves are clipped. We develop a two-step process to isolate the frequency-dependent Q. First, we correct the observed direct wave amplitudes for an assumed geometrical spreading. Next, an apparent Q, combining path and site attenuation, is determined from the difference between themore » spreading-corrected amplitude and the independently determined source spectra derived from the coda methodology. We apply the technique to 50 earthquakes with magnitudes greater than 4.0 in central Italy as recorded by MEDNET broadband stations around the Mediterranean at local-to-regional distances. This is an ideal test region due to its high attenuation, complex propagation, and availability of many moderate sized earthquakes. We find that a power law attenuation of the form Q(f) = Q{sub 0}f{sup Y} fit all the phases quite well over the 0.5 to 8 Hz band. At most stations, the measured apparent Q values are quite repeatable from event to event. Finding the attenuation function in this manner guarantees a close match between inferred source spectra from direct waves and coda techniques. This is important if coda and direct wave amplitudes are to produce consistent seismic results.« less

  16. Simultaneous Observations of Atmospheric Tides from Combined in Situ and Remote Observations at Mars from the MAVEN Spacecraft

    NASA Technical Reports Server (NTRS)

    England, Scott L.; Liu, Guiping; Withers, Paul; Yigit, Erdal; Lo, Daniel; Jain, Sonal; Schneider, Nicholas M. (Inventor); Deighan, Justin; McClintock, William E.; Mahaffy, Paul R.; hide

    2016-01-01

    We report the observations of longitudinal variations in the Martian thermosphere associated with nonmigrating tides. Using the Neutral Gas Ion Mass Spectrometer (NGIMS) and the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft, this study presents the first combined analysis of in situ and remote observations of atmospheric tides at Mars for overlapping volumes, local times, and overlapping date ranges. From the IUVS observations, we determine the altitude and latitudinal variation of the amplitude of the nonmigrating tidal signatures, which is combined with the NGIMS, providing information on the compositional impact of these waves. Both the observations of airglow from IUVS and the CO2 density observations from NGIMS reveal a strong wave number 2 signature in a fixed local time frame. The IUVS observations reveal a strong latitudinal dependence in the amplitude of the wave number 2 signature. Combining this with the accurate CO2 density observations from NGIMS, this would suggest that the CO2 density variation is as high as 27% at 0-10 deg latitude. The IUVS observations reveal little altitudinal dependence in the amplitude of the wave number 2 signature, varying by only 20% from 160 to 200 km. Observations of five different species with NGIMS show that the amplitude of the wave number 2 signature varies in proportion to the inverse of the species scale height, giving rise to variation in composition as a function of longitude. The analysis and discussion here provide a roadmap for further analysis as additional coincident data from these two instruments become available.

  17. Interfacial wave theory for dendritic structure of a growing needle crystal. I - Local instability mechanism. II - Wave-emission mechanism at the turning point

    NASA Technical Reports Server (NTRS)

    Xu, Jian-Jun

    1989-01-01

    The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.

  18. Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves.

    PubMed

    Shera, Christopher A

    2003-07-01

    Mammalian spontaneous otoacoustic emissions (SOAEs) have been suggested to arise by three different mechanisms. The local-oscillator model, dating back to the work of Thomas Gold, supposes that SOAEs arise through the local, autonomous oscillation of some cellular constituent of the organ of Corti (e.g., the "active process" underlying the cochlear amplifier). Two other models, by contrast, both suppose that SOAEs are a global collective phenomenon--cochlear standing waves created by multiple internal reflection--but differ on the nature of the proposed power source: Whereas the "passive" standing-wave model supposes that SOAEs are biological noise, passively amplified by cochlear standing-wave resonances acting as narrow-band nonlinear filters, the "active" standing-wave model supposes that standing-wave amplitudes are actively maintained by coherent wave amplification within the cochlea. Quantitative tests of key predictions that distinguish the local-oscillator and global standing-wave models are presented and shown to support the global standing-wave model. In addition to predicting the existence of multiple emissions with a characteristic minimum frequency spacing, the global standing-wave model accurately predicts the mean value of this spacing, its standard deviation, and its power-law dependence on SOAE frequency. Furthermore, the global standing-wave model accounts for the magnitude, sign, and frequency dependence of changes in SOAE frequency that result from modulations in middle-ear stiffness. Although some of these SOAE characteristics may be replicable through artful ad hoc adjustment of local-oscillator models, they all arise quite naturally in the standing-wave framework. Finally, the statistics of SOAE time waveforms demonstrate that SOAEs are coherent, amplitude-stabilized signals, as predicted by the active standing-wave model. Taken together, the results imply that SOAEs are amplitude-stabilized standing waves produced by the cochlea acting as a biological, hydromechanical analog of a laser oscillator. Contrary to recent claims, spontaneous emission of sound from the ear does not require the autonomous mechanical oscillation of its cellular constituents.

  19. Application of confocal surface wave microscope to self-calibrated attenuation coefficient measurement by Goos-Hänchen phase shift modulation.

    PubMed

    Pechprasarn, Suejit; Chow, Terry W K; Somekh, Michael G

    2018-06-04

    In this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave. Such waves with opposing phase and group velocities are well known in acoustics and electromagnetic metamaterials but usually require structured or layered surfaces, here the effective wave is produced externally in the microscope illumination path. Key features of the technique developed here are that it (i) is self-calibrating and (ii) can distinguish between attenuation arising from ohmic loss (k″ Ω ) and coupling (reradiation) loss (k″ c ). This latter feature has not been achieved with existing methods. In addition to providing a unique measurement the measurement occurs of over a localized region of a few microns. The results were then validated against the surface plasmons (SP) dip measurement in the BFP and a theoretical model based on a simplified Green's function.

  20. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  1. The Src substrate SKAP2 regulates actin assembly by interacting with WAVE2 and cortactin proteins.

    PubMed

    Shimamura, Shintaro; Sasaki, Kazuki; Tanaka, Masamitsu

    2013-01-11

    In our attempt to screen for substrates of Src family kinases in glioblastoma, Src kinase-associated phosphoprotein 2 (SKAP2) was identified. Although SKAP2 has been suggested to be associated with integrin-mediated adhesion of hematopoietic cells, little is known about its molecular function and the effects in other types of cells and tumors. Here, we demonstrate that SKAP2 physically associates with actin assembly factors WAVE2 and cortactin and inhibits their interaction. Cortactin is required for the membrane localization of WAVE2, and SKAP2 suppresses actin polymerization mediated by WAVE2 and cortactin in vitro. Knockdown of SKAP2 in NIH3T3 accelerated cell migration and enhanced translocation of WAVE2 to the cell membrane, and those effects of SKAP2 depend on the binding activity of SKAP2 to WAVE2. Furthermore, reduction of SKAP2 in the glioblastoma promoted tumor invasion both in ex vivo organotypic rat brain slices and immune-deficient mouse brains. These results suggest that SKAP2 negatively regulates cell migration and tumor invasion in fibroblasts and glioblastoma cells by suppressing actin assembly induced by the WAVE2-cortactin complex, indicating that SKAP2 may be a novel candidate for the suppressor of tumor progression.

  2. The Src Substrate SKAP2 Regulates Actin Assembly by Interacting with WAVE2 and Cortactin Proteins*

    PubMed Central

    Shimamura, Shintaro; Sasaki, Kazuki; Tanaka, Masamitsu

    2013-01-01

    In our attempt to screen for substrates of Src family kinases in glioblastoma, Src kinase-associated phosphoprotein 2 (SKAP2) was identified. Although SKAP2 has been suggested to be associated with integrin-mediated adhesion of hematopoietic cells, little is known about its molecular function and the effects in other types of cells and tumors. Here, we demonstrate that SKAP2 physically associates with actin assembly factors WAVE2 and cortactin and inhibits their interaction. Cortactin is required for the membrane localization of WAVE2, and SKAP2 suppresses actin polymerization mediated by WAVE2 and cortactin in vitro. Knockdown of SKAP2 in NIH3T3 accelerated cell migration and enhanced translocation of WAVE2 to the cell membrane, and those effects of SKAP2 depend on the binding activity of SKAP2 to WAVE2. Furthermore, reduction of SKAP2 in the glioblastoma promoted tumor invasion both in ex vivo organotypic rat brain slices and immune-deficient mouse brains. These results suggest that SKAP2 negatively regulates cell migration and tumor invasion in fibroblasts and glioblastoma cells by suppressing actin assembly induced by the WAVE2-cortactin complex, indicating that SKAP2 may be a novel candidate for the suppressor of tumor progression. PMID:23161539

  3. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  4. Kinetic Alfvén Wave Generation by Large-scale Phase Mixing

    NASA Astrophysics Data System (ADS)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Matthaeus, W. H.; Malara, F.

    2015-12-01

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length dp may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to dp and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.

  5. Wave-function description of conductance mapping for a quantum Hall electron interferometer

    NASA Astrophysics Data System (ADS)

    Kolasiński, K.; Szafran, B.

    2014-04-01

    Scanning gate microscopy of quantum point contacts (QPC) in the integer quantum Hall regime is considered in terms of the scattering wave functions with a finite-difference implementation of the quantum transmitting boundary approach. Conductance (G) maps for a clean QPC as well as for a system including an antidot within the QPC constriction are evaluated. The steplike locally flat G maps for clean QPCs turn into circular resonances that are reentrant in an external magnetic field when the antidot is introduced to the constriction. The current circulation around the antidot and the spacing of the resonances at the magnetic field scale react to the probe approaching the QPC. The calculated G maps with a rigid but soft antidot potential reproduce the features detected recently in the electron interferometer [F. Martins et al., Sci. Rep. 3, 1416 (2013), 10.1038/srep01416].

  6. Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Suzuki, Hiroshi

    2015-03-01

    It is known that the gauge field and its composite operators evolved by the Yang-Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit.

  7. Ab initio study of the electrostatic multipole nature of torsional potentials in CH3SSCH3, CH3SSH, and HOOH

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Lai, J.; Luo, N.; Sun, S.; Shibata, M.; Ornstein, R.; Rein, R.

    1991-01-01

    The origin of torsional potentials in H3CSSCH3, H3CSSH, and HOOH and the anisotropy of the local charge distribution has been analyzed in terms of atomic multipoles calculated from the ab initio LCAO-MO-SCF wave function in the 6-31G* basis set. The results indicate that for longer -S-S-bonds the major contribution to these torsional barriers are electrostatic interactions of the atomic multipoles located on two atoms forming the rotated bond. This finding demonstrates the important role of electrostatic 1-2 interatomic interactions, usually neglected in conformational studies. It also opens the possibility to derive directly from accurate ab initio wave functions a simple nonempirical torsional potential involving atomic multipoles of two bonded atoms defining the torsional angle. For shorter -O-O- bonds, use of more precise models and inclusion of 1-3 interactions seems to be necessary.

  8. Central charge from adiabatic transport of cusp singularities in the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Can, Tankut

    2017-04-01

    We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.

  9. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  10. Magnetic field effect on photoionization cross-section of hydrogen-like impurity in cylindrical quantum wire

    NASA Astrophysics Data System (ADS)

    Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.

    2008-01-01

    We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.

  11. Rényi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems.

    PubMed

    Varga, Imre; Pipek, János

    2003-08-01

    We discuss some properties of the generalized entropies, called Rényi entropies, and their application to the case of continuous distributions. In particular, it is shown that these measures of complexity can be divergent; however, their differences are free from these divergences, thus enabling them to be good candidates for the description of the extension and the shape of continuous distributions. We apply this formalism to the projection of wave functions onto the coherent state basis, i.e., to the Husimi representation. We also show how the localization properties of the Husimi distribution on average can be reconstructed from its marginal distributions that are calculated in position and momentum space in the case when the phase space has no structure, i.e., no classical limit can be defined. Numerical simulations on a one-dimensional disordered system corroborate our expectations.

  12. Spiral-Wave Dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes and Fibroblasts

    PubMed Central

    Nayak, Alok Ranjan; Shajahan, T. K.; Panfilov, A. V.; Pandit, Rahul

    2013-01-01

    Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as , the fibroblast resting-membrane potential, the fibroblast conductance , and the MF gap-junctional coupling . Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as , and , and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity decreases as a function of , for zero-sided and one-sided couplings; however, for two-sided coupling, decreases initially and then increases as a function of , and, eventually, we observe that conduction failure occurs for low values of . In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling or . Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities. PMID:24023798

  13. Local spin density functional investigations of a manganite with perovskite-type derived structures

    NASA Astrophysics Data System (ADS)

    Matar, S. F.; Studer, F.; Siberchicot, B.; Subramanian, M. A.; Demazeau, G.; Etourneau, J.

    1998-11-01

    The electronic and magnetic structures of the perovskite CaMnO3 are self-consistently calculated assuming two crystal structures at the same formula unit volume within the local spin density functional theory and the augmented spherical wave (ASW) method. From the comparisons of energy differences between the different magnetic states the ground state configuration is an insulator with G-type ordering. This result together with the magnitudes of the magnetic moments are in agreement with experiment. The influence of mixing between Mn and O is found spin dependent from the analysis of the crystal orbital overlap population (COOP) which enable to describe the chemical bond. The calculations underline a feature of a half metallic ferromagnet which could be connected with the colossal magnetoresistance (CMR) property of related compounds.

  14. Effect of Oblique Electromagnetic Ion Cyclotron Waves on Relativistic Electron Scattering: CRRES Based Calculation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2007-01-01

    We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.

  15. Transversally periodic solitary gravity–capillary waves

    PubMed Central

    Milewski, Paul A.; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  16. Radial shock wave treatment alone is less efficient than radial shock wave treatment combined with tissue-specific plantar fascia-stretching in patients with chronic plantar heel pain.

    PubMed

    Rompe, Jan D; Furia, John; Cacchio, Angelo; Schmitz, Christoph; Maffulli, Nicola

    2015-12-01

    Whether shock wave therapy or shock wave therapy combined with plantar fascia-specific stretching is more efficient in treating chronic plantar heel pain remains unclear. The aim of the study was to test the null hypothesis of no difference of these two forms of management for patients who had unilateral plantar fasciopathy for a minimum duration of twelve months and which had failed at least three other forms of treatment. One hundred and fifty-two patients with chronic plantar fasciopathy were assigned to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group 1, n = 73) or to receive the identical shock wave treatment and to perform an eight-week plantar fascia-specific stretching program (Group 2, n = 79). All patients completed the nine-item pain subscale of the validated Foot Function Index and a subject-relevant outcome questionnaire. Patients were evaluated at baseline, and at two, four, and twenty-four months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first steps of walking in the morning) on this Index, and satisfaction with treatment. No difference in mean age, sex, weight or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with shock-wave therapy plus plantar fascia-specific stretching than those managed with shock-wave therapy alone (p < 0.001), as well as individually for item 2 (p < 0.001). Twenty-four patients in Group 1 (32%) versus forty-seven patients in Group 2 (59%) were satisfied with the treatment (p < 0.001). Significant differences persisted at four months, but not at twenty-four months. A program of manual stretching exercises specific to the plantar fascia in combination with repetitive low-energy radial shock-wave therapy is more efficient than repetitive low-energy radial shock-wave therapy alone for the treatment of chronic symptoms of proximal plantar fasciopathy. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  17. Bell Test experiments explained without entanglement

    NASA Astrophysics Data System (ADS)

    Boyd, Jeffrey

    2011-04-01

    by Jeffrey H. Boyd. Jeffreyhboyd@gmail.com. John Bell proposed a test of what was called "local realism." However that is a different view of reality than we hold. Bell incorrectly assumed the validity of wave particle dualism. According to our model waves are independent of particles; wave interference precedes the emission of a particle. This results in two conclusions. First the proposed inequalities that apply to "local realism" in Bell's theorem do not apply to this model. The alleged mathematics of "local realism" is therefore wrong. Second, we can explain the Bell Test experimental results (such as the experiments done at Innsbruck) without any need for entanglement, non-locality, or particle superposition.

  18. Direct evidence for EMIC wave scattering of relativistic electrons in space: EMIC-Driven Electron Losses in Space

    DOE PAGES

    Zhang, X. -J.; Li, W.; Ma, Q.; ...

    2016-07-01

    Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes.more » EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. In conclusion, by comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth’s outer radiation belt.« less

  19. Maskless localized patterning of biomolecules on carbon nanotube microarray functionalized by ultrafine atmospheric pressure plasma jet using biotin-avidin system

    NASA Astrophysics Data System (ADS)

    Abuzairi, Tomy; Okada, Mitsuru; Purnamaningsih, Retno Wigajatri; Poespawati, Nji Raden; Iwata, Futoshi; Nagatsu, Masaaki

    2016-07-01

    Ultrafine plasma jet is a promising technology with great potential for nano- or micro-scale surface modification. In this letter, we demonstrated the use of ultrafine atmospheric pressure plasma jet (APPJ) for patterning bio-immobilization on vertically aligned carbon nanotube (CNT) microarray platform without a physical mask. The biotin-avidin system was utilized to demonstrate localized biomolecule patterning on the biosensor devices. Using ±7.5 kV square-wave pulses, the optimum condition of plasma jet with He/NH3 gas mixture and 2.5 s treatment period has been obtained to functionalize CNTs. The functionalized CNTs were covalently linked to biotin, bovine serum albumin (BSA), and avidin-(fluorescein isothiocyanate) FITC, sequentially. BSA was necessary as a blocking agent to protect the untreated CNTs from avidin adsorption. The localized patterning results have been evaluated from avidin-FITC fluorescence signals analyzed using a fluorescence microscope. The patterning of biomolecules on the CNT microarray platform using ultrafine APPJ provides a means for potential application of microarray biosensors based on CNTs.

  20. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4 to 25 kHz

    PubMed Central

    Rosowski, John J.; Cheng, Jeffrey Tao; Ravicz, Michael E.; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme

    2009-01-01

    Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f > 4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined. PMID:19328841

Top