Sample records for wave guide resonance

  1. Resonance scattering in quantum wave guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsen'ev, A A

    2003-02-28

    The interaction of a quantum wave guide with a resonator is studied within the frame of the Birman-Kato scattering theory. The existence of poles of the scattering matrix is proved and the jump of the scattering amplitude near a resonance is calculated.

  2. Waveguiding by a locally resonant metasurface

    NASA Astrophysics Data System (ADS)

    Maznev, A. A.; Gusev, V. E.

    2015-09-01

    Dispersion relations for acoustic and electromagnetic waves guided by resonant inclusions located at the surface of an elastic solid or an interface between two media are analyzed theoretically within the effective medium approximation. Oscillators on the surface of an elastic half-space are shown to give rise to a Love-type surface acoustic wave only existing below the oscillator frequency. A simple dispersion relation governing this system is shown to also hold for electromagnetic waves guided by Lorentz oscillators at an interface between two media with equal dielectric constants. Different kinds of behavior of the dispersion of the resonantly guided mode are identified, depending on whether the bulk wave in the absence of oscillators can propagate along the surface or interface.

  3. Direct and Inverse Techniques of Guided-Mode Resonance Filters Designs

    NASA Technical Reports Server (NTRS)

    Tibuleac, Sorin; Magnusson, Robert; Maldonado, Theresa A.; Zuffada, Cinzia

    1997-01-01

    Guided-mode resonances arise in single or multilayer waveguides where one or more homogeneous layers are replaced by diffraction gratings (Fig. 1.) The diffractive element enables an electromagnetic wave incident on a waveguide grating to be coupled to the waveguide modes supportable by the structure in the absence of the modulation (i.e. the difference between the high and low dielectric constants of the grating) at specific values of the wavelength and incident angle. The periodic modulation of the guide makes the structure leaky, preventing sustained propagation of modes in the waveguide and coupling the waves out into the substrate and cover. As the wavelength is varied around resonance a rapid variation in the intensities of the external propagating waves occurs. By selecting a grating period small enough to eliminate the higher-order propagating waves, an increase in the zero-order intensities up to 100% can result. The pronounced frequency selectivity of guided-mode resonances in dielectric waveguide gratings can be applied to design high-efficiency reflection and transmission filters [1-3].

  4. Guided-Wave Optical Biosensors

    PubMed Central

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  5. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.; Kiesling, J.D.

    1963-06-11

    A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)

  6. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo

    2016-08-25

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry–Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. As a result, we show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectorsmore » not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors.« less

  7. Excitation condition analysis of guided wave on PFA tubes for ultrasonic flow meter.

    PubMed

    Li, Xuan; Xiao, Xufeng; Cao, Li

    2016-12-01

    Impurity accumulation, which decreases the accuracy of flow measurement, is a critical problem when applying Z-shaped or U-shaped ultrasonic flow meters on straight PFA tubes. It can be expected that the guided wave can be used to implement flow measurement on straight PFA tubes. In this paper, the propagation of guided wave is explained by finite element simulations for the flow meter design. Conditions of guided wave generation, including the excitation frequency and the wedge structure, are studied in the simulations. The wedge is designed as a cone which is friendly to be manufactured and installed. The cone angle, the piezoelectric wafer's resonant frequency and the vibration directions are studied in the simulations. The simulations shows that the propagation of guided wave in thin PFA tubes is influenced by the piezoelectric wafers' resonant frequency and the vibration direction when the mode is on the 'water line'. Based on the results of the simulations, an experiment is conducted to verify the principles of excitation conditions, which performs flow measurement on a straight PFA tube well. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Electron wind in strong wave guide fields

    NASA Astrophysics Data System (ADS)

    Krienen, F.

    1985-03-01

    The X-ray activity observed near highly powered waveguide structures is usually caused by local electric discharges originating from discontinuities such as couplers, tuners or bends. In traveling waves electrons move in the direction of the power flow. Seed electrons can multipactor in a traveling wave, the moving charge pattern is different from the multipactor in a resonant structure and is self-extinguishing. The charge density in the wave guide will modify impedance and propagation constant of the wave guide. The radiation level inside the output wave guide of the SLAC, 50 MW, S-band, klystron is estimated. Possible contributions of radiation to window failure are discussed.

  9. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu

    2016-07-15

    Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less

  10. Behavior of piezoelectric wafer active sensor in various media

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay

    The dissertation addresses structural health monitoring (SHM) techniques using ultrasonic waves generated by piezoelectric wafer active sensors (PWAS) with an emphasis on the development of theoretical models of standing harmonic waves and guided waves. The focal objective of the research is to extend the theoretical study of electro-mechanical coupled PWAS as a resonator/transducer that interacts with standing and traveling waves in various media through electro-mechanical impedance spectroscopy (EMIS) method and guided wave propagation. The analytical models are developed and the coupled field finite element analysis (CF-FEA) models are simulated and verified with experiments. The dissertation is divided into two parts with respect to the developments in EMIS methods and GWP methods. In the first part, analytical and finite element models have been developed for the simulation of PWAS-EMIS in in-plane (longitudinal) and out-of-plane (thickness) mode. Temperature effects on free PWAS-EMIS are also discussed with respect to the in-plane mode. Piezoelectric material degradation on certain electrical and mechanical properties as the temperature increases is simulated by our analytical model for in-plane circular PWAS-EMIS that agrees well with the sets of experiments. Then the thickness mode PWAS-EMIS model was further developed for a PWAS resonator bonded on a plate-like structure. The latter analytical model was to determine the resonance frequencies for the normal mode expansion method through the global matrix method by considering PWAS-substrate and proof mass-PWAS-substrate models. The proof mass concept was adapted to shift the systems resonance frequencies in thickness mode. PWAS in contact with liquid medium on one of its surface has been analytically modeled and simulated the electro-mechanical response of PWAS with various liquids with different material properties such as the density and the viscosity. The second part discusses the guided wave propagation in elastic structures. The feature guided waves in thick structures and in high frequency range are discussed considering weld guided quasi-Rayleigh waves. Furthermore, the weld guided quasi Rayleigh waves and their interaction with damages in thick plates and thick walled pipes are examined by the finite element models and experiments. The dissertation finishes with a summary of contributions followed by conclusions, and suggestions for future work.

  11. Mid-wave infrared narrow bandwidth guided mode resonance notch filter.

    PubMed

    Zhong, Y; Goldenfeld, Z; Li, K; Streyer, W; Yu, L; Nordin, L; Murphy, N; Wasserman, D

    2017-01-15

    We have designed, fabricated, and characterized a guided mode resonance notch filter operating in the technologically vital mid-wave infrared (MWIR) region of the electromagnetic spectrum. The filter provides a bandstop at λ≈4.1  μm, with a 12 dB extinction on resonance. In addition, we demonstrate a high transmission background (>80%), less than 6% transmission on resonance, and an ultra-narrow bandwidth transmission notch (10  cm-1). Our filter is optically characterized using angle- and polarization-dependent Fourier transform infrared spectroscopy, and simulated using rigorous coupled-wave analysis (RCWA) with excellent agreement between simulations and our experimental results. Using our RCWA simulations, we are able to identify the optical modes associated with the transmission dips of our filter. The presented structure offers a potential route toward narrow-band laser filters in the MWIR.

  12. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.

    1962-01-01

    A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)

  13. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  14. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  15. Space Propulsion and Power

    DTIC Science & Technology

    2013-03-08

    crystals with tunable band gaps possible Refractive index N is imaginary - Bulk Electromagnetic waves cannot propogate But surface plasmons...Directional wave radiation through plasmon resonances Directional wave guiding through mid-band defect wave localization Distribution A: Approved for... acoustic damping, shear- layer instability (PERTURBATION EXPANSION EXAMPLE) classical wave equation for combustion instability: model

  16. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin

    1998-01-01

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.

  17. Subwavelength and directional control of flexural waves in zone-folding induced topological plates

    NASA Astrophysics Data System (ADS)

    Chaunsali, Rajesh; Chen, Chun-Wei; Yang, Jinkyu

    2018-02-01

    Inspired by the quantum spin Hall effect shown by topological insulators, we propose a plate structure that can be used to demonstrate the pseudospin Hall effect for flexural waves. The system consists of a thin plate with periodically arranged resonators mounted on its top surface. We extend a technique based on the plane-wave expansion method to identify a double Dirac cone emerging due to the zone-folding in frequency band structures. This particular design allows us to move the double Dirac cone to a lower frequency than the resonating frequency of local resonators. We then manipulate the pattern of local resonators to open subwavelength Bragg band gaps that are topologically distinct. Building on this method, we verify numerically that a waveguide at an interface between two topologically distinct resonating plate structures can be used for guiding low-frequency, spin-dependent one-way flexural waves along a desired path with bends.

  18. Optical Phased Array Using Guided Resonance with Backside Reflectors

    NASA Technical Reports Server (NTRS)

    Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2016-01-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  19. Optical phased array using guided resonance with backside reflectors

    DOEpatents

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2016-11-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  20. Optical phased array using guided resonance with backside reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2018-03-13

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  1. Optical Phased Array Using Guided Resonance with Backside Reflectors

    NASA Technical Reports Server (NTRS)

    Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2018-01-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  2. Metal-dielectric metamaterials for guided wave silicon photonics.

    PubMed

    Lupu, A; Dubrovina, N; Ghasemi, R; Degiron, A; de Lustrac, A

    2011-11-21

    The aim of the present paper is to investigate the potential of metallic metamaterials for building optical functions in guided wave optics at 1.5 µm. A significant part of this work is focused on the optimization of the refractive index variation associated with localized plasmon resonances. The minimization of metal related losses is specifically addressed as well as the engineering of the resonance frequency of the localized plasmons. Our numerical modeling results show that a periodic chain of gold cut wires placed on the top of a 100 nm silicon waveguide makes it possible to achieve a significant index variation in the vicinity of the metamaterial resonance and serve as building blocks for implementing optical functions. The considered solutions are compatible with current nano-fabrication technologies. © 2011 Optical Society of America

  3. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, D.K.; Bechinger, C.S.; Tracy, C.E.

    1998-01-13

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material`s optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment. 5 figs.

  4. Effect of skew angle on second harmonic guided wave measurement in composite plates

    NASA Astrophysics Data System (ADS)

    Cho, Hwanjeong; Choi, Sungho; Lissenden, Cliff J.

    2017-02-01

    Waves propagating in anisotropic media are subject to skewing effects due to the media having directional wave speed dependence, which is characterized by slowness curves. Likewise, the generation of second harmonics is sensitive to micro-scale damage that is generally not detectable from linear features of ultrasonic waves. Here, the effect of skew angle on second harmonic guided wave measurement in a transversely isotropic lamina and a quasi-isotropic laminate are numerically studied. The strain energy density function for a nonlinear transversely isotropic material is formulated in terms of the Green-Lagrange strain invariants. The guided wave mode pairs for cumulative second harmonic generation in the plate are selected in accordance with the internal resonance criteria - i.e., phase matching and non-zero power flux. Moreover, the skew angle dispersion curves for the mode pairs are obtained from the semi-analytical finite element method using the derivative of the slowness curve. The skew angles of the primary and secondary wave modes are calculated and wave propagation simulations are carried out using COMSOL. Numerical simulations revealed that the effect of skew angle mismatch can be significant for second harmonic generation in anisotropic media. The importance of skew angle matching on cumulative second harmonic generation is emphasized and the accompanying issue of the selection of internally resonant mode pairs for both a unidirectional transversely isotropic lamina and a quasi-isotropic laminate is demonstrated.

  5. Scattering of plane evanescent waves by buried cylinders: Modeling the coupling to guided waves and resonances

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2003-04-01

    The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of guided waves on buried fluid cylinders and shells by acoustic evanescent waves and the associated target resonances, the two-dimensional partial wave series for the scattering is found for normal incidence in an unbounded medium. The shell formulation uses the simplifications of thin-shell dynamics. The expansion of the incident wave becomes a double summation with products of modified and ordinary Bessel functions [P. L. Marston, J. Acoust. Soc. Am. 111, 2378 (2002)]. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on depth. Some consequences of this imbalance of partial-wave amplitudes are given by modifying previous ray theory for the scattering [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. The exponential dependence of the scattering on the location of a scatterer was previously demonstrated in air [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  6. Resonance frequency broadening of wave-particle interaction in tokamaks due to Alfvénic eigenmode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Guo; Gorelenkov, Nikolai N.; Duarte, Vinicius N.

    We use the guiding center code ORBIT to study the broadening of resonances and the parametric dependence of the resonance frequency broadening widthmore » $$\\Delta\\Omega$$ on the nonlinear particle trapping frequency $$\\omega_b$$ of wave-particle interaction with specific examples using realistic equilibrium DIII-D shot 159243 (Collins et al. 2016 Phys. Rev. Lett. 116 095001). When the mode amplitude is small, the pendulum approximation for energetic particle dynamics near the resonance is found to be applicable and the ratio of the resonance frequency width to the deeply trapped bounce frequency $$\\Delta\\Omega/\\omega_b$$ equals 4, as predicted by theory. Lastly, it is found that as the mode amplitude increases, the coefficient $$a=\\Delta\\Omega/\\omega_b$$ becomes increasingly smaller because of the breaking down of the nonlinear pendulum approximation for the wave-particle interaction.« less

  7. Resonance frequency broadening of wave-particle interaction in tokamaks due to Alfvénic eigenmode

    DOE PAGES

    Meng, Guo; Gorelenkov, Nikolai N.; Duarte, Vinicius N.; ...

    2018-01-19

    We use the guiding center code ORBIT to study the broadening of resonances and the parametric dependence of the resonance frequency broadening widthmore » $$\\Delta\\Omega$$ on the nonlinear particle trapping frequency $$\\omega_b$$ of wave-particle interaction with specific examples using realistic equilibrium DIII-D shot 159243 (Collins et al. 2016 Phys. Rev. Lett. 116 095001). When the mode amplitude is small, the pendulum approximation for energetic particle dynamics near the resonance is found to be applicable and the ratio of the resonance frequency width to the deeply trapped bounce frequency $$\\Delta\\Omega/\\omega_b$$ equals 4, as predicted by theory. Lastly, it is found that as the mode amplitude increases, the coefficient $$a=\\Delta\\Omega/\\omega_b$$ becomes increasingly smaller because of the breaking down of the nonlinear pendulum approximation for the wave-particle interaction.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Pedro, E-mail: pereyrapedro@gmail.com; Mendoza-Figueroa, M. G.

    Transport properties of electrons through biased double barrier semiconductor structures with finite transverse width w{sub y}, in the presence of a channel-mixing transverse electric field E{sub T} (along the y-axis), were studied. We solve the multichannel Schrödinger equation using the transfer matrix method and transport properties, like the conductance G and the transmission coefficients T{sub ij} have been evaluated as functions of the electrons' energy E and the transverse and longitudinal (bias) electric forces, f{sub T} and f{sub b}. We show that peak-suppression effects appear, due to the applied bias. Similarly, coherent interference of wave-guide states induced by the transversemore » field is obtained. We show also that the coherent interference of resonant wave-guide states gives rise to resonant conductance, which can be tuned to produce broad resonant peaks, implying operation frequencies of the order of 10 THz or larger.« less

  9. FIBER AND INTEGRATED OPTICS: Influence of diffraction-induced emission of light on resonant conversion of surface waves in diffraction-coupled optical waveguides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. A.; Shaposhnikov, S. N.

    1989-09-01

    An investigation is reported of diffraction-induced emission of surface waves under conditions of resonant transfer of light between different regular and corrugated waveguides. It is shown that the part of the emitted light flux carried by surface waves along diffraction-coupled waveguides depends strongly on the ratio of the effective refractive indices of the guides. The dependences of the optical coupling length and of the corresponding emitted light flux on the distance between the waveguides and on the difference between their refractive indices are given.

  10. Phase accumulation tracking algorithm for effective index retrieval of fishnet metamaterials and other resonant guided wave networks

    NASA Astrophysics Data System (ADS)

    Feigenbaum, Eyal; Hiszpanski, Anna M.

    2017-07-01

    A phase accumulation tracking (PAT) algorithm is proposed and demonstrated for the retrieval of the effective index of fishnet metamaterials (FMMs) in order to avoid the multi-branch uncertainty problem. This algorithm tracks the phase and amplitude of the dominant propagation mode across the FMM slab. The suggested PAT algorithm applies to resonant guided wave networks having only one mode that carries the light between the two slab ends, where the FMM is one example of this metamaterials sub-class. The effective index is a net effect of positive and negative accumulated phase in the alternating FMM metal and dielectric layers, with a negative effective index occurring when negative phase accumulation dominates.

  11. Coupled-mode theory and Fano resonances in guided-mode resonant gratings: the conical diffraction mounting.

    PubMed

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2017-01-23

    We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.

  12. Distributed feedback guided surface acoustic wave microresonator

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1989-08-01

    Surface acoustic wave resonators have been used in a number of applications: high-Q frequency filtering, very accurate frequency sources, etc. A major disadvantage of conventional resonators is their large dimensions, which makes them inadequate for integrated acoustics applications. In order to overcome these size limitations a new type of microresonator was designed, developed, and tested. In this paper, theoretical calculations and measurements on two kinds of such devices (a corrugated waveguide filter and a microresonator structure) are presented and their possible applications are discussed.

  13. Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.

    2018-01-01

    The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.

  14. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoudache, Samira; Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou; Moiseyenko, Rayisa

    2016-03-21

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standingmore » waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.« less

  15. Multiple-channel guided mode resonance Brewster filter with controllable spectral separation.

    PubMed

    Ma, Jianyong; Cao, Hongchao; Zhou, Changhe

    2014-05-01

    In this work, a single-layer, multiple-channel guided mode resonance (GMR) Brewster filter with controllable spectral separation is proposed using the plane waveguide method and rigorous coupled-wave analysis. Based on the normalized eigenvalue equation, the controllability of the spectral separation is analyzed when the fill ratio of the grating layer is changed while its effective index is identical to that of the substrate. The location and the separation between resonances can be specifically controlled by modifying the fill ratio of the grating layer. In contrast to the ordinary GMR filter, where the location of the resonances is material dependent, it is demonstrated that the spectral separation for the first and second resonances can be linearly controlled by altering the fill ratio of the grating layer. In addition, the maximal shift of the second resonance is up to 5% of the first resonant wavelength using the single-layer Brewster filter.

  16. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces.

    PubMed

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-15

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A_{0}) either when using a symmetric (S_{0}) or antisymmetric (A_{0}) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  17. Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoze; Song, Wei; Tan, Weibing

    2016-07-15

    A high efficiency relativistic backward wave oscillator working at a low guiding magnetic field is designed and simulated. A trapezoidal resonant reflector is used to reduce the modulation field in the resonant reflector to avoid overmodulation of the electron beam which will lead to a large momentum spread and then low conversion efficiency. The envelope of the inner radius of the slow wave structure (SWS) increases stepwise to keep conformal to the trajectory of the electron beam which will alleviate the bombardment of the electron on the surface of the SWS. The length of period of the SWS is reducedmore » gradually to make a better match between phase velocity and electron beam, which decelerates continually and improves the RF current distribution. Meanwhile the modulation field is reduced by the introduction of nonuniform SWS also. The particle in cell simulation results reveal that a microwave with a power of 1.8 GW and a frequency of 14.7 GHz is generated with an efficiency of 47% when the diode voltage is 620 kV, the beam current 6.1 kA, and the guiding magnetic field 0.95 T.« less

  18. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  19. Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet

    DOEpatents

    Praeg, Walter F.

    1984-01-01

    Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.

  20. Magnetic resonance guided high-intensity focused ultrasound ablation of musculoskeletal tumors

    PubMed Central

    Avedian, Raffi S.; Gold, Garry; Ghanouni, Pejman; Pauly, Kim Butts

    2015-01-01

    This article reviews the fundamental principles and clinical experimental uses of magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) ablation of musculoskeletal tumors. MRgHIFU is a noninvasive treatment modality that takes advantage of the ability of magnetic resonance to measure tissue temperature and uses this technology to guide high-intensity focused ultrasound waves to a specific focus within the human body that results in heat generation and complete thermal necrosis of the targeted tissue. Adjacent normal tissues are spared because of the accurate delivery of thermal energy, as well as, local blood perfusion that provides a cooling effect. MRgHIFU is approved by the Food and Drug Administration for the treatment of uterine fibroids and is used on an experimental basis to treat breast, prostate, liver, bone, and brain tumors. PMID:26120376

  1. Guided solitary waves.

    PubMed

    Miles, J

    1980-04-01

    Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.

  2. Modeling and Theory of RF Antenna Systems on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Goulding, R. H.; Green, D.; Caughman, J. B. O.; Ruzic, D. N.; Proto-MPEX Team

    2017-10-01

    The RF wave coupling of the helicon and ICH antennas installed on the Prototype Material Plasma Exposure eXperiment (MPEX) has been explored theoretically and via a full wave model implemented in COMSOL Multiphysics. The high-density mode in Proto-MPEX has been shown to occur when exciting radial eigenmodes of the plasma column which coincides with entering a Trivelpiece Gould (TG) anti-resonant regime, therefore suppressing edge heating in favor of core power deposition. The fast wave launched by the helicon antenna has a large wavelength and travels at a steep group velocity angle with the background magnetic field; for this reason the fast wave launched by the helicon antenna efficiently couples power to the core plasma. However, the ICH heating scheme relies on a small wavelength slow wave to couple power to the core of the plasma column. Coupling slow wave power to the core of the plasma column is sensitive to the location of the Alfven resonance. The wave-vector and group velocity vector of the slow wave in this parameter regime undergoes a drastic change in behavior when approaching the Alfven resonance. Full wave simulation results and dispersion analysis will be presented with suggestions to guide experimental progress. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  3. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    NASA Astrophysics Data System (ADS)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  4. Hybridization of Guided Surface Acoustic Modes in Unconsolidated Granular Media by a Resonant Metasurface

    NASA Astrophysics Data System (ADS)

    Palermo, Antonio; Krödel, Sebastian; Matlack, Kathryn H.; Zaccherini, Rachele; Dertimanis, Vasilis K.; Chatzi, Eleni N.; Marzani, Alessandro; Daraio, Chiara

    2018-05-01

    We investigate the interaction of guided surface acoustic modes (GSAMs) in unconsolidated granular media with a metasurface, consisting of an array of vertical oscillators. We experimentally observe the hybridization of the lowest-order GSAM at the metasurface resonance, and note the absence of mode delocalization found in homogeneous media. Our numerical studies reveal how the stiffness gradient induced by gravity in granular media causes a down-conversion of all the higher-order GSAMs, which preserves the acoustic energy confinement. We anticipate these findings to have implications in the design of seismic-wave protection devices in stratified soils.

  5. Resonant circuit which provides dual-frequency excitation for rapid cycling of an electromagnet

    DOEpatents

    Praeg, W.F.

    1982-03-09

    Disclosed is a novel ring-magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the sinusoidal guide field of the ring magnet during particle acceleration. The control circuit generates sinusoidal excitation currents of different frequencies in the half waves. During radio-frequency acceleration of the synchrotron, the control circuit operates with a lower frequency sine wave and, thereafter, the electromagnets are reset with a higher-frequency half sine wave.

  6. Hybridization bandgap induced by an electrical resonance in piezoelectric metamaterial plates

    NASA Astrophysics Data System (ADS)

    Kherraz, N.; Haumesser, L.; Levassort, F.; Benard, P.; Morvan, B.

    2018-03-01

    We demonstrate numerically and experimentally the opening of a locally resonant bandgap in an active phononic crystal (PC) made of a homogeneous piezoelectric plate covered by a 1D periodic array of thin electrodes connected to inductive shunts. The application of periodic electrical boundary conditions (EBCs) enables an at will tailoring of the dispersion properties of the PC plate, thus leading to a control of the dispersion of the propagating guided elastic waves in the plate. Depending on the nature of the EBCs, several bandgaps open up, the most important being a Hybridization Bandgap (HBG) in the subwavelength regime. The PC behaves as a locally resonant metamaterial. The HBG originates from the interaction of propagating elastic waves (Lamb modes) with an electrical resonant mode whose dispersion can be effectively described through an equivalent transmission line model.

  7. Quasi-Rayleigh waves in butt-welded thick steel plate

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin

    2015-03-01

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  8. Non-local features of a hydrodynamic pilot-wave system

    NASA Astrophysics Data System (ADS)

    Nachbin, Andre; Couchman, Miles; Bush, John

    2016-11-01

    A droplet walking on the surface of a vibrating fluid bath constitutes a pilot-wave system of the form envisaged for quantum dynamics by Louis de Broglie: a particle moves in resonance with its guiding wave field. We here present an examination of pilot-wave hydrodynamics in a confined domain. Specifically, we present a one-dimensional water wave model that describes droplets walking in single and multiple cavities. The cavities are separated by a submerged barrier, and so allow for the study of tunneling. They also highlight the non-local dynamical features arising due to the spatially-extended wave field. Results from computational simulations are complemented by laboratory experiments.

  9. Full-wave modeling of EMIC waves near the He + gyrofrequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eun -Hwa; Johnson, Jay R.

    Electromagnetic ion cyclotron (EMIC) waves are known to be excited by the cyclotron instability associated with hot and anisotropic ion distributions in the equatorial region of the magnetosphere and are thought to play a key role in radiation belt losses. Although detection of these waves at the ground can provide a global view of the EMIC wave environment, it is not clear what signatures, if any, would be expected. One of the significant scientific issues concerning EMIC waves is to understand how these waves are detected at the ground. In order to solve this puzzle, it is necessary to understandmore » the propagation characteristics of the field-aligned EMIC waves, which include polarization reversal, cutoff, resonance, and mode coupling between different wave modes, in a dipolar magnetic field. However, the inability of ray tracing to adequately describe wave propagation near the crossover cutoff-resonance frequencies in multi-ion plasmas is one of reasons why these scientific questions remain unsolved. Using a recently developed 2-D full-wave code that solves the full-wave equations in global magnetospheric geometry, we demonstrate how EMIC waves propagate from the equatorial region to higher magnetic latitude in an electron-proton-He+ plasma. We find that polarization reversal occurs at the crossover frequency from left-hand polarization (LHP) to right-hand (RHP) polarization and such RHP EMIC waves can either propagate to the inner magnetosphere or reflect to the outer magnetosphere at the Buchsbaum resonance location. Lastly, we also find that mode coupling from guided LHP EMIC waves to unguided RHP or LHP waves (i.e., fast mode) occurs.« less

  10. Full-wave modeling of EMIC waves near the He + gyrofrequency

    DOE PAGES

    Kim, Eun -Hwa; Johnson, Jay R.

    2016-01-06

    Electromagnetic ion cyclotron (EMIC) waves are known to be excited by the cyclotron instability associated with hot and anisotropic ion distributions in the equatorial region of the magnetosphere and are thought to play a key role in radiation belt losses. Although detection of these waves at the ground can provide a global view of the EMIC wave environment, it is not clear what signatures, if any, would be expected. One of the significant scientific issues concerning EMIC waves is to understand how these waves are detected at the ground. In order to solve this puzzle, it is necessary to understandmore » the propagation characteristics of the field-aligned EMIC waves, which include polarization reversal, cutoff, resonance, and mode coupling between different wave modes, in a dipolar magnetic field. However, the inability of ray tracing to adequately describe wave propagation near the crossover cutoff-resonance frequencies in multi-ion plasmas is one of reasons why these scientific questions remain unsolved. Using a recently developed 2-D full-wave code that solves the full-wave equations in global magnetospheric geometry, we demonstrate how EMIC waves propagate from the equatorial region to higher magnetic latitude in an electron-proton-He+ plasma. We find that polarization reversal occurs at the crossover frequency from left-hand polarization (LHP) to right-hand (RHP) polarization and such RHP EMIC waves can either propagate to the inner magnetosphere or reflect to the outer magnetosphere at the Buchsbaum resonance location. Lastly, we also find that mode coupling from guided LHP EMIC waves to unguided RHP or LHP waves (i.e., fast mode) occurs.« less

  11. Arbitrary beam control using passive lossless metasurfaces enabled by orthogonally polarized custom surface waves

    NASA Astrophysics Data System (ADS)

    Kwon, Do-Hoon; Tretyakov, Sergei A.

    2018-01-01

    For passive, lossless impenetrable metasurfaces, a design technique for arbitrary beam control of receiving, guiding, and launching is presented. Arbitrary control is enabled by a custom surface wave in an orthogonal polarization such that its addition to the incident (input) and the desired scattered (output) fields is supported by a reactive surface impedance everywhere on the reflecting surface. Such a custom surface wave (SW) takes the form of an evanescent wave propagating along the surface with a spatially varying envelope. A growing SW appears when an illuminating beam is received. The SW amplitude stays constant when power is guided along the surface. The amplitude diminishes as a propagating wave (PW) is launched from the surface as a leaky wave. The resulting reactive tensor impedance profile may be realized as an array of anisotropic metallic resonators printed on a grounded dielectric substrate. Illustrative design examples of a Gaussian beam translator-reflector, a probe-fed beam launcher, and a near-field focusing lens are provided.

  12. Characteristics of pitch angle distributions of relativistic electrons under the interaction with Pc5 waves in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Kamiya, K.; Seki, K.; Saito, S.; Amano, T.; Yoshizumi, M.

    2017-12-01

    Radial transport of relativistic electrons in the inner magnetosphere has been considered as one of acceleration mechanisms of the outer radiation belt electrons and can be driven by the drift resonance with ULF waves in the Pc5 frequency range. The maximum changes of the electron in the radial distance (L) due to the drift resonance depend on the electron energy, pitch angle, and Pc5 wave structure. Those dependences are expected to form the characteristic pitch angle distributions (PADs) as a function of L and electron energy. In this study, we investigate PADs of relativistic electrons due to the drift resonance with a monochromatic Pc5 wave by using two simulation models of the inner magnetosphere: GEMSIS-Ring Current (RC) and GEMSIS-Radiation Belt (RB) models. The GEMSIS-RB simulations calculate guiding center trajectories of relativistic electrons in electric and magnetic fields obtained from the GEMSIS-RC model, which simulates a monochromatic Pc5 wave propagation in the inner magnetosphere. The results show the characteristic PADs depending on the energy and L, which is explicable with the pitch angle dependence of resonance conditions. At a fixed location, those PADs can change from pancake (90°peaked) to butterfly (two peaks in oblique PAs) distributions as the transport by the monochromatic Pc5 wave progresses. These butterfly distributions are seen in the L range where electrons with lower PAs satisfy the resonance condition. It is also found that the lower PA electron with a fixed magnetic moment can be transported deeper inside because of the PA changes to larger values through the adiabatic transport, which enables them to satisfy the efficient resonance condition in wider L range compared to the 90 degrees PA electrons.

  13. Bound states in the continuum on periodic structures surrounded by strong resonances

    NASA Astrophysics Data System (ADS)

    Yuan, Lijun; Lu, Ya Yan

    2018-04-01

    Bound states in the continuum (BICs) are trapped or guided modes with their frequencies in the frequency intervals of the radiation modes. On periodic structures, a BIC is surrounded by a family of resonant modes with their quality factors approaching infinity. Typically the quality factors are proportional to 1 /|β - β*|2 , where β and β* are the Bloch wave vectors of the resonant modes and the BIC, respectively. But for some special BICs, the quality factors are proportional to 1 /|β - β*|4 . In this paper, a general condition is derived for such special BICs on two-dimensional periodic structures. As a numerical example, we use the general condition to calculate special BICs, which are antisymmetric standing waves, on a periodic array of circular cylinders, and show their dependence on parameters. The special BICs are important for practical applications, because they produce resonances with large quality factors for a very large range of β .

  14. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Liu, Jingfei; Fite, Brett Z.; Foiret, Josquin; Ilovitsh, Asaf; Leach, J. Kent; Dumont, Erik; Caskey, Charles F.; Ferrara, Katherine W.

    2017-05-01

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.

  15. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.

    PubMed

    Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W

    2017-05-21

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such 'supersonic' excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.

  16. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity

    PubMed Central

    Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W

    2017-01-01

    Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasiplanar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions. PMID:28426437

  17. Angle-resolved and polarization-dependent investigation of cross-shaped frequency-selective surface terahertz filters

    NASA Astrophysics Data System (ADS)

    Ferraro, A.; Zografopoulos, D. C.; Caputo, R.; Beccherelli, R.

    2017-04-01

    The spectral response of a terahertz (THz) filter is investigated in detail for different angles of incidence and polarization of the incoming THz wave. The filter is fabricated by patterning an aluminum frequency-selective surface of cross-shaped apertures on a thin foil of the low-loss cyclo-olefin polymer Zeonor. Two different types of resonances are observed, namely, a broadline resonance stemming from the transmittance of the slot apertures and a series of narrowline guided-mode resonances, with the latter being investigated by employing the grating theory. Numerical simulations of the filter transmittance based on the finite-element method agree with experimental measurements by means of THz time domain spectroscopy (THz-TDS). The results reveal extensive possibilities for tuning the guided-mode resonances by mechanically adjusting the incidence or polarization angle, while the fundamental broadline resonance is not significantly affected. Such filters are envisaged as functional elements in emerging THz systems for filtering or sensing applications.

  18. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.

    2005-09-01

    To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.

  19. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOEpatents

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  20. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    PubMed

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  1. Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems

    NASA Astrophysics Data System (ADS)

    Agapitov, O.; Drake, J. F.; Vasko, I.; Mozer, F. S.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G. D.

    2018-03-01

    Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.

  2. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  3. Quasi-Rayleigh waves in butt-welded thick steel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamas, Tuncay, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Giurgiutiu, Victor, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Lin, Bin, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu

    2015-03-31

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as wellmore » as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.« less

  4. Experimental observation of spontaneous depolarized guided acoustic-wave Brillouin scattering in side cores of a multicore fiber

    NASA Astrophysics Data System (ADS)

    Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro; Set, Sze Yun; Yamashita, Shinji

    2018-06-01

    Spontaneous depolarized guided acoustic-wave Brillouin scattering (GAWBS) was experimentally observed in one of the side cores of an uncoated multicore fiber (MCF). The frequency bandwidth in the side core was up to ∼400 MHz, which is 0.5 times that in the central core. The GAWBS spectrum of the side core of the MCF included intrinsic peaks, which had different acoustic resonance frequencies from those of the central core. In addition, the spontaneous depolarized GAWBS in the central/side core was unaffected by that in the other core. These results will lead to the development of polarization/phase modulators using an MCF.

  5. Compact Packaging of Photonic Millimeter-Wave Receiver

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Pouch, John; Miranda, Felix; Levi, Anthony F.

    2007-01-01

    A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system. The components (see figure) include a lithium niobate optical resonator disk of 5-mm diameter and .200- m thickness, positioned adjacent to a millimeter- wave resonator electrode. Other components include input and output coupling prisms and input and output optical fibers tipped with ball lenses for focusing and collimation, respectively. Laser light is introduced via the input optical fiber and focused into the input coupling prism. The input coupling prism is positioned near (but not in contact with) the resonator disk so that by means of evanescent-wave coupling, the input laser light in the prism gives rise to laser light propagating circumferentially in guided modes in the resonator disk. Similarly, a portion of the circumferentially propagating optical power is extracted from the disk by evanescent-wave coupling from the disk to the output coupling prism, from whence the light passes through the collimating ball lens into the output optical fiber. The lens-tipped optical fibers must be positioned at a specified focal distance from the prisms. The optical fibers and the prisms must be correctly positioned relative to the resonator disk and must be oriented to obtain the angle of incidence (55 in the prototype) required for evanescent-wave coupling of light into and out of the desired guided modes in the resonator disk. To satisfy all these requirements, precise alignment features are formed in the silicon substrate by use of a conventional wet-etching process. These features include a 5-mm-diameter, 50- m-deep cavity that holds the disk; two trapezoidal-cross-section recesses for the prisms; and two grooves that hold the optical fibers at the correct positions and angles relative to the prisms and disk. The fiber grooves contain abrupt tapers, near the prisms, that serve as hard stops for positioning the lenses at the focal distance from the prisms. There are also two grooves for prismadjusting rods. The design provides a little slack in the prism recesses for adjusting the positions of the prisms by means of these rods to optimize the optical coupling.

  6. Ultrathin reflective acoustic metasurface based on the synergetic coupling of resonant cavity and labyrinthine beams

    NASA Astrophysics Data System (ADS)

    Han, S. K.; Zhang, W.; Ma, G. J.; Wu, C. W.; Chen, Z.

    2018-05-01

    We propose a reflective acoustic metasurface by taking advantage of the synergetic coupling of two kinds of widely used elements, the resonant cavity and the labyrinthine beam. A full 2π phase shift range can be obtained by varying the neck width. The structure manipulates the reflective waves on a very deep subwavelength scale with the thickness being only 1/50 of the wavelength, which eliminates the enormous obstacle in low frequency applications. The synergetic coupling of the resonant cavity and the inner labyrinthine beams provide a useful guide for the design of acoustic metasurfaces.

  7. Application of Nonlinear Elastic Resonance Spectroscopy For Damage Detection In Concrete: An Interesting Story

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byers, Loren W.; Ten Cate, James A.; Johnson, Paul A.

    2012-06-28

    Nonlinear resonance ultrasound spectroscopy experiments conducted on concrete cores, one chemically and mechanically damaged by alkali-silica reactivity, and one undamaged, show that this material displays highly nonlinear wave behavior, similar to many other damaged materials. They find that the damaged sample responds more nonlinearly, manifested by a larger resonant peak and modulus shift as a function of strain amplitude. The nonlinear response indicates that there is a hysteretic influence in the stress-strain equation of state. Further, as in some other materials, slow dynamics are present. The nonlinear response they observe in concrete is an extremely sensitive indicator of damage. Ultimately,more » nonlinear wave methods applied to concrete may be used to guide mixing, curing, or other production techniques, in order to develop materials with particular desired qualities such as enhanced strength or chemical resistance, and to be used for damage inspection.« less

  8. Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating.

    PubMed

    Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen

    2014-02-10

    Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.

  9. Modeling of enhanced spontaneous parametric down-conversion in plasmonic and dielectric structures with realistic waves

    NASA Astrophysics Data System (ADS)

    Loot, A.; Hizhnyakov, V.

    2018-05-01

    A numerical study of the enhancement of the spontaneous parametric down-conversion in plasmonic and dielectric structures is considered. The modeling is done using a nonlinear transfer-matrix method which is extended to include vacuum fluctuations and realistic waves (e.g. Gaussian beam). The results indicate that in the case of short-range surface plasmon polaritons, the main limiting factor of the enhancement is the short length of the coherent buildup. In the case of long-range surface plasmon polaritons or dielectric guided waves, the very narrow resonances are the main limiting factor instead.

  10. Optimization of coupled device based on optical fiber with crystalline and integrated resonators

    NASA Astrophysics Data System (ADS)

    Bassir, David; Salzenstein, Patrice; Zhang, Mingjun

    2017-05-01

    Because of the advantages in terms of reproducibility for optical resonators on chip which are designed of various topologies and integration with optical devices. To increase the Q-factor from the lower rang [104 - 106 ] to higher one [108 -1010] [1-4] one use crystalline resonators. It is much complicated to couple an optical signal from a tapered fiber to crystalline resonator than from a defined ridge to a resonator designed on a chip. In this work, we will focus on the optimization of the crystalline resonators under straight wave guide (based on COMSOL multi-physic software) [5- 7] and subject also to technological constraints of manufacturing. The coupling problem at the Nano scale makes our optimizations problem more dynamics in term of design space.

  11. Low losses left-handed materials with optimized electric and magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Liu, Yahong; Zhao, Xiaopeng

    2010-03-01

    We propose that the losses in left-handed materials (LHMs) can be significantly affected by changing the coupling relationship between electric and magnetic resonance. A double bowknot shaped structure (DBS) is used to construct the LHMs. And the magnetic resonance of the DBS, which resonated in the case of lower and higher frequencies than the electric resonant dip, is studied in simulation and experiment by tailoring the structural parameters. The case of magnetic resonance located at low electric resonance frequencies band is confirmed to have relatively low losses. Using full wave simulation of prism shaped structure composed of DBS unit cells, we prove the negative refraction behavior in such a frame. This study can serve as a guide for designing other similar metal-dielectric-metal (MDM) in low losses at terahertz or higher frequencies.

  12. Microwave Spectroscopy of a Single Permalloy Chiral Metamolecule on a Coplanar Waveguide

    NASA Astrophysics Data System (ADS)

    Kodama, Toshiyuki; Kusanagi, Yusaku; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Tomita, Satoshi; Hosoito, Nobuyoshi; Yanagi, Hisao

    2018-05-01

    We investigate the microwave spectroscopies of a micrometer-sized single permalloy (Py) chiral structure on coplanar waveguides (CPWs). Under an external dc magnetic field applied in a direction perpendicular to the microwave propagation, the Py chiral structure loaded on the center of the CPW signal line shows Kittel-mode ferromagnetic resonance. Contrastingly, the structure on the signal-line edge highlights two additional resonances: spin-wave resonance at a higher frequency, and unique resonance at a lower frequency of approximately 7.8 GHz. The resonance signal at 7.8 GHz originates from magnetically induced, geometry-driven resonance, although the resonance frequency does not depend on the external magnetic field. Moreover, the displacement of the Py structures on the signal line results in nonreciprocal microwave transmission, which is traced back to the edge-guide mode.

  13. On the mechanism of bandgap formation in locally resonant finite elastic metamaterials

    NASA Astrophysics Data System (ADS)

    Sugino, Christopher; Leadenham, Stephen; Ruzzene, Massimo; Erturk, Alper

    2016-10-01

    Elastic/acoustic metamaterials made from locally resonant arrays can exhibit bandgaps at wavelengths much longer than the lattice size for various applications spanning from low-frequency vibration/sound attenuation to wave guiding and filtering in mechanical and electromechanical devices. For an effective use of such locally resonant metamaterial concepts in finite structures, it is required to bridge the gap between the lattice dispersion characteristics and modal behavior of the host structure with its resonators. To this end, we develop a novel argument for bandgap formation in finite-length elastic metamaterial beams, relying on the modal analysis and the assumption of infinitely many resonators. We show that the dual problem to wave propagation through an infinite periodic beam is the modal analysis of a finite beam with an infinite number of resonators. A simple formula that depends only on the resonator natural frequency and total mass ratio is derived for placing the bandgap in a desired frequency range, yielding an analytical insight and a rule of thumb for design purposes. A method for understanding the importance of a resonator location and mass is discussed in the context of a Riemann sum approximation of an integral, and a method for determining the optimal number of resonators for a given set of boundary conditions and target frequency is introduced. The simulations of the theoretical framework are validated by experiments for bending vibrations of a locally resonant cantilever beam.

  14. Relativistic backward wave oscillator operating in TM02 with cutoff-type resonant reflector

    NASA Astrophysics Data System (ADS)

    Teng, Yan; Shi, Yanchao; Yang, Dewen; Cao, Yibing; Zhang, Zhijun

    2017-04-01

    This paper proposes an overmoded relativistic backward wave oscillator (RBWO) operating in the TM02 mode with the cutoff-type resonant reflector characterized by the advantages of the cutoff neck and the single resonant cavity. In order to protect the explosive emission of the annular cathode from the disturbance of the microwave leakage, the cutoff-type resonant reflector can effectively prevent the microwave consisting of several modes from propagating into the diode region. Attributed to the strong reflections caused by the cutoff-type resonant reflector at the front end of the overmoded slow-wave structure (SWS), the overmoded RBWO works in the state of the strong resonance, which enhances the beam-to-microwave power conversion efficiency. TM02 is selected as the operation mode so as to increase the power handling capability. The nonuniform SWS depresses the cross-excitation of the unwanted longitudinal modes of TM02 and improves the synchronous interaction between the electron beam and the structure wave. It is found that when we make the peak values of the longitudinal electric field and the modulated current appear nearly at the same position in the overmoded SWS by optimizing the electrodynamic structure, the conversion efficiency will be enhanced significantly. In the numerical simulation, the microwave generation with power 2.99 GW and efficiency 0.45 is obtained under the diode voltage 851 kV and current 7.8 kA with the guide magnetic field of 4.3 T. The microwave generation with the pure frequency spectrum of 10.083 GHz radiates in the TM01 mode. The conversion efficiency keeps above 0.40 over the diode voltage range of 220 kV.

  15. Investigation of standing wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided Focused Ultrasound (MRgFUS) phased array: An experimental and simulation study

    PubMed Central

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2014-01-01

    Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360

  16. Prediction of the limit of detection of an optical resonant reflection biosensor.

    PubMed

    Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong

    2007-07-09

    A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.

  17. Influence of resonant transducer variations on long range guided wave monitoring of rail track

    NASA Astrophysics Data System (ADS)

    Loveday, Philip W.; Long, Craig S.

    2016-02-01

    The ability of certain guided wave modes to propagate long distances in continuously welded rail track is exploited in permanently installed monitoring systems. Previous work demonstrated that reflections from thermite welds could be measured at distances of the order of 1 km from a transducer array. The availability of numerous thermite welds is useful during the development of a monitoring system as real defects are not available. Measurements of reflections from welds were performed over an eleven month period with two permanently installed transducers. Phased array processing was performed and the true location of a weld is indicated by a strong reflection but there is generally also a smaller, spurious replica reflection, at the same distance but in the incorrect direction. In addition, the relative reflection from different welds appears to change over time. The influence of differences between the two resonant transducers was investigated using a model. It was found that estimating the attenuation in either direction and scaling the reflections in either direction decreased the variability in the reflection measurements. Transducer interaction effects, where the transducer closer to the weld records a greater reflection than the second transducer were observed and can be used to determine the direction of a weld. This feature was used to demonstrate a simple alternative to phased array processing that can be used with resonant transducers.

  18. Measurements of shock-induced guided and surface acoustic waves along boreholes in poroelastic materials

    NASA Astrophysics Data System (ADS)

    Chao, Gabriel; Smeulders, D. M. J.; van Dongen, M. E. H.

    2006-05-01

    Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the excitation of the surface modes. A fast Fourier transform-Prony-spectral ratio method is implemented to transform the data from the time-space domain to the frequency-wave-number domain. Frequency-dependent phase velocities and attenuation coefficients were measured using this technique. The results for a Berea sandstone material show a clear excitation of the fundamental surface mode, the pseudo-Stoneley wave. The comparison of the experimental results with numerical predictions based on Biot's theory of poromechanics [J. Acoust. Soc. Am. 28, 168 (1956)], shows that the oscillating fluid flow at the borehole wall is the dominant loss mechanism governing the pseudo-Stoneley wave and it is properly described by the Biot's model at frequencies below 40 kHz. At higher frequencies, a systematic underestimation of the theoretical predictions is found, which can be attributed to the existence of other losses mechanisms neglected in the Biot formulation. Higher-order guided modes associated with the compressional wave in the porous formation and the cylindrical geometry of the shock tube were excited, and detailed information was obtained on the frequency-dependent phase velocity and attenuation in highly porous and permeable materials. The measured attenuation of the guided wave associated with the compressional wave reveals the presence of regular oscillatory patterns that can be attributed to radial resonances. This oscillatory behavior is also numerically predicted, although the measured attenuation values are one order of magnitude higher than the corresponding theoretical values. The phase velocities of the higher-order modes are generally well predicted by theory.

  19. MR-guided adaptive focusing of ultrasound

    PubMed Central

    Larrat, Benoît; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickaël

    2010-01-01

    Adaptive focusing of ultrasonic waves under the guidance of a Magnetic Resonance (MR) system is demonstrated for medical applications. This technique is based on the maximization of the ultrasonic wave intensity at one targeted point in space. The wave intensity is indirectly estimated from the local tissue displacement induced at the chosen focus by the acoustic radiation force of ultrasonic beams. Coded ultrasonic waves are transmitted by an ultrasonic array and an MRI scanner is used to measure the resulting local displacements through a motion sensitive MR sequence. After the transmission of a set of spatially encoded ultrasonic waves, a non iterative inversion process is employed to accurately estimate the spatial-temporal aberration induced by the propagation medium and to maximize the acoustical intensity at the target. Both programmable and physical aberrating layers introducing strong distortions (up to 2π radians) were recovered within acceptable errors (<0.8 rad). This non invasive technique is shown to accurately correct phase aberrations in a phantom gel with negligible heat deposition and limited acquisition time. These refocusing performances demonstrate a major potential in the field of MR-Guided Ultrasound Therapy in particular for transcranial brain HIFU. PMID:20704061

  20. Photonic crystal wave guide for non-cryogenic cooled carbon nanotube based middle wave infrared sensors

    NASA Astrophysics Data System (ADS)

    Fung, Carmen Kar Man; Xi, Ning; Lou, Jianyong; Lai, King Wai Chiu; Chen, Hongzhi

    2010-10-01

    We report high sensitivity carbon nanotube (CNT) based middle wave infrared (MWIR) sensors with a two-dimensional photonic crystal waveguide. MWIR sensors are of great importance in a variety of current military applications including ballistic missile defense, surveillance and target detection. Unlike other existing MWIR sensing materials, CNTs exhibit low noise level and can be used as new nano sensing materials for MWIR detection where cryogenic cooling is not required. However, the quantum efficiency of the CNT based infrared sensor is still limited by the small sensing area and low incoming electric field. Here, a photonic nanostructure is used as a resonant cavity for boosting the electric field intensity at the position of the CNT sensing element. A two-dimensional photonic crystal with periodic holes in a polymer thin film is fabricated and a resonant cavity is formed by removing holes from the array of the photonic crystal. Based on the design of the photonic crystal topologies, we theoretically study the electric field distribution to predict the resonant behavior of the structure. Numerical simulations reveal the field is enhanced and almost fully confined to the defect region of the photonic crystal. To verify the electric field enhancement effect, experiments are also performed to measure the photocurrent response of the sensor with and without the photonic crystal resonant cavity. Experimental results show that the photocurrent increases ~3 times after adding the photonic crystal resonant cavity.

  1. Laser fiber-optic sensors for investigation of influences ultra weak cosmic radiation on the people.

    NASA Astrophysics Data System (ADS)

    Rzhavin, Yu.; Ignatiev, A.

    The present work describes investigation of influences ultra weak cosmic radiation on the people, using laser fiber-optic bio sensors. Potential of the people measurements is made on the basis of two Mach-Zender interferometers. The measuring and reference channels of the device are made in the form of signal-mode light guides with w-profile, which retain the polarization of light [1].The effect of measurements leads to axial compression of the w-fiber guides in the measuring channel. The measured signal is recorded by the relative displasement of the structure of the interference pattern, which is caused by phase modulation of a coherent light wave [2] propagating in the measuring channel. The light guides in the measuring channel reeled up on a flat surface on a cirle by a diameter 1.8 meter. Length light guides made 100 meters. The people approached on distance of 0.3 meters to flat surfased. It has been demonstrated that the method based on calculation of the mutual correlation function of the output signals of the interferometers makes it possible to raise the signal/noise ratio of the device by eliminating irregular noise waves and reproducing an accurate shape of the measured signal.As the light source, we have used single-frequency semiconductor injection laser which external resonator was used and one of a resonator mirrors was the w-lightguide end with reflection structure deposited on it .The w-lightguidess had the cup-off wave length 1,1 um, the degree of retention of polarization 99 %. It has been demonstrated experimentally that the of the developed sensor, under constant level of the cosmic radiation measured bio potential of the people was defined from age, weight, and psychological of the condition. REFERENCES 1.Yu.I .Rzhavin et.al. Proceeding SPIE , vol. 2349 , pp.154-157 2. Yu.I.Rzhavin Proceeding SPIE , vol. 4827 , pp.253-257

  2. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 1: Diffusion coefficients and timescales

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Lyons, L. R.

    1994-01-01

    Protons that are convected into the inner magnetosphere in response to enhanced magnetic activity can resonate with ducted plasmaspheric hiss in the outer plasmasphere via an anomalous Doppler-shifted cyclotron resonance. Plasmaspheric hiss is a right-hand-polarized electromagnetic emission that is observed to fill the plasmasphere on a routine basis. When plasmaspheric hiss is confined within field-aligned ducts or guided along density gradients, wave normal angles remain largely below 45 deg. This allows resonant interactions with ions at typical ring current and radiation belt energies to take place. Such field-aligned ducts have been observed both within the plasmasphere and in regions outside of the plasmasphere. Wave intensities are estimated using statistical information from studies of detached plasma regions. Diffusion coefficients are presented for a range of L shells and proton energies for a fixed wave distribution. Harmonic resonances in the range N = +/-100 are considered in order to include interactions between hiss at 100 Hz to 2 kHz frequencies, and protons in the energy range between approximately 10 keV and 1000 keV. Diffusion timescales are estimated to be of the order of tens of days and comparable to or shorter than lifetimes for Coulomb decay and charge exchange losses over most of the energy and spatial ranges of interest.

  3. Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia

    2018-02-01

    We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.

  4. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre

    PubMed Central

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  5. An ultrasonically levitated noncontact stage using traveling vibrations on precision ceramic guide rails.

    PubMed

    Koyama, Daisuke; Ide, Takeshi; Friend, James R; Nakamura, Kentaro; Ueha, Sadayuki

    2007-03-01

    This paper presents a noncontact sliding table design and measurements of its performance via ultrasonic levitation. A slider placed atop two vibrating guide rails is levitated by an acoustic radiation force emitted from the rails. A flexural traveling wave propagating along the guide rails allows noncontact transportation of the slider. Permitting a transport mechanism that reduces abrasion and dust generation with an inexpensive and simple structure. The profile of the sliding table was designed using the finite-element analysis (FEA) for high levitation and transportation efficiency. The prototype sliding table was made of alumina ceramic (Al2O3) to increase machining accuracy and rigidity using a structure composed of a pair of guide rails with a triangular cross section and piezoelectric transducers. Two types of transducers were used: bolt-clamped Langevin transducers and bimorph transducers. A 40-mm long slider was designed to fit atop the two rail guides. Flexural standing waves and torsional standing waves were observed along the guide rails at resonance, and the levitation of the slider was obtained using the flexural mode even while the levitation distance was less than 10 microm. The levitation distance of the slider was measured while increasing the slider's weight. The levitation pressure, rigidity, and vertical displacement amplitude of the levitating slider thus were measured to be 6.7 kN/m2, 3.0 kN/microm/m2, and less than 1 microm, respectively. Noncontact transport of the slider was achieved using phased drive of the two transducers at either end of the vibrating guide rail. By controlling the phase difference, the slider transportation direction could be switched, and a maximum thrust of 13 mN was obtained.

  6. Loss/gain-induced ultrathin antireflection coatings

    PubMed Central

    Luo, Jie; Li, Sucheng; Hou, Bo; Lai, Yun

    2016-01-01

    Tradional antireflection coatings composed of dielectric layers usually require the thickness to be larger than quarter wavelength. Here, we demonstrate that materials with permittivity or permeability dominated by imaginary parts, i.e. lossy or gain media, can realize non-resonant antireflection coatings in deep sub-wavelength scale. Interestingly, while the reflected waves are eliminated as in traditional dielectric antireflection coatings, the transmitted waves can be enhanced or reduced, depending on whether gain or lossy media are applied, respectively. We provide a unified theory for the design of such ultrathin antireflection coatings, showing that under different polarizations and incident angles, different types of ultrathin coatings should be applied. Especially, under transverse magnetic polarization, the requirement shows a switch between gain and lossy media at Brewster angle. As a proof of principle, by using conductive films as a special type of lossy antireflection coatings, we experimentally demonstrate the suppression of Fabry-Pérot resonances in a broad frequency range for microwaves. This valuable functionality can be applied to remove undesired resonant effects, such as the frequency-dependent side lobes induced by resonances in dielectric coverings of antennas. Our work provides a guide for the design of ultrathin antireflection coatings as well as their applications in broadband reflectionless devices. PMID:27349750

  7. Guided wave attenuation in coated pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2016-02-01

    Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

  8. Statistical projection effects in a hydrodynamic pilot-wave system

    NASA Astrophysics Data System (ADS)

    Sáenz, Pedro J.; Cristea-Platon, Tudor; Bush, John W. M.

    2018-03-01

    Millimetric liquid droplets can walk across the surface of a vibrating fluid bath, self-propelled through a resonant interaction with their own guiding or `pilot' wave fields. These walking droplets, or `walkers', exhibit several features previously thought to be peculiar to the microscopic, quantum realm. In particular, walkers confined to circular corrals manifest a wave-like statistical behaviour reminiscent of that of electrons in quantum corrals. Here we demonstrate that localized topological inhomogeneities in an elliptical corral may lead to resonant projection effects in the walker's statistics similar to those reported in quantum corrals. Specifically, we show that a submerged circular well may drive the walker to excite specific eigenmodes in the bath that result in drastic changes in the particle's statistical behaviour. The well tends to attract the walker, leading to a local peak in the walker's position histogram. By placing the well at one of the foci, a mode with maxima near the foci is preferentially excited, leading to a projection effect in the walker's position histogram towards the empty focus, an effect strongly reminiscent of the quantum mirage. Finally, we demonstrate that the mean pilot-wave field has the same form as the histogram describing the walker's statistics.

  9. Penetration and screening of perpendicularly launched electromagnetic waves through bounded supercritical plasma confined in multicusp magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Indranuj; Bhattacharjee, Sudeep

    2011-02-15

    The question of electromagnetic wave penetration and screening by a bounded supercritical ({omega}{sub p}>{omega} with {omega}{sub p} and {omega} being the electron-plasma and wave frequencies, respectively) plasma confined in a minimum B multicusp field, for waves launched in the k perpendicular B{sub o} mode, is addressed through experiments and numerical simulations. The scale length of radial plasma nonuniformity (|n{sub e}/({partial_derivative}n{sub e}/{partial_derivative}r)|) and magnetostatic field (B{sub o}) inhomogeneity (|B{sub o}/({partial_derivative}B{sub o}/{partial_derivative}r)|) are much smaller than the free space ({lambda}{sub o}) and guided wavelengths ({lambda}{sub g}). Contrary to predictions of plane wave dispersion theory and the Clemow-Mullaly-Allis (CMA) diagram, for a boundedmore » plasma a finite propagation occurs through the central plasma regions where {alpha}{sub p}{sup 2}={omega}{sub p}{sup 2}/{omega}{sup 2}{>=}1 and {beta}{sub c}{sup 2}={omega}{sub ce}{sup 2}/{omega}{sup 2}<<1({approx}10{sup -4}), with {omega}{sub ce} being the electron cyclotron frequency. Wave screening, as predicted by the plane wave model, does not remain valid due to phase mixing and superposition of reflected waves from the conducting boundary, leading to the formation of electromagnetic standing wave modes. The waves are found to satisfy a modified upper hybrid resonance (UHR) relation in the minimum B field and are damped at the local electron cyclotron resonance (ECR) location.« less

  10. Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.; Stauffer, B. H.; Ma, X.

    2017-12-01

    Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.

  11. Constant Group Velocity Ultrasonic Guided Wave Inspection for Corrosion and Erosion Monitoring in Pipes

    NASA Astrophysics Data System (ADS)

    Instanes, Geir; Pedersen, Audun; Toppe, Mads; Nagy, Peter B.

    2009-03-01

    This paper describes a novel ultrasonic guided wave inspection technique for the monitoring of internal corrosion and erosion in pipes, which exploits the fundamental flexural mode to measure the average wall thickness over the inspection path. The inspection frequency is chosen so that the group velocity of the fundamental flexural mode is essentially constant throughout the wall thickness range of interest, while the phase velocity is highly dispersive and changes in a systematic way with varying wall thickness in the pipe. Although this approach is somewhat less accurate than the often used transverse resonance methods, it smoothly integrates the wall thickness over the whole propagation length, therefore it is very robust and can tolerate large and uneven thickness variations from point to point. The constant group velocity (CGV) method is capable of monitoring the true average of the wall thickness over the inspection length with an accuracy of 1% even in the presence of one order of magnitude larger local variations. This method also eliminates spurious variations caused by changing temperature, which can cause fairly large velocity variations, but do not significantly influence the dispersion as measured by the true phase angle in the vicinity of the CGV point. The CGV guided wave CEM method was validated in both laboratory and field tests.

  12. Resonant Tunneling Quantum Well Integrated Optical Waveguide Modulator/ Switch

    DTIC Science & Technology

    1994-07-01

    time, which leads to the high speed operation. In this Phase I project, POC designed the RTDBQW device, including the optimization and precise definition...Effect of Free Carriers ............ 7 3.0 CHANNEL WAVEGUIDE DESIGN AND OPTIMIZATION ................... 10 3.1 Design Of Directional Coupling Mach...are essential for high speed signal routing and regeneration. POC’s design relies on the integration of an optical guided wave switch/modulator with a

  13. Resonant optical transducers for in-situ gas detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Tiziana C.; Cole, Garrett; Goddard, Lynford

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  14. Analytical and experimental procedures for determining propagation characteristics of millimeter-wave gallium arsenide microstrip lines

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1989-01-01

    In this report, a thorough analytical procedure is developed for evaluating the frequency-dependent loss characteristics and effective permittivity of microstrip lines. The technique is based on the measured reflection coefficient of microstrip resonator pairs. Experimental data, including quality factor Q, effective relative permittivity, and fringing for 50-omega lines on gallium arsenide (GaAs) from 26.5 to 40.0 GHz are presented. The effects of an imperfect open circuit, coupling losses, and loading of the resonant frequency are considered. A cosine-tapered ridge-guide text fixture is described. It was found to be well suited to the device characterization.

  15. Resonant optical transducers for in-situ gas detection

    DOEpatents

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  16. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.

  17. Mid-infrared metasurface made of composite right/left-handed transmission-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yi; Ying, Xiangxiao; Pu, Yang

    2016-06-06

    We report on the realization of a mid-infrared metasurface based on the concept of composite right/left-handed transmission-line. The metasurface consists of a three-layer metal-insulator-metal structure patterned into transmission-lines by electron-beam lithography. Angle-variable reflection spectroscopy measurements reveal resonant absorption features corresponding to both right- and left-handed propagations in the leaky-wave guided mode region. Material loss is shown to dominate the quality factor of the left-handed modes, while the radiative loss dominates the right-handed ones. The experimental results are in good agreement with full-wave numerical simulations and are explained with an equivalent circuit model.

  18. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength doesmore » in wave-guides loaded by means of corrugations.« less

  19. Verification of nonlinear particle simulation of radio frequency waves in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Kuley, Animesh; Bao, Jian; Lin, Zhihong

    2015-11-01

    Nonlinear global particle simulation model has been developed in GTC to study the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic. Boris push scheme for the ion motion has been implemented in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron, ion Bernstein and lower hybrid waves. The nonlinear GTC simulation of the lower hybrid wave shows that the amplitude of the electrostatic potential is oscillatory due to the trapping of resonant electrons by the electric field of the lower hybrid wave. The nonresonant parametric decay is observed an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating with a heating rate proportional to the pump wave intensity. This work is supported by PPPL subcontract number S013849-F and US Department of Energy (DOE) SciDAC GSEP Program.

  20. Optical Tamm states in one-dimensional superconducting photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Abouti, O.; El Boudouti, E. H.; IEMN, UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d'Ascq

    2016-08-15

    In this study, we investigate localized and resonant optical waves associated with a semi-infinite superlattice made out of superconductor-dielectric bilayers and terminated with a cap layer. Both transverse electric and transverse magnetic waves are considered. These surface modes are analogous to the so-called Tamm states associated with electronic states found at the surface of materials. The surface guided modes induced by the cap layer strongly depend on whether the superlattice ends with a superconductor or a dielectric layer, the thickness of the surface layer, the temperature of the superconductor layer as well as on the polarization of the waves. Differentmore » kinds of surface modes are found and their properties examined. These structures can be used to realize the highly sensitive photonic crystal sensors.« less

  1. Experimental study of an adaptive elastic metamaterial controlled by electric circuits

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Chen, Y. Y.; Barnhart, M. V.; Hu, G. K.; Sun, C. T.; Huang, G. L.

    2016-01-01

    The ability to control elastic wave propagation at a deep subwavelength scale makes locally resonant elastic metamaterials very relevant. A number of abilities have been demonstrated such as frequency filtering, wave guiding, and negative refraction. Unfortunately, few metamaterials develop into practical devices due to their lack of tunability for specific frequencies. With the help of multi-physics numerical modeling, experimental validation of an adaptive elastic metamaterial integrated with shunted piezoelectric patches has been performed in a deep subwavelength scale. The tunable bandgap capacity, as high as 45%, is physically realized by using both hardening and softening shunted circuits. It is also demonstrated that the effective mass density of the metamaterial can be fully tailored by adjusting parameters of the shunted electric circuits. Finally, to illustrate a practical application, transient wave propagation tests of the adaptive metamaterial subjected to impact loads are conducted to validate their tunable wave mitigation abilities in real-time.

  2. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1988-01-01

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  3. Method of making a piezoelectric shear wave resonator

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1987-02-03

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  4. Confinement-induced p-wave resonances from s-wave interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Yusuke; Tan, Shina; School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

    2010-12-15

    We show that a purely s-wave interaction in three dimensions (3D) can induce higher partial-wave resonances in mixed dimensions. We develop two-body scattering theories in all three cases of 0D-3D, 1D-3D, and 2D-3D mixtures and determine the positions of higher partial-wave resonances in terms of the 3D s-wave scattering length assuming a harmonic confinement potential. We also compute the low-energy scattering parameters in the p-wave channel (scattering volume and effective momentum) that are necessary for the low-energy effective theory of the p-wave resonance. We point out that some of the resonances observed in the Florence group experiment [Phys. Rev. Lett.more » 104, 153202 (2010)] can be interpreted as the p-wave resonances in the 2D-3D mixed dimensions. Our study paves the way for a variety of physics, such as Anderson localization of matter waves under p-wave resonant scatterers.« less

  5. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such coatings would be attractive for new pipeline installations.

  6. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zhenhua; Yu, Lingyu

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less

  7. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE PAGES

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less

  8. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.

    PubMed

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.

  9. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1985-05-20

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  10. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1983-10-25

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  11. Non-collinear interaction of guided elastic waves in an isotropic plate

    NASA Astrophysics Data System (ADS)

    Ishii, Yosuke; Biwa, Shiro; Adachi, Tadaharu

    2018-04-01

    The nonlinear wave propagation in a homogeneous and isotropic elastic plate is analyzed theoretically to investigate the non-collinear interaction of plate wave modes. In the presence of two primary plate waves (Rayleigh-Lamb or shear horizontal modes) propagating in arbitrary directions, an explicit expression for the modal amplitude of nonlinearly generated wave fields with the sum or difference frequency of the primary modes is derived by using the perturbation analysis. The modal amplitude is shown to grow in proportion with the propagation distance when the resonance condition is satisfied, i.e., when the wavevector of secondary wave coincides with the sum or difference of those of primary modes. Furthermore, the non-collinear interaction of two symmetric or two antisymmetric modes is shown to produce the secondary wave fields consisting only of the symmetric modes, while a pair of symmetric and antisymmetric primary modes is shown to produce only the antisymmetric modes. The influence of the intersection angle, the primary frequencies, and the mode combinations on the modal amplitude of secondary wave is examined for a low-frequency range where the lowest-order symmetric and antisymmetric Rayleigh-Lamb waves and the lowest-order symmetric shear horizontal wave are the only propagating modes.

  12. Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering

    NASA Astrophysics Data System (ADS)

    Tsakmakidis, K. L.; Shen, L.; Schulz, S. A.; Zheng, X.; Upham, J.; Deng, X.; Altug, H.; Vakakis, A. F.; Boyd, R. W.

    2017-06-01

    A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δt inversely proportional to the bandwidth (Δt·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this “fundamental” limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance.

  13. Topological acoustic polaritons: robust sound manipulation at the subwavelength scale

    NASA Astrophysics Data System (ADS)

    Yves, Simon; Fleury, Romain; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2017-07-01

    Topological insulators, a hallmark of condensed matter physics, have recently reached the classical realm of acoustic waves. A remarkable property of time-reversal invariant topological insulators is the presence of unidirectional spin-polarized propagation along their edges, a property that could lead to a wealth of new opportunities in the ability to guide and manipulate sound. Here, we demonstrate and study the possibility to induce topologically non-trivial acoustic states at the deep subwavelength scale, in a structured two-dimensional metamaterial composed of Helmholtz resonators. Radically different from previous designs based on non-resonant sonic crystals, our proposal enables robust sound manipulation on a surface along predefined, subwavelength pathways of arbitrary shapes.

  14. International Conference on Infrared and Millimeter Waves, 18th, Univ. of Essex, Colchester, United Kingdom, Sept. 6-10, 1993, Conference Digest

    NASA Astrophysics Data System (ADS)

    Birch, James R.; Parker, Terence J.

    Papers presented in these proceedings are grouped under the topics of FEL, detectors and sources, gas lasers, spectroscopy, windows for high-power applications, scattering, plasma diagnostics, waveguides, gyrotron, quasi-optical components, biological effects of IR and millimeter waves, and astronomical and atmospheric systems. Particular attention is given to the ENEA compact millimeter wave FEL, excitonic detectors of IR and submm waves, identification of submm CD2O lines, a two-frequency quasi-optical radiospectrometer for substance investigations, the effect of window tolerances on gyrotron performance, and analysis of scattering of the open resonator field from the cavity-backed aperture. Other papers are on submm laser interferometer-polarimeter for plasma diagnostics, the characteristics of the closed circular groove guide, a kW sixth-harmonic gyrofrequency multiplier, rugged FIR bandpass filters, millimeter waves and quantum medicines, and a horizontal atmospheric temperature sounder based on the 60-GHz oxygen absorptions.

  15. Spacecraft Observations of a ULF Wave Injected Onto Field Lines by SPEAR

    NASA Astrophysics Data System (ADS)

    Badman, S. V.; Wright, D. M.; Yeoman, T. K.; Clausen, L. B.; Fear, R. C.; Fazakerley, A. N.; Lucek, E. A.

    2008-12-01

    SPEAR (Space Exploration by Active Radar) is an ionospheric heating facility situated on Svalbard which is capable of exciting ULF waves on local magnetic field lines. Field-guided ULF waves can interact with the ionospheric Alfvén resonator (IAR) and produce parallel electric fields, which then accelerate electrons along the field line. Detection and study of these waves thus provides information on the properties of the IAR and auroral acceleration processes. We examine an interval from 1 February 2006 when SPEAR was transmitting with a 5 min on-off cycle. During this interval the Cluster spacecraft passed over the heater site. We discuss signatures of the SPEAR-generated wave identified in the Cluster field and electron measurements. One feature of interest is the periodic enhancement of electron fluxes in two broad energy bands (~10-100 eV and ~100-1000 eV) which occur out of phase with each other in the two different energy bands.

  16. A guided wave dispersion compensation method based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Xu, Cai-bin; Yang, Zhi-bo; Chen, Xue-feng; Tian, Shao-hua; Xie, Yong

    2018-03-01

    The ultrasonic guided wave has emerged as a promising tool for structural health monitoring (SHM) and nondestructive testing (NDT) due to their capability to propagate over long distances with minimal loss and sensitivity to both surface and subsurface defects. The dispersion effect degrades the temporal and spatial resolution of guided waves. A novel ultrasonic guided wave processing method for both single mode and multi-mode guided waves dispersion compensation is proposed in this work based on compressed sensing, in which a dispersion signal dictionary is built by utilizing the dispersion curves of the guided wave modes in order to sparsely decompose the recorded dispersive guided waves. Dispersion-compensated guided waves are obtained by utilizing a non-dispersion signal dictionary and the results of sparse decomposition. Numerical simulations and experiments are implemented to verify the effectiveness of the developed method for both single mode and multi-mode guided waves.

  17. All-polymer whispering gallery mode sensor system.

    PubMed

    Petermann, Ann Britt; Varkentin, Arthur; Roth, Bernhard; Morgner, Uwe; Meinhardt-Wollweber, Merve

    2016-03-21

    Sensors based on whispering gallery modes have been extensively investigated with respect to their possible application as physical or biological sensors. Instead of using a single resonator, we use an all polymer resonator array as sensing element. A tunable narrowband laser is coupled into a PMMA plate serving as an optical wave guide. PMMA spheres are placed in the evanescent field on the surface of the plate. Due to small size variations, some spheres are in resonance at a given wavelength while others are not. We show that this device is well suited for the determination of an unknown wavelength or for temperature measurements. Moreover, we discuss several general aspects of the sensor concept such as the number and size of sensing elements which are necessary for a correct measurement result, or the maximum acceptable linewidth of the laser.

  18. Wave power focusing due to the Bragg resonance

    NASA Astrophysics Data System (ADS)

    Tao, Ai-feng; Yan, Jin; Wang, Yi; Zheng, Jin-hai; Fan, Jun; Qin, Chuan

    2017-08-01

    Wave energy has drawn much attention as an achievable way to exploit the renewable energy. At present, in order to enhance the wave energy extraction, most efforts have been concentrated on optimizing the wave energy convertor and the power take-off system mechanically and electrically. However, focusing the wave power in specific wave field could also be an alternative to improve the wave energy extraction. In this experimental study, the Bragg resonance effect is applied to focus the wave energy. Because the Bragg resonance effect of the rippled bottom largely amplifies the wave reflection, leading to a significant increase of wave focusing. Achieved with an energy conversion system consisting of a point absorber and a permanent magnet single phase linear motor, the wave energy extracted in the wave flume with and without Bragg resonance effect was measured and compared quantitatively in experiment. It shows that energy extraction by a point absorber from a standing wave field resulted from Bragg resonance effect can be remarkably increased compared with that from a propagating wave field (without Bragg resonance effect).

  19. Edgewood Biosensors Test Bed Hand-held and Man-Portable Edition

    DTIC Science & Technology

    2013-09-01

    Laboratories Antibody-based wave guide detection Antibody-based capture beads Seattle Sensor Systems 𔃺Ŕ’"𔃺’ Surface plasmon resonance 19  Approved...160  APPENDIX A: TECHNOLOGY READINESS ASSIGNMENTS .......................................................... A‐1  APPENDIX B: BIO ...Sandia National Laboratories’ SpinDx™, Seattle  Sensors  Systems’ SPIRIT™ and  the Research International RAPTOR scored poorly and assessed to be

  20. Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California

    USGS Publications Warehouse

    Li, Y.-G.; Ellsworth, W.L.; Thurber, C.H.; Malin, P.E.; Aki, K.

    1997-01-01

    Fault-zone guided waves were successfully excited by near-surface explosions in the San Andreas fault zone both at Parkfield and Cienega Valley, central California. The guided waves were observed on linear, three-component seismic arrays deployed across the fault trace. These waves were not excited by explosions located outside the fault zone. The amplitude spectra of guided waves show a maximum peak at 2 Hz at Parkfield and 3 Hz at Cienega Valley. The guided wave amplitude decays sharply with observation distance from the fault trace. The explosion-excited fault-zone guided waves are similar to those generated by earthquakes at Parkfield but have lower frequencies and travel more slowly. These observations suggest that the fault-zone wave guide has lower seismic velocities as it approaches the surface at Parkfield. We have modeled the waveforms as S waves trapped in a low-velocity wave guide sandwiched between high-velocity wall rocks, resulting in Love-type fault-zone guided waves. While the results are nonunique, the Parkfield data are adequately fit by a shallow wave guide 170 m wide with an S velocity 0.85 km/sec and an apparent Q ??? 30 to 40. At Cienega Valley, the fault-zone wave guide appears to be about 120 m wide with an S velocity 0.7 km/sec and a Q ??? 30.

  1. Micromachined ultrasonic transducers for air-coupled nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Hansen, Sean T.; Degertekin, F. Levent; Khuri-Yakub, Butrus T.

    1999-01-01

    Conventional methods of ultrasonic non-destructive evaluation (NDE) use liquids to couple sound waves into the test samples. This either requires immersion of the parts to be examined or the use of complex and bulky water squirting systems that must be scanned over the structure. Air-coupled ultrasonic systems eliminate these requirements if the losses at air-solid interfaces are tolerable. Micromachined capacitive ultrasonic transducers (cMUTs) have been shown to have more than 100 dB dynamic range when used in the bistatic transmission mode. In this paper, we present results of a pitch-catch transmission system using cMUTs that achieves a 103 dB dynamic range. Each transducer consists of 10,000 silicon nitride membranes of 100 micrometers diameter connected in parallel. This geometry result in transducers with a resonant frequency around 2.3 MHz. These transducers can be used in transmission experiments at normal incident to the sample or to excite and detect guided waves in aluminum and composite plates. In this paper we present ultrasonic defect detection results from both through transmission and guided Lamb wave experiments in aluminum and composite plates, such as those used in aircraft.

  2. Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference

    NASA Astrophysics Data System (ADS)

    Coccia, E.; Pizzella, G.; Ronga, F.

    1995-07-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On Production of Gravitational Radiation by Particle Accelerators and by High Power Lasers * NESTOR: An Underwater Cerenkov Detector for Neutrino Astronomy * A Cosmic-Ray Veto System for the Gravitational Wave Detector NAUTLUS * Interferometers * Development of a 20m Prototype Laser Interferometric Gravitational Wave Detector at NAO * Production of Higher-Order Light Modes by High Quality Optical Components * Vibration Isolation and Suspension Systems for Laser Interferometer Gravitational Wave Detectors * Quality Factors of Stainless Steel Pendulum Wires * Reduction of Suspension Thermal Noises in Laser Free Masses Gravitational Antenna by Correlation of the Output with Additional Optical Signal * Resonant Detectors * Regeneration Effects in a Resonant Gravitational Wave Detector * A Cryogenic Sapphire Transducer with Double Frequency Pumping for Resonant Mass GW Detectors * Effect of Parametric Instability of Gravitational Wave Antenna with Microwave Cavity Transducer * Resonators of Novel Geometry for Large Mass Resonant Transducers * Measurements on the Gravitational Wave Antenna ALTAIR Equipped with a BAE Transducer * The Rome BAE Transducer: Perspectives of its Application to Ultracryogenic Gravitational Wave Antennas * Behavior of a de SQUID Tightly Coupled to a High-Q Resonant Transducer * High Q-Factor LC Resonators for Optimal Coupling * Comparison Between Different Data Analysis Procedures for Gravitational Wave Pulse Detection * Supernova 1987A Rome Maryland Gravitational Radiation Antenna Observations * Analysis of the Data Recorded by the Maryland and Rome Gravitational-Wave Detectors and the Seismic Data from Moscow and Obninsk Station during SN1987A * Multitransducer Resonant Gravitational Antennas * Local Array of High Frequency Antennas * Interaction Cross-Sections for Spherical Resonant GW Antennae * Signal-To-Noise Analysis for a Spherical Gravitational Wave Antenna Instrumented with Multiple Transducers * On the Design of Ultralow Temperature Spherical Gravitational Wave Detectors * List of Participants

  3. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  4. New method to monitor RF safety in MRI-guided interventions based on RF induced image artefacts.

    PubMed

    van den Bosch, Michiel R; Moerland, Marinus A; Lagendijk, Jan J W; Bartels, Lambertus W; van den Berg, Cornelis A T

    2010-02-01

    Serious tissue heating may occur at the tips of elongated metallic structures used in MRI-guided interventions, such as vascular guidewires, catheters, biopsy needles, and brachytherapy needles. This heating is due to resonating electromagnetic radiofrequency (RF) waves along the structure. Since it is hard to predict the exact length at which resonance occurs under in vivo conditions, there is a need for methods to monitor this resonance behavior. In this study, the authors propose a method based on the RF induced image artefacts and demonstrate its applicability in two phantom experiments. The authors developed an analytical model that describes the RF induced image artefacts as a function of the induced current in an elongated metallic structure placed parallel to the static magnetic field. It describes the total RF field as a sum of the RF fields produced by the transmit coil of the MR scanner and by the elongated metallic structure. Several spoiled gradient echo images with different nominal flip angle settings were acquired to map the B1+ field, which is a quantitative measure for the RF distortion around the structure. From this map, the current was extracted by fitting the analytical model. To investigate the sensitivity of our method we performed two phantom experiments with different setup parameters: One that mimics a brachytherapy needle insertion and one that resembles a guidewire intervention. In the first experiment, a short needle was placed centrally in the MR bore to ensure that the induced currents would be small. In the second experiment, a longer wire was placed in an off-center position to mimic a worst case scenario for the patient. In both experiments, a Luxtron (Santa Clara, CA) fiberoptic temperature sensor was positioned at the structure tip to record the temperature. In the first experiment, no significant temperature increases were measured, while the RF image artefacts and the induced currents in the needle increased with the applied insertion depth. The maximum induced current in the needle was 44 mA. Furthermore, a standing wave pattern became clearly visible for larger insertion depths. In the second experiment, significant temperature increases up to 2.4 degrees C in 1 min were recorded during the image acquisitions. The maximum current value was 1.4 A. In both experiments, a proper estimation of the current in the metallic structure could be made using our analytical model. The authors have developed a method to quantitatively determine the induced current in an elongated metallic structure from its RF distortion. This creates a powerful and sensitive method to investigate the resonant behavior of RF waves along elongated metallic structures used for MRI-guided interventions, for example, to monitor the RF safety or to inspect the influence of coating on the resonance length. Principally, it can be applied under in vivo conditions and for noncylindrical metallic structures such as hip implants by taking their geometry into account.

  5. Universal feature in optical control of a p -wave Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Zhang, Ren; Huang, Lianghui; Li, Donghao; Meng, Zengming; Wang, Pengjun; Zhai, Hui; Zhang, Peng; Zhang, Jing

    2018-01-01

    We report the experimental results on the optical control of a p -wave Feshbach resonance by utilizing a laser-driven bound-to-bound transition to shift the energy of a closed-channel molecule state. The magnetic field location for the p -wave resonance as a function of laser detuning can be captured by a simple formula with essentially one parameter, which describes how sensitively the resonance depends on the laser detuning. The key result of this work is to demonstrate, both experimentally and theoretically, that the ratio between this parameter for the m =0 component of the resonance and that for the m =±1 component, to a large extent, is universal. We also show that this optical control can create intriguing situations where interesting few- and many-body physics can occur, such as a p -wave resonance overlapping with an s -wave resonance or the three components of a p -wave resonance being degenerate.

  6. Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons

    NASA Astrophysics Data System (ADS)

    Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya

    2015-08-01

    Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude à and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher à and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.

  7. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  8. Properties of resonance wave functions.

    NASA Technical Reports Server (NTRS)

    More, R. M.; Gerjuoy, E.

    1973-01-01

    Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.

  9. The family of micro sensors for remote control the pollution in liquids and gases

    NASA Astrophysics Data System (ADS)

    Tulaikova, Tamara; Kocharyun, Gevorg; Rogerson, Graham; Burmistrova, Ludmyla; Sychugov, Vladimir; Dorojkin, Peter

    2005-10-01

    There are the results for the 3 groups of fiber-optical sensors. First is the fiber-optical sensor with changed sensitive heads on the base on porous polymer with clamped activated dye. Vibration method for fiber-optical sensors provides more convenient output measurements of resonant frequency changes, in comparison with the first device. The self-focusing of the living sells into optical wave-guides in laser road in water will be considered as a new touch method for environment remote sensing.

  10. Thin structured rigid body for acoustic absorption

    NASA Astrophysics Data System (ADS)

    Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.

    2017-01-01

    We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.

  11. Highly efficient color filter array using resonant Si3N4 gratings.

    PubMed

    Uddin, Mohammad Jalal; Magnusson, Robert

    2013-05-20

    We demonstrate the design and fabrication of a highly efficient guided-mode resonant color filter array. The device is designed using numerical methods based on rigorous coupled-wave analysis and is patterned using UV-laser interferometric lithography. It consists of a 60-nm-thick subwavelength silicon nitride grating along with a 105-nm-thick homogeneous silicon nitride waveguide on a glass substrate. The fabricated device exhibits blue, green, and red color response for grating periods of 274, 327, and 369 nm, respectively. The pixels have a spectral bandwidth of ~12 nm with efficiencies of 94%, 96%, and 99% at the center wavelength of blue, green, and red color filter, respectively. These are higher efficiencies than reported in the literature previously.

  12. A numerical study of non-collinear wave mixing and generated resonant components.

    PubMed

    Sun, Zhenghao; Li, Fucai; Li, Hongguang

    2016-09-01

    Interaction of two non-collinear nonlinear ultrasonic waves in an elastic half-space with quadratic nonlinearity is investigated in this paper. A hyperbolic system of conservation laws is applied here and a semi-discrete central scheme is used to solve the numerical problem. The numerical results validate that the model can be used as an effective method to generate and evaluate a resonant wave when two primary waves mix together under certain resonant conditions. Features of the resonant wave are analyzed both in the time and frequency domains, and variation trends of the resonant waves together with second harmonics along the propagation path are analyzed. Applied with the pulse-inversion technique, components of resonant waves and second harmonics can be independently extracted and observed without distinguishing times of flight. The results show that under the circumstance of non-collinear wave mixing, both sum and difference resonant components can be clearly obtained especially in the tangential direction of their propagation. For several rays of observation points around the interaction zone, the further it is away from the excitation sources, generally the earlier the maximum of amplitude arises. From the parametric analysis of the phased array, it is found that both the length of array and the density of element have impact on the maximum of amplitude of the resonant waves. The spatial distribution of resonant waves will provide necessary information for the related experiments. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion.

    PubMed

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).

  14. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion

    PubMed Central

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838

  15. Nonlinear Landau damping in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kiwamoto, Y.; Benson, R. F.

    1978-01-01

    A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.

  16. Effect of the transverse nonuniformity of the radiofrequency field on the start current and efficiency of gyrodevices with confocal mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, Gregory S.; Chainani, Samir; Granatstein, Victor L.

    The theory is developed for analyzing the effect of transverse nonuniformity of the radiofrequency (rf) field on the starting conditions and efficiency of such gyrotron oscillators as gyromonotrons and gyro-backward-wave oscillators (gyro-BWO). The formalism allows one to study this effect in oscillators operating in the regimes of soft and hard self-excitation. Results obtained for a device with a confocal waveguide (or resonator) are compared with the results for conventional gyrodevices where the rf field acting on electrons with different guiding centers is the same. It is shown how to use results of the classical small-signal theory of backward-wave oscillators drivenmore » by linear electron beams for calculating the start currents in gyro-BWOs. The effect of the wave attenuation in waveguide walls on the start current is analyzed, which is important for the design of frequency-tunable gyro-backward-wave oscillators in the THz (and sub THz) frequency range.« less

  17. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    DOEpatents

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  18. Spatial distribution of the wave field of the surface modes sustaining filamentary discharges

    NASA Astrophysics Data System (ADS)

    Lishev, St.; Shivarova, A.; Tarnev, Kh.

    2008-01-01

    The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density of the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all—six—field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament—both radially inhomogeneous—are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.

  19. Wave envelope technique for multimode wave guide problems

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Sudharsanan, S. I.

    1986-01-01

    A fast method for solving wave guide problems is proposed. In particular, the guide is considered to be inhomogeneous allowing propagation of waves of higher order modes. Such problems have been handled successfully for acoustic wave propagation problems with single mode and finite length. This paper extends this concept to electromagnetic wave guides with several modes and infinite length. The method is described and results of computations are presented.

  20. Analytic Theory of Titans Schumann Resonance: Constraints on Ionospheric Conductivity and Buried Water Ocean

    NASA Technical Reports Server (NTRS)

    Beghin, Christian; Randriamboarison, Orelien; Hamelin, Michel; Karkoschka, Erich; Sotin, Christophe; Whitten, Robert C.; Berthelier, Jean-Jacques; Grard, Rejean; Simoes, Fernando

    2013-01-01

    This study presents an approximate model for the atypical Schumann resonance in Titan's atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI-PWA) instrumentation during the descent of the Huygens Probe through Titan's atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan's ionosphere by the Saturn's magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan's atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water-ammonia ocean lying at a likely depth of 55-80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while convective processes cannot be ruled out.

  1. Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering.

    PubMed

    Tsakmakidis, K L; Shen, L; Schulz, S A; Zheng, X; Upham, J; Deng, X; Altug, H; Vakakis, A F; Boyd, R W

    2017-06-23

    A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δ t inversely proportional to the bandwidth (Δ t ·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this "fundamental" limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Investigations of High Pressure Acoustic Waves in Resonators with Seal-Like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh

    2004-01-01

    1) Standing waves with maximum pressures of 188 kPa have been produced in resonators containing ambient pressure air; 2) Addition of structures inside the resonator shifts the fundamental frequency and decreases the amplitude of the generated pressure waves; 3) Addition of holes to the resonator does reduce the magnitude of the acoustic waves produced, but their addition does not prohibit the generation of large magnitude non-linear standing waves; 4) The feasibility of reducing leakage using non-linear acoustics has been confirmed.

  3. Guided-mode resonance reflection and transmission filters in the optical and microwave spectral ranges

    NASA Astrophysics Data System (ADS)

    Tibuleac, Sorin

    In this dissertation, new reflection and transmission filters are developed and characterized in the optical and microwave spectral regions. These guided-mode resonance (GMR) filters are implemented by integrating diffraction gratings into classical thin-film multilayers to produce high efficiency filter response and low sidebands extended over a large spectral range. Diffraction from phase-shifted gratings and gratings with different periods is analyzed using rigorous coupled-wave theory yielding a new approach to filter linewidth broadening, line-shaping, and multi-line filters at normal incidence. New single-grating transmission filters presented have narrow linewidth, high peak transmittance, and low sideband reflectance. A comparison with classical thin-film filters shows that GMR devices require significantly fewer layers to obtain narrow linewidth and high peak response. All-dielectric microwave frequency- selective surfaces operating in reflection or transmission are shown to be realizable with only a few layers using common microwave materials. Single-layer and multilayer waveguide gratings operating as reflection and transmission filters, respectively, were built and tested in the 4-20 GHz frequency range. The presence of GMR notches and peaks is clearly established by the experimental results, and their spectral location and lineshape found to be in excellent agreement with the theoretical predictions. A new computer program using genetic algorithms and rigorous coupled-wave analysis was developed for optimization of multilayer structures containing homogeneous and diffractive layers. This program was utilized to find GMR filters possessing features not previously known. Thus, numerous examples of transmission filters with peaks approaching 100%, narrow linewidths (~0.03%), and low sidebands have been found in structures containing only 1-3 layers. A new type of GMR device integrating a waveguide grating with subwavelength period on the endface of an optical fiber is developed for high-resolution biomedical or chemical sensors and spectral filtering applications. Diffraction gratings with submicron periods exhibiting high efficiencies have been recorded for the first time on coated and uncoated endfaces of single-mode and multimode fibers. Guided-mode resonance transmittance notches of ~18% were experimentally obtained with structures consisting of photoresist gratings on thin films of Si3N4 deposited on optical fiber endfaces.

  4. A rheological model for immersed corrugated elastic plates.

    PubMed

    Meier, D; Franklin, H; Predoi, M V; Rousseau, M; Izbicki, J L

    2017-03-01

    The influence of surface imperfections on the propagation of guided waves in an immersed elastic plate can be interpreted by means of a rheological model. The corrugated surface is modeled by a very thin interface, similar to a Jones spring model, which replaces the continuity boundary conditions at the liquid - corrugated solid-plate interface. As the surrounding liquid is considered to be perfect, only one complex stiffness is used for the model of Jones. The selection of the plate guided mode and the test frequency are motivated by the detectability and non-interference with other modes. The spring stiffness is obtained by a best fit procedure, between the analytical solution and the results obtained by the finite elements method (FEM). One way ensuring the agreement of the two approaches, rheological and FEM, is to consider angular resonances provided by the transmission coefficients. Small changes in the parameters of the roughness keep the positions of the angular resonances of the plate practically unchanged, while at the same time large variations of the half width of the transmission coefficient curve is observed. The effect of corrugation parameters on the guided modes in the plate can be predicted by using the rheological model with the deduced spring complex stiffness. Copyright © 2016. Published by Elsevier B.V.

  5. Loss of ring current O(+) ions due to interaction with Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Li, Xinlin; Hudson, Mary; Chan, Anthony; Roth, Ilan

    1993-01-01

    A test particle code is used here to investigate ring current ion interaction with Pc 5 waves, combined with convection and corotation electric fields, with emphasis on the loss of O(+) ions over the dayside magnetosphere. A new loss mechanism for the O(+) ions due to the combined effects of convection and corotation electric fields and interactions with Pc 5 waves via a magnetic drift-bound resonance is presented. For given fields, whether a particle gains or losses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O(+) ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. Due to interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle is lost to the dayside magnetopause by a sunward E x B drift.

  6. Nonlinear damping of oblique whistler mode waves through Landau resonance

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle < 20°. Analyzing the wave electric field E and the resonant current J, which is composed of electrons undergoing the Landau resonance, we find that the J·E is mainly positive, which denotes the damping of the wave. Furthermore, we confirm that this positive J•E is dominated by transverse component Jperp·Eperp rather than by longitudinal component Jpara·Eperp. The simulation results reveal that the Landau resonance contributes to the nonlinear damping at 0.5 Ωe for whistler mode waves. Reference [1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, doi:10.1002/2016JA023255.

  7. Sensitivity enhancement of traveling wave MRI using free local resonators: an experimental demonstration.

    PubMed

    Zhang, Xiaoliang

    2017-04-01

    Traveling wave MR uses the far fields in signal excitation and reception, therefore its acquisition efficiency is low in contrast to the conventional near field magnetic resonance (MR). Here we show a simple and efficient method based on the local resonator to improving sensitivity of traveling wave MR technique. The proposed method utilizes a standalone or free local resonator to amplify the radio frequency magnetic fields in the interested target. The resonators have no wire connections to the MR system and thus can be conveniently placed to any place around imaging simples. A rectangular loop L/C resonator to be used as the free local resonator was tuned to the proton Larmor frequency at 7T. Traveling wave MR experiments with and without the wireless free local resonator were performed on a living rat using a 7T whole body MR scanner. The signal-to-noise ratio (SNR) or sensitivity of the images acquired was compared and evaluated. In vivo 7T imaging results show that traveling wave MR with a wireless free local resonator placed near the head of a living rat achieves at least 10-fold SNR gain over the images acquired on the same rat using conventional traveling wave MR method, i.e. imaging with no free local resonators. The proposed free local resonator technique is able to enhance the MR sensitivity and acquisition efficiency of traveling wave MR at ultrahigh fields in vivo . This method can be a simple solution to alleviating low sensitivity problem of traveling wave MRI.

  8. Numerical study of electromagnetic waves generated by a prototype dielectric logging tool

    USGS Publications Warehouse

    Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.

    2004-01-01

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.

  9. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  10. Novel Feshbach resonances in a ^40K spin-mixture

    NASA Astrophysics Data System (ADS)

    Walraven, J. T. M.; Ludewig, A.; Tiecke, T. G.

    2010-03-01

    We present experimental results on novel s-wave Feshbach resonances in ^40K spin-mixtures. Using an extended version of the Asymptotic Bound-state Model (ABM) [1] we predict Feshbach resonances with more promising characteristics than the commonly used resonances in the (|F,mF>) |9/2,-9/2>+|9/2,-7/2> and |9/2,-9/2>+|9/2,-5/2> spin mixtures. We report on an s-wave resonance in the |9/2,-5/2>+|9/2,-3/2> mixture. We have experimentally observed the corresponding loss-feature at B0˜178 G with a width of ˜10G. This resonance is promising due to its large predicted width and the absence of an overlapping p-wave resonance. We present our recent results on measurements of the resonance width and the stability of the system around this and other observed s-wave and p-wave resonances. [4pt] [1] T.G. Tiecke, et al., Phys. Rev. Lett. 104, 053202 (2010).

  11. Identification and classification of very low frequency waves on a coral reef flat

    USGS Publications Warehouse

    Gawehn, Matthijs; van Dongeran, Ap; van Rooijen, Arnold; Storlazzi, Curt; Cheriton, Olivia; Reniers, Ad

    2016-01-01

    Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (∼0.5–6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  12. Identification and classification of very low frequency waves on a coral reef flat

    NASA Astrophysics Data System (ADS)

    Gawehn, Matthijs; van Dongeren, Ap; van Rooijen, Arnold; Storlazzi, Curt D.; Cheriton, Olivia M.; Reniers, Ad

    2016-10-01

    Very low frequency (VLF, 0.001-0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (˜0.5-6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  13. Extreme Wave-Induced Oscillation in Paradip Port Under the Resonance Conditions

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Gulshan

    2017-12-01

    A mathematical model is constructed to analyze the long wave-induced oscillation in Paradip Port, Odisha, India under the resonance conditions to avert any extreme wave hazards. Boundary element method (BEM) with corner contribution is utilized to solve the Helmholtz equation under the partial reflection boundary conditions. Furthermore, convergence analysis is also performed for the boundary element scheme with uniform and non-uniform discretization of the boundary. The numerical scheme is also validated with analytic approximation and existing studies based on harbor resonance. Then, the amplification factor is estimated at six key record stations in the Paradip Port with multidirectional incident waves and resonance modes are also estimated at the boundary of the port. Ocean surface wave field is predicted in the interior of Paradip Port for the different directional incident wave at various resonance modes. Moreover, the safe locations in the port have been identified for loading and unloading of moored ship with different resonance modes and directional incident waves.

  14. Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Horne, Richard B.; Thorne, Richard M.

    1994-01-01

    The path-integrated linear growth of electromagnetic ion cyclotron waves in the outer (L is greater than or equal to 7) magnetosphere is investigated using a realistic thermal plasma distribution with an additional anisotropic energetic ring current H(+) to provide free energy for instability. The results provide a realistic simulation of the recent Active Magneto- spheric Particle Tracer Explorers (AMPTE) observations. For conditions typical of the dayside magnetosphere, high plasma beta effects reduce the group velocity and significantly increase the spatial growth rates for left-handed polarized instabilities just below the helium gyrofrequency Omega(sub He(+)), and on the guided mode above Omega(sub He(+)) but below the cross over frequency omega(sub cr). Relatively high densities, typical of the afternoon local time sector, favor these low group velocity effects for predominantly field-aligned waves. Lower densities, typical of those found in the early morning local time sector, increase the group velocity but allow strong convective instabilities at high normalized frequencies well above Omega(sub He(+)). These waves are reflected in the magnetosphere and can exist for several equatorial transits without significant damping. They are left-handed polarized only on the first equatorial crossing and become linearly polarized for the remainder of the ray path. Consequently, these waves should be observed with basically linear polarization at all frequencies and all latitudes in the early morning local time sector. Wave growth below Omega(sub He(+)) is severely limited owing to the narrow bandwidth for instability and the small resonant path lengths. In the afternoon sector, where plasma densities can exceed 10(exp 7)/cu m, intense convective amplification is possible both above and below Omega(sub He(+)). Waves below Omega(sub He(+)) are not subject to reflection when the O(+) concentration is small and therefore should be observed with left-handed polarization near the equator and essentially linear polarization at higher latitudes. Since the He(+) concentration is usually large in the afternoon sector, guided mode waves above Omega(sub He(+)) reflect to form a background distribution with basically linear polarization. We suggest that the strong left-handed polarized emissions observed by AMPTE in the afternoon sector near the equator are probably due to strongly growing low group velocity waves at frequencies just below Omega(sub He(+)), and on the guided mode above Omega(sub He(+)).

  15. Incipient Crack Detection in Composite Wind Turbine Blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Stuart G.; Choi, Mijin; Jeong, Hyomi

    2012-08-28

    This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results inmore » detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.« less

  16. Ince-Strutt stability charts for ship parametric roll resonance in irregular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Yang, He-zhen; Xiao, Fei; Xu, Pei-ji

    2017-08-01

    Ince-Strutt stability chart of ship parametric roll resonance in irregular waves is conducted and utilized for the exploration of the parametric roll resonance in irregular waves. Ship parametric roll resonance will lead to large amplitude roll motion and even wreck. Firstly, the equation describing the parametric roll resonance in irregular waves is derived according to Grim's effective theory and the corresponding Ince-Strutt stability charts are obtained. Secondly, the differences of stability charts for the parametric roll resonance in irregular and regular waves are compared. Thirdly, wave phases and peak periods are taken into consideration to obtain a more realistic sea condition. The influence of random wave phases should be taken into consideration when the analyzed points are located near the instability boundary. Stability charts for different wave peak periods are various. Stability charts are helpful for the parameter determination in design stage to better adapt to sailing condition. Last, ship variables are analyzed according to stability charts by a statistical approach. The increase of the metacentric height will help improve ship stability.

  17. Triad Resonance in the Gravity-Acoustic Family

    NASA Astrophysics Data System (ADS)

    Kadri, U.

    2015-12-01

    Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic envelope (middle) travels relatively fast to the right minimising the interaction time. Consequently, the resultant acoustic wave envelope (bottom) might be significantly smaller. As the two acoustic beams concurrently move away from the gravity wave, with disparate group velocities, the resonant interaction gradually vanishes.

  18. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.

    PubMed

    Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2015-04-01

    The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.

  19. Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models

    USGS Publications Warehouse

    Geist, Eric L.

    2016-01-01

    Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ∼ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20–30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.

  20. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    PubMed

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  1. Spin-wave interference in microscopic permalloy tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balhorn, Felix; Nagrodzki, Lukas; Mendach, Stefan

    2013-06-03

    We present permalloy coated needles which act as spin-wave resonators. The permalloy coated needles were investigated using microwave absorption spectroscopy. Thereby, we found up to three resonant modes which correspond to constructively interfering azimuthal spin waves. The resonant modes are well reproduced in calculations based on an analytical model for the spin-wave dispersion employing periodic boundary conditions. The dependence of the resonance frequencies on the needles' radii and the external magnetic field is demonstrated experimentally.

  2. KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isenberg, Philip A.; Vasquez, Bernard J.

    We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg and Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric distances of 20 solar radii, which will be attainable by the Solar Probe Plus spacecraft. We consider three ratios of outward-propagating tomore » inward-propagating resonant intensities: 1, 4, and 9. The self-consistent bulk flow speed reaches fast solar wind values in all cases, and these speeds are basically independent of the intensity ratio. The steady-state proton distribution is highly organized into nested constant-density shells by the resonant wave-particle interaction. The radial evolution of this kinetic distribution as the coronal hole plasma flows outward is understood as a competition between the inward- and outward-directed large-scale forces, causing an effective circulation of particles through the (v{sub ∥}, v{sub ⊥}) phase space and a characteristic asymmetric shape to the distribution. These asymmetries are substantial and persist to the outer limit of the model computation, where they should be observable by the Solar Probe Plus instruments.« less

  3. The origin of SH-wave resonance frequencies in sedimentary layers

    NASA Astrophysics Data System (ADS)

    van der Baan, Mirko

    2009-09-01

    Resonance frequencies are often analysed in geo-engineering studies to evaluate seismic risk and microzonation in urban areas. The Nakamura technique constitutes a popular approach that computes the spectral ratio of horizontal-to-vertical ground motion in ambient noise recordings to reveal the existence of any site resonance frequencies. Its theoretical basis remains however unclear with some authors arguing that the method de-emphasizes any Rayleigh-wave contributions and that the resonance frequencies are solely caused by vertically incident SH waves. Other authors explain the same resonance frequencies by the ellipticity of the fundamental Rayleigh wave. Recent numerical simulations reveal that the magnitude of the peak frequency is proportional to the relative portion of Love waves present. This study demonstrates that Love waves alone can be responsible for any observed resonance frequencies in sedimentary layers. Yet sharp SH-wave resonance frequencies are only excited by a source in the bedrock. These resonance frequencies are caused by inhomogeneous waves excited by the bedrock source that tunnel through the high-velocity bedrock to emerge in the low-velocity sediments with a very reduced range of slownesses. The resulting SH waves are then free to interfere constructively thereby creating the observed resonance frequencies. This general trigger mechanism leads to resonances that are almost offset independent. The resulting resonance frequencies map onto points of maximum curvature in the Love-wave phase-velocity dispersion curves at or just beyond the critical horizontal slowness. They can be analysed with the quarter-wavelength law if a large velocity contrast exists between the unconsolidated sediments and the bedrock. A minor modification of the quarter-wavelength law provides more accurate predictions, also for smaller velocity contrasts. Multisource simulations show that site amplification factors as determined by horizontal-over-vertical (H/V) spectral ratios would not only depend on the relative portion of Love waves in the total wavefield but also on the depth distribution and the relative strength of the SH sources inside the bedrock compared with those in the sediments. An accurate interpretation of site amplification factors by means of H/V peak frequencies would thus require in-depth knowledge of the causes and origins of the local microseismic noise field.

  4. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    NASA Astrophysics Data System (ADS)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  5. Experimental study of three-wave interactions among capillary-gravity surface waves

    NASA Astrophysics Data System (ADS)

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  6. Experimental study of three-wave interactions among capillary-gravity surface waves.

    PubMed

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  7. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  8. Prospective evaluation of magnetic resonance imaging guided in-bore prostate biopsy versus systematic transrectal ultrasound guided prostate biopsy in biopsy naïve men with elevated prostate specific antigen.

    PubMed

    Quentin, Michael; Blondin, Dirk; Arsov, Christian; Schimmöller, Lars; Hiester, Andreas; Godehardt, Erhard; Albers, Peter; Antoch, Gerald; Rabenalt, Robert

    2014-11-01

    Magnetic resonance imaging guided biopsy is increasingly performed to diagnose prostate cancer. However, there is a lack of well controlled, prospective trials to support this treatment method. We prospectively compared magnetic resonance imaging guided in-bore biopsy with standard systematic transrectal ultrasound guided biopsy in biopsy naïve men with increased prostate specific antigen. We performed a prospective study in 132 biopsy naïve men with increased prostate specific antigen (greater than 4 ng/ml). After 3 Tesla functional multiparametric magnetic resonance imaging patients were referred for magnetic resonance imaging guided in-bore biopsy of prostate lesions (maximum 3) followed by standard systematic transrectal ultrasound guided biopsy (12 cores). We analyzed the detection rates of prostate cancer and significant prostate cancer (greater than 5 mm total cancer length or any Gleason pattern greater than 3). A total of 128 patients with a mean ± SD age of 66.1 ± 8.1 years met all study requirements. Median prostate specific antigen was 6.7 ng/ml (IQR 5.1-9.0). Transrectal ultrasound and magnetic resonance imaging guided biopsies provided the same 53.1% detection rate, including 79.4% and 85.3%, respectively, for significant prostate cancer. Magnetic resonance imaging and transrectal ultrasound guided biopsies missed 7.8% and 9.4% of clinically significant prostate cancers, respectively. Magnetic resonance imaging biopsy required significantly fewer cores and revealed a higher percent of cancer involvement per biopsy core (each p <0.01). Combining the 2 methods provided a 60.9% detection rate with an 82.1% rate for significant prostate cancer. Magnetic resonance imaging guided in-bore and systematic transrectal ultrasound guided biopsies achieved equally high detection rates in biopsy naïve patients with increased prostate specific antigen. Magnetic resonance imaging guided in-bore biopsies required significantly fewer cores and revealed a significantly higher percent of cancer involvement per biopsy core. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Guided wave and damage detection in composite laminates using different fiber optic sensors.

    PubMed

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  10. Whistlers in space plasma, their role for particle populations in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Shklyar, David

    Of many wave modes, which propagate in the plasmaspheric region of the magnetosphere, whistler waves play the most important role in the dynamics of energetic particles (chiefly elec-trons, but not excepting protons), as their resonant interactions are very efficient. There are three main sources of whistler mode waves in the magnetosphere, namely, lightning strokes, VLF transmitter signals, and far and away various kinds of kinetic instabilities leading to generation of whistler mode waves. Resonant interactions of energetic electrons with whistlers may lead to electron acceleration, scattering into loss-cone, and consequent precipitation into the iono-sphere and atmosphere. While electron resonant interaction with lightning-induced whistlers and VLF transmitter signals may, to a certain approximation, be considered as particle dy-namics in given electromagnetic fields, resonant wave-particle interaction in the case of plasma instability is intrinsically a self-consistent process. An important aspect of whistler-electron interactions (particularly in the case of plasma instability) is the possibility of energy exchange between different energetic electron populations. Thus, in many cases, whistler wave growth rate is determined by "competition" between the first cyclotron and Cerenkov resonances, one (depending on energetic electron distribution) leading to wave growth and the other one to wave damping. Since particles which give rise to wave growth loose their energy, while parti-cles which lead to wave damping gain energy at the expense of the wave, and since the first cyclotron and Cerenkov resonances correspond to different particle energies, wave generation as the result of plasma instability may lead, at the same time, to energy exchange between two populations of energetic particles. While the role of whistlers in dynamics of energetic electrons in the magnetosphere is gener-ally recognized, their role for protons seems to be underestimated. At the same time, quasi-electrostatic lower-hybrid resonance (LHR) waves (to which non-ducted whistler mode waves originating from lightning strokes naturally evolve while propagating in the magnetosphere) may efficiently interact with energetic protons at higher order cyclotron resonances. Thus, whistler mode waves may mediate energy transfer not only between different populations of energetic electrons, but also between various plasma species. Theoretical discussion of various aspects of resonant wave-particle interactions in the magne-tosphere, those mentioned above and others, will be the subject of the report.

  11. Dispersion Energy Analysis of Rayleigh and Love Waves in the Presence of Low-Velocity Layers in Near-Surface Seismic Surveys

    NASA Astrophysics Data System (ADS)

    Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin

    2018-03-01

    High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.

  12. Microstructural and Defect Characterization in Ceramic Composites Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Cosgriff, L. M.; Martin, R. E.; Verrilli, M. J.; Bhatt, R. T.

    2003-01-01

    In this study, an ultrasonic guided wave scan system was used to characterize various microstructural and flaw conditions in two types of ceramic matrix composites, SiC/SiC and C/SiC. Rather than attempting to isolate specific lamb wave modes to use for characterization (as is desired for many types of guided wave inspection problems), the guided wave scan system utilizes the total (multi-mode) ultrasonic response in its inspection analysis. Several time and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. Microstructural and defect conditions examined include delamination, density variation, cracking, and pre/ post-infiltration. Results are compared with thermographic imaging methods. Although the guided wave technique is commonly used so scanning can be eliminated, applying the technique in the scanning mode allows a more precise characterization of defect conditions.

  13. Multicomponent long-wave-short-wave resonance interaction system: Bright solitons, energy-sharing collisions, and resonant solitons.

    PubMed

    Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M

    2014-11-01

    We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.

  14. Conditions and phase shift of fluid resonance in narrow gaps of bottom mounted caissons

    NASA Astrophysics Data System (ADS)

    Zhu, Da-tong; Wang, Xing-gang; Liu, Qing-jun

    2017-12-01

    This paper studies the viscid and inviscid fluid resonance in gaps of bottom mounted caissons on the basis of the plane wave hypothesis and full wave model. The theoretical analysis and the numerical results demonstrate that the condition for the appearance of fluid resonance in narrow gaps is kh=(2 n+1)π ( n=0, 1, 2, 3, …), rather than kh= nπ ( n=0, 1, 2, 3, …); the transmission peaks in viscid fluid are related to the resonance peaks in the gaps. k and h stand for the wave number and the gap length. The combination of the plane wave hypothesis or the full wave model with the local viscosity model can accurately determine the heights and the locations of the resonance peaks. The upper bound for the appearance of fluid resonance in gaps is 2 b/ L<1 (2 b, grating constant; L, wave length) and the lower bound is h/ b≤1. The main reason for the phase shift of the resonance peaks is the inductive factors. The number of resonance peaks in the spectrum curve is dependent on the ratio of the gap length to the grating constant. The heights and the positions of the resonance peaks predicted by the present models agree well with the experimental data.

  15. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves.

    PubMed

    Samaitis, Vykintas; Mažeika, Liudas

    2017-08-08

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system.

  16. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves

    PubMed Central

    Samaitis, Vykintas; Mažeika, Liudas

    2017-01-01

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system. PMID:28786924

  17. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies (is) greater than1 keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.

  18. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave-Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n= +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies 1 greater than or equal to keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L=4.6 and above 200 eV for L=6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.

  19. Terahertz wave parametric oscillations at polariton resonance using a MgO:LiNbO3 crystal.

    PubMed

    Li, Zhongyang; Bing, Pibin; Yuan, Sheng; Xu, Degang; Yao, Jianquan

    2015-06-20

    Terahertz wave (THz-wave) parametric oscillations with a noncollinear phase-matching scheme at polariton resonance using a MgO:LiNbO3 crystal with a surface-emitted configuration are investigated. We investigate frequency tuning characteristics of a THz-wave via varying the wavelength of the pump wave and phase-matching angle. The effective parametric gain length under the noncollinear phase-matching condition is calculated. Parametric gain and absorption characteristics of a THz-wave in the vicinity of polariton resonances are analyzed.

  20. MR-guided Focused Ultrasound for Uterine Fibroids

    MedlinePlus

    ... Professions Site Index A-Z MR-guided Focused Ultrasound for Uterine Fibroids Magnetic Resonance-guided Focused Ultrasound ( ... are the limitations of MRgFUS? What is Focused Ultrasound of Uterine Fibroids? Magnetic Resonance-guided Focused Ultrasound ( ...

  1. Functional Neuroimaging of Spike-Wave Seizures

    PubMed Central

    Motelow, Joshua E.; Blumenfeld, Hal

    2013-01-01

    Generalized spike-wave seizures are typically brief events associated with dynamic changes in brain physiology, metabolism, and behavior. Functional magnetic resonance imaging (fMRI) provides a relatively high spatio-temporal resolution method for imaging cortical-subcortical network activity during spike-wave seizures. Patients with spike-wave seizures often have episodes of staring and unresponsiveness which interfere with normal behavior. Results from human fMRI studies suggest that spike-wave seizures disrupt specific networks in the thalamus and fronto-parietal association cortex which are critical for normal attentive consciousness. However, the neuronal activity underlying imaging changes seen during fMRI is not well understood, particularly in abnormal conditions such as seizures. Animal models have begun to provide important fundamental insights into the neuronal basis for fMRI changes during spike-wave activity. Work from these models including both fMRI and direct neuronal recordings suggest that, like in humans, specific cortical-subcortical networks are involved in spike-wave, while other regions are spared. Regions showing fMRI increases demonstrate correlated increases in neuronal activity in animal models. The mechanisms of fMRI decreases in spike-wave will require further investigation. A better understanding of the specific brain regions involved in generating spike-wave seizures may help guide efforts to develop targeted therapies aimed at preventing or reversing abnormal excitability in these brain regions, ultimately leading to a cure for this disorder. PMID:18839093

  2. Theoretical investigation of EM wave generation and radiation in the ULF, ELF, and VLF bands by the electrodynamic orbiting tether

    NASA Technical Reports Server (NTRS)

    Estes, Robert D.; Grossi, Mario D.

    1989-01-01

    The problem of electromagnetic wave generation by an electrodynamic tethered satellite system is important both for the ordinary operation of such systems and for their possible application as orbiting transmitters. The tether's ionospheric circuit closure problem is closely linked with the propagation of charge-carrying electromagnetic wave packets away from the tethered system. Work is reported which represents a step towards a solution to the problem that takes into account the effects of boundaries and of vertical variations in plasma density, collision frequencies, and ion species. The theory of Alfen wave packet generation by an electrodynamic tethered system in an infinite plasma medium is reviewed, and brief summary of previous work on the problem is given. The consequences of the presence of the boundaries and the vertical nonuniformity are then examined. One of the most significant new features to emerge when ion-neutral collisions are taken into account is the coupling of the Alfven waves to the fast magnetosonic wave. This latter wave is important, as it may be confined by vertical variations in the Alfven speed to a sort of leaky ionospheric wave guide, the resonances of which could be of great importance to the signal received on the Earth's surface. The infinite medium solution for this case where the (uniform) geomagnetic field makes an arbitrary angle with the vertical is taken as the incident wave-packet. Even without a full solution, a number of conclusions can be drawn, the most important of which may be that the electromagnetic field associated with the operation of a steady-current tethered system will probably be too weak to detect on the Earth's surface, even for large tethered currents. This is due to the total reflection of the incident wave at the atmospheric boundary and the inability of a steady-current tethered system to excite the ionospheric wave-guide. An outline of the approach to the numerical problem is given. The use of numerical integrations and boundary conditions consistent with a conducting Earth is proposed to obtain the solution for the horizontal electromagnetic field components at the boundary of the ionosphere with the atmospheric cavity.

  3. A resonance approach to cochlear mechanics.

    PubMed

    Bell, Andrew

    2012-01-01

    How does the cochlea analyse sound into its component frequencies? In the 1850s Helmholtz thought it occurred by resonance, whereas a century later Békésy's work indicated a travelling wave. The latter answer seemed to settle the question, but with the discovery in 1978 that the cochlea emits sound, the mechanics of the cochlea was back on the drawing board. Recent studies have raised questions about whether the travelling wave, as currently understood, is adequate to explain observations. Applying basic resonance principles, this paper revisits the question. A graded bank of harmonic oscillators with cochlear-like frequencies and quality factors is simultaneously excited, and it is found that resonance gives rise to similar frequency responses, group delays, and travelling wave velocities as observed by experiment. The overall effect of the group delay gradient is to produce a decelerating wave of peak displacement moving from base to apex at characteristic travelling wave speeds. The extensive literature on chains of coupled oscillators is considered, and the occurrence of travelling waves, pseudowaves, phase plateaus, and forced resonance in such systems is noted. This alternative approach to cochlear mechanics shows that a travelling wave can simply arise as an apparently moving amplitude peak which passes along a bank of resonators without carrying energy. This highlights the possible role of the fast pressure wave and indicates how phase delays and group delays of a set of driven harmonic oscillators can generate an apparent travelling wave. It is possible to view the cochlea as a chain of globally forced coupled oscillators, and this model incorporates fundamental aspects of both the resonance and travelling wave theories.

  4. Orbit-based analysis of nonlinear energetic ion dynamics in tokamaks. II. Mechanisms for rapid chirping and convective amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierwage, Andreas; Shinohara, Kouji

    2016-04-15

    The nonlinear interactions between shear Alfvén modes and tangentially injected beam ions in the 150–400 keV range are studied numerically in realistic geometry for a JT-60U tokamak scenario. In Paper I, which was reported in the companion paper, the recently developed orbit-based resonance analysis method was used to track the resonant frequency of fast ions during their nonlinear evolution subject to large magnetic and electric drifts. Here, that method is applied to map the wave-particle power transfer from the canonical guiding center phase space into the frequency-radius plane, where it can be directly compared with the evolution of the fluctuation spectramore » of fast-ion-driven modes. Using this technique, we study the nonlinear dynamics of strongly driven shear Alfvén modes with low toroidal mode numbers n = 1 and n = 3. In the n = 3 case, both chirping and convective amplification can be attributed to the mode following the resonant frequency of the radially displaced particles, i.e., the usual one-dimensional phase locking process. In the n = 1 case, a new chirping mechanism is found, which involves multiple dimensions, namely, wave-particle trapping in the radial direction and phase mixing across velocity coordinates.« less

  5. Nonlinear longitudinal resonance interaction of energetic charged particles and VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Tkalcevic, S.

    1982-01-01

    The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.

  6. Folded waveguide coupler

    DOEpatents

    Owens, Thomas L.

    1988-03-01

    A resonant cavity waveguide coupler for ICRH of a magnetically confined plasma. The coupler consists of a series of inter-leaved metallic vanes disposed withn an enclosure analogous to a very wide, simple rectangular waveguide that has been "folded" several times. At the mouth of the coupler, a polarizing plate is provided which has coupling apertures aligned with selected folds of the waveguide through which rf waves are launched with magnetic fields of the waves aligned in parallel with the magnetic fields confining the plasma being heated to provide coupling to the fast magnetosonic wave within the plasma in the frequency usage of from about 50-200 mHz. A shorting plate terminates the back of the cavity at a distance approximately equal to one-half the guide wavelength from the mouth of the coupler to ensure that the electric field of the waves launched through the polarizing plate apertures are small while the magnetic field is near a maximum. Power is fed into the coupler folded cavity by means of an input coaxial line feed arrangement at a point which provides an impedance match between the cavity and the coaxial input line.

  7. Spatial distribution of the wave field of the surface modes sustaining filamentary discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lishev, St.; Shivarova, A.; Tarnev, Kh.

    2008-01-01

    The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density ofmore » the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all--six--field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament--both radially inhomogeneous--are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.« less

  8. Branching and resonant characteristics of surface plasma waves in a semi-bounded quantum plasma including spin-current effects

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Gwanyong; Jung, Young-Dae

    2018-05-01

    The dispersion relation for the waves propagating on the surface of a bounded quantum plasma with consideration of electron spin-current and ion-stream is derived and numerically investigated. We have found that one of the real parts of the wave frequency has the branching behavior beyond the instability domains. In such a region where the frequency branching occurs, the waves exhibit purely propagating mode. The resonant instability has also been investigated. We have found that when the phase velocity of the wave is close to the velocity of ion-stream the wave becomes unstable. However, the resonant growth rate is remarkably reduced by the effect of electron spin-current. The growth rate is also decreased by either the reduction of ion-stream velocity or the increase in quantum wavelength. Thus, the quantum effect in terms of the quantum wave number is found to suppress the resonant instability. It is also found that the increase in Fermi energy can reduce the growth rate of the resonant wave in the quantum plasma.

  9. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  10. Numerical study of heterogeneous mean temperature and shock wave in a resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Takeru

    2015-10-28

    When a frequency of gas oscillation in an acoustic resonator is sufficiently close to one of resonant frequencies of the resonator, the amplitude of gas oscillation becomes large and hence the nonlinear effect manifests itself. Then, if the dissipation effects due to viscosity and thermal conductivity of the gas are sufficiently small, the gas oscillation may evolve into the acoustic shock wave, in the so-called consonant resonators. At the shock front, the kinetic energy of gas oscillation is converted into heat by the dissipation process inside the shock layer, and therefore the temperature of the gas in the resonator rises.more » Since the acoustic shock wave travels in the resonator repeatedly over and over again, the temperature rise becomes noticeable in due course of time even if the shock wave is weak. We numerically study the gas oscillation with shock wave in a resonator of square cross section by solving the initial and boundary value problem of the system of three-dimensional Navier-Stokes equations with a finite difference method. In this case, the heat conduction across the boundary layer on the wall of resonator causes a spatially heterogeneous distribution of mean (time-averaged) gas temperature.« less

  11. Alfven wave cyclotron resonance heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.B.; Yosikawa, S.; Oberman, C.

    1981-02-01

    The resonance absorption of fast Alfven waves at the proton ctclotron resonance of a predominately deuterium plasma is investigated. An approximate dispersion relation is derived, valid in the vicinity of the resonance, which permits an exact calculation of transmission and reflection coefficients. For reasonable plasma parameters significant linear resonance absorption is found.

  12. Numerical modeling of the load effect on PZT-induced guided wave for load compensation of damage detection

    NASA Astrophysics Data System (ADS)

    Sun, Hu; Zhang, Aijia; Wang, Yishou; Qing, Xinlin P.

    2017-04-01

    Guided wave-based structural health monitoring (SHM) has been given considerable attention and widely studied for large-scale aircraft structures. Nevertheless, it is difficult to apply SHM systems on board or online, for which one of the most serious reasons is the environmental influence. Load is one fact that affects not only the host structure, in which guided wave propagates, but also the PZT, by which guided wave is transmitted and received. In this paper, numerical analysis using finite element method is used to study the load effect on guided wave acquired by PZT. The static loads with different grades are considered to analyze its effect on guided wave signals that PZT transmits and receives. Based on the variation trend of guided waves versus load, a load compensation method is developed to eliminate effects of load in the process of damage detection. The probabilistic reconstruction algorithm based on the signal variation of transmitter-receiver path is employed to identify the damage. Numerical tests is conducted to verify the feasibility and effectiveness of the given method.

  13. Application of interface waves for near surface damage detection in hybrid structures

    NASA Astrophysics Data System (ADS)

    Jahanbin, M.; Santhanam, S.; Ihn, J.-B.; Cox, A.

    2017-04-01

    Guided waves are acoustic waves that are guided by boundaries. Depending on the structural geometry, guided waves can either propagate between boundaries, known as plate waves, or propagate on the surface of the objects. Many different types of surface waves exist based on the material property of the boundary. For example Rayleigh wave in solid - air, Scholte wave in solid - liquid, Stoneley in solid - solid interface and many other different forms like Love wave on inhomogeneous surfaces, creeping waves, etc. This research work is demonstrating the application of surface and interface waves for detection of interfacial damages in hybrid bonded structures.

  14. On the Piezoelectric Detection of Guided Ultrasonic Waves

    PubMed Central

    2017-01-01

    In order to quantify the wave motion of guided ultrasonic waves, the characteristics of piezoelectric detectors, or ultrasonic transducers and acoustic emission sensors, have been evaluated systematically. Such guided waves are widely used in structural health monitoring and nondestructive evaluation, but methods of calibrating piezoelectric detectors have been inadequate. This study relied on laser interferometry for the base displacement measurement of bar waves, from which eight different guided wave test set-ups are developed with known wave motion using piezoelectric transmitters. Both plates and bars of 12.7 and 6.4 mm thickness were used as wave propagation media. The upper frequency limit was 2 MHz. Output of guided wave detectors were obtained on the test set-ups and their receiving sensitivities were characterized and averaged. While each sensitivity spectrum was noisy for a detector, the averaged spectrum showed a good convergence to a unique receiving sensitivity. Twelve detectors were evaluated and their sensitivity spectra determined in absolute units. Generally, these showed rapidly dropping sensitivity with increasing frequency due to waveform cancellation on their sensing areas. This effect contributed to vastly different sensitivities to guided wave and to normally incident wave for each one of the 12 detectors tested. Various other effects are discussed and recommendations on methods of implementing the approach developed are provided. PMID:29156579

  15. On the Mathematical Modeling of Single and Multiple Scattering of Ultrasonic Guided Waves by Small Scatterers: A Structural Health Monitoring Measurement Model

    NASA Astrophysics Data System (ADS)

    Strom, Brandon William

    In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.

  16. Defect induced guided waves mode conversion

    NASA Astrophysics Data System (ADS)

    Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw

    2016-04-01

    This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.

  17. A Novel Approach to Resonant Absorption of the Fast Magnetohydrodynamic Eigenmodes of a Coronal Arcade

    NASA Astrophysics Data System (ADS)

    Hindman, Bradley W.; Jain, Rekha

    2018-05-01

    The arched field lines forming coronal arcades are often observed to undulate as magnetohydrodynamic waves propagate both across and along the magnetic field. These waves are most likely a combination of resonantly coupled fast magnetoacoustic waves and Alfvén waves. The coupling results in resonant absorption of the fast waves, converting fast wave energy into Alfvén waves. The fast eigenmodes of the arcade have proven difficult to compute or derive analytically, largely because of the mathematical complexity that the coupling introduces. When a traditional spectral decomposition is employed, the discrete spectrum associated with the fast eigenmodes is often subsumed into the continuous Alfvén spectrum. Thus fast eigenmodes become collective modes or quasi-modes. Here we present a spectral decomposition that treats the eigenmodes as having real frequencies but complex wavenumbers. Using this procedure we derive dispersion relations, spatial damping rates, and eigenfunctions for the resonant, fast eigenmodes of the arcade. We demonstrate that resonant absorption introduces a fast mode that would not exist otherwise. This new mode is heavily damped by resonant absorption, travelling only a few wavelengths before losing most of its energy.

  18. Survival resonances in an atom-optics system driven by temporally and spatially periodic dissipation

    NASA Astrophysics Data System (ADS)

    Chai, Shijie; Fekete, Julia; McDowall, Peter; Coop, Simon; Lindballe, Thue; Andersen, Mikkel F.

    2018-03-01

    We investigate laser-cooled atoms periodically driven by pulsed standing waves of light tuned close to an open atomic transition. This nonunitary system displays survival resonances for certain driving frequencies. The survival resonances emerge as a result of the matter-wave Talbot-Lau effect, similar to the Talbot effect causing quantum resonances in the atom optics δ -kicked rotor. Since the Talbot-Lau effect occurs for incoherent waves, the survival resonances can be observed using thermal atoms. A microlensing effect can enhance the height and incisiveness of the resonances. This may find applications in precision measurements.

  19. Ultrasonic guided waves in eccentric annular pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-02-18

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modesmore » in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.« less

  20. Effects of group velocity and multiplasmon resonances on the modulation of Langmuir waves in a degenerate plasma

    NASA Astrophysics Data System (ADS)

    Misra, Amar P.; Chatterjee, Debjani; Brodin, Gert

    2017-11-01

    We study the nonlinear wave modulation of Langmuir waves (LWs) in a fully degenerate plasma. Using the Wigner-Moyal equation coupled to the Poisson equation and the multiple scale expansion technique, a modified nonlocal nonlinear Schrödinger (NLS) equation is derived which governs the evolution of LW envelopes in degenerate plasmas. The nonlocal nonlinearity in the NLS equation appears due to the group velocity and multiplasmon resonances, i.e., resonances induced by the simultaneous particle absorption of multiple wave quanta. We focus on the regime where the resonant velocity of electrons is larger than the Fermi velocity and thereby the linear Landau damping is forbidden. As a result, the nonlinear wave-particle resonances due to the group velocity and multiplasmon processes are the dominant mechanisms for wave-particle interaction. It is found that in contrast to classical or semiclassical plasmas, the group velocity resonance does not necessarily give rise the wave damping in the strong quantum regime where ℏ k ˜m vF with ℏ denoting the reduced Planck's constant, m the electron mass, and vF the Fermi velocity; however, the three-plasmon process plays a dominant role in the nonlinear Landau damping of wave envelopes. In this regime, the decay rate of the wave amplitude is also found to be higher compared to that in the modest quantum regime where the multiplasmon effects are forbidden.

  1. Investigation on phase noise of the signal from a singly resonant optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang

    2018-04-01

    The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.

  2. Searching for a traveling feature in Saturn's rings in Cassini Imaging Science Subsystem data

    NASA Astrophysics Data System (ADS)

    Aye, Klaus-Michael; Rehnberg, Morgan; Brown, Zarah; Esposito, Larry W.

    2016-10-01

    Introduction: Using Cassini UVIS occultation data, a traveling wave feature has been identified in the Saturn rings that is most likely caused by the radial positions swap of the moons Janus and Epimetheus [1]. The hypothesis is that non-linear interferences between the linear density waves when being relocated by the moon swap create a solitary wave that is traveling outward through the rings. The observations in [1] further lead to the derivation of values for the radial travel speeds of the identified traveling features, from 39.6 km/yr for the Janus 5:4 resonance up to 45.8 for the Janus 4:3 resonance.Previous confirmations in ISS data: Work in [1] also identified the feature in Cassini Imaging Science Subsystem (ISS) data that was taken around the time of the UVIS occultations where the phenomenon was first discovered, so far one ISS image for each Janus resonances 2:1, 4:3, 5:4, and 6:5.Search guided by predicted locations: Using the observation-fitted radial velocities from [1], we can extrapolate these to identify Saturn radii at which the traveling feature should be found at later times. Using this and new image analysis and plotting tools available in [2], we have identified a potential candidate feature in an ISS image that was taken 2.5 years after the feature causing moon swap in January 2006. We intend to expand our search by identifying candidate ISS data by a meta-database search constraining the radius at future times corresponding to the predicted future locations of the hypothesized solitary wave and present our findings at this conference.References: [1] Rehnberg, M.E., Esposito, L.W., Brown, Z.L., Albers, N., Sremčević, M., Stewart, G.R., 2016. A Traveling Feature in Saturn's Rings. Icarus, accepted in June 2016. [2] K.-Michael Aye. (2016). pyciss: v0.5.0. Zenodo. 10.5281/zenodo.53092

  3. The comparison of multiple F-wave variable studies and magnetic resonance imaging examinations in the assessment of cervical radiculopathy.

    PubMed

    Lin, Chu-Hsu; Tsai, Yuan-Hsiung; Chang, Chia-Hao; Chen, Chien-Min; Hsu, Hung-Chih; Wu, Chun-Yen; Hong, Chang-Zern

    2013-09-01

    The aims of this study were to investigate the correlation of the findings of multiple median and ulnar F-wave variables and magnetic resonance imaging examinations in the prediction of cervical radiculopathy. The data of 68 patients who underwent both nerve conduction studies of the upper extremities and cervical spine magnetic resonance imaging within 3 mos of the nerve conduction studies were retrospectively reviewed and reinterpreted. The associations between multiple median and ulnar F-wave variables (including persistence, chronodispersion, and minimal, maximal, and mean latencies) and magnetic resonance imaging evidence of lower cervical spondylotic radiculopathy (i.e., C7, C8, and T1 radiculopathy) were investigated. Patients with lower cervical radiculopathy exhibited reduced right median F-wave persistence (P = 0.011), increased right ulnar F-wave chronodispersion (P = 0.041), and a trend toward increased left ulnar F-wave chronodispersion (P = 0.059); however, there were no other consistent significant differences in the F-wave variables between patients with and patients without magnetic resonance imaging evidence of lower cervical radiculopathy. In comparison with normal reference values established previously, the sensitivity and positive predictive value of F-wave variable abnormalities for predicting lower cervical radiculopathy were low. There was a low correlation between F-wave studies and magnetic resonance imaging examinations. The diagnostic utility of multiple F-wave variables in the prediction of cervical radiculopathy was not supported by this study.

  4. Finite element analysis of electromagnetic propagation in an absorbing wave guide

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1986-01-01

    Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.

  5. A Resonance Approach to Cochlear Mechanics

    PubMed Central

    Bell, Andrew

    2012-01-01

    Background How does the cochlea analyse sound into its component frequencies? In the 1850s Helmholtz thought it occurred by resonance, whereas a century later Békésy's work indicated a travelling wave. The latter answer seemed to settle the question, but with the discovery in 1978 that the cochlea emits sound, the mechanics of the cochlea was back on the drawing board. Recent studies have raised questions about whether the travelling wave, as currently understood, is adequate to explain observations. Approach Applying basic resonance principles, this paper revisits the question. A graded bank of harmonic oscillators with cochlear-like frequencies and quality factors is simultaneously excited, and it is found that resonance gives rise to similar frequency responses, group delays, and travelling wave velocities as observed by experiment. The overall effect of the group delay gradient is to produce a decelerating wave of peak displacement moving from base to apex at characteristic travelling wave speeds. The extensive literature on chains of coupled oscillators is considered, and the occurrence of travelling waves, pseudowaves, phase plateaus, and forced resonance in such systems is noted. Conclusion and significance This alternative approach to cochlear mechanics shows that a travelling wave can simply arise as an apparently moving amplitude peak which passes along a bank of resonators without carrying energy. This highlights the possible role of the fast pressure wave and indicates how phase delays and group delays of a set of driven harmonic oscillators can generate an apparent travelling wave. It is possible to view the cochlea as a chain of globally forced coupled oscillators, and this model incorporates fundamental aspects of both the resonance and travelling wave theories. PMID:23144835

  6. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    NASA Astrophysics Data System (ADS)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  7. On possible plume-guided seismic waves

    USGS Publications Warehouse

    Julian, B.R.; Evans, J.R.

    2010-01-01

    Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband seismometers makes searching for these waves possible.

  8. Ultrasonic guided wave for monitoring corrosion of steel bar

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  9. Simulation tools for guided wave based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien

    2018-04-01

    Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and will be adapted to simulate complex real-life structures such as curved composite panels with stiffeners. This communication will present these numerical tools and their main functionalities.

  10. Edge waves and resonances in two-dimensional phononic crystal plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Jin-Chen, E-mail: hsujc@yuntech.edu.tw; Hsu, Chih-Hsun

    2015-05-07

    We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. Wemore » design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.« less

  11. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, A. K., E-mail: aktrip2001@yahoo.co.in; Singhal, R. P., E-mail: rpsiitbhu@yahoo.com; Khazanov, G. V., E-mail: George.V.Khazanov@nasa.gov

    2016-04-15

    Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusionmore » coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies ≥1 keV, and for whistler mode chorus waves, structures appear for energies >2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.« less

  12. Axisymmetric Density Waves in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Hedman, Matthew; Nicholson, Philip

    2018-04-01

    Density waves in Saturn's rings are typically tightly wrapped spiral patterns generated by resonances with either Saturn's moons or structures inside the planet. However, between the Barnard and Bessel Gaps in the Cassini Division (i.e. between 120,240 and 120,300 km), there are density variations that appear to form an axisymmetric density wave, which consists of concentric regions of varying density that propagate radially through the rings. Such a wave requires some process that forces ring particles at all longitudes to pass through pericenter at the same time, and so cannot be generated by satellite resonances. Instead this particular wave appears to be excited by interference between a nearby satellite resonance and normal mode oscillations on the inner edge of the Barnard Gap. Similar axisymmetric waves may exist within the Dawes ringlet and the outermost part of the B ring, which are also just interior to resonantly confined edges that exhibit a large number of normal modes. These waves may therefore provide new insights into how resonant perturbations near an edge can propagate through a disk of material.

  13. Magnetostatic wave tunable resonators

    NASA Astrophysics Data System (ADS)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  14. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.

    PubMed

    Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2012-10-01

    The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit.

  15. Diamond like carbon nanocomposites with embedded metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Tamulevičius, Tomas; Rubahn, Horst-Günter

    2018-02-01

    In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.

  16. Radial localization of magnetospheric guided poloidal Pc 4-5 waves

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Lessard, M. R.; Kistler, L. M.

    2003-03-01

    The toroidal Alfvén wave, with magnetic field oscillations in the azimuthal direction, exhibits a singularity in the vicinity of the toroidal resonant frequency (field line resonance), so it is not surprising that this wave often exhibits varying frequency as a function of L shell. It is less clear why the poloidal Alfvén wave, with magnetic field oscillations in the radial direction, often exhibits a relatively constant frequency over a range of L shells. So far, the most promising proposal to explain this phenomenon is the theory of [1994, 1996], who showed that an energetically trapped global poloidal mode can exist in a region where the poloidal Alfvén frequency is lower than the toroidal frequency and where it exhibits a dip (minimum) with respect to L. While this theory is mathematically plausible, it has never been shown that poloidal Alfvén waves actually occur in association with such a dip in poloidal frequency. Here we examine poloidal wave events observed by the AMPTE/IRM spacecraft and calculate the theoretical poloidal frequency as a function of L using the equilibrium parameters obtained from the spacecraft observations. We find that the poloidal Alfvén wave does occur in association with such a dip (or at least a flattening) in poloidal frequency. While Vetoulis and Chen hypothesized that such a dip would occur because of a sharp gradient in plasma pressure, we find that the dip in poloidal frequency may result from the L dependence of the equilibrium density or magnetic field. The observed frequencies are in rough agreement with the theoretical frequencies, though in some cases we must assume that the observed oscillations result from a high harmonic (third or fourth harmonic structure along the magnetic field). We also apply the same analysis to compressional wave events (with oscillations in the direction of the equilibrium magnetic field). Such oscillations may be on the poloidal wave branch or the mirror mode branch. Here also, the observed fluctuations occur in the region of a dip in poloidal frequency. In one case the observed frequency is consistent with the theoretical poloidal frequency, whereas in another case it is not.

  17. Electromechanical Frequency Filters

    NASA Astrophysics Data System (ADS)

    Wersing, W.; Lubitz, K.

    Frequency filters select signals with a frequency inside a definite frequency range or band from signals outside this band, traditionally afforded by a combination of L-C-resonators. The fundamental principle of all modern frequency filters is the constructive interference of travelling waves. If a filter is set up of coupled resonators, this interference occurs as a result of the successive wave reflection at the resonators' ends. In this case, the center frequency f c of a filter, e.g., set up of symmetrical λ/2-resonators of length 1, is given by f_c = f_r = v_{ph}/λ = v_{ph}/2l , where v ph is the phase velocity of the wave. This clearly shows the big advantage of acoustic waves for filter applications in comparison to electro-magnetic waves. Because v ph of acoustic waves in solids is about 104-105 smaller than that of electro-magnetic waves, much smaller filters can be realised. Today, piezoelectric materials and processing technologies exist that electromechanical resonators and filters can be produced in the frequency range from 1 kHz up to 10 GHz. Further requirements for frequency filters such as low losses (high resonator Q) and low temperature coefficients of frequency constants can also be fulfilled with these filters. Important examples are quartz-crystal resonators and filters (1 kHz-200 MHz) as discussed in Chap. 2, electromechanical channel filters (50 kHz and 130 kHz) for long-haul communication systems as discussed in this section, surface acoustic wave (SAW) filters (20 MHz-5 GHz), as discussed in Chap. 14, and thin film bulk acoustic resonators (FBAR) and filters (500 MHz-10 GHz), as discussed in Chap. 15.

  18. Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties

    DOEpatents

    Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian

    2000-01-01

    Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.

  19. Guided Z mode propagation observed in the OEDIPUS A tethered rocket experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, H.G.

    1991-10-01

    The tethered sounding rocket payload OEDIPUS A conducted bistatic propagation experiments on plasma waves in the auroral ionosphere. Synchronized sweeps of the frequency range 0-5 MHz by the 2-W transmitter high-frequency exciter (HEX) on the upper end of the tether and its associated receiver for exciter (REX) on the lower end have produced signatures of quasi-electrostatic waves guided along field-aligned depletions of ambient density. The propagation is in the slow Z mode, between the plasma frequency f{sub p} and the upper hybrid resonance frequency f{sub uhr} when f{sub p} is greater than the cyclotron frequency. The mode identification is basedmore » on payload measurements of f{sub p}. These waves have signal delays of about 1 ms. The delays are much greater than expected for free-space propagation over the transmitter-receiver separation distance which varies up to 960 m during the flight. The transmitted pulses typically appear inside a frequency bandwidth of about 100 kHz just above the plasma frequency, but occasionally occupy most of the available bandwidth, {approx equal}300 kHz, between f{sub p} and f{sub uhr}. The observed delays and the stretching by a factor of 3 of the transmitted 300-{mu}s pulses are accounted for with two-dimensional ray tracing using a complete electromagnetic solution of the hot plasma dispersion relation. Delayed Z mode pulses appear in about 20% of the ionograms. Given the weakness of the HEX transmitter and the abundance of examples obtained during the flight, guiding of natural Z mode emissions in the auroral ionosphere may be efficient and widespread.« less

  20. Ultrasonic Guided Waves for Aging Wire Insulation Assessment

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2001-01-01

    Environmentally aged wire insulation can become brittle and crack and thus expose the underlying conductive wire to the potential for short circuits and fire. The feasibility of using ultrasonic guided waves to measure insulation condition was examined. First a simple model to study guided wave propagation in a bare and thin plastic coated wire was examined and then some aviation grade wire samples that had been heat-damaged. Initial measurements indicate that ultrasonic guided wave velocity can be used to monitor insulation stiffness.

  1. Ultrasonic guided wave bondline evaluation of thick metallic structures with viscoelastic coatings and the demonstration of a novel mode sweep technique

    NASA Astrophysics Data System (ADS)

    Bostron, Jason

    Ultrasonic guided waves are becoming more widely used in nondestructive evaluation applications due to their efficiency in defect detection, ability to inspect hidden areas, and other reasons. This dissertation addresses two main topics: ultrasonic guided wave bond evaluation of thin and thick coatings on thick metallic structures, and the use of a novel phased array technique for optimal guided wave mode and frequency selection. (Abstract shortened by UMI.).

  2. Elastic guided waves in a layered plate with rectangular cross section.

    PubMed

    Mukdadi, O M; Desai, Y M; Datta, S K; Shah, A H; Niklasson, A J

    2002-11-01

    Guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) has been studied in this paper. A semianalytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the length of the plate has been used. The method is applicable to arbitrary number of layers and general anisotropic material properties of each layer, and is similar to the stiffness method used earlier to study guided waves in a laminated composite plate of infinite width. Numerical results showing the effect of varying the width of the plate on the dispersion of guided waves are presented and are compared with those for an infinite plate. In addition, effect of thin anisotropic coating or interface layers on the guided waves is investigated.

  3. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    PubMed

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Robust remote-pumping sodium laser for advanced LIDAR and guide star applications

    NASA Astrophysics Data System (ADS)

    Ernstberger, Bernhard; Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Wei, Daoping; Karpov, Vladimir; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.

    2015-10-01

    The performance of large ground-based optical telescopes is limited due to wavefront distortions induced by atmospheric turbulence. Adaptive optics systems using natural guide stars with sufficient brightness provide a practical way for correcting the wavefront errors by means of deformable mirrors. Unfortunately, the sky coverage of bright stars is poor and therefore the concept of laser guide stars was invented, creating an artificial star by exciting resonance fluorescence from the mesospheric sodium layer about 90 km above the earth's surface. Until now, mainly dye lasers or sumfrequency mixing of solid state lasers were used to generate laser guide stars. However, these kinds of lasers require a stationary laser clean room for operation and are extremely demanding in maintenance. Under a development contract with the European Southern Observatory (ESO) and W. M. Keck Observatory (WMKO), TOPTICA Photonics AG and its partner MPB Communications have finalized the development of a next-generation sodium guide star laser system which is available now as a commercial off-the-shelf product. The laser is based on a narrow-band diode laser, Raman fiber amplifier (RFA) technology and resonant second-harmonic generation (SHG), thus highly reliable and simple to operate and maintain. It emits > 22 W of narrow-linewidth (≈ 5 MHz) continuous-wave radiation at sodium resonance and includes a re-pumping scheme for boosting sodium return flux. Due to the SHG resonator acting as spatial mode filter and polarizer, the output is diffraction-limited with RMS wavefront error < λ/25. Apart from this unique optical design, a major effort has been dedicated to integrating all optical components into a ruggedized system, providing a maximum of convenience and reliability for telescope operators. The new remote-pumping architecture allows for a large spatial separation between the main part of the laser and the compact laser head. Together with a cooling-water flow of less than 5 l/min and an overall power consumption of < 700 W, the system offers a maximum of flexibility with minimal infrastructure demands on site. Each system is built in a modular way, based on the concept of line-replaceable units (LRU). A comprehensive system software, as well as an intuitive service GUI, allow for remote control and error tracking down to at least the LRU level. In case of a failure, any LRU can be easily replaced. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for groundbased optical telescopes providing convenient, turn-key operation in remote and harsh locations. Reliability and flexibility will be beneficial in particular for advanced satellite and space debris tracking as well as LIDAR applications.

  5. Pathway towards Programmable Wave Anisotropy in Cellular Metamaterials

    NASA Astrophysics Data System (ADS)

    Celli, Paolo; Zhang, Weiting; Gonella, Stefano

    2018-01-01

    In this work, we provide a proof-of-concept experimental demonstration of the wave-control capabilities of cellular metamaterials endowed with populations of tunable electromechanical resonators. Each independently tunable resonator comprises a piezoelectric patch and a resistor-inductor shunt, and its resonant frequency can be seamlessly reprogrammed without interfering with the cellular structure's default properties. We show that, by strategically placing the resonators in the lattice domain and by deliberately activating only selected subsets of them, chosen to conform to the directional features of the beamed wave response, it is possible to override the inherent wave anisotropy of the cellular medium. The outcome is the establishment of tunable spatial patterns of energy distillation resulting in a nonsymmetric correction of the wave fields.

  6. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    PubMed

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  7. Study of Wave-Particle Interactions for Whistler Mode Waves at Oblique Angles by Utilizing the Gyroaveraging Method

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Kai; Omura, Yoshiharu

    2017-10-01

    We investigate the properties of whistler mode wave-particle interactions at oblique wave normal angles to the background magnetic field. We find that electromagnetic energy of waves at frequencies below half the electron cyclotron frequency can flow nearly parallel to the ambient magnetic field. We thereby confirm that the gyroaveraging method, which averages the cyclotron motion to the gyrocenter and reduces the simulation from two-dimensional to one-dimensional, is valid for oblique wave-particle interaction. Multiple resonances appear for oblique propagation but not for parallel propagation. We calculate the possible range of resonances with the first-order resonance condition as a function of electron kinetic energy and equatorial pitch angle. To reveal the physical process and the efficiency of electron acceleration by multiple resonances, we assume a simple uniform wave model with constant amplitude and frequency in space and time. We perform test particle simulations with electrons starting at specific equatorial pitch angles and kinetic energies. The simulation results show that multiple resonances contribute to acceleration and pitch angle scattering of energetic electrons. Especially, we find that electrons with energies of a few hundred keV can be accelerated efficiently to a few MeV through the n = 0 Landau resonance.

  8. Guided ultrasonic wave beam skew in silicon wafers

    NASA Astrophysics Data System (ADS)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  9. Spectral modification of seismic waves propagating through solids exhibiting a resonance frequency: a 1-D coupled wave propagation-oscillation model

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Schmalholz, Stefan M.; Podladchikov, Yuri

    2009-02-01

    A 1-D model is presented that couples the microscale oscillations of non-wetting fluid blobs in a partially saturated poroelastic medium with the macroscale wave propagation through the elastic skeleton. The fluid oscillations are caused by surface tension forces that act as the restoring forces driving the oscillations. The oscillations are described mathematically with the equation for a linear oscillator and the wave propagation is described with the 1-D elastic wave equation. Coupling is done using Hamilton's variational principle for continuous systems. The resulting linear system of two partial differential equations is solved numerically with explicit finite differences. Numerical simulations are used to analyse the effect of solids exhibiting internal oscillations, and consequently a resonance frequency, on seismic waves propagating through such media. The phase velocity dispersion relation shows a higher phase velocity in the high-frequency limit and a lower phase velocity in the low-frequency limit. At the resonance frequency a singularity in the dispersion relation occurs. Seismic waves can initiate oscillations of the fluid by transferring energy from solid to fluid at the resonance frequency. Due to this transfer, the spectral amplitude of the solid particle velocity decreases at the resonance frequency. After initiation, the oscillatory movement of the fluid continuously transfers energy at the resonance frequency back to the solid. Therefore, the spectral amplitude of the solid particle velocity is increased at the resonance frequency. Once initiated, fluid oscillations decrease in amplitude with increasing time. Consequently, the spectral peak of the solid particle velocity at the resonance frequency decreases with time.

  10. Direct Measurements of Energy Transfer between Hot Protons and He+ via EMIC Waves Observed by MMS in the Outer Magnetosphere

    NASA Astrophysics Data System (ADS)

    Kitamura, N.; Kitahara, M.; Shoji, M.; Miyoshi, Y.; Hasegawa, H.; Nakamura, S.; Katoh, Y.; Saito, Y.; Yokota, S.; Gershman, D. J.; Vinas, A. F.; Giles, B. L.; Moore, T. E.; Paterson, W.; Pollock, C. J.; Russell, C. T.; Strangeway, R. J.; Fuselier, S. A.; Burch, J. L.

    2017-12-01

    Wave-particle interactions have been suggested to play a crucial role in energy transfer in collisionless space plasmas in which the motion of charged particles is controlled by electromagnetic fields. Using an electromagnetic ion cyclotron (EMIC) wave event observed by MMS, we investigate energy transfer between ions and EMIC waves via cyclotron type interactions. To directly detect energy exchange between ions and EMIC waves, we apply the Wave-Particle Interaction Analyzer (WPIA) method that is to calculate the dot product between the wave electric field (Ewave) and ion current perpendicular to the background magnetic field (j). In the cases of resonance, this current is called the resonant current. Near the beginning of the wave event, 15-second averages of j • Ewave reached -0.3 pW/m3 for ions with energies of 14-30 keV and pitch angles of 33.25°-78.75°. The negative value in this pitch angle range indicates that the perpendicular energy of ions was being transferred to the EMIC waves propagating toward Southern higher latitudes at the MMS location by cyclotron resonance. Ion data show non-gyrotropic distributions around the resonance velocity, and that is consistent with the nonlinear trapping of protons by the wave and formation of an electromagnetic proton hole. Near the beginning of the same wave event, strongly phase bunched He+ up to 2 keV with pitch angles slightly larger than 90° were also detected. A positive j • Ewave for the phase bunched He+ indicates that the He+ was being accelerated by the electric field of the EMIC waves. The observed feature of He+ ions is consistent with non-resonant interaction with the wave but is inconsistent with cyclotron resonance. Significantly non-gyrotropic distributions observed in this event demonstrate that different particle populations can strongly couple through wave-particle interactions in the collisionless plasma.

  11. Delamination Defect Detection Using Ultrasonic Guided Waves in Advanced Hybrid Structural Elements

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Qi, Kevin ``Xue''; Rose, Joseph L.; Weiland, Hasso

    2010-02-01

    Nondestructive testing for multilayered structures is challenging because of increased numbers of layers and plate thicknesses. In this paper, ultrasonic guided waves are applied to detect delamination defects inside a 23-layer Alcoa Advanced Hybrid Structural plate. A semi-analytical finite element (SAFE) method generates dispersion curves and wave structures in order to select appropriate wave structures to detect certain defects. One guided wave mode and frequency is chosen to achieve large in-plane displacements at regions of interest. The interactions of the selected mode with defects are simulated using finite element models. Experiments are conducted and compared with bulk wave measurements. It is shown that guided waves can detect deeply embedded damages inside thick multilayer fiber-metal laminates with suitable mode and frequency selection.

  12. Nanopillar Optical Antenna Avalanche Detectors

    DTIC Science & Technology

    2014-08-30

    tuning and hybridization of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs...of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs) will be discussed...Surface Plasmon Polariton Bloch wave (SPP-BW) 36, 40. Also, resonant-field enhancement occurs in bounded metallic/dielectric structures that support

  13. Contribution of non-resonant wave-wave interactions in the dynamics of long-crested sea wave fields

    NASA Astrophysics Data System (ADS)

    Benoit, Michel

    2017-04-01

    Gravity waves fields at the surface of the oceans evolve under the combined effects of several physical mechanisms, of which nonlinear wave-wave interactions play a dominant role. These interactions transfer energy between components within the energy spectrum and allow in particular to explain the shape of the distribution of wave energy according to the frequencies and directions of propagation. In the oceanic domain (deep water conditions), dominant interactions are third-order resonant interactions, between quadruplets (or quartets) of wave components, and the evolution of the wave spectrum is governed by a kinetic equation, established by Hasselmann (1962) and Zakharov (1968). The kinetic equation has a number of interesting properties, including the existence of self-similar solutions and cascades to small and large wavelengths of waves, which can be studied in the framework of the wave (or weak) turbulence theory (e.g. Badulin et al., 2005). With the aim to obtain more complete and precise modelling of sea states dynamics, we investigate here the possibility and consequences of taking into account the non-resonant interactions -quasi-resonant in practice- among 4 waves. A mathematical formalism has recently been proposed to account for these non-resonant interactions in a statistical framework by Annenkov & Shrira (2006) (Generalized Kinetic Equation, GKE) and Gramstad & Stiassnie (2013) (Phase Averaged Equation, PAE). In order to isolate the non-resonant contributions, we limit ourselves here to monodirectional (i.e. long-crested) wave trains, since in this case the 4-wave resonant interactions vanish. The (stochastic) modelling approaches proposed by Annenkov & Shrira (2006) and Gramstad & Stiassnie (2013) are compared to phase-resolving (deterministic) simulations based on a fully nonlinear potential approach (using a high-order spectral method, HOS). We study and compare the evolution dynamics of the wave spectrum at different time scales (i.e. over durations ranging from a few wave periods to 1000 periods), with the aim of highlighting the capabilities and limitations of the GKE-PAE models. Different situations are considered by varying the relative water depth, the initial steepness of the wave field, and the shape of the initial wave spectrum, including arbitrary forms. References: Annenkov S.Y., Shrira V.I. (2006) Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech., 561, 181-207. Badulin S.I., Pushkarev A.N., Resio D., Zakharov V.E. (2005) Self-similarity of wind-driven seas. Nonlin. Proc. Geophys., 12, 891-946. Gramstad O., Stiassnie M. (2013) Phase-averaged equation for water waves. J. Fluid Mech., 718, 280- 303. Hasselmann K. (1962) On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech., 12, 481-500. Zakharov V.E. (1968) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. App. Mech. Tech. Phys., 9(2), 190-194.

  14. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  15. Second order kinetic theory of parallel momentum transport in collisionless drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang, E-mail: lyang13@mails.tsinghua.edu.cn; Southwestern Institute of Physics, Chengdu 610041; Gao, Zhe

    A second order kinetic model for turbulent ion parallel momentum transport is presented. A new nonresonant second order parallel momentum flux term is calculated. The resonant component of the ion parallel electrostatic force is the momentum source, while the nonresonant component of the ion parallel electrostatic force compensates for that of the nonresonant second order parallel momentum flux. The resonant component of the kinetic momentum flux can be divided into three parts, including the pinch term, the diffusive term, and the residual stress. By reassembling the pinch term and the residual stress, the residual stress can be considered as amore » pinch term of parallel wave-particle resonant velocity, and, therefore, may be called as “resonant velocity pinch” term. Considering the resonant component of the ion parallel electrostatic force is the transfer rate between resonant ions and waves (or, equivalently, nonresonant ions), a conservation equation of the parallel momentum of resonant ions and waves is obtained.« less

  16. Analysis of the effect of a rectangular cavity resonator on acoustic wave transmission in a waveguide

    NASA Astrophysics Data System (ADS)

    Porter, R.; Evans, D. V.

    2017-11-01

    The transmission of acoustic waves along a two-dimensional waveguide which is coupled through an opening in its wall to a rectangular cavity resonator is considered. The resonator acts as a classical band-stop filter, significantly reducing acoustic transmission across a range of frequencies. Assuming wave frequencies below the first waveguide cut-off, the solution for the reflected and transmitted wave amplitudes is formulated exactly within the framework of inviscid linear acoustics. The main aim of the paper is to develop an approximation in closed form for reflected and transmitted amplitudes when the gap in the thin wall separating the waveguide and the cavity resonator is assumed to be small. This approximation is shown to accurately capture the effect of all cavities resonances, not just the fundamental Helmholtz resonance. It is envisaged this formula (and more generally the mathematical approach adopted) could be used in the development of acoustic metamaterial devices containing resonator arrays.

  17. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes.

    PubMed

    Rostami, Javad; Chen, Jingming; Tse, Peter W

    2017-02-07

    Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves' signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals' analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed.

  18. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    NASA Technical Reports Server (NTRS)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  19. Dual-mode resonant instabilities of the surface dust-acoustic wave in a Lorentzian plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590

    2015-08-15

    The dual-mode resonant instabilities of the dust-acoustic surface wave propagating at the plasma-vacuum interfaces of the generalized Lorentzian dusty plasma slab are kinetically investigated. The dispersion relation is derived for the two propagation modes: symmetric and anti-symmetric waves. We have found that the temporal growth rate of the resonant instability increases with an increase of the slab thickness for both modes. Especially, the nonthermality of plasmas enhances the growth rate of the anti-symmetric resonant wave, and the nonthermal effect is enhanced as the slab thickness is increased. It is also found that the growth rate increases with increasing angular frequencymore » of the rotating dust grain due to the enhanced resonant energy exchange.« less

  20. Theoretical, Experimental, and Computational Evaluation of Disk-Loaded Circular Wave Guides

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.; Qureshi, A. Haq

    1994-01-01

    A disk-loaded circular wave guide structure and test fixture were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the codes ARGUS and SOS. Interaction impedances were computed based on the corresponding dispersion characteristics. Finally, an equivalent circuit model for one period of the structure was chosen using equivalent circuit models for cylindrical wave guides of different radii. Optimum values for the discrete capacitors and inductors describing discontinuities between cylindrical wave guides were found using the computer code TOUCHSTONE.

  1. Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders

    PubMed

    Shin; Rose

    1999-06-01

    Guided waves generated by axisymmetric and non-axisymmetric surface loading on a hollow cylinder are studied. For the theoretical analysis of the superposed guided waves, a normal mode concept is employed. The amplitude factors of individual guided wave modes are studied with respect to varying surface pressure loading profiles. Both theoretical and experimental focus is given to the guided waves generated by both axisymmetric and non-axisymmetric excitation. For the experiments, a comb transducer and high power tone burst function generator system are used on a sample Inconel tube. Surface loading conditions, such as circumferential loading angles and axial loading lengths, are used with the frequency and phase velocity to control the axisymmetric and non-axisymmetric mode excitations. The experimental study demonstrates the use of a practical non-axisymmetric partial loading technique in generating axisymmetric modes, particularly useful in the inspection of tubing and piping with limited circumferential access. From both theoretical and experimental studies, it also could be said that the amount of flexural modes reflected from a defect contains information on the reflector's circumferential angle, as well as potentially other classification and sizing feature information. The axisymmetric and non-axisymmetric guided wave modes should both be carefully considered for improvement of the overall analysis of guided waves generated in hollow cylinders.

  2. Enhanced production of electron cyclotron resonance plasma by exciting selective microwave mode on a large-bore electron cyclotron resonance ion source with permanent magnet.

    PubMed

    Kimura, Daiju; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-01

    We are constructing a tandem type ECRIS. The first stage is large-bore with cylindrically comb-shaped magnet. We optimize the ion beam current and ion saturation current by a mobile plate tuner. They change by the position of the plate tuner for 2.45 GHz, 11-13 GHz, and multi-frequencies. The peak positions of them are close to the position where the microwave mode forms standing wave between the plate tuner and the extractor. The absorbed powers are estimated for each mode. We show a new guiding principle, which the number of efficient microwave mode should be selected to fit to that of multipole of the comb-shaped magnets. We obtained the excitation of the selective modes using new mobile plate tuner to enhance ECR efficiency.

  3. Compact photonic crystal circulator with flat-top transmission band created by cascading magneto-optical resonance cavities.

    PubMed

    Wang, Qiong; Ouyang, Zhengbiao; Lin, Mi; Liu, Qiang

    2015-11-20

    A new type of compact three-port circulator with flat-top transmission band (FTTB) in a two-dimensional photonic crystal has been proposed, through coupling the cascaded magneto-optical resonance cavities to waveguides. The coupled-mode theory is applied to investigate the coupled structure and analyze the condition to achieve FTTB. According to the theoretical analysis, the structure is further optimized to ensure that the condition for achieving FTTB can be satisfied for both cavity-cavity coupling and cavity-waveguide coupling. Through the finite-element method, it is demonstrated that the design can realize a high quality, nonreciprocal circulating propagation of waves with an insertion loss of 0.023 dB and an isolation of 23.3 dB, covering a wide range of operation frequency. Such a wideband circulator has potential applications in large-scale integrated photonic circuits for guiding or isolating harmful optical reflections from load elements.

  4. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    NASA Astrophysics Data System (ADS)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at particular epicentral distances. A failure to find such guided waves experimentally could mean either that the waveguides (plumes) do not exist or that the excitation mechanisms and/or seismometer networks are inadequate. Distinguishing these two possibilities would require careful analysis. Anticipated major improvements in seismic instrumentation, such as the EarthScope initiative, make this a propitious time to undertake a search for plume-guided waves in the mantle.

  5. Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris

    2017-02-01

    Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.

  6. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  7. Versatile resonance-tracking circuit for acoustic levitation experiments.

    PubMed

    Baxter, K; Apfel, R E; Marston, P L

    1978-02-01

    Objects can be levitated by radiation pressure forces in an acoustic standing wave. In many circumstances it is important that the standing wave frequency remain locked on an acoustic resonance despite small changes in the resonance frequency. A self-locking oscillator circuit is described which tracks the resonance frequency by sensing the magnitude of the transducer current. The tracking principle could be applied to other resonant systems.

  8. Phonon-wave-induced resonance fluorescence in semiconductor nanostructures: acoustoluminescence in the terahertz range.

    PubMed

    Ahn, K J; Milde, F; Knorr, A

    2007-01-12

    Acoustic wave excitation of semiconductor quantum dots generates resonance fluorescence of electronic intersublevel excitations. Our theoretical analysis predicts acoustoluminescence, in particular, a conversion of acoustic into electromagnetic THz waves over a broad spectral range.

  9. Optical fiber having wave-guiding rings

    DOEpatents

    Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA; Barty, Christopher P. J. [Hayward, CA

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  10. A study on the prenatal zone of ultrasonic guided waves in plates

    NASA Astrophysics Data System (ADS)

    Thomas, Tibin; Balasubramaniam, Krishnan

    2017-02-01

    Low frequency guided wave based inspection is an extensively used method for asset management with the advantage of wide area coverage from a single location at the cost of spatial resolution. With the advent of high frequency guided waves, short range inspections with high spatial resolution for monitoring corrosion under pipe supports and tank annular plates has gained widespread interest and acceptance. One of the major challenges in the application of high frequency guided waves in a short range inspection is to attain the desired modal displacements with respect to the application. In this paper, an investigation on the generation and formation of fundamental S0 mode is carried out through numerical simulation and experiments to establish a prenatal zone for guided waves. The effect of frequency, thickness of the plate and frequency-thickness (f*d) is studied. The investigation reveals the existence of a rudimentary form with similar modal features to the fully developed mode. This study helps in the design and development of a high frequency guided wave generator for particular applications which demands waves with very less sensitivity to the surface and loading during the initial phase which immediately evolves to a more sensitive wave towards the surface on propagation for the detection of shallow defects.

  11. Very small IF resonator filters using reflection of shear horizontal wave at free edges of substrate.

    PubMed

    Kadota, Michio; Ago, Junya; Horiuchi, Hideya; Ikeura, Mamoru

    2002-09-01

    A shear horizontal (SH) wave has the characteristic of complete reflection at the free edges of a substrate with a large dielectric constant. A conventional surface acoustic wave (SAW) resonator filter requires reflectors consisting of numerous grating fingers on both sides of interdigital transducers (IDTs). On the contrary, it is considered that small-sized and low loss resonator filters without reflectors consisting of grating fingers can be realized by exploiting this characteristic of the SH wave or the Bleustein-Gulyaev-Shimizu (BGS) wave. There are two types of resonator filters: transversely coupled and longitudinally coupled. No transversely coupled filters (neither conventional nor edge-reflection) using the SH wave on a single-crystal substrate have been realized until now, because two transverse modes (symmetrical and asymmetrical modes) are not easily coupled. However, the authors have realized small low loss transversely coupled resonator filters in the range of 25 to 52 MHz using edge reflections of the BGS wave on piezoelectric ceramic (PZT: Pb(Zr,Ti)O3) substrates for the first time by developing methods by which the two transverse modes could be coupled. On the other hand, longitudinally coupled resonator filters using edge reflection of the SH or BGS wave always have large spurious responses because of the even modes in the out-of-band range, because the frequencies of even modes do not coincide with the nulls of the frequency spectra of the IDTs. Consequently, longitudinally coupled resonator filters using the edge reflection of the SH wave have not been realized. By developing a method of reducing the spurious responses without increasing of the insertion loss, the authors have realized small low loss longitudinally coupled resonator filters in the range of 40 to 190 MHz using edge reflection of BGS or SH waves on PZT or 36 degrees-rotated-Y X-propagation LiTaO3 substrates for the first time. Despite being intermediate frequency (IF) filters, their package (3 x 3 x 1.03 mm3) sizes are as small as those of radio frequency (RF) SAW filters.

  12. Ultrasonic guided wave interpretation for structural health inspections

    NASA Astrophysics Data System (ADS)

    Bingham, Jill Paisley

    Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further understanding of how the guided wave modes propagate through the real structures, we have developed parallel processing, 3D elastic wave simulations using the finite integration technique (EFIT). This full field, numeric simulation technique easily examines models too complex for analytical solutions. We have developed the algorithm to handle built up 3D structures as well as layers with different material properties and surface detail. The simulations produce informative visualizations of the guided wave modes in the structures as well as the output from sensors placed in the simulation space to mimic the placement from experiment. Using the previously developed mode extraction algorithms we were then able to compare our 3D EFIT data to their experimental counterparts with consistency.

  13. Nonlinear evolution of energetic-particles-driven waves in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Li, Shuhan; Liu, Jinyuan; Wang, Feng; Shen, Wei; Li, Dong

    2018-06-01

    A one-dimensional electrostatic collisionless particle-in-cell code has been developed to study the nonlinear interaction between electrostatic waves and energetic particles (EPs). For a single wave, the results are clear and agree well with the existing theories. For coexisting two waves, although the mode nonlinear coupling between two wave fields is ignored, the second-order phase space islands can still exist between first-order islands generated by the two waves. However, the second-order phase islands are not formed by the superposed wave fields and the perturbed motions of EPs induced by the combined effect of two main resonances make these structures in phase space. Owing to these second-order islands, energy can be transferred between waves, even if the overlap of two main resonances never occurs. Depending on the distance between the main resonance islands in velocity space, the second-order island can affect the nonlinear dynamics and saturations of waves.

  14. Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves.

    PubMed

    Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L

    2010-12-01

    We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. © 2010 American Institute of Physics.

  15. High-intensity focused ultrasound in the treatment of breast tumours.

    PubMed

    Peek, Mirjam C L; Wu, Feng

    2018-01-01

    High-intensity focused ultrasound (HIFU) is a minimally invasive technique that has been used for the treatment of both benign and malignant tumours. With HIFU, an ultrasound (US) beam propagates through soft tissue as a high-frequency pressure wave. The US beam is focused at a small target volume, and due to the energy building up at this site, the temperature rises, causing coagulative necrosis and protein denaturation within a few seconds. HIFU is capable of providing a completely non-invasive treatment without causing damage to the directly adjacent tissues. HIFU can be either guided by US or magnetic resonance imaging (MRI). Guided imaging is used to plan the treatment, detect any movement during the treatment and monitor response in real-time. This review describes the history of HIFU, the HIFU technique, available devices and gives an overview of the published literature in the treatment of benign and malignant breast tumours with HIFU.

  16. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer for detecting bridge cables.

    PubMed

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.

  17. A Magnetic Flux Leakage and Magnetostrictive Guided Wave Hybrid Transducer for Detecting Bridge Cables

    PubMed Central

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483

  18. The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy.

    PubMed

    Prasad, Tushar; Colvin, Vicki L; Mittleman, Daniel M

    2007-12-10

    We measure the normal-incidence transmission coefficient of photonic crystal slabs with hexagonal arrays of air holes in silicon. The transmission spectra exhibit sharp resonant features with Fano line shapes. They are produced due to the coupling of the leaky photonic crystal modes, called guided resonances, to the continuum of free-space modes. We investigate the effects of several types of structural disorder on the spectra of these resonances. Our results indicate that guided resonances are very tolerant to disorder in the hole diameter and to interface roughness, but very sensitive to disorder in the lattice periodicity.

  19. Experimental Study of RF Sheaths due to Shear Alfv'en Waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Martin, Michael; van Compernolle, Bart; Carter, Troy; Gekelman, Walter; Pribyl, Patrick; D'Ippolito, Daniel A.; Myra, James R.

    2012-10-01

    Ion cyclotron resonance frequency (ICRF) heating is an important tool in current fusion experiments and will be an essential part of the heating power in ITER. A current limitation of ICRF heating is impurity generation through the formation of radiofrequency (RF) sheaths, both near-field (at the antenna) and far-field (e.g. in the divertor region). Far-field sheaths are thought to be generated through the direct launch of or mode conversion to shear Alfv'en waves. Shear Alfv'en waves have an electric field component parallel to the background magnetic field near the wall that drives an RF sheath.footnotetextD. A. D'Ippolito and J. R. Myra, Phys. Plasmas 19, 034504 (2012) In this study we directly launch the shear Alfv'en wave and measure the plasma potential oscillations and DC potential in the bulk plasma of the LAPD using emissive and Langmuir probes. Measured changes in the DC plasma potential can serve as an indirect measurement of the formation of an RF sheath because of rectification. These measurements will be useful in guiding future experiments to measure the plasma potential profile inside RF sheaths as part of an ongoing campaign.

  20. High-order modes of spoof surface plasmonic wave transmission on thin metal film structure.

    PubMed

    Liu, Xiaoyong; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian

    2013-12-16

    Recently, conformal surface plasmon (CSP) structure has been successfully proposed that could support spoof surface plasmon polaritons (SPPs) on corrugated metallic strip with ultrathin thickness [Proc. Natl. Acad. Sci. U.S.A. 110, 40-45 (2013)]. Such concept provides a flexible, conformal, and ultrathin wave-guiding element, very promising for application of plasmonic devices, and circuits in the frequency ranging from microwave to mid-infrared. In this work, we investigated the dispersions and field patterns of high-order modes of spoof SPPs along CSP structure of thin metal film with corrugated edge of periodic array of grooves, and carried out direct measurement on the transmission spectrum of multi-band of surface wave propagation at microwave frequency. It is found that the mode number and mode bands are mainly determined by the depth of the grooves, providing a way to control the multi-band transmission spectrum. We have also experimentally verified the high-order mode spoof SPPs propagation on curved CSP structure with acceptable bending loss. The multi-band propagation of spoof surface wave is believed to be applicable for further design of novel planar devices such as filters, resonators, and couplers, and the concept can be extended to terahertz frequency range.

  1. Interference-induced angle-independent acoustical transparency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Lehua; Yu, Gaokun, E-mail: gkyu@ouc.edu.cn; Wang, Ning

    2014-12-21

    It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtzmore » resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves.« less

  2. Guided wave crack detection and size estimation in stiffened structures

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Md Yeasin; Faisal Haider, Mohammad; Poddar, Banibrata; Giurgiutiu, Victor

    2018-03-01

    Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided waves. In the past, simplistic structures were often considered for analyzing the guided wave interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided wave interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided waves (aka Lamb waves) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered waves. The direct wave and the additional scattered waves from the stiffener were experimentally recorded and studied. These waves were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered waves as well as trapped waves. These scattered waves and trapped wave modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These waves were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered waves. Different features (reflection, transmission, and mode-conversion) of the scattered wave signals are analyzed. We found direct transmission feature for incident A0 wave mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.

  3. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes

    PubMed Central

    Rostami, Javad; Chen, Jingming; Tse, Peter W.

    2017-01-01

    Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves’ signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals’ analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed. PMID:28178220

  4. Application of Optical Forces in Microphotonic Systems

    DTIC Science & Technology

    2013-05-01

    Experiments are carried out to optically characterize the high-Q guided resonance modes with slot confinement. The evolution of the measured wavelengths...the guided resonant device. Two cross polarizers (PC) are applied before and after the device to cancel out Fabry-Perot noise. TL: tunable laser; MO...carried out to optically characterize the high-Q guided resonance modes with slot confinement. The evolution of the measured wavelengths and quality

  5. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  6. A high-performance wave guide cryogenic thermal break

    NASA Astrophysics Data System (ADS)

    Melhuish, S. J.; McCulloch, M. A.; Piccirillo, L.; Stott, C.

    2016-10-01

    We describe a high-performance wave guide cryogenic thermal break. This has been constructed both for Ka band, using WR28 wave guide, and Q band, using WR22 wave guide. The mechanical structure consists of a hexapod (Stewart platform) made from pultruded carbon fibre tubing. We present a tentative examination of the cryogenic Young's modulus of this material. The thermal conductivity is measured at temperatures above the range explored by Runyan and Jones, resulting in predicted conductive loads through our thermal breaks of 3.7 mW to 3 K and 17 μK to 1 K.

  7. Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings

    ERIC Educational Resources Information Center

    Fang, Tian-Shen

    2007-01-01

    This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…

  8. Generation of whistler-wave heated discharges with planar resonant RF networks.

    PubMed

    Guittienne, Ph; Howling, A A; Hollenstein, Ch

    2013-09-20

    Magnetized plasma discharges generated by a planar resonant rf network are investigated. A regime transition is observed above a magnetic field threshold, associated with rf waves propagating in the plasma and which present the characteristics of whistler waves. These wave heated regimes can be considered as analogous to conventional helicon discharges, but in planar geometry.

  9. Stochastic Acceleration of Ions Driven by Pc1 Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-01-01

    The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  10. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation.

    PubMed

    Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-12-02

    As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.

  11. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  12. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  13. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    NASA Astrophysics Data System (ADS)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  14. Acceleration of charged particles by crossed cyclotron waves, Resonant Moments Method

    NASA Astrophysics Data System (ADS)

    Ponomarjov, M.; Carati, D.

    A mechanism for enhanced acceleration of charged particles in crossing radio frequency or micro waves propagating at different angles with respect to an external magnetic field is investigated. This mechanism consists in introducing low amplitude secondary waves in order to improve the parallel momentum transfer from the high amplitude primary wave to charged particles. The use of two parallel counter-propagating waves has recently been considered (Gell and Nakach, 1999) and numerical tests (Louies et al, 2001) have shown that the two-wave scheme may lead to higher averaged parallel velocity. On the other hand, it has been concluded that it may be more effective to accelerate electrons when the waves propagate obliquely to the external magnetic field (Karimabadi and Angelopoulos 1989, Cohen et al 1991). The idea considered here is similar although no constraint is imposed on the refraction indices of the primary and the secondary waves. The theoretical analysis of the acceleration mechanism is based on the Resonance Moments Method (RMM) in which moments of the velocity distribution are computed by using an averages over the resonant layers (RL)i only instead of a complete phase-space average. The quantities obtained using this approach, referred to as Resonant Moments (RM), suggest the existence of optimal angles of propagation for the primary and secondary waves as long as the maximization of the parallel flux of charged particles is considered. The fraction of charged particles that are close to the resonance conditions, that correspond to the RL, becomes then as important as the time these particles remain resonant. The secondary wave tends to maintain a pseudo-equilibrium velocity distribution by continuously re-filling the RL. Our suggestions are confirmed by direct numerical simulations for a populations of 105 relativistic electrons. The secondary wave yields a clear increase (up to one order of magnitude) of the average parallel velocity of the particles. It is a quite promising result since the amplitude of the secondary wave is ten times lower the one of the first wave. Qualitative results give one of the enhanced acceleration mechanisms of the charged particles (including relativistic electrons in planetary magnetospheres) by the crossed cyclotron waves in ambient magnetic field.

  15. A View into Saturn through its Natural Seismograph

    NASA Astrophysics Data System (ADS)

    Mankovich, Christopher

    2018-04-01

    Saturn's nonradial oscillations perturb the orbits of ring particles. The C ring is fortuitous in that it spans several resonances with Saturn's fundamental acoustic (f-) modes, and its moderate optical depth allows the characterization of wave features using stellar occultations. The growing set of C-ring waves with precise pattern frequencies and azimuthal order m measured from Cassini stellar occultations (Hedman & Nicholson 2013, 2014; French et al. 2016) provides new constraints on Saturn's internal structure, with the potential to aid in resolving long-standing questions about the planet's distribution of helium and heavier elements, its means of internal energy transport, and its rotation state.We construct Saturn interior models and calculate mode eigenfrequencies, mapping the planet mode frequencies to resonant locations in the rings to compare with the locations of observed spiral density and vertical bending waves in the C ring. While spiral density waves at low azimuthal order (m=2-3) appear strongly affected by resonant coupling between f-modes and deep g-modes (Fuller 2014), the locations of waves with higher azimuthal order can be fit with a spectrum of pure f-modes for Saturn models with adiabatic envelopes and realistic equations of state. Notably, several newly observed density waves and bending waves (Nicholson et al., in preparation) align with outer Lindblad and outer vertical resonances for non-sectoral (m!=l) Saturn f-modes of relatively high angular degree, and we present normal mode identifications for these waves. We assess the range of resonance locations in the C and D rings allowed for the spectrum of f-modes given gravity field constraints, point to other resonance locations that should experience strong forcing, and use the full set of observed waves to estimate Saturn's bulk rotation rate.

  16. Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M

    2014-01-01

    Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.

  17. Near-resonant excitation and propagation of eccentric density waves by external forcing. [in accretion disks

    NASA Technical Reports Server (NTRS)

    Ostriker, Eve C.; Shu, Frank H.; Adams, Fred C.

    1992-01-01

    An overview is presented of the astronomical evidence that relatively massive, distended, gaseous disks form as a natural by-product of the process of star formation, and also the numerical evidence that SLING-amplified eccentric modes in the outer parts of such disks can drive one-armed spiral density waves in the inner parts by near-resonant excitation and propagation. An ordinary differential equation (ODE) of the second order that approximately governs the nonlocalized forcing of waves in a disk satisfying Lindblad resonance almost everywhere is derived. When transformed and appended with an extra model term, this ODE implies, for free waves, the usual asymptotic results of the WKBJ dispersion relationship and the propagation Goldreich-Tremaine (1978) formula for the resonant torque exerted on a localized Lindblad resonance. An analytical solution is given for the rate of energy and angular momentum transfer by nonlocalized near-resonant forcing in the case when the disk has power-law dependences on the radius of the surface density and temperature.

  18. Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors

    PubMed Central

    Wang, Lin; Chen, Xiaoshuang; Yu, Anqi; Zhang, Yang; Ding, Jiayi; Lu, Wei

    2014-01-01

    Terahertz (THz) technology is becoming a spotlight of scientific interest due to its promising myriad applications including imaging, spectroscopy, industry control and communication. However, one of the major bottlenecks for advancing this field is due to lack of well-developed solid-state sources and detectors operating at THz gap which serves to mark the boundary between electronics and photonics. Here, we demonstrate exceptionally wide tunable terahertz plasma-wave excitation can be realized in the channel of micrometer-level graphene field effect transistors (FET). Owing to the intrinsic high propagation velocity of plasma waves (>~108 cm/s) and Dirac band structure, the plasma-wave graphene-FETs yield promising prospects for fast sensing, THz detection, etc. The results indicate that the multiple guide-wave resonances in the graphene sheets can lead to the deep sub-wavelength confinement of terahertz wave and with Q-factor orders of magnitude higher than that of conventional 2DEG system at room temperature. Rooted in this understanding, the performance trade-off among signal attenuation, broadband operation, on-chip integrability can be avoided in future THz smart photonic network system by merging photonics and electronics. The unique properties presented can open up the exciting routes to compact solid state tunable THz detectors, filters, and wide band subwavelength imaging based on the graphene-FETs. PMID:24969065

  19. Determination of the shear impedance of viscoelastic liquids using cylindrical piezoceramic resonators.

    PubMed

    Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek

    2003-03-01

    In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.

  20. Multiple Ions Resonant Heating and Acceleration by Alfven/cyclotron Fluctuations in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Xie, H.; Ofman, L.

    2003-12-01

    We study the interaction between protons, and multiple minor ions (O5+, He++) and a given cyclotron resonant spectra in coronal hole plasma. One-dimensional hybrid simulations are performed in initially homogeneous, collisionless, magnetized plasma with waves propagating parallel to the background magnetic field. The self-consistent hybrid simulations are used to study how multiple minor species may affect the resonance interaction between a spectrum of waves and the solar wind protons. The results of the simulations provide a clear picture of wave-particle interaction under various coronal conditions, which can explain 1) how multiple minor ions affect the resonant heating and the temperature anisotropy of the solar wind protons by a given wave spectrum; 2) how energy is distributed and transferred among waves and different ion species; 3) the growth and damping of different beam microinstability modes, including both inward and outward waves; 4) the formation of proton double-peak distribution in the solar wind.

  1. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  2. Structural damage detection using deep learning of ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.

    2018-04-01

    Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.

  3. Electromagnetic resonances of plasma column between two metallic plates

    NASA Astrophysics Data System (ADS)

    Dvinin, Sergey; Dovzhenko, Vitaly; Sinkevich, Oleg

    2015-09-01

    It is known that there are two types of electrodynamic resonances of bounded supercritical plasma, placed between the two metal planes are possible. The first type is associated with the excitation of surface waves propagating along the lateral surface. The second one is caused by standing surface waves in the sheath at plasma-metal boundary. This work is concerned with theoretical study of the resonance properties of plasma slab in cases where both effects can be observed together. Resonance densities and frequencies are calculated. Solution of Maxwell's equations is demonstrated that directions of energy flows in first and second cases are opposite. Energy transfer to lateral surface waves is prevailing, if the field frequency is higher than the frequency, corresponding to the geometric plasma-sheath resonance. Amplitude of waves at plasma metal boundary becomes greater in opposite case. Discharge properties in both cases are calculated including joint excitation.

  4. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    NASA Astrophysics Data System (ADS)

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  5. Control of Love waves by resonant metasurfaces.

    PubMed

    Palermo, Antonio; Marzani, Alessandro

    2018-05-08

    Metasurfaces of mechanical resonators have been successfully used to control in-plane polarized surface waves for filtering, waveguiding and lensing applications across different length scales. In this work, we extend the concept of metasurfaces to anti-plane surface waves existing in semi-infinite layered media, generally known as Love waves. By means of an effective medium approach, we derive an original closed-form dispersion relation for the metasurface. This relation reveals the possibility to control the Love waves dispersive properties by varying the resonators mechanical parameters. We exploit this capability to manipulate the metasurface refractive index and design two gradient index (GRIN) metalenses, i.e. a Luneburg lens and a Maxwell lens. We confirm the performance of the designed lenses using full 3D finite element simulations. Our work demonstrates the possibility of realizing wave control devices for anti-plane waves.

  6. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  7. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  8. Scattering of waves by impurities in precompressed granular chains.

    PubMed

    Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu

    2016-05-01

    We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.

  9. Evidence for infragravity wave-tide resonance in deep oceans.

    PubMed

    Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko

    2010-10-05

    Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.

  10. Theory of magnetoelastic resonance in a monoaxial chiral helimagnet

    NASA Astrophysics Data System (ADS)

    Tereshchenko, A. A.; Ovchinnikov, A. S.; Proskurin, Igor; Sinitsyn, E. V.; Kishine, Jun-ichiro

    2018-05-01

    We study magnetoelastic resonance phenomena in a monoaxial chiral helimagnet belonging to the hexagonal crystal class. By computing the spectrum of a coupled elastic wave and spin wave, it is demonstrated how hybridization occurs depending on their chirality. Specific features of the magnetoelastic resonance are discussed for the conical phase and the soliton lattice phase stabilized in the monoaxial chiral helimagnet. The former phase exhibits appreciable nonreciprocity of the spectrum, and the latter is characterized by a multiresonance behavior. We propose that the nonreciprocal spin wave around the forced-ferromagnetic state has potential capability to convert the linearly polarized elastic wave to a circularly polarized one with the chirality opposite to the spin-wave chirality.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonjung; Kovacic, Gregor; Cai, David

    Using the (1+1)D Majda-McLaughlin-Tabak model as an example, we present an extension of the wave turbulence (WT) theory to systems with strong nonlinearities. We demonstrate that nonlinear wave interactions renormalize the dynamics, leading to (i) a possible destruction of scaling structures in the bare wave systems and a drastic deformation of the resonant manifold even at weak nonlinearities, and (ii) creation of nonlinear resonance quartets in wave systems for which there would be no resonances as predicted by the linear dispersion relation. Finally, we derive an effective WT kinetic equation and show that our prediction of the renormalized Rayleigh-Jeans distributionmore » is in excellent agreement with the simulation of the full wave system in equilibrium.« less

  12. Nonlinear Propagation of Alfven Waves Driven by Observed Photospheric Motions: Application to the Coronal Heating and Spicule Formation

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma; Shibata, Kazunari

    We have performed MHD simulations of Alfven wave propagation along an open ux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photo-spheric granular motion from G-band movies of Hinode/SOT. It is shown that the total energy ux at the corona becomes larger and the transition region height becomes higher in the case when we use the observed spectrum rather than white/pink noise spectrum as the wave gener-ator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have conrmed that there are at least three resonant frequencies, 1, 3 and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy ux to heat the corona.

  13. Collision broadened resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-08-01

    Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The authors have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element. These data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. Collisions affect the absorption of RF energy by two quite distinct processes: In addition to the usual relaxation towards the Maxwellian distribution creating velocity gradients which drive quasilinear diffusion, collisions also affect the wave-particle resonance through the mechanism of gyro-phase diffusion. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  14. Generation of Highly Oblique Lower Band Chorus Via Nonlinear Three-Wave Resonance

    DOE PAGES

    Fu, Xiangrong; Gary, Stephen Peter; Reeves, Geoffrey D.; ...

    2017-09-05

    Chorus in the inner magnetosphere has been observed frequently at geomagnetically active times, typically exhibiting a two-band structure with a quasi-parallel lower band and an upper band with a broad range of wave normal angles. But recent observations by Van Allen Probes confirm another type of lower band chorus, which has a large wave normal angle close to the resonance cone angle. It has been proposed that these waves could be generated by a low-energy beam-like electron component or by temperature anisotropy of keV electrons in the presence of a low-energy plateau-like electron component. This paper, however, presents an alternativemore » mechanism for generation of this highly oblique lower band chorus. Through a nonlinear three-wave resonance, a quasi-parallel lower band chorus wave can interact with a mildly oblique upper band chorus wave, producing a highly oblique quasi-electrostatic lower band chorus wave. This theoretical analysis is confirmed by 2-D electromagnetic particle-in-cell simulations. Furthermore, as the newly generated waves propagate away from the equator, their wave normal angle can further increase and they are able to scatter low-energy electrons to form a plateau-like structure in the parallel velocity distribution. As a result, the three-wave resonance mechanism may also explain the generation of quasi-parallel upper band chorus which has also been observed in the magnetosphere.« less

  15. Investigation of guided waves propagation in pipe buried in sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand usingmore » a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.« less

  16. Numerical Simulation of Monitoring Corrosion in Reinforced Concrete Based on Ultrasonic Guided Waves

    PubMed Central

    Zheng, Zhupeng; Lei, Ying; Xue, Xin

    2014-01-01

    Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale. PMID:25013865

  17. An adaptive sparse deconvolution method for distinguishing the overlapping echoes of ultrasonic guided waves for pipeline crack inspection

    NASA Astrophysics Data System (ADS)

    Chang, Yong; Zi, Yanyang; Zhao, Jiyuan; Yang, Zhe; He, Wangpeng; Sun, Hailiang

    2017-03-01

    In guided wave pipeline inspection, echoes reflected from closely spaced reflectors generally overlap, meaning useful information is lost. To solve the overlapping problem, sparse deconvolution methods have been developed in the past decade. However, conventional sparse deconvolution methods have limitations in handling guided wave signals, because the input signal is directly used as the prototype of the convolution matrix, without considering the waveform change caused by the dispersion properties of the guided wave. In this paper, an adaptive sparse deconvolution (ASD) method is proposed to overcome these limitations. First, the Gaussian echo model is employed to adaptively estimate the column prototype of the convolution matrix instead of directly using the input signal as the prototype. Then, the convolution matrix is constructed upon the estimated results. Third, the split augmented Lagrangian shrinkage (SALSA) algorithm is introduced to solve the deconvolution problem with high computational efficiency. To verify the effectiveness of the proposed method, guided wave signals obtained from pipeline inspection are investigated numerically and experimentally. Compared to conventional sparse deconvolution methods, e.g. the {{l}1} -norm deconvolution method, the proposed method shows better performance in handling the echo overlap problem in the guided wave signal.

  18. Correlation of 1- to 10-Hz earthquake resonances with surface measurements of S-wave reflections and refractions in the upper 50 m

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Frankel, A.D.; Cranswick, E.; Meremonte, M.E.; Odum, J.K.

    2000-01-01

    Resonances observed in earthquake seismograms recorded in Seattle, Washington, the central United States and Sherman Oaks, California, are correlated with each site's respective near-surface seismic velocity profile and reflectivity determined from shallow seismic-reflection/refraction surveys. In all of these cases the resonance accounts for the highest amplitude shaking at the site above 1 Hz. These results show that imaging near-surface reflections from the ground surface can locate impedance structures that are important contributors to earthquake ground shaking. A high-amplitude S-wave reflection, recorded 250-m northeast and 300-m east of the Seattle Kingdome earthquake-recording station, with a two-way travel time of about 0.23 to 0.27 sec (about 18- to 22-m depth) marks the boundary between overlying alluvium (VS < 180 m/sec) and a higher velocity material (VS about 400 m/sec). This reflector probably causes a strong 2-Hz resonance that is observed in the earthquake data for the site near the Kingdome. In the central United States, S-wave reflections from a high-impedance boundary (an S-wave velocity increase from about 200 m/sec to 2000 m/sec) at about 40-m depth corresponds to a strong fundamental resonance at about 1.5 Hz. In Sherman Oaks, strong resonances at about 1.0 and 4 Hz are consistently observed on earthquake seismograms. A strong S-wave reflector at about 40-m depth may cause the 1.0 Hz resonance. The 4.0-Hz resonance is possibly explained by constructive interference between the first overtone of the 1.0-Hz resonance and a 3.25- to 3.9-Hz resonance calculated from an areally consistent impedance boundary at about 10-m depth as determined by S-wave refraction data.

  19. Resonance localization and poloidal electric field due to cyclo- tron wave heating in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, J.Y.; Chan, V.S.; Harvey, R.W.

    1984-08-06

    The perpendicular heating in cyclotron waves tends to pile up the resonant particles toward the low magnetic field side with their banana tips localized to the resonant surface. A poloidal electric field with an E x B drift comparable to the ion vertical drift in a toroidal magnetic field may result. With the assumption of anomalous electron and neoclassical ion transport, density variations due to wave heating are discussed.

  20. Resonant-cavity antenna for plasma heating

    DOEpatents

    Perkins, Jr., Francis W.; Chiu, Shiu-Chu; Parks, Paul; Rawls, John M.

    1987-01-01

    Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

  1. Schumann resonance transients and the search for gravitational waves

    NASA Astrophysics Data System (ADS)

    Silagadze, Z. K.

    2018-02-01

    Schumann resonance transients which propagate around the globe can potentially generate a correlated background in widely separated gravitational-wave detectors. We show that due to the distribution of lightning hotspots around the globe, these transients have characteristic time lags, and this feature can be useful to further suppress such a background, especially in searches of the stochastic gravitational-wave background. A brief review of the corresponding literature on Schumann resonances and lightnings is also given.

  2. Electrically tunable metasurface based on Mie-type dielectric resonators.

    PubMed

    Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo

    2017-02-21

    In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.

  3. Electrically tunable metasurface based on Mie-type dielectric resonators

    PubMed Central

    Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo

    2017-01-01

    In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak. PMID:28220861

  4. Trapped modes in a non-axisymmetric cylindrical waveguide

    NASA Astrophysics Data System (ADS)

    Lyapina, A. A.; Pilipchuk, A. S.; Sadreev, A. F.

    2018-05-01

    We consider acoustic wave transmission in a non-axisymmetric waveguide which consists of a cylindrical resonator and two cylindrical waveguides whose axes are shifted relatively to each other by an azimuthal angle Δϕ. Under variation of the resonator's length L and fixed Δϕ we find bound states in the continuum (trapped modes) due to full destructive interference of resonant modes leaking into the waveguides. Rotation of the waveguide adds complex phases to the coupling strengths of the resonator eigenmodes with the propagating modes of the waveguides tuning Fano resonances to give rise to a wave faucet. Under variation of Δϕ with fixed resonator's length we find symmetry protected trapped modes. For Δϕ ≠ 0 these trapped modes contribute to the scattering function supporting high vortical acoustic intensity spinning inside the resonator. The waveguide rotation brings an important feature to the scattering and provides an instrument for control of acoustic transmittance and wave trapping.

  5. Electrically tunable metasurface based on Mie-type dielectric resonators

    NASA Astrophysics Data System (ADS)

    Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo

    2017-02-01

    In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.

  6. In-plane time-harmonic elastic wave motion and resonance phenomena in a layered phononic crystal with periodic cracks.

    PubMed

    Golub, Mikhail V; Zhang, Chuanzeng

    2015-01-01

    This paper presents an elastodynamic analysis of two-dimensional time-harmonic elastic wave propagation in periodically multilayered elastic composites, which are also frequently referred to as one-dimensional phononic crystals, with a periodic array of strip-like interior or interface cracks. The transfer matrix method and the boundary integral equation method in conjunction with the Bloch-Floquet theorem are applied to compute the elastic wave fields in the layered periodic composites. The effects of the crack size, spacing, and location, as well as the incidence angle and the type of incident elastic waves on the wave propagation characteristics in the composite structure are investigated in details. In particular, the band-gaps, the localization and the resonances of elastic waves are revealed by numerical examples. In order to understand better the wave propagation phenomena in layered phononic crystals with distributed cracks, the energy flow vector of Umov and the corresponding energy streamlines are visualized and analyzed. The numerical results demonstrate that large energy vortices obstruct elastic wave propagation in layered phononic crystals at resonance frequencies. They occur before the cracks reflecting most of the energy transmitted by the incoming wave and disappear when the problem parameters are shifted from the resonant ones.

  7. Cost-effectiveness of focused ultrasound, radiosurgery, and DBS for essential tremor.

    PubMed

    Ravikumar, Vinod K; Parker, Jonathon J; Hornbeck, Traci S; Santini, Veronica E; Pauly, Kim Butts; Wintermark, Max; Ghanouni, Pejman; Stein, Sherman C; Halpern, Casey H

    2017-08-01

    Essential tremor remains a very common yet medically refractory condition. A recent phase 3 study demonstrated that magnetic resonance-guided focused ultrasound thalamotomy significantly improved upper limb tremor. The objectives of this study were to assess this novel therapy's cost-effectiveness compared with existing procedural options. Literature searches of magnetic resonance-guided focused ultrasound thalamotomy, DBS, and stereotactic radiosurgery for essential tremor were performed. Pre- and postoperative tremor-related disability scores were collected from 32 studies involving 83 magnetic resonance-guided focused ultrasound thalamotomies, 615 DBSs, and 260 stereotactic radiosurgery cases. Utility, defined as quality of life and derived from percent change in functional disability, was calculated; Medicare reimbursement was employed as a proxy for societal cost. Medicare reimbursement rates are not established for magnetic resonance-guided focused ultrasound thalamotomy for essential tremor; therefore, reimbursements were estimated to be approximately equivalent to stereotactic radiosurgery to assess a cost threshold. A decision analysis model was constructed to examine the most cost-effective option for essential tremor, implementing meta-analytic techniques. Magnetic resonance-guided focused ultrasound thalamotomy resulted in significantly higher utility scores compared with DBS (P < 0.001) or stereotactic radiosurgery (P < 0.001). Projected costs of magnetic resonance-guided focused ultrasound thalamotomy were significantly less than DBS (P < 0.001), but not significantly different from radiosurgery. Magnetic resonance-guided focused ultrasound thalamotomy is cost-effective for tremor compared with DBS and stereotactic radiosurgery and more effective than both. Even if longer follow-up finds changes in effectiveness or costs, focused ultrasound thalamotomy will likely remain competitive with both alternatives. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  8. Comparison of intense electrostatic waves near f/sub UHR/ with linear instability theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurth, W.S.; Frank, L.A.; Gurnett, D.A.

    1979-06-01

    Intense electrostatic waves beyond the plasmapause have recently been identified at frequencies near the upper hybrid resonance frequency. In addition, the waves occur within a band at an odd, half-harmonic of the local electron gyrofrequency. These bands of electrostatic turbulence are among the most intense waves detected within the earth's magnetosphere. Measurements obtained with the ISEE 1 plasma wave receiver show that the intense waves appear to be intensifications of an electrostatic cyclotron harmonic band near the upper hybrid resonance frequency. A straightforward explanation of intense waves at the upper hybrid resonance frequency exists in the electrostatic multi-cyclotron emission theory.more » For a broad range of plasma parameters nonconvective instability or large spatial growth rates occur within the cyclotron band encompassing the cold upper hybrid frequency. Comparison of spatial growth rate spectra with measured wave spectra shows that there is excellent qualitative agreement between the linear theory and the observed wave characteristics.« less

  9. Wave guide impedance matching method and apparatus

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.

  10. Wave energy trapping and localization in a plate with a delamination

    NASA Astrophysics Data System (ADS)

    Glushkov, Evgeny; Glushkova, Natalia; Golub, Mikhail V.; Moll, Jochen; Fritzen, Claus-Peter

    2012-12-01

    The research aims at an experimental approval of the trapping mode effect theoretically predicted for an elastic plate-like structure with a horizontal crack. The effect is featured by a sharp capture of incident wave energy at certain resonance frequencies with its localization between the crack and plate surfaces in the form of energy vortices yielding long-enduring standing waves. The trapping modes are eigensolutions of the related diffraction problem associated with nearly real complex points of its discrete frequency spectrum. To detect such resonance motion, a laser vibrometer based system has been employed for the acquisition and appropriate visualization of piezoelectrically actuated out-of-plane surface motion of a two-layer aluminum plate with an artificial strip-like delamination. The measurements at resonance and off-resonance frequencies have revealed a time-harmonic oscillation of good quality above the delamination in the resonance case. It lasts for a long time after the scattered waves have left that area. The measured frequency of the trapped standing-wave oscillation is in a good agreement with that predicted using the integral equation based mathematical model.

  11. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor

    PubMed Central

    Rabani, Amir

    2016-01-01

    The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications. PMID:27754324

  12. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor.

    PubMed

    Rabani, Amir

    2016-10-12

    The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.

  13. Elastic solitons in delaminated bars: splitting leads to fission

    NASA Astrophysics Data System (ADS)

    Samsonov, A. M.; Dreiden, G. V.; Khusnutdinova, K. R.; Semenova, I. V.

    2008-06-01

    Recent theoretical and successful experimental studies confirmed existence and demonstrated main properties of bulk strain solitary waves in nonlinearly elastic solid wave guides. Our current research is devoted to nonlinear wave processes in layered elastic wave guides with inhomogeneities modelling delamination. We present first theoretical and experimental results showing the influence of delamination on the parameters of the longitudinal strain solitary wave.

  14. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.

    PubMed

    Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo

    2016-10-19

    To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.

  15. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr; Cho, Younho

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actualmore » defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.« less

  16. Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging and Fusion Guided Targeted Biopsy Evaluated by Transperineal Template Saturation Prostate Biopsy for the Detection and Characterization of Prostate Cancer.

    PubMed

    Mortezavi, Ashkan; Märzendorfer, Olivia; Donati, Olivio F; Rizzi, Gianluca; Rupp, Niels J; Wettstein, Marian S; Gross, Oliver; Sulser, Tullio; Hermanns, Thomas; Eberli, Daniel

    2018-02-21

    We evaluated the diagnostic accuracy of multiparametric magnetic resonance imaging and multiparametric magnetic resonance imaging/transrectal ultrasound fusion guided targeted biopsy against that of transperineal template saturation prostate biopsy to detect prostate cancer. We retrospectively analyzed the records of 415 men who consecutively presented for prostate biopsy between November 2014 and September 2016 at our tertiary care center. Multiparametric magnetic resonance imaging was performed using a 3 Tesla device without an endorectal coil, followed by transperineal template saturation prostate biopsy with the BiopSee® fusion system. Additional fusion guided targeted biopsy was done in men with a suspicious lesion on multiparametric magnetic resonance imaging, defined as Likert score 3 to 5. Any Gleason pattern 4 or greater was defined as clinically significant prostate cancer. The detection rates of multiparametric magnetic resonance imaging and fusion guided targeted biopsy were compared with the detection rate of transperineal template saturation prostate biopsy using the McNemar test. We obtained a median of 40 (range 30 to 55) and 3 (range 2 to 4) transperineal template saturation prostate biopsy and fusion guided targeted biopsy cores, respectively. Of the 124 patients (29.9%) without a suspicious lesion on multiparametric magnetic resonance imaging 32 (25.8%) were found to have clinically significant prostate cancer on transperineal template saturation prostate biopsy. Of the 291 patients (70.1%) with a Likert score of 3 to 5 clinically significant prostate cancer was detected in 129 (44.3%) by multiparametric magnetic resonance imaging fusion guided targeted biopsy, in 176 (60.5%) by transperineal template saturation prostate biopsy and in 187 (64.3%) by the combined approach. Overall 58 cases (19.9%) of clinically significant prostate cancer would have been missed if fusion guided targeted biopsy had been performed exclusively. The sensitivity of multiparametric magnetic resonance imaging and fusion guided targeted biopsy for clinically significant prostate cancer was 84.6% and 56.7% with a negative likelihood ratio of 0.35 and 0.46, respectively. Multiparametric magnetic resonance imaging alone should not be performed as a triage test due to a substantial number of false-negative cases with clinically significant prostate cancer. Systematic biopsy outperformed fusion guided targeted biopsy. Therefore, it will remain crucial in the diagnostic pathway of prostate cancer. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Electromagnetic study of second harmonic generation by a corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Neviere, Michel; Popov, E.; Reinisch, Raymond

    1995-09-01

    When an incident plane wave with circular frequency (omega) falls on a grating coated by a layer of nonlinear material, it generates a nonlinear polarization PNL(2(omega) ) which acts as a source term and produces a second harmonic (SH) field called signal. The excitation of an electromagnetic resonance like surface plasmon or a guided wave increases the local field and thus the signal. The problem is to be able to compute and optimize the latter. We have developed a new theory which uses a coordinate transformation mapping the grating profile onto a plane. This simplifies the boundary conditions but complicates the propagation equation. Taking advantage of the psuedoperiodicity of the problem, the Fourier harmonics of the field are solution of a set of first order differential equations with constant coefficients. The resolution of this system via eigenvalue and eigenvector technique avoid numerical instabilities and lead to accurate results which agree perfectly with those found via the Rayleigh method or by the Differential method, when they work. A phenomenological approach is then developed to explain the unusual shape of the resonance lines at 2(omega) , which is based on the poles and zeros of the scattering operator S at (omega) and 2(omega) . It is shown that S(2(omega) ) presents 3 complex poles with 3 associated complex zeros. Their knowledge, plus the nonlinear reflectivity of the plane device allows predicting all the possible shapes of the 2(omega) signal as a function of angle of incidence. The phenomenological study explains an experimental result, found a few years ago, that if 2(omega) lies inside the absorption band of the guiding material instead of the transparent region, the enhanced second harmonic generation (SHG) is changed into a reduced one. It means that in the case phase matching can lead to a minimum instead of maximum. An algorithm is then proposed to maximize the signal intensity; with polyurethane as a guiding material a conversion factor of up to 40% is found when incident power is equal to 40 kW.

  18. Experimental observation of negative effective gravity in water waves.

    PubMed

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C T; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection.

  19. Experimental Observation of Negative Effective Gravity in Water Waves

    PubMed Central

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132

  20. Lamb wave detection of limpet mines on ship hulls.

    PubMed

    Bingham, Jill; Hinders, Mark; Friedman, Adam

    2009-12-01

    This paper describes the use of ultrasonic guided waves for identifying the mass loading due to underwater limpet mines on ship hulls. The Dynamic Wavelet Fingerprint Technique (DFWT) is used to render the guided wave mode information in two-dimensional binary images because the waveform features of interest are too subtle to identify in time domain. The use of wavelets allows both time and scale features from the original signals to be retained, and image processing can be used to automatically extract features that correspond to the arrival times of the guided wave modes. For further understanding of how the guided wave modes propagate through the real structures, a parallel processing, 3D elastic wave simulation is developed using the finite integration technique (EFIT). This full field, technique models situations that are too complex for analytical solutions, such as built up 3D structures. The simulations have produced informative visualizations of the guided wave modes in the structures as well as mimicking directly the output from sensors placed in the simulation space for direct comparison to experiments. Results from both drydock and in-water experiments with dummy mines are also shown.

  1. Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave

    NASA Astrophysics Data System (ADS)

    Oimatsu, S.; Masahito, N.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; MacDowall, R. J.; Smith, C.; Mitchell, D. G.

    2017-12-01

    Poloidal Pc4 wave and proton flux oscillation due to the drift-bounce resonance are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux modulation is observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of poloidal Pc4 wave. We estimate the resonant energy to be 120 keV for pitch angle (α) of 20º-40º or 140º-160º, and 170-180 keV for α=40º-60º or 120º-140º. The drift-bounce resonance theory gives the resonant energy of 110-120 keV, which is consistent with the observation for small α (or large α when α≥90º), but slightly higher than the observation for large α (or small α when α≥90º). We consider that this discrepancy of the resonant energy is due to the drift shell splitting. In order to examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) in both outbound and inbound paths. Results showed positive gradient in both paths, which means that the energy is transferred from the protons to the wave. During the appearance of poloidal Pc4 wave, the Dst* index shows a sudden increase of 6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and the variation of proton flux by the drift-bounce resonance. The estimated energy loss is almost comparable for both cases. Therefore, we suggest that the energy transfer from the ring current protons to the wave via the drift-bounce resonance cause the increase of Dst* index.

  2. Optical notch filter with tunable bandwidth based on guided-mode resonant polarization-sensitive spectral feature.

    PubMed

    Qian, Linyong; Zhang, Dawei; Dai, Bo; Wang, Qi; Huang, Yuanshen; Zhuang, Songlin

    2015-07-13

    A novel bandwidth-tunable notch filter is proposed based on the guided-mode resonance effect. The notch is created due to the superposition spectra response of two guided-mode resonant filters. The compact, bandwidth tuning capability is realized by taking advantage the effect of spectra-to-polarization sensitivity in one-dimensional classical guided-mode resonance filter, and using a liquid crystal polarization rotator for precise and simple polarization control. The operation principle and the design of the device are presented, and we demonstrate it experimentally. The central wavelength is fixed at 766.4 nm with a relatively symmetric profile. The full width at half maximum bandwidth could be tuned from 8.6 nm to 18.2 nm by controlling the applied voltage in electrically-driving polarization rotator.

  3. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of wave formation and the dependence on the parameters of the model.

  4. Fatigue Crack Detection via Load-Differential Guided Wave Methods (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4362 FATIGUE CRACK DETECTION VIA LOAD- DIFFERENTIAL GUIDED WAVE METHODS (PREPRINT) Jennifer E. Michaels, Sang Jun Lee...November 2011 Technical Paper 1 November 2011 – 1 November 2011 4. TITLE AND SUBTITLE FATIGUE CRACK DETECTION VIA LOAD-DIFFERENTIAL GUIDED WAVE...document contains color. 14. ABSTRACT Detection of fatigue cracks originating from fastener holes is an important application for structural health

  5. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determinedmore » by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.« less

  6. Resonance of a fluid-driven crack: Radiation properties and implications for the source of long-period events and harmonic tremor

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard

    1988-05-01

    A dynamic source model is presented, in which a three-dimensional crack containing a viscous compressible fluid is excited into resonance by an impulsive pressure transient applied over a small area ΔS of the crack surface. The crack excitation depends critically on two dimensionless parameters called the crack stiffness, C = (b/μ)(L/d), and viscous damping loss, F = (12ηL)/(ρƒd2α), where b is the bulk modulus, η is the viscosity, ρƒ is the density of the fluid, μ is the rigidity, α is the compressional velocity of the solid, L is the crack length, and d is the crack thickness. The first parameter characterizes the ability of the crack to vibrate and shapes the spectral signature of the source, and the second quantifies the effect of fluid viscosity on the duration of resonance. Resonance is sustained by a very slow wave trapped in the fluid-filled crack. This guided wave, called the crack wave, is similar to the tube wave propagating in a fluid-filled borehole; it is inversely dispersive, showing a phase velocity that decreases with increasing wavelength, and its wave speed is always lower than the acoustic velocity of the fluid, decreasing rapidly as the crack stiffness increases. The source spectrum shows many sharp peaks characterizing the individual modes of vibration of the crack; the variation of spectral shape, both in the number and width of peaks, is surprisingly complex, reflecting the interference between the lateral and longitudinal modes of resonance, as well as nodes for these modes. The far-field spectrum is marked by narrow-band dominant and subdominant peaks that reflect the interaction of the various source modes. The frequency of the dominant spectral peak radiated by the source is independent of the radiation direction. The frequency, bandwidth, and spacing of the resonant peaks are strongly dependent on the crack stiffness, larger values of the stiffness factor shifting these peaks to lower frequencies and decreasing their bandwidth. The excitation of a particular mode depends on the position of the trigger and on the extent of the crack surface affected by the pressure transient. Fluid viscosity decreases the amplitudes of the main spectral peaks, smears out the finer structure of the spectrum, and greatly reduces the duration of the radiated signal. The energy loss by radiation is stronger for high frequencies, producing a seismic signature that is marked by a high-frequency content near the onset of the signal and dominated by a longer-period component of much longer duration in the signal coda. Such signature is in harmony with those displayed by long-period events observed on active volcanoes and in hydrofracture experiments. The very low velocity which is possible in a crack with high stiffness (C ≥ 100) also provides an attractive explanation for very long period tremor, such as type 2 tremor at Aso volcano, Japan, without the requirement of an unrealistically large magma container. The standing wave pattern set up on the crack surface by the sustained resonance in the fluid is observable in the near field of the crack, suggesting that the location and extent of the source may be estimated from the mapping of the pattern of nodes and antinodes seen in its vicinity. According to the model, the long-period event and harmonic tremor share the same source but differ in the boundary conditions for fluid flow and in the triggering mechanism setting up the resonance of the source, the former being viewed as the impulse response of the tremor generating system and the latter representing the excitation due to more complex forcing functions.

  7. Nuclear Poincaré cycle synchronizes with the incident de Broglie wave to predict regularity in neutron resonance energies

    NASA Astrophysics Data System (ADS)

    Ohkubo, Makio

    2016-06-01

    In observed neutron resonances, long believed to be a form of quantum chaos, regular family structures are found in the s-wave resonances of many even-even nuclei in the tens keV to MeV region [M.Ohkubo, Phys. Rev. C 87, 014608(2013)]. Resonance reactions take place when the incident de Broglie wave synchronizes with the Poincaré cycle of the compound nucleus, which is composed of several normal modes with periods that are time quantized by inverse Fermi energy. Based on the breathing model of the compound nucleus, neutron resonance energies in family structures are written by simple arithmetic expressions using Sn and small integers. Family structures in observed resonances of 40Ca+n and 37Cl+n are described as simple cases. A model for time quantization is discussed.

  8. Semiclassical wave packet treatment of scattering resonances: application to the delta zero-point energy effect in recombination reactions.

    PubMed

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-09-28

    For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.

  9. Millimeter-wave detection using resonant tunnelling diodes

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; Kidner, C.; East, J. R.; Haddad, G. I.

    1990-01-01

    A lattice-matched InGaAs/InAlAs resonant tunnelling diode is studied as a video detector in the millimeter-wave range. Tangential signal sensitivity and video resistance measurements are made as a function of bias and frequency. A tangential signal sensitivity of -37 dBm (1 MHz amplifier bandwidth) with a corresponding video resistance of 350 ohms at 40 GHz has been measured. These results appear to be the first millimeter-wave tangential signal sensitivity and video resistance results for a resonant tunnelling diode.

  10. Acoustic resonances of fluid-immersed elastic cylinders and spheroids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Niemiec, Jan; Überall, Herbert; Bao, X. L.

    2002-05-01

    Frequency resonances in the scattering of acoustic waves from a target object are caused by the phase matching of surface waves repeatedly encircling the object. This is exemplified here by considering elastic finite cylinders and spheroids, and the phase-matching condition provides a means of calculating the complex resonance frequencies of such objects. Tank experiments carried out at Catholic University, or at the University of Le Havre, France by G. Maze and J. Ripoche, have been interpreted using this approach. The experiments employed sound pulses to measure arrival times, which allowed identification of the surface paths taken by the surface waves, thus giving rise to resonances in the scattering amplitude. A calculation of the resonance frequencies using the T-matrix approach showed satisfactory agreement with the experimental resonance frequencies that were either measured directly (as at Le Havre), or that were obtained by the interpretation of measured arrival times (at Catholic University) using calculated surface wave paths, and the extraction of resonance frequencies therefrom, on the basis of the phase-matching condition. Results for hemispherically endcapped, evacuated steel cylinders obtained in a lake experiment carried out by the NSWC were interpreted in the same fashion.

  11. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    PubMed

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Tapered Glass-Fiber Microspike: High-Q Flexural Wave Resonator and Optically Driven Knudsen Pump.

    PubMed

    Pennetta, Riccardo; Xie, Shangran; Russell, Philip St J

    2016-12-30

    Appropriately designed optomechanical devices are ideal for making ultra-sensitive measurements. Here we report a fused-silica microspike that supports a flexural resonance with a quality factor greater than 100 000 at room temperature in vacuum. Fashioned by tapering single-mode fiber (SMF), it is designed so that the core-guided optical mode in the SMF evolves adiabatically into the fundamental mode of the air-glass waveguide at the tip. The very narrow mechanical linewidth (20 mHz) makes it possible to measure extremely small changes in resonant frequency. In a vacuum chamber at low pressure, the weak optical absorption of the glass is sufficient to create a temperature gradient along the microspike, which causes it to act as a microscopic Knudsen pump, driving a flow of gas molecules towards the tip where the temperature is highest. The result is a circulating molecular flow within the chamber. Momentum exchange between the vibrating microspike and the flowing molecules causes an additional restoring force that can be measured as a tiny shift in the resonant frequency. The effect is strongest when the mean free path of the gas molecules is comparable with the dimensions of the vacuum chamber. The system offers a novel means of monitoring the behavior of weakly absorbing optomechanical sensors operating in vacuum.

  13. High-frequency guided ultrasonic waves to monitor corrosion thickness loss

    NASA Astrophysics Data System (ADS)

    Fromme, Paul; Bernhard, Fabian; Masserey, Bernard

    2017-02-01

    Corrosion due to adverse environmental conditions can occur for a range of industrial structures, e.g., ships and offshore oil platforms. Pitting corrosion and generalized corrosion can lead to the reduction of the strength and thus degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided ultrasonic waves propagating along the structure. Using standard ultrasonic transducers with single sided access to the structure, the two fundamental Lamb wave modes were selectively generated simultaneously, penetrating through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depends on the thickness of the structure. Numerical simulations were performed using a 2D Finite Difference Method (FDM) algorithm in order to visualize the guided wave propagation and energy transfer across the plate thickness. Laboratory experiments were conducted and the wall thickness reduced initially uniformly by milling of the steel structure. Further measurements were conducted using accelerated corrosion in salt water. From the measured signal change due to the wave mode interference, the wall thickness reduction was monitored and good agreement with theoretical predictions was achieved. Corrosion can lead to non-uniform thickness reduction and the influence of this on the propagation of the high frequency guided ultrasonic waves was investigated. The wave propagation in a steel specimen with varying thickness was measured experimentally and the influence on the wave propagation characteristics quantified.

  14. Nonlinear equations of motion for Landau resonance interactions with a whistler mode wave

    NASA Technical Reports Server (NTRS)

    Inan, U. S.; Tkalcevic, S.

    1982-01-01

    A simple set of equations is presented for the description of the cyclotron averaged motion of Landau resonant particles in a whistler mode wave propagating at an angle to the static magnetic field. A comparison is conducted of the wave magnetic field and electric field effects for the parameters of the magnetosphere, and the parameter ranges for which the wave magnetic field effects would be negligible are determined. It is shown that the effect of the wave magnetic field can be neglected for low pitch angles, high normal wave angles, and/or high normalized wave frequencies.

  15. The guided-mode resonance biosensor: principles, technology, and implementation

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Lee, Kyu J.; Hemmati, Hafez; Ko, Yeong Hwan; Wenner, Brett R.; Allen, Jeffery W.; Allen, Monica S.; Gimlin, Susanne; Weidanz, Debra Wawro

    2018-02-01

    The guided-mode resonance (GMR) sensor operates with quasi-guided modes induced in periodic films. The resonance is enabled by 1D or 2D nanopatterns that are expeditiously fabricated. Optical sensors are needed in many fields including medical diagnostics, chemical analyses, and environmental monitoring. Inducing resonance in multiple modes enables extraction of complete bioreaction information including the biolayer thickness, biolayer refractive index, and any change in the refractive index in the background buffer solution. Thus, we refer to this version of the GMR sensor as the complete biosensor. We address the fundamentals, state of technological development, and implementation of this basic sensor modality.

  16. Nonlinear mechanisms of two-dimensional wave-wave transformations in the initially coupled acoustic structure

    NASA Astrophysics Data System (ADS)

    Vorotnikov, K.; Starosvetsky, Y.

    2018-01-01

    The present study concerns two-dimensional nonlinear mechanisms of bidirectional and unidirectional channeling of longitudinal and shear waves emerging in the locally resonant acoustic structure. The system under consideration comprises an oscillatory chain of the axially coupled masses. Each mass of the chain is subject to the local linear potential along the lateral direction and incorporates the lightweight internal rotator. In the present work, we demonstrate the emergence of special resonant regimes of complete bi- and unidirectional transitions between the longitudinal and the shear waves of the locally resonant chain. These regimes are manifested by the two-dimensional energy channeling between the longitudinal and the shear traveling waves in the recurrent as well as the irreversible fashion. We show that the spatial control of the two dimensional energy flow between the longitudinal and the shear waves is solely governed by the motion of the internal rotators. Nonlinear analysis of the regimes of a bidirectional wave channeling unveils their global bifurcation structure and predicts the zones of their spontaneous transitions from a complete bi-directional wave channeling to the one-directional entrapment. An additional regime of a complete irreversible resonant transformation of the longitudinal wave into a shear wave is analyzed in the study. The intrinsic mechanism governing the unidirectional wave reorientation is described analytically. The results of the analysis of both mechanisms are substantiated by the numerical simulations of the full model and are found to be in a good agreement.

  17. Propagation analysis of the helicity-drive Alfven wave in the HIST spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Hyobu, T.; Hanao, T.; Hirono, H.; Ito, K.; Matsumoto, K.; Nakayama, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    Coaxial Helicity Injection is an efficient current-drive method used in spherical torus experiments. It is a key issue to investigate the dynamo mechanism required to maintain the plasmas. The behavior of a low frequency Alfven wave being possibly related to the dynamo current drive has been studied on HIST. The observed magnetic fluctuation with about 80 kHz propagates along the open flux column (OFC) region, spreading toward the core region. The parallel phase velocity is estimated at 321 km/s from the propagation velocity measured axially along the OFC. The parallel phase velocity agrees well to the Alfven velocity. The radial perpendicular propagation of the Alfven wave can be calculated by a theory based on cold or warm plasma approximation with the Hall term. The theoretical calculation indicates that there are two resonance points and is a cut-off point. These resonance and cut-off points agree well with the magnetic measurement. A part of fluctuation propagates slowly beyond the first resonance point. The wave polarization is left-handed near the resonance point and then converts to be nearly liner outside the resonance point. From these results, we speculate that the torsional Alfven wave evolves to the kinetic Alfven wave during the radial propagation.

  18. Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F

    2014-01-01

    Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed. Published by Elsevier B.V.

  19. Waves and instabilities in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  20. Large wave at Daytona Beach, Florida, explained as a squall-line surge

    USGS Publications Warehouse

    Sallenger, A.H.; List, J.H.; Gelfenbaum, G.; Stumpf, R.P.; Hansen, M.

    1995-01-01

    On a clear calm evening during July 1992, an anomalously large wave, reportedly 6 m high struck the Daytona Beach, Florida area. It is hypothesized that a squall line and associated pressure jump, travelling at the speed of a free gravity wave, coupled resonantly with the sea surface forming the large wave or "squall-line surge'. The wave was forced along the length of the squall line, with the greatest amplitude occurring at the water depth satisfying the resonant condition. -from Authors

  1. Alfven resonance mode conversion in the Phaedrus-T current drive experiments: Modelling and density fluctuations measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukovic, M.; Harper, M.; Breun, R.

    1995-12-31

    Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode convertedmore » kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.« less

  2. Sound attenuations of axial fan blade tones using flow-driven tunable resonator arrays

    NASA Astrophysics Data System (ADS)

    Gorny, Lee James

    Flow-excited, tunable quarter-wavelength resonators can be integrated into the shrouds of ducted subsonic axial fans. This study explores their effectiveness in reducing propagations of tonal noise by means of acoustic wave cancellation. Resonators are a non-intrusive method of generating a secondary sound field near the plane of a rotor. As they can be strategically tuned to reduce radiated noise at the blade passage frequency (BPF) and its harmonics, resonators can be useful for a variety of applications to quiet existing and future turbomachinery. Experiments have demonstrated that a single quarter wave resonator is effective in reducing unidirectional plane wave propagations for long wavelength ducted applications while an array is effective for shorter wavelength or un-ducted facilities where shrouded fans are used. Testing conducted at Center for Acoustics and Vibrations (CAV) at the Pennsylvania State University the Deutsches Zentrum fur Luft und Raumfahrt (DLR) in Berlin, Germany demonstrated that resonator arrays were effective in attenuating shorter wavelength plane-wave and higher order modal propagations of blade tone noise. A chiller fan enclosure, constructed in the CAV laboratory emulated an industrial chiller in its operation. Using this facility, resonators were observed to attenuate blade tone noise from a non-ideal ducted geometry. The approaches used in this study evolved from Helmholtz resonators to conventional quarter wave tubes, to mouth tunable resonators, and finally to back-wall tunable resonators. These developments in tuning allowed for independent control of a resonator's magnitude and phase of the secondary sound field produced by the resonators. It was demonstrated that the use of two tunable resonator chambers oriented axially on either side of the blade region enables a dipole-like secondary sound field to be passively generated and bi-directional attenuations of plane wave noise to be achieved. Tonal attenuations of 28 dB were attained and BPF tones were reduced to less than 5 dB from the broadband noise floor for each case discussed above. In parallel with experimental work, analytical models were developed to effectively model and predict optimal resonator configurations for a given fan in operation. Interactions between resonators and the driving pressure field from the rotor blades are modeled using transmission line (TL) theory. Blade tone acoustic pressure is obtained using a finite element method (FEM) propagation code. By combining of these two methods, a resonator configuration that achieves optimal attenuation can be numerically obtained. The use of resonators has been shown to significantly attenuate fan noise in the conditions explored in the considered experiments. Numerical modeling has shown consistency in the response of flow driven resonators and their. These results indicate a strong potential for active control of fan noise using resonators and an approach to applying this control is presented.

  3. Study of guided wave transmission through complex junction in sodium cooled reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elie, Q.; Le Bourdais, F.; Jezzine, K.

    2015-07-01

    Ultrasonic guided wave techniques are seen as suitable candidates for the inspection of welded structures within sodium cooled fast reactors (SFR), as the long range propagation of guided waves without amplitude attenuation can overcome the accessibility problem due to the liquid sodium. In the context of the development of the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID), the French Atomic Commission (CEA) investigates non-destructive testing techniques based on guided wave propagation. In this work, guided wave NDT methods are applied to control the integrity of welds located in a junction-type structure welded to the main vessel. The method presentedmore » in this paper is based on the analysis of scattering matrices peculiar to each expected defect, and takes advantage of the multi-modal and dispersive characteristics of guided wave generation. In a simulation study, an algorithm developed using the CIVA software is presented. It permits selecting appropriate incident modes to optimize detection and identification of expected flawed configurations. In the second part of this paper, experimental results corresponding to a first validation step of the simulation results are presented. The goal of the experiments is to estimate the effectiveness of the incident mode selection in plates. The results show good agreement between experience and simulation. (authors)« less

  4. On bifurcation in dynamics of hemispherical resonator gyroscope

    NASA Astrophysics Data System (ADS)

    Volkov, D. Yu.; Galunova, K. V.

    2018-05-01

    A mathematical model of wave solid-state gyro (HRG) are constructed. Wave pattern of resonant oscillations was studied applying normal form method. We calculate the Birkhoff-Gustavson normal form of unterturbed system.

  5. Apparatus and method for generating mechanical waves

    DOEpatents

    Allensworth, Dwight L.; Chen, Peter J.

    1985-01-01

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  6. Apparatus and method for generating mechanical waves

    DOEpatents

    Allensworth, D.L.; Chen, P.J.

    1982-10-25

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  7. Observation of Schumann Resonances in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Freudenreich, Henry

    2011-01-01

    The surface of the Earth and the lower edge of the ionosphere define a cavity in which electromagnetic waves propagate. When the cavity is excited by broadband electromagnetic sources, e.g., lightning, a resonant state can develop provided the average equatorial circumference is approximately equal to an integral number of wavelengths of the electromagnetic waves. This phenomenon, known as Schumann resonance, corresponds to electromagnetic oscillations of the surface-ionosphere cavity, and has been used extensively to investigate atmospheric electricity. Using measurements from the Communications/Navigation Outage Forecasting System (C/NOFS) satellite, we report, for the first time, Schumann resonance signatures detected well beyond the upper boundary of the cavity. These results offer new means for investigating atmospheric electricity, tropospheric-ionospheric coupling mechanisms related to lightning activity, and wave propagation in the ionosphere. The detection of Schumann resonances in the ionosphere calls for revisions to the existing models of extremely low frequency wave propagation in the surface-ionosphere cavity. Additionally, these measurements suggest new remote sensing capabilities for investigating atmospheric electricity at other planets.

  8. Influence of Guided Waves in Tibia on Non-linear Scattering of Contrast Agents.

    PubMed

    Wang, Diya; Zhong, Hui; Zhai, Yu; Hu, Hong; Jin, Bowen; Wan, Mingxi

    2016-02-01

    The aim of this study was to elucidate the linear and non-linear responses of ultrasound contrast agent (UCA) to frequency-dispersive guided waves from the tibia cortex, particularly two individual modes, S0 (1.23 MHz) and A1 (2.06 MHz). The UCA responses to guided waves were illustrated through the Marmottant model derived from measured guided waves, and then verified by continuous infusion experiments in a vessel-tibia flow phantom. These UCA responses were further evaluated by the enhanced ratio of peak values and the resolutions of UCA backscattered echoes. Because of the individual modes S0 and A1 in the tibia, the peak values of the UCA backscattered echoes were enhanced by 83.57 ± 7.35% (p < 0.05) and 80.77 ± 6.60% (p < 0.01) in the UCA subharmonic frequency and subharmonic imaging, respectively. However, corresponding resolutions were 0.78 ± 0.07 (p < 0.05) and 0.72 ± 0.12 (p < 0.01) times those without guided wave disturbances, respectively. Even though the resolution was partly degenerated, the subharmonic detection sensitivity of UCA was improved by the guided waves. Thus, UCA responses to the double-frequency guided waves should be further explored to benefit the detection of capillary perfusion in tissue layers near the bone cortex, particularly for perfusion imaging in the free flaps and skeletal muscles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. A Millimeter Wave BPF using WG Mode High Permittivity Dielectric Resonators

    NASA Astrophysics Data System (ADS)

    Sato, Yosuke; Kogami, Yoshinori; Tomabechi, Yoshiro; Matsumura, Kazuhito

    In this paper, a design technique of whispering gallery mode high Q value dielectric disk resonators for a millimeter-wave bandpass filter is described. To minimize the resonator size, some high permittivity materials are used. In this resonator design, unloaded Q value of an interested mode and the higher order modes are calculated and then optimum resonator size for the WG mode dielectric filter is determined. For a designed resonator, the higher order modes are hardly excited while the Q value of the fundamental mode can be maximized. Finally, some 3stage BPFs are constructed at 60GHz by using these designed resonators.

  10. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  11. Effect of neck geometry of resonance cells on noise reduction efficiency in sound-absorbing structures

    NASA Astrophysics Data System (ADS)

    Pisarev, P. V.; Anoshkin, A. N.; Pan'kov, A. A.

    2016-10-01

    The present work formulates the physical and mathematical models capable to forecast acoustic properties of resonance cells in sound absorbing structures. Distribution of acoustic pressure inside the duct and on sidewall cell was found, loss factor of output acoustic pressure wave was calculated for variety of geometric forms of cell's chamber and neck for monochromatic wave in 100-600Hz frequency range. Analysis of the acoustic pressure fields revealed that cell neck geometry strongly influences on cell resonant frequency and on outlet acoustic pressure loss factor. The effectiveness of the proposed by the authors biconical design of the resonant cell was proved, which increased acoustic radiation at the resonance frequency resulting significant increase of loss ratio of wave acoustic pressure at duct outlet.

  12. 200 MW S-band traveling wave resonant ring development at IHEP

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-Sheng; Chi, Yun-Long; Git, Meng-Ping; Pei, Guo-Xi

    2010-03-01

    The resonant-ring is a traveling wave circuit, which is used to produce high peak power with comparatively smaller stored energy. The application to be considered is its use as a high power simulator mainly for testing the klystron ceramic output window, as well as for high power microwave transmission devices. This paper describes the principle of a resonant ring and introduces the structure and property of the newly constructed traveling wave resonant ring at IHEP. Our goal is to produce a 200 MW class resonant ring at 2.856 GHz with a pulse length of 2 μs and repetition rate of 25 Hz. The installation, commissioning and testing of the ring have been completed and a peak power of 200 MW at 3 μs has been achieved. The conditioning results show that all the parameters of the resonant ring reach the design goals.

  13. Surface waves in an incompressible fluid - Resonant instability due to velocity shear

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.; Yang, G.; Cadez, V. M.; Gakovic, B.

    1990-01-01

    The effects of velocity shear on the resonance absorption of incompressible MHD surface waves are studied. It is found that there are generally values of the velocity shear for which the surface wave decay rate becomes zero. In some cases, the resonance absorption goes to zero even for very small velocity shears. It is also found that the resonance absorption can be strongly enhanced at other values of the velocity shear, so the presence of flows may be generally important for determining the effects of resonance absorption, such as might occur in the interaction of p-modes with sunspots. Resonances leading to instability of the global surface mode can exist, and instability can occur for velocity shears significantly below the Kelvin-Helmholtz threshold. These instabilities may play a role in the development or turbulence in regions of strong velocity shear in the solar wind or the earth's magnetosphere.

  14. Excess spontaneous emission in non-Hermitian optical systems. I. Laser amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegman, A.E.

    1989-02-01

    Petermann first predicted in 1979 the existence of an excess-spontaneous-emission factor in gain-guided semiconductor lasers. We show that an excess spontaneous emission of this type, and also a correlation between the spontaneous emission into different cavity modes, will in fact be present in all open-sided laser resonators or optical lens guides. These properties arise from the non-self-adjoint or non-power-orthogonal nature of the optical resonator modes. The spontaneous-emission rate is only slightly enhanced in stable-resonator or index-guided structures, but can become very much larger than normal in gain-guided or geometrically unstable structures. Optical resonators or lens guides that have an excessmore » noise emission necessarily also exhibit an ''excess initial-mode excitation factor'' for externally injected signals. As a result, the excess spontaneous emission can be balanced out and the usual quantum-noise limit recovered in laser amplifiers and in injection-seeded laser oscillators, but not in free-running laser oscillators.« less

  15. A complex guided spectral transform Lanczos method for studying quantum resonance states

    DOE PAGES

    Yu, Hua-Gen

    2014-12-28

    A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the originalmore » Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO₂, and compared to previous calculations.« less

  16. Note: surface acoustic wave resonators for detecting of small changes of temperature: a thermometric "magnifying glass".

    PubMed

    Kryshtal, R G; Medved, A V

    2014-02-01

    Application of surface acoustic wave resonators with a phase format of an output signal as the thermometric "magnifying glass" is suggested. Possibilities of monitoring and measuring of small changes of temperature from 0.001 K to 0.3 K of objects having thermal contact with the resonator's substrate are shown experimentally.

  17. Electromagnetically-induced-absorption resonance with high contrast and narrow width in the Hanle configuration

    NASA Astrophysics Data System (ADS)

    Brazhnikov, D. V.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2014-12-01

    The method for observing the high-contrast and narrow-width resonances of electromagnetically induced absorption (EIA) in the Hanle configuration under counter-propagating pump and probe light waves is proposed. Here, as an example, we study a ‘dark’ type of atomic dipole transition {{F}\\text{g}}={1}\\to {{F}\\text{e}}={1} in D1 line of 87Rb, where usually the electromagnetically induced transparency can be observed. To obtain the EIA signal one should properly choose the polarizations of light waves and intensities. In contrast to regular schemes for observing EIA signals (under a single traveling light wave in the Hanle configuration or under a bichromatic light field consisting of two traveling waves), the proposed scheme allows one to use buffer gas for significantly improving the properties of the resonance. Also the dramatic influence of atomic transition openness on the contrast of the resonance is revealed, which is advantageous in comparison with cyclic atomic transitions. The nonlinear resonances in a probe-wave transmitted signal with contrast close to 100% and sub-kHz widths can be obtained. The results are interesting in high-resolution spectroscopy, nonlinear and magneto-optics.

  18. Optimal design of a piezoelectric transducer for exciting guided wave ultrasound in rails

    NASA Astrophysics Data System (ADS)

    Ramatlo, Dineo A.; Wilke, Daniel N.; Loveday, Philip W.

    2017-02-01

    An existing Ultrasonic Broken Rail Detection System installed in South Africa on a heavy duty railway line is currently being upgraded to include defect detection and location. To accomplish this, an ultrasonic piezoelectric transducer to strongly excite a guided wave mode with energy concentrated in the web (web mode) of a rail is required. A previous study demonstrated that the recently developed SAFE-3D (Semi-Analytical Finite Element - 3 Dimensional) method can effectively predict the guided waves excited by a resonant piezoelectric transducer. In this study, the SAFE-3D model is used in the design optimization of a rail web transducer. A bound-constrained optimization problem was formulated to maximize the energy transmitted by the transducer in the web mode when driven by a pre-defined excitation signal. Dimensions of the transducer components were selected as the three design variables. A Latin hypercube sampled design of experiments that required a total of 500 SAFE-3D analyses in the design space was employed in a response surface-based optimization approach. The Nelder-Mead optimization algorithm was then used to find an optimal transducer design on the constructed response surface. The radial basis function response surface was first verified by comparing a number of predicted responses against the computed SAFE-3D responses. The performance of the optimal transducer predicted by the optimization algorithm on the response surface was also verified to be sufficiently accurate using SAFE-3D. The computational advantages of SAFE-3D in optimal transducer design are noteworthy as more than 500 analyses were performed. The optimal design was then manufactured and experimental measurements were used to validate the predicted performance. The adopted design method has demonstrated the capability to automate the design of transducers for a particular rail cross-section and frequency range.

  19. Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe

    2014-09-01

    The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave-short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics.

  20. Numerical Investigations of High Pressure Acoustic Waves in Resonators

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Pindera, Maciej; Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    This presentation presents work on numerical investigations of nonlinear acoustic phenomena in resonators that can generate high-pressure waves using acoustic forcing of the flow. Time-accurate simulations of the flow in a closed cone resonator were performed at different oscillation frequencies and amplitudes, and the numerical results for the resonance frequency and fluid pressure increase match the GRC experimental data well. Work on cone resonator assembly simulations has started and will involve calculations of the flow through the resonator assembly with and without acoustic excitation. A new technique for direct calculation of resonance frequency of complex shaped resonators is also being investigated. Script-driven command procedures will also be developed for optimization of the resonator shape for maximum pressure increase.

  1. Acoustic plane waves normally incident on a clamped panel in a rectangular duct. [to explain noise reduction curves for reducing interior noise in aircraft

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1979-01-01

    The theory of acoustic plane wave normally incident on a clamped panel in a rectangular duct is developed. The coupling theory between the elastic vibrations of the panel (plate) and the acoustic wave propagation in infinite space and in the rectangular duct is considered. The partial differential equation which governs the vibration of the panel (plate) is modified by adding to its stiffness (spring) forces and damping forces, and the fundamental resonance frequency and the attenuation factor are discussed. The noise reduction expression based on the theory is found to agree well with the corresponding experimental data of a sample aluminum panel in the mass controlled region, the damping controlled region, and the stiffness controlled region. All the frequency positions of the upward and downward resonance spikes in the sample experimental data are identified theoretically as resulting from four cross interacting major resonance phenomena: the cavity resonance, the acoustic resonance, the plate resonance, and the wooden back panel resonance.

  2. Avoided-Level-Crossing Spectroscopy with Dressed Matter Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckardt, Andre; Holthaus, Martin

    2008-12-12

    We devise a method for probing resonances of macroscopic matter waves in shaken optical lattices by monitoring their response to slow parameter changes, and show that such resonances can be disabled by particular choices of the driving amplitude. The theoretical analysis of this scheme reveals far-reaching analogies between dressed atoms and time periodically forced matter waves.

  3. Avoided-Level-Crossing Spectroscopy with Dressed Matter Waves

    NASA Astrophysics Data System (ADS)

    Eckardt, André; Holthaus, Martin

    2008-12-01

    We devise a method for probing resonances of macroscopic matter waves in shaken optical lattices by monitoring their response to slow parameter changes, and show that such resonances can be disabled by particular choices of the driving amplitude. The theoretical analysis of this scheme reveals far-reaching analogies between dressed atoms and time periodically forced matter waves.

  4. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    NASA Astrophysics Data System (ADS)

    Chang, S. S.; Ni, B. B.; Bortnik, J.; Zhou, C.; Zhao, Z. Y.; Li, J. X.; Gu, X. D.

    2014-05-01

    Modulated high-frequency (HF) heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF)/very low-frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of < 10-7 s-1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10-4 s-1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  5. Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics

    DTIC Science & Technology

    2016-08-01

    APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...mechanism on which to base on-chip nonlinear optical devices compatible with a rapidly growing silicon photonics toolbox.3–9 While silicon on insulator

  6. Load-Differential Features for Automated Detection of Fatigue Cracks Using Guided Waves (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4363 LOAD-DIFFERENTIAL FEATURES FOR AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) Jennifer E...AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...tensile loads open fatigue cracks and thus enhance their detectability using ultrasonic methods. Here we introduce a class of load-differential methods

  7. Load Measurement in Structural Members Using Guided Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Wilcox, Paul D.

    2006-03-01

    A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.

  8. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.

    PubMed

    Rajabi, M; Hasheminejad, Seyyed M

    2009-12-01

    The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.

  9. High quality factor surface Fabry-Perot cavity of acoustic waves

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Fu, Wei; Zou, Chang-ling; Shen, Zhen; Tang, Hong X.

    2018-02-01

    Surface acoustic wave (SAW) resonators are critical components in wireless communications and many sensing applications. They have also recently emerged as a subject of study in quantum acoustics at the single phonon level. Acoustic loss reduction and mode confinement are key performance factors in SAW resonators. Here, we report the design and experimental realization of high quality factor Fabry-Perot SAW resonators formed in between the tapered phononic crystal mirrors patterned on a GaN-on-sapphire material platform. The fabricated SAW resonators are characterized by both an electrical network analyzer and an optical heterodyne vibrometer. We observed standing Rayleigh waves inside the cavity, with an intrinsic quality factor exceeding 1.3 × 104 at ambient conditions.

  10. Field resonance propulsion concept

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1979-01-01

    A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.

  11. Guided wave phased array sensor tuning for improved defect detection and characterization

    NASA Astrophysics Data System (ADS)

    Philtron, Jason H.; Rose, Joseph L.

    2014-03-01

    Ultrasonic guided waves are finding increased use in a variety of Nondestructive Evaluation and Structural Health Monitoring applications due to their efficiency in defect detection using a sensor at a single location to inspect a large area of a structure and an ability to inspect hidden and coated areas for example. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. For example, in a sample problem presented here to access bond integrity, researchers may choose to use a guided wave mode which has high in-plane displacement, stress, or other feature at the interface. However, since material properties used for modeling work may not be precise for the development of dispersion curves, in many cases guided wave mode and frequency selection should be adjusted for increased inspection efficiency in the field. In this work, a phased array comb transducer is used to sweep over phase velocity - frequency space to tune mode excitation for improved defect characterization performance. A thin polycarbonate layer bonded to a thick metal plate is considered with a contaminated surface prior to bonding. Physicallybased features are used to correlate wave signals with defect detection. Features assessed include arrival time and the frequency of maximum amplitude. A pseudo C-scan plot is presented which can be used to simplify data analysis. Excellent results are obtained.

  12. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  13. Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, A. M.; Boria, V. E.; Gimeno, B.

    2014-08-15

    Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE{sub 11} circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also beenmore » explored.« less

  14. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE PAGES

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng; ...

    2017-04-17

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  15. Time-localized frequency analysis of ultrasonic guided waves for nondestructive testing

    NASA Astrophysics Data System (ADS)

    Shin, Hyeon Jae; Song, Sung-Jin

    2000-05-01

    A time-localized frequency (TLF) analysis is employed for the guided wave mode identification and improved guided wave applications. For the analysis of time-localized frequency contents of digitized ultrasonic signals, TLF analysis consists of splitting the time domain signal into overlapping segments, weighting each with the hanning window, and forming the columns of discrete Fourier transforms. The result is presented by a frequency versus time domain diagram showing frequency variation along the signal arrival time. For the demonstration of the utility of TLF analysis, an experimental group velocity dispersion pattern obtained by TLF analysis is compared with the dispersion diagram obtained by theory of elasticity. Sample piping is carbon steel piping that is used for the transportation of natural gas underground. Guided wave propagation characteristic on the piping is considered with TLF analysis and wave structure concepts. TLF analysis is used for the detection of simulated corrosion defects and the assessment of weld joint using ultrasonic guided waves. TLF analysis has revealed that the difficulty of mode identification in multi-mode propagation could be overcome. Group velocity dispersion pattern obtained by TLF analysis agrees well with theoretical results.

  16. Mode perturbation method for optimal guided wave mode and frequency selection.

    PubMed

    Philtron, J H; Rose, J L

    2014-09-01

    With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This "optimal" mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this paper, a novel mode and frequency perturbation method is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity and frequency space. It is demonstrated using guided interface waves for bond evaluation. After searching nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Acoustic Streaming and Microparticle Enrichment within a Microliter Droplet Using a Lamb-Wave Resonator Array

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxiang; Tang, Zifan; Wang, Zhan; Pan, Shuting; Han, Ziyu; Sun, Chongling; Zhang, Menglun; Duan, Xuexin; Pang, Wei

    2018-06-01

    We report the nonlinear acoustic streaming effect and the fast manipulation of microparticles by microelectromechanical Lamb-wave resonators in a microliter droplet. The device, consisting of four Lamb-wave resonators on a silicon die, generates cylindrical traveling waves in a liquid and efficiently drives nine horizontal vortices within a 1 -μ l droplet; the performance of the device coincides with the numerical model prediction. Experimentally, the particles are enriched at the stagnation center of the main vortex on the free surface of the droplet in open space without microfluidic channels. In addition, the trajectories of the particles in the droplet can be controlled by the excitation power.

  18. Resonant tunneling of spin-wave packets via quantized states in potential wells.

    PubMed

    Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O

    2007-09-21

    We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.

  19. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs

    PubMed Central

    Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-01-01

    Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture—a gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10−8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas. PMID:27834366

  20. Resonant generation of internal waves on the soft sea bed by a surface water wave

    NASA Astrophysics Data System (ADS)

    Wen, Feng

    1995-08-01

    The nonlinear response of an initially flat sea bed to a monochromatic surface progressive wave was studied using the multiple scale perturbation method. Two opposite-traveling subliminal internal ``mud'' waves are selectively excited and form a resonant triad with the surface wave. The amplitudes of the internal waves grow on a time scale much longer than the period of the surface wave. It was found that the sea bed response is critically dependent on the density ratio of water and soil, depth of water, and depth and viscosity of the saturated soil. The result of instability analysis is in qualitative agreement with the result of a wave flume experiment.

  1. Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography

    NASA Astrophysics Data System (ADS)

    Rao, Jing; Ratassepp, Madis; Fan, Zheng

    2017-12-01

    Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.

  2. Projectile channeling in chain bundle dusty plasma liquids: Wave excitation and projectile-wave interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2011-03-15

    The microscopic channeling dynamics of projectiles in subexcitable chain bundle dusty plasma liquids consisting of long chains of negatively charged dusts suspended in low pressure glow discharges is investigated experimentally using fast video-microscopy. The long distance channeling of the projectile in the channel formed by the surrounding dust chain bundles and the excitation of a narrow wake associated with the elliptical motions of the background dusts are demonstrated. In the high projectile speed regime, the drag force due to wake wave excitation increases with the decreasing projectile speed. The excited wave then leads the slowed down projectile after the projectilemore » speed is decreased below the resonant speed of wave excitation. The wave-projectile interaction causes the increasing projectile drag below the resonant speed and the subsequent oscillation around a descending average level, until the projectile settles down to the equilibrium point. Long distance projectile surfing through the resonant crest trapping by the externally excited large amplitude solitary wave is also demonstrated.« less

  3. Birth and initial developments of experiments with resonant detectors searching for gravitational waves

    NASA Astrophysics Data System (ADS)

    Pizzella, G.

    2016-12-01

    A history of the experiments for the search of gravitational waves, with emphasis on the experiments made by the Rome group, is given. The search for gravitational waves was initiated by the brilliant scientific acumen of Joseph Weber. In this paper we start from the early times of the resonant detectors at room temperature and continue with the cryogenic resonant detectors: STANFORD, ALLEGRO, AURIGA, EXPLORER, NAUTILUS and NIOBE. These cryogenic detectors reached a sensitivity able to observe gravitational waves generated by the conversion of about 0.001 solar masses in the Galaxy. This was an improvement by a factor of a few thousand in energy with respect to the early room temperature experiments. No clear signals due to gravitational waves have been observed with this technique. This research, that has lasted four decades, has paved the way to the more sensitive detectors for gravitational waves, the long-arm laser interferometers, which announced, on February 12th 2016, the first observation of gravitational waves.

  4. On selection of primary modes for generation of strong internally resonant second harmonics in plate

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chillara, Vamshi Krishna; Lissenden, Cliff J.

    2013-09-01

    The selection of primary shear-horizontal (SH) and Rayleigh-Lamb (RL) ultrasonic wave modes that generate cumulative second harmonics in homogeneous isotropic plates is analyzed by theoretical modeling. Selection criteria include: internal resonance (synchronism and nonzero power flux), group velocity matching, and excitability/receivability. The power flux, group velocity matching, and excitability are tabulated for the SH and RL internal resonance points. The analysis indicates that SH waves can generate cumulative symmetric RL secondary wave fields. Laboratory experiments on aluminum plates demonstrate that excitation of the SH3 primary mode generates the s4 secondary RL mode and that the secondary wave field amplitude increases linearly with propagation distance. Simple magnetostrictive transducers were used to excite the primary SH wave and to receive the SH and RL wave signals. Reception of these wave modes having orthogonal polarizations was achieved by simply reorienting the electrical coil. The experiment was complicated by the presence of a nonplanar primary wavefront, however finite element simulations were able to clarify the experimental results.

  5. Metasurface with interfering Fano resonance: manipulating transmission wave with high efficiency.

    PubMed

    Su, Zhaoxian; Song, Kun; Yin, Jianbo; Zhao, Xiaopeng

    2017-06-15

    We proposed a novel strategy to design a deep subwavelength metasurface with full 2π transmission phase modulation and high transmission efficiency by applying resonators with interfering Fano resonance. Theoretical investigation demonstrates that the transmission efficiency of the resonators depends on the direct transmission coefficient, direct reflection coefficient, and Q factor. When an impedance layer is added in the resonators, the direct transmission and direct reflection coefficients can be facilely manipulated so that the span of the transmission phase around the resonance frequency can be extended to 2π. As a result, we can continuously adjust the transmission phase from 0 to 2π through changing the geometric parameters of the resonators and construct a deep subwavelength metasurface with the resonators to manipulate the transmission wave with high efficiency. We also find that a layer of grating can be used as the impedance layer to change direct transmission and direct reflection in the actual design of the metasurface. The proposed strategy may provide effective guidance to design a deep subwavelength metasurface for controlling a transmitted wave with high efficiency.

  6. Slab anisotropy from subduction zone guided waves in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Tseng, Y. L.; Hu, J. C.

    2014-12-01

    Frozen-in anisotropic structure in the oceanic lithosphere and faulting/hydration in the upper layer of the slab are expected to play an important role in anisotropic signature of the subducted slab. Over the past several decades, despite the advances in characterizing anisotropy using shear wave splitting method and its developments, the character of slab anisotropy remains poorly understood. In this study we investigate the slab anisotropy using subduction zone guided waves characterized by long path length in the slab. In the southernmost Ryukyu subduction zone, seismic waves from events deeper than 100 km offshore northern Taiwan reveal wave guide behavior: (1) a low-frequency (< 1 Hz) first arrival recognized on vertical and radial components but not transverse component (2) large, sustained high-frequency (3-10 Hz) signal in P and S wave trains. The depth dependent high-frequency content (3-10Hz) confirms the association with a waveguide effect in the subducting slab rather than localized site amplification effects. Using the selected subduction zone guided wave events, we further analyzed the shear wave splitting for intermediate-depth earthquakes in different frequency bands, to provide the statistically meaningful shear wave splitting parameters. We determine shear wave splitting parameters from the 34 PSP guided events that are deeper than 100 km with ray path traveling along the subducted slab. From shear wave splitting analysis, the slab and crust effects reveal consistent polarization pattern of fast directions of EN-WS and delay time of 0.13 - 0.27 sec. This implies that slab anisotropy is stronger than the crust effect (<0.1 s) but weaker than the mantle wedge and sub-slab mantle effect (0.3-1.3 s) in Taiwan.

  7. Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Liu, Peng; Hou, Zewei; Pei, Yongmao

    2017-04-01

    Wavelength division multiplexing technology, adopted to increase the information density, plays a significant role in optical communication. However, in acoustics, a similar function can be hardly implemented due to the weak dispersion in natural acoustic materials. Here, an acoustic demultiplexer, based on the concept of metasurfaces, is proposed for splitting acoustic waves and propagating along different trajectories in a low frequency range. An acoustic metasurface, containing multiple resonant units, is designed with various phase profiles for different frequencies. Originating from the highly dispersive properties, the resonant units are independent and merely work in the vicinity of their resonant frequencies. Therefore, by combing multiple resonant units appropriately, the phenomena of anomalous reflection, acoustic focusing, and acoustic wave bending can occur in different frequencies. The proposed acoustic demultiplexer has advantages on the subwavelength scale and the versatility in wave control, providing a strategy for separating acoustic waves with different Fourier components.

  8. Dynamic generation of spin-wave currents in hybrid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com

    2016-11-15

    Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less

  9. DIELECTRIC-LOADED WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Mullett, L.B.

    1957-04-23

    This patent presents a particular arrangement for delectric loading of a wave-guide carrying an electromagnetic wave in the E or TM mode of at least the second order, to reduce the power dissipated as the result of conduction loss in the wave-guide walls. To achieve this desirabie result, the effective dielectric constants in the radial direction of adjacent coaxial tubular regions bounded approximateiy by successive nodai surfaces within the electromagnetic field are of two different values alternating in the radial direction, the intermost and outermost regions being of the lower value, and the dielectric constants between nodes are uniform.

  10. Study of guided modes in three-dimensional composites

    NASA Astrophysics Data System (ADS)

    Baste, S.; Gerard, A.

    The propagation of elastic waves in a three-dimensional carbon-carbon composite is modeled with a mixed variational method, using the Bloch or Floquet theories and the Hellinger-Reissner function for two independent fields. The model of the equivalent homogeneous material only exists below a cut-off frequency of about 600 kHz. The existence below the cut-off frequency of two guided waves can account for the presence of a slow guided wave on either side of the cut-off frequency. Optical modes are generated at low frequencies, and can attain high velocites (rapid guided modes of 15,000 m/sec).

  11. RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zankovich, A. M.; Kovalenko, I. G., E-mail: ilya.g.kovalenko@gmail.com

    2015-02-10

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20,more » with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.« less

  12. Experimental investigation of three-wave interactions of capillary surface-waves

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael; Cazaubiel, Annette; Deike, Luc; Jamin, Timothee; Falcon, Eric

    2014-11-01

    We report experiments studying the non-linear interaction between two crossing wave-trains of gravity-capillary surface waves generated in a closed laboratory tank. Using a capacitive wave gauge and Diffusive Light Photography method, we detect a third wave of smaller amplitude whose frequency and wavenumber are in agreement with the weakly non-linear triadic resonance interaction mechanism. By performing experiments in stationary and transient regimes and taking into account the viscous dissipation, we estimate directly the growth rate of the resonant mode in comparison with theory. These results confirm at least qualitatively and extend earlier experimental results obtained only for unidirectional wave train. Finally we discuss relevance of three-wave interaction mechanisms in recent experiment studying capillary wave turbulence.

  13. Three-in-One Resonance Tube for Harmonic Series Sound Wave Experiments

    ERIC Educational Resources Information Center

    Jaafar, Rosly; Nazihah Mat Daud, Anis; Ali, Shaharudin; Kadri Ayop, Shahrul

    2017-01-01

    In this study we constructed a special three-in-one resonance tube for a harmonic series sound waves experiment. It is designed for three different experiments: both-open-end, one-closed-end and both-closed-end tubes. The resonance tube consists of a PVC conduit with a rectangular hole, rubber tube, plastic stopper with an embedded microphone and…

  14. System and method for ultrafast optical signal detecting via a synchronously coupled anamorphic light pulse encoded laterally

    DOEpatents

    Heebner, John E [Livermore, CA

    2010-08-03

    In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.

  15. Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators

    DOE PAGES

    Mitrofanov, Oleg; Khromova, Irina; Siday, Thomas; ...

    2016-04-22

    We describe the temporal evolution of the terahertz (THz) field leading to the excitation of plasmonic resonances in carbon microfibers. The field evolution is mapped in space and time for the 3/2 wavelength resonance using a subwavelength aperture THz near-field probe with an embedded THz photoconductive detector. The excitation of surface waves at the fiber tips leads to the formation of a standing wave along the fiber. Local THz time-domain spectroscopy at one of the standing wave crests shows a clear third-order resonance peak at 1.65 THz, well described by the Lorentz model. Lastly, this application of the subwavelength aperturemore » THz near-field microscopy for mode mapping and local spectroscopy demonstrates the potential of near-field methods for studies of subwavelength plasmonic THz resonators.« less

  16. Analysis of standing sound waves using holographic interferometry

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.; Parker, David E.; Hughes, Russell S.

    2009-08-01

    Optical holographic interferometry was used to study standing sound waves in air inside a resonance tube driven by a small loudspeaker at one end. The front face of the resonance tube was constructed with plexiglass, allowing optical interrogation of the tube interior. The object beam of the holographic setup was directed through the plexiglass and reflected off the back wall of the resonator. When driven at resonance, the fluctuations in the air density at the antinodes altered the refractive index of the air in the tube, causing interference patterns in the resulting holographic images. Real-time holography was used to determine resonance frequencies and to measure the wavelengths of the standing waves. Time-average holography was used to observe the effect of increasing the sound pressure level on the resulting fringe pattern. A simple theory was developed to successfully predict the fringe pattern.

  17. Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators

    NASA Astrophysics Data System (ADS)

    Ladpli, Purim; Kopsaftopoulos, Fotis; Chang, Fu-Kuo

    2018-04-01

    This work presents the feasibility of monitoring state of charge (SoC) and state of health (SoH) of lithium-ion pouch batteries with acousto-ultrasonic guided waves. The guided waves are propagated and sensed using low-profile, built-in piezoelectric disc transducers that can be retrofitted onto off-the-shelf batteries. Both experimental and analytical studies are performed to understand the relationship between guided waves generated in a pitch-catch mode and battery SoC/SoH. The preliminary experiments on representative pouch cells show that the changes in time of flight (ToF) and signal amplitude (SA) resulting from shifts in the guided wave signals correlate strongly with the electrochemical charge-discharge cycling and aging. An analytical acoustic model is developed to simulate the variations in electrode moduli and densities during cycling, which correctly validates the absolute values and range of experimental ToF. It is further illustrated via a statistical study that ToF and SA can be used in a prediction model to accurately estimate SoC/SoH. Additionally, by using multiple sensors in a network configuration on the same battery, a significantly more reliable and accurate SoC/SoH prediction is achieved. The indicative results from this study can be extended to develop a unified guided-wave-based framework for SoC/SoH monitoring of many lithium-ion battery applications.

  18. Acoustically trapped colloidal crystals that are reconfigurable in real time

    PubMed Central

    Caleap, Mihai; Drinkwater, Bruce W.

    2014-01-01

    Photonic and phononic crystals are metamaterials with repeating unit cells that result in internal resonances leading to a range of wave guiding and filtering properties and are opening up new applications such as hyperlenses and superabsorbers. Here we show the first, to our knowledge, 3D colloidal phononic crystal that is reconfigurable in real time and demonstrate its ability to rapidly alter its frequency filtering characteristics. Our reconfigurable material is assembled from microspheres in aqueous solution, trapped with acoustic radiation forces. The acoustic radiation force is governed by an energy landscape, determined by an applied high-amplitude acoustic standing wave field, in which particles move swiftly to energy minima. This creates a colloidal crystal of several milliliters in volume with spheres arranged in an orthorhombic lattice in which the acoustic wavelength is used to control the lattice spacing. Transmission acoustic spectroscopy shows that the new colloidal crystal behaves as a phononic metamaterial and exhibits clear band-pass and band-stop frequencies which are adjusted in real time. PMID:24706925

  19. Enhanced Transmissions Through Three-dimensional Cascade Sharp Waveguide Bends Using C-slit Diaphragms.

    PubMed

    Yang, Rui; Hu, Bowei; Zhang, Aofang; Gao, Dongxing; Wang, Hui; Shi, Ayuan; Lei, Zhenya; Yang, Pei

    2017-03-21

    Transmission properties through sharp rectangular waveguide bends are investigated to determine the cut-off bending angles of the wave propagation. We show that a simple metallic diaphragm at the bending corner with properly devised sub-wavelength defect apertures of C-slits would be readily to turn on the transmissions with scarce reflections of the propagating modes, while preserving the integrity of the transmitting fields soon after the bends. In particularly, our design also demonstrates the capability of eliminating all the unwanted cavity resonant transmissions that exist in the three-dimensional cascade sharp waveguide bends, and solely let the desired signals travel along the whole passage of the waveguide. The present approach, using C-slit diaphragms to support the sharp bending behaviors of the guided waves with greatly enhanced transmissions, would be especially effective in constructing novel waveguides and pave the way for the development of more compact and miniaturized electromagnetic systems that exploit these waveguide bends.

  20. Simulating energy cascade of shock wave formation process in a resonator by gas kinetic scheme

    NASA Astrophysics Data System (ADS)

    Qu, Chengwu; Zhang, Xiaoqing; Feng, Heying

    2017-12-01

    The temporal-spatial evolution of gas oscillation was simulated by gas kinetic scheme (GKS) in a cylindrical resonator, driven by a piston at one end and rigidly closed at the other end. Periodic shock waves propagating back and forth were observed in the resonator under finite amplitude of gas oscillation. The studied results demonstrated that the acoustic pressure is a saw-tooth waveform and the oscillatory velocity is a square waveform at the central position of the resonant tube. Moreover, it was found by harmonic analysis that there was no presence of obvious feature for pressure node in such a typical standing wave resonator, and the distribution of acoustic fields displayed a one-dimensional feature for the acoustic pressure while a quasi-one-dimensional form for oscillatory velocity, which demonstrated the nonlinear effects. The simulation results for axial distribution of acoustic intensity showed a good consistency with the published experimental data in the open literature domain, which provides a verification for the effectiveness of the GKS model proposed. The influence of displacement amplitude of the driving piston on the formation of shock wave was numerically investigated, and the simulated results revealed the cascade process of harmonic wave energy from the fundamental wave to higher harmonics. In addition, this study found that the acoustic intensity at the driving end of the resonant tube would increase linearly with the displacement amplitude of the piston due to nonlinear effects, rather than the exponential variation by linear theory. This research demonstrates that the GKS model is strongly capable of simulating nonlinear acoustic problems.

  1. A Single Center Evaluation of the Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging against Transperineal Prostate Mapping Biopsy: An Analysis of Men with Benign Histology and Insignificant Cancer following Transrectal Ultrasound Biopsy.

    PubMed

    Pal, Raj P; Ahmad, Ros; Trecartan, Shaun; Voss, James; Ahmed, Shaista; Bazo, Alvaro; Lloyd, Jon; Walton, Thomas J

    2018-03-01

    In this study we evaluated the diagnostic performance of transrectal ultrasound guided biopsy and multiparametric magnetic resonance imaging to detect prostate cancer against transperineal prostate mapping biopsy as the reference test. Transrectal ultrasound guided biopsy, multiparametric magnetic resonance imaging and transperineal prostate mapping biopsy were performed in 426 patients between April 2012 and January 2016. Patients initially underwent systematic 12 core transrectal ultrasound guided biopsy followed 3 months later by 1.5 Tesla, high resolution T2, diffusion-weighted, dynamic contrast enhanced multiparametric magnetic resonance imaging. Two specialist uroradiologists blinded to the results of transperineal prostate mapping biopsy allocated a PI-RADS™ (Prostate Imaging-Reporting and Data System) score to each multiparametric magnetic resonance imaging study. Transperineal prostate mapping biopsy with 5 mm interval sampling, which was performed within 6 months of multiparametric magnetic resonance imaging, served as the reference test. Transrectal ultrasound guided biopsy identified 247 of 426 patients with prostate cancer and 179 of 426 with benign histology. Transperineal prostate mapping biopsy detected prostate cancer in 321 of 426 patients. On transperineal prostate mapping biopsy 94 of 179 patients with benign transrectal ultrasound guided biopsy had prostate cancer and 95 of 247 with prostate cancer on transrectal ultrasound guided biopsy were identified with cancer of higher grade. Using a multiparametric magnetic resonance imaging PI-RADS score of 3 or greater to detect significant prostate cancer, defined as any core containing Gleason 4 + 3 or greater prostate cancer on transperineal prostate mapping biopsy, the ROC AUC was 0.754 (95% CI 0.677-0.819) with 87.0% sensitivity (95% CI 77.3-97.0), 55.3% specificity (95% CI 50.2-60.4) and 97.1% negative predictive value (95% CI 94.8-99.4). Multiparametric magnetic resonance imaging is a more accurate diagnostic test than transrectal ultrasound guided biopsy. However, a significant proportion of ISUP (International Society of Urological Pathology) Grade Group 2 prostate cancer remained undetected following multiparametric magnetic resonance imaging. Although multiparametric magnetic resonance imaging could avoid unnecessary biopsy in many patients with ISUP Grade Group 3 or greater prostate cancer, at less stringent definitions of significant cancer a substantial proportion of prostate cancer would remain undetected after multiparametric magnetic resonance imaging. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Nonlinear Right-Hand Polarized Wave in Plasma in the Electron Cyclotron Resonance Region

    NASA Astrophysics Data System (ADS)

    Krasovitskiy, V. B.; Turikov, V. A.

    2018-05-01

    The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.

  3. Elastic Nonlinear Response in Granular Media Under Resonance Conditions

    NASA Astrophysics Data System (ADS)

    Jia, X.; Johnson, P. A.

    2004-12-01

    We are studying the elastic linear and nonlinear behavior of granular media using dynamic wave methods. In the work presented here, our goal is to quantify the elastic nonlinear response by applying wave resonance. Resonance studies are desirable because they provide the means to easily study amplitude dependencies of elastic nonlinear behavior and thus to characterize the physical nature of the elastic nonlinearity. This work has implications for a variety of topics, in particular, the in situ nonlinear response of surface sediments. For this work we constructed an experimental cell in which high sensitivity dynamic resonance studies were conducted using granular media under controlled effective pressure. We limit our studies here to bulk modes but have the capability to employ shear waves as well. The granular media are composed of glass beads held under pressure by a piston, while applying resonance waves from transducers as both the excitation and the material probe. The container is closed with two fitted pistons and a normal load is applied to the granular sample across the top piston. Force and displacement are measured directly. Resonant frequency sweeps with frequencies corresponding to the fundamental bulk mode are applied to the longitudinal source transducer. The pore pressure in the system is 1 atm. The glass beads used in our experiments are of diameter 0.5 mm, randomly deposited in a duralumin cylinder of diameter 30 mm and height of 15 mm. This corresponds to a granular skeleton acoustic wave velocity of v ª 750m/s under 50 N of force [0.07 Mpa]. The loaded system gives fundamental mode resonances in the audio frequency band at half a wavelength where resonance frequency is effective-pressure dependent. The volume fraction of glass beads thus obtained is found to be 0.63 ± 0.01. Plane-wave generating and detecting transducers of diameter 30 mm are placed on axis at the top and bottom of the cylindrical container in direct contact with the glass beads. The wave signals are detected using a lock-in amplifier, and frequency and amplitude are recorded on computer. Drive frequency is swept from below to above the resonance mode. A typical frequency sweep is 3 kHz in width with a frequency sampling of 6 Hz. Frequency sweeps are applied at progressively increasing drive voltages to test for nonlinear-dynamical induced modulus softening. The resonance frequency at peak amplitude corresponds directly to modulus. We find significant elastic nonlinearity at all effective pressures, manifest by the fundamental-mode resonance curves decreasing progressively, at progressively increasing drive level. This is equivalent to progressive material softening with wave amplitude, meaning the wavespeed and modulus diminish. The wave dissipation simultaneously increases (Johnson and Sutin 2004). For example, at 0.11 Mpa effective pressure the observed change in resonance frequency of about 2.6% corresponds to a material bulk modulus decrease of about 5.2%. Strain amplitudes are 10-7-10-6. Thus, we would predict that surface sediments should have significant elastic nonlinear response beginning at about 10-6 strain amplitude. reference: Johnson, P. and A. Sutin, Slow dynamics in diverse solids, J. Acoust. Soc Am., in press (2004).

  4. Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing

    NASA Astrophysics Data System (ADS)

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2018-04-01

    Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.

  5. Resonance-assisted decay of nondispersive wave packets.

    PubMed

    Wimberger, Sandro; Schlagheck, Peter; Eltschka, Christopher; Buchleitner, Andreas

    2006-07-28

    We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance-assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.

  6. The wave attenuation mechanism of the periodic local resonant metamaterial

    NASA Astrophysics Data System (ADS)

    Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying

    2018-01-01

    This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.

  7. Artificial Excitation of Schumann Resonance with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C. L.

    2014-12-01

    We report results from the experiment aimed at the artificial excitation of extremely-low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance (typically, 7.5 - 8.0 Hz frequency range). Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated by the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range of the Schumann resonance, when the ionosphere has a strong F-layer and an electric field greater than 5 mV/m is present in the E-region.

  8. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools : a guide for use and interpretation

    Treesearch

    Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin

    2004-01-01

    This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...

  9. Guided-Wave TeO2 Acousto-Optic Devices

    DTIC Science & Technology

    1991-01-12

    In this research program, Guided-wave TeO2 Acousto - Optic Devices, the properties of surface acoustic waves on tellurium dioxide single crystal...surfaces has been studied for its potential applications as acousto - optic signal processing devices. Personal computer based numerical method has been...interaction with laser beams. Use of the acousto - optic probe, the surface acoustic wave velocity and field distribution have been obtained and compared

  10. Polyhedral integrated and free space optical interconnection

    DOEpatents

    Erteza, I.A.

    1998-01-06

    An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment. 7 figs.

  11. Polyhedral integrated and free space optical interconnection

    DOEpatents

    Erteza, Ireena A.

    1998-01-01

    An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment.

  12. A quasioptically stabilized resonant-tunneling-diode oscillator for the millimeter- and submillimeter-wave regions

    NASA Technical Reports Server (NTRS)

    Brown, Elliott R.; Parker, Christopher D.; Molvar, Karen M.; Stephan, Karl D.

    1992-01-01

    A semiconfocal open-cavity resonator has been used to stabilize a resonant-tunneling-diode waveguide oscillator at frequencies near 100 GHz. The high quality factor of the open cavity resulted in a linewidth of approximately 10 kHz at 10 dB below the peak, which is about 100 times narrower than the linewidth of an unstabilized waveguide oscillator. This technique is well suited for resonant-tunneling-diode oscillators in the submillimeter-wave region.

  13. Estimates of the Attenuation Rates of Baroclinic Tidal Energy Caused by Resonant Interactions Among Internal Waves based on the Weak Turbulence Theory

    NASA Astrophysics Data System (ADS)

    Onuki, Y.; Hibiya, T.

    2016-02-01

    The baroclinic tides are thought to be the dominant energy source for turbulent mixing in the ocean interior. In contrast to the geography of the energy conversion rates from the barotropic to baroclinic tides, which has been clarified in recent numerical studies, the global distribution of the energy sink for the resulting low-mode baroclinic tides remains obscure. A key to resolve this issue is the resonant wave-wave interactions, which transfer part of the baroclinic tidal energy to the background internal wave field enhancing the local energy dissipation rates. Recent field observations and numerical studies have pointed out that parametric subharmonic instability (PSI), one of the resonant interactions, causes significant energy sink of baroclinic tidal energy at mid-latitudes. The purpose of this study is to analyze the quantitative aspect of PSI to demonstrate the global distribution of the intensity of resonant wave interactions, namely, the attenuation rate of low-mode baroclinic tidal energy. Our approach is basically following the weak turbulence theory, which is the standard theory for resonant wave-wave interactions, where techniques of singular perturbation and statistical physics are employed. This study is, however, different from the classical theory in some points; we have reformulated the weak turbulence theory to be applicable to low-mode internal waves and also developed its numerical calculation method so that the effects of stratification profile and oceanic total depth can be taken into account. We have calculated the attenuation rate of low-mode baroclinic tidal waves interacting with the background Garrett-Munk internal wave field. The calculated results clearly show the rapid attenuation of baroclinic tidal energy at mid-latitudes, in agreement with the results from field observations and also show the zonal inhomogeneity of the attenuation rate caused by the density structures associated with the subtropical gyre. This study is expected to contribute to clarify the global distribution of the dissipation rates of baroclinic tidal energy.

  14. Search for optimal 3D wave launching configurations for the acceleration of charged particles in a magnetized plasma: Resonant Moments Method

    NASA Astrophysics Data System (ADS)

    Ponomarjov, Maxim; Carati, Daniele

    2004-11-01

    Three-dimensional electromagnetic wave configurations are proposed for accelerating charged particles in an external magnetic field. A primary wave responsible for the acceleration is coupled to a secondary wave generating the chaotic motion of the particles. The wave vectors and the magnetic field are not supposed to be co-planar and create a fully three dimensional system. This configuration produces faster acceleration with low amplitude. The idea considered here is similar to Refs. [1-2] although no constraint is imposed on the refraction indices. The theoretical analysis of the acceleration mechanism is based on the Resonance Moments Method (RMM) in which the velocity distribution and its moments are approximated by using an average over the resonant layers (RL)i only instead of a complete phase-space averages. The quantities obtained using this approach, referred to as Resonant Moments (RM), suggest the existence of optimal angles of propagation for the primary and secondary waves as long as the maximization of the parallel flux of charged particles is considered The secondary wave tends to maintain a pseudo-equilibrium velocity distribution by continuously re-filling the RL. Our suggestions are confirmed by direct numerical simulations of particle trajectories. The parameters for these simulations are relevant to magnetic plasma fusion experiments in electron cyclotron resonance heating and electron acceleration in planetary magnetospheres. Although measures of the distributions clearly show a departure from thermal equilibrium, the stochastization effect of the secondary wave yields a clear increase (up to one order of magnitude) of the average parallel velocity of the particles. It is a quite promising result since the amplitude of the secondary wave is ten times lower the one of the first wave. 1 H. Karimabadi and V. Angelopoulos, Phys. Rev. Lett., 62, 2342 (1989). 2 B. I. Cohen, R. H Cohen, W. M. Nevins, and T. D. Rognlien, Rev. Mod. Phys., 63, 949 (1991).

  15. Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2013-04-01

    Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.

  16. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    USGS Publications Warehouse

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  17. Resonant Triad in Boundary-Layer Stability. Part 2; Composite Solution and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.

  18. Experiments with Helmholtz Resonators.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1996-01-01

    Presents experiments that use Helmholtz resonators and have been designed for a sophomore-level course in oscillations and waves. Discusses the theory of the Helmholtz resonator and resonance curves. (JRH)

  19. Traveling waves and their tails in locally resonant granular systems

    DOE PAGES

    Xu, H.; Kevrekidis, P. G.; Stefanov, A.

    2015-04-22

    In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely themore » avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.« less

  20. Traveling waves and their tails in locally resonant granular systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H.; Kevrekidis, P. G.; Stefanov, A.

    In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely themore » avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.« less

  1. Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Osteoid Osteoma: A Case Series Report.

    PubMed

    Rovella, Marcello S; Martins, Guilherme L P; Cavalcanti, Conrado F A; Bor-Seng-Shu, Edson; Camargo, Olavo P; Cerri, Giovanni G; Menezes, Marcos R

    2016-04-01

    Osteoid osteoma is painful benign tumor. The aim of this study was to report our initial experience using magnetic resonance-guided focused ultrasound to treat osteoid osteomas. This retrospective single-center study included four patients treated with magnetic resonance-guided focused ultrasound. They presented with severe pain with reduced quality of life and a poor response to clinical treatment. The pre- and post-treatment evaluation comprised computed tomography and magnetic resonance imaging and focused on quality of life and the impact of pain on daily activities. After treatment, three patients had complete pain resolution with no recurrence. One patient had a recurrence of symptoms after 2 wk and underwent a new successful treatment with increased energy levels. On average, 13 sonications were administered (8-18 sonications/treatment) with an average energy of 2,003 J (range: 1,063-3,522 J). Magnetic resonance-guided focused ultrasound appears to be a feasible, tolerable and effective treatment in selected patients with osteoid osteomas. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Experimental studies of a continuous-wave HF(DF) confocal unstable resonator. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chodzko, R.A.; Cross, E.F.; Durran, D.A.

    1976-05-03

    A series of experiments were performed on a continuous-wave HF(DF) multiline edge-coupled confocal unstable resonator at The Aerospace Corporation MESA facility. Experimental techniques were developed to measure remotely (from a blockhouse) the output power, the near-field intensity distribution, the spatially resolved spectral content of the near field, and the far-field power distribution. A new technique in which a variable aperture calorimeter absorbing scraper (VACAS) was used for measuring the continuous-wave output power from an unstable resonator with variable-mode geometry and without the use of an output coupling mirror was developed. (GRA)

  3. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  4. On the resonance hypothesis of storm surge and surf beat run-up

    NASA Astrophysics Data System (ADS)

    Postacioglu, Nazmi; Sinan Özeren, M.; Canlı, Umut

    2017-06-01

    Resonance has recently been proposed as the fundamental underlying mechanism that shapes the amplification in coastal run-up for storm surges and surf beats, which are long-wavelength disturbances created by fluid velocity differences between the wave groups and the regions outside the wave groups. It is without doubt that the resonance plays a role in run-up phenomena of various kinds; however, we think that the extent to which it plays its role has not been completely understood. For incident waves, which we assume to be linear, the best approach to investigate the role played by the resonance would be to calculate the normal modes by taking radiation damping into account and then testing how those modes are excited by the incident waves. Such modes diverge offshore, but they can still be used to calculate the run-up. There are a small number of previous works that attempt to calculate the resonant frequencies, but they do not relate the amplitudes of the normal modes to those of the incident wave. This is because, by not including radiation damping, they automatically induce a resonance that leads to infinite amplitudes, thus preventing them from predicting the exact contribution of the resonance to coastal run-up. In this study we consider two different coastal geometries: an infinitely wide beach with a constant slope connecting to a flat-bottomed deep ocean and a bay with sloping bottom, again, connected to a deep ocean. For the fully 1-D problem we find significant resonance if the bathymetric discontinuity is large.The linearisation of the seaward boundary condition leads to slightly smaller run-ups. For the 2-D ocean case the analysis shows that the wave confinement is very effective when the bay is narrow. The bay aspect ratio is the determining factor for the radiation damping. One reason why we include a bathymetric discontinuity is to mimic some natural settings where bays and gulfs may lead to abrupt depth gradients such as the Tokyo Bay. The other reason is, as mentioned above, to test the role played by the depth discontinuity for resonance.

  5. Collisional relaxation of an isotopic, strongly magnetized pure ion plasma and topics in resonant wave-particle interaction of plasmas

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung

    First in Chapter 2, we discuss the collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses, but both with singly-ionized atoms. In a limit of high cyclotron frequencies O j, the total cyclotron action Ij for the two species are adiabatic invariants. In a few collisions, maximizing entropy yields a modified Gibbs distribution of the form exp[-H/T ∥-alpha1 I 1-alpha2I2]. Here, H is the total Hamiltonian and alphaj's are related to parallel and perpendicular temperatures through T ⊥j=(1/T∥ +alphaj/Oj) -1. On a longer timescale, the two species share action so that alpha 1 and alpha2 relax to a common value alpha. On an even longer timescale, the total action ceases to be a constant of the motion and alpha relaxes to zero. Next, weak transport produces a low density halo of electrons moving radially outward from the pure electron plasma core, and the m = 1 mode begins to damp algebraically when the halo reaches the wall. The damping rate is proportional to the particle flux through the resonant layer at the wall. Chapter 3 explains analytically the new algebraic damping due to both mobility and diffusion transport. Electrons swept around the resonant "cat's eye" orbits form a dipole (m = 1) density distribution, setting up a field that produces ExB-drift of the core back to the axis, that is, damps the mode. Finally, Chapter 4 provides a simple mechanistic interpretation of the resonant wave-particle interaction of Landau. For the simple case of a Vlasov plasma oscillation, the non-resonant electrons are driven resonantly by the bare electric field from the resonant electrons, and this complex driver field is of a phase to reduce the oscillation amplitude. The wave-particle resonant interaction also occurs in 2D ExB-drift waves, such as a diocotron wave. In this case, the bare electric field from the resonant electrons causes ExB-drift motion back in the core plasma, thus damping the wave.

  6. Two mechanisms of resonance overlapping in excitation of azimuthal surface waves by rotating relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

    2018-05-01

    Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-filled metallic waveguides with a stationary axial magnetic field. These waves with extraordinary polarization can effectively interact with relativistic electron beams rotating along large Larmor orbits in the gap, which separates the plasma column from the waveguide wall. Both widening the layer and increasing the beam particle density are demonstrated to cause resonance overlapping seen from the perspective of the growth rate dependence on the effective wave number.

  7. Wave excitation at Lindblad resonances using the method of multiple scales

    NASA Astrophysics Data System (ADS)

    Horák, Jiří

    2017-12-01

    In this note, the method of multiple scales is adopted to the problem of excitation of non–axisymmetric acoustic waves in vertically integrated disk by tidal gravitational fields. We derive a formula describing a waveform of exited wave that is uniformly valid in a whole disk as long as only a single Lindblad resonance is present. Our formalism is subsequently applied to two classical problems: trapped p–mode oscillations in relativistic accretion disks and the excitation of waves in infinite disks.

  8. Analysis of long wavelength electromagnetic scattering by a magnetized cold plasma prolate spheroid

    NASA Astrophysics Data System (ADS)

    Ahmadizadeh, Yadollah; Jazi, Bahram; Abdoli-Arani, Abbas

    2013-08-01

    Using dielectric permittivity tensor of the magnetized prolate plasma, the scattering of long wavelength electromagnetic waves from the mentioned object is studied. The resonance frequency and differential scattering cross section for the backward scattered waves are presented. Consistency between the resonance frequency in this configuration and results obtained for spherical plasma are investigated. Finally, the effective factors on obtained results such as incident wave polarization, the frequency of the incident wave, the plasma frequency and the cyclotron frequency are analyzed.

  9. Utilizing upper hybrid resonance for high density plasma production and negative ion generation in a downstream region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Debaprasad; Bhattacharjee, Sudeep

    2012-09-15

    Localized wave-induced resonances are created by microwaves launched directly into a multicusp (MC) plasma device in the k Up-Tack B mode, where k is the wave vector and B is the static magnetic field. The resonance zone is identified as upper hybrid resonance (UHR), and lies r = {approx}22 mm away from the MC boundary. Measurement of radial wave electric field intensity confirms the right hand cutoff of the wave (r = 22.5-32.1 mm) located near the UHR zone. A sharp rise in the corresponding electron temperature in the resonance region by {approx}13 eV from its value away from resonancemore » at r = 0, is favorable for the generation of vibrationally excited molecules of hydrogen. A transverse magnetic filter allows cold electrons ({approx}1-2 eV) to pass into the downstream region where they generate negative ions by dissociative attachment. Measurements of electron energy distribution function (EEDF) support the viewpoint. H{sup -} current density of {approx}0.26 mA/cm{sup 2} is obtained at a wave power density of {approx}3 W/cm{sup 2} at 2.0 mTorr pressure, which agrees reasonably well with results obtained from a steady state model using particle balance equations.« less

  10. Resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-06-01

    Advanced wave model used to evaluate ICRH in tokamaks typically used warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. A bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits is presented. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  11. Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer

    NASA Astrophysics Data System (ADS)

    Kornhuber, K.; Petoukhov, V.; Petri, S.; Rahmstorf, S.; Coumou, D.

    2017-09-01

    Several recent northern hemisphere summer extremes have been linked to persistent high-amplitude wave patterns (e.g. heat waves in Europe 2003, Russia 2010 and in the US 2011, Floods in Pakistan 2010 and Europe 2013). Recently quasi-resonant amplification (QRA) was proposed as a mechanism that, when certain dynamical conditions are fulfilled, can lead to such high-amplitude wave events. Based on these resonance conditions a detection scheme to scan reanalysis data for QRA events in boreal summer months was implemented. With this objective detection scheme we analyzed the occurrence and duration of QRA events and the associated atmospheric flow patterns in 1979-2015 reanalysis data. We detect a total number of 178 events for wave 6, 7 and 8 and find that during roughly one-third of all high amplitude events QRA conditions were met for respective waves. Our analysis reveals a significant shift for quasi-stationary waves 6 and 7 towards high amplitudes during QRA events, lagging first QRA-detection by typically one week. The results provide further evidence for the validity of the QRA hypothesis and its important role in generating high amplitude waves in boreal summer.

  12. Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.

    PubMed

    Claudepierre, S G; Toffoletto, F R; Wiltberger, M

    2016-01-01

    We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.

  13. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes.

    PubMed

    Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf

    2012-04-01

    Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P < 0.001). Wave amplitudes were found to decrease 117 ± 40 ms before myocardial contraction and to increase 75 ± 31 ms before myocardial relaxation. Vibration synchronized magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.

  14. Frequency and magnetic field mapping of magnetoelastic spin pumping in high overtone bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Luzanov, V. A.; Raevskiy, A. O.; Kotov, V. A.

    2018-05-01

    We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE) dc voltage driven by an acoustic spin pumping (ASP) in a bulk acoustic wave (BAW) resonator formed by a Al-ZnO-Al-YIG(1)-GGG-YIG(2)-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ˜ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2) to Pt in the area ˜ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H) together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H) on the (f, H) plane. At the same time a significant asymmetry of the VISHE(fn(H)) value in reference to the magnetoelastic resonance (MER) line fMER(H) position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.

  15. LiTaO3 Shear Wave Resonator for Viscosity Measurement of Polymer Liquid in MHz Range

    NASA Astrophysics Data System (ADS)

    Bannai, Mai; Wakatsuki, Noboru

    2004-05-01

    We are studying the response of a strip-type LiTaO3 shear wave resonator in polymer liquid in MHz range. The element size is small (1.0× 7.4× 0.49 mm3). The side surfaces of the resonator were covered with a highly viscous silicone rubber material. Using Newton fluid theory, the characteristic mechanical impedance of the shear wave in the liquid was derived for the equivalent circuit of the resonator. The analytical values of glycerin were roughly consistent with the experiment using only 0.1 cm3. The polymer liquid used for the measurement was silicone oil. The static viscosity was from 9.8 to 94,720 mPa\\cdots. The resonance frequency change was from 0.05% to 0.07%. The resonance resistance change was from 57 Ω to 190 Ω. The experiment results were examined using Mason’s equivalent circuit with Maxwell model of a viscoelastic polymer.

  16. Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process.

    PubMed

    Cho, E; Kim, B; Choi, S; Han, J; Jin, J; Han, J; Lim, J; Heo, Y; Kim, S; Sung, G Y; Kang, S

    2011-01-01

    This paper introduces technology to fabricate a guided mode resonance filter biochip using injection molding. Of the various nanofabrication processes that exist, injection molding is the most suitable for the mass production of polymer nanostructures. Fabrication of a nanograting pattern for guided mode resonance filters by injection molding requires a durable metal stamp, because of the high injection temperature and pressure. Careful consideration of the optimized process parameters is also required to achieve uniform sub-wavelength gratings with high fidelity. In this study, a metallic nanostructure pattern to be used as the stamp for the injection molding process was fabricated using electron beam lithography, a UV nanoimprinting process, and an electroforming process. A one-dimensional nanograting substrate was replicated by injection molding, during which the process parameters were controlled. To evaluate the geometric quality of the injection molded nanograting patterns, the surface profile of the fabricated nanograting for different processing conditions was analyzed using an atomic force microscope and a scanning electron microscope. Finally, to demonstrate the feasibility of the proposed process for fabricating guided mode resonance filter biochips, a high-refractive-index material was deposited on the polymer nanograting and its guided mode resonance characteristics were analyzed.

  17. Diffusion approximation with polarization and resonance effects for the modelling of seismic waves in strongly scattering small-scale media

    NASA Astrophysics Data System (ADS)

    Margerin, Ludovic

    2013-01-01

    This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.

  18. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Chen, Xuemin; Song, Gangbing

    2018-01-01

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation. PMID:29510540

  19. Damage Detection in Composite Structures with Wavenumber Array Data Processing

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Guided ultrasonic waves (GUW) have the potential to be an efficient and cost-effective method for rapid damage detection and quantification of large structures. Attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distances. They have proven to be an efficient approach for crack detection and localization in isotropic materials. However, techniques must be pushed beyond isotropic materials in order to be valid for composite aircraft components. This paper presents our study on GUW propagation and interaction with delamination damage in composite structures using wavenumber array data processing, together with advanced wave propagation simulations. Parallel elastodynamic finite integration technique (EFIT) is used for the example simulations. Multi-dimensional Fourier transform is used to convert time-space wavefield data into frequency-wavenumber domain. Wave propagation in the wavenumber-frequency domain shows clear distinction among the guided wave modes that are present. This allows for extracting a guided wave mode through filtering and reconstruction techniques. Presence of delamination causes spectral change accordingly. Results from 3D CFRP guided wave simulations with delamination damage in flat-plate specimens are used for wave interaction with structural defect study.

  20. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation.

    PubMed

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Wang, Ning; Chen, Xuemin; Song, Gangbing

    2018-03-04

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation.

  1. Distributed temperature sensors development using an stepped-helical ultrasonic waveguide

    NASA Astrophysics Data System (ADS)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2018-04-01

    This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.

  2. Umbral oscillations as resonant modes of magneto-atmospheric waves. [in sunspots

    NASA Technical Reports Server (NTRS)

    Scheuer, M. A.; Thomas, J. H.

    1981-01-01

    Umbral oscillations in sunspots are identified as a resonant response of the umbral atmosphere to forcing by oscillatory convection in the subphotosphere. The full, linearized equations for magnetoatmospheric waves are solved numerically for a detailed model of the umbral atmosphere, for both forced and free oscillations. Resonant 'fast' modes are found, the lowest mode having a period of 153 s, typical of umbral oscillations. A comparison is made with a similar analysis by Uchida and Sakurai (1975), who calculated resonant modes using an approximate ('quasi-Alfven') form of the wave equations. Whereas both analyses give an appropriate value for the period of oscillation, several new features of the motion follow from the full equations. The resonant modes are due to upward reflection in the subphotosphere (due to increasing sound speed) and downward reflection in the photosphere and low chromosphere (due to increasing Alfven speed); downward reflection at the chromosphere-corona transition is unimportant for these modes.

  3. Three-Body Recombination near a Narrow Feshbach Resonance in Li 6

    NASA Astrophysics Data System (ADS)

    Li, Jiaming; Liu, Ji; Luo, Le; Gao, Bo

    2018-05-01

    We experimentally measure and theoretically analyze the three-atom recombination rate, L3, around a narrow s -wave magnetic Feshbach resonance of Li 6 - Li 6 at 543.3 G. By examining both the magnetic field dependence and, especially, the temperature dependence of L3 over a wide range of temperatures from a few μ K to above 200 μ K , we show that three-atom recombination through a narrow resonance follows a universal behavior determined by the long-range van der Waals potential and can be described by a set of rate equations in which three-body recombination proceeds via successive pairwise interactions. We expect the underlying physical picture to be applicable not only to narrow s wave resonances, but also to resonances in nonzero partial waves, and not only at ultracold temperatures, but also at much higher temperatures.

  4. LETTER: Investigation of the effect of Alfven resonance mode conversion on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    1995-07-01

    In order to reduce or to avoid ion cyclotron damping, the use of frequencies below the ion cyclotron frequency of minority ion species or the second harmonic of majority ion species has been proposed for fast wave current drive based on direct electron absorption. For these scenarios, the Alfven or ion-ion hybrid resonance can appear on the high field side of a tokamak. The presence of these resonances causes parasitic absorption, competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, neglecting effects from toroidicity, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10% in the current drive scenarios for the planned ITER experiment. If the single pass absorption in the centre can be made sufficiently high, the conversion at the Alfven resonance becomes negligible

  5. Investigation of the effect of Alfven resonance absorption on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    The use of frequencies below the ion cyclotron frequency of minority ion species or second harmonic of majority species has been proposed for fast wave current drive in order to reduce or to avoid ion cyclotron damping. For these scenarios, the Alfven resonance can appear on the high field side of a tokamak. The presence of this resonance causes parasitic absorption competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10 percent in the current drive scenarios for the planned International Thermonuclear Experimental Reactor (ITER) experiment. However, if the single pass absorption in the center can be made sufficiently high, the conversion at the Alfven resonance becomes negligible.

  6. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dongxu, E-mail: sudx@iis.u-tokyo.ac.jp; Zheng, Rencheng; Nakano, Kimihiko

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analyticalmore » model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.« less

  7. Material State Awareness for Composites Part I: Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry (CWI).

    PubMed

    Patra, Subir; Banerjee, Sourav

    2017-12-16

    Detection of precursor damage followed by the quantification of the degraded material properties could lead to more accurate progressive failure models for composite materials. However, such information is not readily available. In composite materials, the precursor damages-for example matrix cracking, microcracks, voids, interlaminar pre-delamination crack joining matrix cracks, fiber micro-buckling, local fiber breakage, local debonding, etc.-are insensitive to the low-frequency ultrasonic guided-wave-based online nondestructive evaluation (NDE) or Structural Health Monitoring (SHM) (~100-~500 kHz) systems. Overcoming this barrier, in this article, an online ultrasonic technique is proposed using the coda part of the guided wave signal, which is often neglected. Although the first-arrival wave packets that contain the fundamental guided Lamb wave modes are unaltered, the coda wave packets however carry significant information about the precursor events with predictable phase shifts. The Taylor-series-based modified Coda Wave Interferometry (CWI) technique is proposed to quantify the stretch parameter to compensate the phase shifts in the coda wave as a result of precursor damage in composites. The CWI analysis was performed on five woven composite-fiber-reinforced-laminate specimens, and the precursor events were identified. Next, the precursor damage states were verified using high-frequency Scanning Acoustic Microscopy (SAM) and optical microscopy imaging.

  8. Guided wave propagation in single and double layer hollow cylinders embedded in infinite media.

    PubMed

    Jia, Hua; Jing, Mu; Joseph, L Rose

    2011-02-01

    Millions of miles of pipes are being used for the transportation, distribution, and local use of petroleum products, gas, water, and chemicals. Most of the pipes are buried in soil, leading to the significance of the study on the subject of guided wave propagation in pipes with soil influence. Previous investigations of ultrasonic guided wave propagation in an elastic hollow cylinder and in an elastic hollow cylinder coated with a viscoelastic material have led to the development of inspection techniques for bare and coated pipes. However, the lack of investigation on guided wave propagation in hollow cylinders embedded in infinite media like soil has hindered the development of pipe inspection methods. Therefore the influence of infinite media on wave propagation is explored in this paper. Dispersion curves and wave structures of both axisymmetric and nonaxisymmetric wave modes are developed. Due to the importance of the convergence of numerical calculations, the requirements of thickness and element number of the finite soil layer between hollow cylinder and infinite element layer are discussed, and an optimal combination is obtained in this paper. Wave structures are used for the mode identification in the non-monotonic region caused by the viscoelastic properties of coating and infinite media.

  9. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.

    PubMed

    Luo, E C; Ling, H; Dai, W; Yu, G Y

    2006-12-22

    In this paper, an experimental study of the effect of the resonator shape on the performance of a traveling-wave thermoacoustic engine is presented. Two different resonators were tested in the thermoacoustic-Stirling heat. One resonator is an iso-diameter one, and the other is a tapered one. To have a reasonable comparison reference, we keep the same traveling-wave loop, the same resonant frequency and the same operating pressure. The experiment showed that the resonator shape has significant influence on the global performance of the thermoacoustic-Stirling heat engine. The tapered resonator gives much better performance than the iso-diameter resonator. The tapered resonator system achieved a maximum pressure ratio of about 1.3, a maximum net acoustical power output of about 450 W and a highest thermoacoustic efficiency of about 25%.

  10. Resonant scattering of energetic electrons in the outer radiation belt by HAARP-induced ELF/VLF waves

    NASA Astrophysics Data System (ADS)

    Chang, Shanshan; Zhu, Zhengping; Ni, Binbin; Cao, Xing; Luo, Weihua

    2016-10-01

    Several extremely low-frequency (ELF)/very low-frequency (VLF) wave generation experiments have been performed successfully at High-Frequency Active Auroral Research Program (HAARP) heating facility and the artificial ELF/VLF signals can leak into the outer radiation belt and contribute to resonant interactions with energetic electrons. Based on the artificial wave properties revealed by many of in situ observations, we implement test particle simulations to evaluate the effects of energetic electron resonant scattering driven by the HAARP-induced ELF/VLF waves. The results indicate that for both single-frequency/monotonic wave and multi-frequency/broadband waves, the behavior of each electron is stochastic while the averaged diffusion effect exhibits temporal linearity in the wave-particle interaction process. The computed local diffusion coefficients show that, the local pitch-angle scattering due to HARRP-induced single-frequency ELF/VLF whistlers with an amplitude of ∼10 pT can be intense near the loss cone with a rate of ∼10-2 rad2 s-1, suggesting the feasibility of HAARP-induced ELF/VLF waves for removal of outer radiation belt energetic electrons. In contrast, the energy diffusion of energetic electrons is relatively weak, which confirms that pitch-angle scattering by artificial ELF/VLF waves can dominantly lead to the precipitation of energetic electrons. Moreover, diffusion rates of the discrete, broadband waves, with the same amplitude of each discrete frequency as the monotonic waves, can be much larger, which suggests that it is feasible to trigger a reasonable broadband wave instead of the monotonic wave to achieve better performance of controlled precipitation of energetic electrons. Moreover, our test particle scattering simulation show good agreement with the predictions of the quasi-linear theory, confirming that both methods are applied to evaluate the effects of resonant interactions between radiation belt electrons and artificially generated discrete ELF/VLF waves.

  11. Rogue wave and a pair of resonance stripe solitons to a reduced (3+1)-dimensional Jimbo-Miwa equation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoen; Chen, Yong

    2017-11-01

    In this paper, a combination of stripe soliton and lump soliton is discussed to a reduced (3+1)-dimensional Jimbo-Miwa equation, in which such solution gives rise to two different excitation phenomena: fusion and fission. Particularly, a new combination of positive quadratic functions and hyperbolic functions is considered, and then a novel nonlinear phenomenon is explored. Via this method, a pair of resonance kink stripe solitons and rogue wave is studied. Rogue wave is triggered by the interaction between lump soliton and a pair of resonance kink stripe solitons. It is exciting that rogue wave must be attached to the stripe solitons from its appearing to disappearing. The whole progress is completely symmetry, the rogue wave starts itself from one stripe soliton and lose itself in another stripe soliton. The dynamic properties of the interaction between one stripe soliton and lump soliton, rogue wave are discussed by choosing appropriate parameters.

  12. Modified dust ion-acoustic surface waves in a semi-bounded magnetized plasma containing the rotating dust grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    2016-05-15

    The dispersion relation for modified dust ion-acoustic surface waves in the magnetized dusty plasma containing the rotating dust grains is derived, and the effects of magnetic field configuration on the resonant growth rate are investigated. We present the results that the resonant growth rates of the wave would increase with the ratio of ion plasma frequency to cyclotron frequency as well as with the increase of wave number for the case of perpendicular magnetic field configuration when the ion plasma frequency is greater than the dust rotation frequency. For the parallel magnetic field configuration, we find that the instability occursmore » only for some limited ranges of the wave number and the ratio of ion plasma frequency to cyclotron frequency. The resonant growth rate is found to decrease with the increase of the wave number. The influence of dust rotational frequency on the instability is also discussed.« less

  13. Anomalous time delays and quantum weak measurements in optical micro-resonators

    PubMed Central

    Asano, M.; Bliokh, K. Y.; Bliokh, Y. P.; Kofman, A. G.; Ikuta, R.; Yamamoto, T.; Kivshar, Y. S.; Yang, L.; Imoto, N.; Özdemir, Ş.K.; Nori, F.

    2016-01-01

    Quantum weak measurements, wavepacket shifts and optical vortices are universal wave phenomena, which originate from fine interference of multiple plane waves. These effects have attracted considerable attention in both classical and quantum wave systems. Here we report on a phenomenon that brings together all the above topics in a simple one-dimensional scalar wave system. We consider inelastic scattering of Gaussian wave packets with parameters close to a zero of the complex scattering coefficient. We demonstrate that the scattered wave packets experience anomalously large time and frequency shifts in such near-zero scattering. These shifts reveal close analogies with the Goos–Hänchen beam shifts and quantum weak measurements of the momentum in a vortex wavefunction. We verify our general theory by an optical experiment using the near-zero transmission (near-critical coupling) of Gaussian pulses propagating through a nano-fibre with a side-coupled toroidal micro-resonator. Measurements demonstrate the amplification of the time delays from the typical inverse-resonator-linewidth scale to the pulse-duration scale. PMID:27841269

  14. Spiral-Based Phononic Plates: From Wave Beaming to Topological Insulators

    NASA Astrophysics Data System (ADS)

    Foehr, André; Bilal, Osama R.; Huber, Sebastian D.; Daraio, Chiara

    2018-05-01

    Phononic crystals and metamaterials can sculpt elastic waves, controlling their dispersion using different mechanisms. These mechanisms are mostly Bragg scattering, local resonances, and inertial amplification, derived from ad hoc, often problem-specific geometries of the materials' building blocks. Here, we present a platform that ultilizes a lattice of spiraling unit cells to create phononic materials encompassing Bragg scattering, local resonances, and inertial amplification. We present two examples of phononic materials that can control waves with wavelengths much larger than the lattice's periodicity. (1) A wave beaming plate, which can beam waves at arbitrary angles, independent of the lattice vectors. We show that the beaming trajectory can be continuously tuned, by varying the driving frequency or the spirals' orientation. (2) A topological insulator plate, which derives its properties from a resonance-based Dirac cone below the Bragg limit of the structured lattice of spirals.

  15. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    DOE PAGES

    García-Chocano, Victor M.; López-Rios, Tomás; Krokhin, Arkadii; ...

    2011-12-23

    Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in amore » channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.« less

  16. Combining IRIS/Hinode Observations and Modeling: a Pathfinder for Coronal Heating

    NASA Astrophysics Data System (ADS)

    Antolin, P.; Okamoto, J.; De Pontieu, B.

    2015-12-01

    The combination of imaging and spectroscopic instruments with multiple temperature diagnostics at high spatial, temporal and spectral resolution can allow to recover the 3D plasma flow and thermodynamic evolution associated with specific coronal heating mechanisms. Although very hard considering the complexity of the solar atmosphere, this approach is becoming possible now through combination of instruments such as IRIS and Hinode, and with proper guiding from advanced numerical simulations and forward modeling. In this talk I will review recent examples of this approach, focusing on a particular, recently published, case study, that serves as a pathfinder in the search for the dominant coronal heating mechanism. In this case, resonant absorption, a long hypothesised wave-related energy conversion mechanism is spotted in action for the first time, and is characterised by a peculiar 3D motion of the plasma. With the help of 3D MHD numerical simulations and forward modeling the observational signatures of resonant absorption are characterised, matching very well the observational results. The process through which this mechanism can lead to observed significant heating in the solar corona is further identified: the resonant flow becomes turbulent following dynamic instabilities and heats the plasma. I will show how this resonance + instability process is expected in different scenarios of the solar atmosphere (the corona, prominences and spicules) and can potentially explain several observed features that remain so far unexplained.

  17. Algorithm of resonance orders for the objects

    NASA Astrophysics Data System (ADS)

    Zhang, YongGang; Zhang, JianXue

    2018-03-01

    In mechanical engineering, the object resonance phenomena often occur when the external incident wave frequency is close to object of the natural frequency. Object resonance phenomena get the maximum value when the external incident frequency is equal to object the natural frequency. Experiments found that resonance intension of the object is changed, different objects resonance phenomena present different characteristics of ladders. Based on object orders resonance characteristics, the calculation method of object orders resonance is put forward in the paper, and the application for the light and sound waves on the seven order resonance characteristics by people feel, the result error is less than 1%.Visible in this paper, the method has high accuracy and usability. The calculation method reveals that some object resonance occur present order characteristic only four types, namely the first-orders resonance characteristics, third-orders characteristics, five orders characteristic, and seven orders characteristic.

  18. Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface

    NASA Astrophysics Data System (ADS)

    Mao, Chenyang; Yang, Yang; He, Xiaoxiang; Zheng, Jingming; Zhou, Chun

    2017-12-01

    In this paper, a broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface is proposed. The proposed metasurface can effectively convert linear-polarized (TE/TM) incident wave into the reflected wave with three different polarizations within the frequency bands of 5.5-22.75 GHz. Based on the electric and magnetic resonant features of the double-L-shaped structure, the proposed metasurface can convert linearly polarized waves into cross-polarized waves at three resonant frequency bands. Furthermore, the incident linearly polarized waves can be effectively converted into left/right handed circular-polarized (LHCP and RHCP) waves at other four non-resonance frequency bands. Thus, the proposed metasurface can be regarded as a seven-band multi-polarization converter. The prototype of the proposed polarization converter is analyzed and measured. Both simulated and measured results show the 3-dB axis ratio bandwidth of circular polarization bands and the high polarization conversion efficiency of cross-polarization bands when the incident wave changes from 0° to 30° at both TE and TM modes.

  19. Like cures like: a neuroimmunological model based on electromagnetic resonance.

    PubMed

    Shahabi, Shahram; Kasariyans, Aditya; Noorbakhsh, Farshid

    2013-12-01

    Recent investigations have pointed to the production of characteristic electromagnetic (EM) waves in highly diluted sterile filtrates of different microorganisms and their associated DNA molecules. Analysis of these diluted solutions that are prepared using methods almost identical to the way that homeopathic medicines are prepared has pointed to the existence of nanostructures capable of emitting EM waves. Combining these results with findings that point to the interaction of EM waves with sensory nerves with subsequent activation of homeostatic efferent pathways, we propose a model to describe mechanisms underlying the effects of homeopathic remedies. THE MODEL: Living cells and tissues are capable of generating EM waves in their physiological conditions. When a cell deviates from its physiological state, in addition to normal EM emissions, it starts to produce EM waves with altered characteristics. According to our model, the main cause of the therapeutic effects of homeopathic remedies is the occurrence of resonance between the non-physiological EM waves of the patient and extremely low-frequency EM waves produced by nanostructures present in the homeopathic remedy. Resonance occurs if the frequency and amplitude characteristics of the patient's non-physiological EM waves and those produced by nanostructures of the applied homeopathic remedy are similar. Once resonance occurs, stimulation of the patient's sensory neurons, which are sensitized due to inflammation of any origin, leads to triggering of different regulatory mechanisms, including the activation of descending antinociceptive and/or cholinergic anti-inflammatory pathways, which leads to the restoration of homeostasis.

  20. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  1. First report of resonant interactions between whistler mode waves in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Gao, Xinliang; Lu, Quanming; Wang, Shui

    2017-06-01

    Nonlinear physics related to whistler mode waves in the Earth's magnetosphere are now becoming a hot topic. In this letter, based on Time History of Events and Macroscale Interactions during Substorms waveform data, we report several interesting whistler mode wave events, where the upper band whistler mode waves are believed to be generated through the nonlinear wave-wave coupling between two lower band waves. This is the first report on resonant interactions between whistler mode waves in the Earth's magnetosphere. In these events, the two lower band whistler mode waves are observed to have oppositely propagating directions, while the generated upper band wave has the same propagating direction as the lower band wave with the relatively higher frequency. Moreover, the wave normal angle of the excited upper band wave is usually larger than those of two lower band whistler mode waves. Our results reveal the large diversity of the evolution of whistler mode waves in the Earth's magnetosphere.

  2. Characterization of a Continuous Wave Laser for Resonance Ionization Mass Spectroscopy Analysis in Nuclear Forensics

    DTIC Science & Technology

    2015-06-01

    OF A CONTINUOUS WAVE LASER FOR RESONANCE IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS by Sunny G. Lau June 2015 Thesis...IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS 5. FUNDING NUMBERS 6. AUTHOR(S) Sunny G. Lau 7. PERFORMING ORGANIZATION NAME(S) AND...200 words) The application of resonance ionization mass spectroscopy (RIMS) to nuclear forensics involves the use of lasers to selectively ionize

  3. Enhanced Sensitivity of Novel Surface Acoustic Wave Microelectromechanical System-Interdigital Transducer Gyroscope

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Oh, Haekwan; Lee, Keekeun; Yoon, Sungjin; Yang, Sangsik

    2009-06-01

    In this paper, we present a novel microelectromechanical system-interdigital transducer (MEMS-IDT) surface acoustic wave (SAW) gyroscope with an 80 MHz central frequency on a 128° YX LiNbO3 wafer. The developed MEMS-IDT gyroscope is composed of a two-port SAW resonator, a dual delay line oscillator, and metallic dots. The SAW resonator provides a stable standing wave, and the vibrating metallic dot at an antinode of the standing wave induces the second SAW in the normal direction of its vibrating axis. The dual delay line oscillator detects the Coriolis force by comparing the resonant frequencies between two oscillators through the interference effect. The coupling of mode (COM) modeling was used to extract the optimal design parameters prior to fabrication. In the electrical testing by the network analyzer, the fabricated SAW resonator and delay lines showed low insertion loss and similar operation frequencies between a resonator and delay lines. When the device was rotated, the resonant frequency differences between two oscillators linearly varied owing to the Coriolis force. The obtained sensitivity was approximately 119 Hz deg-1 s-1 in the angular rate range of 0-1000 deg/s. Satisfactory linearity and superior directivity were also observed in the test.

  4. Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei

    2018-03-01

    This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.

  5. Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.

    PubMed

    Krafft, C; Volokitin, A

    2013-05-01

    Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.

  6. An acousto-optic sensor based on resonance grating waveguide structure

    PubMed Central

    Xie, Antonio Jou; Song, Fuchuan; Seo, Sang-Woo

    2014-01-01

    This paper presents an acousto-optic (AO) sensor based on resonance grating waveguide structure. The sensor is fabricated using elastic polymer materials to achieve a good sensitivity to ultrasound pressure waves. Ultrasound pressure waves modify the structural parameters of the sensor and result in the optical resonance shift of the sensor. This converts into a light intensity modulation. A commercial ultrasound transducer at 20 MHz is used to characterize a fabricated sensor and detection sensitivity at different optical source wavelength within a resonance spectrum is investigated. Practical use of the sensor at a fixed optical source wavelength is presented. Ultimately, the geometry of the planar sensor structure is suitable for two-dimensional, optical pressure imaging applications such as pressure wave detection and mapping, and ultrasound imaging. PMID:25045203

  7. Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.

    1995-01-01

    The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.

  8. Langasite, langanite, and langatate bulk-wave Y-cut resonators.

    PubMed

    Smythe, R C; Helmbold, R C; Hague, G E; Snow, K A

    2000-01-01

    Materials in the langasite family are of current interest for both bulk wave and surface wave devices. Piano-convex Y-cut bulk wave resonators have been built and tested on overtones 1 through 9 using LGS (langasite; La(3)Ga(5)SiO(14)), LGN (langanite; La(3)Ga(5.5)Nb(0.5)O(14)), and LGT (langatate; La(3)Ga(5.5)Ta(5.5)O(14)). Frequencies and motional inductances are compared with calculated values, with good agreement except for the motional inductance of LGT. For all three materials, frequency variation is an essentially parabolic function of temperature. For LGN and LGT, reported values of the Q-frequency product are significantly above the classical limit for AT-cut quartz. A maximum 4 f value of 25.6x10(6), where frequency is in megahertz;, was observed for an LGT resonator; for an unplated resonator, 29.2x10(6) was measured. Still higher values are believed possible.

  9. Integrated coherent matter wave circuits

    DOE PAGES

    Ryu, C.; Boshier, M. G.

    2015-09-21

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less

  10. Monitoring of Soft Deposition Layers in Liquid-Filled Tubes with Guided Acoustic Waves Excited by Clamp-on Transducers.

    PubMed

    Tietze, Sabrina; Singer, Ferdinand; Lasota, Sandra; Ebert, Sandra; Landskron, Johannes; Schwuchow, Katrin; Drese, Klaus Stefan; Lindner, Gerhard

    2018-02-09

    The monitoring of liquid-filled tubes with respect to the formation of soft deposition layers such as biofilms on the inner walls calls for non-invasive and long-term stable sensors, which can be attached to existing pipe structures. For this task a method is developed, which uses an ultrasonic clamp-on device. This method is based on the impact of such deposition layers on the propagation of circumferential guided waves on the pipe wall. Such waves are partly converted into longitudinal compressional waves in the liquid, which are back-converted to guided waves in a circular cross section of the pipe. Validating this approach, laboratory experiments with gelatin deposition layers on steel tubes exhibited a distinguishable sensitivity of both wave branches with respect to the thickness of such layers. This allows the monitoring of the layer growth.

  11. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.

    2014-01-01

    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  12. Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves.

    PubMed

    Gao, Huidong; Rose, Joseph L

    2009-02-01

    Ice accumulation on airfoils has been identified as a primary cause of many accidents in commercial and military aircraft. To improve aviation safety as well as reduce cost and environmental threats related to aircraft icing, sensitive, reliable, and aerodynamically compatible ice detection techniques are in great demand. Ultrasonic guided-wave-based techniques have been proved reliable for "go" and "no go" types of ice detection in some systems including the HALO system, in which the second author of this paper is a primary contributor. In this paper, we propose a new model that takes the ice layer into guided-wave modeling. Using this model, the thickness and type of ice formation can be determined from guided-wave signals. Five experimental schemes are also proposed in this paper based on some unique features identified from the guided- wave dispersion curves. A sample experiment is also presented in this paper, where a 1 mm thick glaze ice on a 2 mm aluminum plate is clearly detected. Quantitative match of the experiment data to theoretical prediction serves as a strong support for future implementation of other testing schemes proposed in this paper.

  13. Ultrasonic guided wave sensing characteristics of large area thin piezo coating

    NASA Astrophysics Data System (ADS)

    Rathod, V. T.; Jeyaseelan, A. Antony; Dutta, Soma; Mahapatra, D. Roy

    2017-10-01

    This paper reports on the characterization method and performance enhancement of thin piezo coating for ultrasonic guided wave sensing applications. We deposited the coatings by an in situ slurry coating method and studied their guided wave sensing properties on a one-dimensional metallic beam as a substrate waveguide. The developed piezo coatings show good sensitivity to the longitudinal and flexural modes of guided waves. Sensing voltage due to the guided waves at various different ultrasonic frequencies shows a linear dependence on the thickness of the coating. The coatings also exhibit linear sensor output voltage with respect to the induced dynamic strain magnitude. Diameter/size of the piezo coatings strongly influences the voltage response in relation to the wavelength. The proposed method used a characterization set-up involving coated sensors, reference transducers and an analytical model to estimate the piezoelectric coefficient of the piezo coating. The method eliminates the size dependent effect on the piezo property accurately and gives further insight to design better sensors/filters with respect to frequency/wavelength of interest. The developed coatings will have interesting applications in structural health monitoring (SHM) and internet of things (IOT).

  14. Theoretical investigation of resonance frequencies in long wavelength electromagnetic wave scattering process from plasma prolate and oblate spheroids placed in a dielectric layer

    NASA Astrophysics Data System (ADS)

    Ahmadizadeh, Y.; Jazi, B.; Abdoli-Arani, A.

    2014-01-01

    Response of a prolate spheroid plasma and/or an oblate spheroid plasma in presence of long wavelength electromagnetic wave has been studied. The resonance frequencies of these objects are obtained and it is found that they reduce to the resonance frequency of spherical cold plasma. Moreover, the resonant frequencies of prolate spheroid plasma and oblate spheroid plasma covered by a dielectric are investigated as well. Furthermore, their dependency on dielectric permittivity and geometry dimensions is simulated.

  15. Stability of standing spin wave in permalloy thin film studied by anisotropic magnetoresistance effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanoi, K.; Yokotani, Y.; Cui, X.

    2015-12-21

    We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of themore » standing spin wave is an important advantage for the high power operation of the spin-wave device.« less

  16. Integro-differential modeling of ICRH wave propagation and damping at arbitrary cyclotron harmonics and wavelengths in tokamaks

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.

    2014-02-01

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester & R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063], the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester & E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.

  17. Percutaneous magnetic resonance imaging-guided bone tumor management and magnetic resonance imaging-guided bone therapy.

    PubMed

    Sequeiros, Roberto Blanco; Fritz, Jan; Ojala, Risto; Carrino, John A

    2011-08-01

    Magnetic resonance imaging (MRI) is promising tool for image-guided therapy. In musculoskeletal setting, image-guided therapy is used to direct diagnostic and therapeutic procedures and to steer patient management. Studies have demonstrated that MRI-guided interventions involving bone, soft tissue, joints, and intervertebral disks are safe and in selected indications can be the preferred action to manage clinical situation. Often, these procedures are technically similar to those performed in other modalities (computed tomography, fluoroscopy) for bone and soft tissue lesions. However, the procedural perception to the operator can be very different to other modalities because of the vastly increased data.Magnetic resonance imaging guidance is particularly advantageous should the lesion not be visible by other modalities, for selective lesion targeting, intra-articular locations, cyst aspiration, and locations adjacent to surgical hardware. Palliative tumor-related pain management such as ablation therapy forms a subset of procedures that are frequently performed under MRI. Another suitable entity for MRI guidance are the therapeutic percutaneous osseous or joint-related benign or reactive conditions such as osteoid osteoma, epiphyseal bone bridging, osteochondritis dissecans, bone cysts, localized bone necrosis, and posttraumatic lesions. In this article, we will describe in detail the technical aspects of performing MRI-guided therapeutic musculoskeletal procedures as well as the clinical indications.

  18. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    NASA Astrophysics Data System (ADS)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  19. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  20. Ultrasonic signal enhancement by resonator techniques

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1973-01-01

    Ultrasonic resonators increase experimental sensitivity to acoustic dispersion and changes in attenuation. Experimental sensitivity enhancement line shapes are presented which were obtained by modulating the acoustic properties of a CdS resonator with a light beam. Small changes in light level are made to produce almost pure absorptive or dispersive changes in the resonator signal. This effect is due to the coupling of the ultrasonic wave to the CdS conductivity which is proportional to incident light intensity. The resonator conductivity is adjusted in this manner to obtain both dispersive and absorptive sensitivity enhancement line shapes. The data presented verify previous thoretical calculations based on a propagating wave model.

  1. On the Resonant Behavior of a Weakly Compressible Water Layer During Tsunamigenic Earthquakes

    NASA Astrophysics Data System (ADS)

    Cecioni, Claudia; Bellotti, Giorgio

    2018-01-01

    Tsunamigenic earthquakes trigger pressure waves in the ocean, given the weak compressibility of the sea water. For particular conditions, a resonant behavior of the water layer can occur, which influences the energy transfer from the sea-bed motion to the ocean. In this paper, the resonance conditions are explained and analyzed, focusing on the hydro-acoustic waves in the proximity of the earthquake area. A preliminary estimation of the generation parameters (sea-bed rising time, velocity) is given, by means of parametric numerical simulations for simplified conditions. The results confirm the importance of measuring, modeling, and interpreting such waves for tsunami early detection and warning.

  2. On the Resonant Behavior of a Weakly Compressible Water Layer During Tsunamigenic Earthquakes

    NASA Astrophysics Data System (ADS)

    Cecioni, Claudia; Bellotti, Giorgio

    2018-04-01

    Tsunamigenic earthquakes trigger pressure waves in the ocean, given the weak compressibility of the sea water. For particular conditions, a resonant behavior of the water layer can occur, which influences the energy transfer from the sea-bed motion to the ocean. In this paper, the resonance conditions are explained and analyzed, focusing on the hydro-acoustic waves in the proximity of the earthquake area. A preliminary estimation of the generation parameters (sea-bed rising time, velocity) is given, by means of parametric numerical simulations for simplified conditions. The results confirm the importance of measuring, modeling, and interpreting such waves for tsunami early detection and warning.

  3. Cloaks for suppression or enhancement of scattering of diffuse photon density waves

    NASA Astrophysics Data System (ADS)

    Renthlei, Lalruatfela; Ramakrishna, S. Anantha; Wanare, Harshawardhan

    2018-07-01

    Enhancement of wave-like characteristics of heavily damped diffuse photon density waves in a random medium by amplification can induce strongly localised resonances. These resonances can be used to either suppress or enhance scattering from an inhomogeneity in the random medium by cloaking the inhomogeneous region by a shell of random medium with the correct levels of absorption or amplification. A spherical core-shell structure consisting of a shell of a random amplifying medium is shown to enhance or suppress specific resonant modes. A shell with an absorbing random medium is also shown to suppress scattering which can also be used for cloaking the core region.

  4. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to saturate to a constant value due to the effects of nonlinear viscous damping. A qualitatively similar behaviour has also been predicted for the damping of nonlinear density waves, as described within a streamline formalism (Borderies, Goldreich & Tremaine [1985]). The damping lengths which follow from the weakly nonlinear model depend more or less strongly on a set of different input parameters, such as the viscosity and the surface density of the unperturbed ring state. Further, they depend on the wave's amplitude at resonance. For a real wave, which has been excited by an external satellite, this amplitude can be deduced from the magnitude of the satellite's forcing potential. Appart from that, hydrodynamical simulations are being developed to study the nonlinear damping of resonantly forced density waves.

  5. Wave energy transfer in elastic half-spaces with soft interlayers.

    PubMed

    Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey

    2015-04-01

    The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.

  6. Observation of Hamiltonian chaos and its control in wave particle interaction

    NASA Astrophysics Data System (ADS)

    Doveil, F.; Macor, A.; Aïssi, A.

    2007-12-01

    Wave-particle interactions are central in plasma physics. They can be studied in a traveling wave tube (TWT) to avoid intrinsic plasma noise. This led to detailed experimental analysis of the self-consistent interaction between unstable waves and an either cold or warm beam. More recently a test cold electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated with a single wave is also observed, as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior when increasing the excitation amplitude in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport which prevent electrons from escaping from a given velocity region as well as its robustness are successfully tested. The underlying concepts extend far beyond the field of electron devices and plasma physics.

  7. Travelling wave resonators fabricated with low-loss hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lipka, Timo; Amthor, Julia; Trieu, Hoc Khiem; Müller, Jörg

    2013-05-01

    Low-loss hydrogenated amorphous silicon is employed for the fabrication of various planar integrated travelling wave resonators. Microring, racetrack, and disk resonators of different dimensions were fabricated with CMOS-compatible processes and systematically investigated. The key properties of notch filter ring resonators as extinction ratio, Q-factor, free spectral range, and the group refractive index were determined for resonators of varying radius, thereby achieving critically coupled photonic systems with high extinction ratios of about 20 dB for both polarizations. Racetrack resonators that are arranged in add/drop configuration and high quality factor microdisk resonators were optically characterized, with the microdisks exhibiting Q-factors of greater than 100000. Four-channel add/drop wavelength-division multiplexing filters that are based on cascaded racetrack resonators are studied. The design, the fabrication, and the optical characterization are presented.

  8. Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Tsurutani, B. T.

    1989-01-01

    Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.

  9. In Situ Observations of Harmonic Alfvén Waves and Associated Heavy Ion Heating

    NASA Astrophysics Data System (ADS)

    Chen, Huayue; Gao, Xinliang; Lu, Quanming; Wang, Shui

    2018-06-01

    Resonant ion heating by high-frequency Alfvén waves has long been believed to be the primary dissipation mechanism for solar coronal heating, and these high-frequency Alfvén waves are considered to be generated via cascade from low-frequency Alfvén waves. In this study, we report an unusual harmonic Alfvén event from in situ observations by the Van Allen Probes in the magnetosphere, having an environment similar to that in the solar corona. The harmonic Alfvén waves, which propagate almost along the wave vector of the fundamental waves, are considered to be generated due to the interaction between quasi-parallel Alfvén waves and plasma density fluctuations with almost identical frequency. These high-frequency harmonic Alfvén waves can then cyclotron resonantly heat the heavy ions. Our observations provide an important insight into solar corona heating by Alfvén waves.

  10. Lamb wave propagation in monocrystalline silicon wafers.

    PubMed

    Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.

  11. PITCH-ANGLE SCATTERING: RESONANCE VERSUS NONRESONANCE, A BASIC TEST OF THE QUASILINEAR DIFFUSIVE RESULT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragot, B. R.

    2012-01-01

    Due to the very broad range of the scales available for the development of turbulence in space and astrophysical plasmas, the energy at the resonant scales of wave-particle interaction often constitutes only a tiny fraction of the total magnetic turbulent energy. Despite the high efficiency of resonant wave-particle interaction, one may therefore question whether resonant interaction really is the determining interaction process between particles and turbulent fields. By evaluating and comparing resonant and nonresonant effects in the frame of a quasilinear calculation, the dominance of resonance is here put to the test. By doing so, a basic test of themore » classical resonant quasilinear diffusive result for the pitch-angle scattering of charged energetic particles is also performed.« less

  12. Field-incidence noise transmission loss of general aviation aircraft double wall configurations

    NASA Astrophysics Data System (ADS)

    Grosveld, F. W.

    1984-01-01

    Theoretical formulations have been developed to describe the transmission of reverberant sound through an infinite, semi-infinite and a finite double panel structure. The model incorporates the fundamental resonance frequencies of each of the panels, the mass-air-mass resonances of the structure, the standing wave resonances in the cavity between the panels and finally the coincidence resonance regions, where the exciting sound pressure wave and flexural waves of each of the panels coincide. It is shown that phase cancellation effects of pressure waves reflected from the cavity boundaries back into the cavity allows the transmission loss of a finite double panel structure to be approximated by a finite double panel mounted in an infinite baffle having no cavity boundaries. Comparison of the theory with high quality transmission loss data yields good agreement in the mass-controlled frequency region. It is shown that the application of acoustic blankets to the double panel structure does not eliminate the mass-air-mass resonances if those occur at low frequencies. It is concluded that this frequency region of low noise transmission loss is a potential interior noise problem area for propeller driven aircraft having a double panel fuselage construction.

  13. Dual Mode Thin Film Bulk Acoustic Resonators (FBARs) Based on AlN, ZnO and GaN Films with Tilted c-Axis Orientation

    DTIC Science & Technology

    2010-01-01

    TERMS MEMS , acoustic wave devices, acoustic wave sensors Qing-Ming Wang University of Pittsburgh 123 University Place University Club Pittsburgh, PA...resonators,” Proc. SPIE Vol. 6223, 62230I, Micro ( MEMS ) and Nanotechnologies for Space Applications; Thomas George, Zhong-Yang Cheng; Eds. (May...microelectromechanical resonators has been recognized as a technological challenge in the current microelectronics and MEMS development. The

  14. Damage evaluation by a guided wave-hidden Markov model based method

    NASA Astrophysics Data System (ADS)

    Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin

    2016-02-01

    Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.

  15. Monitoring uniform and localized corrosion in reinforced mortar using high-frequency guided longitudinal wages

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.

    2008-03-01

    High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.

  16. Numerical investigation on an array of Helmholtz resonators for the reduction of micro-pressure waves in modern and future high-speed rail tunnel systems

    NASA Astrophysics Data System (ADS)

    Tebbutt, J. A.; Vahdati, M.; Carolan, D.; Dear, J. P.

    2017-07-01

    Previous research has proposed that an array of Helmholtz resonators may be an effective method for suppressing the propagation of pressure and sound waves, generated by a high-speed train entering and moving in a tunnel. The array can be used to counteract environmental noise from tunnel portals and also the emergence of a shock wave in the tunnel. The implementation of an array of Helmholtz resonators in current and future high-speed train-tunnel systems is studied. Wave propagation in the tunnel is modelled using a quasi-one-dimensional formulation, accounting for non-linear effects, wall friction and the diffusivity of sound. A multi-objective genetic algorithm is then used to optimise the design of the array, subject to the geometric constraints of a demonstrative tunnel system and the incident wavefront in order to attenuate the propagation of pressure waves. It is shown that an array of Helmholtz resonators can be an effective countermeasure for various tunnel lengths. In addition, the array can be designed to function effectively over a wide operating envelope, ensuring it will still function effectively as train speeds increase into the future.

  17. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    NASA Astrophysics Data System (ADS)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-11-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  18. Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Resonant-Triad Interaction

    NASA Technical Reports Server (NTRS)

    Lee, Sang Soo

    1998-01-01

    The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented using the generalized scaling of Lee. It is shown that resonant-triads can interact nonlinearly within the common critical layer when their (fundamental) Strouhal numbers are different by a factor whose magnitude is of the order of the growth rate multiplied by the wavenumber of the instability wave. Since the growth rates of the instability modes become larger and the critical layers become thicker as the instability waves propagate downstream, the frequency-detuned resonant-triads that grow independently of each other in the upstream region can interact nonlinearly in the later downstream stage. In the final stage of the non-equilibrium critical-layer evolution, a wide range of instability waves with the scaled frequencies differing by almost an Order of (l) can nonlinearly interact. Low-frequency modes are also generated by the nonlinear interaction between oblique waves in the critical layer. The system of partial differential critical-layer equations along with the jump equations are presented here. The amplitude equations with their numerical solutions are given in Part 2. The nonlinearly generated low-frequency components are also investigated in Part 2.

  19. Low frequency piezoresonance defined dynamic control of terahertz wave propagation.

    PubMed

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G; Bhalla, Amar S; Guo, Ruyan

    2016-11-30

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO 3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  20. High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures.

    PubMed

    Masserey, Bernard; Raemy, Christian; Fromme, Paul

    2014-09-01

    Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

Top