Sample records for wave induced ring

  1. Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations

    NASA Astrophysics Data System (ADS)

    Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui

    2018-01-01

    Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.

  2. Self-consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2. Wave Induced Ring Current Precipitation and Thermal Electron Heating

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.

    2007-01-01

    This paper continues presentation and discussion of the results from our new global self-consistent theoretical model of interacting ring current ions and propagating electromagnetic ion cyclotron waves [Khazanov et al., 2006]. To study the effects of electromagnetic ion cyclotron wave propagation and refraction on the wave induced ring current precipitation and heating of the thermal plasmaspheric electrons, we simulate the May 1998 storm. The main findings after a simulation can be summarized as follows. Firstly, the wave induced ring current precipitation exhibits quite a lot of fine structure, and is highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 x 10(exp 6) (cm(raised dot) s(raised dot) sr(raised dot) (sup -1)) are observed during the maill and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not connected to the most intense waves in simple manner. The characteristics of the wave power spectral density distribution over the wave normal angle are extremely crucial for the effectiveness of the ring current ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from RAM [Kozyra et al., 1997a] reveals that although we observe a qualitative agreement between the localizations of the wave induced precipitations in the models, there is no quantitative agreement between the magnitudes of the fluxes. The quantitative differences are mainly due to a qualitative difference between the characteristics of the wave power spectral density distributions over the wave normal angle in RAM and in our model. Thirdly, the heat fluxes to plasmaspheric electrons caused by Landau resonate energy absorption from electromagnetic ion cyclotron waves are observed in the postnoon-premidnight MLT sector, and can reach the magnitude of 10(exp 11) eV/(cm(sup 2)(raised dot)s). The Coulomb energy degradation of the RC H(+) and O(+) ions maximizes at about 10(exp 11) (eV/(cm(sup 2) (raised dot) s), and typically leads to electron energy deposition rates of about 2(raised dot) 10(exp 10) (eV/(cm(sup 2)(raised dot)s) which are observed during two periods; 32-48 hours, and 76-86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the ring current with the plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, ring current, and topside ionosphere [Gurgiolo et al., 2005]. Finally, the wave induced intense electron heating has a structure of the spot-like patches along the most enhanced density gradients in the plasmasphere boundary layer and can be a possible driver to the observed but still not explained small-scale structures of enhanced emissions in the stable auroral red arcs.

  3. Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  4. Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives them out of the loss cone on the dayside. So convection and wave scattering reinforce each other in the nightside, but interfere in the dayside sector.

  5. External front instabilities induced by a shocked particle ring.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2014-10-01

    The dispersion of a cylindrical particle ring by a blast or shock wave induces the formation of coherent structures which take the form of particle jets. A blast wave, issuing from the discharge of a planar shock wave at the exit of a conventional shock tube, is generated in the center of a granular medium ring initially confined inside a Hele-Shaw cell. With the present experimental setup, under impulsive acceleration, a solid particle-jet formation is observed in a quasi-two-dimensional configuration. The aim of the present investigation is to observe in detail the formation of very thin perturbations created around the external surface of the dispersed particle layer. By means of fast flow visualization with an appropriate recording window, we focus solely on the first instants during which the external particle ring becomes unstable. We find that the critical area of the destabilization of the external ring surface is constant regardless of the acceleration of the initial layer. Moreover, we observe in detail the external front perturbation wavelength, rendered dimensionless by the initial ring perimeter, and follow its evolution with the initial particle layer acceleration. We report this quantity to be constant regardless of the evolution of the initial particle layer acceleration. Finally, we can reasonably assert that external front perturbations depend solely on the material of the particles.

  6. Imaging electron wave functions inside open quantum rings.

    PubMed

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  7. The Effects of Hydrogen Band EMIC Waves on Ring Current H+ Ions

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu

    2017-12-01

    Hydrogen band electromagnetic ion cyclotron (EMIC) waves have received much attention recently because they are found to frequently span larger spatial areas than the other band EMIC waves. Using test particle simulations, we study the nonlinear effects of hydrogen band EMIC waves on ring current H+ ions. A dimensionless parameter R is used to characterize the competition between wave-induced and adiabatic motions. The results indicate that there are three regimes of wave-particle interactions for typical 35 keV H+ ions at L = 5: diffusive (quasi-linear) behavior when αeq ≤ 35° (R ≥ 2.45), the nonlinear phase trapping when 35° < αeq < 50° (0.75 < R < 2.45), and both the nonlinear phase bunching and phase trapping when αeq ≥ 50° (R ≤ 0.75). The phase trapping can transport H+ ions toward large pitch angle, while the phase bunching has the opposite effect. The phase-trapped H+ ions can be significantly accelerated (from 35 keV to over 500 keV) in about 4 min and thus contribute to the formation of high energy components of ring current ions. The results suggest that the effect of hydrogen band EMIC waves is not ignorable in the nonlinear acceleration and resonance scattering of ring current H+ ions.

  8. High-power microwave-induced TM{sub 01} plasma ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schamiloglu, E.; Jordan, R.; Moreland, L.D.

    1996-02-01

    Open-shutter photography was used to capture the air breakdown pattern induced by a TM{sub 01} mode radiated by a high-power backward wave oscillator. The resultant plasma ring was formed in air adjacent to a conical horn antenna fitted with a membrane to keep the experiment under vacuum. This image was digitized and further processed using Khoros 2.0 software to obtain the dimensions of the plasma ring. This information was used in an air breakdown analysis to estimate the radiated power, and agrees within 10% with the power measured using field mapping with an open-ended WR-90 waveguide.

  9. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces.

    PubMed

    Mou, Nanli; Sun, Shulin; Dong, Hongxing; Dong, Shaohua; He, Qiong; Zhou, Lei; Zhang, Long

    2018-04-30

    Electromagnetic (EM) wave absorption plays a vital role in photonics. While metasurfaces are proposed to absorb EM waves efficiently, most of them exhibit limited bandwidth and fixed functionalities. Here, we propose a broadband and tunable terahertz (THz) absorber based on a graphene-based metasurface, which is constructed by a single layer of closely patterned graphene concentric double rings and a metallic mirror separated by an ultrathin SiO 2 layer. Plasmonic hybridization between two graphene rings significantly enlarges the absorption bandwidth, which can be further tuned by gating the graphene. Moreover, the specific design also makes our device insensitive to the incident angle and polarization state of impinging EM waves. Our results may inspire certain wave-modulation-related applications, such as THz imaging, smart absorber, tunable sensor, etc.

  10. Optical heterodyne detection for cavity ring-down spectroscopy

    DOEpatents

    Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.

    2000-07-25

    A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.

  11. Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon.

    PubMed

    Tsuboi, Yasuyuki; Shimizu, Ryosuke; Shoji, Tatsuya; Kitamura, Noboru

    2009-09-09

    We demonstrate that a photochromic reaction can be driven by irradiation from a weak, near-infrared continuous-wave (NIR-CW) laser light. A two-photon ring-opening photochromic reaction of a diarylethene (DE) derivative can be induced by irradiation with a NIR-CW laser light (lambda = 808 nm). An ultrathin polymer film doped with DE in its closed form was coated onto a gold-nanoparticle-integrated glass substrate. Upon irradiation of the sample with a CW laser at low fluence (0.1-4.0 W/cm(2)), we could clearly observe bleaching of the DE (ring-opening reaction). Following the IR irradiation, the bleached absorption could be reversibly recovered by applying UV irradiation (ring-closing reaction). We verified that the yield of the photochromic ring-opening reaction of the DE was proportional to the square of the irradiation fluence. The origin of this NIR-CW-induced two-photon photochromic reaction is an "enhancing effect" that acts on the electromagnetic field (localized surface plasmon) of the gold nanoparticles. The DE interacts with the surface plasmon and receives energy from two photons, which excites it to a state from which the ring-opening reaction can be initiated.

  12. Effect of knots on stress waves in lumber

    Treesearch

    C.C. Gerhards

    1982-01-01

    An impact stress wave was induced in the end of 2 by 6 lumber containing knots. Rather than a normal, perpendicular-to-the-axis profile in transiting by a knot, the stress wave tended to Iead in zones of clear wood in the direction of the slope of grain or slope of the annual rings and to lag behind the knot. Of three methods evaluated to time the stress wave, the...

  13. Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma.

    PubMed

    McCarren, D; Scime, E

    2015-10-01

    We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10(9) cm(-3) < plasma density <10(13) cm(-3)) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.

  14. Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves

    NASA Astrophysics Data System (ADS)

    Veysset, D.; Gutiérrez-Hernández, U.; Dresselhaus-Cooper, L.; De Colle, F.; Kooi, S.; Nelson, K. A.; Quinto-Su, P. A.; Pezeril, T.

    2018-05-01

    In this study a single laser pulse spatially shaped into a ring is focused into a thin water layer, creating an annular cavitation bubble and cylindrical shock waves: an outer shock that diverges away from the excitation laser ring and an inner shock that focuses towards the center. A few nanoseconds after the converging shock reaches the focus and diverges away from the center, a single bubble nucleates at the center. The inner diverging shock then reaches the surface of the annular laser-induced bubble and reflects at the boundary, initiating nucleation of a tertiary bubble cloud. In the present experiments, we have performed time-resolved imaging of shock propagation and bubble wall motion. Our experimental observations of single-bubble cavitation and collapse and appearance of ring-shaped bubble clouds are consistent with our numerical simulations that solve a one-dimensional Euler equation in cylindrical coordinates. The numerical results agree qualitatively with the experimental observations of the appearance and growth of large bubble clouds at the smallest laser excitation rings. Our technique of shock-driven bubble cavitation opens interesting perspectives for the investigation of shock-induced single-bubble or multibubble cavitation phenomena in thin liquids.

  15. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures.

    PubMed

    Gao, Weilu; Shu, Jie; Reichel, Kimberly; Nickel, Daniel V; He, Xiaowei; Shi, Gang; Vajtai, Robert; Ajayan, Pulickel M; Kono, Junichiro; Mittleman, Daniel M; Xu, Qianfan

    2014-03-12

    Gate-controllable transmission of terahertz (THz) radiation makes graphene a promising material for making high-speed THz wave modulators. However, to date, graphene-based THz modulators have exhibited only small on/off ratios due to small THz absorption in single-layer graphene. Here we demonstrate a ∼50% amplitude modulation of THz waves with gated single-layer graphene by the use of extraordinary transmission through metallic ring apertures placed right above the graphene layer. The extraordinary transmission induced ∼7 times near-filed enhancement of THz absorption in graphene. These results promise complementary metal-oxide-semiconductor compatible THz modulators with tailored operation frequencies, large on/off ratios, and high speeds, ideal for applications in THz communications, imaging, and sensing.

  16. Exploring the ring current of carbon nanotubes by first-principles calculations.

    PubMed

    Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian; Bao, Xinhe

    2015-02-01

    Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields.

  17. Exploring the ring current of carbon nanotubes by first-principles calculations

    PubMed Central

    Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian

    2015-01-01

    Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields. PMID:29560175

  18. Self-Consistent Ring Current Modeling with Propagating Electromagnetic Ion Cyclotron Waves in the Presence of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. To describe the RC evolution itself this study uses the ring current-atmosphere interaction model (RAM). RAM solves the gyration and bounce-averaged Boltzmann-Landau equation inside of geosynchronous orbit. Originally developed at the University of Michigan, there are now several branches of this model currently in use as describe by Liemohn namely those at NASA Goddard Space Flight Center This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at GEM meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  19. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region: The Magnetic Storm May 1-7 1998

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.

    2003-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  20. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2004-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  1. Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators

    NASA Astrophysics Data System (ADS)

    Bagci, Fulya; Akaoglu, Baris

    2017-08-01

    We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.

  2. Experimental Study of Shock Generated Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  3. Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarren, D.; Lockheed Martin, Palmdale, California 93599; Scime, E., E-mail: earl.scime@mail.wvu.edu

    2015-10-15

    We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10{sup 9} cm{sup −3} < plasma density <10{sup 13} cm{sup −3}) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.

  4. Electric currents induced by twisted light in Quantum Rings.

    PubMed

    Quinteiro, G F; Berakdar, J

    2009-10-26

    We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.

  5. Cassini RSS occultation observations of density waves in Saturn's rings

    NASA Astrophysics Data System (ADS)

    McGhee, C. A.; French, R. G.; Marouf, E. A.; Rappaport, N. J.; Schinder, P. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.

    2005-08-01

    On May 3, 2005, the first of a series of eight nearly diametric occultations by Saturn's rings and atmosphere took place, observed by the Cassini Radio Science (RSS) team. Simultaneous high SNR measurements at the Deep Space Network (DSN) at S, X, and Ka bands (λ = 13, 3.6, and 0.9 cm) have provided a remarkably detailed look at the radial structure and particle scattering behavior of the rings. By virtue of the relatively large ring opening angle (B=-23.6o), the slant path optical depth of the rings was much lower than during the Voyager epoch (B=5.9o), making it possible to detect many density waves and other ring features in the Cassini RSS data that were lost in the noise in the Voyager RSS experiment. Ultimately, diffraction correction of the ring optical depth profiles will yield radial resolution as small as tens of meters for the highest SNR data. At Ka band, the Fresnel scale is only 1--1.5 km, and thus even without diffraction correction, the ring profiles show a stunning array of density waves. The A ring is replete with dozens of Pandora and Prometheus inner Lindblad resonance features, and the Janus 2:1 density wave in the B ring is revealed with exceptional clarity for the first time at radio wavelengths. Weaker waves are abundant as well, and multiple occultation chords sample a variety of wave phases. We estimate the surface mass density of the rings from linear density wave models of the weaker waves. For stronger waves, non-linear models are required, providing more accurate estimates of the wave dispersion relation, the ring surface mass density, and the angular momentum exchange between the rings and satellite. We thank the DSN staff for their superb support of these complex observations.

  6. Love waves trains observed after the MW 8.1 Tehuantepec earthquake by an underground ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Simonelli, A.; Belfi, J.; Beverini, N.; Di Virgilio, A.; Giacomelli, U.; De Luca, G.; Igel, H.

    2017-12-01

    We report the observation and analysis of the MW 8.1 Tehuantepec earthquake-induced rotational ground motion as observed by the Gingerino ring laser gyroscope (RLG).This instrument is located inside the National laboratory of the "Istituto Nazionale di Fisica Nucleare" in Gran Sasso (Italy) in a deep underground environment.We compare the vertical rotation rate with the horizontal acceleration measured by a co-located broadband seismometer. This analysis, performed by means of a wavelet-based correlation method, permits to identify the G1,G2,G3,G4 onsets of the surface Love waves in the 120 to 280 seconds period range.

  7. Lower Hybrid Oscillations in Multicomponent Space Plasmas Subjected to Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Moore, T. E.; Liemohn, M. W.; Horwitz, J. L.

    1997-01-01

    It is found that in multicomponent plasmas subjected to Alfven or fast magnetosonic waves, such as are observed in regions of the outer plasmasphere and ring current-plasmapause overlap, lower hybrid oscillations are generated. The addition of a minor heavy ion component to a proton-electron plasma significantly lowers the low-frequency electric wave amplitude needed for lower hybrid wave excitation. It is found that the lower hybrid wave energy density level is determined by the nonlinear process of induced scattering by ions and electrons; hydrogen ions in the region of resonant velocities are accelerated; and nonresonant particles are weakly heated due to the induced scattering. For a given example, the light resonant ions have an energy gain factor of 20, leading to the development of a high-energy tail in the H(+) distribution function due to low-frequency waves.

  8. A self-mixing based ring-type fiber-optic acoustic sensor

    NASA Astrophysics Data System (ADS)

    Wang, Lutang; Wu, Chunxu; Fang, Nian

    2014-07-01

    A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.

  9. Self-Consistent Ring Current Modeling with Propagating Electromagnetic Ion Cyclotron Waves in the Presence of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMlC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. Under certain conditions, relativistic electrons, with energies greater than or equal to 1 MeV, can be removed from the outer radiation belt by EMlC wave scattering during a magnetic storm (Summers and Thorne, 2003; Albert, 2003). That is why the modeling of EMlC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMlC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMlC waves in the global dynamic of self-consistent RC - EMlC waves coupling. The results of our newly developed model that will be presented at Huntsville 2006 meeting, focusing mainly on the dynamic of EMlC waves and comparison of these results with the previous global RC modeling studies devoted to EMlC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  10. The Mass of Saturn's B ring from hidden density waves

    NASA Astrophysics Data System (ADS)

    Hedman, M. M.; Nicholson, P. D.

    2015-12-01

    The B ring is Saturn's brightest and most opaque ring, but many of its fundamental parameters, including its total mass, are not well constrained. Elsewhere in the rings, the best mass density estimates come from spiral waves driven by mean-motion resonances with Saturn's various moons, but such waves have been hard to find in the B ring. We have developed a new wavelet-based technique, for combining data from multiple stellar occultations that allows us to isolate the density wave signals from other ring structures. This method has been applied to 5 density waves using 17 occultations of the star gamma Crucis observed by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. Two of these waves (generated by the Janus 2:1 and Mimas 5:2 Inner Lindblad Resonances) are visible in individual occultation profiles, but the other three wave signatures ( associated with the Janus 3:2, Enceladus 3:1 and Pandora 3:2 Inner Lindblad Resonances ) are not visible in individual profiles and can only be detected in the combined dataset. Estimates of the ring's surface mass density derived from these five waves fall between 40 and 140 g/cm^2. Surprisingly, these mass density estimates show no obvious correlation with the ring's optical depth. Furthermore, these data indicate that the total mass of the B ring is probably between one-third and two-thirds the mass of Saturn's moon Mimas.

  11. Role of entrapped vapor bubbles during microdroplet evaporation

    NASA Astrophysics Data System (ADS)

    Putnam, Shawn A.; Byrd, Larry W.; Briones, Alejandro M.; Hanchak, Michael S.; Ervin, Jamie S.; Jones, John G.

    2012-08-01

    On superheated surfaces, the air bubble trapped during impingement grows into a larger vapor bubble and oscillates at the frequency predicted for thermally induced capillary waves. In some cases, the entrapped vapor bubble penetrates the droplet interface, leaving a micron-sized coffee-ring pattern of pure fluid. Vapor bubble entrapment, however, does not influence the evaporation rate. This is also true on laser heated surfaces, where a laser can thermally excite capillary waves and induce bubble oscillations over a broad range of frequencies, suggesting that exciting perturbations in a pinned droplets interface is not an effective avenue for enhancing evaporative heat transfer.

  12. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  13. Optical fiber having wave-guiding rings

    DOEpatents

    Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA; Barty, Christopher P. J. [Hayward, CA

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  14. Staggering Structure

    NASA Image and Video Library

    2017-09-06

    This view from NASA's Cassini spacecraft shows a wave structure in Saturn's rings known as the Janus 2:1 spiral density wave. Resulting from the same process that creates spiral galaxies, spiral density waves in Saturn's rings are much more tightly wound. In this case, every second wave crest is actually the same spiral arm which has encircled the entire planet multiple times. This is the only major density wave visible in Saturn's B ring. Most of the B ring is characterized by structures that dominate the areas where density waves might otherwise occur, but this innermost portion of the B ring is different. The radius from Saturn at which the wave originates (toward lower-right in this image) is 59,796 miles (96,233 kilometers) from the planet. At this location, ring particles orbit Saturn twice for every time the moon Janus orbits once, creating an orbital resonance. The wave propagates outward from the resonance (and away from Saturn), toward upper-left in this view. For reasons researchers do not entirely understand, damping of waves by larger ring structures is very weak at this location, so this wave is seen ringing for hundreds of bright wave crests, unlike density waves in Saturn's A ring. The image gives the illusion that the ring plane is tilted away from the camera toward upper-left, but this is not the case. Because of the mechanics of how this kind of wave propagates, the wavelength decreases with distance from the resonance. Thus, the upper-left of the image is just as close to the camera as the lower-right, while the wavelength of the density wave is simply shorter. This wave is remarkable because Janus, the moon that generates it, is in a strange orbital configuration. Janus and Epimetheus share practically the same orbit and trade places every four years. Every time one of those orbit swaps takes place, the ring at this location responds, spawning a new crest in the wave. The distance between any pair of crests corresponds to four years' worth of the wave propagating downstream from the resonance, which means the wave seen here encodes many decades' worth of the orbital history of Janus and Epimetheus. According to this interpretation, the part of the wave at the very upper-left of this image corresponds to the positions of Janus and Epimetheus around the time of the Voyager flybys in 1980 and 1981, which is the time at which Janus and Epimetheus were first proven to be two distinct objects (they were first observed in 1966). Epimetheus also generates waves at this location, but they are swamped by the waves from Janus, since Janus is the larger of the two moons. This image was taken on June 4, 2017, with the Cassini spacecraft narrow-angle camera. The image was acquired on the sunlit side of the rings from a distance of 47,000 miles (76,000 kilometers) away from the area pictured. The image scale is 1,730 feet (530 meters) per pixel. The phase angle, or sun-ring-spacecraft angle, is 90 degrees. https://photojournal.jpl.nasa.gov/catalog/PIA21627

  15. Wave-Kinetic Simulations of the Nonlinear Generation of Electromagnetic VLF Waves through Velocity Ring Instabilities

    NASA Astrophysics Data System (ADS)

    Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.

    2014-12-01

    Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].

  16. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitating Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.

    2002-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.

  17. Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes

    DOE PAGES

    Xiao, Fuliang; Zhou, Qinghua; He, Yihua; ...

    2015-09-11

    During the small storm on 14–15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lower L shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. The waves then graduallymore » cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution and higher ambient density. These results present the first report on how MS waves penetrate into the plasmasphere with the aid of the continuous proton ring distributions during weak geomagnetic activities.« less

  18. Simultaneous measurements of velocity, temperature, and pressure using rapid CW wavelength-modulation laser-induced fluorescence of OH

    NASA Technical Reports Server (NTRS)

    Chang, A. Y.; Battles, B. E.; Hanson, R. K.

    1990-01-01

    In high speed flows, laser induced fluorescence (LIF) on Doppler shifted transitions is an attractive technique for velocity measurement. LIF velocimetry was applied to combined single-point measurements of velocity, temperature, and pressure and 2-D imaging of velocity and pressure. Prior to recent research using NO, LIF velocimetry in combustion related flows relied largely on the use of seed molecules. Simultaneous, single-point LIF measurements is reported of velocity, temperature, and pressure using the naturally occurring combustion species OH. This experiment is an extension of earlier research in which a modified ring dye laser was used to make time resolved temperature measurements behind reflected shock waves by using OH absorption an in postflame gases by using OH LIF. A pair of fused-silica rhombs mounted on a single galvanonmeter in an intracavity-doubled Spectra-Physics 380 ring laser permit the UV output to be swept continuously over a few wave numbers at an effective frequency of 3kHz.

  19. Monlithic nonplanar ring oscillator and method

    NASA Technical Reports Server (NTRS)

    Nilsson, Alan C. (Inventor); Byer, Robert L. (Inventor)

    1991-01-01

    A monolithic nonplanar ring oscillator having an optically isotropic solid-state laser body for propagating laser radiation about a nonplanar ring path internal to the laser body is disclosed. The monolithic laser body is configured to produce a 2N reflection nonplanar ring light path, where N is an integer greater than or equal to 2, comprising 2N-1 total internal reflections and one reflection at a coupler in a single round trip. Undirectional traveling wave oscillation of the laser is induced by the geometry of the nonplanar ring path together with the effect of an applied magnetic field and partial polarizer characteristics of the oblique reflection from the coupler. The 6-reflection nonplanar ring oscillator makes possible otpimal unidirectional oscillation (low loss for the oscillating direction of propagation and, simultaneously high loss for the nonoscillating direction of propagation) in monolithic NPROs using materials with index of refraction smaller than the square root of 3, for example, laser glass.

  20. Structure of the Mimas 5:3 Bending Wave in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Sega, Daniel D.; Colwell, Josh E.

    2016-10-01

    Saturn's moon Mimas is on an inclined orbit with several strong vertical orbital resonances in Saturn's rings. The 5:3 inner vertical resonance with Mimas lies in the outer A ring and produces a prominent spiral bending wave (BW) that propagates away from Mimas. While dozens of density waves in Saturn's rings have been analyzed to determine local surface mass densities and viscosities, the number of bending waves is limited by the requirement for a moon on an inclined orbit and because, unlike the Lindblad resonances that excite density waves, there can be no first order vertical resonances. The Mimas 5:3 BW is the most prominent in the ring system. Bending wave theory was initially developed by Shu et al. (1983, Icarus, 53, 185-206) following the Voyager encounters with Saturn. Later, Gresh et al. (1986, Icarus, 68, 481-502) modeled radio science occultation data of the Mimas 5:3 BW with an imperfect fit to the theory. The multitude of high resolution stellar occultations observed by Cassini UVIS provides an opportunity to reconstruct the full three-dimensional structure of this wave and learn more about local ring properties. Occultations at high elevation angles out of the ring plane are insensitive to the wave structure due to the small angles of the vertical warping of the rings in the wave. They thus reveal the underlying structure in the wave region. There is a symmetric increase in optical depth throughout the Mimas 5:3 BW region. This may be due to an increase in the abundance of small particles without a corresponding increase in surface mass density. We include this feature in a ray-tracing model of the vertical structure of the wave and fit it to multiple UVIS occultations. The observed amplitude of the wave and its damping behavior of are not well-described by the Shu et al. model, which assumes a fluid-like damping mechanism. A different damping behavior of the ring, perhaps radially varying across the wave region due to differences in the particle size distribution and/or structure of the self-gravity wakes in the ring, is needed to match observations.

  1. Self-Consistent Ring Current/Electromagnetic Ion Cyclotron Waves Modeling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. For example, the EMlC waves cause the RC decay on a time scale of about one hour or less during the main phase of storms. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at the meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  2. Tailoring polarization of electromagnetically induced transparency based on non-centrosymmetric metasurfaces

    NASA Astrophysics Data System (ADS)

    Li, Hai-ming; Xue, Feng

    2017-09-01

    In this manuscript, tailoring polarization of analogy of electromagnetically induced transparency (EIT-like) based on non-centrosymmetric metasurfaces has been numerically and experimentally demonstrated. The EIT-like metamaterial is composed of a rectangle ring and two cut wires. The rectangle ring and the cut wire are chosen as the bright mode and the quasi-dark mode, respectively. Under the incident electromagnetic wave excitation, a polarization insensitive EIT-like transmission window can be observed at specific polarization angles. Within the transmission window, the phase steeply changes, which leads to the large group index. Tailoring polarization of EIT-like metamaterial with large group index at specific polarization angles may have potential application in slow light devices.

  3. Rings and Waves

    NASA Image and Video Library

    2013-09-30

    Saturn A ring is decorated with several kinds of waves. NASA Cassini spacecraft has captured a host of density waves, a bending wave, and the edge waves on the edge of the Keeler gap caused by the small moon Daphnis.

  4. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui

    Here, we present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show thatmore » the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.« less

  5. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    NASA Astrophysics Data System (ADS)

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G. D.; Xiong, Ying; Xie, Lun; Cao, Yong

    2017-09-01

    We present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.

  6. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    DOE PAGES

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui; ...

    2017-09-05

    Here, we present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show thatmore » the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.« less

  7. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  8. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2; Waves, Precipitating Ring Current Ions, and Thermal Electron Heating

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.

    2006-01-01

    This paper is dedicated to further presentations and discussions of the results from our new global self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2006; here referred to as Paper 1]. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation [for details see Paper 1]. To demonstrate the effects of the EMIC wave propagation and refraction on the RC proton precipitations and heating of the thermal plasmaspheric electrons we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. Firstly, the wave induced precipitations have a quite fine structure, and are highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 (raised dot) 10(exp 6) [(cm (raised dot) s (raised dot) sr)(sup -l)] are observed during the main and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not simply connected to the most intense EMIC waves. The character of the EMIC wave power spectral density distribution over the equatorial wave normal angle is an extremely crucial for the effectiveness of the RC ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from other ring current model [Kozyra et al., 1997] reveals that although we observe a qualitative agreement between localizations of the wave induced fluxes in the models, there is no quantitative agreement between the magnitudes of these fluxes. These differences are mainly due to a qualitative difference between the characters of the EMIC wave power spectral density distributions over the equatorial wave normal angle. Finally, the two energy sources to the plasmaspheric electrons are considered; (i) the heat fluxes caused by the EMIC wave energy absorption due to Landau resonance, and (ii) the heat fluxes due to Coulomb energy degradation of the RC o(+) ions. The heat fluxes caused by the EMIC wave energy absorption due to Landau resonance are observed in the postnoon-premidnight MLT sector, and maximize at the magnitude of 10l1 (eV/(cm(sup 2)(raised dot) s) at L=3.25, MLT=22 at 3400 UT after 1 May, 0000 UT. The greatest Coulomb energy deposition rates are about 2 (raised dot) 10(sup 10)(eV/(cm(sup 2)(raised dot) s) and observed during two periods; 32-48 hours, and 76-86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the RC with plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, the RC, and the topside ionosphere [Gurgiolo et al., 20051.

  9. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic ICWs. Initial Results: Waves and Precipitation Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Initial results from the new developed model of the interacting ring current ions and ion cyclotron waves are presented. The model described by the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another one gives wave evolution. Such system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. Calculating ion-wave relationships, on a global scale under non steady-state conditions during May 2-5, 1998 storm, we presented the data at three time cuts around initial, main, and late recovery phases of May 4, 1998 storm phase. The structure and dynamics of the ring current proton precipitating flux regions and the wave active ones are discussed in detail.

  10. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    PubMed Central

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  11. Density Waves in Saturn's Rings from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    French, R. G.; Rappaport, N. J.; Marouf, E. A.; McGhee, C. A.

    2005-12-01

    The Cassini Radio Science Team conducted a set of optimized diametric occultations by Saturn and its rings from May to September 2005, providing 11 separate probes of Saturn's ionosphere and atmosphere, and 12 optical depth profiles of the complete ring system. Each event was observed by the stations of the Deep Space Net (DSN) at three radio frequencies (S, X, Ka bands, with corresponding wavelengths of ? = 13, 3.6, and 0.9 cm). Very accurate pointing by the spacecraft and ground antennas resulted in stable baseline signal levels, and the relatively large ring opening angle (B=19-25°) permitted us to probe even quite dense ring regions with excellent SNR. The RSS occultation technique enables us to recover very fine detailed radial structure by correcting for diffraction effects. Multiple occultation chords, covering a variety of ring longitudes and ring opening angles, reveal the structure of the rings in remarkable detail, including density and bending waves, satellite wakes, and subtle variations at the 100-m radius scale. Janus and Epimetheus are responsible for a particularly rich set of density waves, and their coorbital interactions result in a complex interplay of time-variable ring structure over the 8-year libration period of the two satellites. We compare the first-order 2:1, 4:3, 5:4, and 6:5 coorbital density waves from multiple occultation chords to linear density wave models based on a dynamical model of the orbital exchange between the moons. From the observed dispersion relation of the wave crests, we infer the surface mass density and eccentricity gradient of particle streamlines, and match the detailed shapes of the wave crests using a non-linear analysis. Second-order coorbital features are also evident, and there are even hints of third-order density waves in the high SNR radio occultation data.

  12. Excitation of O+ Band EMIC Waves Through H+ Ring Velocity Distributions: Van Allen Probe Observations

    NASA Astrophysics Data System (ADS)

    Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Yao, Fei; Wang, Dedong; Funsten, Herbert O.; Wygant, John R.

    2018-02-01

    A typical case of electromagnetic ion cyclotron (EMIC) emissions with both He+ band and O+ band waves was observed by Van Allen Probe A on 14 July 2014. These emissions occurred in the morning sector on the equator inside the plasmasphere, in which region O+ band EMIC waves prefer to appear. Through property analysis of these emissions, it is found that the He+ band EMIC waves are linearly polarized and propagating quasi-parallelly along the background magnetic field, while the O+ band ones are of linear and left-hand polarization and propagating obliquely with respect to the background magnetic field. Using the in situ observations of plasma environment and particle data, excitation of these O+ band EMIC waves has been investigated with the linear growth theory. The calculated linear growth rate shows that these O+ band EMIC waves can be locally excited by ring current protons with ring velocity distributions. The comparison of the observed wave spectral intensity and the calculated growth rate suggests that the density of H+ rings providing the free energy for the instability has decreased after the wave grows. Therefore, this paper provides a direct observational evidence to the excitation mechanism of O+ band EMIC waves: ring current protons with ring distributions provide the free energy supporting the instability in the presence of rich O+ in the plasmasphere.

  13. The Nonlinear Coupling of Alfven and Lower Hybrid Waves in Space Plasma

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2004-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wave-wave interactions which are of crucial importance to magnetospheric and ionospheric plasma behavior. The excitation of lower hybrid waves (LHWs) in particular is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves may generate LHWs in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We present several examples of observational data which illustrate that the proposed mechanism is a plausible candidate to explain certain classes of LHW generation events in the ionosphere and magnetosphere and demonstrate electron and ion energization involving these processes. We discuss the morphology dynamics and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al. 2002) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  14. Collisional phase shifts of ring dark solitons in inhomogeneous Bose Einstein condensates

    NASA Astrophysics Data System (ADS)

    Peng, Ping; Li, Guan-Qiang; Xue, Ju-Kui

    2007-06-01

    The head-on collisions of two ring dark solitons in inhomogeneous Bose Einstein condensates (BECs) with thin disk-shaped potential are studied by the extended Poincaré Lighthill Kuo (PLK) perturbation method. The result shows that the system admits a solution with two concentric ring solitons, one moving inwards and the other moving outwards, which in small-amplitude limit, are described by two modified cylindrical KdV equations in the respective reference frames. In particular, the analytical phase shifts induced by the head-on collisions between two ring dark solitary waves are derived, and the result shows that the phase shifts change with the radial coordinate r according to the (1+σr)r law (where σ˜ωr2/ωz2), which are quite different with the homogeneous case.

  15. Axisymmetric Density Waves in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Hedman, Matthew; Nicholson, Philip

    2018-04-01

    Density waves in Saturn's rings are typically tightly wrapped spiral patterns generated by resonances with either Saturn's moons or structures inside the planet. However, between the Barnard and Bessel Gaps in the Cassini Division (i.e. between 120,240 and 120,300 km), there are density variations that appear to form an axisymmetric density wave, which consists of concentric regions of varying density that propagate radially through the rings. Such a wave requires some process that forces ring particles at all longitudes to pass through pericenter at the same time, and so cannot be generated by satellite resonances. Instead this particular wave appears to be excited by interference between a nearby satellite resonance and normal mode oscillations on the inner edge of the Barnard Gap. Similar axisymmetric waves may exist within the Dawes ringlet and the outermost part of the B ring, which are also just interior to resonantly confined edges that exhibit a large number of normal modes. These waves may therefore provide new insights into how resonant perturbations near an edge can propagate through a disk of material.

  16. A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..

  17. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipton, Robert, E-mail: lipton@math.lsu.edu; Polizzi, Anthony, E-mail: polizzi@math.lsu.edu

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  18. A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product

    NASA Astrophysics Data System (ADS)

    Bagci, Fulya; Akaoglu, Baris

    2018-05-01

    In this study, a classical analogue of electromagnetically induced transparency (EIT) that is completely independent of the polarization direction of the incident waves is numerically and experimentally demonstrated. The unit cell of the employed planar symmetric metamaterial structure consists of one square ring resonator and four split ring resonators (SRRs). Two different designs are implemented in order to achieve a narrow-band and wide-band EIT-like response. In the unit cell design, a square ring resonator is shown to serve as a bright resonator, whereas the SRRs behave as a quasi-dark resonator, for the narrow-band (0.55 GHz full-width at half-maximum bandwidth around 5 GHz) and wide-band (1.35 GHz full-width at half-maximum bandwidth around 5.7 GHz) EIT-like metamaterials. The observed EIT-like transmission phenomenon is theoretically explained by a coupled-oscillator model. Within the transmission window, steep changes of the phase result in high group delays and the delay-bandwidth products reach 0.45 for the wide-band EIT-like metamaterial. Furthermore, it has been demonstrated that the bandwidth and group delay of the EIT-like band can be controlled by changing the incidence angle of electromagnetic waves. These features enable the proposed metamaterials to achieve potential applications in filtering, switching, data storing, and sensing.

  19. Coherent structures in interacting vortex rings

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Xue, Jingyu; Mao, Xuerui; Caulfield, C. P.

    2017-02-01

    We investigate experimentally the nonlinear structures that develop from interacting vortex rings induced by a sinusoidally oscillating ellipsoidal disk in fluid at rest. We vary the scaled amplitude or Keulegan-Carpenter number 0.3

  20. Trial wave functions for ring-trapped ions and neutral atoms: Microscopic description of the quantum space-time crystal

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Landman, Uzi

    2017-10-01

    A constructive theoretical platform for the description of quantum space-time crystals uncovers for N interacting and ring-confined rotating particles the existence of low-lying states with proper space-time crystal behavior. The construction of the corresponding many-body trial wave functions proceeds first via symmetry breaking at the mean-field level followed by symmetry restoration using projection techniques. The ensuing correlated many-body wave functions are stationary states and preserve the rotational symmetries, and at the same time they reflect the point-group symmetries of the mean-field crystals. This behavior results in the emergence of sequences of select magic angular momenta Lm. For angular-momenta away from the magic values, the trial functions vanish. Symmetry breaking beyond the mean-field level can be induced by superpositions of such good-Lm many-body stationary states. We show that superposing a pair of adjacent magic angular momenta states leads to formation of special broken-symmetry states exhibiting quantum space-time-crystal behavior. In particular, the corresponding particle densities rotate around the ring, showing undamped and nondispersed periodic crystalline evolution in both space and time. The experimental synthesis of such quantum space-time-crystal wave packets is predicted to be favored in the vicinity of ground-state energy crossings of the Aharonov-Bohm-type spectra accessed via an externally applied, natural or synthetic, magnetic field. These results are illustrated here for Coulomb-repelling fermionic ions and for a lump of contact-interaction attracting bosons.

  1. Ring dynamics

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are discussed in a detailed analytical review and illustrated with graphs and diagrams. The streamline concept is introduced, and the phenomena associated with the transport of angular momentum are described. Particular attention is then given to (1) broad rings like those of Saturn (shepherding, density-wave excitation, gaps, bending-wave excitation, multiringlet structures, inner-edge shepherding, and the possibility of polar rings around Neptune), (2) narrow rings like those of Uranus (shepherding, ring shapes, and a self-gravity model of rigid precession), and (3) ring arcs like those seen in stellar-occultation observations of Neptune.

  2. An event database for rotational seismology

    NASA Astrophysics Data System (ADS)

    Salvermoser, Johannes; Hadziioannou, Celine; Hable, Sarah; Chow, Bryant; Krischer, Lion; Wassermann, Joachim; Igel, Heiner

    2016-04-01

    The ring laser sensor (G-ring) located at Wettzell, Germany, routinely observes earthquake-induced rotational ground motions around a vertical axis since its installation in 2003. Here we present results from a recently installed event database which is the first that will provide ring laser event data in an open access format. Based on the GCMT event catalogue and some search criteria, seismograms from the ring laser and the collocated broadband seismometer are extracted and processed. The ObsPy-based processing scheme generates plots showing waveform fits between rotation rate and transverse acceleration and extracts characteristic wavefield parameters such as peak ground motions, noise levels, Love wave phase velocities and waveform coherence. For each event, these parameters are stored in a text file (json dictionary) which is easily readable and accessible on the website. The database contains >10000 events starting in 2007 (Mw>4.5). It is updated daily and therefore provides recent events at a time lag of max. 24 hours. The user interface allows to filter events for epoch, magnitude, and source area, whereupon the events are displayed on a zoomable world map. We investigate how well the rotational motions are compatible with the expectations from the surface wave magnitude scale. In addition, the website offers some python source code examples for downloading and processing the openly accessible waveforms.

  3. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.

    PubMed

    Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli

    2017-05-01

    A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.

  4. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.

  5. From nodal-ring topological superfluids to spiral Majorana modes in cold atomic systems

    NASA Astrophysics Data System (ADS)

    He, Wen-Yu; Xu, Dong-Hui; Zhou, Benjamin T.; Zhou, Qi; Law, K. T.

    2018-04-01

    In this work, we consider a three-dimensional (3D) cubic optical lattice composed of coupled 1D wires with 1D spin-orbit coupling. When the s -wave pairing is induced through Feshbach resonance, the system becomes a topological superfluid with ring nodes, which are the ring nodal degeneracies in the bulk, and supports a large number of surface Majorana zero-energy modes. The large number of surface Majorana modes remain at zero energy even in the presence of disorder due to the protection from a chiral symmetry. When the chiral symmetry is broken, the system becomes a Weyl topological superfluid with Majorana arcs. With 3D spin-orbit coupling, the Weyl superfluid becomes a gapless phase with spiral Majorana modes on the surface. A spatial-resolved radio-frequency spectroscopy is suggested to detect this nodal-ring topological superfluid phase.

  6. Annular wave packets at Dirac points in graphene and their probability-density oscillation.

    PubMed

    Luo, Ji; Valencia, Daniel; Lu, Junqiang

    2011-12-14

    Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that, respectively, belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly from the magnetic length, expanding and shrinking ripple-rings form and disappear alternatively in a limited spread, and the wave packet resumes the Gaussian form frequently. The probability thus oscillates persistently between the central peak and the ripple-rings. If the initial Gaussian width is close to the magnetic length, the wave packet retains the Gaussian form and its height and width oscillate with a period determined by the first Landau energy. The wave-packet evolution is determined jointly by the initial state and the magnetic field, through the electronic structure of graphene in a magnetic field. © 2011 American Institute of Physics

  7. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of wave formation and the dependence on the parameters of the model.

  8. Non-linear Evolution of Velocity Ring Distributions: Generation of Whistler Waves

    NASA Astrophysics Data System (ADS)

    Mithaiwala, M.; Rudakov, L.; Ganguli, G.

    2010-12-01

    Although it is typically believed that an ion ring velocity distribution has a stability threshold, we find that they are universally unstable. This can substantially impact the understanding of dynamics in both laboratory and space plasmas. A high ring density neutralizes the stabilizing effect of ion Landau damping in a warm plasma and the ring is unstable to the generation of waves below the lower hybrid frequency- even for a very high temperature plasma. For ring densities lower than the background plasma density there is a slow instability with growth rate less than the background ion cyclotron frequency and consequently the background ion response is magnetized. This is in addition to the widely discussed fast instability where the wave growth rate exceeds the background ion cyclotron frequency and hence the background ions are effectively unmagnetized. Thus, even a low density ring is unstable to waves around the lower hybrid frequency range for any ring speed. This implies that effectively there is no velocity threshold for a sufficiently cold ring. The importance of these conclusions on the nonlinear evolution of space plasmas, in particular to solar wind-comet interaction, post-magnetospheric storm conditions, and chemical release experiments in the ionosphere will be discussed.

  9. Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.

    PubMed

    Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying

    2012-07-30

    We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.

  10. Penetration of Solar Wind Driven ULF Waves into the Earth's Inner Magnetosphere: Role in Radiation Belt and Ring Current Dynamics

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Murphy, Kyle; Rae, Jonathan; Ozeke, Louis; Milling, David

    2013-04-01

    Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. The combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes (VAP) mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy. Explaining the casual connections between plasmas in the plasmasphere (eV), ring current (keV), and radiation belt (MeV), via the intermediaries of plasma waves, is key to understanding inner magnetosphere dynamics. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  11. Role of ULF Waves in Radiation Belt and Ring Current Dynamics

    NASA Astrophysics Data System (ADS)

    Mann, I. R.; Murphy, K. R.; Rae, I. J.; Ozeke, L.; Milling, D. K.

    2013-12-01

    Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. The combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes (VAP) mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy. Explaining the casual connections between plasmas in the plasmasphere (eV), ring current (keV), and radiation belt (MeV), via the intermediaries of plasma waves, is key to understanding inner magnetosphere dynamics. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  12. The Electromechanical Behavior of a Micro-Ring Driven by Traveling Electrostatic Force

    PubMed Central

    Ye, Xiuqian; Chen, Yibao; Chen, Da-Chih; Huang, Kuo-Yi; Hu, Yuh-Chung

    2012-01-01

    There is no literature mentioning the electromechanical behavior of micro structures driven by traveling electrostatic forces. This article is thus the first to present the dynamics and stabilities of a micro-ring subjected to a traveling electrostatic force. The traveling electrostatic force may be induced by sequentially actuated electrodes which are arranged around the flexible micro-ring. The analysis is based on a linearized distributed model considering the electromechanical coupling effects between electrostatic force and structure. The micro-ring will resonate when the traveling speeds of the electrostatic force approach some critical speeds. The critical speeds are equal to the ratio of the natural frequencies to the wave number of the correlative natural mode of the ring. Apart from resonance, the ring may be unstable at some unstable traveling speeds. The unstable regions appear not only near the critical speeds, but also near some fractions of some critical speeds differences. Furthermore the unstable regions expand with increasing driving voltage. This article may lead to a new research branch on electrostatic-driven micro devices. PMID:22438705

  13. Estimate of Rayleigh-to-Love wave ratio in the secondary microseism by colocated ring laser and seismograph

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wasserman, Joachim; Schreiber, Ulrich; Gebauer, André

    2015-04-01

    Using a colocated ring laser and an STS-2 seismograph, we estimate the ratio of Rayleigh-to-Love waves in the secondary microseism at Wettzell, Germany, for frequencies between 0.13 and 0.30 Hz. Rayleigh wave surface acceleration was derived from the vertical component of STS-2, and Love wave surface acceleration was derived from the ring laser. Surface wave amplitudes are comparable; near the spectral peak about 0.22 Hz, Rayleigh wave amplitudes are about 20% higher than Love wave amplitudes, but outside this range, Love wave amplitudes become higher. In terms of the kinetic energy, Rayleigh wave energy is about 20-35% smaller on average than Love wave energy. The observed secondary microseism at Wettzell thus consists of comparable Rayleigh and Love waves but contributions from Love waves are larger. This is surprising as the only known excitation mechanism for the secondary microseism, described by Longuet-Higgins (1950), is equivalent to a vertical force and should mostly excite Rayleigh waves.

  14. 200 MW S-band traveling wave resonant ring development at IHEP

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-Sheng; Chi, Yun-Long; Git, Meng-Ping; Pei, Guo-Xi

    2010-03-01

    The resonant-ring is a traveling wave circuit, which is used to produce high peak power with comparatively smaller stored energy. The application to be considered is its use as a high power simulator mainly for testing the klystron ceramic output window, as well as for high power microwave transmission devices. This paper describes the principle of a resonant ring and introduces the structure and property of the newly constructed traveling wave resonant ring at IHEP. Our goal is to produce a 200 MW class resonant ring at 2.856 GHz with a pulse length of 2 μs and repetition rate of 25 Hz. The installation, commissioning and testing of the ring have been completed and a peak power of 200 MW at 3 μs has been achieved. The conditioning results show that all the parameters of the resonant ring reach the design goals.

  15. Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet

    DOEpatents

    Praeg, Walter F.

    1984-01-01

    Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.

  16. Study of Linear and Nonlinear Wave Excitation

    NASA Astrophysics Data System (ADS)

    Chu, Feng; Berumen, Jorge; Hood, Ryan; Mattingly, Sean; Skiff, Frederick

    2013-10-01

    We report an experimental study of externally excited low-frequency waves in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional. Wave excitation in the drift wave frequency range is accomplished by low-percentage amplitude modulation of the RF plasma source. Laser-induced fluorescence is adopted to study ion-density fluctuations in phase space. The laser is chopped to separate LIF from collisional fluorescence. A single negatively-biased Langmuir probe is used to detect ion-density fluctuations in the plasma. A ring array of Langmuir probes is also used to analyze the spatial and spectral structure of the excited waves. We apply coherent detection with respect to the wave frequency to obtain the ion distribution function associated with externally generated waves. Higher-order spectra are computed to evaluate the nonlinear coupling between fluctuations at various frequencies produced by the externally generated waves. Parametric decay of the waves is observed. This work is supported by U.S. DOE Grant No. DE-FG02-99ER54543.

  17. ULF Waves in the Earth's Inner Magnetosphere: Role in Radiation Belt and Ring Current Dynamics

    NASA Astrophysics Data System (ADS)

    Mann, I. R.; Murphy, K. R.; Rae, J.; Claudepierre, S. G.; Fennell, J. F.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Ozeke, L.; Milling, D. K.

    2013-05-01

    Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. Finally, the combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy; we present an initial example of ULF-wave particle interaction using early mission data. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  18. The circumstellar ring of SN 1987A

    NASA Astrophysics Data System (ADS)

    Fransson, Claes; Migotto, Katia; Larsson, Josefin; Pesce, Dominic; Challis, Peter; Chevalier, Roger A.; France, Kevin; Kirshner, Robert P.; Leibundgut, Bruno; Lundqvist, Peter; McCray, Richard; Spyromilio, Jason; Taddia, Francesco; Jerkstrand, Anders; Mattila, Seppo; Smith, Nathan; Sollerman, Jesper; Wheeler, J. Craig; Crotts, Arlin; Garnavich, Peter; Heng, Kevin; Lawrence, Stephen S.; Panagia, Nino; Pun, Chun S. J.; Sonneborn, George; Sugerman, Ben

    2016-06-01

    The circumstellar ring of supernova 1987A first became visible a few months after the explosion due to photoionisation by the supernova flash. From 1995 hotspots appeared in the ring and their brightness increased nearly exponentially as a result of interaction with the supernova blast wave. Imaging and spectroscopic observations with the Hubble Space Telescope and the Very Large Telescope now show that both the shocked and the unshocked emission components from the ring have been decreasing since ~ 2009. In addition, the most recent images reveal the brightening of new spots outside the ring. These observations indicate that the hotspots are being dissolved by the shocks and that the blast wave is now expanding and interacting with dense clumps beyond the ring. Based on the currently observed decay we predict that the ring will be destroyed by ~ 2025, while the blast wave will reveal the distribution of gas as it expands outside the ring, thus tracing the mass-loss history of the supernova progenitor.

  19. Stability of an ion-ring distribution in a multi-ion component plasma

    NASA Astrophysics Data System (ADS)

    Mithaiwala, Manish; Rudakov, Leonid; Ganguli, Gurudas

    2010-04-01

    The stability of a cold ion-ring velocity distribution in a thermal plasma is analyzed. In particular, the effect of plasma temperature and density on the instability is considered. A high ring density (compared to the background plasma) neutralizes the stabilizing effect of the warm background plasma and the ring is unstable to the generation of waves below the lower-hybrid frequency even for a very high temperature plasma. For ring densities lower than the background plasma density, there is a slow instability where the growth rate is less than the background-ion cyclotron frequency and, consequently, the background-ion response is magnetized. This is in addition to the widely discussed fast instability where the wave growth rate exceeds the background-ion cyclotron frequency and hence the background ions are effectively unmagnetized. Thus, even a low density ring is unstable to waves around the lower-hybrid frequency range for any ring speed. This implies that effectively there is no velocity threshold for a sufficiently cold ring.

  20. A Comparison of Laser Induced Florescence and Continuous Wave Ring Down Spectroscopy Measurements of Argon Ion and Neutral VDFs in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Carr, Jerry, Jr.; Scime, Earl

    2012-10-01

    In this work, we compare two spectroscopic methods for measuring the velocity distribution functions (VDFs) of argon ions and neutrals in a helicon plasma: laser induced florescence (LIF) and continuous wave cavity ring down spectroscopy (CW-CRDS). An established and powerful technique, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. In most cases, this requirement limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. However, CRDS is a line integrated technique that lacks the spatial resolution of LIF. CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique and when combined with a CW diode laser that has a sufficiently narrow linewidth, the Doppler broadened absorption line, i.e., the VDFs, can be measured. We present CW-CRDS and LIF measurements of the VDFs in an argon plasma using the 668.614 nm (in vacuum) line of Ar II and the 667.9125 nm (in vacuum) line of Ar I.

  1. UV/vis and NIR light-responsive spiropyran self-assembled monolayers.

    PubMed

    Ivashenko, Oleksii; van Herpt, Jochem T; Feringa, Ben L; Rudolf, Petra; Browne, Wesley R

    2013-04-02

    Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopies (XPS). The SAMs obtained are composed of the ring-closed form (i.e., spiropyran) only. Irradiation with UV light results in conversion of the monolayer to the merocyanine form (MC), manifested in the appearance of an N(+) contribution in the N 1s region of the XPS spectrum of the SAMs, the characteristic absorption band of the MC form in the visible region at 555 nm, and the C-O stretching band in the SERS spectrum. Recovery of the initial state of the monolayer was observed both thermally and after irradiation with visible light. Several switching cycles were performed and monitored by SERS spectroscopy, demonstrating the stability of the SAMs during repeated switching between SP and MC states. A key finding in the present study is that ring-opening of the surface-immobilized spiropyrans can be induced by irradiation with continuous wave NIR (785 nm) light as well as by irradiation with UV light. We demonstrate that ring-opening by irradiation at 785 nm proceeds by a two-photon absorption pathway both in the SAMs and in the solid state. Hence, spiropyran SAMs on gold can undergo reversible photochemical switching from the SP to the MC form with both UV and NIR and the reverse reaction induced by irradiation with visible light or heating. Furthermore, the observation of NIR-induced switching with a continuous wave source holds important consequences in the study of photochromic switches on surfaces using SERS and emphasizes the importance of the use of multiple complementary techniques in characterizing photoresponsive SAMs.

  2. A View into Saturn through its Natural Seismograph

    NASA Astrophysics Data System (ADS)

    Mankovich, Christopher

    2018-04-01

    Saturn's nonradial oscillations perturb the orbits of ring particles. The C ring is fortuitous in that it spans several resonances with Saturn's fundamental acoustic (f-) modes, and its moderate optical depth allows the characterization of wave features using stellar occultations. The growing set of C-ring waves with precise pattern frequencies and azimuthal order m measured from Cassini stellar occultations (Hedman & Nicholson 2013, 2014; French et al. 2016) provides new constraints on Saturn's internal structure, with the potential to aid in resolving long-standing questions about the planet's distribution of helium and heavier elements, its means of internal energy transport, and its rotation state.We construct Saturn interior models and calculate mode eigenfrequencies, mapping the planet mode frequencies to resonant locations in the rings to compare with the locations of observed spiral density and vertical bending waves in the C ring. While spiral density waves at low azimuthal order (m=2-3) appear strongly affected by resonant coupling between f-modes and deep g-modes (Fuller 2014), the locations of waves with higher azimuthal order can be fit with a spectrum of pure f-modes for Saturn models with adiabatic envelopes and realistic equations of state. Notably, several newly observed density waves and bending waves (Nicholson et al., in preparation) align with outer Lindblad and outer vertical resonances for non-sectoral (m!=l) Saturn f-modes of relatively high angular degree, and we present normal mode identifications for these waves. We assess the range of resonance locations in the C and D rings allowed for the spectrum of f-modes given gravity field constraints, point to other resonance locations that should experience strong forcing, and use the full set of observed waves to estimate Saturn's bulk rotation rate.

  3. Picosecond, tunable, high-brightness hard x-ray inverse Compton source at Duke storage ring

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.; Wu, Ying; Burnham, Bentley; Barnett, Genevieve A.; Madey, John M. J.

    1995-09-01

    We suggest a state-of-the art x-ray source using a compact electron storage ring with modest energy (less than 1 GeV) and a high power mm-wave as an undulator. A source of this type has x-ray energies and brightness comparable with third generation synchrotron light sources while it can be very compact and fit in a small university or industrial laboratory or hospital. We propose to operate an isochronous mm-wave FEL and a hard x-ray inverse Compton source at the Duke storage ring to test this concept. Resonant FEL conditions for the mm- wave will be provided by the off-axis interaction with an electromagnetic wave. A special optical resonator with holes for the e-beam is proposed for pumping a hard x-ray inverse Compton source with very high brightness. Simulation results of mm-wave FEL operation of the Duke storage ring are discussed. Expected performance of mm-wave FEL and hard x-ray inverse Compton source are presented.

  4. Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions

    DOE PAGES

    Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; ...

    2016-11-01

    Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this study, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Finally, such scaling can be usedmore » in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.« less

  5. Density waves in Saturn's rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Lissauer, J. J.; Shu, F. H.

    1981-01-01

    Certain radial brightness variations in the outer Cassini division of Saturn's rings may be spiral density waves driven by Saturn's large moon Iapetus, in which case a value of approximately 16 g/sq cm for the surface density is calculated in the region where the waves are seen. The kinematic viscosity in the same region is approximately 170 sq cm/s and the vertical scale height of the ring is estimated to be a maximum of approximately 40 m.

  6. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The 2-7 May 1998 Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.

  7. Tunable Q-factor silicon microring resonators for ultra-low power parametric processes.

    PubMed

    Strain, Michael J; Lacava, Cosimo; Meriggi, Laura; Cristiani, Ilaria; Sorel, Marc

    2015-04-01

    A compact silicon ring resonator is demonstrated that allows simple electrical tuning of the ring coupling coefficient and Q-factor and therefore the resonant enhancement of on-chip nonlinear optical processes. Fabrication-induced variation in designed coupling fraction, crucial in the resonator performance, can be overcome using this post-fabrication trimming technique. Tuning of the microring resonator across the critical coupling point is demonstrated, exhibiting a Q-factor tunable between 9000 and 96,000. Consequently, resonantly enhanced four-wave mixing shows tunable efficiency between -40 and -16.3  dB at an ultra-low on-chip pump power of 0.7 mW.

  8. The Realm of Daphnis

    NASA Image and Video Library

    2017-02-14

    Daphnis, one of Saturn's ring-embedded moons, is featured in this view, kicking up waves as it orbits within the Keeler gap. The mosaic combines several images to show more waves in the gap edges. Daphnis is a small moon at 5 miles (8 kilometers) across, but its gravity is powerful enough to disrupt the tiny particles of the A ring that form the Keeler gap's edge. As the moon moves through the Keeler gap, wave-like features are created in both the horizontal and vertical plane. Images like this provide scientists with a close-up view of the complicated interactions between a moon and the rings, as well as the interactions between the ring particles themselves, in the wake of the moon's passage. Three wave crests of diminishing sizes trail Daphnis here. In each subsequent crest, the shape of the wave evolves, as the ring particles within the crests collide with one another. Close examination of Daphnis' immediate vicinity also reveals a faint, thin strand of ring material that almost appears to have been directly ripped out of the A ring by Daphnis. The images in this mosaic were taken in visible light, using the Cassini spacecraft narrow-angle camera at a distance of approximately 17,000 miles (28,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 71 degrees. Image scale is 551 feet (168 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17212

  9. Nonlinear density waves in planetary rings

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole; Goldreich, Peter; Tremaine, Scott

    1986-01-01

    The steady-state structure of planetary rings in the presence of density waves at the Lindblad resonances of a satellite is indicated. The study is based on the dispersion relation and damping rate for nonlinear density waves, derived by Shu et al. (1985) and by Borderies, Goldreich, and Tremaine (1985). It is shown that strong density waves lead to an enhancement of the background surface density in the wave zone.

  10. Embedding the dynamics of a single delay system into a feed-forward ring.

    PubMed

    Klinshov, Vladimir; Shchapin, Dmitry; Yanchuk, Serhiy; Wolfrum, Matthias; D'Huys, Otti; Nekorkin, Vladimir

    2017-10-01

    We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example, we demonstrate how the complex bifurcation scenario of simultaneously emerging multijittering solutions can be transferred from a single oscillator with delayed pulse feedback to multijittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type.

  11. GOES Sounder Instrument - NOAA Satellite Information System (NOAASIS);

    Science.gov Websites

    ground-based, balloon system. The Sounder has 4 sets of detectors (visible, long wave IR, medium wave IR , short wave IR). The incoming radiation passes through a set of filters before reaching the detectors concentric rings, one for each IR detector group. The outer ring contains 7 long wave filters, the middle

  12. Chemical Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring res

  13. Electronic transitions in quantum dots and rings induced by inhomogeneous off-centered light beams.

    PubMed

    Quinteiro, G F; Lucero, A O; Tamborenea, P I

    2010-12-22

    We theoretically investigate the effect of inhomogeneous light beams with (twisted light) and without (plane-wave light) orbital angular momentum on semiconductor-based nanostructures, when the symmetry axes of the beam and the nanostructure are displaced parallel to each other. Exact analytical results are obtained by expanding the off-centered light field in terms of the appropriate light modes centered around the nanostructure. We demonstrate how electronic transitions involving the transfer of different amounts of orbital angular momentum are switched on and off as a function of the separation between the axes of the beam and the system. In particular, we show that even off-centered plane-wave beams induce transitions such that the angular momenta of the initial and final states are different.

  14. An Alternative Derivation of the Energy Levels of the "Particle on a Ring" System

    NASA Astrophysics Data System (ADS)

    Vincent, Alan

    1996-10-01

    All acceptable wave functions must be continuous mathematical functions. This criterion limits the acceptable functions for a particle in a linear 1-dimensional box to sine functions. If, however, the linear box is bent round into a ring, acceptable wave functions are those which are continuous at the 'join'. On this model some acceptable linear functions become unacceptable for the ring and some unacceptable cosine functions become acceptable. This approach can be used to produce a straightforward derivation of the energy levels and wave functions of the particle on a ring. These simple wave mechanical systems can be used as models of linear and cyclic delocalised systems such as conjugated hydrocarbons or the benzene ring. The promotion energy of an electron can then be used to calculate the wavelength of absorption of uv light. The simple model gives results of the correct order of magnitude and shows that, as the chain length increases, the uv maximum moves to longer wavelengths, as found experimentally.

  15. Pan and Waves

    NASA Image and Video Library

    2013-07-08

    The shepherd moon Pan orbits Saturn in the Encke gap while the A ring surrounding the gap displays wave features created by interactions between the ring particles and Saturnian moons in this image from NASA Cassini spacecraft.

  16. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2002-01-01

    A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.

  17. Modified screening interaction potential on dust lattice waves in dusty plasma ring

    NASA Astrophysics Data System (ADS)

    He, Kerong; Chen, Hui; Liu, Sanqiu

    2017-05-01

    In the present paper, the modified screening interaction potential was adopted to investigate the dust lattice waves in dusty ring. Firstly, the influence of parameter ε on the modified screening interaction potential was analyzed; and it was found that the parameter ε has a long-range effect on the pairwise interaction between the particles. Secondly, the dispersion relations of longitudinal and transverse waves are obtained, and the effect of long-range action parameter ε, dimensionless lattice parameter α and dimensionless shielding parameter \\tilde{κ } on the dust lattice waves propagation in dusty ring are studied. Some interesting phenomena, such as the coupling of longitudinal and transverse waves, and instabilities of transverse waves are found, which are in good agreement with some previous works. Finally, the transverse wave instabilities and the relevant critical lattice parameter αc are presented and discussed.

  18. Estimates of Rayleigh-to-Love wave ratio in microseisms by co-located Ring Laser and STS-2

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wassermann, Joachim; Schreiber, Ulrich; Gebauer, André

    2015-04-01

    In older studies of microseisms (seismic noise), it was often assumed that microseisms, especially the secondary microseisms (0.1-0.3 Hz), mainly consist of Rayleigh waves. However, it has become clear that there exists a large amount of Love-wave energy mixed in it (e.g., Nishida et al., 2008). However, its confirmation is not necessarily straightforward and often required an array of seismographs. In this study, we take advantage of two co-located instruments, a Ring Laser and an STS-2 type seismograph, at Wettzell (WET), Germany (Schreiber et al., 2009). The Ring Laser records rotation (its vertical component) and is thus only sensitive to Love waves. The vertical component of STS-2 seismograph is only sensitive to Rayleigh waves. Therefore, a combination of the two instruments provides a unique opportunity to separate Rayleigh waves and Love waves in microseisms. The question we address in this paper is the ratio of Rayleigh waves to Love waves in microseisms. For both instruments, we analyze data from 2009 to 2014. Our basic approach is to create stacked vertical acceleration spectra for Rayleigh waves from STS-2 and stacked transverse acceleration spectra for Love waves from Ring Laser. The two spectra at Earth's surface can then be compared directly by their amplitudes. The first step in our analysis is a selection of time portions (each six-hour long) that are least affected by earthquakes. We do this by examining the GCMT (Global Centroid Moment Tensor) catalogue and also checking the PSDs for various frequency ranges. The second step is to create stacked (averaged) Fourier spectra from those selected time portions. The key is to use the same time portions for the STS-2 and the Ring Laser data so that the two can be directly compared. The vertical spectra from STS-2 are converted to acceleration spectra. The Ring Laser rotation spectra are first obtained in the unit of radians/sec (rotation rate). But as the Ring Laser spectra are dominated by fundamental-mode Love waves, the rotation spectra can be converted to transverse (SH) acceleration by multiplying them by the factor 2xCp where Cp is the Love-wave phase velocity. We used a seismic model by Fichtner et al. (2013) at WET to estimate Love-wave phase velocity. This conversion from rotation to transverse acceleration was first extensively used by Igel et al. (2005) for the analysis of lower frequency Love waves and the same relation holds for our spectral data. The two spectra provide the ratio of surface amplitudes. In the frequency range of secondary microseisms (0.10-0.35 Hz), they are comparable; near the spectral peak (~0.20 Hz), Rayleigh waves are about 20 percent larger in amplitudes but outside this peak region, Love waves have comparable or slightly larger amplitudes than Rayleigh waves. Therefore, the secondary microseisms at WET consist of similar contributions from Rayleigh waves and Love waves.

  19. Identification of Saturn-driven bending waves in Saturn's inner C ring

    NASA Astrophysics Data System (ADS)

    French, Richard; Colwell, Joshua; Nicholson, Phillip; Marouf, Essam; McGhee-French, Colleen; Hedman, Matthew

    2016-07-01

    Saturn's C ring is host to more than a dozen wavelike features whose detailed nature has been a mystery since their discovery in high-resolution Voyager radio occultations of the rings. Rosen et al. (1991 Icarus 93, 25) enumerated several of these, and the list was augmented by Baillié et al. (2011 Icarus 216, 292), based on a detailed analysis of Cassini UVIS stellar occultation profiles. Recently, Hedman and Nicholson (2013 Astron. J. 146, 12; 2014 MNRAS 444, 1369) were able to identify the wavenumbers and pattern speeds for several of the waves. They showed that several Outer Lindblad Resonances (OLR) density waves had properties that were in general quite consistent with the predictions of Marley and Porco (1993 Icarus, 106, 508) and Marley (2014 Icarus, 234, 194) that Saturn's acoustic oscillations had pattern speeds with corresponding resonance radii in the C ring. Hedman and Nicholson also identified a set of Inner Lindblad Resonance density waves with pattern speeds very close to Saturn's rotation period. Finally, French et al. (2016 Icarus, in press) identified an inward-propagating m=2 wave in the Maxwell Ringlet. These new identifications ushered in the field of Kronoseismology -- the probing of the nature of Saturn's interior from the analysis of Saturn-driven waves in the rings. Here, we report the identification of six additional wave features, all in the inner C ring, from Cassini occultation measurements. Two of the waves are OLRs: Baillié feature #5 (B1 = W76.022 (i.e., r=76022 km)) with wavenumber m=-9, and Baillié #9 (B9 = W76.435) with m=-2. The first of these is presumably Saturn-driven, but of unknown origin; W76.435 fits very nicely in the pattern predicted by Marley (2014) for an m=l-2, q=2 internal oscillation. We also report the identification of a new class of Saturn-driven waves: B1 (W74.666), B3 (W74.936), B4 (W74.941), and B6 (W76.234) are all bending waves at Outer Vertical Resonances (OVR) with wavenumbers between m=-4 and m=-9. Marley and Porco (1993) and Marley (2014) predicted the pattern speeds of first- and second-order acoustic modes that might produce bending waves, and these results confirm this expectation. The wavelengths of these waves are quite short - on the order of 1 km for the longest wavecrest - and the alignment of individual occultation wave profiles sorted by the phase of the wave is highly dependent on an extremely accurate (200 m) absolute radius scale for the rings, made possible by orbit fits to over 15,000 individual ring and gap edge measurements from Cassini occultation data. Collectively, the amplitudes, wavenumbers, and pattern speeds of these waves can be used to refine our understanding of Saturn's internal structure (Fuller et al. 2014 Icarus 231, 34). ~

  20. The new wave-ring helical (WRH) slow-wave structure for traveling wave tube amplifiers

    NASA Astrophysics Data System (ADS)

    Panahi, Nasser; Saviz, S.; Ghorannevis, M.

    2017-12-01

    In this paper, the new slow-wave structure called wave-ring helix to enhance the power of the traveling wave tubes is introduced. In this new structure, without increasing the length and radius of the helix, the wave motion path can be increased to radiofrequency wave in phase with the electron beam. The results show that in the special frequency range the output power and gain are greater than conventional helix. In this paper, optimization results are presented in cold and hot tests on the new structure. The software CST is used in S-band frequency range.

  1. The effect of perfluorination on the aromaticity of benzene and heterocyclic six-membered rings.

    PubMed

    Wu, Judy I; Pühlhofer, Frank G; Schleyer, Paul von Ragué; Puchta, Ralph; Kiran, Boggavarapu; Mauksch, Michael; Hommes, Nico J R van Eikema; Alkorta, Ibon; Elguero, José

    2009-06-18

    Despite having six highly electronegative F's, perfluorobenzene C(6)F(6) is as aromatic as benzene. Ab initio block-localized wave function (BLW) computations reveal that both C(6)F(6) and benzene have essentially the same extra cyclic resonance energies (ECREs). Localized molecular orbital (LMO)-nucleus-independent chemical shifts (NICS) grids demonstrates that the F's induce only local paratropic contributions that are not related to aromaticity. Thus, all of the fluorinated benzenes (C(6)F(n)H((6-n)), n = 1-6) have similar ring-LMO-NICS(pi zz) values. However, 1,3-difluorobenzene 2b and 1,3,5-trifluorobenzene 3c are slightly less aromatic than their isomers due to a greater degree of ring charge alternation. Isoelectronic C(5)H(5)Y heterocycles (Y = BH(-), N, NH(+)) are as aromatic as benzene, based on their ring-LMO-NICS(pi zz) and ECRE values, unless extremely electronegative heteroatoms (e.g., Y = O(+)) are involved.

  2. Evidence for Break-Up of Clumps in Dynamically Stirred Regions of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Sega, D. N.; Jerousek, R. G.; Cooney, J. H.; Esposito, L. W.

    2017-12-01

    Stellar occultations of Saturn's rings observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) High Speed Photometer (HSP) record stellar brightness seen through the rings as photon counts that are described by Poisson counting statistics in the absence of intervening ring material. The variance in the data increases above counting statistics due to the discrete sizes of the ring particles, with larger particles leading to a larger variance at a given optical depth. We take advantage of the high spatial resolution and multiple viewing geometries of the UVIS occultations to study variations in particle size near and within strongly perturbed regions of Saturn's A ring, in particular the strong first order Lindblad resonances with Janus and the Mimas 5:3 Lindblad resonance and inner vertical resonance. The variance shows changes in the area-weighted particle size between peaks and troughs in the density waves as well as an overall decrease in particle size in the broad "halo" regions that bracket the strong Janus Lindblad resonances in the A ring. In addition we see a decrease in particle size at the location of the Mimas 5:3 bending wave wavetrain itself, and an increase in optical depth at the location of the wave when viewed from high elevation angles out of the ring plane. Taken together, these observations suggest that clumps of particles, perhaps the ubiquitous A ring self-gravity wakes, are disaggregated in the bending wave, even though standard bending wave theory does not predict enhanced collision velocities. We also examine the skewness, a higher order moment of the occultation data, that is diagnostic of asymmetries in the particle size distribution. We use Monte Carlo simulations of occultations to match the first three moments of the data (the signal mean, or equivalently the optical depth, the variance, and the skewness) to illustrate differences in ring particle size in these perturbed regions.

  3. Handedness Dependent Electromagnetically Induced Transparency in Hybrid Chiral Metamaterials

    NASA Astrophysics Data System (ADS)

    Kang, Lei; Hao Jiang, Zhi; Yue, Taiwei; Werner, Douglas H.

    2015-07-01

    We provide the first experimental demonstration of the handedness dependent electromagnetically induced transparency (EIT) in chiral metamaterials during the interaction with circularly polarized waves. The observed chiral-sensitive EIT phenomena arise from the coherent excitation of a non-radiative mode in the component split ring resonators (SRRs) produced by the corresponding Born-Kuhn type (radiative) resonators that are responsible for the pronounced chirality. The coherent coupling, which is dominated by the bonding and antibonding resonances of the Born-Kuhn type resonators, leads to an extremely steep dispersion for a circularly polarized wave of predefined handedness. Accordingly, retrieved effective medium parameters from simulated results further reveal a difference of 80 in the group indices for left- and right-handed circularly polarized waves at frequencies within the EIT window, which can potentially result in handedness-sensitive pulse delays. These chiral metamaterials which enable a handedness dependent EIT effect may provide more degrees of freedom for designing circular polarization based communication devices.

  4. Novel high-gain, improved-bandwidth, finned-ladder V-band Traveling-Wave Tube slow-wave circuit design

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1994-01-01

    The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.

  5. Moon Waves and Moon Wakes

    NASA Image and Video Library

    2017-01-30

    This Cassini image features a density wave in Saturn's A ring (at left) that lies around 134,500 km from Saturn. Density waves are accumulations of particles at certain distances from the planet. This feature is filled with clumpy perturbations, which researchers informally refer to as "straw." The wave itself is created by the gravity of the moons Janus and Epimetheus, which share the same orbit around Saturn. Elsewhere, the scene is dominated by "wakes" from a recent pass of the ring moon Pan. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Dec. 18, 2016. The view was obtained at a distance of approximately 34,000 miles (56,000 kilometers) from the rings and looks toward the unilluminated side of the rings. Image scale is about a quarter-mile (340 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21060

  6. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    PubMed

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  7. Transfer matrix approach to the persistent current in quantum rings: Application to hybrid normal-superconducting rings

    NASA Astrophysics Data System (ADS)

    Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico

    2016-11-01

    Using the properties of the transfer matrix of one-dimensional quantum mechanical systems, we derive an exact formula for the persistent current across a quantum mechanical ring pierced by a magnetic flux Φ as a single integral of a known function of the system's parameters. Our approach provides exact results at zero temperature, which can be readily extended to a finite temperature T . We apply our technique to exactly compute the persistent current through p -wave and s -wave superconducting-normal hybrid rings, deriving full plots of the current as a function of the applied flux at various system's scales. Doing so, we recover at once a number of effects such as the crossover in the current periodicity on increasing the size of the ring and the signature of the topological phase transition in the p -wave case. In the limit of a large ring size, resorting to a systematic expansion in inverse powers of the ring length, we derive exact analytic closed-form formulas, applicable to a number of cases of physical interest.

  8. Saturn's Internal Structure: A View through its Natural Seismograph

    NASA Astrophysics Data System (ADS)

    Mankovich, Christopher; Marley, Mark S.; Fortney, Jonathan J.; Movshovitz, Naor

    2017-10-01

    Saturn's nonradial oscillations perturb the orbits of ring particles. The C ring is fortuitous in that it spans several resonances with Saturn's fundamental acoustic (f-) modes, and its moderate optical depth allows the characterization of wave features using stellar occultations. The growing set of C-ring waves with precise pattern frequencies and azimuthal order m measured from Cassini stellar occultations (Hedman & Nicholson 2013, 2014; French et al. 2016) provides new constraints on Saturn's internal structure, with the potential to resolve long-standing questions about the planet's distribution of helium and heavier elements, its means of internal energy transport, and its rotation state.We construct Saturn interior models and calculate mode eigenfrequencies, mapping the planet mode frequencies to resonant locations in the rings to compare with the locations of observed spiral density and vertical bending waves in the C ring. While spiral density waves at low azimuthal order (m=2-3) appear strongly affected by resonant coupling between f-modes and deep g-modes (Fuller 2014), the locations of waves with higher azimuthal order can be fit reasonably well with a spectrum of pure f-modes for Saturn models with adiabatic envelopes and realistic equations of state. In particular, four observed bending waves (Nicholson et al., DPS 2016) align with outer vertical resonances for non-sectoral (m≠l) Saturn f-modes of relatively high angular degree, and we present preliminary identifications of these. We assess the range of resonance locations in the C and D rings allowed for the spectrum of f-modes given gravity field constraints and discuss what role a realistic helium distribution in the planet might play.

  9. Loss of Water from Saturn's E-Ring Through Ion Pick-Up

    NASA Technical Reports Server (NTRS)

    Leisner, J. S.; Russell, C. T.; Dougherty, M. K.; Blanco-Cano, X.; Smith, E. J.; Tsurutani, B. T.

    2005-01-01

    One of the possible loss processes for Saturn s E-ring is ionization followed by acceleration by the electric field associated with the corotating magnetized plasma. It is possible to determine if this process is occurring by detecting electromagnetic waves at the gyrofrequency of water group ions. If the energy the particle gains in this pick-up process is sufficiently great, the picked up ions will generate ion cyclotron waves. Pioneer 11 and Voyager 1 both observed intervals of such waves associated with water group ions during their passes through Saturn s E-ring. Presently the magnetometer onboard the Cassini spacecraft is also seeing water group ion cyclotron oscillations. The Cassini data allow the spatial and temporal behavior of the waves to be mapped in ways not possible during the previous flybys. Analyses of these waves allow us to study the rate of mass loading and its latitudinal and local time variation. In conjunction with previous data, we can then determine the variation as the inclination of the ring to the Sun changes, in accordance with Saturn's seasons. These waves may be the clue to how Saturn powers its magnetosphere as the newly born ions could be the driver for the radial motion of the plasma and to how the E-ring may play the equivalent role to that of Io in the jovian magnetosphere.

  10. Universally Unstable Nature of Velocity Ring Distributions

    NASA Astrophysics Data System (ADS)

    Mithaiwala, Manish

    2010-11-01

    Although it is typically believed that an ion ring velocity distribution has a stability threshold, we find that they are universally unstable. This can substantially impact the understanding of dynamics in both laboratory and space plasmas. A high ring density neutralizes the stabilizing effect of ion Landau damping in a warm plasma and the ring is unstable to the generation of waves below the lower hybrid frequency- even for a very high temperature plasma. For ring densities lower than the background plasma density there is a slow instability with growth rate less than the background ion cyclotron frequency and consequently the background ion response is magnetized. This is in addition to the widely discussed fast instability where the wave growth rate exceeds the background ion cyclotron frequency and hence the background ions are effectively unmagnetized. Thus, even a low density ring is unstable to waves around the lower hybrid frequency range for any ring speed. This implies that effectively there is no velocity threshold for a sufficiently cold ring. The importance of these conclusions on the nonlinear evolution of space plasmas, in particular to solar wind-comet interaction, post-magnetospheric storm conditions, and chemical release experiments in the ionosphere will be discussed.

  11. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    DOE PAGES

    Winske, D.; Daughton, W.

    2015-02-02

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma, 19, 072109, 2012], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, themore » waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3-D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.« less

  12. Dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gravitational waves

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-01-01

    The model problem of the dynamics of a planar plasma ring rotating in the dipole magnetic field of a central body is considered. A finite-dimensional mathematical model of the system is synthesized by the Boubnov-Galerkin method. The class of solutions corresponding to magneto-gravitational waves associated with deformations of the ring boundaries is investigated.

  13. Global Effects of Transmitted Shock Wave Propagation Through the Earth's Inner Magnetosphere: First Results from 3-D Hybrid Kinetic Modeling

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Sibeck, D. G.

    2016-01-01

    We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, waveparticle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.

  14. Small-Scale Structure in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Rehnberg, Morgan

    2017-08-01

    The rings of Saturn are the largest and most complex in the Solar System. Decades of observation from ground- and space-based observatories and spacecraft missions have revealed the broad structure of the rings and the intricate interactions between the planet's moons and its rings. Stellar occultations observed by the Ultraviolet Imaging Spectrograph's High Speed Photometer onboard the Cassini spacecraft now enable the direct study of the small-scale structure that results from these interactions. In this dissertation, I present three distinct phenomena resulting from the small-scale physics of the rings. Many resonance locations with Saturn's external satellites lie within the main (A and B) rings. Two of these satellites, Janus and Epimetheus, have a unique co-orbital relationship and move radially to switch positions every 4.0 years. This motion also moves the resonance locations within the rings. As the spiral density waves created at these resonances interact, they launch an enormous solitary wave every eight years. I provide the first-ever observations of this never-predicted phenomenon and detail a possible formation mechanism. Previous studies have reported a population of kilometer-scale aggregates in Saturn's F ring, which likely form as a result of self-gravitation between ring particles in Saturn's Roche zone. I expand the known catalog of features in UVIS occultations and provide the first estimates of their density derived from comparisons with the A ring. These features are orders of magnitude less dense than previously believed, a fact which reconciles them with detections made by other means. Theory and indirect observations indicate that the smallest regular structures in the rings are wavelike aggregates called self-gravity wakes. Using the highest-resolution occulta- tions, I provide the first-ever direct detection of these features by identifying the gaps that represent the minima of the wakes. I demonstrate that the distribution of these gaps is con- sistent with the broad brightness asymmetries previously observed in the rings. Furthermore, the presence of spiral density waves affects the formation of self-gravity waves.

  15. Experimental Study of Shock-Induced Compression and Vortex Generation in the Shock-Bubble Interaction

    NASA Astrophysics Data System (ADS)

    Ranjan, Devesh; Motl, Bradley; Niederhaus, John; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo; Greenough, Jeffrey

    2006-11-01

    Results are presented from experiments studying the interaction of a planar shock wave of strength 1.4

  16. Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites

    NASA Astrophysics Data System (ADS)

    Yuan, Zhigang; Deng, Xiaohua; Lin, Xi; Pang, Ye; Zhou, Meng; Décréau, P. M. E.; Trotignon, J. G.; Lucek, E.; Frey, H. U.; Wang, Jingfang

    2010-04-01

    In this paper, we report observations from a Cluster satellite showing that ULF wave occurred in the outer boundary of a plasmaspheric plume on September 4, 2005. The band of observed ULF waves is between the He+ ion gyrofrequency and O+ ion gyrofrequency at the equatorial plane, implying that those ULF waves can be identified as EMIC waves generated by ring current ions in the equatorial plane and strongly affected by rich cold He+ ions in plasmaspheric plumes. During the interval of observed EMIC waves, the footprint of Cluster SC3 lies in a subauroral proton arc observed by the IMAGE FUV instrument, demonstrating that the subauroral proton arc was caused by energetic ring current protons scattered into the loss cone under the Ring Current (RC)-EMIC interaction in the plasmaspheric plume. Therefore, the paper provides a direct proof that EMIC waves can be generated in the plasmaspheric plume and scatter RC ions to cause subauroral proton arcs.

  17. Saturn's Rings and Associated Ring Plasma Cavity: Evidence for Slow Ring Erosion

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Persoon, A. M.; MacDowall, R. J.

    2017-01-01

    We re-examine the radio and plasma wave observations obtained during the Cassini Saturn orbit insertion period, as the spacecraft flew over the northern ring surface into a radial distance of 1.3 Rs (over the C-ring). Voyager era studies suggest the rings are a source of micro-meteoroid generated plasma and dust, with theorized peak impact-created plasma outflows over the densest portion of the rings (central B-ring). In sharp contrast, the Cassini Radio and Plasma Wave System (RPWS) observations identify the presence of a ring-plasma cavity located in the central portion of the B-ring, with little evidence of impact-related plasma. While previous Voyager era studies have predicted unstable ion orbits over the C- ring, leading to field-aligned plasma transport to Saturns ionosphere, the Cassini RPWS observations do not reveal evidence for such instability-created plasma fountains. Given the passive ring loss processes observed by Cassini, we find that the ring lifetimes should extend >10(exp 9) years, and that there is limited evidence for prompt destruction (loss in <100 Myrs).

  18. Saturn's rings and associated ring plasma cavity: Evidence for slow ring erosion

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Persoon, A. M.; MacDowall, R. J.

    2017-08-01

    We re-examine the radio and plasma wave observations obtained during the Cassini Saturn orbit insertion period, as the spacecraft flew over the northern ring surface into a radial distance of 1.3 Rs (over the C-ring). Voyager era studies suggest the rings are a source of micro-meteoroid generated plasma and dust, with theorized peak impact-created plasma outflows over the densest portion of the rings (central B-ring). In sharp contrast, the Cassini Radio and Plasma Wave System (RPWS) observations identify the presence of a ring-plasma cavity located in the central portion of the B-ring, with little evidence of impact-related plasma. While previous Voyager era studies have predicted unstable ion orbits over the C-ring, leading to field-aligned plasma transport to Saturn's ionosphere, the Cassini RPWS observations do not reveal evidence for such instability-created plasma 'fountains'. Given the passive ring loss processes observed by Cassini, we find that the ring lifetimes should extend >109 years, and that there is limited evidence for prompt destruction (loss in <100 Myrs).

  19. Ion-Acoustic Wave-Particle Energy Flow Rates

    NASA Astrophysics Data System (ADS)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Skiff, Fred

    2017-10-01

    We present an experimental characterization of the energy flow rates for ion acoustic waves. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon, inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n 109cm-3 Te 9 eV and B 660 kG. A 4 ring antenna with diameter similar to the plasma diameter is used for launching the waves. A survey of the zeroth and first order ion velocity distribution functions (IVDF) is done using Laser-Induced Fluorescence (LIF) as the main diagnostics method. Using these IVDFs along with Vlasov's equation the different energy rates are measured for different values of ion velocity and separation from the antenna. We would like to acknowledge DOE DE-FG02-99ER54543 for their financial support throughout this research.

  20. The leap-frog effect of ring currents in benzene.

    PubMed

    Ligabue, Andrea; Soncini, Alessandro; Lazzeretti, Paolo

    2002-03-06

    Symmetry arguments show that the ring-current model proposed by Pauling, Lonsdale, and London to explain the enhanced diamagnetism of benzene is flawed by an intrinsic drawback. The minimal basis set of six atomic 2p orbitals taken into account to develop such a model is inherently insufficient to predict a paramagnetic contribution to the perpendicular component of magnetic susceptibility in planar ring systems such as benzene. Analogous considerations can be made for the hypothetical H(6) cyclic molecule. A model allowing for extended basis sets is necessary to rationalize the magnetism of aromatics. According to high-quality coupled Hartree-Fock calculations, the trajectories of the current density vector field induced by a magnetic field perpendicular to the skeletal plane of benzene in the pi electrons are noticeably different from those typical of a Larmor diamagnetic circulation, in that (i) significant deformation of the orbits from circular to hexagonal symmetry occurs, which is responsible for a paramagnetic contribution of pi electrons to the out-of-plane component of susceptibility, and (ii) a sizable component of the pi current density vector parallel to the inducing field is predicted. This causes a waving motion of pi electrons; streamlines are characterized by a "leap-frog effect".

  1. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The May 2-7, 1998, Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    Complete description of a self-consistent model for magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves, and back on waves, are considered self-consistently by solving both equations on a global magnetospheric scale under non steady-state conditions. In the paper by Khazanov et al. [2002] this self-consistent model has only been shortly outlined, and discussions of many the model related details have been omitted. For example, in present study for the first time a new algorithm for numerical finding of the resonant numbers for quasilinear wave-particle interaction is described, or it is demonstrated that in order to describe quasilinear interaction in a multi-ion thermal plasma correctly, both e and He(+) modes of electromagnetic ion cyclotron waves should be employed. The developed model is used to simulate the entire May 2-7, 1998 storm period. Trapped number fluxes of the ring current protons are calculated and presented along with their comparison with the data measured by the 3D hot plasma instrument Polar/HYDRA. Examining of the wave (MLT, L shell) distributions produced during the storm progress reveals an essential intensification of the wave emissions in about two days after main phase of storm. This result is well consistent with the earlier ground-based observations. Also the theoretical shapes and the occurrence rates for power spectral densities of electromagnetic ion cyclotron waves are studied. It is found that in about 2 days after the storm main phase on May 4, mainly non Gaussian shapes of power spectral densities are produced.

  2. Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Zhou, Chen; Shi, Run; Ni, Binbin; Zhao, Zhengyu; Zhang, Yuannong

    2016-09-01

    Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012) model and the neutral atmosphere model (NRLMSISE-00), including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W), Wuhan (30.52° N, 114.32° E) and Jicamarca (11.95° S, 76.87° W) at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature oscillation decreases with latitude in the daytime ionosphere, while it increases with latitude in the nighttime ionosphere; both the electron temperature oscillation amplitude and the ground ULF wave magnitude decreases as the modulation frequency increases; when the electron temperature oscillation is fixed as input, the radiation efficiency of the ring current source is higher in the nighttime ionosphere than in the daytime ionosphere.

  3. Examining Rotational Ground Motion Induced by Tornados

    NASA Astrophysics Data System (ADS)

    Kessler, Elijah; Dunn, Robert

    2016-03-01

    Ring lasers are well known for their ability to detect rotation and to serve as replacements for mechanical gyroscopes. The sensitivity of large ring lasers to various forms of ground motion is less familiar. Since ring lasers preferentially measure rotational ground motion and a standard seismograph is designed to measure translational and vertical ground motion, each device responds to different aspects of ground movement. Therefore, the two instruments will be used to explore responses to microseisms, earthquake generated shear waves, and in particular tornado generated ground movement. On April 27, 2014 an EF4 tornado devastated Vilonia, AR a small town ~ 21 km from the Hendrix College ring laser. The proximity of the tornado's path to the ring laser interferometer and to a seismograph located in Vilonia provided the opportunity to examine the response of these instruments to tornadic generated ground motion. Our measurements suggest tornadic weather systems can produce both rotational and lateral ground motion. This contention is supported by an after the fact damage survey which found that the tornado flattened a forest in which trees were uprooted and laid down in a pair of converging arcs with the centerline pointed in the direction of the tornado's path.

  4. Impact Cratering Physics al Large Planetary Scales

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.

    2007-06-01

    Present understanding of the physics controlling formation of ˜10^3 km diameter, multi-ringed impact structures on planets were derived from the ideas of Scripps oceanographer, W. Van Dorn, University of London's, W, Murray, and, Caltech's, D. O'Keefe who modeled the vertical oscillations (gravity and elasticity restoring forces) of shock-induced melt and damaged rock within the transient crater immediately after the downward propagating hemispheric shock has processed rock (both lining, and substantially below, the transient cavity crater). The resulting very large surface wave displacements produce the characteristic concentric, multi-ringed basins, as stored energy is radiated away and also dissipated upon inducing further cracking. Initial calculational description, of the above oscillation scenario, has focused upon on properly predicting the resulting density of cracks, and, their orientations. A new numerical version of the Ashby--Sammis crack damage model is coupled to an existing shock hydrodynamics code to predict impact induced damage distributions in a series of 15--70 cm rock targets from high speed impact experiments for a range of impactor type and velocity. These are compared to results of crack damage distributions induced in crustal rocks with small arms impactors and mapped ultrasonically in recent Caltech experiments (Ai and Ahrens, 2006).

  5. Electrostatic instability of ring current protons beyond the plasmapause during injection events

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Fredricks, R. W.; White, R.

    1972-01-01

    The stability of ring current protons with an injection spectrum modeled by an m = 2 mirror distribution function was examined for typical ring current parameters. It was found that the high frequency loss cone mode can be excited at wave numbers K lambda sub Di about = to 0.1 to 0.5, at frequencies omega about = to (0.2 to 0.6) omega sub pi and with growth rates up to gamma/omega about = to 0.03. These waves interact with the main body of the proton distribution and propagate nearly perpendicular to the local magnetic field. Cold particle partial densities tend to reduce the growth rate so that the waves are quenched at or near to the plasmapause boundary. Wave e-folding lengths are comparable to 0.1 R sub e, compared to the value of about 4 R sub e found for ion cyclotron waves at the same plasma conditions.

  6. Growth of ring ripple in a collisionless plasma in relativistic-ponderomotive regime and its effect on stimulated Raman backscattering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Priyanka; Purohit, Gunjan, E-mail: gunjan75@gmail.com; Gauniyal, Rakhi

    A theoretical and numerical study has been made of the propagation of a ring rippled laser beam in collisionless plasma with dominant relativistic ponderomotive nonlinearity and its effect on the excitation of electron plasma wave and stimulated Raman backscattering process. The growth of ring ripple, riding on an intense Gaussian laser beam in plasma has also been studied. A paraxial-ray and WKB approximation has been invoked to understand the nature of propagation of the ring rippled Gaussian laser beam in plasma, electron plasma wave and back reflectivity under the influence of both nonlinearities. The growth rate and focusing of amore » ring rippled beam is found to be considerably affected by the power of the main beam and the phase angle between the electric vectors of the main beam and the ring ripple. It has also been observed that the focusing is released by the coupling of relativistic and ponderomotive nonlinearities, which significantly affected the dynamics of the excitation of electron plasma wave and back reflectivity of stimulated Raman scattering (SRS). Due to the strong coupling between ring rippled laser beam and the excited electron plasma wave, back reflectivity of SRS is enhanced. It has been observed from the computational results that the effect of the increased intensity leads to suppression of SRS back reflectivity. The results have been presented for established laser and plasma parameters.« less

  7. Density Wave Signatures In VIMS Spectral Data

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; Hedman, M. M.; Cassini VIMS Team

    2012-10-01

    Spectral scans of Saturn's rings by the Cassini VIMS instrument have revealed both regional and local variations in the depths of the water ice bands at 1.5 and 2.0 microns, which have been interpreted in terms of variations in regolith grain size and the amount of non-icy "contaminants" (Filacchione et al. 2012; Hedman et al. 2012). Noteworthy among the local variations are distinctive patterns associated with the four strong density waves in the A ring. Within each wavetrain there is a peak in band strength relative to the surrounding material, while extending on both sides of the wave is a "halo" of reduced band strength. The typical width of these haloes is 400-500 km, about 2-3 times the visible extent of the density waves. The origin of these features is unknown, but may involve enhanced collisional erosion in the wave zones and transport of the smaller debris into nearby regions. A similar pattern of band depth variations is also seen at several locations in the more opaque B ring in association with the strong 3:2 ILRs of Janus, Pandora and Prometheus. The former shows a pattern just like its siblings in the A ring, while the latter two resonances show haloes, but without central peaks. In each case, the radial widths of the halo approaches 1000 km, but stellar occultation profiles show no detectable density wavetrain. We suggest that this spectral signature may be a useful diagnostic for the presence of strong density waves in regions where the rings are too opaque for occultations to reveal a typical wave profile. More speculatively, the displacement of the haloes' central radii from the calculated ILR locations of 600-700 km could imply a surface density in the central B ring in excess of 500 g/cm^2. This research was supported by the Cassini/Huygens project.

  8. Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring

    NASA Astrophysics Data System (ADS)

    Nakatsugawa, K.; Fujii, T.; Tanda, S.

    2017-09-01

    We show that time translation symmetry of a ring system with a macroscopic quantum ground state is broken by decoherence. In particular, we consider a ring-shaped incommensurate charge density wave (ICDW ring) threaded by a fluctuating magnetic flux: the Caldeira-Leggett model is used to model the fluctuating flux as a bath of harmonic oscillators. We show that the charge density expectation value of a quantized ICDW ring coupled to its environment oscillates periodically. The Hamiltonians considered in this model are time independent unlike "Floquet time crystals" considered recently. Our model forms a metastable quantum time crystal with a finite length in space and in time.

  9. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    PubMed

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  10. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  11. The varieties of symmetric stellar rings and radial caustics in galaxy disks

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Lotan, Pnina

    1990-01-01

    Numerical, restricted three-body and analytic calculations are used to study the formation and propagation of cylindrically symmetric stellar ring waves in galaxy disks. It is shown that such waves can evolve in a variety of ways, depending on the amplitude of the perturbation and the potential of the target galaxy. Rings can thicken as they propagate outward, remain at a nearly constant width, or be pinched off at large radii. Multiple, closely spaced rings can result from a low-amplitude collision, while an outer ring can appear well-separated from overlapping inner rings or an apparent lens structure in halo-dominated potentials. All the single-encounter rings consist of paired fold caustics. The simple, impulsive, kinematic oscillation equations appear to provide a remarkably accurate model of the numerical simulations. Simple analytic approximations to these equations permit very good estimates of oscillation periods and amplitudes, the evolution of ring widths, and ring birth and propagation characteristics.

  12. Loss of ring current O+ ions due to interaction with Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Hudson, Mary; Chan, Anthony; Roth, Ilan

    1993-01-01

    The behavior of ring current ions in low-frequency geomagnetic pulsations is investigated analytically and numerically. We focus primarily on ring current O+ ions, whose flux increases dramatically during geomagnetic storms and decays at a rate which is not fully explained by collisional processes. This paper presents a new loss mechanism for the O+ ions due to the combined effects of convection and corotation electric fields and interaction with Pc 5 waves (wave period: 150-600 s) via a magnetic drift-bounce resonance. A test particle code has been developed to calculate the motion of the ring current O+ ions in a time-independent dipole magnetic field, and convection and corotation electric fields, plus Pc 5 wave fields, for which a simple analytical model has been formulated based on spacecraft observations. For given fields, whether a particle gains or loses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O+ ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. The former is due to the wave-particle interaction causing the ion to gain or lose energy, while the latter is due to the convection electric field. Our simulations show that, due to the interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle will be lost to the dayside magnetopause by a sunward E×B drift. This may contribute to the loss of O+ ions at intermediate energies (tens of keV) observed during the recovery phase of geomagnetic storms.

  13. Ava[L-Pro9,N-MeLeu10] substance P(7-11) (GR 73632) and Sar9, Met(O2)11 increase distention-induced peristalsis through activation of neurokinin-1 receptors on smooth muscle and interstitial cells of cajal.

    PubMed

    Nieuwmeyer, Florentine; Ye, Jing; Huizinga, Jan D

    2006-04-01

    Substance P is generally considered an excitatory neurotransmitter related to gut motor activity, although an inhibitory influence of neurokinin-1 (NK1) receptor activation on peristalsis has also been reported. With an optimized in vitro method to assess distention-induced peristalsis, our aim was to clarify the effect of NK1 receptor activation on peristaltic activity and to reveal the mechanisms by which NK1 activation alters peristalsis. Distention of the small intestine of the mouse and guinea pig induced periodic occurrence of rhythmic waves of propagating rings of circular muscle contraction, associated with slow waves and superimposed action potentials, that propelled intestinal contents aborally. Activation of NK1 receptors by Ava[l-Pro(9),N-MeLeu10] substance P(7-11) (GR 73632) and Sar(9), Met(O(2))(11) on smooth muscle cells resulted in prolongation of the activity periods and increased action potential generation occurring superimposed on the intestinal slow wave activity. Activation of NK1 receptors on interstitial cells of Cajal resulted in an increase in slow wave frequency. Slow wave amplitude increased, likely by increased cell-to-cell coupling. The NK1 antagonist (S)-1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)piperidin-3-yl]ethyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane chloride (SR 140333) induced a decrease in the slow wave frequency and duration of the activity periods evoked by distention, which makes it likely that NK1 receptor activation plays a role in the normal physiological distention-induced generation of peristaltic motor patterns. In summary, NK1 receptors play a role in normal development of peristalsis and NK1 receptor activation markedly increases propulsive peristaltic contractile activity.

  14. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.

  15. Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion.

    PubMed

    Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou

    2010-06-07

    We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.

  16. A Laboratory Study of a Water Surface in Response to Rainfall

    NASA Astrophysics Data System (ADS)

    Liu, Ren; Liu, Xinan; Duncan, James

    2016-11-01

    The shape of a water surface in response to the impact of raindrops is studied experimentally in a 1.22-m-by-1.22-m water pool with a water depth of 0.3 m. Simulated raindrops are generated by an array of 22-gauge hypodermic needles that are attached to the bottom of an open-surface water tank. The tank is connected to a 2D translation stage to provide a small-radius horizontal circular or oval motion to the needles, thus avoiding repeated drop impacts at the same location under each needle. The drop diameter is about 2.6 mm and the height of the water tank above the water surface of the pool is varied from 1 m to 4.8 m to provide different impact velocities. The water surface features including stalks, crowns and ring waves are measured with a cinematic laser-induced- fluorescence (LIF) technique. It is found that the average stalk height is strongly correlated to the impact velocities of raindrops and the phase speeds of ring waves inside the rain field are different from that measured outside the rain field.

  17. Peculiarity of convergence of shock wave generated by underwater electrical explosion of ring-shaped wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafer, D.; Toker, G. R.; Gurovich, V. Tz.

    2013-05-15

    Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50μm

  18. Dynamic electrical characteristics of low-power ring oscillators constructed with inorganic nanoparticles on flexible plastics.

    PubMed

    Yun, Junggwon; Cho, Kyoungah; Kim, Sangsig

    2012-11-01

    In this study, we demonstrate for the first time the low-power and stable performance of a ring oscillator constructed on a flexible plastic with solution-processable inorganic nanoparticles (NPs). Our flexible ring oscillator is composed of three inverters based on n- and p-type inorganic NP thin-film transistors. Each of the component inverters exhibits a gain of ∼80 at a voltage of 5 V. For the ring oscillator, the sine waves are generated with a frequency of up to 12 kHz. The waveforms are undistorted under strained conditions and maintained even after 5000 bending cycles. The frequency and waveform of the output waves obtained from our flexible ring oscillator are analyzed and discussed in detail.

  19. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 1; Waves in Multi Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.

  20. Simultaneous equatorial observations of 1- to 30-Hz waves and pitch angle distributions of ring current ions

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.; Lyons, L. R.

    1976-01-01

    Eighteen events of large-amplitude (0.4-6 gammas) waves which may be propagating in the ion cyclotron mode have een observed by Explorer 45. Comparison with simultaneously measured proton distributions has allowed the events to be divided into two categories. The first category consists of waves accompanied by enhanced ion fluxes apparently injected into the plasmasphere with anisotropic pitch-angle distributions. This simultaneity suggests that these waves may be generated by the observed ring-current ions. Waves in the second category were found near or outside the plasmapause and were not correlated with any identifiable changes in the observed proton distribution. The generation mechanism for these waves remains unknown.

  1. Coexistence of wave propagation and oscillation in the photosensitive Belousov-Zhabotinsky reaction on a circular route.

    PubMed

    Nakata, Satoshi; Morishima, Sayaka; Ichino, Takatoshi; Kitahata, Hiroyuki

    2006-12-21

    The photosensitive Belousov-Zhabotinsky (BZ) reaction was investigated on a circular ring, which was drawn using computer software and then projected on a film soaked with BZ solution using a liquid-crystal projector. Under the initial conditions, a chemical wave propagated with a constant velocity on the black ring under a bright background. When the background was rapidly changed to dark, coexistence of the oscillation on part of the ring and propagation of the chemical wave on the other part was observed. These experimental results are discussed in relation to the nature of the photosensitive BZ reaction and theoretically reproduced based on a reaction-diffusion system using the modified Oregonator model.

  2. In situ Observations of Magnetosonic Waves Modulated by Background Plasma Density

    NASA Astrophysics Data System (ADS)

    Yu, X.; Yuan, Z.; Huang, S.; Wang, D.; Funsten, H. O.

    2017-12-01

    We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to appear relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with 'ring' distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the background plasma density, the temporal variations of local wave growth rates calculated with the observed proton ring distributions, show a remarkable agreement with those of the observed wave amplitude. Therefore, the paper provides a direct proof that background plasma densities can modulate the amplitudes of magnetosonic waves through controlling the wave growth rates.

  3. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to saturate to a constant value due to the effects of nonlinear viscous damping. A qualitatively similar behaviour has also been predicted for the damping of nonlinear density waves, as described within a streamline formalism (Borderies, Goldreich & Tremaine [1985]). The damping lengths which follow from the weakly nonlinear model depend more or less strongly on a set of different input parameters, such as the viscosity and the surface density of the unperturbed ring state. Further, they depend on the wave's amplitude at resonance. For a real wave, which has been excited by an external satellite, this amplitude can be deduced from the magnitude of the satellite's forcing potential. Appart from that, hydrodynamical simulations are being developed to study the nonlinear damping of resonantly forced density waves.

  4. Spin wave spectra in perpendicularly magnetized permalloy rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X.; Ding, J.; Adeyeye, A. O., E-mail: eleaao@nus.edu.sg

    2015-03-16

    The dynamic behavior of perpendicularly magnetized permalloy circular rings is systematically investigated as a function of film thickness using broadband field modulated ferromagnetic resonance spectroscopy. We observed the splitting of one spin wave mode into a family of dense resonance peaks for the rings, which is markedly different from the single mode observed for continuous films of the same thickness. As the excitation frequency is increased, the mode family observed for the rings gradually converges into one mode. With the increase in the film thickness, a sparser spectrum of modes is observed. Our experimental results are in qualitative agreement withmore » the dynamic micromagnetic simulations.« less

  5. Particle simulation of electromagnetic emissions from electrostatic instability driven by an electron ring beam on the density gradient

    NASA Astrophysics Data System (ADS)

    Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej

    2018-04-01

    This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.

  6. Mechanical circulator for elastic waves by using the nonreciprocity of flexible rotating rings

    NASA Astrophysics Data System (ADS)

    Beli, Danilo; Silva, Priscilla Brandão; Arruda, José Roberto de França

    2018-01-01

    Circulators have a wide range of applications in wave manipulation. They provide a nonreciprocal response by breaking the time-reversal symmetry. In the mechanical field, nonlinear isolators and ferromagnetic circulators can be used for this objective. However, they require high power and high volumes. Herein, a flexible rotating ring is used to break the time-reversal symmetry as a result of the combined effect of Coriolis acceleration and material damping. Complete asymmetry of oscillating and evanescent components of wavenumbers is achieved. The elastic ring produces a nonreciprocal response that is used to design a three port mechanical circulator. The rotational speed for maximum transmission in one port and isolation in the other one is determined using analytical equations. A spectral element formulation is used to compute the complex dispersion diagrams and the forced response. Waveguides that support longitudinal and flexural waves are investigated. In this case, the ring nonreciprocity is modulated by the waveguide reciprocal response and the transmission coefficients can be affected. The proposed device is compact, nonferromagnetic, and may open new directions for elastic wave manipulation.

  7. Investigating EMIC Wave Dynamics with RAM-SCB-E

    NASA Astrophysics Data System (ADS)

    Jordanova, V. K.; Fu, X.; Henderson, M. G.; Morley, S.; Welling, D. T.; Yu, Y.

    2017-12-01

    The distribution of ring current ions and electrons in the inner magnetosphere depends strongly on their transport in realistic electric (E) and magnetic (B) fields and concurrent energization or loss. To investigate the high variability of energetic particle (H+, He+, O+, and electron) fluxes during storms selected by the GEM Surface Charging Challenge, we use our kinetic ring current model (RAM) two-way coupled with a 3-D magnetic field code (SCB). This model was just extended to include electric field calculations, making it a unique, fully self-consistent, anisotropic ring current-atmosphere interactions model, RAM-SCB-E. Recently we investigated electromagnetic ion cyclotron (EMIC) instability in a local plasma using both linear theory and nonlinear hybrid simulations and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Global dynamic EMIC wave maps obtained with our RAM-SCB-E model using this scaling will be presented and compared with statistical models. These plasma waves can affect significantly both ion and electron precipitation into the atmosphere and the subsequent patterns of ionospheric conductance, as well as the global ring current dynamics.

  8. Resonant circuit which provides dual-frequency excitation for rapid cycling of an electromagnet

    DOEpatents

    Praeg, W.F.

    1982-03-09

    Disclosed is a novel ring-magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the sinusoidal guide field of the ring magnet during particle acceleration. The control circuit generates sinusoidal excitation currents of different frequencies in the half waves. During radio-frequency acceleration of the synchrotron, the control circuit operates with a lower frequency sine wave and, thereafter, the electromagnets are reset with a higher-frequency half sine wave.

  9. Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings.

    PubMed

    Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin

    2017-10-30

    The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.

  10. First plasma wave observations at neptune.

    PubMed

    Gurnett, D A; Kurth, W S; Poynter, R L; Granroth, L J; Cairns, I H; Macek, W M; Moses, S L; Coroniti, F V; Kennel, C F; Barbosa, D D

    1989-12-15

    The Voyager 2 plasma wave instrument detected many familiar plasma waves during the encounter with Neptune, including electron plasma oscillations in the solar wind upstream of the bow shock, electrostatic turbulence at the bow shock, and chorus, hiss, electron cyclotron waves, and upper hybrid resonance waves in the inner magnetosphere. Low-frequency radio emissions, believed to be generated by mode conversion from the upper hybrid resonance emissions, were also observed propagating outward in a disklike beam along the magnetic equatorial plane. At the two ring plane crossings many small micrometer-sized dust particles were detected striking the spacecraft. The maximum impact rates were about 280 impacts per second at the inbound ring plane crossing, and about 110 impacts per second at the outbound ring plane crossing. Most of the particles are concentrated in a dense disk, about 1000 kilometers thick, centered on the equatorial plane. However, a broader, more tenuous distribution also extends many tens of thousands of kilometers from the equatorial plane, including over the northern polar region.

  11. Rejection of atrial sensing artifacts by a pacing lead with short tip-to-ring spacing.

    PubMed

    Nash, A; Fröhlig, G; Taborsky, M; Stammwitz, E; Maru, F; Bouwens, L H M; Celiker, C

    2005-01-01

    The ability of a new pacing lead design, with a 10 mm tip-to-ring spacing, to facilitate rejection of sensed far field R-waves and myopotentials was evaluated. Measurements were performed in 66 patients. The occurrence of far field R-wave sensing and myopotential sensing was determined by means of the surface ECG and the ECG markers provided by the pacemaker. At an atrial sensitivity of 0.25 mV and an atrial blanking of 50 ms far field R-wave sensing was observed in 12 patients (18.2%) and at an atrial sensitivity of 1.0 mV no far-field R-wave sensing was observed. Myopotentials were sensed in 3 patients. In all patients the measured P-wave amplitude was at least twice the estimated amplitude of the far field R-wave at an atrial blanking of 50 ms. The results from this study show that a small tip-to-ring spacing allows for programming of a high atrial sensitivity and short atrial blanking with an acceptably low risk for atrial artifact sensing.

  12. Evolution of planetary lithospheres - Evidence from multiringed structures on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.; Melosh, H. J.

    1980-01-01

    The thickness and viscosity of a planetary lithosphere increase with time as the mantle cools, with a thicker lithosphere leading to the formation of one (or very few) irregular normal faults concentric to the crater. Since a gravity wave or tsunami induced by impact into a liquid mantle would result in both radial and concentric extension features, which are not observed in the case of the large impact structures on Ganymede and Callisto, an alternative mechanism is proposed in which the varying ice/silicate ratios, tectonic histories, and erosional mechanisms of the two bodies are considered to explain the subtle differences in thin lithosphere ring morphology between Ganymede and Callisto. It is concluded that the present lithosphere thickness of Ganymede is too great to permit the development of any rings.

  13. An energy harvesting type ultrasonic motor.

    PubMed

    Wang, Guangqing; Xu, Wentan; Gao, Shuaishuai; Yang, Binqiang; Lu, Guoli

    2017-03-01

    An energy harvesting type ultrasonic motor is presented in this work. The novel motor not only can drive and/or position the motion mechanism, but also can harvest and convert the vibration-induced energy of the stator into electric energy to power small electronic devices. In the new motor, the stator is a sandwich structure of two PZT rings and an elastic metal body. The PZT ring bonded on the bottom surface is used to excite the stator metal body to generate a traveling wave with converse piezoelectric effect, and the other PZT ring bonded on top surface is used to harvest and convert the vibration-induced energy of the stator into electric energy with direct piezoelectric effect. Finite element method is adopted to analyze the vibration characteristics and the energetic characteristic. After the fabrication of a prototype, the mechanical output and electric energy output abilities are measured. The maximum no-load speed and maximum output torque of the prototype are 117rpm and 0.65Nm at an exciting voltage with amplitude of 134 V p-p and frequency of 40kHz, and the maximum harvesting output power of per sector area of the harvesting PZT is 327mW under an optimal equivalent load resistance of 6.9kΩ. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characterization of nonequilibrium states of trapped Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Novikov, A. N.; Bagnato, V. S.

    2018-06-01

    The generation of different nonequilibrium states in trapped Bose–Einstein condensates is studied by numerically solving the nonlinear Schrödinger equation. Inducing nonequilibrium states by shaking a trap creates the following states: weak nonequilibrium, the state of vortex germs, the state of vortex rings, the state of straight vortex lines, the state of deformed vortices, vortex turbulence, grain turbulence, and wave turbulence. A characterization of nonequilibrium states is advanced by introducing effective temperature, Fresnel number, and Mach number.

  15. Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2018-02-01

    This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.

  16. PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model

    DOE PAGES

    Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania Koleva; ...

    2017-07-15

    Whistler wave-particle interactions play an important role in the Earth inner magnetospheric dynamics and have been the subject of numerous investigations. By running a global kinetic ring current model (RAM-SCB) in a storm event occurred on Oct 23–24 2002, we obtain the ring current electron distribution at a selected location at MLT of 9 and L of 6 where the electron distribution is composed of a warm population in the form of a partial ring in the velocity space (with energy around 15 keV) in addition to a cool population with a Maxwellian-like distribution. The warm population is likely frommore » the injected plasma sheet electrons during substorm injections that supply fresh source to the inner magnetosphere. These electron distributions are then used as input in an implicit particle-in-cell code (iPIC3D) to study whistler-wave generation and the subsequent wave-particle interactions. Here, we find that whistler waves are excited and propagate in the quasi-parallel direction along the background magnetic field. Several different wave modes are instantaneously generated with different growth rates and frequencies. The wave mode at the maximum growth rate has a frequency around 0.62ω ce, which corresponds to a parallel resonant energy of 2.5 keV. Linear theory analysis of wave growth is in excellent agreement with the simulation results. These waves grow initially due to the injected warm electrons and are later damped due to cyclotron absorption by electrons whose energy is close to the resonant energy and can effectively attenuate waves. The warm electron population overall experiences net energy loss and anisotropy drop while moving along the diffusion surfaces towards regions of lower phase space density, while the cool electron population undergoes heating when the waves grow, suggesting the cross-population interactions.« less

  17. PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania Koleva

    Whistler wave-particle interactions play an important role in the Earth inner magnetospheric dynamics and have been the subject of numerous investigations. By running a global kinetic ring current model (RAM-SCB) in a storm event occurred on Oct 23–24 2002, we obtain the ring current electron distribution at a selected location at MLT of 9 and L of 6 where the electron distribution is composed of a warm population in the form of a partial ring in the velocity space (with energy around 15 keV) in addition to a cool population with a Maxwellian-like distribution. The warm population is likely frommore » the injected plasma sheet electrons during substorm injections that supply fresh source to the inner magnetosphere. These electron distributions are then used as input in an implicit particle-in-cell code (iPIC3D) to study whistler-wave generation and the subsequent wave-particle interactions. Here, we find that whistler waves are excited and propagate in the quasi-parallel direction along the background magnetic field. Several different wave modes are instantaneously generated with different growth rates and frequencies. The wave mode at the maximum growth rate has a frequency around 0.62ω ce, which corresponds to a parallel resonant energy of 2.5 keV. Linear theory analysis of wave growth is in excellent agreement with the simulation results. These waves grow initially due to the injected warm electrons and are later damped due to cyclotron absorption by electrons whose energy is close to the resonant energy and can effectively attenuate waves. The warm electron population overall experiences net energy loss and anisotropy drop while moving along the diffusion surfaces towards regions of lower phase space density, while the cool electron population undergoes heating when the waves grow, suggesting the cross-population interactions.« less

  18. EMIC Wave Scale Size in the Inner Magnetosphere: Observations From the Dual Van Allen Probes

    NASA Technical Reports Server (NTRS)

    Blum, L. W.; Bonnell, J. W.; Agapitov, O.; Paulson, K.; Kletzing, C.

    2017-01-01

    Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013-2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types: waves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.

  19. EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Blum, L. W.; Bonnell, J. W.; Agapitov, O.; Paulson, K.; Kletzing, C.

    2017-02-01

    Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013-2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types—waves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.

  20. Persistent current and zero-energy Majorana modes in a p -wave disordered superconducting ring

    NASA Astrophysics Data System (ADS)

    Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico

    2017-04-01

    We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p -wave one-dimensional superconducting ring, pierced by a magnetic flux Φ tuned at an appropriate value Φ =Φ* . In the absence of fermion parity conservation, we evidence the emergence of the Majorana modes by looking at the discontinuities in the persistent current I [Φ ] at Φ =Φ* . By monitoring the discontinuities in I [Φ ] , we map out the region in parameter space characterized by the emergence of Majorana modes in the disordered ring.

  1. Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.

    PubMed

    Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A

    2016-02-01

    Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voskoboynikov, O., E-mail: vam@faculty.nctu.edu.tw

    We theoretically investigate suppression and recovery of the Aharonov-Bohm oscillations of the diamagnetic response of electrons (holes) confined in self-assembled In{sub c}Ga{sub 1−c}As/GaAs semiconductor reflection asymmetrical quantum rings. Based on the mapping method and gauge-origin-independent definition for the magnetic vector potential we simulate the energies and wave functions of the electron (hole) under external magnetic and electric fields. We examine the transformation of the ground state wave function of the electron (hole) in reflection asymmetrical rings from localized in one of the potential valleys (dotlike shape of the wave function) to distributed over all volume of the ring (ringlike shape)more » under an appropriate lateral electric field. This transformation greatly recovers the electron (hole) diamagnetic coefficient and Aharonov-Bohm oscillations of the diamagnetic response of the ring. However, the recovering electric field for the first Aharonov-Bohm diamagnetic oscillation of the electron is a suppressing one for the hole (and vice versa). This can block the recovery of the optical Aharonow-Bohm effect in In{sub c}Ga{sub 1−c}As/GaAs asymmetrically wobbled rings. However, the recovery of the Aharonov-Bohm oscillations for the independent electron (hole) by the external electric field remains interesting and feasible objective for the asymmetric rings.« less

  3. Seasonal variation in Rayleigh-to-Love wave ratio in the secondary microseism

    NASA Astrophysics Data System (ADS)

    Tanimoto, T.; Hadziioannou, C.; Igel, H.; Wassermann, J. M.; Schreiber, U.; Gebauer, A.; Chow, B.

    2015-12-01

    The Ring Laser (the G-ring) at Wettzell (WET), Germany, is a rotation-measurement instrument that can monitor tiny variations in seismic noise. It essentially records only SH-type signals. Combined with a co-located seismograph (three-component seismograph STS-2), we can monitor the amount of Love waves from this instrument and that of Rayleigh waves from the STS seismograph. We report on seasonal variation of Rayleigh-to-Love wave ratio in the secondary microseism. The first step in our analysis is to obtain stacked Fourier spectra that were least affected by earthquakes. We used two earthquake catalogues to do this; the GCMT (Global Centroid Moment Tensor, Earthquakes M > 5.5) catalogue and the EMSC (European-Mediterranean Seismic Centre) catalogue for regional earthquakes (distance < 1000 km) with M > 4.5. We then created monthly averages of noise Fourier spectra for the frequency range 0.13-0.30 Hz using both the G-ring and STS data from 2009 to 2015. Monthly spectra show clear seasonal variations for the secondary microseism. We obtained surface vertical acceleration from STS and surface transverse acceleration from G-ring from which we can directly measure the Rayleigh-to-Love wave ratio. The procedure is the same with an account in our recent GRL paper (Tanimoto et al., 2015). Comparison between vertical acceleration and transverse acceleration shows that Rayleigh-wave surface amplitudes are about 20 percent larger than Love waves but in terms of kinetic energy this ratio will be different. We converted these ratios of surface amplitude to those of kinetic energy using an available earth model (Fichtner et al., 2013). The averaged ratio over the frequency band 0.13-0.30 Hz shows is in the range 0.6-0.8 in spring, autumn and winter but it increases to about 1.2 in summer. Except for the summer, the amount of Love waves are higher but the amount of Rayleigh waves increases in summer and appears to exceed that of Love waves.

  4. Cassini Radio and Plasma Wave Observations at Saturn

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Ceccni, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.

  5. Structure, stratigraphy, and eruption chronology of the Hanauma Bay Tuff Ring, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2010-12-01

    The Hanauma Bay-Koko Head Complex is one of several volcanic landforms along the Koko fissure, in southeastern Oahu, that formed during rejuvenated volcanism. The Hanauma Bay region of the complex is comprised of two nested tuff rings. The internal structure of the inner tuff ring is well exposed due to subsequent breaching and wave erosion and is described in detail here for the first time. The inner tuff ring is currently believed to have formed during a single eruption episode. However, field observations, detailed photography, structural mapping in both the vertical and horizontal planes, extensive measurements of bedding attitudes, and stratigraphic analysis suggest that there were a minimum of five distinct intervals of deposition, which also blanketed the deposits of the outer tuff ring with ejecta. These intervals of sedimentation were separated by significant collapses, generating major unconformities that cross the inner wall of the inner ring. The planes of failure are marked by smaller steep-walled channels and gullies, eroded by rainfall-induced runoff and suggesting the failures were each followed by short time breaks with erosion. Within each pyroclastic sequence there are also smaller slump scars and local unconformities. The inner tuff ring was predominately formed by pyroclastic surges, although the beds of Phase 3 are primarily fall deposits. From ballistic trajectories and bedding features, it is apparent that the eruption locus shifted a minimum of two times during tuff ring growth. Ballistic blocks in the final Phase 5 indicate that the Hanauma Bay eruption was contemporaneous with a separate eruption to the north, most likely that of the Kahauloa tuff ring 880 meters away.

  6. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system.

    PubMed

    Chwiej, T; Szafran, B

    2013-04-17

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.

  7. Investigating dust trapping in transition disks with millimeter-wave polarization

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For intermediate inclined transition disks, the polarization degree is as high as ~2% at λ = 3.1 mm (band 3), which is well above the detection limit of future ALMA observations.

  8. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2001-05-15

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  9. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2003-01-01

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  10. Particle sizes in Saturn's rings from UVIS stellar occultations 1. Variations with ring region

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Esposito, L. W.; Cooney, J. H.

    2018-01-01

    The Cassini spacecraft's Ultraviolet Imaging Spectrograph (UVIS) includes a high speed photometer (HSP) that has observed stellar occultations by Saturn's rings with a radial resolution of ∼10 m. In the absence of intervening ring material, the time series of measurements by the HSP is described by Poisson statistics in which the variance equals the mean. The finite sizes of the ring particles occulting the star lead to a variance that is larger than the mean due to correlations in the blocking of photons due to finite particle size and due to random variations in the number of individual particles in each measurement area. This effect was first exploited by Showalter and Nicholson (1990) with the stellar occultation observed by Voyager 2. At a given optical depth, a larger excess variance corresponds to larger particles or clumps that results in greater variation of the signal from measurement to measurement. Here we present analysis of the excess variance in occultations observed by Cassini UVIS. We observe differences in the best-fitting particle size in different ring regions. The C ring plateaus show a distinctly smaller effective particle size, R, than the background C ring, while the background C ring itself shows a positive correlation between R and optical depth. The innermost 700 km of the B ring has a distribution of excess variance with optical depth that is consistent with the C ring ramp and C ring but not with the remainder of the B1 region. The Cassini Division, while similar to the C ring in spectral and structural properties, has different trends in effective particle size with optical depth. There are discrete jumps in R on either side of the Cassini Division ramp, while the C ring ramp shows a smooth transition in R from the C ring to the B ring. The A ring is dominated by self-gravity wakes whose shadow size depends on the occultation geometry. The spectral ;halo; regions around the strongest density waves in the A ring correspond to decreases in R. There is also a pronounced dip in R at the Mimas 5:3 bending wave corresponding to an increase in optical depth there, suggesting that at these waves small particles are liberated from clumps or self-gravity wakes leading to a reduction in effective particle size and an increase in optical depth.

  11. The Case for Massive and Ancient Rings of Saturn

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2016-10-01

    Analysis of Voyager and Pioneer 11 results give a mass for Saturn's rings, M = 5 x 10-8 Msat. This is about the mass of Saturn's small moon Mimas. This has been interpreted as a lower limit to the ring mass (Esposito et al 1983), since the thickest parts of the rings were not penetrated by the stellar occultstion, and this calculation assumes an unvarying particle size throughout the rings. Because the rings are constantly bombarded by micrometeroids, their current composition of nearly pure water ice implies such low mass rings must have formed recently. The case is particularly strong for Saturn's A ring, where the data are the best, implying the A ring is less than 10% of the age of the Saturn (Esposito 1986). Cassini results compound this problem. UVIS spectra are consistent with either young rings or rings about 10x as massive as the Voyager estimate (Elliott and Esposito (2011). CDA confirms the impacting mass flux is similar to that assumed for the pollution calculations (Kempf etal 2015). VIMS analysis of density wave signatures in the B ring gives a value of about 1/3 the Voyager value (Hedmann etal 2016). This VIMS result implies the rings are even younger! The problem is that young rings are very unlikely to be formed recently, meaning that we live in a very special epoch, following some unlikely recent origin… like disruption of a medium sized moon or capture of the fragments of a disrupted comet (Charnoz etal 2009).To take the VIMS results at face value, Saturn's low mass rings must be very young. The optically thick B ring must be made of small, porous or fractal particles. An alternative is that we accept the higher mass interpretation of the Pioneer 11 results (Esposito etal 2008) using the granola bar model of Colwell etal 2007. This would imply that the density wave structure seen by VIMS is not sensing all the mass in the rings, where structure near strong resonances is dominted by temporary aggregates, and where non-linear effects cause the particles to jam (Lewis and Stewart 2009). The density waves may be seeing the mass density in the gaps between self-gravity wakes, whose optical depth is roughly contant and considerably lower than the total B ring opacity (Colwell etal 2007).

  12. Loss of ring current O(+) ions due to interaction with Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Li, Xinlin; Hudson, Mary; Chan, Anthony; Roth, Ilan

    1993-01-01

    A test particle code is used here to investigate ring current ion interaction with Pc 5 waves, combined with convection and corotation electric fields, with emphasis on the loss of O(+) ions over the dayside magnetosphere. A new loss mechanism for the O(+) ions due to the combined effects of convection and corotation electric fields and interactions with Pc 5 waves via a magnetic drift-bound resonance is presented. For given fields, whether a particle gains or losses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O(+) ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. Due to interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle is lost to the dayside magnetopause by a sunward E x B drift.

  13. Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators

    NASA Astrophysics Data System (ADS)

    Ketzaki, Dimitra A.; Tsilipakos, Odysseas; Yioultsis, Traianos V.; Kriezis, Emmanouil E.

    2013-09-01

    Spectral filtering and electromagnetically induced transparency (EIT) with hybrid silicon-plasmonic traveling-wave resonators are theoretically investigated. The rigorous three-dimensional vector finite element method simulations are complemented with temporal coupled mode theory. We show that ring and disk resonators with sub-micron radii can efficiently filter the lightwave with minimal insertion loss and high quality factors (Q). It is shown that disk resonators feature reduced radiation losses and are thus advantageous. They exhibit unloaded quality factors as high as 1000 in the telecom spectral range, resulting in all-pass filtering components with sharp resonances. By cascading two slightly detuned resonators and providing an additional route for resonator interaction (i.e., a second bus waveguide), a response reminiscent of EIT is observed. The EIT transmission peak can be shaped by means of resonator detuning and interelement separation. Importantly, the respective Q can become higher than that of the single-resonator structure. Thus, the possibility of exploiting this peak in switching applications relying on the thermo-optic effect is, finally, assessed.

  14. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  15. An experimental study of the sources of fluctuating pressure loads beneath swept shock/boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Garg, S.

    1993-01-01

    An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins at angle of attack. Fin angles from 10 to 20 deg at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature Kulite pressure transducers flush-mounted in the flat plate are used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their ring levels, amplitude distributions, and power spectra, are also determined. Measurements were made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 160 dB. These fluctuations are dominated by low frequency (0-5 kHz) signals. The maximum ring levels in the interactions show an increasing trend with increasing interaction strength. On the other hand, the maximum ring levels in the forward portion of the interactions decrease linearly with increasing interaction sweep back. These ring pressure distributions and spectra are correlated with the features of the interaction flowfield. The unsteadiness of the off-surface flowfield is studied using a new, non-intrusive technique based on the shadow graph method. The results indicate that the entire lambda-shock structure generated by the interaction undergoes relatively low-frequency oscillations. Some regions where particularly strong fluctuations are generated were identified. Fluctuating pressure measurements are also made along the line of symmetry of an axisymmetric jet impinging upon a flat plate at an angle. This flow was chosen as a simple analog to the impinging jet region found in the rear portion of the shock wave/boundary layer interactions under study. It is found that a sharp peak in ring pressure level exists at or near the mean stagnation point. It is suggested that the phenomena responsible for this peak may be active in the swept interactions as well, and may cause the extremely high fluctuating pressures observed in the impinging jet region in the present experimental program.

  16. Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser.

    PubMed

    Liu, Jun; Chen, Yu; Tang, Pinghua; Xu, Changwen; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2015-03-09

    In a passively mode-locked Erbium-doped fiber laser with large anomalous-dispersion, we experimentally demonstrate the formation of noise-like square-wave pulse, which shows quite different features from conventional dissipative soliton resonance (DSR). The corresponding temporal and spectral characteristics of a variety of operation states, including Q-switched mode-locking, continuous-wave mode-locking and Raman-induced noise-like pulse near the lasing threshold, are also investigated. Stable noise-like square-wave mode-locked pulses can be obtained at a fundamental repetition frequency of 195 kHz, with pulse packet duration tunable from 15 ns to 306 ns and per-pulse energy up to 200 nJ. By reducing the linear cavity loss, stable higher-order harmonic mode-locking had also been observed, with pulse duration ranging from 37 ns at the 21st order harmonic wave to 320 ns at the fundamental order. After propagating along a piece of long telecom fiber, the generated square-wave pulses do not show any obvious change, indicating that the generated noise-like square-wave pulse can be considered as high-energy pulse packet for some promising applications. These experimental results should shed some light on the further understanding of the mechanism and characteristics of noise-like square-wave pulses.

  17. Continuous wave cavity ring down spectroscopy measurements of velocity distribution functions of argon ions in a helicon plasma.

    PubMed

    Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E

    2012-02-01

    We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, T(e) ≈ 4 eV and n ≈ 5 × 10(11) cm(-3)). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 10(9) cm(-3) to 1 × 10(13) cm(-3) and target species temperatures less than 20 eV.

  18. Continuous wave cavity ring down spectroscopy measurements of velocity distribution functions of argon ions in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E.

    2012-02-01

    We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, Te ≈ 4 eV and n ≈ 5 × 1011 cm-3). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 109 cm-3 to 1 × 1013 cm-3 and target species temperatures less than 20 eV.

  19. High power single-longitudinal-mode Ho:YLF unidirectional ring laser based on a composite structure of acousto-optic device and wave plate

    NASA Astrophysics Data System (ADS)

    Dai, T. Y.; Fan, Z. G.; Wu, J.; Ju, Y. L.; Yao, B. Q.; Zhang, Z. G.; Teng, K.; Xu, X. G.; Duan, X. M.

    2017-05-01

    We report a unidirectional single-longitudinal-mode Ho:YLF ring laser. An acousto-optic modulator and two half-wave plates were used to enforce the Ho:YLF ring laser in a unidirectional operation. The single-longitudinal-mode output power could reach 3.73 W successfully when the incident pump power was 16.4 W. The corresponding slope efficiency was 27.1%. The wavelength of the single-longitudinal-mode Ho:YLF ring laser was 2063.8 nm. The M2 factor was 1.12. The results illustrated that the single-longitudinal-mode output power could be further enhanced by increasing the radio frequency power of the acousto-optic modulator.

  20. Enhanced spin wave propagation in magnonic rings by bias field modulation

    NASA Astrophysics Data System (ADS)

    Venkat, G.; Venkateswarlu, D.; Joshi, R. S.; Franchin, M.; Fangohr, H.; Anil Kumar, P. S.; Prabhakar, A.

    2018-05-01

    We simulate the spin wave (SW) dynamics in ring structures and obtain the ω - k dispersion relations corresponding to the output waveguide. Different bias field configurations affect the transfer of SW power from one arm of the structure to the other arm. To this end, we show that circular or radial bias fields are more suitable for energy transfer across the ring than the conventional horizontal bias field Hx. The SW dispersion shows that modes excited, when the bias field is along the ring radius, are almost 10 dB higher in power when compared to the modal power in the case of Hx. This is also corroborated by the SW energy density in the receiving stub.

  1. Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer.

    PubMed

    Peternella, Fellipe Grillo; Ouyang, Boling; Horsten, Roland; Haverdings, Michael; Kat, Pim; Caro, Jacob

    2017-12-11

    We experimentally demonstrate an interrogation procedure of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer (MZI). The sensor comprises a silicon ring resonator (RR) located on a silicon-oxide membrane, designed to have its lowest vibrational mode in the MHz range, which is the range of intravascular ultrasound (IVUS) imaging. Ultrasound incident on the membrane excites its vibrational mode and as a result induces a modulation of the resonance wavelength of the RR, which is a measure of the amplitude of the ultrasound waves. The interrogation procedure developed is based on the mathematical description of the interrogator operation presented in Appendix A, where we identify the amplitude of the angular deflection Φ 0 on the circle arc periodically traced in the plane of the two orthogonal interrogator voltages, as the principal sensor signal. Interrogation is demonstrated for two sensors with membrane vibrational modes at 1.3 and 0.77 MHz, by applying continuous wave ultrasound in a wide pressure range. Ultrasound is detected at a pressure as low as 1.2 Pa. Two optical path differences (OPDs) of the MZI are used. Thus, different interference conditions of the optical signals are defined, leading to a higher apparent sensitivity for the larger OPD, which is accompanied by a weaker signal, however. Independent measurements using the modulation method yield a resonance modulation per unit of pressure of 21.4 fm/Pa (sensor #1) and 103.8 fm/Pa (sensor #2).

  2. Technique to separate lidar signal and sunlight.

    PubMed

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.

  3. Ultra-low power generation of twin photons in a compact silicon ring resonator.

    PubMed

    Azzini, Stefano; Grassani, Davide; Strain, Michael J; Sorel, Marc; Helt, L G; Sipe, J E; Liscidini, Marco; Galli, Matteo; Bajoni, Daniele

    2012-10-08

    We demonstrate efficient generation of correlated photon pairs by spontaneous four wave mixing in a 5 μm radius silicon ring resonator in the telecom band around 1550 nm. By optically pumping our device with a 200 μW continuous wave laser, we obtain a pair generation rate of 0.2 MHz and demonstrate photon time correlations with a coincidence-to-accidental ratio as high as 250. The results are in good agreement with theoretical predictions and show the potential of silicon micro-ring resonators as room temperature sources for integrated quantum optics applications.

  4. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave

    PubMed Central

    Chen, Gang; Wu, Zhi-xiang; Yu, An-ping; Zhang, Zhi-hai; Wen, Zhong-quan; Zhang, Kun; Dai, Lu-ru; Jiang, Sen-lin; Li, Yu-yan; Chen, Li; Wang, Chang-tao; Luo, Xian-gang

    2016-01-01

    The generation of a sub-diffraction optical hollow ring is of great interest in various applications, such as optical microscopy, optical tweezers, and nanolithography. Azimuthally polarized light is a good candidate for creating an optical hollow ring structure. Various of methods have been proposed theoretically for generation of sub-wavelength hollow ring by focusing azimuthally polarized light, but without experimental demonstrations, especially for sub-diffraction focusing. Super-oscillation is a promising approach for shaping sub-diffraction optical focusing. In this paper, a planar sub-diffraction diffractive lens is proposed, which has an ultra-long focal length of 600 λ and small numerical aperture of 0.64. A sub-diffraction hollow ring is experimentally created by shaping an azimuthally polarized wave. The full-width-at-half-maximum of the hollow ring is 0.61 λ, which is smaller than the lens diffraction limit 0.78 λ, and the observed largest sidelobe intensity is only 10% of the peak intensity. PMID:27876885

  5. Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode

    PubMed Central

    Li, Yunyun; Zhou, Jun; Marchesoni, Fabio; Li, Baowen

    2014-01-01

    Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schrödinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring. PMID:24691462

  6. Acoustic Levitation Transportation of Small Objects Using a Ring-type Vibrator

    NASA Astrophysics Data System (ADS)

    Thomas, Gilles P. L.; Andrade, Marco A. B.; Adamowski, Julio C.; Silva, Eḿílio C. N.

    A new device for noncontact transportation of small solid objects is presented here. Ultrasonic flexural vibrations are generated along the ring shaped vibrator using two Langevin transducers and by using a reflector parallel to the vibrator, small particles are trapped at the nodal points of the resulting acoustic standing wave. The particles are then moved by generating a traveling wave along the vibrator, which can be done by modulating the vibration amplitude of the transducers. The working principle of the traveling wave along the vibrator has been modeled by the superposition of two orthogonal standing waves, and the position of the particles can be predicted by using finite element analysis of the vibrator and the resulting acoustic field. A prototype consisting of a 3 mm thick, 220 mm long, 50 mm wide and 52 mm radius aluminum ring-type vibrator and a reflector of the same length and width was built and small polystyrene spheres have been successfully transported along the straight parts of the vibrator.

  7. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we calculate the pitch-angle diffusion coefficients using the typical wave normal distributions obtained from our self-consistent ring current-EMIC wave model, and try to quantify the effect of EMIC wave normal angle characteristics on relativistic electron scattering.

  8. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.

    2002-08-01

    The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science.

  9. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    NASA Astrophysics Data System (ADS)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2014-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  10. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    NASA Astrophysics Data System (ADS)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2015-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  11. Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities

    NASA Astrophysics Data System (ADS)

    Peterka, Pavel; Navrátil, Petr; Dussardier, Bernard; Slavík, Radan; Honzátko, Pavel; Kubecek, Václav

    2012-06-01

    Rare-earth doped fiber lasers are subject to instabilities and various self-pulsed regimes that can lead to catastrophic damage of their components. An interesting self-pulsing regime accompanied with laser wavelength drift with time is the so called self-induced laser line sweeping (SLLS). Despite the early observations of the SLLS in solid-state ruby lasers, in fiber lasers it was first time mentioned in literature only in 2009 where such a laser wavelength drift with time was observed in a relatively broad range of about 1076 -1084 nm in ring ytterbium-doped fiber laser (YDFL). The main characteristic of the SLLS is the scanning of the laser wavelength from shorter to longer wavelength, spanning over large interval of several nanometers, and instantaneous bounce backward. The period of this sweeping is usually quite long, of the order of seconds. This spectacular effect was attributed to spatial-hole burning caused by standing-wave in the laser cavity. In this paper we present experimental investigation of the SLLS in YDFLs in Fabry-Perot cavity and ring cavities. The SLLS was observed also in erbium-doped fiber laser around 1560 nm. We present for the first time observation of the laser wavelength sweep in reverse direction, i.e., from longer towards shorter wavelengths. It was observed in YDFL around 1080 nm.

  12. Photoacoustic signal measurement for burned skins in the spectral range of 500-650 nm: experiment with rat burn models

    NASA Astrophysics Data System (ADS)

    Yamazaki, Mutsuo; Sato, Shunichi; Saito, Daizo; Fujita, Masanori; Okada, Yoshiaki; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru

    2002-06-01

    This paper reports the burn diagnosis that is based on the measurement of photoacoustic waves from skin, where the acoustic waves originate from the absorption of light by blood. For this purpose, a transducer composed of a ring-shaped piezoelectric film and a quartz fiber was made. An optical parametric oscillator (500 - 650 nm) was used as a light source and its output pulses were coupled to the quartz fiber. To investigate the optimum light wavelength, we conducted experiments using rat burn models. We demonstrated that the superficial dermal burn (SDB), deep dermal burn (DDB), deep burn (DB), and control (healthy skin) could be clearly differentiated based on the photoacoustic signals induced by the light of 532 - 580nm.

  13. Acceleration from short-duration blast

    NASA Astrophysics Data System (ADS)

    Ritzel, D. V.; Van Albert, S.; Sajja, V.; Long, J.

    2018-01-01

    The blast-induced motion of spheres has been studied experimentally where the shock wave is rapidly decaying during the period that quasi-steady acceleration would be developed in the case of a step-function shock wave as considered in most shock-tube studies. The motion of sphere models ranging from 39 to 251 mm in diameter and having a range of densities was assessed using the "free-flight" method in a simulator specially designed to replicate the decaying shock wave profile of spherical blast including negative phase and positive entropy gradient. A standardized blast-wave simulation of 125 kPa and 6-ms positive-phase duration was applied for all experiments. In all cases, there are three phases to the motion: a relatively low "kickoff" velocity from the shock diffraction, acceleration or deceleration during the positive duration, then deceleration through the negative phase and subsequent quiescent air. The unexpected deceleration of larger spheres after their kickoff velocity during the decaying yet high-speed flow of the blast wave seems associated with the persistence of a ring vortex on the downstream side of the sphere. The flow is entirely unsteady with initial forces dominated by the shock diffraction; therefore, the early motion of spheres under such conditions is not governed by quasi-steady drag as in classical aerodynamics. The work will help establish scaling rules for model studies of blast-induced motion relevant to improvised explosive devices, and preliminary results are shown for motion imparted to a human skull surrogate.

  14. The Shapers

    NASA Image and Video Library

    2015-01-26

    Two masters of their craft are caught at work shaping Saturn's rings. Pandora (upper right) sculpts the F ring, as does nearby Prometheus (not seen in this image). Meanwhile, Daphnis is busy holding open the Keeler gap (bottom center), its presence revealed here by the waves it raises on the gap's edge. The faint moon is located where the inner and outer waves appear to meet. Also captured in this image, shining through the F ring above the image center, is a single star. Although gravity is by its very nature an attractive force, moons can interact with ring particles in such a way that they effectively push ring particles away from themselves. Ring particles experience tiny gravitational "kicks" from these moons and subsequently collide with other ring particles, losing orbital momentum. The net effect is for moons like Pandora (50 miles or 81 kilometers across) and Daphnis (5 miles or 8 kilometers across) to push ring edges away from themselves. The Keeler gap is the result of just such an interaction. This view looks toward the unilluminated side of the rings from about 50 degrees below the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 30, 2013. http://photojournal.jpl.nasa.gov/catalog/PIA18298

  15. Voyager 2 plasma wave observations at saturn.

    PubMed

    Scarf, F L; Gurnett, D A; Kurth, W S; Poynter, R L

    1982-01-29

    The first inbound Voyager 2 crossing of Saturn's bow shock [at 31.7 Saturn radii (RS), near local noon] and the last outbound crossing (at 87.4 RS, near local dawn) had similar plasma wave signatures. However, many other aspects of the plasma wave measurements differed considerably during the inbound and outbound passes, suggesting the presence of effects associated with significant north-south or noon-dawn asymmetries, or temporal variations. Within Saturn's magnetosphere, the plasma wave instrument detected electron plasma oscillations, upper hybrid resonance emissions, half-gyrofrequency harmonics, hiss and chorus, narrowband electromagnetic emissions and broadband Saturn radio noise, and noise bursts with characteristics of static. At the ring plane crossing, the plasma wave instrument also detected a large number of intense impulses that we interpret in terms of ring particle impacts on Voyager 2.

  16. Ringing phenomenon based whispering-gallery-mode sensing

    PubMed Central

    Ye, Ming-Yong; Shen, Mei-Xia; Lin, Xiu-Min

    2016-01-01

    Highly sensitive sensing is one of the most important applications of whispering-gallery-mode (WGM) microresonators, which is usually accomplished through a tunable continuous-wave laser sweeping over a whispering-gallery mode with the help of a fiber taper in a relative slow speed. It is known that if a tunable continuous-wave laser sweeps over a high quality whispering-gallery mode in a fast speed, a ringing phenomenon will be observed. The ringing phenomenon in WGM microresonators is mainly used to measure the Q factors and mode-coupling strengths. Here we experimentally demonstrate that the WGM sensing can be achieved based on the ringing phenomenon. This kind of sensing is accomplished in a much shorter time and is immune to the noise caused by the laser wavelength drift. PMID:26796871

  17. Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by taking into account the RC ions in the EMIC wave dispersion relation. The dramatic wave pattern redistribution is observed in the postdusk-predawn MLT sector (night sector) for L greater than 5. We found the intense EMIC waves (about a few nT) there during the main and early recovery phases of the storm. The observed wave generation in this sector is caused by taking into account the EMIC wave dispersion change due to the RC ions. There are no waves at these locations in our model if the RC ions are taken into account in the wave growth rate only, and the wave dispersion relation is only governed by the thermal plasmaspheric model.

  18. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by taking into account the RC ions in the EMIC wave dispersion relation. The dramatic wave pattern redistribution is observed in the postdusk-predawn MLT sector (night sector) for L greater than 5. We found the intense EMIC waves (about a few nT) there during the main and early recovery phases of the storm. The observed wave generation in this sector is caused by taking into account the EMIC wave dispersion change due to the RC ions. There are no waves at these locations in our model if the RC ions are taken into account in the wave growth rate only, and the wave dispersion relation is only governed by the thermal plasmaspheric model.

  19. A unified theory of stable auroral red arc formation at the plasmapause

    NASA Technical Reports Server (NTRS)

    Cornwall, J. M.; Coroniti, F. V.; Thorne, R. M.

    1970-01-01

    A theory is proposed that SAR-arcs are generated at the plasmapause as a consequence of the turbulent dissipation of ring current energy. During the recovery phase of a geomagnetic storm, the plasmapause expands outward into the symmetric ring current. When the cold plasma densities reach about 100/cu cm, ring current protons become unstable and generate intense ion cyclotron wave turbulence in a narrow region 1/2 earth radius wide (just inside the plasmapause). Approximately one-half of the ring current energy is dissipated into wave turbulence which in turn is absorbed through a Landau resonant interaction with plasma spheric electrons. The combined thermal heat flux to the ionosphere due to Landau absorption of the wave energy and proton-electron Coulomb dissipation is sufficient to drive SAR-arcs at the observed intensities. It is predicted that the arcs should be localized to a narrow latitudinal range just within the stormtime plasmapause. They should occur at all local times and persist for the 10 to 20 hour duration of the plasma-pause expansion.

  20. Nd:GdVO4 ring laser pumped by laser diodes

    NASA Astrophysics Data System (ADS)

    Hao, E. J.; Li, T.; Wang, Z. D.; Zhang, Y.

    2013-02-01

    The design and operation of a laser diode-pumped Nd:GdVO4 ring laser is described. A composite crystal (Nd:GdVO4/YVO4) with undoped ends is single-end pumped by a fiber-coupled laser diode (LD) at 808 nm. A four-mirror ring cavity is designed to keep the laser operating unidirectionally, which eliminates spatial hole burning in the standing-wave cavity. This laser can operate either as continuous wave (CW) or Q-switched. The single-frequency power obtained was 9.1 W at 1063 nm. Q-switched operation produced 0.23 mJ/pulse at 20 kHz in the fundamental laser.

  1. Spin wave modes in out-of-plane magnetized nanorings

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Tartakovskaya, E. V.; Kakazei, G. N.; Adeyeye, A. O.

    2017-07-01

    We investigated the spin wave modes in flat circular permalloy rings with a canted external bias field using ferromagnetic resonance spectroscopy. The external magnetic field H was large enough to saturate the samples. For θ =0∘ (perpendicular geometry), three distinct resonance peaks were observed experimentally. In the case of the cylindrical symmetry violation due to H inclination from normal to the ring plane (the angle θ of H inclination was varied in the 0∘-6∘ range), the splitting of all initial peaks appeared. The distance between neighbor split peaks increased with the θ increment. Unexpectedly, the biggest splitting was observed for the mode with the smallest radial wave vector. This special feature of splitting behavior is determined by the topology of the ring shape. Developed analytical theory revealed that in perpendicular geometry, each observed peak is a combination of signals from the set of radially quantized spin wave excitation with almost the same radial wave vectors, radial profiles, and frequencies, but with different azimuthal dependencies. This degeneracy is a consequence of circular symmetry of the system and can be removed by H inclination from the normal. Our findings were further supported by micromagnetic simulations.

  2. Observation of electromagnetically induced transparency and absorption in Yttrium Iron Garnet loaded split ring resonator

    NASA Astrophysics Data System (ADS)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-04-01

    In this paper, we propose a new method of controlling microwave transmission from Electromagnetically Induced Absorption (EIA) to Electromagnetically Induced Transparency (EIT). EIA describes the state where the system strongly absorbs microwaves, whereas EIT describes the state in which the system is transparent to microwaves. Control is achieved via coupling of the 3 GHz photon mode of a metamaterial Split Ring Resonator (SRR) to the spin wave magnon modes of a Yttrium Iron Garnet (YIG) bulk. The system is described by a 2-body interaction matrix with an additional fitting parameter τ which takes into account the fact that the microstrip feed line could excite the SRR as well as the YIG. The parameter τ reveals the effect of geometry and shielding on the coupling behaviour and gives rise to unique physics. In low τ (τ ⩽ 2) configurations, only EIT is reported. However, in high τ (τ ≈ 10) configurations, EIA is reported. Furthermore, we report that the system can be easily changed from a low τ to high τ configuration by shielding the SRR from the microstrip with a thin metal piece. Varying the τ parameter through shielding is thus proposed as a new method of controlling the microwave transmission at the coupling region.

  3. Coupled Transmission Line Based Slow Wave Structures for Traveling Wave Tubes Applications

    NASA Astrophysics Data System (ADS)

    Zuboraj, Md. Rashedul Alam

    High power microwave devices especially Traveling Wave Tubes (TWTs) and Backward Wave Oscillators (BWOs) are largely dependent on Slow Wave Structures for efficient beam to RF coupling. In this work, a novel approach of analyzing SWSs is proposed and investigated. Specifically, a rigorous study of helical geometries is carried out and a novel SWS "Half-Ring-Helix" is designed. This Half-Ring-Helix circuit achieves 27% miniaturization and delivers 10dB more gain than conventional helices. A generalization of the helix structures is also proposed in the form of Coupled Transmission Line (CTL). It is demonstrated that control of coupling among the CTLs leads to new propagation properties. With this in mind, a novel geometry referred to as "Curved Ring-Bar" is introduced. This geometry is shown to deliver 1MW power across a 33% bandwidth. Notably, this is the first demonstration of MW power TWT across large bandwidth. The CTL is further expanded to enable engineered propagation characteristics. This is done by introducing CTLs having non-identical transmission lines and CTLs with as many as four transmission lines in the same slow wave structure circuit. These non-identical CTLs are demonstrated to generate fourth order dispersion curves. Building on the property of CTLs, a `butterfly' slow wave structure is developed and demonstrated to provide degenerate band edge (DBE) mode. This mode are known to provide large feld enhancement that can be exploited to design high power backward wave oscillators.

  4. Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity.

    PubMed

    Heitmann, Stewart; Ermentrout, G Bard

    2015-06-01

    Spatiotemporal waves of synchronized activity are known to arise in oscillatory neural networks with lateral inhibitory coupling. How such patterns respond to dynamic changes in coupling strength is largely unexplored. The present study uses analysis and simulation to investigate the evolution of wave patterns when the strength of lateral inhibition is varied dynamically. Neural synchronization was modeled by a spatial ring of Kuramoto oscillators with Mexican hat lateral coupling. Broad bands of coexisting stable wave solutions were observed at all levels of inhibition. The stability of these waves was formally analyzed in both the infinite ring and the finite ring. The broad range of multi-stability predicted hysteresis in transitions between neighboring wave solutions when inhibition is slowly varied. Numerical simulation confirmed the predicted transitions when inhibition was ramped down from a high initial value. However, non-wave solutions emerged from the uniform solution when inhibition was ramped upward from zero. These solutions correspond to spatially periodic deviations of phase that we call ripple states. Numerical continuation showed that stable ripple states emerge from synchrony via a supercritical pitchfork bifurcation. The normal form of this bifurcation was derived analytically, and its predictions compared against the numerical results. Ripple states were also found to bifurcate from wave solutions, but these were locally unstable. Simulation also confirmed the existence of hysteresis and ripple states in two spatial dimensions. Our findings show that spatial synchronization patterns can remain structurally stable despite substantial changes in network connectivity.

  5. Switchable genetic oscillator operating in quasi-stable mode

    PubMed Central

    Strelkowa, Natalja; Barahona, Mauricio

    2010-01-01

    Ring topologies of repressing genes have qualitatively different long-term dynamics if the number of genes is odd (they oscillate) or even (they exhibit bistability). However, these attractors may not fully explain the observed behaviour in transient and stochastic environments such as the cell. We show here that even repressilators possess quasi-stable, travelling wave periodic solutions that are reachable, long-lived and robust to parameter changes. These solutions underlie the sustained oscillations observed in even rings in the stochastic regime, even if these circuits are expected to behave as switches. The existence of such solutions can also be exploited for control purposes: operation of the system around the quasi-stable orbit allows us to turn on and off the oscillations reliably and on demand. We illustrate these ideas with a simple protocol based on optical interference that can induce oscillations robustly both in the stochastic and deterministic regimes. PMID:20097721

  6. Continuous Wave Ring-Down Spectroscopy Diagnostic for Measuring Argon Ion and Neutral Velocity Distribution Functions in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Soderholm, Mark; Carr, Jerry, Jr.; Galante, Matthew; Magee, Richard; Scime, Earl

    2013-10-01

    Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (IVDFs), can be measured. Measurements of IVDFS can be made using established techniques, such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. In this work we present ongoing measurements of the CW-CRDS diagnostic and discuss the technical challenges of using CW-CRDS to make measurements in a helicon plasma.

  7. Nearshore wave-induced cyclical flexing of sea cliffs

    USGS Publications Warehouse

    Adams, P.N.; Storlazzi, C.D.; Anderson, R. Scott

    2005-01-01

    [1] Evolution of a tectonically active coast is driven by geomorphically destructive energy supplied by ocean waves. Wave energy is episodic and concentrated; sea cliffs are battered by the geomorphic wrecking ball every 4-25 s. We measure the response of sea cliffs to wave assault by sensing the ground motion using near-coastal seismometers. Sea cliffs respond to waves in two distinct styles. High-frequency motion (20 Hz) reflects the natural frequency of the sea cliff as it rings in response to direct wave impact. Low-frequency motion in the 0.1-0.05 Hz (10-20 s) band consistently agrees with the dominant nearshore wave period. Integrating microseismic velocities suggests 50 ??m and 10 ??m displacements in horizontal and vertical directions, respectively. Displacement ellipsoids exhibit simultaneous downward and seaward sea cliff motion with each wave. Video footage corroborates the downward sea cliff flex in response to the imposed water load on the wave cut platform. Gradients in displacement amplitudes documented using multiple seismometers suggest longitudinal and shear strain of the flexing sea cliff on the order of 0.5-4 ?? strains during each wave loading cycle. As this sea cliff flexure occurs approximately 3 million times annually, it has the potential to fatigue the rock through cyclical loading. Local sea cliff retreat rates of 10 cm/yr imply that a given parcel of rock is flexed through roughly 109 cycles of increasing amplitude before exposure to direct wave attack at the cliff face. Copyright 2005 by the American Geophysical Union.

  8. Mode cross coupling observations with a rotation sensor

    NASA Astrophysics Data System (ADS)

    Nader-Nieto, M. F.; Igel, H.; Ferreira, A. M.; Al-Attar, D.

    2013-12-01

    The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations. Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of one of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements.

  9. Voyager 1: Three "Tsunami Waves" in Interstellar Space

    NASA Image and Video Library

    2017-03-22

    Voyager 1: Three "Tsunami Waves" in Interstellar Space. The Voyager 1 spacecraft has experienced three "tsunami waves" in interstellar space. Listen to how these waves cause surrounding ionized matter to ring. More details on this sound can be found here: www.nasa.gov/jpl/nasa-voyager-t…nterstellar-space/

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akparov, V V; Dmitriev, Valentin G; Duraev, V P

    A semiconductor ring laser (SRL) with a radiation wavelength of 1540 nm and a fibre ring cavity is developed and studied in several main lasing regimes. An SRL design based on a semiconductor optical travelling-wave amplifier and a ring cavity, composed of a single-mode polarisation-maintaining fibre, is considered. The SRL is studied in the regime of a rotation speed sensor, in which the frequency shift of counterpropagating waves in the SRL is proportional to its rotation speed. The minimum rotation speed that can be detected using the SRL under consideration depends on the cavity length; in our experiment it turnedmore » to be 1deg s{sup -1}. The changes in the threshold current, emission spectrum, and fundamental radiation wavelength upon closing and opening the SRL ring cavity and with a change in its radius are also investigated. (lasers)« less

  11. Structure of Saturn's Rings from Cassini Diametric Radio Occultations

    NASA Astrophysics Data System (ADS)

    Marouf, E.; French, R.; Rappaport, N.; Kliore, A.; Flasar, M.; Nagy, A.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.; Thomson, F.; Wong, K.

    2005-08-01

    Cassini orbits around Saturn were designed to provide eight optimized radio occultation observations of Saturn's rings during summer, 2005. Three monochromatic radio signals (0.94, 3.6, and 13 cm-wavelength) were transmitted by Cassini through the rings and observed at multiple stations of the NASA Deep Space Network. A rich data set has been collected. Detailed structure of Ring B is revealed for the first time, including multi-feature dense ''core'' ˜ 6,000 km wide of normal optical depth > 4.3, a ˜ 5,500 km region of oscillations in optical depth ( ˜ 1.7 to ˜ 3.4) over characteristic radial scales of few hundred kilometers interior to the core, and a ˜ 5,000 km region exterior to the core of similar nature but smaller optical depth fluctuation ( ˜ 2.2 to ˜ 3.3). The innermost ˜ 7,000 km region is the thinnest (mean optical depth ˜ 1.2), and includes two unusually uniform regions and a prominent density wave. With few exceptions, the structure is nearly identical for the three radio signals (when detectable), indicating that Ring B is relatively devoid of centimeters and smaller size particles. The structure is largely circularly symmetric, except for radius > ˜ 116,600 km. In Ring A, numerous (> 40) density waves are clearly observed at multiple longitudes, different average background optical depth is observed among different occultations suggesting that the azimuthal asymmetry extends over most Ring A, and strong dependence of the observed structure on wavelength implies increase in the abundance of centimeter and smaller size particles with increasing radius. Multiple longitude observations of Ring C and the Cassini Division structure reveal remarkable variability of gaps and their embedded narrow eccentric ringlets, and a wake/wave like feature interior to the gap at ˜ 118,200 km (embedded moonlet?). Wavelength dependent structure of Ring C implies abundance of centimeter size particles everywhere and sorting by size within dense embedded features.

  12. Photoisomerization among ring-open merocyanines. I. Reaction dynamics and wave-packet oscillations induced by tunable femtosecond pulses.

    PubMed

    Ruetzel, Stefan; Diekmann, Meike; Nuernberger, Patrick; Walter, Christof; Engels, Bernd; Brixner, Tobias

    2014-06-14

    Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran-merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm(-1) and 360 cm(-1) were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys. 140, 224311 (2014)].

  13. Impact! Chandra Images a Young Supernova Blast Wave

    NASA Astrophysics Data System (ADS)

    2000-05-01

    Two images made by NASA's Chandra X-ray Observatory, one in October 1999, the other in January 2000, show for the first time the full impact of the actual blast wave from Supernova 1987A (SN1987A). The observations are the first time that X-rays from a shock wave have been imaged at such an early stage of a supernova explosion. Recent observations of SN 1987A with the Hubble Space Telescope revealed gradually brightening hot spots from a ring of matter ejected by the star thousands of years before it exploded. Chandra's X-ray images show the cause for this brightening ring. A shock wave is smashing into portions of the ring at a speed of 10 million miles per hour (4,500 kilometers per second). The gas behind the shock wave has a temperature of about ten million degrees Celsius, and is visible only with an X-ray telescope. "With Hubble we heard the whistle from the oncoming train," said David Burrows of Pennsylvania State University, University Park, the leader of the team of scientists involved in analyzing the Chandra data on SN 1987A. "Now, with Chandra, we can see the train." The X-ray observations appear to confirm the general outlines of a model developed by team member Richard McCray of the University of Colorado, Boulder, and others, which holds that a shock wave has been moving out ahead of the debris expelled by the explosion. As this shock wave collides with material outside the ring, it heats it to millions of degrees. "We are witnessing the birth of a supernova remnant for the first time," McCray said. The Chandra images clearly show the previously unseen, shock-heated matter just inside the optical ring. Comparison with observations made with Chandra in October and January, and with Hubble in February 2000, show that the X-ray emission peaks close to the newly discovered optical hot spots, and indicate that the wave is beginning to hit the ring. In the next few years, the shock wave will light up still more material in the ring, and an inward moving, or reverse, shock wave will heat the material ejected in the explosion itself. "The supernova is digging up its own past," said McCray. The observations were made on October 6, 1999, using the Advanced CCD Imaging Spectrometer (ACIS) and the High Energy Transmission Grating, and again on January 17, 2000, using ACIS. Other members of the team were Eli Michael of the University of Colorado; Dr. Una Hwang, Dr. Steven Holt and Dr. Rob Petre of NASA's Goddard Space Flight Center in Greenbelt, MD; Professor Roger Chevalier of the University of Virginia, Charlottesville; and Professors Gordon Garmire and John Nousek of Pennsylvania State University. The results will be published in an upcoming issue of the Astrophysical Journal. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University. The High Energy Transmission Grating was built by the Massachusetts Institute of Technology. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. More About SN 1987A Images to illustrate this release and more information on Chandra's progress can be found on the Internet at: http://chandra.harvard.edu/photo/2000/sn1987a/index.html AND http://chandra.nasa.gov More About SN 1987A

  14. Basin-ring spacing on the Moon, Mercury, and Mars

    USGS Publications Warehouse

    Pike, R.J.; Spudis, P.D.

    1987-01-01

    Radial spacing between concentric rings of impact basins that lack central peaks is statistically similar and nonrandom on the Moon, Mercury, and Mars, both inside and outside the main ring. One spacing interval, (2.0 ?? 0.3)0.5D, or an integer multiple of it, dominates most basin rings. Three analytical approaches yield similar results from 296 remapped or newly mapped rings of 67 multi-ringed basins: least-squares of rank-grouped rings, least-squares of rank and ring diameter for each basin, and averaged ratios of adjacent rings. Analysis of 106 rings of 53 two-ring basins by the first and third methods yields an integer multiple (2 ??) of 2.00.5D. There are two exceptions: (1) Rings adjacent to the main ring of multi-ring basins are consistently spaced at a slightly, but significantly, larger interval, (2.1 ?? 0.3)0.5D; (2) The 88 rings of 44 protobasins (large peak-plus-inner-ring craters) are spaced at an entirely different interval (3.3 ?? 0.6)0.5D. The statistically constant and target-invariant spacing of so many rings suggests that this characteristic may constrain formational models of impact basins on the terrestrial planets. The key elements of such a constraint include: (1) ring positions may not have been located by the same process(es) that formed ring topography; (2) ring location and emplacement of ring topography need not be coeval; (3) ring location, but not necessarily the mode of ring emplacement, reflects one process that operated at the time of impact; and (4) the process yields similarly-disposed topographic features that are spatially discrete at 20.5D intervals, or some multiple, rather than continuous. These four elements suggest that some type of wave mechanism dominates the location, but not necessarily the formation, of basin rings. The waves may be standing, rather than travelling. The ring topography itself may be emplaced at impact by this and/or other mechanisms and may reflect additional, including post-impact, influences. ?? 1987 D. Reidel Publishing Company.

  15. Deformation fabrics of amphibole in amphibolites from Jenner Headland and Ring Mt. in California and implications for seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Kim, J.; Jung, H.

    2016-12-01

    Seismic anisotropy in the crust which is observed throughout the world can be attributed to lattice preferred orientation(LPO) of elastically anisotropic minerals. Although amphibole has smaller elastic anisotropy than that of mica, it takes a large proportion of deep crust and sufficiently anisotropic. Therefore, to understand the seismic anisotropy of lower crust, we studied amphibolites from Jenner Headland and Ring Mt. in California. All samples are well-foliated amphibolites constituting dominantly amphibole, plagioclase and other minor minerals such as garnet, epidote, biotite, and titanite. Chemical compositions of these minerals were analyzed by EPMA, and LPO of minerals was determined by using SEM/EBSD technique at the Tectonophysics Labratory in Seoul National University. Almost all samples showed that [100] axes of amphibole are aligned normal to the foliation and [001] axes are subparallel to the lineation, which is called Type-I LPO of amphibole (Ko & Jung, 2015). All axes of plagioclase showed almost random distributions. Seismic anisotropy was calculated from the LPOs of minerals. For amphibole, P-wave velocity anisotropy was in the range of 15.9 - 20.9% and maximum S-wave anisotropy was in the range of 13.1 - 19.7%. For horizontal flow, seismic velocity of P-wave is slowest in the direction subnormal to foliation and fastest subparallel to lineation. Polarization direction of vertically propagating fast S-wave is subnormal to lineation. Shear wave anisotropy(AVs) is also lowest subnormal to lineation. When we consider dipping angle of flow at 45° assuming 2-D corner flow model, polarization direction of fast S-wave is normal to lineation. Seismic anisotropies of whole rock were weaker than those of amphibole. Our results suggest that LPO of amphibole can strongly induce low-velocity and anisotropic layers in the deep crust causing a large seismic anisotropy depending on the direction of seismic wave propagation. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature Communications. 6:6586.

  16. Lattice preferred orientation of amphibole in amphibolites from Jenner Headland and Ring Mt. in California and implications for seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Kim, Junha; Jung, Haemyeong

    2017-04-01

    Seismic anisotropy in the crust which is observed throughout the world can be attributed to lattice preferred orientation (LPO) of elastically anisotropic minerals. Although amphibole has smaller elastic anisotropy than that of mica, it takes a large proportion of deep crust and sufficiently anisotropic. Therefore, to understand the seismic anisotropy of lower crust, we studied amphibolites from Jenner Headland and Ring Mt. in California. All samples are well-foliated amphibolites constituting dominantly amphibole, plagioclase and other minor minerals such as garnet, epidote, biotite, and titanite. Chemical compositions of these minerals were analyzed by EPMA, and LPO of minerals was determined by using SEM/EBSD technique at the Tectonophysics Laboratory in Seoul National University. Almost all samples showed that [100] axes of amphibole are aligned normal to the foliation and [001] axes are subparallel to the lineation, which is called Type-I LPO of amphibole (Ko & Jung, 2015). All axes of plagioclase showed almost random distributions. Seismic anisotropy was calculated from the LPOs of minerals. P-wave velocity anisotropy of amphibole was in the range of 15.9‒20.9% and maximum S-wave anisotropy was in the range of 13.1‒19.7%. For horizontal flow, seismic velocity of P-wave is slowest in the direction subnormal to foliation and fastest subparallel to lineation. Polarization direction of vertically propagating fast S-wave is subnormal to lineation. Shear wave anisotropy (AVs) is also lowest subnormal to lineation. When we consider dipping angle of flow at 45° assuming 2D corner flow model, polarization direction of fast S-wave is normal to lineation. Seismic anisotropies of whole rock were weaker than those of amphibole. Our results suggest that LPO of amphibole can strongly induce low-velocity and anisotropic layers in the deep crust causing a large seismic anisotropy depending on the direction of seismic wave propagation. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear, Nature Communications, 6:6586.

  17. Compact near-IR and mid-IR cavity ring down spectroscopy device

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston (Inventor)

    2011-01-01

    This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.

  18. Nonlinear ring resonator: spatial pattern generation

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir Y.; Lachinova, Svetlana L.; Irochnikov, Nikita G.

    2000-03-01

    We consider theoretically spatial pattern formation processes in a unidirectional ring cavity with thin layer of Kerr-type nonlinear medium. Our method is based on studying of two coupled equations. The first is a partial differential equation for temporal dynamics of phase modulation of light wave in the medium. It describes nonlinear interaction in the Kerr-type lice. The second is a free propagation equation for the intracavity field complex amplitude. It involves diffraction effects of light wave in the cavity.

  19. The Case for Massive and Ancient Rings of Saturn

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2016-04-01

    Analysis of Voyager and Pioneer 11 results give a mass for Saturn's rings, M = 5 x 10-8 Msat. This is about the mass of Saturn's small moon Mimas. This has been interpreted as a lower limit to the ring mass (Esposito et al 1983), since the thickest parts of the rings were not penetrated by the stellar occultstion, and this calculation assumes an unvarying particle size throughout the rings. Because the rings are constantly bombarded by micrometeroids, their current composition of nearly pure water ice implies such low mass rings must have formed recently. The case is par-ticularly strong for Saturn's A ring, where the data are the best, implying the A ring is less than 10% of the age of the Saturn (Esposito 1986). Cassini results com-pound this problem. UVIS spectra are consistent with either young rings or rings about 10x as massive as the Voyager estimate (Elliott and Esposito (2011). CDA confirms the impacting mass flux is similar to that as-sumed for the pollution calculations (Kempf etal 2015). VIMS analysis of density wave signatures in the B ring gives a value of about 1/3 the Voyager value (Hedmann etal 2016). This VIMS result implies the rings are even younger! The problem is that young rings are very unlikely to be formed recently, meaning that we live in a very special epoch, following some unlikely recent origin… like disruption of a medium sized moon or capture of the fragments of a disrupted comet. This paradox (Charnoz etal 2009) is unre-solved. Alternative interpretations: To take the VIMS results at face value, Saturn's low mass rings must be very young. The optically thick B ring must be made of small, porous or fractal particles. This is hard to understand, since the particles are continually colliding every few hours and temporary aggregates will stir the collision velocities to higher values. An alternative is that we accept the higher mass interpretation of the Pioneer 11 results (Esposito etal 2008) using the granola bar model of Colwell etal 2007. This would imply that the density wave structure seen by VIMS is not sensing all the mass in the rings, where structure near strong resonances is dominted by temporary aggregates, and where non-linear effects cause the parti-cles to jam (Lewis and Stewart 2009). The density waves may be seeing the mass density in the gaps be-tween self-gravity wakes, whose optical depth is roughly contant and considerably lower than the total B ring opacity (Colwell etal 2007). These massive rings would be consistent with the origin model of Canup (2011) where a Titan-sized diffferntiated moon was disrupted early in Saturn's formation.

  20. The ARASE (ERG) magnetic field investigation

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ayako; Teramoto, Mariko; Nomura, Reiko; Nosé, Masahito; Fujimoto, Akiko; Tanaka, Yoshimasa; Shinohara, Manabu; Nagatsuma, Tsutomu; Shiokawa, Kazuo; Obana, Yuki; Miyoshi, Yoshizumi; Mita, Makoto; Takashima, Takeshi; Shinohara, Iku

    2018-03-01

    The fluxgate magnetometer for the Arase (ERG) spacecraft mission was built to investigate particle acceleration processes in the inner magnetosphere. Precise measurements of the field intensity and direction are essential in studying the motion of particles, the properties of waves interacting with the particles, and magnetic field variations induced by electric currents. By observing temporal field variations, we will more deeply understand magnetohydrodynamic and electromagnetic ion-cyclotron waves in the ultra-low-frequency range, which can cause production and loss of relativistic electrons and ring-current particles. The hardware and software designs of the Magnetic Field Experiment (MGF) were optimized to meet the requirements for studying these phenomena. The MGF makes measurements at a sampling rate of 256 vectors/s, and the data are averaged onboard to fit the telemetry budget. The magnetometer switches the dynamic range between ± 8000 and ± 60,000 nT, depending on the local magnetic field intensity. The experiment is calibrated by preflight tests and through analysis of in-orbit data. MGF data are edited into files with a common data file format, archived on a data server, and made available to the science community. Magnetic field observation by the MGF will significantly improve our knowledge of the growth and decay of radiation belts and ring currents, as well as the dynamics of geospace storms.

  1. A Particle-in-Cell Simulation for the Traveling Wave Direct Energy Converter (TWDEC) for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.

    2013-01-01

    A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.

  2. Planetary rings: Structure and history

    NASA Astrophysics Data System (ADS)

    Esposito, L.

    The composition and structure of planetary rings provide the key evidence to understand their origin and evolution. Before the first space observations, we were able to maintain an idealized view of the rings around Saturn, the only known ring system at that time. Rings were then discovered around Jupiter, Uranus and Neptune. Saturn's F ring was discovered by Pioneer 11. Our ideal view of circular, planar, symmetric and unchanging rings was shattered by observations of inclined, eccentric rings, waves and wavy edges, and numerous processes acting at rates that give timescales much younger than the solar system. Moons within and near the rings sculpt them and are the likely progenitors of future rings. The moonlet lifetimes are much less than Saturn's age. The old idea of ancient rings gave rise to youthful rings, that are recently created by erosion and destruction of small nearby moons. Although this explanation may work well for most rings, Saturn's massive ring system provides a problem. It is extremely improbable that Saturn's rings were recently created by the destruction of a moon as large as Mimas, or even by the breakup of a large comet that passed too close to Saturn. The history of Saturn's rings has been a difficult problem, now made even more challenging by the close-up Cassini measurements. Cassini observations show unexpected ring variability in time and space. Time variations are seen in ring edges, in the thinner D and F rings, and in the neutral oxygen cloud, which outweighs the E ring in the same region around Saturn. The rings are inhomogeneous, with structures on all scales, sharp gradients and edges. Compositional gradients are sharper than expected, but nonetheless cross structural boundaries. This is evidence for ballistic transport that has not gone to completion. The autocovariance maximizes in the middle of the A ring, with smaller structure near the main rings' outer edge. Density wave locations have a fresher ice composition. The processes of collisions, diffusion and transport should have homogenized the rings over the age of the solar system. Instead, these differences persist. The mass density in the Cassini division inferred from density waves is so low, that the material there would be ground to 1 dust in 30,000 years. The observed moons that cause such interesting structure in the rings have short lifetimes against disruption by cometary bombardment and against the angular momentum transfers that push them away from the rings. These rapid processes evident in the Cassini data have been taken as evidence that the rings were recently created, perhaps from a comet that passed too close to Saturn. Instead, an alternative is that primordial material may have been re-used and recycled. In the zone near the Roche limit where rings are found, limited accretion is possible, with the larger bodies able to recapture smaller fragments. The `propeller' structures, the self-gravity wakes, and the size distribution of clumps in Saturn's F ring are all indications of the accretion process. Recycling could extend the ring lifetime almost indefinitely. The variety evident in the latest observations and the low mass density inferred for the largest bodies are both consistent with extensive recycling of ring material as the explanation of the apparent youth of Saturn's rings. Similar processes are likely occurring tin the other ring systems and in the formation of planets around other stars. 2

  3. Linear and nonlinear properties of the ULF waves driven by ring-beam distribution functions

    NASA Technical Reports Server (NTRS)

    Killen, K.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    The problem of the exitation of obliquely propagating magnetosonic waves which can steepen up (also known as shocklets) is considered. Shocklets have been observed upstream of the Earth's bow shock and at comets Giacobini-Zinner and Grigg-Skjellerup. Linear theory as well as two-dimensional (2-D) hybrid (fluid electrons, particle ions) simulations are used to determine the properties of waves generated by ring-beam velocity distributions in great detail. The effects of both proton and oxygen ring-beams are considered. The study of instabilities excited by a proton ring-beam is relevant to the region upstream of the Earth's bow shock, whereas the oxygen ring-beam corresponds to cometary ions picked up by the solar wind. Linear theory has shown that for a ring-beam, four instabilities are found, one on the nonresonant mode, one on the Alfven mode, and two along the magnetosonic/whistler branch. The relative growth rate of these instabilities is a sensitive function of parameters. Although one of the magnetosonic instabilities has maximum growth along the magnetic field, the other has maximum growth in oblique directions. We have studied the competition of these instabilities in the nonlinear regime using 2-D simulations. As in the linear limit, the nonlinear results are a function of beam density and distribution function. By performing the simulations as both initial value and driven systems, we have found that the outcome of the simulations can vary, suggesting that the latter type simulations is needed to address the observations. A general conclusion of the simulation results is that field-aligned beams do not result in the formation of shocklets, whereas ring-beam distributions can.

  4. Experimental study of strong nonlinear-optics effects in liquid crystals

    NASA Astrophysics Data System (ADS)

    Darbin, S. D.; Arakelyan, S. M.; Cheung, M. M.; Shen, Y. R.

    1984-07-01

    Nonlinear optical effects that arise in nematic liquid crystals as a result of a change in the index of refraction induced by a laser field are considered. Since the resultant nonlinearity is extremely high, the approximation of perturbation theory cannot be used in calculations. However, the change in refractive index results mainly in phase advance as waves propagate through a thin film of liquid crystal, while the change of intensity is significant. Moreover, if there is no change in polarization of the pumping field, calculations are relatively simple. An investigation is made of the propagation of a cross sectionally bounded laser beam through a homeotropically oriented liquid crystal, giving rise to spatial phase modulation of emission. When the intensity of the laser beam exceeds a certain value, a system of aberation rings is observed in the output radiation. Effects of dynamic self-diffraction accompanying degenerate four-wave mixing when a change in refractive index is induced in a homeotropic liquid crystal film, and optical bistability in a nonlinear Fabry-Perot optical cavity, as well as generation of a self-oscillatory state in such a resonator are discussed.

  5. Hydrocarbon Emission Rings in Protoplanetary Disks Induced by Dust Evolution

    NASA Astrophysics Data System (ADS)

    Bergin, Edwin A.; Du, Fujun; Cleeves, L. Ilsedore; Blake, G. A.; Schwarz, K.; Visser, R.; Zhang, K.

    2016-11-01

    We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (I.e., not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.

  6. Transverse Wave Induced Kelvin–Helmholtz Rolls in Spicules

    NASA Astrophysics Data System (ADS)

    Antolin, P.; Schmit, D.; Pereira, T. M. D.; De Pontieu, B.; De Moortel, I.

    2018-03-01

    In addition to their jet-like dynamic behavior, spicules usually exhibit strong transverse speeds, multi-stranded structure, and heating from chromospheric to transition region temperatures. In this work we first analyze Hinode and IRIS observations of spicules and find different behaviors in terms of their Doppler velocity evolution and collective motion of their sub-structure. Some have a Doppler shift sign change that is rather fixed along the spicule axis, and lack coherence in the oscillatory motion of strand-like structure, matching rotation models, or long-wavelength torsional Alfvén waves. Others exhibit a Doppler shift sign change at maximum displacement and coherent motion of their strands, suggesting a collective magnetohydrodynamic (MHD) wave. By comparing with an idealized 3D MHD simulation combined with radiative transfer modeling, we analyze the role of transverse MHD waves and associated instabilities in spicule-like features. We find that transverse wave induced Kelvin–Helmholtz (TWIKH) rolls lead to coherence of strand-like structure in imaging and spectral maps, as seen in some observations. The rapid transverse dynamics and the density and temperature gradients at the spicule boundary lead to ring-shaped Mg II k and Ca II H source functions in the transverse cross-section, potentially allowing IRIS to capture the Kelvin–Helmholtz instability dynamics. Twists and currents propagate along the spicule at Alfvénic speeds, and the temperature variations within TWIKH rolls, produce the sudden appearance/disappearance of strands seen in Doppler velocity and in Ca II H intensity. However, only a mild intensity increase in higher-temperature lines is obtained, suggesting there is an additional heating mechanism at work in spicules.

  7. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  8. An N-body Integrator for Planetary Rings

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.

    2011-04-01

    A planetary ring that is disturbed by a satellite's resonant perturbation can respond in an organized way. When the resonance lies in the ring's interior, the ring responds via an m-armed spiral wave, while a ring whose edge is confined by the resonance exhibits an m-lobed scalloping along the ring-edge. The amplitude of these disturbances are sensitive to ring surface density and viscosity, so modelling these phenomena can provide estimates of the ring's properties. However a brute force attempt to simulate a ring's full azimuthal extent with an N-body code will likely fail because of the large number of particles needed to resolve the ring's behavior. Another impediment is the gravitational stirring that occurs among the simulated particles, which can wash out the ring's organized response. However it is possible to adapt an N-body integrator so that it can simulate a ring's collective response to resonant perturbations. The code developed here uses a few thousand massless particles to trace streamlines within the ring. Particles are close in a radial sense to these streamlines, which allows streamlines to be treated as straight wires of constant linear density. Consequently, gravity due to these streamline is a simple function of the particle's radial distance to all streamlines. And because particles are responding to smooth gravitating streamlines, rather than discrete particles, this method eliminates the stirring that ordinarily occurs in brute force N-body calculations. Note also that ring surface density is now a simple function of streamline separations, so effects due to ring pressure and viscosity are easily accounted for, too. A poster will describe this N-body method in greater detail. Simulations of spiral density waves and scalloped ring-edges are executed in typically ten minutes on a desktop PC, and results for Saturn's A and B rings will be presented at conference time.

  9. Candidates for a possible third-generation gravitational wave detector: comparison of ring-Sagnac and sloshing-Sagnac speedmeter interferometers

    NASA Astrophysics Data System (ADS)

    Huttner, S. H.; Danilishin, S. L.; Barr, B. W.; Bell, A. S.; Gräf, C.; Hennig, J. S.; Hild, S.; Houston, E. A.; Leavey, S. S.; Pascucci, D.; Sorazu, B.; Spencer, A. P.; Steinlechner, S.; Wright, J. L.; Zhang, T.; Strain, K. A.

    2017-01-01

    Speedmeters are known to be quantum non-demolition devices and, by potentially providing sensitivity beyond the standard quantum limit, become interesting for third generation gravitational wave detectors. Here we introduce a new configuration, the sloshing-Sagnac interferometer, and compare it to the more established ring-Sagnac interferometer. The sloshing-Sagnac interferometer is designed to provide improved quantum noise limited sensitivity and lower coating thermal noise than standard position meter interferometers employed in current gravitational wave detectors. We compare the quantum noise limited sensitivity of the ring-Sagnac and the sloshing-Sagnac interferometers, in the frequency range, from 5 Hz to 100 Hz, where they provide the greatest potential benefit. We evaluate the improvement in terms of the unweighted noise reduction below the standard quantum limit, and by finding the range up to which binary black hole inspirals may be observed. The sloshing-Sagnac was found to give approximately similar or better sensitivity than the ring-Sagnac in all cases. We also show that by eliminating the requirement for maximally-reflecting cavity end mirrors with correspondingly-thick multi-layer coatings, coating noise can be reduced by a factor of approximately 2.2 compared to conventional interferometers.

  10. Self-oscillation of standing spin wave in ring resonator with proportional-integral-derivative control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, B.; Urazuka, Y.; Chen, H.

    2014-05-07

    We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The resultmore » indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.« less

  11. Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph

    NASA Astrophysics Data System (ADS)

    Noja, Diego; Pelinovsky, Dmitry; Shaikhova, Gaukhar

    2015-07-01

    We develop a detailed analysis of edge bifurcations of standing waves in the nonlinear Schrödinger (NLS) equation on a tadpole graph (a ring attached to a semi-infinite line subject to the Kirchhoff boundary conditions at the junction). It is shown in the recent work [7] by using explicit Jacobi elliptic functions that the cubic NLS equation on a tadpole graph admits a rich structure of standing waves. Among these, there are different branches of localized waves bifurcating from the edge of the essential spectrum of an associated Schrödinger operator. We show by using a modified Lyapunov-Schmidt reduction method that the bifurcation of localized standing waves occurs for every positive power nonlinearity. We distinguish a primary branch of never vanishing standing waves bifurcating from the trivial solution and an infinite sequence of higher branches with oscillating behavior in the ring. The higher branches bifurcate from the branches of degenerate standing waves with vanishing tail outside the ring. Moreover, we analyze stability of bifurcating standing waves. Namely, we show that the primary branch is composed by orbitally stable standing waves for subcritical power nonlinearities, while all nontrivial higher branches are linearly unstable near the bifurcation point. The stability character of the degenerate branches remains inconclusive at the analytical level, whereas heuristic arguments based on analysis of embedded eigenvalues of negative Krein signatures support the conjecture of their linear instability at least near the bifurcation point. Numerical results for the cubic NLS equation show that this conjecture is valid and that the degenerate branches become spectrally stable far away from the bifurcation point.

  12. Amplitude and polarization asymmetries in a ring laser

    NASA Technical Reports Server (NTRS)

    Campbell, L. L.; Buholz, N. E.

    1971-01-01

    Asymmetric amplitude effects between the oppositely directed traveling waves in a He-Ne ring laser are analyzed both theoretically and experimentally. These effects make it possible to detect angular orientations of an inner-cavity bar with respect to the plane of the ring cavity. The amplitude asymmetries occur when a birefringent bar is placed in the three-mirror ring cavity, and an axial magnetic field is applied to the active medium. A simplified theoretical analysis is performed by using a first order perturbation theory to derive an expression for the polarization of the active medium, and a set of self-consistent equations are derived to predict threshold conditions. Polarization asymmetries between the oppositely directed waves are also predicted. Amplitude asymmetries similar in nature to those predicted at threshold occur when the laser is operating in 12-15 free-running modes, and polarization asymmetry occurs simultaneously.

  13. Quasi-periodic latitudinal shift of Saturn's main auroral emission

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Palmaerts, B.; Grodent, D. C.; Radioti, K.; Krupp, N.; Yao, Z.

    2017-12-01

    The main component of the ultraviolet auroral emissions at Saturn consists in a ring of emission around each pole of the planet. This main ring of emission has been revealed to oscillate by a few degrees in the prenoon-premidnight direction with a period of 10.8h. This auroral oscillation is thought to be induced by a rotating external magnetospheric current system associated with the planetary period oscillations. Here we report, by means of auroral imaging sequences obtained with the Ultraviolet Imaging Spectrograph (UVIS) on board the Cassini spacecraft, the first direct observation of an additional motion of the main emission superimposed to this oscillation. The whole main emission ring exhibits step-like displacements in latitude mainly towards dayside, decoupled from the 10.8h oscillation. These latitude shifts recur around every hour, which is a typical short periodicity at Saturn previously identified in the aurora intensity, in the charged particle fluxes and in the magnetic field. This unique observation directly demonstrates what has been inferred from past in-situ and remote measurements: the 1-hour periodicities reveal a global and fundamental magnetospheric oscillation mode that acts independently of the local magnetospheric conditions. However, the magnetospheric mechanism responsible for these 1-hour auroral shifts is still unknown. It is possible that Alfvén waves inducing hourly magnetic fluctuations might also modify the place where the field-aligned electrons precipitate in the ionosphere and produce the main emission.

  14. Noise reduction as affected by the extent and distribution of acoustic treatment in a turbofan engine inlet

    NASA Technical Reports Server (NTRS)

    Minner, G. L.; Homyak, L.

    1976-01-01

    An inlet noise suppressor for a TF-34 engine designed to have three acoustically treated rings was tested with several different ring arrangements. The configurations included: all three rings; two outer rings; single outer ring; single intermediate ring, and finally no rings. It was expected that as rings were removed, the acoustic performance would be degraded considerably. While a degradation occurred, it was not as large as predictions indicated. The prediction showed good agreement with the data only for the full-ring inlet configuration. The underpredictions which occurred with ring removal were believed a result of ignoring the presence of spinning modes which are known to damp more rapidly in cylindrical ducts than would be predicted by least attenuated mode or plane wave analysis.

  15. Runge-Lenz wave packet in multichannel Stark photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Texier, F.

    2005-01-01

    In a previous slow photoionization experiment, modulations of ionization rings were manifested for Xe in a constant electric field. The present quantum calculation reveals that the modulation is an effect of the multichannel core scattering and of tunneling waves through the Coulomb-Stark potential barrier: the barrier reduces the number of oscillations that is observed relatively to the number of oscillations of the short range wave functions, and the nonhydrogenic core phase shifts modify the position of the ionization rings. We find a hidden difference, in the ionization process, for two close values of the energy depending on the resonance withmore » the barrier. The ionization intensity is interpreted as a Runge-Lenz wave packet; thus, we can relate the quantum modulation to the classical Coulomb-Stark trajectories. The Runge-Lenz wave packet differs from a usual temporal wave packet because its components are eigenstates of the Runge-Lenz vector z projection and its evolution is not temporal but spatial.« less

  16. Gravitational resonance: Saturn's rings

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Perhaps no one thought much more would need to be known about Saturn's rings 100 or so years ago, when Daniel Kirkwood explained the various features. The main rings, within the three so-called Cassini divisions, were due to gravitational resonance conditions between small orbiting particles and the satellite Mimas. Now, after several spacecraft—especially Voyager—have shown the rings' close-up characteristics, there has been a great deal of activity in the planetary geophysics community to try to explain the origin of the numerous features of the rings of solar system bodies that were far beyond the resolution of telescopes in Kirkwood s day. A pretty good sample of that activity was reported recently by R.A. Kerr (Science, Oct. 8, 1982), who stated ‘Resonance theory still stands after the onslaught of spacecraft observations, but its new applications have yielded a greater variety of ring features than Kirkwood ever dreamed.’ One has only to have an inkling of the levels of gravitational mechanics to appreciate the complexities of the theories that have yielded resonance variations such as spiral density waves and bending waves in the past few years. As theories unfold, however, and are tested against Voyager's results, it has become evident that most of the actually observed ring structure of the major planets remains unexplained.

  17. E-wave generated intraventricular diastolic vortex to L-wave relation: model-based prediction with in vivo validation.

    PubMed

    Ghosh, Erina; Caruthers, Shelton D; Kovács, Sándor J

    2014-08-01

    The Doppler echocardiographic E-wave is generated when the left ventricle's suction pump attribute initiates transmitral flow. In some subjects E-waves are accompanied by L-waves, the occurrence of which has been correlated with diastolic dysfunction. The mechanisms for L-wave generation have not been fully elucidated. We propose that the recirculating diastolic intraventricular vortex ring generates L-waves and based on this mechanism, we predict the presence of L-waves in the right ventricle (RV). We imaged intraventricular flow using Doppler echocardiography and phase-contrast magnetic resonance imaging (PC-MRI) in 10 healthy volunteers. L-waves were recorded in all subjects, with highest velocities measured typically 2 cm below the annulus. Fifty-five percent of cardiac cycles (189 of 345) had L-waves. Color M-mode images eliminated mid-diastolic transmitral flow as the cause of the observed L-waves. Three-dimensional intraventricular flow patterns were imaged via PC-MRI and independently validated our hypothesis. Additionally as predicted, L-waves were observed in the RV, by both echocardiography and PC-MRI. The re-entry of the E-wave-generated vortex ring flow through a suitably located echo sample volume can be imaged as the L-wave. These waves are a general feature and a direct consequence of LV and RV diastolic fluid mechanics. Copyright © 2014 the American Physiological Society.

  18. Grooves and Kinks in the Rings

    NASA Image and Video Library

    2017-06-19

    Many of the features seen in Saturn's rings are shaped by the planet's moons. This view from NASA's Cassini spacecraft shows two different effects of moons that cause waves in the A ring and kinks in a faint ringlet. The view captures the outer edge of the 200-mile-wide (320-kilometer-wide) Encke Gap, in the outer portion of Saturn's A ring. This is the same region features the large propeller called Earhart. Also visible here is one of several kinked and clumpy ringlets found within the gap. Kinks and clumps in the Encke ringlet move about, and even appear and disappear, in part due to the gravitational effects of Pan -- which orbits in the gap and whose gravitational influence holds it open. The A ring, which takes up most of the image on the left side, displays wave features caused by Pan, as well as the moons Pandora and Prometheus, which orbit a bit farther from Saturn on both sides of the planet's F ring. This view was taken in visible light with the Cassini spacecraft narrow-angle camera on March 22, 2017, and looks toward the sunlit side of the rings from about 22 degrees above the ring plane. The view was acquired at a distance of approximately 63,000 miles (101,000 kilometers) from Saturn and at a phase angle (the angle between the sun, the rings and the spacecraft) of 59 degrees. Image scale is 1,979 feet (603 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21333

  19. Silicon photonic filters with high rejection of both TE and TM modes for on-chip four wave mixing applications.

    PubMed

    Cantarella, Giuseppe; Klitis, Charalambos; Sorel, Marc; Strain, Michael J

    2017-08-21

    Wavelength selective filters represent one of the key elements for photonic integrated circuits (PIC) and many of their applications in linear and non-linear optics. In devices optimised for single polarisation operation, cross-polarisation scattering can significantly limit the achievable filter rejection. An on-chip filter consisting of elements to filter both TE and TM polarisations is demonstrated, based on a cascaded ring resonator geometry, which exhibits a high total optical rejection of over 60 dB. Monolithic integration of a cascaded ring filter with a four-wave mixing micro-ring device is also experimentally demonstrated with a FWM efficiency of -22dB and pump filter extinction of 62dB.

  20. Spatial distribution of the wave field of the surface modes sustaining filamentary discharges

    NASA Astrophysics Data System (ADS)

    Lishev, St.; Shivarova, A.; Tarnev, Kh.

    2008-01-01

    The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density of the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all—six—field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament—both radially inhomogeneous—are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.

  1. Continuous wave room temperature external ring cavity quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  2. Sound pressure distribution within natural and artificial human ear canals: forward stimulation.

    PubMed

    Ravicz, Michael E; Tao Cheng, Jeffrey; Rosowski, John J

    2014-12-01

    This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5-2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11-16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC.

  3. Quantum optimal control of isomerization dynamics of a one-dimensional reaction-path model dominated by a competing dissociation channel

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yuzuru; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel

    2009-07-01

    Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open→cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O2+O asymptote on the O3 ground-state A1' potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O2+O dissociation channel lie at ˜0.05, ˜0.086, and ˜0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O2+O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.

  4. Electromagnetic Quasi-periodic Whistler-Mode Bursts during Ring Grazing Passes

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Morooka, M. W.; Wahlund, J. E.; Kurth, W. S.; Hospodarsky, G.; MacDowall, R. J.; Mitchell, D. G.; Gurnett, D. A.; Krupp, N.; Roussos, E.; Kollmann, P.

    2017-12-01

    In the 2016-2017 time-frame, the Cassini spacecraft made a set of over 20 nearly identical Saturn orbital passes with closest approach at the outer edge of the F-ring. These passes are now called `Ring Grazing' orbits. During nearly every one of these orbits, quasi-periodic (QP) whistler-mode bursts were detected at mid-southern latitudes between -57o and -22o. During these ring grazing orbits, the spacecraft had an extended period of time where the trajectory 'hugged' the L 13 field line along its southern path when these bursts were detected. As such, we conclude that the 1 hr periodicity is not a spatial effect but a true temporal effect. In about 2/3 of the cases, there was wave activity observed above the local electron cyclotron frequency. We note that there have been previous reports of these QP whistler-mode burst in direct correlation with energetic auroral electron bursts, and we now also present the use of relativist electron cyclotron resonance theory to examine the wave-electron interactions. While in the past these waves have been considered a form of electrostatic auroral hiss, we suggest herein that the high energy of the electrons is more strongly coupled to the electromagnetic portion of the whistler-mode branch. In this presentation, we will provide more information on the wave character, and suggest the non-unique possibility that mode coupling is involved in creating emissions above the electron cyclotron frequency.

  5. Planetary rings as relics of plasma proto-rings rotating in the magnetic field of a central body

    NASA Astrophysics Data System (ADS)

    Rabinovich, B.

    2007-08-01

    A possibility is discussed in accordance to hypothesis by H. Alfven, that the rings of large planets are relics of some plasma proto-rings rotating in the magnetic fields of central bodies. A finite-dimensional mathematical model of the system is synthesized using the solution of the boundary-value problem by the Boubnov - Galerkin method. The dipole magnetic field of the central body is assumed to have a small eccentricity, and the dipole axis - to be inclined at a small angle to the central body's axis of rotation which coincides with the ring's rotation axis. The proto-ring is supposed to be thin and narrow and having the same rotating axis as the central body. A medium forming the ring is cold rarefied plasma with high electron density, so that electric conductivity of the medium tends to infinity, as well as the magnetic Reynolds number. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. Emphasis is placed on the problems of stability of the ring's steady state rotation and quantization of the eigenvalues of nondimensional sector velocity of the ring with respect to the central body. The solutions corresponding to magneto-gravitational and to magneto-gyroscopic waves are considered It is demonstrated that some rings characterized by integral quantum numbers are stable and long-living, while the rings which are associated with half-integer quantum numbers () are unstable and short-living. As a result, an evolutionally rife rotating plasma ring turns out to be stratified into a large number of narrow elite rings separated by gaps whose position correspond to anti-rings. The regions of possible existence of elite rings in near-central body space are determined. The main result of eigenvalue spectrum's analysis is as follows. Quantum numbers determining elite eigenvalues of the sector velocity of a ring (normalized in a certain manner) coincide with the quantum numbers appearing in the solution of the Schr¨odingerequation for a hydrogen atom. Perturbations of the elite orbits corresponding to this numbers satisfy the de Brogli quantum-mechanical condition. The solution of the model boundary-value problem has been applied to planetary rings origin and evolution. The main result is a mechanism of stratification of the evolutionally mature plasma proto-ring into a large number of narrow elite rings separated by anti-rings (gaps), which were playing a role of for present-day planetary rings. Another result is the theoretical substantiation of the presence in the nearplanetary space of a region of existence and stability of plasma rings. The data, which had been obtained in the course of the Voyager, Galileo, and Cassini missions were used for verification of theoretical results concerning the planetary rings and Io plasma thorus. The theoretical dates turned out to be in accordance with experimental dates. References Alfven H. Cosmic Plasma. Dordrecht: Reidel, 1961. Rabinovich B.I. Dynamics of Plasma Ring Rotating in the Magnetic Field of Central Body: Magneto-GravitationalWaves // Cosmic Research, 2006. V. 44. No. 1. P. 43-51. Rabinovich B.I. Dynamics of Plasma Ring Rotating in the Magnetic Field of Central Body: Magneto-Gyroscopic Waves. Problems of Stability and Quantization // Cosmic Research, 2006. V. 44. No. 2. P. 146 - 161. Gore, Rick. Voyager 1 at Saturn. Riddles of the Rings // National Geographic, 1981. V. 160. No. 1. P. 3 - 31. Porco, Carolyn. Captain 's Log.: 2004, 184 // The Planetary Report, 2004. V. 24, No. 5. P. 2 - 18.

  6. Detection of atmospheric infrasound with a ring laser interferometer

    NASA Astrophysics Data System (ADS)

    Dunn, Robert W.; Meredith, John A.; Lamb, Angela B.; Kessler, Elijah G.

    2016-09-01

    In this paper, the results from using a large active ring laser interferometer as an infrasound detector are presented. On April 27, 2014, an EF4 tornado struck Central Arkansas and passed within 21 km of the ring laser interferometer. The tornado resulted in 16 fatalities and millions of dollars in damage. Using the ring laser to study the tornado infrasound produced results that qualitatively agree with several findings from a long-term study of weather generated infrasound by the National Oceanic and Atmospheric Administration. A Fast Fourier Transform of the ring laser output revealed a coherent frequency of approximately 0.94 Hz that lasted during the life of the storm. The 0.94 Hz frequency was initially observed 30 min before the funnel was reported on the ground. Infrasound signatures from four separate tornadoes are presented. In each case, coherent infrasound was detected at least 30 min before the tornado was reported on the ground. Examples of the detection of distant coherent acoustic-gravity waves from volcanoes and typhoons are also presented. In addition, buoyancy waves were recorded.

  7. Waving Goodbye

    NASA Image and Video Library

    2017-05-30

    Before NASA's Cassini entered its Grand Finale orbits, it acquired unprecedented views of the outer edges of the main ring system. For example, this close-up view of the Keeler Gap, which is near the outer edge of Saturn's main rings, shows in great detail just how much the moon Daphnis affects the edges of the gap. Daphnis creates waves in the edges of the gap through its gravitational influence. Some clumping of ring particles can be seen in the perturbed edge, similar to what was seen on the edges of the Encke Gap back when Cassini arrived at Saturn in 2004. This view looks toward the sunlit side of the rings from about 3 degrees above the ring plane. The view was acquired at a distance of approximately 18,000 miles (30,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 69 degrees. Image scale is 581 feet (177 meters) per pixel. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 16, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21329

  8. Experimental Observation of Fermi-Pasta-Ulam Recurrence in a Nonlinear Feedback Ring System

    NASA Astrophysics Data System (ADS)

    Wu, Mingzhong; Patton, Carl E.

    2007-01-01

    Fermi-Pasta-Ulam recurrence through soliton dynamics has been realized. The experiment used a magnetic film strip-based active feedback ring. At some ring gain level, a wide spin wave pulse is self-generated in the ring. As the pulse circulates, it separates into two envelop solitons with different speeds. When the fast soliton catches up and collides with the slow soliton, the initial wide pulse is perfectly reconstructed. The repetition of this process leads to periodic recurrences of the initial pulse.

  9. A finite volume method and experimental study of a stator of a piezoelectric traveling wave rotary ultrasonic motor.

    PubMed

    Bolborici, V; Dawson, F P; Pugh, M C

    2014-03-01

    Piezoelectric traveling wave rotary ultrasonic motors are motors that generate torque by using the friction force between a piezoelectric composite ring (or disk-shaped stator) and a metallic ring (or disk-shaped rotor) when a traveling wave is excited in the stator. The motor speed is proportional to the amplitude of the traveling wave and, in order to obtain large amplitudes, the stator is excited at frequencies close to its resonance frequency. This paper presents a non-empirical partial differential equations model for the stator, which is discretized using the finite volume method. The fundamental frequency of the discretized model is computed and compared to the experimentally-measured operating frequency of the stator of Shinsei USR60 piezoelectric motor. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Intensity modulation of a terahertz bandpass filter: utilizing image currents induced on MEMS reconfigurable metamaterials.

    PubMed

    Hu, Fangrong; Fan, Yixing; Zhang, Xiaowen; Jiang, Wenying; Chen, Yuanzhi; Li, Peng; Yin, Xianhua; Zhang, Wentao

    2018-01-01

    We experimentally demonstrated a tunable terahertz bandpass filter based on microelectromechanical systems (MEMS) reconfigurable metamaterials. The unit cell of the filter consists of two split-ring resonators (SRRs) and a movable bar. Initially, the movable bar situates at the center of the unit cell, and the filter has two passbands whose central frequencies locate at 0.65 and 0.96 THz. The intensity of the two passbands can be actively modulated by the movable bar, and a maximum modulation depth of 96% is achieved at 0.96 THz. The mechanism of tunability is investigated using the finite-integration time-domain method. The result shows that the image currents induced on the movable bar are opposite the resonance currents induced on the SRRs and, thus, weaken the oscillating intensity of the resonance currents. This scheme paves the way to dynamically control and switch the terahertz wave at some constant frequencies utilizing induced image currents.

  11. Demonstration of frequency control and CW diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements

    NASA Technical Reports Server (NTRS)

    Bair, Clayton H.; Brockman, Philip; Hess, Robert V.; Modlin, Edward A.

    1988-01-01

    Theoretical and experimental frequency narrowing studies of a Ti:sapphire ring laser with no intracavity optical elements are reported. Frequency narrowing has been achieved using a birefringent filter between a partially reflecting reverse wave suppressor mirror and the ring cavity output mirror. Results of CW diode laser injection seeding are reported.

  12. Use of an Atrial Lead with Very Short Tip-To-Ring Spacing Avoids Oversensing of Far-Field R-Wave

    PubMed Central

    Kolb, Christof; Nölker, Georg; Lennerz, Carsten; Jetter, Hansmartin; Semmler, Verena; Pürner, Klaus; Gutleben, Klaus-Jürgen; Reents, Tilko; Lang, Klaus; Lotze, Ulrich

    2012-01-01

    Objective The AVOID-FFS (Avoidance of Far-Field R-wave Sensing) study aimed to investigate whether an atrial lead with a very short tip-to-ring spacing without optimization of pacemaker settings shows equally low incidence of far-field R-wave sensing (FFS) when compared to a conventional atrial lead in combination with optimization of the programming. Methods Patients receiving a dual chamber pacemaker were randomly assigned to receive an atrial lead with a tip-to-ring spacing of 1.1 mm or a lead with a conventional tip-to-ring spacing of 10 mm. Postventricular atrial blanking (PVAB) was programmed to the shortest possible value of 60 ms in the study group, and to an individually determined optimized value in the control group. Atrial sensing threshold was programmed to 0.3 mV in both groups. False positive mode switch caused by FFS was evaluated at one and three months post implantation. Results A total of 204 patients (121 male; age 73±10 years) were included in the study. False positive mode switch caused by FFS was detected in one (1%) patient of the study group and two (2%) patients of the control group (p = 0.62). Conclusion The use of an atrial electrode with a very short tip-to-ring spacing avoids inappropriate mode switch caused by FFS without the need for individual PVAB optimization. Trial Registration ClinicalTrials.gov NCT00512915 PMID:22745661

  13. Use of an atrial lead with very short tip-to-ring spacing avoids oversensing of far-field R-wave.

    PubMed

    Kolb, Christof; Nölker, Georg; Lennerz, Carsten; Jetter, Hansmartin; Semmler, Verena; Pürner, Klaus; Gutleben, Klaus-Jürgen; Reents, Tilko; Lang, Klaus; Lotze, Ulrich

    2012-01-01

    The AVOID-FFS (Avoidance of Far-Field R-wave Sensing) study aimed to investigate whether an atrial lead with a very short tip-to-ring spacing without optimization of pacemaker settings shows equally low incidence of far-field R-wave sensing (FFS) when compared to a conventional atrial lead in combination with optimization of the programming. Patients receiving a dual chamber pacemaker were randomly assigned to receive an atrial lead with a tip-to-ring spacing of 1.1 mm or a lead with a conventional tip-to-ring spacing of 10 mm. Postventricular atrial blanking (PVAB) was programmed to the shortest possible value of 60 ms in the study group, and to an individually determined optimized value in the control group. Atrial sensing threshold was programmed to 0.3 mV in both groups. False positive mode switch caused by FFS was evaluated at one and three months post implantation. A total of 204 patients (121 male; age 73±10 years) were included in the study. False positive mode switch caused by FFS was detected in one (1%) patient of the study group and two (2%) patients of the control group (p = 0.62). The use of an atrial electrode with a very short tip-to-ring spacing avoids inappropriate mode switch caused by FFS without the need for individual PVAB optimization. ClinicalTrials.gov NCT00512915.

  14. An Archetype Semi-Ring Fabry-Perot (SRFP) Resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin; VanZyl, Jakob

    2009-01-01

    We introduce and demonstrate the generation of a novel resonator, termed Semi-Ring Fabry-Perot (SRFP), that exhibits unique features, such as, its use of one plane mirror, allowing the SRFP to be easily fabricated as a symmetrical device. In addition to its unique features, it exhibits advantages of ring and Fabry-Perot resonators: 1) compared to a ring resonator that only allows a transmitted intensity, the Semi-Ring Fabry-Perot (SRFP) supports standing waves, allowing both a reflected and transmitted intensity; 2) the reflected light spectrum of the SRFP resonator is much narrower than similar Fabry-Perot, implying higher finesse.

  15. The role of cold plasma and its composition on the growth of electromagnetic ion cyclotron waves in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Snelling, J. M.; Johnson, J.; Engebretson, M. J.; Kim, E. H.; Tian, S.

    2017-12-01

    While it is currently well accepted that the free energy for growth of electromagnetic ion cyclotron (EMIC) waves in Earth's magnetosphere comes from unstable configurations of hot anisotropic ions that are injected into the ring current, several questions remain about what controls the instability. A recent study of the occurrence of EMIC waves relative to the plasmapause in Vallen Probes Data showed that plasma density gradients or enhancements were not the dominant factor in determining the site of EMIC wave generation [Tetrick et al. 2017]. However, the factors that control wave growth on each of the branches are not fully understood. For example, in some cases, the measured anisotropy is not adequate to explain local instability, and the relative importance of the density and composition of a cold plasma population is still uncertain. Several intervals of EMIC wave activity are analyzed to determine the role of a cold population in driving instability on each of the wave branches. This study utilizes the WHAMP (Waves in Homogeneous Anisotropic Magnetized Plasma) stability code with plasma distributions optimized to fit the observed distributions including temperature anisotropy, loss cone, and ring beam populations.

  16. MMS, Van Allen Probes, and Ground-based Magnetometer Observations of a Compression-induced EMIC Wave Event

    NASA Astrophysics Data System (ADS)

    Capman, N.; Engebretson, M.; Posch, J. L.; Cattell, C. A.; Tian, S.; Wygant, J. R.; Kletzing, C.; Lessard, M.; Anderson, B. J.; Russell, C. T.; Reeves, G. D.; Fuselier, S. A.

    2016-12-01

    A 0.5-1.0 Hz electromagnetic ion cyclotron (EMIC) wave event was observed on December 14, 2015 from 13:26 to 13:28 UT at the four MMS satellites (L= 9.5, MLT= 13.0, MLAT= -24.4, peak amplitude 7 nT), and both Van Allen probes (RBSP-A: L= 5.7, MLT= 12.8, MLAT= 19.5, peak amplitude 5 nT; RBSP-B: L= 4.3, MLT= 14.2, MLAT= 11.3, peak amplitude 1 nT). On the ground, it was observed by search coil magnetometers at Halley Bay and South Pole, Antarctica, and Sondrestromfjord, Greenland, and by fluxgate magnetometers of the MACCS array at Pangnirtung and Cape Dorset in Arctic Canada. This event was preceded by a small increase of the solar wind pressure of 3 nPa from 13:10 to 13:20 UT. The proton distributions at Van Allen probe A confirm that the compression increased the pitch angle anisotropy in 10 keV ring current protons. The wave forms were very similar at the four MMS spacecraft indicating that the coherence-scale of the wave packets is larger than the inter-spacecraft separations of 20 km at the time. Inter-comparison of the wave signals at the four MMS spacecraft are used to assess the characteristics of the waves and estimate their spatial scales transverse and parallel to the background magnetic field.

  17. Architecture in outer space. [multilayer shell systems filled with gas

    NASA Technical Reports Server (NTRS)

    Pokrovskiy, G. I.

    1974-01-01

    Mulilayer thin film structures consisting of systems of shells filled with gas at some pressure are recommended for outer space structures: Large mirrors to collect light and radio waves, protection against meteoric impact and damage, and for connectors between state space stations in the form of orbital rings. It is projected that individual orbital rings will multiply and completely seal a star trapping its high temperature radiation and transforming it into low temperature infrared and short wave radio emission; this radiation energy could be utilized for technological and biological processes.

  18. Apparatus for millimeter-wave signal generation

    DOEpatents

    Vawter, G. Allen; Hietala, Vincent M.; Zolper, John C.; Mar, Alan; Hohimer, John P.

    1999-01-01

    An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).

  19. Spectrum study on unsteadiness of shock wave-vortex ring interaction

    NASA Astrophysics Data System (ADS)

    Dong, Xiangrui; Yan, Yonghua; Yang, Yong; Dong, Gang; Liu, Chaoqun

    2018-05-01

    Shock oscillation with low-frequency unsteadiness commonly occurs in supersonic flows and is a top priority for the control of flow separation caused by shock wave and boundary layer interaction. In this paper, the interaction of the shock caused by the compression ramp and the vortex rings generated by a micro-vortex generator (MVG) in a supersonic flow at Ma = 2.5 is simulated by the implicit large eddy simulation method. The analysis of observation and the frequency of both the vortex ring motion and the shock oscillation is carried out. The results show that the shock produced by a compression ramp flow at Ma = 2.5 has a dominant non-dimensional low frequency, which is around St = 0.002, while the vortex rings behind the MVG have a dominant high frequency which is around St = 0.038. The dominant low frequency of the shock, which is harmful, can be removed or weakened through the shock-vortex ring interaction by the vortex rings which generate high frequency fluctuations. In the shock and vortex ring interaction region, a dominant high frequency St = 0.037-0.038 has been detected rather than the low frequency St = 0.002, which indicates that the vortex ring is stiff enough to break or weaken the shock. This analysis could provide an effective tool to remove or weaken the low frequency pressure fluctuation below 500 Hz, which has a negative effect on the flight vehicle structures and the environmental protection, through the high frequency vortex generation.

  20. Ring/Shell Ion Distributions at Geosynchronous Orbit

    NASA Astrophysics Data System (ADS)

    Thomsen, M. F.; Denton, M. H.; Gary, S. P.; Liu, Kaijun; Min, Kyungguk

    2017-12-01

    One year's worth of plasma observations from geosynchronous orbit is examined for ion distributions that may simultaneously be subject to the ion Bernstein (IB) instability (generating fast magnetosonic waves) and the Alfvén cyclotron (AC) instability (generating electromagnetic ion cyclotron waves). Confirming past analyses, distributions with robust ∂fp(v⊥)/∂v⊥ > 0 near v|| = 0, which we denote as "ring/shell" distributions, are commonly found primarily on the dayside of the magnetosphere. A new approach to high-fidelity representation of the observed ring/shell distribution functions in a form readily suited to both analytical moment calculation and linear dispersion analysis is presented, which allows statistical analysis of the ring/shell properties. The ring/shell temperature anisotropy is found to have a clear upper limit that depends on the parallel beta of the ring/shell (β||r) in a manner that is diagnostic of the operation of the AC instability. This upper limit is only reached in the postnoon events, which are primarily produced by the energy- and pitch angle-dependent magnetic drifts of substorm-injected ions. Further, it is primarily the leading edge of such injections, where the distribution is strongly ring-like, that the AC instability appears to be operating. By contrast, the ratio of the ring energy to the Alfvén energy remains well within the range of 0.25-4.0 suitable for IB instability throughout essentially all of the events, except those that occur in denser cold plasma of the outer plasmasphere.

  1. Particle simulation of ion heating in the ring current

    NASA Technical Reports Server (NTRS)

    Qian, S.; Hudson, M. K.; Roth, I.

    1990-01-01

    Heating of heavy ions has been observed in the equatorial magnetosphere in GEOS 1 and 2 and ATS 6 data due to ion cyclotron waves generated by anisotropic hot ring current ions. A one-dimensional hybrid-Darwin code has been developed to study ion heating in the ring current. Here, a strong instability and heating of thermal ions is investigated in a plasma with a los cone distribution of hot ions. The linear growth rate calculation and particle simulations are conducted for cases with different loss cones and relative ion densities. The linear instability of the waves, the quasi-linear heating of cold ions and dependence on the thermal H(+)/He(+) density ratio are analyzed, as well as nonlinear parallel heating of thermal ions. Effects of thermal oxygen and hot oxygen are also studied.

  2. Reply to "Comment on 'A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitation Fluxes' and 'Self-Consistent Model of the Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere' by Khazanov et al. et al."

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. W.

    2007-01-01

    It is well-known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wavenormal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and[ particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002, 2006, 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. Thome and Home [2007] (hereafter referred to as TH2007) call the Khazanov et al. [2002, 2006] results into question in their Comment. The points in contention can be summarized as follows. TH2007 claim that: (1) "the important damping of waves by thermal heavy ions is completely ignored", and Landau damping during resonant interaction with thermal electrons is not included in our model; (2) EMIC wave damping due to RC O + is not included in our simulation; (3) non-linear processes limiting EMIC wave amplitude are not included in our model; (4) growth of the background fluctuations to a physically significantamplitude"must occur during a single transit of the unstable region" with subsequent damping below bi-ion latitudes,and consequently"the bounce averaged wave kinetic equation employed in the code contains a physically erroneous 'assumption". Our reply will address each of these points as well as other criticisms mentioned in the Comment. TH2007 are focused on two of our papers that are separated by four years. Significant progress in the self-consistent treatment of the RC-EMIC wave system has been achieved during those years. The paper by Khazanov et al. [2006] presents the latest version of our model, and in this Reply we refer mostly to this paper.

  3. Localized end states in density modulated quantum wires and rings.

    PubMed

    Gangadharaiah, Suhas; Trifunovic, Luka; Loss, Daniel

    2012-03-30

    We study finite quantum wires and rings in the presence of a charge-density wave gap induced by a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi equations describing massive Dirac fermions and bound end states. We treat interactions via the continuum model and show that they increase the charge gap and further localize the end states. The electrons placed in the two localized states on the opposite ends of the wire can interact via exchange interactions and this setup can be used as a double quantum dot hosting spin qubits. The existence of these states could be experimentally detected through the presence of an unusual 4π Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external flux.

  4. Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial.

    PubMed

    Manjappa, Manukumara; Turaga, Shuvan Prashant; Srivastava, Yogesh Kumar; Bettiol, Andrew Anthony; Singh, Ranjan

    2017-06-01

    Dark mode in metamaterials has become a vital component in determining the merit of the Fano type of interference in the system. Its strength dictates the enhancement and suppression in the amplitude and Q-factors of resulting resonance features. In this work, we experimentally probe the effect of strong near-field coupling on the strength of the dark mode in a concentrically aligned bright resonator and a dark split ring resonator (SRR) system exhibiting the classical analog of the electromagnetically induced transparency effect. An enhanced strong magnetic field between the bright-dark resonators destructively interferes with the inherent magnetic field of the dark mode to completely annihilate its effect in the coupled system. Moreover, the observed annihilation effect in the dark mode has a direct consequence on the disappearance of the SRR effect in the proposed system, wherein under the strong magnetic interactions, the LC resonance feature of the split ring resonator becomes invisible to the incident terahertz wave.

  5. Spatio-temporal dynamics of an active, polar, viscoelastic ring.

    PubMed

    Marcq, Philippe

    2014-04-01

    Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.

  6. Highly precise acoustic calibration method of ring-shaped ultrasound transducer array for plane-wave-based ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi

    2017-07-01

    Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.

  7. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  8. Electrostatic turbulence in the earth's central plasma sheet produced by multiple-ring ion distributions

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Chen, J.; Anderson, R. R.

    1992-01-01

    Attention is given to a mechanism to generate a broad spectrum of electrostatic turbulence in the quiet time central plasma sheet (CPS) plasma. It is shown theoretically that multiple-ring ion distributions can generate short-wavelength (less than about 1), electrostatic turbulence with frequencies less than about kVj, where Vj is the velocity of the jth ring. On the basis of a set of parameters from measurements made in the CPS, it is found that electrostatic turbulence can be generated with wavenumbers in the range of 0.02 and 1.0, with real frequencies in the range of 0 and 10, and with linear growth rates greater than 0.01 over a broad range of angles relative to the magnetic field (5-90 deg). These theoretical results are compared with wave data from ISEE 1 using an ion distribution function exhibiting multiple-ring structures observed at the same time. The theoretical results in the linear regime are found to be consistent with the wave data.

  9. Intermittent burst of a super rogue wave in the breathing multi-soliton regime of an anomalous fiber ring cavity.

    PubMed

    Lee, Seungjong; Park, Kyoungyoon; Kim, Hyuntai; Vazquez-Zuniga, Luis Alonso; Kim, Jinseob; Jeong, Yoonchan

    2018-04-30

    We report the intermittent burst of a super rogue wave in the multi-soliton (MS) regime of an anomalous-dispersion fiber ring cavity. We exploit the spatio-temporal measurement technique to log and capture the shot-to-shot wave dynamics of various pulse events in the cavity, and obtain the corresponding intensity probability density function, which eventually unveils the inherent nature of the extreme events encompassed therein. In the breathing MS regime, a specific MS regime with heavy soliton population, the natural probability of pulse interaction among solitons and dispersive waves exponentially increases owing to the extraordinarily high soliton population density. Combination of the probabilistically started soliton interactions and subsequently accompanying dispersive waves in their vicinity triggers an avalanche of extreme events with even higher intensities, culminating to a burst of a super rogue wave nearly ten times stronger than the average solitons observed in the cavity. Without any cavity modification or control, the process naturally and intermittently recurs within a time scale in the order of ten seconds.

  10. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  11. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  12. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array.

    PubMed

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  13. Physics of Sports: Resonances

    NASA Astrophysics Data System (ADS)

    Browning, David

    2000-04-01

    When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.

  14. Deciphering the embedded wave in Saturn's Maxwell ringlet

    NASA Astrophysics Data System (ADS)

    French, Richard G.; Nicholson, Philip D.; Hedman, Mathew M.; Hahn, Joseph M.; McGhee-French, Colleen A.; Colwell, Joshua E.; Marouf, Essam A.; Rappaport, Nicole J.

    2016-11-01

    The eccentric Maxwell ringlet in Saturn's C ring is home to a prominent wavelike structure that varies strongly and systematically with true anomaly, as revealed by nearly a decade of high-SNR Cassini occultation observations. Using a simple linear "accordion" model to compensate for the compression and expansion of the ringlet and the wave, we derive a mean optical depth profile for the ringlet and a set of rescaled, background-subtracted radial wave profiles. We use wavelet analysis to identify the wave as a 2-armed trailing spiral, consistent with a density wave driven by an m = 2 outer Lindblad resonance (OLR), with a pattern speed Ωp = 1769.17° d-1 and a corresponding resonance radius ares = 87530.0 km. Estimates of the surface mass density of the Maxwell ringlet range from a mean value of 11g cm-2 derived from the self-gravity model to 5 - 12gcm-2 , as inferred from the wave's phase profile and a theoretical dispersion relation. The corresponding opacity is about 0.12 cm2 g-1, comparable to several plateaus in the outer C ring (Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 444, 1369-1388). A linear density wave model using the derived wave phase profile nicely matches the wave's amplitude, wavelength, and phase in most of our observations, confirming the accuracy of the pattern speed and demonstrating the wave's coherence over a period of 8 years. However, the linear model fails to reproduce the narrow, spike-like structures that are prominent in the observed optical depth profiles. Using a symplectic N-body streamline-based dynamical code (Hahn, J.M., Spitale, J.N. [2013]. Astrophys. J. 772, 122), we simulate analogs of the Maxwell ringlet, modeled as an eccentric ringlet with an embedded wave driven by a fictitious satellite with an OLR located within the ring. The simulations reproduce many of the features of the actual observations, including strongly asymmetric peaks and troughs in the inward-propagating density wave. We argue that the Maxwell ringlet wave is generated by a sectoral normal-mode oscillation inside Saturn with ℓ = m = 2 , similar to other planetary internal modes that have been inferred from density waves observed in Saturn's C ring (Hedman, M.N., Nicholson, P.D. [2013]. Astron. J. 146, 12; Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 444, 1369-1388). Our identification of a third m = 2 mode associated with saturnian internal oscillations supports the suggestions of mode splitting by Fuller et al. (Fuller, J., Lai, D., Storch, N.I. [2014]. Icarus 231, 34-50) and Fuller (Fuller, J. [2014]. Icarus 242, 283-296). The fitted amplitude of the wave, if it is interpreted as driven by the ℓ = m = 2 f-mode, implies a radial amplitude at the 1 bar level of ∼ 50 cm, according to the models of Marley and Porco (Marley, M.S., Porco, C.C. [1993]. Icarus 106, 508).

  15. Sound pressure distribution within natural and artificial human ear canals: Forward stimulation

    PubMed Central

    Ravicz, Michael E.; Tao Cheng, Jeffrey; Rosowski, John J.

    2014-01-01

    This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5–2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11–16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC. PMID:25480061

  16. Infrasonic Influences of Tornados and Cyclonic Weather Systems

    NASA Astrophysics Data System (ADS)

    Cook, Tessa

    2014-03-01

    Infrasound waves travel through the air at approximately 340 m/s at sea level, while experiencing low levels of friction, allowing the waves to travel over larger distances. When seismic waves travel through unconsolidated soil, the waves slow down to approximately 340 m/s. Because the speeds of waves in the air and ground are similar, a more effective transfer of energy from the atmosphere to the ground can occur. Large ring lasers can be utilized for detecting sources of infrasound traveling through the ground by measuring anomalies in the frequency difference between their two counter-rotating beams. Sources of infrasound include tornados and other cyclonic weather systems. The way systems create waves that transfer to the ground is unknown and will be continued in further research; this research has focused on attempting to isolate the time that the ring laser detected anomalies in order to investigate if these anomalies may be contributed to isolatable weather systems. Furthermore, this research analyzed the frequencies detected in each of the anomalies and compared the frequencies with various characteristics of each weather system, such as tornado width, wind speeds, and system development. This research may be beneficial for monitoring gravity waves and weather systems.

  17. Development of integrated photoplethysmographic recording circuit for trans-nail pulse-wave monitoring system

    NASA Astrophysics Data System (ADS)

    Qian, Zhengyang; Takezawa, Yoshiki; Shimokawa, Kenji; Kino, Hisashi; Fukushima, Takafumi; Kiyoyama, Koji; Tanaka, Tetsu

    2018-04-01

    Health monitoring and self-management have become increasingly more important because of health awareness improvement, the aging of population, and other reasons. In general, pulse waves are among the most useful physiological signals that can be used to calculate several parameters such as heart rate and blood pressure for health monitoring and self-management. To realize an automatic and real-time pulse-wave monitoring system that can be used in daily life, we have proposed a trans-nail pulse-wave monitoring system that was placed on the fingernail to detect photoplethysmographic (PPG) signals as pulse waves. In this study, we designed a PPG recording circuit that was composed of a 600 × 600 µm2 photodiode (PD), an LED driver with pulse wave modulation (PWM) and a low-frequency ring oscillator (RING), and a PPG signal readout circuit. The proposed circuit had a very small area of 2.2 × 1.1 mm2 designed with 0.18 µm CMOS technology. The proposed circuit was used to detect pulse waves on the human fingernail in both the reflection and transmission modes. Electrical characteristics of the prototype system were evaluated precisely and PPG waveforms were obtained successfully.

  18. Recent developments in guided wave travel time tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zon, Tim van; Volker, Arno

    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improvemore » the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.« less

  19. Metal ring on 4th or 5th finger markedly increases both cardiac troponin I at left ventricle and cancer-related parameters such as oncogen C-fosAb2 & integrin α₅β₁[corrected] by 4-12 times. Thus these metal rings appear to promote both heart problems & cancer.

    PubMed

    Omura, Yoshiaki; Hines, Howard; Jones, Marilyn; O'Young, Brian; Duvvi, Harsha; Lu, Dominic P; Pallos, Andrew; Shimotsuura, Yasuhiro; Ohki, Motomu

    2010-01-01

    We examined patients wearing a metal ring on the left 4th finger with abnormally increased Cardiac Troponin I (which is known to increase in the presence of myocardial injury or left ventricular hypertrophy) of 5-14ng BDORT units (depending on the ring and individual) at left ventricle compared with normal value of 1ng BDORT units or less. Although shape of the ECG does not change significantly regardless of whether metal rings are on or not, when rings are on, the Bi-Digital O-Ring Test evaluation of trace of ECG revealed "Vulnerable Period of Rising Part of T-wave" of ECG waves (which correspond to the left ventricle and AV node) become abnormal with increased Cardiac Troponin I. DHEA in various parts of the body reduced significantly and maximum decrease in DHEA was found when metal ring was on the left 4th and 5th fingers. Telomere reduced with each of the 5 fingers, but the 2nd, 4th, and 5th fingers produced the maximum reduction of telomere. When metal ring was inserted onto the left 1st finger and left 2nd finger, Cardiac Troponin I did not change significantly. Additional abnormality was found when patients with cancer wore metal ring(s); namely both Cardiac Troponin I and cancer parameters, such as Integrin α₅β₁[corrected] and Oncogen C-fos Ab2, increase anywhere between 4-12 times. However, when the ring was cut, creating a 1mm or longer empty space, no increase in cancer markers and Cardiac Troponin I were observed. Similar findings were found with metal bracelets.

  20. An alternative way to increase the power gain of resonant rings

    NASA Astrophysics Data System (ADS)

    Zhuang, Dehao; Liu, Yunqi; Wang, Fang; Lin, Lin; Feng, Liwen; Quan, Shengwen; Liu, Kexin

    2018-03-01

    Resonant rings which can amplify RF power through the coupling of waves are used for high power breakdown tests, unidirectional filters, or pulse-shaping techniques. Usually, the RF output terminal of a resonant ring is connected to a matched load. For the resonant ring at Peking University, the matched load has been replaced by a waveguide shorting plate to obtain higher conditioning power for the 1.3 GHz capacitive type power couplers. The power gain is increased significantly with this short termination with the same input RF power. Working mechanism analysis, experiments, and results of this modified resonant ring will be presented.

  1. Synchrony-induced modes of oscillation of a neural field model

    NASA Astrophysics Data System (ADS)

    Esnaola-Acebes, Jose M.; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest

    2017-11-01

    We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.

  2. Synchrony-induced modes of oscillation of a neural field model.

    PubMed

    Esnaola-Acebes, Jose M; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest

    2017-11-01

    We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.

  3. Spatial distribution of the wave field of the surface modes sustaining filamentary discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lishev, St.; Shivarova, A.; Tarnev, Kh.

    2008-01-01

    The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density ofmore » the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all--six--field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament--both radially inhomogeneous--are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.« less

  4. A Guess about light quantum model

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2016-03-01

    Photon is a ring, the diameter of the ring is the quantum fluctuated wave length. The linear movement of the ring, namely, the transmission of light, is reflected in the particle of light. A plurality of light quantum interactions or through a very narrow gap, the shape of quantum would temporarily be changed. The motion of photons to interference and diffraction phenomena occurs is determined by the structure of light quantum, the quantum ring radius and light quantum mass squared product is a constant. The smaller the light quantum ring radius is, the bigger the quality is, just consistent as the modern scientific experimental results, the energy of the purple is bigger than the red. This conclusion can be extrapolated to all of the electromagnetic wave. The shorter the photon wavelength is, the bigger the quality and density is , when the wavelength is less than 10-15 meters, it will convergence to atomic or subatomic composition material entity due to the gravity. In fact, the divergence and convergence of quantum is reversible, that is, the phenomenon of radiate ``light'' quantum occurs due to the energy exchange or other external energy. Author: hanyongquan TEL: 15611860790.

  5. Mode cross coupling observations with a rotation sensor.

    NASA Astrophysics Data System (ADS)

    Nader, Maria-Fernanda; Igel, Heiner; Ferreira, Ana M. G.; Al-Attar, David

    2013-04-01

    The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations (Igel et al. 2011). Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of two of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011 and Maule, Chile, 2010. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements. Igel H, Nader MF, Kurrle D, Ferreira AM,Wassermann J, Schreiber KU (2011) ''Observations of Earth's toroidal free oscillations with a rotation sensor: the 2011 magnitude 9.0 Tohoku-Oki earthquake.'' Geophys Res Lett. doi:10.1029/2011GL049045

  6. The Sound of Science: Comparison of Cassini Ring Crossings

    NASA Image and Video Library

    2017-05-01

    The sounds and spectrograms in these two videos represent data collected by the Radio and Plasma Wave Science, or RPWS, instrument on NASA's Cassini spacecraft, as it crossed the plane of Saturn's rings on two separate orbits. As tiny, dust-sized particles strike Cassini and the three 33-foot-long (10-meter-long), RPWS antennas, the particles are vaporized into tiny clouds of plasma, or electrically excited gas. These tiny explosions make a small electrical signal (a voltage impulse) that RPWS can detect. Researchers on the RPWS team convert the data into visible and audio formats, like those seen here, for analysis. Ring particle hits sound like pops and cracks in the audio. The first video (top image in the montage) was made using RPWS data from a ring plane crossing on Dec. 18, 2016, when the spacecraft passed through the faint, dusty Janus-Epimetheus ring (see PIA08328 for an image that features this ring). This was during Cassini's 253rd orbit of Saturn, known as Rev 253. As is typical for this sort of ring crossing, the number of audible pops and cracks rises to a maximum around the time of a ring crossing and trails off afterward. The peak of the ring density is obvious in the colored display at the red spike. The second video (bottom image in the montage) was made using data RPWS collected as Cassini made the first dive through the gap between Saturn and its rings as part of the mission's Grand Finale, on April 26, 2017. Very few pops and cracks are audible in this data at all. In comparing the two data sets, it is apparent that while Cassini detected many ring-particles striking Cassini when passing through the Janus-Epimetheus ring, the first Grand Finale crossing -- in stark contrast -- was nearly particle free. The unexpected finding that the gap is so empty is a new mystery that scientists are eager to understand. On April 26, 2017, Cassini dove through the previously unexplored ring-planet gap at speeds approaching 75,000 mph (121,000 kph), using its large, dish-shaped high-gain antenna (or HGA) as a shield to protect the rest of the spacecraft and its instruments from potential impacts by small, icy ring particles. Two of Cassini's instruments, the magnetometer and RPWS, extend beyond the protective antenna dish, and were exposed to the particle environment during the dive. The Cassini team used this data from RPWS, along with inputs from other components on the spacecraft, to make the decision of whether the HGA would be needed as a shield on most future Grand Finale dives through the planet-ring gap. Based on these inputs the team determined this protective measure would not be needed, allowing the team's preferred mode of science operations to proceed, with Cassini able to point its science instruments in any direction necessary to obtain scientists' desired observations. (Four of the 21 remaining dives pass through the inner D ring. The mission had already planned to use the HGA as a shield for those passes.) The colors on the spectrogram indicate the emitted power of the radio waves, with red as the most powerful. Time is on the x-axis, and frequency of the radio waves is on the y-axis. The audible whistle in the April 26 data, just before ring plane crossing, is due to a type of plasma wave that will be the subject of further study. In addition, there is an abrupt change beginning at the 09:00:00 mark on the spectrogram that represents a change in the RPWS antenna's operational configuration (from monopole mode to dipole mode). The videos can be viewed at https://photojournal.jpl.nasa.gov/catalog/PIA21446

  7. Scalings of Alfvén-cyclotron and ion Bernstein instabilities on temperature anisotropy of a ring-like velocity distribution in the inner magnetosphere

    DOE PAGES

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2016-03-18

    Here, a ring-like proton velocity distribution with ∂f p(v ⊥)/∂v ⊥>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernsteinmore » instabilities. In this study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T ⊥/T || for a general ring-like proton distribution with a fixed ring speed of 2v A, where v A is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T ⊥/T ||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as inline image. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very anisotropic.« less

  8. Confirmation of a traveling feature in Saturn's rings in Cassini Imaging Science Subsystem data

    NASA Astrophysics Data System (ADS)

    Aye, K. M.; Rehnberg, M.; Esposito, L. W.

    2017-12-01

    Introduction: Using Cassini UVIS occultation data, a traveling wave feature has been identified in the Saturn rings that is most likely caused by the radial positions swap of the moons Janus and Epimetheus [1]. The hypothesis is that non-linear interferences between the density waves when being relocated by the moon swap create a solitary wave that is traveling outward through the rings. The observations in [1] further lead to the derivation of values for the radial travel speeds of the identified traveling features, from 39.6 km/yr for the Janus 5:4 resonance up to 45.8 for the Janus 4:3 resonance. Previous confirmations in ISS data: Work in [1] also identified the feature in Cassini Imaging Science Subsystem (ISS) data that was taken around the time of the UVIS occultations where the phenomenon was first discovered, so far one ISS image for each Janus resonances 2:1, 4:3, 5:4, and 6:5. Searches performed in ISS data: Filtering all existing ISS data down to the best resolutions that include both a clearly identifiable minimum and maximum ring radius, we have visually inspected approx. 200 images, both with and without known resonances within the image, but unbeknownst to the inspector. Identification of a feature of interest happens when train waves are being interrupted by anomalies. Comparing the radial locations of identified ISS features with those in UV data of [1], we have identified several at the same radii. Considering the vast differences in radial resolution, we conclude that the traveling feature causes observable anomalies at both small scales of meters, up to large scales of hundreds of meters to kilometers.References: [1] Rehnberg, M.E., Esposito, L.W., Brown, Z.L., Albers, N., Sremčević, M., Stewart, G.R., 2016. A Traveling Feature in Saturn's Rings. Icarus, accepted in June 2016. [2] K.-Michael Aye (2016, November 11). michaelaye/pyciss: . v0.6.0 Zenodo. https://doi.org/10.5281/zenodo.596802

  9. Time-dependent wave packet simulations of transport through Aharanov-Bohm rings with an embedded quantum dot.

    PubMed

    Kreisbeck, C; Kramer, T; Molina, R A

    2017-04-20

    We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.

  10. Generation of light and dark soliton trains in a dissipative four-wave mixing, mode-locked fibre ring laser

    NASA Astrophysics Data System (ADS)

    Zolotovskii, I. O.; Korobko, D. A.; Sysolyatin, A. A.

    2018-02-01

    We consider a model of a dissipative four-wave mixing, mode-locked fibre ring laser with an intracavity interferometer. The necessary conditions required for mode locking are presented. A pulse train generation is numerically simulated at different repetition rates and gain levels. Admissible ranges of values, for which successful mode locking is possible, are found. It is shown that in the case of normal dispersion of the resonator, a laser with an intracavity interferometer can generate a train of pulses with an energy much greater than that in the case of anomalous dispersion.

  11. On dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gyroscopic waves. Problems of stability and quantization

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-03-01

    Based on a mathematical model described in [1], some new aspects of the dynamics of a thin planar plasma ring rotating in the magnetic field of a central body are considered. The dipole field is considered assuming that the dipole has a small eccentricity, and the dipole axis is inclined at a small angle to the central body’s axis of rotation. Emphasis is placed on the problem of stability of the ring’s stationary rotation. Unlike [1], the disturbed motion is considered which has a character of eddy magneto-gyroscopic waves. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. It is demonstrated that some “elite” rings characterized by integral quantum numbers are long-living, while “lethal” or unstable rings (antirings) are associated with half-integer quantum numbers. As a result, an evolutionally rife rotating ring of magnetized plasma turns out to be stratified into a large number of narrow elite rings separated by gaps whose positions correspond to antirings. The regions of possible existence of elite rings in near-central body space are considered. Quantum numbers determining elite eigenvalues of the mean sector velocity (normalized in a certain manner) of a ring coincide with the quantum numbers appearing in the solution to the Schrödinger equation for a hydrogen atom. Perturbations of elite orbits corresponding to these quantum numbers satisfy the de Brogli quantum-mechanical condition. This is one more illustration of the isomorphism of quantization in microcosm and macrocosm.

  12. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the Space Telescope Science Institute.

  13. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    PubMed

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  14. Models of the Cartwheel ring galaxy: Spokes and starbursts

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis

    1993-01-01

    Recent observations of this famous ring galaxy, including optical and near-infrared CCD surface photometry, and VLA radio continuum and 21 cm line mapping (Higdon 1992b, in prep.), have inspired a renewed modeling effort. Toomre's (1978, in The Large-scale Structure of the Universe, eds. Longair and Einasto) series of restricted three-body simulations demonstrated how the multiple rings could be produced in a nearly head-on galaxy collision. New models with a halo-dominated potential based on the 21 cm rotation curve are able to reproduce such details as the spacing between rings, ring widths, offset of the nucleus, and several kinematical features, thus providing strong support for the collisional theory. The new observations have shown there are little or no old stars in Cartwheel; it may consist almost entirely of gas and stars produced as a result of compression in the ring wave. To model this process Smooth Particle Hydrodynamics (SPH) simulations of the Cartwheel disk have been performed. Fixed gravitational potentials were used to represent the Cartwheel and a roughly 30 percent mass collision partner. The interaction dynamics was treated as in the usual restricted three-body approximation, and the effects of local self-gravity between disk particles were calculated. We are particularly interested in testing the theory that enhanced star formation in waves is the result of gravitational instability in the compressed region (see e.g. Kennicutt 1989, ApJ 344, 685). The gas surface density in a number of simulations was initialized to a value slightly below the threshold for local gravitational instability throughout most of the disk. The first ring wave produces relatively modest compressions (a factor of order a few), triggering instability in a narrow range of wavelengths. Self-gravity in the disk is calculated over a comparable range of scales. Simulations were run with isothermal, adiabatic, and adiabatic with radiative cooling characterized by a relatively short timescale. The isothermal approximation is good except in the vicinity of the strong second (inner) ring, and several snapshots from one case are shown in the figure below. Flocculent spiral segments are present before the collision, and these are compressed into dense knots in the ring wave. These knots are likely to be sites of vigorous star formation. In the strong rarefaction behind the outer ring most of the knots are radially stretched and sheared, giving rise to spoke-like features. A few dense knots are evidently very tightly bound, because they retain their coherence and are stretched relatively little through the rarefaction. This is in accord with evidence for continuing star formation in some spokes (Marcum, Appleton and Higdon 1992). The number and spacing of spokes is a direct function of the scale of the gravitational instability in the disk. Thus, the gravitational instability theory, together with the hypothesis that massive stars are only formed in dense knots of gas, can account for most of the distinct morphology of the Cartwheel.

  15. Current-induced SQUID behavior of superconducting Nb nano-rings

    NASA Astrophysics Data System (ADS)

    Sharon, Omri J.; Shaulov, Avner; Berger, Jorge; Sharoni, Amos; Yeshurun, Yosef

    2016-06-01

    The critical temperature in a superconducting ring changes periodically with the magnetic flux threading it, giving rise to the well-known Little-Parks magnetoresistance oscillations. Periodic changes of the critical current in a superconducting quantum interference device (SQUID), consisting of two Josephson junctions in a ring, lead to a different type of magnetoresistance oscillations utilized in detecting extremely small changes in magnetic fields. Here we demonstrate current-induced switching between Little-Parks and SQUID magnetoresistance oscillations in a superconducting nano-ring without Josephson junctions. Our measurements in Nb nano-rings show that as the bias current increases, the parabolic Little-Parks magnetoresistance oscillations become sinusoidal and eventually transform into oscillations typical of a SQUID. We associate this phenomenon with the flux-induced non-uniformity of the order parameter along a superconducting nano-ring, arising from the superconducting leads (‘arms’) attached to it. Current enhanced phase slip rates at the points with minimal order parameter create effective Josephson junctions in the ring, switching it into a SQUID.

  16. Exact wave functions of two-electron quantum rings.

    PubMed

    Loos, Pierre-François; Gill, Peter M W

    2012-02-24

    We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.

  17. IMAGE Observations of Plasmasphere/Ring Current Interactions

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Adrian, M. L.; Perez, J.; Sandel, B. R.

    2003-01-01

    Evidence has been found in IMAGE observations that overlap of the plasmasphere and the ring current may lead to enhanced loss of plasma into the ionosphere. It has long been anticipated that this mixing of plasma leads to coupling and resulting consequences on both populations. Wave generation, pitch angle scattering, and heating are some of the consequences that are anticipated. IMAGE plasmasphere ring current, and auroral observations will be presented and used to explore these interactions and their effects.

  18. Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.

    PubMed

    Lai, W J; Shum, P; Binh, L

    2004-11-15

    We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.

  19. IRTF observations of the occultation of 28 Sgr by Saturn

    NASA Technical Reports Server (NTRS)

    Harrington, Joseph; Cooke, Maren L.; Forrest, William J.; Pipher, Judith L.; Dunham, Edward W.; Elliot, J. L.

    1993-01-01

    NASA's Mauna Kea IR Telescope Facility obtained an IR-imaging time series for the July 3, 1989 occultation of 28 Sgr by Saturn and its rings; the stellar signal is present in these images throughout the ring occultation event. These data are noted to vary systematically with respect to the Voyager data over large radius scales, perhaps due to stellar signal diffraction through the rings. The stellar diameter, which is projected to be about 20 km, placed most bending- and density-wave trains below measurable resolution. Masses and mean optical depths are presented for individual ring sections.

  20. A novel quantum-mechanical interpretation of the Dirac equation

    NASA Astrophysics Data System (ADS)

    K-H Kiessling, M.; Tahvildar-Zadeh, A. S.

    2016-04-01

    A novel interpretation is given of Dirac’s ‘wave equation for the relativistic electron’ as a quantum-mechanical one-particle equation. In this interpretation the electron and the positron are merely the two different ‘topological spin’ states of a single more fundamental particle, not distinct particles in their own right. The new interpretation is backed up by the existence of such ‘bi-particle’ structures in general relativity, in particular the ring singularity present in any spacelike section of the spacetime singularity of the maximal-analytically extended, topologically non-trivial, electromagnetic Kerr-Newman (KN)spacetime in the zero-gravity limit (here, ‘zero-gravity’ means the limit G\\to 0, where G is Newton’s constant of universal gravitation). This novel interpretation resolves the dilemma that Dirac’s wave equation seems to be capable of describing both the electron and the positron in ‘external’ fields in many relevant situations, while the bi-spinorial wave function has only a single position variable in its argument, not two—as it should if it were a quantum-mechanical two-particle wave equation. A Dirac equation is formulated for such a ring-like bi-particle which interacts with a static point charge located elsewhere in the topologically non-trivial physical space associated with the moving ring particle, the motion being governed by a de Broglie-Bohm type law extracted from the Dirac equation. As an application, the pertinent general-relativistic zero-gravity hydrogen problem is studied in the usual Born-Oppenheimer approximation. Its spectral results suggest that the zero-G KN magnetic moment be identified with the so-called ‘anomalous magnetic moment of the physical electron,’ not with the Bohr magneton, so that the ring radius is only a tiny fraction of the electron’s reduced Compton wavelength.

  1. Charged dust in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Mendis, D. A.; Hill, J. R.; Houpis, H. L. F.

    1983-01-01

    The overall distribution of fine dust in the Saturnian magnetosphere, its behavior, the cosmogony of the Saturnian ring system, and observations of the magnetosphere and ring system are synthesized and explained using gravito-electrodynamics. Among the phenomena discussed are the formation of waves in the F-ring, the cause of eccentricities of certain isolated ringlets, and the origin and morphology of the broad diffuse E-ring. Magnetogravitational resonance of charged dust with nearby satellites, gyro-orbital resonances, and magnetogravitational capture of exogenic dust by the magnetosphere are used to explain individual observations. The effect of a ring current associated with the charged dust is evaluated. Finally, the cosmogonic implications of the magnetogravitational theory are discussed.

  2. A granular flow model for dense planetary rings

    NASA Technical Reports Server (NTRS)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1985-01-01

    In the present study of the viscosity of a differentially rotating particle disk, in the limiting case where the particles are densely packed and their collective behavior resembles that of a liquid, the pressure tensor is derived from both the equations of hydrodynamics and a simple kinetic model of collisions due to Haff (1983). Density waves and narrow circular rings are unstable if the liquid approximation applies, and the consequent nonlinear perturbations may generate 'splashing' of the ring material in the vertical direction. These results are pertinent to the origin of the ellipticities of ringlets, the nonaxisymmetric features near the outer edge of the Saturn B ring, and unexplained residuals in kinematic models of the Saturn and Uranus rings.

  3. Dust impacts detected by Voyager-2 at Saturn and Uranus: A post-Halley view

    NASA Astrophysics Data System (ADS)

    Oberc, P.

    1994-09-01

    A new approach to the Voyager-2 dust impact observations near the ring plane of Saturn and Uranus is proposed in the paper, based on the experience from analyses of simulataneous dust and electric field observations by Vega-2 at Halley. Taking into account the impact geometry and the ambient plasma parameters, the possible responses of the two instruments, PRA (planetary radio astronomy) and PWS (plasma wave science), utilizing the same Voyager antenna, are evaluated as functions of the impact-induced charge. It is shown that the PRA instrument, which used the antenna elements as monopoles, responded mostly to pulses of the spacecraft potential, while the PWS instrument, working in dipole configuration, responded mostly to charge-separation electric fields. Due to the negative floating potential during both ring plane crossings the effect of charging the antenna was weak. The dust mass spectra near both ring planes are derived from the apparent impact rates and the V(rms) voltages, observed simultaneously by the PWS instrument. At Saturn's ring plane at 2.86 RS the obtained peak number density of particles bigger than 2 x 10-7g is 3.7 x 10-3/cu m, while the integral mass spectrum index alpha is about 1.5 at this mass magnitude and decreases toward lower masses down to values less than 1. In the ring plane region of Uranus at 4.51 RU the maximum number density for the limiting mass of 3.5 x 10-10g is found to be 4.4 x 10-4/cu m, while the index alpha at this mass is about 1.

  4. Saturn's E, G, and F rings - Modulated by the plasma sheet?

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Gruen, E.; Johnson, T. V.

    1983-01-01

    Saturn's broad E ring, the narrow G ring, and the structured and apparently time-variable F ring(s) contain many micron and submicron-sized particles, which make up the 'visible' component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. In addition, Coulomb drag forces may be important, in particular for the E ring. The possibility that electromagnetic effects may play a role in determining the F ring structure and its possible time variations is critically examined. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 100 to 10,000 years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.

  5. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  6. Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam.

    PubMed

    Philip, Geo M; Viswanathan, Nirmal K

    2010-11-01

    We report here the generation of a chain of three-dimensional (3-D) optical bottle beams by focusing a π-phase shifted multi-ring hollow Gaussian beam (HGB) using a lens with spherical aberration. The rings of the HGB of suitable radial (k(r)) and axial (k(z)) wave vectors are generated using a double-negative axicon chemically etched in the optical fiber tips. Moving the lens position with respect to the fiber tip results in variation of the semi-angle of the cones of wave vectors of the HGBs and their diameter, using which we demonstrate tunability in the size and the periodicity of the 3-D optical bottle beams over a wide range, from micrometers to millimeters. The propagation characteristics of the beams resulting from focusing of single- and multi-ring HGBs and resulting in a quasi-non-diffracting beam and a chain of 3-D optical bottle beams, respectively, are simulated using only the input beam parameters and are found to agree well with experimental results.

  7. Strain measurement in the wavy-ply region of an externally pressurized cross-ply composite ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gascoigne, H.E.; Abdallah, M.G.

    1996-07-01

    Ply-level strains are determined in the cross-section of an externally pressurized cross-ply (3:1 circumferential to axial fiber ratio) graphite-epoxy ring containing an isolated circumferential wavy region. A special test fixture was used which permitted measuring orthogonal displacement components in the wavy area using moire interferometry as the pressure was increased. Strain components were determined at selected locations in the wavy area up to approximately90% of failure pressure. The study shows: (1) large interlaminar shear strains, which are non-existent in the perfect ring, are present near the wave inflection points; (2) the wavy plies generate increased interlaminar normal compressive strains inmore » both circumferential and axial plies along a radial line coinciding with maximum wave amplitude; and (3) nonlinear strain response begins at approximately 60% of failure pressure.« less

  8. Solid-particle jet formation under shock-wave acceleration.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2013-12-01

    When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials.

  9. Ring modulators with enhanced efficiency based on standing-wave operation on a field-matched, interdigitated p-n junction.

    PubMed

    Pavanello, Fabio; Zeng, Xiaoge; Wade, Mark T; Popović, Miloš A

    2016-11-28

    We propose ring modulators based on interdigitated p-n junctions that exploit standing rather than traveling-wave resonant modes to improve modulation efficiency, insertion loss and speed. Matching the longitudinal nodes and antinodes of a standing-wave mode with high (contacts) and low (depletion regions) carrier density regions, respectively, simultaneously lowers loss and increases sensitivity significantly. This approach permits further to relax optical constraints on contacts placement and can lead to lower device capacitance. Such structures are well-matched to fabrication in advanced microelectronics CMOS processes. Device architectures that exploit this concept are presented along with their benefits and drawbacks. A temporal coupled mode theory model is used to investigate the static and dynamic response. We show that modulation efficiencies or loss Q factors up to 2 times higher than in previous traveling-wave geometries can be achieved leading to much larger extinction ratios. Finally, we discuss more complex doping geometries that can improve carrier dynamics for higher modulation speeds in this context.

  10. Elliptic-type soliton combs in optical ring microresonators

    NASA Astrophysics Data System (ADS)

    Dikandé Bitha, Rodrigues D.; Dikandé, Alain M.

    2018-03-01

    Soliton crystals are periodic patterns of multispot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years with the advent and progress in nonlinear optical fibers and fiber lasers, photonic crystals, wave-guided wave systems, and most recently optical ring microresonator devices. In this work an extensive analysis of characteristic features of soliton crystals is carried out, with an emphasis on their one-to-one correspondence with elliptic solitons. With this purpose in mind, we examine their formation, their stability, and their dynamics in ring-shaped nonlinear optical media within the framework of the Lugiato-Lefever equation. The stability analysis deals with internal modes of the system via a 2 ×2 -matrix Lamé-type eigenvalue problem, the spectrum of which is shown to possess a rich set of bound states consisting of stable zero-fequency modes and unstable decaying as well as growing modes. Turning towards the dynamics of elliptic solitons in ring-shaped fiber resonators with Kerr nonlinearity, we first propose a collective-coordinate approach, based on a Lagrangian formalism suitable for elliptic-soliton solutions to the nonlinear Schrödinger equation with an arbitrary perturbation. Next we derive time evolutions of elliptic-soliton parameters in the specific context of ring-shaped optical fiber resonators, where the optical field evolution is thought to be governed by the Lugiato-Lefever equation. By solving numerically the collective-coordinate equations an analysis of the amplitude, the position, the phase of internal oscillations, the phase velocity, the energy, and phase portraits of the amplitude is carried out and reveals a complex dynamics of the elliptic soliton in ring-shaped optical microresonators. Direct numerical simulations of the Lugiato-Lefever equation are also carried out seeking for stationary-wave solutions, and the numerical results are in very good agreement with the collective-coordinate approach.

  11. Spectral properties and associated plasma energization by magnetosonic waves in the Earth's magnetosphere: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Liu, Xu; Wang, Xueyi; Tao, Xin; Wang, Shui

    2017-05-01

    In this paper, we perform a 1-D particle-in-cell (PIC) simulation model consisting of three species, cold electrons, cold ions, and energetic ion ring, to investigate spectral structures of magnetosonic waves excited by ring distribution protons in the Earth's magnetosphere, and dynamics of charged particles during the excitation of magnetosonic waves. As the wave normal angle decreases, the spectral range of excited magnetosonic waves becomes broader with upper frequency limit extending beyond the lower hybrid resonant frequency, and the discrete spectra tends to merge into a continuous one. This dependence on wave normal angle is consistent with the linear theory. The effects of magnetosonic waves on the background cold plasma populations also vary with wave normal angle. For exactly perpendicular magnetosonic waves (parallel wave number k|| = 0), there is no energization in the parallel direction for both background cold protons and electrons due to the negligible fluctuating electric field component in the parallel direction. In contrast, the perpendicular energization of background plasmas is rather significant, where cold protons follow unmagnetized motion while cold electrons follow drift motion due to wave electric fields. For magnetosonic waves with a finite k||, there exists a nonnegligible parallel fluctuating electric field, leading to a significant and rapid energization in the parallel direction for cold electrons. These cold electrons can also be efficiently energized in the perpendicular direction due to the interaction with the magnetosonic wave fields in the perpendicular direction. However, cold protons can be only heated in the perpendicular direction, which is likely caused by the higher-order resonances with magnetosonic waves. The potential impacts of magnetosonic waves on the energization of the background cold plasmas in the Earth's inner magnetosphere are also discussed in this paper.

  12. Tunable room temperature THz sources based on nonlinear mixing in a hybrid optical and THz micro-ring resonator.

    PubMed

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K; Güney, Durdu Ö; Pala, Nezih

    2015-03-24

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5-10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ((2))) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields.

  13. Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid Optical and THz Micro-Ring Resonator

    PubMed Central

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih

    2015-01-01

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5–10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields. PMID:25800287

  14. Ring magnet firing angle control

    DOEpatents

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-10-21

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.

  15. How Bacterial Population Soliton Waves Can Defeat a Funnel Ring

    NASA Astrophysics Data System (ADS)

    Austin, Robert; Morris, Ryan; Phan, Average; Black, Matthew; Lin, Ke-Chih; Bos, Julia

    We have constructed using microfabrication a circular corral for bacteria made of rings of concentric funnels which channel motile bacteria outwards via non-hydrodynamic interactions with the funnel walls. Although initially bacteria do move rapidly outwards with the funnels, they are able with increasing cell density on the perimeter to defeat the physical constraints of the funnel by launching collective, soliton like waves of bacteria inwards against the funnel ring. We present the basic data and some non-linear modeling which can explain the basic way that bacterial population solitons propagate across a funnel landscape. There are three surprising aspects to the experiments: (1) The bifurcation of the population into motile bacteria which are pumped by the funnels and bacteria which are non-motile (i.e., not pumped); (2) The launching of a collective wave which rapidly circles the device and radiates inwards against the pumping action of the funnel; (3) the subsequent loss of motility by all the bacteria after this burst of very high motility. Engineering and Physical Sciences Research Council [EP/J007404/1], National Cancer Institute (Grant No U54CA143803), and NSF PoLS program NSF PHY1521553.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tirapelli, Carlos R.; De Andrade, Claudia R.; Lieberman, Marcel

    We aimed to investigate the mechanisms underlying the vascular effects induced by phylloquinone (Vitamin K{sub 1}; VK{sub 1}). Vascular reactivity experiments, using standard muscle bath procedures, showed that VK{sub 1} (5 and 50 {mu}M) enhances the contractile response of endothelium-intact, but not denuded, rat carotid rings to phenylephrine. Similarly, maximal contraction induced by phenylephrine was enhanced in the presence of the nitric oxide (NO) synthase inhibitor N {sup G}-nitro-L-arginine methyl ester (L-NAME). The combination of L-NAME and VK{sub 1} did not produce any further additional effect. Pre-incubation of intact-rings with VK{sub 1} reduced both acetylcholine- and bradykinin-induced relaxation. VK{sub 1}more » induced an increment in tension on carotid rings submaximally pre-contracted with phenylephrine. VK{sub 1}-induced increment in tension was completely abolished by endothelial removal or incubation of intact rings with L-NAME and L-NNA. Conversely, 7-nitroindazole, 1400 W, or indomethacin did not affect VK{sub 1}-induced contraction. Moreover, VK{sub 1} reduced L-arginine-induced relaxation in endothelium-intact rings. Lucigenin-amplified chemiluminescence assays showed that VK{sub 1} induced an increase in the level of superoxide anions in endothelium-intact but not denuded rings. Measurement of nitrite and nitrate generation showed that VK{sub 1} did not alter nitrate formation but strongly inhibited the generation of nitrite. Finally, the superoxide anions scavenger tiron prevented the endothelial vasomotor dysfunction caused by VK{sub 1} on phenyleprine-induced contraction and acetylcholine or bradykinin-induced relaxation. In conclusion, our data show that VK{sub 1} disrupts the vasomotor function of rat carotid. Our results suggest that VK{sub 1}-induced oxidative stress through production of superoxide anion is interfering with the NO pathway, which in turn is responsible for the altered vascular reactivity induced by VK{sub 1}.« less

  17. Transient dynamics of secondary radiation from an HF pumped magnetized space plasma

    NASA Astrophysics Data System (ADS)

    Norin, L.; Grach, S. M.; Thidé, B.; Sergeev, E. N.; Leyser, T. B.

    2007-09-01

    In order to systematically analyze the transient wave and radiation processes that are excited when a high-frequency (HF) radio wave is injected into a magnetized space plasma, we have measured the secondary radiation, or stimulated electromagnetic emission (SEE), from the ionosphere, preconditioned such that geomagnetic field-aligned plasma irregularities are already present. The transient dynamics experiments were made using a duty cycle of the HF radio wave of 200 ms (180 ms on and 20 ms off) and 100 ms (80 ms on and 20 ms off) for various frequencies near the fifth harmonic of the local ionospheric electron cyclotron frequency. Within the first 10 ms after the radio pulse turn-on, frequency downshifted structures of the SEE exhibit an overshoot with a maximum at 3 ms < t < 8 ms, whereas the upshifted spectral components do not exhibit this feature. The relative magnitude of the overshoot is strongly dependent on the frequency offset of the pump from the harmonic of the electron cyclotron frequency. A transient blue-shifted frequency component is identified. This component is upshifted from the pump by 14 kHz < Δ f < 55 kHz and exists only within the first 10 ms after the radio pulse turn-on. On a longer time scale we analyze the amplitude modulation, or ``ringing,'' of the reflected radio wave, (also known as ``quasi-periodic oscillations'' or ``spikes''). The ringing has a frequency of the order 15-20 Hz and we show that this phenomenon is also present in the SEE sidebands and is synchronized with the ringing of the reflected HF wave itself.

  18. Free Electron Lasers

    DTIC Science & Technology

    1991-01-09

    Linacs Duke a NIST/NRL UCSB Accelerator Storage ring race - track Electrostatic microtron Van de Graaf Status 1993 19 9 2 h 1990 Electron Energy 0.5-1... phase velocity slightly less than the electrons. This wave is called the "ponderomotive potential wave", which is generated by the beating of the...c is the speed of light. The beat wave has the same frequency as the radiation, but its wavenumber is k + k,. The phase velocity of the beat wave Vph

  19. Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull's-eye-shaped metamaterial.

    PubMed

    Kim, Jaeyoun; Soref, Richard; Buchwald, Walter R

    2010-08-16

    We investigate the electromagnetic response of the concentric multi-ring, or the bull's eye, structure as an extension of the dual-ring metamaterial which exhibits electromagnetically-induced transparency (EIT)-like transmission characteristics. Our results show that adding inner rings produces additional EIT-like peaks, and widens the metamaterial's spectral range of operation. Analyses of the dispersion characteristics and induced current distribution further confirmed the peak's EIT-like nature. Impacts of structural and dielectric parameters are also investigated.

  20. Theory of Self-Phase Modulation and Spectral Broadening

    NASA Astrophysics Data System (ADS)

    Shen, Y. R.; Yang, Guo-Zhen

    Self-phase modulation refers to the phenomenon in which a laser beam propagating in a medium interacts with the medium and imposes a phase modulation on itself. It is one of those very fascinating effects discovered in the early days of nonlinear optics (Bloembergen and Lallemand, 1966; Brewer, 1967; Cheung et al., 1968; Lallemand, 1966; Jones and Stoicheff, 1964; Shimizu, 1967; Stoicheff, 1963). The physical origin of the phenomenon lies in the fact that the strong field of a laser beam is capable of inducing an appreciable intensity-dependent refractive index change in the medium. The medium then reacts back and inflicts a phase change on the incoming wave, resulting in self-phase modulation (SPM). Since a laser beam has a finite cross section, and hence a transverse intensity profile, SPM on the beam should have a transverse spatial dependence, equivalent to a distortion of the wave front. Consequently, the beam will appear to have self-diffracted. Such a self-diffraction action, resulting from SPM in space, is responsible for the well-known nonlinear optical phenomena of self-focusing and self-defocusing (Marburger, 1975; Shen, 1975). It can give rise to a multiple ring structure in the diffracted beam if the SPM is sufficiently strong (Durbin et al., 1981; Santamato and Shen, 1984). In the case of a pulsed laser input, the temporal variation of the laser intensity leads to an SPM in time. Since the time derivative of the phase of a wave is simply the angular frequency of the wave, SPM also appears as a frequency modulation. Thus, the output beam appears with a self-induced spectral broadening (Cheung et al., 1968; Gustafson et al., 1969; Shimizu, 1967).

  1. In smokers, Sonic hedgehog modulates pulmonary endothelial function through vascular endothelial growth factor.

    PubMed

    Henno, Priscilla; Grassin-Delyle, Stanislas; Belle, Emeline; Brollo, Marion; Naline, Emmanuel; Sage, Edouard; Devillier, Philippe; Israël-Biet, Dominique

    2017-05-23

    Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase-quantitative polymerase chain reactions. Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10 -4 M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring's endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.

  2. On sound transmission into a stiffened cylindrical shell with rings and stringers treated as discrete elements

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1980-01-01

    In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the transmission of an oblique plane sound wave into a finite cylindrical shell stiffened by stringers and ring frames. The rings and stringers are modeled as discrete structural elements. The numerical case studied was typical of a narrow-bodied jet transport fuselage. The numerical results show that the ring-frequency dip in the transmission loss curve that is present for a monocoque shell is still present in the case of a stiffened shell. The ring frequency effect is a result of the cylindrical geometry of the shell. Below the ring frequency, stiffening does not appear to have any significant effect on transmission loss, but above the ring frequency, stiffeners can enhance the transmission loss of a cylindrical shell.

  3. Vibration characteristics of a steadily rotating slender ring

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1980-01-01

    Partial differential equations are derived to describe the structural vibrations of a uniform homogeneous ring which is very flexible because the radius is very large compared with the cross sectional dimensions. Elementary beam theory is used and small deflections are assumed in the derivation. Four sets of structural modes are examined: bending and compression modes in the plane of the ring; bending modes perpendicular to the plane of the ring; and twisting modes about the centroid of the ring cross section. Spatial and temporal characteristics of these modes, presented in terms of vibration frequencies and ratios between vibration amplitudes, are demonstrated in several figures. Given a sufficiently high rotational rate, the dynamics of the ring approach those of a vibrating string. In this case, the velocity of traveling wave in the material of the ring approaches in velocity of the material relative to inertial space, resulting in structural modes which are almost stationary in space.

  4. Resonance of scroll rings with periodic external fields in excitable media

    NASA Astrophysics Data System (ADS)

    Pan, De-Bei; Li, Qi-Hao; Zhang, Hong

    2018-06-01

    By direct numerical simulations of a chemical reaction-diffusion system coupled to a periodic external AC electric field with frequency equal to double frequency of the scroll wave rotation, we find that scroll rings resonate with the electric field and exhibit various dynamical behaviors, for example, their reversals, collapses, or growths, depending both on the initial phase of AC electric fields and on the initial phase of scroll rings. A kinematical model characterizing the drift velocity of the scroll rings along their radial directions as well as that of the scroll rings along their symmetry axes is proposed, which can effectively account for the numerical observations and predict the behaviors of the scroll rings. Besides, the existence of the equilibrium state of a scroll ring under the AC electric fields is predicted by the kinematical model and the predictions agree well with the simulations.

  5. Modeling Wave Overtopping on the Chandeleur Islands during Hurricane Katrina using XBeach

    NASA Astrophysics Data System (ADS)

    Lindemer, C. A.; Plant, N.; Puleo, J.; Thompson, D.

    2008-12-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines of along the Gulf Coast. Much of the Gulf Coast is ringed with barrier islands that provide inland marshes and the mainland some protection from storm events. The Chandeleur Islands, are located 161 km east of New Orleans, Louisiana and are oriented from north to south, and act to dissipate some of this energy. After a series of major storm events between 2001 and 2005, Hurricane Katrina's devastation in the fall of 2005 was particularly violent, destroying two-thirds of the area associated with the island chain. We would like to evaluate the predictability of hurricane-induced barrier island erosion and accretion. We test the ability of a time-dependent hydrodynamic and morphodynamic model, XBeach, to predict the impact of Hurricane Katrina on portions of Chandeleur Islands. Pre-storm LIDAR-derived bathymetry/topography and surge and wave data were used to drive a number of XBeach simulations. Model-predicted morphology was compared to post-storm LIDAR data. The accuracy of these predictions, including model sensitivity tests with varying grid size and temporal resolutions, are presented.

  6. Epithelium-dependent and -independent inhibitory effects of sivelestat, a neutrophil elastase inhibitor, on substance P-induced contraction of airway smooth muscle in lipopolysaccharide-treated guinea-pigs.

    PubMed

    Takayama, Naomi; Uchida, Kohsuke

    2005-10-01

    The underlying mechanism involved in the interaction between neutrophil elastase inhibitors and tachykinins has not been elucidated. In this study we have examined the effects of sivelestat, a neutrophil elastase inhibitor, on the in vitro responses of airways from lipopolysaccharide (LPS)-untreated or -treated guinea-pigs to substance P. Substance P (0.01-30 micromol/l) produced concentration-dependent contractions of both tracheal and bronchial ring preparations of LPS-untreated or -treated guinea-pigs. Responsiveness to substance P in these isolated airway preparations was augmented by either epithelium removal or LPS treatment. In epithelium-intact tracheal ring preparations isolated from LPS-untreated guinea-pigs, sivelestat (100 micromol/l) significantly inhibited substance P-induced contractions. The inhibitory action was markedly attenuated by pretreatment with L-NAME (100 micromol/l) or indomethacin (2 micromol/l), and was almost undetected following removal of the epithelium. On the other hand, in bronchial ring preparations isolated from LPS-untreated guinea-pigs, sivelestat had only a very slight effect on substance P-induced contraction of the epithelium-intact preparation, whereas sivelestat greatly inhibited contraction in epithelium-removed bronchial ring preparations. In LPS-treated guinea-pigs, whether the epithelium was intact or not, sivelestat significantly inhibited the substance P-induced contraction of bronchial ring preparations. Pretreatment with L-NAME (100 micromol/l) or indomethacin (2 micromol/l) did not affect the inhibitory effect of sivelestat in bronchial ring preparations. In conclusion, epithelium removal or LPS treatment induced hyperreactivity to substance P in the guinea-pig airway. Sivelestat caused epithelium-, nitric oxide- and prostaglandin-dependent inhibition of the substance P-induced contraction of isolated guinea-pig tracheal ring preparations. In contrast, the inhibitory effect of sivelestat on substance P-induced contraction of guinea-pig bronchial ring preparations is mediated by epithelium-, nitric oxide- and prostaglandin-independent mechanisms. Sivelestat may be effective in reducing the airway hyperresponsiveness to tachykinins induced by epithelial injury as occurs in LPS-mediated inflammatory lung diseases.

  7. Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave

    NASA Astrophysics Data System (ADS)

    Oimatsu, S.; Masahito, N.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; MacDowall, R. J.; Smith, C.; Mitchell, D. G.

    2017-12-01

    Poloidal Pc4 wave and proton flux oscillation due to the drift-bounce resonance are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux modulation is observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of poloidal Pc4 wave. We estimate the resonant energy to be 120 keV for pitch angle (α) of 20º-40º or 140º-160º, and 170-180 keV for α=40º-60º or 120º-140º. The drift-bounce resonance theory gives the resonant energy of 110-120 keV, which is consistent with the observation for small α (or large α when α≥90º), but slightly higher than the observation for large α (or small α when α≥90º). We consider that this discrepancy of the resonant energy is due to the drift shell splitting. In order to examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) in both outbound and inbound paths. Results showed positive gradient in both paths, which means that the energy is transferred from the protons to the wave. During the appearance of poloidal Pc4 wave, the Dst* index shows a sudden increase of 6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and the variation of proton flux by the drift-bounce resonance. The estimated energy loss is almost comparable for both cases. Therefore, we suggest that the energy transfer from the ring current protons to the wave via the drift-bounce resonance cause the increase of Dst* index.

  8. Continuous Wave Ring-Down Spectroscopy for Velocity Distribution Measurements in Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin W.

    Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (VDFs) of the absorbing species, can be measured. Measurements of VDFs can be made using established techniques such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density and that the excitation scheme fluoresces at an easily detectable wavelength. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. Also, as a direct absorption technique, CW-CRDS measurements only need to be concerned with the species' absorption wavelength and provide an absolute measure of the line integrated initial state density. Presented in this work are measurements of argon ion and neutral VDFs in a helicon plasma using CW-CRDS and LIF.

  9. Nonlinear wave particle interaction in the Earth's foreshock

    NASA Technical Reports Server (NTRS)

    Mazelle, C.; LeQueau, D.; Meziane, K.; Lin, R. P.; Parks, G.; Reme, H.; Sanderson, T.; Lepping, R. P.

    1997-01-01

    The possibility that ion beams could provide a free energy source for driving an ion/ion instability responsible for the ULF wave occurrence is investigated. For this, the wave dispersion relation with the observed parameters is solved. Secondly, it is shown that the ring-like distributions could then be produced by a coherent nonlinear wave-particle interaction. It tends to trap the ions into narrow cells in velocity space centered around a well-defined pitch-angle, directly related to the saturation wave amplitude in the analytical theory. The theoretical predictions with the observations are compared.

  10. The RING Finger E3 Ligase SpRing is a Positive Regulator of Salt Stress Signaling in Salt-Tolerant Wild Tomato Species.

    PubMed

    Qi, Shilian; Lin, Qingfang; Zhu, Huishan; Gao, Fenghua; Zhang, Wenhao; Hua, Xuejun

    2016-03-01

    Protein ubiquitination in plants plays critical roles in many biological processes, including adaptation to abiotic stresses. Previously, RING finger E3 ligase has been characterized during salt stress response in several plant species, but little is known about its function in tomato. Here, we report that SpRing, a stress-inducible gene, is involved in salt stress signaling in wild tomato species Solanum pimpinellifolium 'PI365967'. In vitro ubiquitination assay revealed that SpRing is an E3 ubiquitin ligase and the RING finger conserved region is required for its activity. SpRing is expressed in all tissues of wild tomato and up-regulated by salt, drought and osmotic stresses, but repressed by low temperature. Green fluorescent protein (GFP) fusion analysis showed that SpRing is localized at the endoplasmic reticulum. Silencing of SpRing through a virus-induced gene silencing approach led to increased sensitivity to salt stress in wild tomato. Overexpression of SpRing in Arabidopsis thaliana resulted in enhanced salt tolerance during seed germination and early seedling development. The expression levels of certain key stress-related genes are altered both in SpRing-overexpressing Arabidopsis plants and virus-induced gene silenced tomato seedlings. Taken together, our results indicate that SpRing is involved in salt stress and functions as a positive regulator of salt tolerance. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Ring current dynamics and plasma sheet sources. [magnetic storms

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1984-01-01

    The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.

  12. Energetic Proton Spectra Measured by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.

    2017-10-01

    We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.

  13. Do Ions Injected with the Dipolarizing Flux Bundles Provide the Free Energy for Waves in the Inner Magnetosphere?

    NASA Astrophysics Data System (ADS)

    Runov, A.; Angelopoulos, V.; Artemyev, A.; Lu, S.; Birn, J.; Pritchett, P. L.

    2017-12-01

    Electron interactions with Electromagnetic Ion Cyclotron (EMIC) amd Magnetosnic (MS) waves are considered as a mechanism of electron acceleration up to relativistic energies in the inner magnetosphere. The free energy for these waves is provided by ion populations with unstable energy distributions. It is established that the perpendicular anisotropy (T_perp > T_par) of energetic ions may provide the free energy for EMIC waves. The ring-type ion distributions are considered as the free energy source for the MS waves. Where and how do these distributions formed? To answer this question, we examined ion distribution functions within earthward-contracting dipolarizing flux bundles (DFBs) observed in the near-Earth plasma sheet at R 10 - 12 RE. It was found that ion distributions are often characterized by the perpendicular anisotropy at supra-thermal energies (at velocities V_thermal ≤ v ≤ 2*V_thermal). The effect was found to be stronger at largerbackground Bz (i.e., closer to the dipole). Similar characteristics wereobserved in particle-in-cell and test-particle simulations. Moreover, the simulations showed the ring-type ion distribution formation. These results suggest that ions, injected towards the inner magnetosphere with DFBs may indeed provide free energy for the EMIC and MS wave excitations.

  14. Strong excitation of surface and bulk spin waves in yttrium iron garnet placed in a split ring resonator

    NASA Astrophysics Data System (ADS)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-02-01

    This paper presents an experimental study of the inverse spin Hall effect (ISHE) in a bilayer consisting of a yttrium iron garnet (YIG) and platinum (Pt) loaded on a metamaterial split ring resonator (SRR). The system is excited by a microstrip feed line which generates both surface and bulk spin waves in the YIG. The spin waves subsequently undergo spin pumping from the YIG film to an adjacent Pt layer, and is converted into a charge current via the ISHE. It is found that the presence of the SRR causes a significant enhancement of the mangetic field near the resonance frequency of the SRR, resulting in a significant increase in the ISHE signal. Furthermore, the type of spin wave generated in the system can be controlled by changing the external applied magnetic field angle (θH ). When the external applied magnetic field is near parallel to the microstrip line (θH = 0 ), magnetostatic surface spin waves are predominantly excited. On the other hand, when the external applied magnetic field is perpendicular to the microstrip line (θH = π/2 ), backward volume magnetostatic spin waves are predominantly excited. Hence, it can be seen that the SRR structure is a promising method of achieving spin-charge conversion, which has many advantages over a coaxial probe.

  15. The storm time ring current dynamics and response to CMEs and CIRs using Van Allen Probes observations and CIMI simulations

    NASA Astrophysics Data System (ADS)

    Mouikis, Christopher; Bingham, Samuel; Kistler, Lynn; Spence, Harlan; Gkioulidou, Matina

    2017-04-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), and co-rotating interaction regions (CIR's). Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers. This empirical model is compared to the results of CIMI simulations of a CMEs and a CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model. Different inner magnetosphere boundary conditions are tested in order to match the empirical model results. Comparing the model and simulation results improves our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system. In addition, within the framework of this empirical model, the prediction of the EMIC wave generation linear theory is tested using the observed plasma parameters and comparing with the observations of EMIC waves.

  16. Numerical study on air turbines with enhanced techniques for OWC wave energy conversion

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Hyun, Beom-Soo; Kim, Kilwon

    2017-10-01

    In recent years, the oscillating water column (OWC) wave energy converter, which can capture wave energy from the ocean, has been widely applied all over the world. As the essential part of the OWC system, the impulse and Wells turbines are capable of converting the low pressure pneumatic energy into the mechanical shaft power. As an enhanced technique, the design of endplate or ring attached to the blade tip is investigated numerically in this paper. 3D numerical models based on a CFD-software FLUENT 12.0 are established and validated by the corresponding experimental results from the reports of Setoguchi et al. (2004) and Takao et al. (2001). Then the flow fields and non-dimensional evaluating coefficients are calculated and analyzed under steady conditions. Results show that the efficiency of impulse turbine with ring can reach up to 0.49 when ϕ=1, which is 4% higher than that in the cases for the endplate-type and the original one. And the ring-type Wells turbine with fixed guide vanes shows the best performance with the maximal efficiency of 0.55, which is 22% higher than that of the original one. In addition, the quasi-steady analysis is used to calculate the mean efficiency and output-work of a wave cycle under sinusoidal flow condition. Taking all together, this study provides support for structural optimization of impulse turbine and Wells turbine in the future.

  17. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Phase locking of the radiation of ring waveguide CO2 lasers

    NASA Astrophysics Data System (ADS)

    Glova, A. F.; Lebedev, E. A.; Lysikov, A. Yu; Shchetnikov, S. B.

    1999-12-01

    Phase locking of the radiation of two ring waveguide CO2 lasers with a common cavity and unidirectional lasing was achieved for an output power of about 20 W. Measurements of the fringe visibility of the radiation intensity distributions in the far-field zone agreed qualitatively with the calculations for plane waves.

  18. Rotary seal with enhanced lubrication and contaminant flushing

    DOEpatents

    Dietle, Lannie L.

    2000-01-01

    A resilient, ring shaped interference-type hydrodynamic rotary seal having waves on the lubricant side which provide increased film thickness and flushing action by creating contact pressure induced angulated restrictions formed by abrupt restrictive diverters. The angulated restrictions are defined by projecting ridges, corners at the trailing edge of the waves, or simply by use of a converging shape at the trailing edge of the waves which is more abrupt than the gently converging hydrodynamic inlet shape at the leading edge of the waves. The abrupt restrictive diverter performs two functions; a restricting function and a diverting function. The angulated restrictions cause a local film thickness restriction which produces a damming effect preventing a portion of the lubricant from leaking out of the dynamic sealing interface at the trailing edge of the wave, and results in a much thicker lubricant film thickness under the waves. This contributes to more film thickness in the remainder of the dynamic sealing interface toward the environment because film thickness tends to decay gradually rather than abruptly due to the relative stiffness of the seal material. Because of the angle of the abrupt restrictive diverter relative to the relative rotation direction, in conjunction with the restriction or damming effect, a strong diverting action is produced which pumps lubricant across the dynamic sealing interface toward the environment. The lubricant diversion is caused by the component of the rotational velocity tangent to the abrupt restrictive diverter. The component of rotational velocity normal to the abrupt restrictive diverter causes a portion of the lubricant film to be pumped past the abrupt restrictive diverter, thereby assuring adequate lubrication thereof.

  19. Radio and Plasma Wave Observations at Saturn from Cassini's Approach and First Orbit

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Haspodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Cecconi, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 k 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.

  20. Terahertz broadband polarization converter based on metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  1. Modal Ring Method for the Scattering of Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1993-01-01

    The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.

  2. The origin of the eccentricities of the rings of Uranus

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Tremaine, S.

    1981-01-01

    The effect of gravitational perturbations from a nearby satellite on the eccentricity e of a narrow particulate ring is considered. The perturbations near a resonance in an eccentric ring may be divided into corotation and Lindblad terms. For small e, the corotation terms damp e, whereas the Lindblad terms excite e. In the absence of saturation the corotation terms win by a small margin, and e damps. However, if the perturbations open gaps at the strongest resonances, then the Lindblad terms win, and e grows. This result offers an explanation for the existence of both circular and eccentric rings around Uranus. It is also shown that eccentricity changes induced by circular rings on eccentric satellite orbits are similar to those induced by satellites with circular orbits on eccentric rings.

  3. THE IBEX RIBBON AND THE PICKUP ION RING STABILITY IN THE OUTER HELIOSHEATH. I. THEORY AND HYBRID SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florinski, V.; Heerikhuisen, J.; Niemiec, J.

    2016-08-01

    The nearly circular band of energetic neutral atom emission dominating the field of view of the Interplanetary Boundary Explorer ( IBEX ) satellite, is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath and the interstellar space beyond. Several models for the PUI dynamics of this mechanism have been proposed, each requiring either strong or weak scattering of the initial pitch angle. Conventional wisdom states that ring distributions tend to generate waves and scatter onto a shell on timescales too short for charge exchange to occur.more » We performed a careful study of ring and thin shell proton distribution stability using theoretical tools and hybrid plasma simulations. We show that the kinetic behavior of a freshly injected proton ring is a far more complicated process than previously thought. In the presence of a warm Maxwellian core, narrower rings could be more stable than broader toroidal distributions. The scattered rings possess a fine structure that can only be revealed using very large numbers of macroparticles in a simulation. It is demonstrated that a “stability gap” in ring temperature exists where the protons could retain large gyrating anisotropies for years, and the wave activity could remain below the level of the ambient magnetic fluctuations in interstellar space. In the directions away from the ribbon, however, a partial shell distribution is more likely to be unstable, leading to significant scattering into one hemisphere in velocity space. The process is accompanied by turbulence production, which is puzzling given the very low level of magnetic fluctuations measured in the outer heliosheath by Voyager 1 .« less

  4. Vortex ring formation at the open end of a shock tube: A particle image velocimetry study

    NASA Astrophysics Data System (ADS)

    Arakeri, J. H.; Das, D.; Krothapalli, A.; Lourenco, L.

    2004-04-01

    The vortex ring generated subsequent to the diffraction of a shock wave from the open end of a shock tube is studied using particle image velocimetry. We examine the early evolution of the compressible vortex ring for three-exit shock Mach numbers, 1.1, 1.2, and 1.3. For the three cases studied, the ring formation is complete at about tUb/D=2, where t is time, Ub is fluid velocity behind shock as it exits the tube and D is tube diameter. Unlike in the case of piston generated incompressible vortex rings where the piston velocity variation with time is usually trapezoidal, in the shock-generated vortex ring case the exit fluid velocity doubles from its initial value Ub before it slowly decays to zero. At the end of the ring formation, its translation speed is observed to be about 0.7 Ub. During initial formation and propagation, a jet-like flow exists behind the vortex ring. The vortex ring detachment from the tailing jet, commonly referred to as pinch-off, is briefly discussed.

  5. In situ measurements of Saturn’s ionosphere show that it is dynamic and interacts with the rings

    NASA Astrophysics Data System (ADS)

    Wahlund, J.-E.; Morooka, M. W.; Hadid, L. Z.; Persoon, A. M.; Farrell, W. M.; Gurnett, D. A.; Hospodarsky, G.; Kurth, W. S.; Ye, S.-Y.; Andrews, D. J.; Edberg, N. J. T.; Eriksson, A. I.; Vigren, E.

    2018-01-01

    The ionized upper layer of Saturn’s atmosphere, its ionosphere, provides a closure of currents mediated by the magnetic field to other electrically charged regions (for example, rings) and hosts ion-molecule chemistry. In 2017, the Cassini spacecraft passed inside the planet’s rings, allowing in situ measurements of the ionosphere. The Radio and Plasma Wave Science instrument detected a cold, dense, and dynamic ionosphere at Saturn that interacts with the rings. Plasma densities reached up to 1000 cubic centimeters, and electron temperatures were below 1160 kelvin near closest approach. The density varied between orbits by up to two orders of magnitude. Saturn’s A- and B-rings cast a shadow on the planet that reduced ionization in the upper atmosphere, causing a north-south asymmetry.

  6. A generalized semikinetic (GSK) model for mesoscale auroral plasma transport

    NASA Astrophysics Data System (ADS)

    Brown, David Gillespie

    1993-12-01

    The auroral region of the Earth's ionosphere-magnetosphere system is a complex and active part of the Earth's environment. In order to study the transport of ionospheric plasma in this region, we have developed a generalized semikinetic (GSK) model which combines the tracking of ionospheric ion gyrocenters (between stochastic impulses from waves), with a generalized fluid treatment of ionospheric electrons and Liouville mapping of magnetospheric plasma components. This model has been used to simulate the effects of 'self-consistent' heating ('self consistent' in the sense that heating occurs only where the modelled plasma is unstable) due to the current-driven ion cyclotron instability in the return current regions. Our results include generation of 'conics' whose wings are drawn in towards the upsilon(parallel)-axis at higher energies (such distributions were subsequently found in recent studies of DE-1 data for this region) and an alternative formation mechanism for toroidal (or 'ring'-shaped) ion velocity-space distributions. We also present results illustrating the effects of combining large scale electric fields (generated by anisotropic magnetospheric plasma distributions) with wave heating by a presumed distribution of wave spectra. In the presence of an upwards electric field the addition of wave heating increases the density of the O(sup +) 'beam' ('ion feeder' effect), while a downwards hot plasma-induced electric field increases the time which ions spend within the heating region ('pressure cooker' effect), resulting in greater ion energization.

  7. Origin and dynamics of vortex rings in drop splashing

    DOE PAGES

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; ...

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  8. Origin and dynamics of vortex rings in drop splashing.

    PubMed

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  9. Origin and dynamics of vortex rings in drop splashing

    PubMed Central

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-01-01

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing. PMID:26337704

  10. A Novel Effect of Scattered-Light Interference in Misted Mirrors

    ERIC Educational Resources Information Center

    Bridge, N. James

    2005-01-01

    Interference rings can be observed in mirrors clouded by condensation, even in diffuse lighting. The effect depends on individual droplets acting as point sources by refracting light into the mirror, so producing coherent wave-trains which are reflected and then scattered again by diffraction round the same source droplet. The secondary wave-train…

  11. Wave-Particle Interactions Associated with Nongyrotropic Distribution Functions: A Hybrid Simulation Study

    NASA Technical Reports Server (NTRS)

    Convery, P. D.; Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.

    2002-01-01

    Nongyrotropic plasma distribution functions can be formed in regions of space where guiding center motion breaks down as a result of strongly curved and weak ambient magnetic fields. Such are the conditions near the current sheet in the Earth's middle and distant magnetotail, where observations of nongyrotropic ion distributions have been made. Here a systematic parameter study of nongyrotropic proton distributions using electromagnetic hybrid simulations is made. We model the observed nongyrotropic distributions by removing a number of arc length segments from a cold ring distribution and find significant differences with the results of simulations that initially have a gyrotropic ring distribution. Model nongyrotropic distributions with initially small perpendicular thermalization produce growing fluctuations that diffuse the ions into a stable Maxwellian-like distribution within a few proton gyro periods. The growing waves produced by nongyrotropic distributions are similar to the electromagnetic proton cyclotron waves produced by a gyrotropic proton ring distribution in that they propagate parallel to the background magnetic field and occur at frequencies on the order of the proton gyrofrequency, The maximum energy of the fluctuating magnetic field increases as the initial proton distribution is made more nongyrotropic, that is, more highly bunched in perpendicular velocity space. This increase can be as much as twice the energy produced in the gyrotropic case.

  12. Intracavity frequency doubling of a continuous wave Ti:sapphire ring laser and application in resonance Raman spectroscopy of heme protein dynamics

    NASA Astrophysics Data System (ADS)

    Buchter, Scott C.; Williams, Curtis; Schulte, Alfons; Alekel, Theodore, III; Mizell, Gregory J.; Fay, William R.

    1995-04-01

    Noncritical temperature-tuned phase-matching and large nonlinear coefficients make potassium niobate an attractive material for frequency doubling tuneable near-infrared radiation. We have mounted a KNbO3 crystal intracavity in an argon ion pumped, continuous wave Ti:Sapphire ring laser to increase the power level of the second harmonic. Wavelength selection at the fundamental frequency is accomplished with a birefringent filter. By using the crystal orientation that defines the d32 coefficient of KNbO3 we have obtained a blue second harmonic output tuneable from 425-445 nm. The laser is also characterized by the narrow linewidth of the Ti:Sapphire ring oscillator and good temporal stability. A continuous wave, frequency doubled Ti:sapphire laser is well suited to excite the resonance Raman spectrum in heme proteins with strong absorption bands in the range of 400 to 450 nm. We demonstrate the feasibility of such a setup for Raman studies of ligand binding to myoglobin. The Raman bands yield information on the reaction dynamics and on conformational changes near the linkage between the heme and the protein. In particular, a shift of the stretch frequency of the iron- histidine bond with high pressure may be attributed to a protein conformational change.

  13. Improved tomographic reconstructions using adaptive time-dependent intensity normalization.

    PubMed

    Titarenko, Valeriy; Titarenko, Sofya; Withers, Philip J; De Carlo, Francesco; Xiao, Xianghui

    2010-09-01

    The first processing step in synchrotron-based micro-tomography is the normalization of the projection images against the background, also referred to as a white field. Owing to time-dependent variations in illumination and defects in detection sensitivity, the white field is different from the projection background. In this case standard normalization methods introduce ring and wave artefacts into the resulting three-dimensional reconstruction. In this paper the authors propose a new adaptive technique accounting for these variations and allowing one to obtain cleaner normalized data and to suppress ring and wave artefacts. The background is modelled by the product of two time-dependent terms representing the illumination and detection stages. These terms are written as unknown functions, one scaled and shifted along a fixed direction (describing the illumination term) and one translated by an unknown two-dimensional vector (describing the detection term). The proposed method is applied to two sets (a stem Salix variegata and a zebrafish Danio rerio) acquired at the parallel beam of the micro-tomography station 2-BM at the Advanced Photon Source showing significant reductions in both ring and wave artefacts. In principle the method could be used to correct for time-dependent phenomena that affect other tomographic imaging geometries such as cone beam laboratory X-ray computed tomography.

  14. Production of atmospheric pressure microwave plasma with dielectric half-mirror resonator and its application to polymer surface treatment

    NASA Astrophysics Data System (ADS)

    Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka

    2018-06-01

    For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.

  15. Geometric and potential dynamics interpretation of the optic ring resonator bistability

    NASA Astrophysics Data System (ADS)

    Chiangga, S.; Chittha, T.; Frank, T. D.

    2015-07-01

    The optical bistability is a fundamental nonlinear feature of the ring resonator. A geometric and potential dynamics interpretation of the bistability is given. Accordingly, the bistability of the nonlinear system is shown to be a consequence of geometric laws of vector calculus describing the resonator ring. In contrast, the so-called transcendental relations that have been obtained in the literature in order to describe the optical wave are interpreted in terms of potential dynamical systems. The proposed novel interpretation provides new insights into the nature of the ring resonator optical bistability. The fundamental work by Rukhlenko, Premaratne and Agrawal (2010) as well as a more recent study by Chiangga, Pitakwongsaporn, Frank and Yupapin (2013) are considered.

  16. The inhibitory effect of 3-amino-1,2,4-triazole on relaxation induced by hydroxylamine and sodium azide but not hydrogen peroxide or glyceryl trinitrate in rat aorta.

    PubMed Central

    Mian, K. B.; Martin, W.

    1995-01-01

    1. In this study we investigated the role of catalase in relaxation induced by hydroxylamine, sodium azide, glyceryl trinitrate and hydrogen peroxide in isolated rings of rat aorta. 2. Hydrogen peroxide (1 microM-1 mM)-induced concentration-dependent relaxation of phenylephrine (PE)-induced tone in endothelium-containing rings. In endothelium-denuded rings, however, higher concentrations (30 microM-1 mM) of hydrogen peroxide were required to produce relaxation. The endothelium-dependent component of hydrogen peroxide-induced relaxation was abolished following pretreatment with N(O)-nitro-L-arginine methyl ester (L-NAME, 30 microM). L-NAME (30 microM) had no effect, however, on hydrogen peroxide-induced relaxation in endothelium-denuded rings. 3. Pretreatment of endothelium-denuded rings with catalase (1000 u ml-1) blocked relaxation induced by hydrogen peroxide (10 microM-1 mM). The ability of catalase to inhibit hydrogen peroxide-induced relaxation was partially blocked following incubation with 3-amino-1,2, 4-triazole (AT, 50 mM) for 30 min and completely blocked at 90 min. 4. Pretreatment of endothelium-denuded rings with methylene blue (MeB, 30 microM) inhibited relaxation induced by hydrogen peroxide (10 microM-1 mM), sodium azide (1-300 nM), hydroxylamine (1-300 nM) and glyceryl trinitrate (1-100 nM) suggesting that each acted by stimulation of soluble guanylate cyclase. 5. Pretreatment of endothelium-denuded rings with AT (1-50 mM, 90 min) to inhibit endogenous catalase blocked relaxation induced by sodium azide (1-300 nM) and hydroxylamine (1-300 nM) but had no effect on relaxation induced by hydrogen peroxide (10 microM-1 mM) or glyceryl trinitrate (1-100 nM). 6. In a cell-free system, incubation of sodium azide (10 microM-3 mM) and hydroxylamine (10 microM-30 mM) but not glyceryl trinitrate (10 microM-1 mM) with catalase (1000 u ml-1) in the presence of hydrogen peroxide (1 mM) led to production of nitrite, a major breakdown product of nitric oxide. AT (1-100 mM) inhibited, in a concentration-dependent manner, the formation of nitrite from azide in the presence of hydrogen peroxide. 7. These data suggest that metabolism by catalase plays an important role in the relaxation induced by hydroxylamine and sodium azide in isolated rings of rat aorta. Relaxation appears to be due to formation of nitric oxide and activation of soluble guanylate cyclase. In contrast, metabolism by catalase does not appear to be involved in the relaxant actions of hydrogen peroxide or glyceryl trinitrate. PMID:8719811

  17. Searching for a traveling feature in Saturn's rings in Cassini Imaging Science Subsystem data

    NASA Astrophysics Data System (ADS)

    Aye, Klaus-Michael; Rehnberg, Morgan; Brown, Zarah; Esposito, Larry W.

    2016-10-01

    Introduction: Using Cassini UVIS occultation data, a traveling wave feature has been identified in the Saturn rings that is most likely caused by the radial positions swap of the moons Janus and Epimetheus [1]. The hypothesis is that non-linear interferences between the linear density waves when being relocated by the moon swap create a solitary wave that is traveling outward through the rings. The observations in [1] further lead to the derivation of values for the radial travel speeds of the identified traveling features, from 39.6 km/yr for the Janus 5:4 resonance up to 45.8 for the Janus 4:3 resonance.Previous confirmations in ISS data: Work in [1] also identified the feature in Cassini Imaging Science Subsystem (ISS) data that was taken around the time of the UVIS occultations where the phenomenon was first discovered, so far one ISS image for each Janus resonances 2:1, 4:3, 5:4, and 6:5.Search guided by predicted locations: Using the observation-fitted radial velocities from [1], we can extrapolate these to identify Saturn radii at which the traveling feature should be found at later times. Using this and new image analysis and plotting tools available in [2], we have identified a potential candidate feature in an ISS image that was taken 2.5 years after the feature causing moon swap in January 2006. We intend to expand our search by identifying candidate ISS data by a meta-database search constraining the radius at future times corresponding to the predicted future locations of the hypothesized solitary wave and present our findings at this conference.References: [1] Rehnberg, M.E., Esposito, L.W., Brown, Z.L., Albers, N., Sremčević, M., Stewart, G.R., 2016. A Traveling Feature in Saturn's Rings. Icarus, accepted in June 2016. [2] K.-Michael Aye. (2016). pyciss: v0.5.0. Zenodo. 10.5281/zenodo.53092

  18. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Gulick, S. P. S.; Morgan, J. V.; Gebhardt, C.; Kring, D. A.; Le Ber, E.; Lofi, J.; Nixon, C.; Poelchau, M.; Rae, A. S. P.; Rebolledo-Vieyra, M.; Riller, U.; Schmitt, D. R.; Wittmann, A.; Bralower, T. J.; Chenot, E.; Claeys, P.; Cockell, C. S.; Coolen, M. J. L.; Ferrière, L.; Green, S.; Goto, K.; Jones, H.; Lowery, C. M.; Mellett, C.; Ocampo-Torres, R.; Perez-Cruz, L.; Pickersgill, A. E.; Rasmussen, C.; Sato, H.; Smit, J.; Tikoo, S. M.; Tomioka, N.; Urrutia-Fucugauchi, J.; Whalen, M. T.; Xiao, L.; Yamaguchi, K. E.

    2018-08-01

    Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. Velocity, density, and porosity values for the suevite are 2900-3700 m/s, 2.06-2.37 g/cm3, and 20-35%, respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 3650-4350 m/s, density measurements of 2.26-2.37 g/cm3, and porosity measurements of 19-22%. We associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The uplifted granitic peak ring materials have values of 4000-4200 m/s, 2.39-2.44 g/cm3, and 8-13% for velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with numerical model predictions for peak-ring formation where the lithologies present within the peak ring represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100-165 m on the top of the peak ring but 200 m in the central basin, suggesting that suevite flowed downslope from the collapsing central uplift during and after peak-ring formation, accumulating preferentially within the central basin.

  19. An exceptionally potent inducer of cytoprotective enzymes: elucidation of the structural features that determine inducer potency and reactivity with Keap1.

    PubMed

    Dinkova-Kostova, Albena T; Talalay, Paul; Sharkey, John; Zhang, Ying; Holtzclaw, W David; Wang, Xiu Jun; David, Emilie; Schiavoni, Katherine H; Finlayson, Stewart; Mierke, Dale F; Honda, Tadashi

    2010-10-29

    The Keap1/Nrf2/ARE pathway controls a network of cytoprotective genes that defend against the damaging effects of oxidative and electrophilic stress, and inflammation. Induction of this pathway is a highly effective strategy in combating the risk of cancer and chronic degenerative diseases, including atherosclerosis and neurodegeneration. An acetylenic tricyclic bis(cyano enone) bearing two highly electrophilic Michael acceptors is an extremely potent inducer in cells and in vivo. We demonstrate spectroscopically that both cyano enone functions of the tricyclic molecule react with cysteine residues of Keap1 and activate transcription of cytoprotective genes. Novel monocyclic cyano enones, representing fragments of rings A and C of the tricyclic compound, reveal that the contribution to inducer potency of the ring C Michael acceptor is much greater than that of ring A, and that potency is further enhanced by spatial proximity of an acetylenic function. Critically, the simultaneous presence of two cyano enone functions in rings A and C within a rigid three-ring system results in exceptionally high inducer potency. Detailed understanding of the structural elements that contribute to the reactivity with the protein sensor Keap1 and to high potency of induction is essential for the development of specific and selective lead compounds as clinically relevant chemoprotective agents.

  20. The binding of terbium ions to tubulin induces ring formation.

    PubMed

    Monasterio, O; Acoria, M; Díaz, M A; Lagos, R

    1993-02-01

    The intrinsic fluorescence excitation and emission spectra of chicken brain tubulin showed the characteristic tryptophan fluorescence. The emission spectrum of Tb3+ in the presence of tubulin and GTP excited at 295 nm, showed four peaks, with the maxima at 490, 545, and 586 nm and a minor peak around 620 nm. Titration of tubulin with Tb3+ was followed by the increment in luminescence at 545 nm and showed a sigmoidal curve where the initial lag interval and the maximal luminescence intensity depended on tubulin concentration. The presence of Mg2+, Co2+, and Zn2+ diminished both the sigmoidicity of the curve and the maximal luminescence intensity. Titration of tubulin with Tb3+ also produced a sigmoidal increase in turbidity, which was shifted to the left with respect to the luminescence curve. The dependence of turbidity on the wavelength of the Tb(3+)-induced polymers revealed that the large structures formed were not microtubules. Electron microscopy of the aggregates induced by Tb3+ showed mainly a lattice of double rings with side-by-side contacts. These results indicate that Tb3+ induces principally double ring formation and that these rings (33 +/- 2 nm external diameter) aggregate in large-ordered arrays. The luminescence of Tb3+ seems to be induced mainly by the aggregation of rings.

  1. Dust Plasma Environment between Saturn's Rings and Mimas' L Shell

    NASA Astrophysics Data System (ADS)

    Sittler, E. C., Jr.; Johnson, R. E.

    2015-12-01

    We will present a new analysis of the available data on the extension of Saturn's ring atmosphere into the magnetosphere beyond the A-ring outer edge (Johnson et al. 2006) out to the orbit of Mimas. This is an interesting region in Saturn's magnetosphere containing the F and G rings and penetrated by the E-ring and the Enceladus neutral torus. This analysis will include a comparison of the Cassini Plasma Spectrometer (CAPS) plasma data, Radio and Plasma Wave Spectrometer (RPWS) plasma wave observations, RPWS Langmuir Probe (LP) observations and Cassini Dust Analyzer (CDA). The central focus will be on the dust plasma interactions. Specific attention will be paid to the SOI data for which there are considerable differences between the ion and electron densities (Elrod et al., 2012) while for other close flybys inside Mimas' L shell such differences are less obvious but the electron data appear to be highly variable. Using previous identifications of nm particles (Jones et al., 2010) inferred from CAPS data and micron sized particles that can be detected by CDA (Kempf et al., 2006) and the RPWS plasma wave dust impact signatures (Kurth et al., 2006) we will attempt to infer the full particle size distribution between the A-ring and Mimas. These nm to micron sized particles can accumulate considerable charge and under certain circumstances could account for the radial trend in the ion density described in Elrod et al. (2014) a critical issue in preparation for the Cassini proximal orbits. References: Elrod, M.K., W.-L. Tseng, R.J. Wilson, R.E. Johnson, J. Geophys. Res., 117, A03207, 2012. Elrod, M.K., W-L Tseng, A.K. Woodson, R.E. Johnson, Icarus, 242, 130-137,2014. Johnson, R. E., et al., Icarus, 180, 393-402, 2006. Jones, G. H., et al., Geophys. Res. Lett., 36, L16204, 2009. Kempf, S., U. Beckmann, R. Srama, M. Horanyi, S. Auerd, E. Grun, Planet. Space Sci., 54, 999-1006, 2006. Kurth, W. S., T.F. Averkamp, D.A. Gurnett, Z. Wang, Planet. Space Sci., 54, 988-998, 2006.

  2. On the stability of pick-up ion ring distributions in the outer heliosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.

    The 'secondary energetic neutral atom (ENA)' hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation andmore » draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of <1° are sufficient to damp the self-generated waves associated with the ring beam. Thus, at least from the perspective of linear Vlasov dispersion analysis of parallel propagating waves, there is no reason to expect that the ring distributions necessary to produce the observed IBEX ENA flux via the secondary ENA hypothesis will be unstable to their own self-generated turbulence.« less

  3. On the Stability of Pick-up Ion Ring Distributions in the Outer Heliosheath

    NASA Astrophysics Data System (ADS)

    Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.; Christian, Eric R.; Cooper, John F.

    2014-10-01

    The "secondary energetic neutral atom (ENA)" hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation and draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of <1° are sufficient to damp the self-generated waves associated with the ring beam. Thus, at least from the perspective of linear Vlasov dispersion analysis of parallel propagating waves, there is no reason to expect that the ring distributions necessary to produce the observed IBEX ENA flux via the secondary ENA hypothesis will be unstable to their own self-generated turbulence.

  4. Changes in vascular reactivity induced by acute hyperthyroidism in isolated rat aortae.

    PubMed

    Honda, H; Iwata, T; Mochizuki, T; Kogo, H

    2000-06-01

    Hyperthyroidism was induced by subcutaneous injections of L-thyroxine (T(4)) (500 mg/kg/day) for 3 days in order to study whether adrenergic and muscarinic receptor-mediated vascular responses alter at an early stage of the disease. T(4) treatment was sufficient to induce a significant degree of thyroid weight loss, tachycardia, cardiac hypertrophy, and an elevation in serum T(4) levels. The tension of aortic ring preparations isolated from rats was measured isometrically to investigate the influence of acute hyperthyroidism. The contractions induced by norepinephrine (NE) were significantly suppressed in aortic rings from rats treated with T(4) compared with control rats. N(G)-nitro-L-arginine (L-NOARG), an inhibitor of nitric oxide synthase (NOS), significantly enhanced NE-induced contraction in aortic rings from both control and T(4)-treated rats, and the enhancement was greater in rats treated with T(4) than control rats. The relaxations induced by either acetylcholine (ACh) or sodium nitroprusside (SNP) were also significantly enhanced by T(4) treatment. L-NOARG abolished the relaxation induced by ACh in aortic rings from both control and T(4)-treated rats. L-NOARG shifted SNP-induced relaxation curves of aortic rings from those of control rats to the left, but not with rats treated with T(4). T(4) treatment showed no influence on the amount of endothelial NOS (eNOS) protein. These results suggest that vascular responses alter at an early stage of hyperthyroidism and that it may be due to a modification in the NO system which is independent from the amount of eNOS protein.

  5. New Hubble Observations of Supernova 1987A Trace Shock Wave

    NASA Image and Video Library

    2017-12-08

    Image release September 2, 2010 ABOUT THIS IMAGE: This image shows the entire region around supernova 1987A. The most prominent feature in the image is a ring with dozens of bright spots. A shock wave of material unleashed by the stellar blast is slamming into regions along the ring's inner regions, heating them up, and causing them to glow. The ring, about a light-year across, was probably shed by the star about 20,000 years before it exploded. An international team of astronomers using the Hubble Space Telescope reports a significant brightening of the emissions from Supernova 1987A. The results, which appear in this week's Science magazine, are consistent with theoretical predictions about how supernovae interact with their immediate galactic environment. The team observed the supernova remnant in optical, ultraviolet, and near-infrared light. They studied the interaction between the ejecta from the stellar explosion and a glowing 6-trillion-mile-diameter ring of gas encircling the supernova remnant. The gas ring was probably shed some 20,000 years before the supernova exploded. Shock waves resulting from the impact of the ejecta onto the ring have brightened 30 to 40 pearl-like "hot spots" in the ring. These blobs likely will grow and merge together in the coming years to form a continuous, glowing circle. "We are seeing the effect a supernova can have in the surrounding galaxy, including how the energy deposited by these stellar explosions changes the dynamics and chemistry of the environment," said University of Colorado at Boulder Research Associate Kevin France of the Center for Astrophysics and Space Astronomy. "We can use these new data to understand how supernova processes regulate the evolution of galaxies." Discovered in 1987, Supernova 1987A is the closest exploding star to Earth to be detected since 1604 and it resides in the nearby Large Magellanic Cloud, a dwarf galaxy adjacent to our own Milky Way Galaxy. Credit: NASA, ESA, K. France (University of Colorado, Boulder), and P. Challis and R. Kirshner (Harvard-Smithsonian Center for Astrophysics) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  6. Phase velocity nonuniformity-resulted beam patterns in difference frequency generation.

    PubMed

    Lu, Daquan; Qian, Liejia; Li, Yongzhong; Yang, Hua; Zhu, Heyuan; Fan, Dianyuan

    2007-04-16

    The evolution of the difference frequency generation between a planar pump wave and a focused signal wave has been numerically investigated in this paper. We show that, at the difference frequency wave, various beam patterns such as ring and moon-like, are resulted due to the nonuniform distribution of phase velocity in the focused signal wave. The subluminal and superluminal regions can be identified by the intersection of two generated beam profiles that correspond to a pair of phase-mismatches with equal value but opposite signs.

  7. Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.

    PubMed

    Rehni, Ashish K; Singh, Nirmal; Jindal, Seema

    2007-12-01

    The present study has been designed to investigate the effect of piracetam on morphine/ buprenorphine-induced antinociception in rats and effect of piracetam on morphine or minoxidil induced relaxation in KCl-precontracted isolated rat aortic ring preparation. Nociceptive threshold was measured by the tail flick test in rats. The cumulative dose responses of morphine or minoxidil were recorded in KCl-precontracted isolated rat aortic ring preparation. Piracetam attenuated buprenorphine-induced antinociception in rats. Piracetam significantly reduced the morphine and minoxidil induced relaxation in KCl precontracted isolated rat aortic ring preparation suggesting that piracetam interferes with opioid receptor and ATP-sensitive potassium channel (KATP) opener mediated responses in vitro. Thus, it may be suggested that piracetam attenuates opioid effects by an opioid receptor-KATP channel linked mechanism.

  8. A revised analysis of micron-sized particles detected near Saturn by the Voyager 2 plasma wave instrument

    NASA Technical Reports Server (NTRS)

    Tsintikidis, D.; Gurnett, D.; Granroth, L. J.; Allendorf, S. C.; Kurth, W. S.

    1994-01-01

    The impulsive noise that the plasma wave and radio astronomy instruments detected during the Voyager 2 swing by Saturn was attributed to dust grains striking the spacecraft. This report presents a reanalysis of the dust impacts recorded by the plasma wave instrument using an improved model for the response of the electric antenna to dust impacts. The fundamental assumption used in this analysis is that the voltage induced on the antenna is proportional to the mass of the impacting grain. Using the above assumption and the antenna response constants used at Uranus and Neptune, the following conclusions can be reached. The primary dust distribution consists of a 'disk' of particles that coincides with the equator plane and has a north-south thickness of 2-Delta zeta = 962 km. A less dense 'halo' with a north-south thickness of 2-Delta zeta = 3376 km surrounds the primary distribution. The dust particle sizes are of the order of 10 microns, assuming a mass density of 1 g/cu cm. The corresponding particle masses are of the order of 10(exp -9) g, and maximum number densities are of the order of 10(exp -2)/cu m. Most likely, the G ring is the dominate source since the particles were observed very close to that ring, namely at 2.86 R(sub S). Other sources, like nearby moons, are not ruled out especially when perturbations due to electromagnetic forces are included. The calculated optical depth differs by about a factor of 2 from photometric studies. The current particle masses, radii, and the effective north-south thickness of the particle distribution are larger than what Gurnett et al. (1983) reported by about 2, 1, and 1 orders of magnitude, respectively. This is attributed to the fact that the collection coefficient used in this study is smaller than what was used in Gurnett et al.'s earlier publication.

  9. Effects of chorus, hiss and electromagnetic ion cyclotron waves on radiation belt dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Horne, R. B.

    2013-12-01

    Wave-particle interactions are known to play an important role in the acceleration and loss of radiation belt electrons, and in the heating and loss of ring current ions. The effectiveness of each wave type on radiation belt dynamics depends on the solar wind interaction with the magnetosphere and the properties of the waves which vary considerably with magnetic local time, radial distance and latitude. Furthermore the interaction of the waves with the particles is usually nonlinear. These factors present a major challenge to test and verify the theories. Here we discuss the role of several types of waves, including whistler mode chorus, plasmaspheric hiss, magnetosonic and electromagnetic ion cyclotron waves, in relation to radiation belt and ring current dynamics. We present simulations of the radiation belts using the BAS radiation belt model which includes the effects of chorus, hiss and EMIC waves along with radial diffusion. We show that chorus waves are required to form the peaks in the electron phase space density during storms, and that this occurs inside geostationary orbit. We compare simulations against observations in medium Earth orbit and the new results from Van Allen probes mission that shows conclusive evidence for a local electron acceleration process near L=4.5. We show the relative importance of plasmaspheric hiss and chorus and the location of the plasmapause for radiation belt dynamics near L=4.5 and demonstrate the losses due to EMIC waves that should occur at high energies. Finally we show how improving our basic physical understanding through missions such as Van Allen probes go to improve space weather forecasting in projects such as SPACECAST and have a direct benefit to society.

  10. Pharmacological characterization of mechanisms involved in the vasorelaxation produced by rosuvastatin in aortic rings from rats with a cafeteria-style diet

    PubMed Central

    López-Canales, Jorge Skiold; Lozano-Cuenca, Jair; López-Canales, Oscar Alberto; Aguilar-Carrasco, José Carlos; Aranda-Zepeda, Lidia; López-Sánchez, Pedro; Castillo-Henkel, Enrique Fernando; López-Mayorga, Ruth Mery; Valencia-Hernández, Ignacio

    2015-01-01

    The present study aimed to investigate the possible influence of several inhibitors and blockers on the vascular effect produced by the acute in vitro application of rosuvastatin to phenylephrine-precontracted aortic rings from rats with a semi-solid, cafeteria-style (CAF) diet. It also aimed to examine the effects of rosuvastatin on the expression of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase, constitutive cyclooxygenase, and inducible cyclooxygenase in aortic rings from rats with a CAF diet. From comparisons of the effect on phenylephrine-precontracted aortic rings extracted from rats with two different diets (a standard and a CAF diet), it was found that 10−9–10−5-mol/L rosuvastatin produced lower concentration-dependent vasorelaxation on rings from the CAF diet group. The vasorelaxant effect was unaffected by the vehicle, but it was significantly attenuated by 10−5-mol/L NG-nitro-l-arginine methyl ester, 10−2-mol/L tetraethylammonium, 10−3-mol/L 4-aminopyridine, 10−7-mol/L apamin plus 10−7-mol/L charybdotoxin, 10−5-mol/L indomethacin, or 10−5-mol/L cycloheximide. Moreover, in aortic rings from rats with a CAF diet, rosuvastatin enhanced the expression of eNOS, inducible nitric oxide synthase, constitutive cyclooxygenase, and inducible cyclooxygenase. The acute in vitro application of rosuvastatin to phenylephrine-precontracted aortic rings from rats with a CAF diet had a vasorelaxant effect. Overall, the present results suggest that the stimulation of eNOS, the opening of Ca2+-activated and voltage-activated K+ channels, the stimulation of prostaglandin synthesis and enhanced protein levels of eNOS, inducible nitric oxide synthase, constitutive cyclooxygenase, and inducible cyclooxygenase are involved in this relaxant effect. PMID:25881486

  11. Two-dimensional quantum ring in a graphene layer in the presence of a Aharonov–Bohm flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaro Neto, José; Bueno, M.J.; Furtado, Claudio, E-mail: furtado@fisica.ufpb.br

    2016-10-15

    In this paper we study the relativistic quantum dynamics of a massless fermion confined in a quantum ring. We use a model of confining potential and introduce the interaction via Dirac oscillator coupling, which provides ring confinement for massless Dirac fermions. The energy levels and corresponding eigenfunctions for this model in graphene layer in the presence of Aharonov–Bohm flux in the centre of the ring and the expression for persistent current in this model are derived. We also investigate the model for quantum ring in graphene layer in the presence of a disclination and a magnetic flux. The energy spectrummore » and wave function are obtained exactly for this case. We see that the persistent current depends on parameters characterizing the topological defect.« less

  12. In situ measurements of Saturn's ionosphere show that it is dynamic and interacts with the rings.

    PubMed

    Wahlund, J-E; Morooka, M W; Hadid, L Z; Persoon, A M; Farrell, W M; Gurnett, D A; Hospodarsky, G; Kurth, W S; Ye, S-Y; Andrews, D J; Edberg, N J T; Eriksson, A I; Vigren, E

    2018-01-05

    The ionized upper layer of Saturn's atmosphere, its ionosphere, provides a closure of currents mediated by the magnetic field to other electrically charged regions (for example, rings) and hosts ion-molecule chemistry. In 2017, the Cassini spacecraft passed inside the planet's rings, allowing in situ measurements of the ionosphere. The Radio and Plasma Wave Science instrument detected a cold, dense, and dynamic ionosphere at Saturn that interacts with the rings. Plasma densities reached up to 1000 cubic centimeters, and electron temperatures were below 1160 kelvin near closest approach. The density varied between orbits by up to two orders of magnitude. Saturn's A- and B-rings cast a shadow on the planet that reduced ionization in the upper atmosphere, causing a north-south asymmetry. Copyright © 2018, American Association for the Advancement of Science.

  13. A Quick Look at Supernova 1987A

    NASA Image and Video Library

    2017-02-24

    On February 24, 1987, astronomers in the southern hemisphere saw a supernova in the Large Magellanic Cloud. This new object was dubbed “Supernova 1987A” and was the brightest stellar explosion seen in over four centuries. Chandra has observed Supernova 1987A many times and the X-ray data reveal important information about this object. X-rays from Chandra have shown the expanding blast wave from the original explosion slamming into a ring of material expelled by the star before it exploded. The latest Chandra data reveal the blast wave has moved beyond the ring into a region that astronomers do not know much about. These observations can help astronomers learn how supernovas impact their environments and affect future generations of stars and planets.

  14. Longitudinal elliptically polarized electromagnetic waves in off-diagonal magnetoelectric split-ring composites.

    PubMed

    Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F

    2009-07-22

    We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.

  15. Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber.

    PubMed

    Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro

    2005-10-01

    We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.

  16. Brazilin isolated from the heartwood of Caesalpinia sappan L induces endothelium-dependent and -independent relaxation of rat aortic rings

    PubMed Central

    Yan, Yu; Chen, Yu-cai; Lin, Yi-huang; Guo, Jing; Niu, Zi-ran; Li, Li; Wang, Shou-bao; Fang, Lian-hua; Du, Guan-hua

    2015-01-01

    Aim: Brazilin is one of the major constituents of Caesalpinia sappan L with various biological activities. This study sought to investigate the vasorelaxant effect of brazilin on isolated rat thoracic aorta and explore the underlying mechanisms. Methods: Endothelium-intact and -denuded aortic rings were prepared from rats. The tension of the preparations was recorded isometrically with a force displacement transducer connected to a polygraph. The phosphorylation levels of ERK1/2 and myosin light chain (MLC) were analyzed using Western blotting assay. Results: Application of brazilin (10–100 μmol/L) dose-dependently relaxed the NE- or high K+-induced sustained contraction of endothelium-intact aortic rings (the EC50 was 83.51±5.6 and 79.79±4.57 μmol/L, respectively). The vasorelaxant effect of brazilin was significantly attenuated by endothelium removal or by pre-incubation with L-NAME, methylene blue or indomethacin. In addition, pre-incubation with brazilin dose-dependently attenuated the vasoconstriction induced by KCl, NE or Ang II. Pre-incubation with brazilin also markedly suppressed the high K+-induced extracellular Ca2+ influx and NE-induced intracellular Ca2+ release in endothelium-denuded aortic rings. Pre-incubation with brazilin dose-dependently inhibited the NE-stimulated phosphorylation of ERK1/2 and MLC in both endothelium-intact and -denuded aortic rings. Conclusion: Brazilin induces relaxation in rat aortic rings via both endothelium-dependent and -independent ways as well as inhibiting NE-stimulated phosphorylation of ERK1/2 and MLC. Brazilin also attenuates vasoconstriction via blocking voltage- and receptor-operated Ca2+ channels. PMID:26564314

  17. Coherent Structures and Evolution of Vorticity in Short-Crested Breaking Surface Waves

    NASA Astrophysics Data System (ADS)

    Kirby, James; Derakhti, Morteza

    2017-11-01

    We employ a multi-phase LES/VOF code to study turbulence and coherent structures generated during breaking of short-crested surface water waves. We examine the evolution of coherent vortex structures evolving at the scale of the width of the breaking event, and their long-time interaction with smaller vortex loops formed by the local instability of the breaking crest. Long-time results are often characterized by the detachment of the larger scale vortex loop from the surface and formation of a closed vortex ring. The evolution of circulation for the vortical flow field is examined. The initial concentration of forcing close to the free surface leads to spatial distributions of both span-wise and vertical vorticity distributions which are concentrated close to the surface. This result, which persists into shallow water, is at odds with the basic simplicity of the Peregrine mechanism, suggesting that even shallow flows such as the surf zone should be regarded as being forced (in dissipative situations) by a wave-induced surface stress rather than a uniform-over-depth body force. The localized forcing leads to the development of a complex pattern of stream-wise vorticity, comparable in strength to the vertical and span-wise components, and also persist into shallow water. NSF OCE-1435147.

  18. SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUANG, LIANJIE; SIMONETTI, FRANCESCO; DURIC, NEBOJSA

    2007-01-18

    Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imagingmore » algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.« less

  19. Electric dipole moment of magnetoexciton in concentric quantum rings

    NASA Astrophysics Data System (ADS)

    García, L. F.; Mikhailov, I. D.; Revinova, S. Yu

    2017-12-01

    We study properties of exciton in a weakly coupled concentric quantum rings, penetrated by an axially directed magnetic flux and subjected to an electric field in the ring’s plane. To this end, we adopt a simple model of quasi-one-dimensional rotator, for which the wave functions and the corresponding energies we found by using the double Fourier series expansion method. Revealed multiple intersections of the energy levels provide conditions for abrupt changes of the radial and the angular quantum numbers, making possible the tunnelling of carriers between rings and allowing the formation of a permanent large dipole moment. We show that the electric and magnetic polarizability of concentric quantum rings with a trapped exciton are very sensible to external electric and magnetic fields.

  20. Head-on collision of ring dark solitons in Bose Einstein condensates

    NASA Astrophysics Data System (ADS)

    Xue, Ju-Kui; Peng, Ping

    2006-06-01

    The ring dark solitons and their head-on collisions in a Bose-Einstein condensates with thin disc-shaped potential are studied. It is shown that the system admits a solution with two concentric ring solitons, one moving inwards and the other moving outwards, which in small-amplitude limit, are described by the two cylindrical KdV equations in the respective reference frames. By using the extended Poincaré-Lighthill-Kuo perturbation method, the analytical phase shifts following the head-on collisions between two ring dark solitary waves are derived. It is shown that the phase shifts decrease with the radial coordinate r according to the r-1/3 law and depend on the initial soliton amplitude and radius.

  1. De-trapping Magnetic Mirror Confined Fast Electrons by Shear Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.

    2013-12-01

    Highly energetic electrons produced naturally or artificially can be trapped in the Earth's radiation belts for months, posing a danger to valuable space satellites. Concepts that can lead to radiation belts mitigation have drawn a great deal of interest. We report a clear demonstration in a controlled lab experiment that a shear Alfvén wave can effectively de-trap energetic electrons confined by a magnetic mirror field. The experiment is performed in a quiescent afterglow plasma in the Large Plasma Device (LaPD) at UCLA. A hot electron ring, along with hard x-rays of energies of 100 keV ~ 3 MeV, is generated by 2nd harmonic electron cyclotron resonance heating and is trapped in a magnetic mirror field (Rmirror = 1.1 ~ 4, Bmin = 438 Gauss). A shear Alfvén wave (fAlfvén ~ 0.5 fci, BAlfvén / B0 ~ 0.1%), is launched with a rotating magnetic field antenna with arbitrary polarization. Irradiated by the Alfvén wave, the loss of electrons is modulated at fAlfvén. The periodic loss of electrons is found to be related to the spatial distortion of the hot electron ring, and continues even after the termination of the wave. The effect is found to be caused only by the right-hand (electron diamagnetic direction) circularly polarized component of the Alfvén wave. Hard x-ray tomography, constructed from more than 1000 chord projections at each axial location, shows electrons are lost in both the radial and axial direction. X-ray spectroscopy shows electrons over a broad range of energy de-trapped by the Alfvén wave, which suggests a non-resonant nature of the de-trapping process. The de-trapping process is found to be accompanied by electro-magnetic fluctuations in the frequency range of 1~5 fLH, which are also modulated at the frequency of the Alfvén wave. To exclude the possible role of whistler waves in this electron de-trapping process, whistler waves at these frequencies are launched with an antenna in absence of the Alfvén wave and no significant electron loss found. Research is supported by an ONR MURI award, and conducted at the Basic Plasma Science Facility at UCLA funded by DoE and NSF. A schematic plot of the experiment, with measured Alfvén wave magnetic field vector over-plotted. The plot shows a plane transverse to the background magnetic mirror field, in which a population of fast electrons is trapped and formed a hot electron ring. It has been observed the shear Alfvén wave can effectively de-trap the mirror confined fast electrons.

  2. EMIC waves covering wide L shells: MMS and Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei

    2017-07-01

    During 04:45:00-08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6-9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC waves are observed over wide L shells after three continuous magnetic storms, which suggests that these waves might obtain their free energy from those energetic ions injected during storm times. These EMIC waves should be included in radiation belt modeling, especially during continuous magnetic storms. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. It is suggested that multiband-structured EMIC waves can be used to trace the coupling between solar wind and the magnetosphere.tract type="synopsis">le type="main">Plain Language SummaryThe spatial distribution of EMIC waves is an opening question. With combined observations of MMS and Van Allen Probes, this paper has reported EMIC waves covering wide L shells. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. The result is helpful to revealing the spatial distribution and role of He2+ in excitation of EMIC waves.

  3. Stabilizing windings for tilting and shifting modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardin, S.C.; Christensen, U.R.

    1982-02-26

    This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less

  4. Optical study of interactions among propagation waves of neural excitation in the rat somatosensory cortex evoked by forelimb and hindlimb stimuli.

    PubMed

    Hama, Noriyuki; Kawai, Minako; Ito, Shin-Ichi; Hirota, Akihiko

    2018-05-01

    Multisite optical recording has revealed that the neural excitation wave induced by a sensory stimulation begins at a focus and propagates in the cortex. This wave is considered to be important for computation in the sensory cortex, particularly the integration of sensory information; however, the nature of this wave remains largely unknown. In the present study, we examined the interaction between two waves in the rat sensory cortex induced by hindlimb and forelimb stimuli with different interstimulus intervals. We classified the resultant patterns as follows: 1) the collision of two waves, 2) the hindlimb response being evoked while the forelimb-induced wave is passing the hindlimb focus, and 3) the hindlimb response being evoked after the forelimb-induced wave has passed the hindlimb focus. In pattern 1, the two waves fused into a single wave, but the propagation pattern differed from that predicted by the superimposition of two singly induced propagation courses. In pattern 2, the state of the interaction between the two waves varied depending on the phase of optical signals constituting the forelimb-induced wave around the hindlimb focus. Although no hindlimb-induced wave was observed in the rising phase, the propagating velocity of the forelimb-induced wave increased. At the peak, neither the hindlimb-induced response nor a modulatory effect on the forelimb-induced wave was detected. In pattern 3, the hindlimb-induced wave showed a reduced amplitude and spatial extent. These results indicate that the state of the interaction between waves was strongly influenced by the relative timing of sensory inputs. NEW & NOTEWORTHY Sensory stimulation-induced cortical excitation propagates as a wave and spreads over a wide area of the sensory cortex. To elucidate the characteristics of this relatively unknown phenomenon, we examined the interaction between two individually induced waves in the somatosensory cortex. Either the waves collided or the preceding wave affected the emergence of the following one. Our results indicate that the state of the interaction was strongly influenced by the relative timing of sensory inputs.

  5. Vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Danaila, I.; Khamehchi, M. A.; Gokhroo, V.; Engels, P.; Kevrekidis, P. G.

    2016-11-01

    Multicomponent Bose-Einstein condensates exhibit an intriguing variety of nonlinear structures. In recent theoretical work [C. Qu, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 116, 160402 (2016), 10.1103/PhysRevLett.116.160402], the notion of magnetic solitons has been introduced. Here we examine a variant of this concept in the form of vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates (BECs). We first provide concrete experimental evidence for such states in an atomic BEC and subsequently illustrate the broader concept of these states, which are based on the interplay between miscibility and intercomponent repulsion. Armed with this more general conceptual framework, we expand the notion of such states to higher dimensions presenting the possibility of both vortex-antidark states and ring-antidark-ring (dark soliton) states. We perform numerical continuation studies, investigate the existence of these states, and examine their stability using the method of Bogoliubov-de Gennes analysis. Dark-antidark and vortex-antidark states are found to be stable for broad parametric regimes. In the case of ring dark solitons, where the single-component ring state is known to be unstable, the vector entity appears to bear a progressively more and more stabilizing role as the intercomponent coupling is increased.

  6. Spin Bose-metal phase in a spin- (1)/(2) model with ring exchange on a two-leg triangular strip

    NASA Astrophysics Data System (ADS)

    Sheng, D. N.; Motrunich, Olexei I.; Fisher, Matthew P. A.

    2009-05-01

    Recent experiments on triangular lattice organic Mott insulators have found evidence for a two-dimensional (2D) spin liquid in close proximity to the metal-insulator transition. A Gutzwiller wave function study of the triangular lattice Heisenberg model with a four-spin ring exchange term appropriate in this regime has found that the projected spinon Fermi sea state has a low variational energy. This wave function, together with a slave particle-gauge theory analysis, suggests that this putative spin liquid possesses spin correlations that are singular along surfaces in momentum space, i.e., “Bose surfaces.” Signatures of this state, which we will refer to as a “spin Bose metal” (SBM), are expected to manifest in quasi-one-dimensional (quasi-1D) ladder systems: the discrete transverse momenta cut through the 2D Bose surface leading to a distinct pattern of 1D gapless modes. Here, we search for a quasi-1D descendant of the triangular lattice SBM state by exploring the Heisenberg plus ring model on a two-leg triangular strip (zigzag chain). Using density matrix renormalization group (DMRG) supplemented by variational wave functions and a bosonization analysis, we map out the full phase diagram. In the absence of ring exchange the model is equivalent to the J1-J2 Heisenberg chain, and we find the expected Bethe-chain and dimerized phases. Remarkably, moderate ring exchange reveals a new gapless phase over a large swath of the phase diagram. Spin and dimer correlations possess singular wave vectors at particular “Bose points” (remnants of the 2D Bose surface) and allow us to identify this phase as the hoped for quasi-1D descendant of the triangular lattice SBM state. We use bosonization to derive a low-energy effective theory for the zigzag spin Bose metal and find three gapless modes and one Luttinger parameter controlling all power law correlations. Potential instabilities out of the zigzag SBM give rise to other interesting phases such as a period-3 valence bond solid or a period-4 chirality order, which we discover in the DMRG. Another interesting instability is into a spin Bose-metal phase with partial ferromagnetism (spin polarization of one spinon band), which we also find numerically using the DMRG.

  7. Stormtime coupling of the ring current, plasmasphere, and topside ionosphere: Electromagnetic and plasma disturbances

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.; Burke, W. J.

    2005-07-01

    We compare plasma and field disturbances observed in the ring current/plasmasphere overlap region and in the conjugate ionosphere during the magnetic storm of 5 June 1991. Data come from the Combined Release and Radiation Effects Satellite (CRRES) flying in a geostationary transfer orbit and three satellites of the Defense Meteorological Satellite Program (DMSP) series in Sun-synchronous polar orbits. In the region between ring current nose structures and the electron plasma sheet, CRRES detected wave-like features in local electric and magnetic fields, embedded in structured cold plasmas. Mapped to the ionosphere, these fields should reflect structuring within subauroral plasma streams (SAPS). Indeed, during the period of interest, DMSP F8, F9, and F10 satellites observed highly structured SAPS in the evening ionosphere at topside altitudes. They were collocated with precipitating ring current ions, enhanced fluxes of suprathermal electrons and ions, elevated electron temperatures, and irregular plasma density troughs. Overall, these events are similar to electromagnetic structures observed by DMSP satellites within SAPS during recent geomagnetic storms (Mishin et al., 2003, 2004). Their features can be explained in terms of Alfvén and fast magnetosonic perturbations. We developed a scenario for the formation of elevated electron temperatures at the equatorward side of the SAPS. It includes a lower-hybrid drift instability driven by diamagnetic currents, consistent with strong lower- and upper-hybrid plasma wave activity and intense fluxes of the low-energy electrons and ions near the ring current's inner edge.

  8. The Comprehensive Inner Magnetosphere-Ionosphere Model

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D.

    2014-01-01

    Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

  9. Traveling wave tube and method of manufacture

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K. (Inventor)

    2004-01-01

    A traveling wave tube includes a glass or other insulating envelope having a plurality of substantially parallel glass rods supported therewithin which in turn support an electron gun, a collector and an intermediate slow wave structure. The slow wave structure itself provides electrostatic focussing of a central electron beam thereby eliminating the need for focussing magnetics and materially decreasing the cost of construction as well as enabling miniaturization. The slow wave structure advantageously includes cavities along the electron beam through which the r.f. energy is propagated, or a double, interleaved ring loop structure supported by dielectric fins within a ground plane cylinder disposed coaxially within the glass envelope.

  10. Laser control of reactions of photoswitching functional molecules.

    PubMed

    Tamura, Hiroyuki; Nanbu, Shinkoh; Ishida, Toshimasa; Nakamura, Hiroki

    2006-07-21

    Laser control schemes of reactions of photoswitching functional molecules are proposed based on the quantum mechanical wave-packet dynamics and the design of laser parameters. The appropriately designed quadratically chirped laser pulses can achieve nearly complete transitions of wave packet among electronic states. The laser parameters can be optimized by using the Zhu-Nakamura theory of nonadiabatic transition. This method is effective not only for the initial photoexcitation process but also for the pump and dump scheme in the middle of the overall photoswitching process. The effects of momentum of the wave packet crossing a conical intersection on the branching ratio of products have also been clarified. These control schemes mentioned above are successfully applied to the cyclohexadiene/hexatriene photoisomerization (ring-opening) process which is the reaction center of practical photoswitching molecules such as diarylethenes. The overall efficiency of the ring opening can be appreciably increased by using the appropriately designed laser pulses compared to that of the natural photoisomerization without any control schemes.

  11. Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface.

    PubMed

    Nouman, Muhammad Tayyab; Hwang, Ji Hyun; Jang, Jae-Hyung

    2016-12-13

    Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is based on horizontally connected split ring resonators and is realized on an ultrathin (0.05λ) zeonor substrate. The fabricated quarter waveplate realizes linear to circular polarization conversion in two broad frequency bands comprising 0.64-0.82 THz and 0.96-1.3 THz with an insertion loss ranging from -3.9 to -10 dB. By virtue of ultrathin sub wavelength thickness, the proposed waveplate design is well suited for application in near field THz optical systems. Additionally, the proposed metasurface design offers novel transmission phase characteristics that present further opportunities to realize dynamic polarization control of incident waves.

  12. Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface

    PubMed Central

    Nouman, Muhammad Tayyab; Hwang, Ji Hyun; Jang, Jae-Hyung

    2016-01-01

    Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is based on horizontally connected split ring resonators and is realized on an ultrathin (0.05λ) zeonor substrate. The fabricated quarter waveplate realizes linear to circular polarization conversion in two broad frequency bands comprising 0.64–0.82 THz and 0.96–1.3 THz with an insertion loss ranging from −3.9 to −10 dB. By virtue of ultrathin sub wavelength thickness, the proposed waveplate design is well suited for application in near field THz optical systems. Additionally, the proposed metasurface design offers novel transmission phase characteristics that present further opportunities to realize dynamic polarization control of incident waves. PMID:27958358

  13. A Tri-Band Frequency Selective Surface (FSS) to Diplex Widely Separated Bands for Millimeter Wave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha

    2016-10-01

    A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.

  14. Influence of Thermocapillary Flow on Capillary Stability: Long Float-Zones in Low Gravity

    NASA Technical Reports Server (NTRS)

    Chen, Yi-Ju; Steen, Paul H.

    1996-01-01

    A model problem is posed to study the influence of flow on the interfacial stability of a nearly cylindrical liquid bridge for lengths near its circumference (the Plateau-Rayleigh limit). The flow is generated by a shear stress imposed on the deformable interface. The symmetry of the imposed shear stress mimics the thermocapillary stress induced on a float-zone by a ring heater (i.e. a full zone). Principal assumptions are (1) zero gravity, (2) creeping flow, and (3) that the imposed coupling at the free surface between flow and temperature fields is the only such coupling. A numerical solution, complemented by a bifurcation analysis, shows that bridges substantially longer than the Plateau-Rayleigh limit are possible. An interaction of the first two capillary instabilities through the stress-induced flow is responsible. Time-periodic standing waves are also predicted in certain parameter ranges. Motivation comes from extra-long float-zones observed in MEPHISTO space lab experiments (June 1994).

  15. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer

    NASA Astrophysics Data System (ADS)

    Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan

    2017-11-01

    In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

  16. Functional roles of the pepper RING finger protein gene, CaRING1, in abscisic acid signaling and dehydration tolerance.

    PubMed

    Lim, Chae Woo; Hwang, Byung Kook; Lee, Sung Chul

    2015-09-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses, which include pathogens and conditions of high salinity, low temperature, and drought. Abscisic acid (ABA) is a major plant hormone involved in signal transduction pathways that mediate the defense response of plants to abiotic stress. Previously, we isolated Ring finger protein gene (CaRING1) from pepper (Capsicum annuum), which is associated with resistance to bacterial pathogens, accompanied by hypersensitive cell death. Here, we report a new function of the CaRING1 gene product in the ABA-mediated defense responses of plants to dehydration stress. The expression of the CaRING1 gene was induced in pepper leaves treated with ABA or exposed to dehydration or NaCl. Virus-induced gene silencing of CaRING1 in pepper plants exhibited low degree of ABA-induced stomatal closure and high levels of transpirational water loss in dehydrated leaves. These led to be more vulnerable to dehydration stress in CaRING1-silenced pepper than in the control pepper, accompanied by reduction of ABA-regulated gene expression and low accumulation of ABA and H2O2. In contrast, CaRING1-overexpressing transgenic plants showed enhanced sensitivity to ABA during the seedling growth and establishment. These plants were also more tolerant to dehydration stress than the wild-type plants because of high ABA accumulation, enhanced stomatal closure and increased expression of stress-responsive genes. Together, these results suggest that the CaRING1 acts as positive factor for dehydration tolerance in Arabidopsis by modulating ABA biosynthesis and ABA-mediated stomatal closing and gene expression.

  17. Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    The main objective of this NASA FAR project is to conduct ultrasonic assessment of impact-induced damage and microcracking in polymer matrix composites at various temperatures. It is believed that the proposed study of impact damage assessment on polymer matrix composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Currently, impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  18. Tsunami-generated sediment wave channels at Lake Tahoe, California-Nevada, USA

    USGS Publications Warehouse

    Moore, James G.; Schweickert, Richard A.; Kitts, Christopher A.

    2014-01-01

    A gigantic ∼12 km3 landslide detached from the west wall of Lake Tahoe (California-Nevada, USA), and slid 15 km east across the lake. The splash, or tsunami, from this landslide eroded Tioga-age moraines dated as 21 ka. Lake-bottom short piston cores recovered sediment as old as 12 ka that did not reach landslide deposits, thereby constraining the landslide age as 21–12 ka.Movement of the landslide splashed copious water onto the countryside and lowered the lake level ∼10 m. The sheets of water that washed back into the lake dumped their sediment load at the lowered shoreline, producing deltas that merged into delta terraces. During rapid growth, these unstable delta terraces collapsed, disaggregated, and fed turbidity currents that generated 15 subaqueous sediment wave channel systems that ring the lake and descend to the lake floor at 500 m depth. Sheets of water commonly more than 2 km wide at the shoreline fed these systems. Channels of the systems contain sediment waves (giant ripple marks) with maximum wavelengths of 400 m. The lower depositional aprons of the system are surfaced by sediment waves with maximum wavelengths of 300 m.A remarkably similar, though smaller, contemporary sediment wave channel system operates at the mouth of the Squamish River in British Columbia. The system is generated by turbidity currents that are fed by repeated growth and collapse of the active river delta. The Tahoe splash-induced backwash was briefly equivalent to more than 15 Squamish Rivers in full flood and would have decimated life in low-lying areas of the Tahoe region.

  19. A numerical study of fundamental shock noise mechanisms. Ph.D. Thesis - Cornell Univ.

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.

    1995-01-01

    The results of this thesis demonstrate that direct numerical simulation can predict sound generation in unsteady aerodynamic flows containing shock waves. Shock waves can be significant sources of sound in high speed jet flows, on helicopter blades, and in supersonic combustion inlets. Direct computation of sound permits the prediction of noise levels in the preliminary design stage and can be used as a tool to focus experimental studies, thereby reducing cost and increasing the probability of a successfully quiet product in less time. This thesis reveals and investigates two mechanisms fundamental to sound generation by shocked flows: shock motion and shock deformation. Shock motion is modeled by the interaction of a sound wave with a shock. During the interaction, the shock wave begins to move and the sound pressure is amplified as the wave passes through the shock. The numerical approach presented in this thesis is validated by the comparison of results obtained in a quasi-one dimensional simulation with linear theory. Analysis of the perturbation energy demonstrated for the first time that acoustic energy is generated by the interaction. Shock deformation is investigated by the numerical simulation of a ring vortex interacting with a shock. This interaction models the passage of turbulent structures through the shock wave. The simulation demonstrates that both acoustic waves and contact surfaces are generated downstream during the interaction. Analysis demonstrates that the acoustic wave spreads cylindrically, that the sound intensity is highly directional, and that the sound pressure level increases significantly with increasing shock strength. The effect of shock strength on sound pressure level is consistent with experimental observations of shock noise, indicating that the interaction of a ring vortex with a shock wave correctly models a dominant mechanism of shock noise generation.

  20. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    PubMed Central

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-01-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844

  1. Impact Delamination and Fracture in Aluminum/Acrylic Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    Impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F. Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  2. Self-consistent Model of Magnetospheric Electric Field, RC and EMIC Waves

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.

    2007-01-01

    Electromagnetic ion cyclotron (EMIC) waves are an important magnetospheric emission, which is excited near the magnetic equator with frequencies below the proton gyro-frequency. The source of bee energy for wave growth is provided by temperature anisotropy of ring current (RC) ions, which develops naturally during inward convection from the plasma sheet These waves strongly affect the dynamic s of resonant RC ions, thermal electrons and ions, and the outer radiation belt relativistic electrons, leading to non-adiabatic particle heating and/or pitch-angle scattering and loss to the atmosphere. The rate of ion and electron scattering/heating is strongly controlled by the Wave power spectral and spatial distributions, but unfortunately, the currently available observational information regarding EMIC wave power spectral density is poor. So combinations of reliable data and theoretical models should be utilized in order to obtain the power spectral density of EMIC waves over the entire magnetosphere throughout the different storm phases. In this study, we present the simulation results, which are based on two coupled RC models that our group has developed. The first model deals with the large-scale magnetosphere-ionosphere electrodynamic coupling, and provides a self-consistent description of RC ions/electrons and the magnetospheric electric field. The second model is based on a coupled system of two kinetic equations, one equation describes the RC ion dynamics and another equation describes the power spectral density evolution of EMIC waves, and self-consistently treats a micro-scale electrodynamic coupling of RC and EMIC waves. So far, these two models have been applied independently. However, the large-scale magnetosphere-ionosphere electrodynamics controls the convective patterns of both the RC ions and plasmasphere altering conditions for EMIC wave-particle interaction. In turn, the wave induced RC precipitation Changes the local field-aligned current distributions and the ionospheric conductances, which are crucial for a large-scale electrodynamics. The initial results from this new self-consistent model of the magnetospheric electric field, RC and EMIC waves will be shown in this presentation.

  3. Bright-dark rogue wave in mode-locked fibre laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kbashi, Hani; Kolpakov, Stanislav; Martinez, Amós; Mou, Chengbo; Sergeyev, Sergey V.

    2017-05-01

    Bright-Dark Rogue Wave in Mode-Locked Fibre Laser Hani Kbashi1*, Amos Martinez1, S. A. Kolpakov1, Chengbo Mou, Alex Rozhin1, Sergey V. Sergeyev1 1Aston Institute of Photonic Technologies, School of Engineering and Applied Science Aston University, Birmingham, B4 7ET, UK kbashihj@aston.ac.uk , 0044 755 3534 388 Keywords: Optical rogue wave, Bright-Dark rogue wave, rogue wave, mode-locked fiber laser, polarization instability. Abstract: Rogue waves (RWs) are statistically rare localized waves with high amplitude that suddenly appear and disappear in oceans, water tanks, and optical systems [1]. The investigation of these events in optics, optical rogue waves, is of interest for both fundamental research and applied science. Recently, we have shown that the adjustment of the in-cavity birefringence and pump polarization leads to emerge optical RW events [2-4]. Here, we report the first experimental observation of vector bright-dark RWs in an erbium-doped stretched pulse mode-locked fiber laser. The change of induced in-cavity birefringence provides an opportunity to observe RW events at pump power is a little higher than the lasing threshold. Polarization instabilities in the laser cavity result in the coupling between two orthogonal linearly polarized components leading to the emergence of bright-dark RWs. The observed clusters belongs to the class of slow optical RWs because their lifetime is of order of a thousand of laser cavity roundtrip periods. References: 1. D. R. Solli, C. Ropers, P. Koonath,and B. Jalali, Optical rogue waves," Nature, 450, 1054-1057, 2007. 2. S. V. Sergeyev, S. A. Kolpakov, C. Mou, G. Jacobsen, S. Popov, and V. Kalashnikov, "Slow deterministic vector rogue waves," Proc. SPIE 9732, 97320K (2016). 3. S. A. Kolpakov, H. Kbashi, and S. V. Sergeyev, "Dynamics of vector rogue waves in a fiber laser with a ring cavity," Optica, 3, 8, 870, (2016). 5. S. Kolpakov, H. Kbashi, and S. Sergeyev, "Slow optical rogue waves in a unidirectional fiber laser," in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW2A.56.

  4. Inward propagating chemical waves in Taylor vortices.

    PubMed

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  5. Strong Pitch-Angle Diffusion of Ring Current Ions in Geomagnetic Storm-Associated Conditions

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Spann, J. F.

    2005-01-01

    Do electromagnetic ion cyclotron (EMIC) waves cause strong pitch-angle diffusion of RC ions? This question is the primary motivation of this paper and has been affirmatively answered from the theoretical point of view. The materials that are presented in the Results section show clear evidence that strong pitch-angle diffusion takes place in the inner magnetosphere indicating an important role for the wave-particle interaction mechanism in the formation of RC ions and EMIC waves.

  6. Shock transmission in coupled beams and rib stiffened structures

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Manning, J. E.; Scharton, T. D.

    1971-01-01

    Shock transmission in a simple coupled beam structure and in a ring-stringer stiffened cylinder is investigated experimentally and analytically using wave transmission and statistical energy analysis concepts. The use of the response spectrum to characterize the excitation provided to a simple beam by a force pulse is studied. Analysis of the transmission of a dilatation wave in a periodically stiffened plate indicates that the stiffeners are fairly transparent to the wave, but some of the dilatational energy is scattered into bending at each support.

  7. White-light optical vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Kanburapa, Prachyathit

    An optical vortex is characterized by a dark core of destructive interference in a light beam. One of the methods commonly employed to create an optical vortex is by using a computer-generated hologram. A vortex hologram pattern is computed from the interference pattern between a reference plane wave and a vortex wave, resulting in a forked grating pattern. In astronomy, an optical vortex coronagraph is one of the most promising high contrast imaging techniques for the direct imaging of extra-solar planets. Direct imaging of extra-solar planets is a challenging task since the brightness of the parent star is extremely high compared to its orbiting planets. The on-axis light from the parent star gets diffracted in the coronagraph, forming a "ring of fire" pattern, whereas the slightly off-axis light from the planet remains intact. Lyot stop can then be used to block the ring of fire pattern, thus allowing only the planetary light to get through to the imaging camera. Contrast enhancements of 106 or more are possible, provided the vortex lens (spiral phase plate) has exceptional optical quality. By using a vortex hologram with a 4 microm pitch, and an f/300 focusing lens, we were able to demonstrate the creation of a "ring of fire" using a white light emitting diode as a source. A dispersion compensating linear diffraction grating of 4 microm pitch was used to bring the rings together to form a single white light ring of fire. To our knowledge, this is the first time a vortex hologram based OVC has been demonstrated, resulting in a well-formed white light ring of fire. Experimental results show measured power contrast of 1/515 when HeNe laser source was used as a light source and 1/77 when using a white light emitting diode.

  8. Cassini RPWS Measurement of Dust Particles in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ye, S.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, S.; Sakai, S.; Morooka, M.; Wahlund, J.

    2013-12-01

    The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust impacts when voltage pulses induced by the impact charges are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. Based on the data collected during the E-ring crossings and Enceladus flybys, we show that the size distribution of the dust particles can be characterized as dn/dr ∝ rμ, where μ~-4. We compare the density of dust particles above a certain size threshold calculated from the impact rate with the Cosmic Dust Analyzer (CDA) High Rate Detector (HRD) data. When the monopole antenna is connected to the wideband receiver, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna). Because the effective area of the antenna is relatively easy to estimate, we use the polarity ratio of the dust impacts to infer the effective area of the spacecraft body. RPWS onboard dust detection data is analyzed, from which we infer the sign of the spacecraft potential and the dust density within Saturn's magnetosphere. A new phenomenon called dust ringing has been found to reveal the electron density inside the Enceladus plume. The ringing frequencies, interpreted as the local plasma frequencies, are consistent with the values measured by other methods, i.e., Langmuir probe and upper hybrid resonance.

  9. Optical trapping using cascade conical refraction of light.

    PubMed

    O'Dwyer, D P; Ballantine, K E; Phelan, C F; Lunney, J G; Donegan, J F

    2012-09-10

    Cascade conical refraction occurs when a beam of light travels through two or more biaxial crystals arranged in series. The output beam can be altered by varying the relative azimuthal orientation of the two biaxial crystals. For two identical crystals, in general the output beam comprises a ring beam with a spot at its centre. The relative intensities of the spot and ring can be controlled by varying the azimuthal angle between the refracted cones formed in each crystal. We have used this beam arrangement to trap one microsphere within the central spot and a second microsphere on the ring. Using linearly polarized light, we can rotate the microsphere on the ring with respect to the central sphere. Finally, using a half wave-plate between the two crystals, we can create a unique beam profile that has two intensity peaks on the ring, and thereby trap two microspheres on diametrically opposite points on the ring and rotate them around the central sphere. Such a versatile optical trap should find application in optical trapping setups.

  10. A Note on the Propagation of Quantized Vortex Rings Through a Quantum Turbulence Tangle: Energy Transport or Energy Dissipation?

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Baggaley, Andrew W.

    2015-07-01

    We investigate quantum vortex ring dynamics at scales smaller than the inter-vortex spacing in quantum turbulence. Through geometrical arguments and high-resolution numerical simulations, we examine the validity of simple estimates for the mean free path and the structure of vortex rings post-reconnection. We find that a large proportion of vortex rings remain coherent objects where approximately of their energy is preserved. This leads us to consider the effectiveness of energy transport in turbulent tangles. Moreover, we show that in low density tangles, appropriate for the ultra-quantum regime, ring emission cannot be ruled out as an important mechanism for energy dissipation. However at higher vortex line densities, typically associated with the quasi-classical regime, loop emission is expected to make a negligible contribution to energy dissipation, even allowing for the fact that our work shows rings can survive multiple reconnection events. Hence the Kelvin wave cascade seems the most plausible mechanism leading to energy dissipation.

  11. Investigation of Magnetostatic Surface Waves for Anisotropic Effects.

    DTIC Science & Technology

    1986-06-01

    inves- tigate the effect of launching magnetostatic surface waves at different angles on a yttrium-iron- garnet (YIG) single crystal film . Many...propagation indeed could be achieved on a YIG thin film ring grown on a gadolinium-gallium- garnet (GGG) substrate (Sethares, 1975) (see Figure 1.1). The use of...thin films grown on a gadolinium-gallium- garnet substrate. The films were 27

  12. A novel traveling wave piezoelectric actuated tracked mobile robot utilizing friction effect

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Shu, Chengyou; Jin, Jiamei; Zhang, Jianhui

    2017-03-01

    A novel traveling wave piezoelectric-actuated tracked mobile robot with potential application to robotic rovers was proposed and investigated in this study. The proposed tracked mobile robot is composed of a parallelogram-frame-structure piezoelectric transducer with four rings and a metal track. Utilizing the converse piezoelectric and friction effects, traveling waves were propagated in the rings and then the metal track was actuated by the piezoelectric transducer. Compared with traditional tracked mechanisms, the proposed tracked mobile robot has a simpler and more compact structure without lubricant, which eliminates the problem of lubricant volatilization and deflation, thus, it could be operated in the vacuum environment. Dynamic characteristics were simulated and measured to reveal the mechanism of actuating track of the piezoelectric transducer. Experimental investigations of the traveling wave piezoelectric-actuated tracked mobile robot were then carried out, and the results indicated that the robot prototype with a pair of exciting voltages of 460 Vpp is able to achieve a maximum velocity of 57 mm s-1 moving on the foam plate and possesses the obstacle crossing capability with a maximum height of 27 mm. The proposed tracked mobile robot exhibits potential to be the driving system of robotic rovers.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  14. Electron localization and optical absorption of polygonal quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2015-06-01

    We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor heterostructures with multiple applications. We show how the geometry of the sample determines the electronic energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the corner-localized state domain, each associated with different circular polarization. This picture may be changed by an external electric field which allows previously forbidden transitions, and thus enables the number of corners to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the electromagnetic spectrum within one sample.

  15. Vortex ring behavior provides the epigenetic blueprint for the human heart

    PubMed Central

    Arvidsson, Per M.; Kovács, Sándor J.; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-01-01

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R2 = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health. PMID:26915473

  16. Vortex ring behavior provides the epigenetic blueprint for the human heart.

    PubMed

    Arvidsson, Per M; Kovács, Sándor J; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-02-26

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R(2) = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health.

  17. Where the Small Moon Rules

    NASA Image and Video Library

    2016-09-19

    Pan may be small as satellites go, but like many of Saturn's ring moons, it has a has a very visible effect on the rings. Pan (17 miles or 28 kilometers across, left of center) holds open the Encke gap and shapes the ever-changing ringlets within the gap (some of which can be seen here). In addition to raising waves in the A and B rings, other moons help shape the F ring, the outer edge of the A ring and open the Keeler gap. This view looks toward the sunlit side of the rings from about 8 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 2, 2016. The view was acquired at a distance of approximately 840,000 miles (1.4 million kilometers) from Saturn and at a sun-Saturn-spacecraft, or phase, angle of 128 degrees. Image scale is 5 miles (8 kilometers) per pixel. Pan has been brightened by a factor of two to enhance its visibility. http://photojournal.jpl.nasa.gov/catalog/PIA20499

  18. Increase in cytosolic calcium maintains plasma membrane integrity through the formation of microtubule ring structure in apoptotic cervical cancer cells induced by trichosanthin.

    PubMed

    Wang, Ping; Xu, Shujun; Zhao, Kai; Xiao, Bingxiu; Guo, Junming

    2009-11-01

    This study investigates the role of dysregulated cytosolic free calcium ([Ca(2+)]c) homeostasis on microtubule (MT) ring structure in apoptotic cervical cancer (HeLa) cells induced by trichosanthin (TCS), a type I ribosome inactivating protein (RIP). The TCS-induced decrease in cell viability was significantly enhanced in combination with the specific calcium chelator, EGTA-AM. Sequestration of [Ca(2+)]c markedly disrupted the special MT ring structure. Furthermore, TCS tended to increase LDH release, whereas no significant differences were observed until 48 h of the treatment. In contrast, combined addition of EGTA-AM or colchicine (an inhibitor of tubulin polymerization) significantly reinforced LDH release. The data suggest that TCS-elevated [Ca(2+)]c maintains plasma membrane integrity via the formation of the MT ring structure in apoptotic HeLa cells.

  19. Mechanisms of Ionospheric Mass Escape

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2010-01-01

    The dependence of ionospheric O+ escape flux on electromagnetic energy flux and electron precipitation into the ionosphere is derived for a hypothetical ambipolar pick-up process, powered the relative motion of plasmas and neutral upper atmosphere, and by electron precipitation, at heights where the ions are magnetized but influenced by photo-ionization, collisions with gas atoms, ambipolar and centrifugal acceleration. Ion pick-up by the convection electric field produces "ring-beam" or toroidal velocity distributions, as inferred from direct plasma measurements, from observations of the associated waves, and from the spectra of incoherent radar echoes. Ring-beams are unstable to plasma wave growth, resulting in rapid relaxation via transverse velocity diffusion, into transversely accelerated ion populations. Ion escape is substantially facilitated by the ambipolar potential, but is only weakly affected by centrifugal acceleration. If, as cited simulations suggest, ion ring beams relax into non-thermal velocity distributions with characteristic speed equal to the local ion-neutral flow speed, a generalized "Jeans escape" calculation shows that the escape flux of ionospheric O+ increases with Poynting flux and with precipitating electron density in rough agreement with observations.

  20. Ring Current He Ion Control by Bounce Resonant ULF Waves

    NASA Astrophysics Data System (ADS)

    Kim, Hyomin; Gerrard, Andrew J.; Lanzerotti, Louis J.; Soto-Chavez, Rualdo; Cohen, Ross J.; Manweiler, Jerry W.

    2017-12-01

    Ring current energy He ion (˜65 keV to ˜520 keV) differential flux data from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft show considerable variability during quiet solar wind and geomagnetic time periods. Such variability is apparent from orbit to orbit (˜9 h) of the spacecraft and is observed to be ˜50-100% of the nominal flux. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument, also aboard the Van Allen Probes spacecraft, we identify that a dominant source of this variability is from ULF waveforms with periods of tens of seconds. These periods correspond to the bounce resonant timescales of the ring current He ions being measured by RBSPICE. A statistical survey using the particle and field data for one full spacecraft precession period (approximately 2 years) shows that the wave and He ion flux variations are generally anticorrelated, suggesting the bounce resonant pitch angle scattering process as a major component in the scattering of He ions.

  1. A Flexible Multiring Concentric Electrode for Non-Invasive Identification of Intestinal Slow Waves

    PubMed Central

    Ye-Lin, Yiyao

    2018-01-01

    Developing new types of optimized electrodes for specific biomedical applications can substantially improve the quality of the sensed signals. Concentric ring electrodes have been shown to provide enhanced spatial resolution to that of conventional disc electrodes. A sensor with different electrode sizes and configurations (monopolar, bipolar, etc.) that provides simultaneous records would be very helpful for studying the best signal-sensing arrangement. A 5-pole electrode with an inner disc and four concentric rings of different sizes was developed and tested on surface intestinal myoelectrical recordings from healthy humans. For good adaptation to a curved body surface, the electrode was screen-printed onto a flexible polyester substrate. To facilitate clinical use, it is self-adhesive, incorporates a single connector and can perform dry or wet (with gel) recordings. The results show it to be a versatile electrode that can evaluate the optimal configuration for the identification of the intestinal slow wave and reject undesired interference. A bipolar concentric record with an outer ring diameter of 30 mm, a foam-free adhesive material, and electrolytic gel gave the best results. PMID:29385719

  2. Rotation Rate Sensing via Magnetostatic Surface Wave Propagation on a Thick Yig Ring.

    DTIC Science & Technology

    1979-12-03

    Introduction . . . . . . . . . . . 1 Background . . . . . . . . I Statement of the Problem. o o . 4 Plan of Attack. o. . o o o • 4 Sequence of...crystal growth process. It was subsequently suggested that the thin film disfiguration problem could be avoided by ma- chining the desired ring...sensor provide any practical advantages that would make it a better choice over current rate sensing schemes? Plan of Attack This thesis concerns itself

  3. The role of collective self-gravity in the nonlinear evolution of viscous overstability in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2017-09-01

    Observational evidence for the presence of axisymmetric periodic micro-structure on length scales of 100m - 200m in Saturn's A and B rings was revealed by several instruments onboard the Cassini mission to Saturn. The structure was seen in radio occultations performed by the Radio Science Subsystem (RSS) (Thomson et al. (2007)) and stellar occultations carried out with the Ultraviolet Imaging Spectrograph (UVIS) (Colwell et al. (2007)), and the Visual and Infrared Mapping Spectrometer (VIMS) (Hedman et al. (2014)). Up to date, this micro-structure is best explained by the viscous overstability, which arises as a spontaneous oscillatory instability in a dense ring, if certain conditions are met, leading to the formation of axisymmetric density waves with wavelengths on the order of 100m. We investigate the influence of collective self-gravity forces on the nonlinear, large scale evolution of the viscous overstability in Saturn's rings. To this end we numerically solve the nonlinear hydrodynamic model equations for a dense ring, including radial self-gravity and employing values for the transport coefficients (such as the ring's viscosity and heat conductivity) derived by salo et al. (2001). We concentrate on ring optical depths of order unity, which are appropriate to model Saturn's dense rings. Furthermore, local N-body simulations, incorporating vertical and radial collective self-gravity forces are performed. Direct particle-particle forces are omitted, which prevents small scale gravitational instabilities (self-gravity wakes) from forming, an approximation that allows us to study long radial scales of some 10 kilometers and to compare directly the hydrodynamic model and the N-body simulations. Our hydrodynamic model results, in the limit of vanishing self-gravity, compare very well with the studies of Latter & Ogilvie (2010) and Rein & Latter (2013). In contrast, for rings with non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains tend to settle close to the frequency minimum of the nonlinear dispersion relation, i.e. the saturation wavelengths decrease with increasing surface mass density of the ring. Good agreement between hydrodynamics and N-body simulations is found for disks with strong radial self-gravity, while the largest deviations occur in the limit of weak self-gravity. The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (100m-300m) agree reasonably well with the length scale of the axisymmetric periodic micro structure in Saturn's inner A ring and the B ring, as found by Cassini.

  4. Nonlinear spin waves in magnetic thin films - foldover, dispersive shock waves, and spin pumping

    NASA Astrophysics Data System (ADS)

    Janantha, Pasdunkorale Arachchige Praveen

    Three nonlinear phenomena of spin waves and the spin Seebeck effect in yttrium iron garnet (YIG)/Pt bi-layer structures are studied in this thesis and are reported in detail in Chapters 4-7. In the fourth chapter, the first observation of foldover effect of nonlinear eigenmodes in feedback ring systems is reported. The experiments made use of a system that consisted of a YIG thin film strip, which supported the propagation of forward volume spin waves, and a microwave amplifier, which amplified the signal from the output of the YIG strip and then fed it back to the input of the strip. The signal amplitude vs. frequency response in this ring system showed resonant peaks which resulted from ring eigenmodes. With an increase in the resonance amplitude, those resonant peaks evolved from symmetric peaks to asymmetric ones and then folded over to higher frequencies. The experimental observations were reproduced by theoretical calculations that took into account the nonlinearity-produced frequency shift of the traveling spin waves. The fifth chapter presents the first experimental observation of the formation of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear spin waves. The experiments used a microwave step pulse to excite a spin-wave step pulse in a YIG thin film strip, in which the spin-wave amplitude increases rapidly. Under certain conditions, the spin-wave pulse evolved into a DSW excitation that consisted of a train of dark soliton-like dips with both the dip width and depth increasing from the front to the back and was terminated by a black soliton that had an almost zero intensity and a nearly 180° phase jump at its center. The sixth chapter reports on the spin pumping due to traveling spin waves. The experiment used a micron-thick YIG strip capped by a nanometer-thick Pt layer. The YIG film was biased by an in-plane magnetic field. The spin waves pumped spin currents into the Pt layer, and the later produced electrical voltages across the length of the Pt strip through the inverse spin Hall effect (ISHE). Several distinct pumping regimes were observed and were interpreted in the frame work of the nonlinear three-wave splitting processes of the spin waves. The seventh chapter presents the first experimental work on the roles of damping in the spin Seebeck effect (SSE). The experiments used YIG/Pt bi-layered structures where the YIG films exhibited very similar structural and static magnetic properties but very different damping. The data indicate that a decrease in the damping of the YIG film gives rise to an increase in the SSE coefficient, and this response shows quasi-linear behavior. The data also indicate that the SSE coefficient shows no notable dependences on the enhanced damping due to spin pumping.

  5. FY 1980 Report on Dye Laser Materials

    DTIC Science & Technology

    1981-02-01

    C02H H Rh 19 H C2H 5 CH3 CO9H H i Rh6G H C2H 5 CH3 Co2 C2H5 H RhB C2H5 C2H!5 H CO,H H Rh3B C2A5 C2H5 H CO2CH 5 H Rh 101 RING- RING RING...Dye designations Ring SRh 101 Rh 101 - Diethyl SRh B Rh B Rhb 3B Mono ethyl (methyl) -- Rh 19 (116) Rh 6G Unsubstituted -- Rh 110 Rh 123 Nominal Single...Broadband Lasing Wave-lengths of the Rhodamine Dyes. Lasing Wavelength, n Approximate Dye Conc. x 104 Range Midpoint Rh 110 1.0 567-577 572 2.0 Rh 123

  6. Interferometry of Klein tunnelling electrons in graphene quantum rings

    NASA Astrophysics Data System (ADS)

    de Sousa, D. J. P.; Chaves, Andrey; Pereira, J. M.; Farias, G. A.

    2017-01-01

    We theoretically study a current switch that exploits the phase acquired by a charge carrier as it tunnels through a potential barrier in graphene. The system acts as an interferometer based on an armchair graphene quantum ring, where the phase difference between interfering electronic wave functions for each path can be controlled by tuning either the height or the width of a potential barrier in the ring arms. By varying the parameters of the potential barriers, the interference can become completely destructive. We demonstrate how this interference effect can be used for developing a simple graphene-based logic gate with a high on/off ratio.

  7. Planetary Rings: a Brief History of Observation and Theory

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.

    2000-05-01

    Over several centuries, and extending down to today, the ring systems encircling Saturn and the other jovian planets have provided an endless source of speculation and theorizing for astronomers, theologians, and physicists. In the past two decades they have also become a testing ground for dynamical models of more distant astrophysical disks, such as those which surround protostars and even the stellar disks of spiral galaxies. I will review some of the early theories, and their sometimes rude confrontation with observational data, starting with Christiaan Huygens and touching on seminal contributions by Laplace, Bessel, Maxwell, Barnard, Russell (of H-R diagram fame) and Jeffreys. In the modern era, observations at infrared and radio wavelengths have revealed Saturn's rings to be composed of large chunks of almost pure water ice, and to have a vertical thickness measured in tens of meters. A renaissance in planetary rings studies occurred in the period 1977--1981, first with the discoveries of the narrow, dark and non-circular rings of Uranus and the tenuous jovian ring system, and capped off by the spectacular images returned during the twin Voyager flybys of Saturn. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings themselves and their retinues of attendant satellites. Between the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the galactic context), electromagnetic resonances, many-armed spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to a collective instability, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. I will conclude with a glimpse at what may well be a dynamicist's worst nightmare --- Saturn's multi-stranded, kinky and clumpy F ring, which continues to puzzle 20 years after it was first seen. The author would like to acknowledge many discussions with Joe Burns, Jeff Cuzzi, Luke Dones, Jim Elliot, Dick French, Peter Goldreich, Mark Showalter and Bruno Sicardy, as well as generous support from NASA.

  8. Azimuthal propagation of storm time Pc 5 waves observed simultaneously by geostationary satellites GOES 2 and GOES 3

    NASA Astrophysics Data System (ADS)

    Lin, C. S.; Barfield, J. N.

    1985-11-01

    Storm-time Pc 5 wave events observed simultaneously by the GOES 2 and GOES 3 satellites in the afternoon sector during the 1-year interval of March 1979 to February 1980 are surveyed to learn the wave propagation. Essentially, all storm-time Pc 5 waves (approximately 93 percent) are found to propagate westward azimuthally with a velocity of 5 to 50 km/s and a wavelength of 1000 km to 9000 km (Only two of 30 events had eastward propagation, with a velocity of about 150 km/s). It is concluded that westward propagating waves are excited by ion drift instabilities associated with the ion ring current, and that the eastward propagating waves are excited by surface waves on the magnetopause through Kelvin-Helmholtz instability.

  9. Dental resin curing blue light induces vasoconstriction through release of hydrogen peroxide.

    PubMed

    Oktay, Elif Aybala; Tort, Huseyin; Yıldız, Oguzhan; Ulusoy, Kemal Gokhan; Topcu, Fulya Toksoy; Ozer, Cigdem

    2018-05-26

    Dental resin curing blue light (BL) is frequently used during treatments in dental clinics. However, little is known about the influence of BL irradiation on pulpal blood vessels. The aim of the present study was to investigate the mechanism of effect of BL irradiation on vascular tone. Rat aorta (RA) rings were irradiated with a BL source in organ baths, and the responses were recorded isometrically. Effect of BL irradiation on phenylephrine (PE) -precontraction and acetylcholine (ACh) -induced relaxation after PE -precontraction were obtained and compared in BL -irradiated and control RA rings. Effect of 20 min preincubation with catalase (enzyme that breaks down hydrogene peroxide, 1200 u/ml) on PE -precontraced and BL-irradiated rings was also evaluated. Total oxidative stress (TOS) and total antioxidant capacity (TAC) in BL-irradiated and control RA preparations were measured with special assay kits and spectrophotometry. BL slightly decreased ACh -induced endothelium -dependent relaxations in PE (1 μM) -precontracted RA rings (n = 6, p > 0.05 vs. control). BL induced marked contraction 23.88 + 3.10% of PE (maximum contraction) in isolated RA ring segments precontracted with PE (p < 0.05 vs. control). The contractile effect of BL was inhibited by 1200 u/ml catalase (n = 6, p < 0.05 vs. control). BL irradiation increased the level of TOS in RA rings (n = 6, p < 0.05 vs. control). TAC levels were similar in BL-irradiated and control preparations. These results suggest that BL induces contraction in RA, and the mechanism of this effect may to be through release of hydrogen peroxide. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Cassini Thermal Observations of Saturn's Main Rings: Implications for Particle Rotation and Vertical Mixing

    NASA Technical Reports Server (NTRS)

    Spilkera, Linda J.; Pilorz, Stuart H.; Wallis, Brad D.; Pearl, John C.; Cuzzi, Jeffrey N.; Brooks, Shawn M.; Altobelli, Nicolas; Edgington, Scott G.; Showalter, Mark; Flasar, F. Michael; hide

    2006-01-01

    In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, (alpha), on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with (alpha), and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes. The temperatures of the A and B rings are correlated with their optical depth, (tau), when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest (tau), these temperatures are also the same at both low and high a, suggesting that little sunlight is penetrating these regions. The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.

  11. A Study of Saturn's E-Ring Particles Using the Voyager 1 Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Tsintikidis, D.; Kurth, W. S.; Gurnett, D. A.; Barbosa, D. D.

    1993-01-01

    The flyby of Voyager 1 at Saturn resulted in the detection of a large variety of plasma waves, e.g., chorus, hiss, and electron cyclotron harmonics. Just before the outbound equator crossing, at about 6.1 R(sub s), the Voyager 1 plasma wave instrument detected a strong, well-defined low-frequency enhancement. Initially it was suggested that plasma waves might be responsible for the spectral feature but more recently dust was suggested as at least a partial contributor to the enhancement. In this report we present evidence which supports the conclusion that dust contributes to the low-frequency enhancement. A new method has been used to derive the dust impact rate. The method relies mainly on the 16-channel spectrum analyzer data. The few wide band waveform observations available (which have been used to study dust impacts during the Voyager 2 ring plane crossing) were useful for calibrating the impact rate from the spectrum analyzer data. The mass and, hence, the size of the dust particles were also obtained by analyzing the response of the plasma wave spectrum analyzer. The results show that the region sampled by Voyager 1 is populated by dust particles that have rms masses of up to few times 10(exp -11) g and sizes of up to a few microns. The dust particle number density is on the order of 10(exp -3) m(exp 3). The optical depth of the region sampled by the spacecraft is 1.04 x 10(exp -6). The particle population is centered about 2500 km south of the equatorial plane and has a north-south thickness of about 4000 km. Possible sources of these particles are the moons Enceladus and Tethys whose orbits lie within the E-ring radial extent. These results are in reasonable agreement with photometric studies and numerical simulations.

  12. Meridional Flow Measurements: Comparisons Between Ring Diagram Analysis and Fourier-Hankel Analysis

    NASA Astrophysics Data System (ADS)

    Zaatri, A.; Roth, M.

    2008-09-01

    The meridional circulation is a weak flow with amplitude in the order of 10 m/s on the solar surface. As this flow could be responsible for the transport of magnetic flux during the solar cycle it has become a crucial ingredient in some dynamo models. However, only less is known about the overall structure of the meridional circulation. Helioseismology is able to provide information on the structure of this flow in the solar interior. One widely used helioseismic technique for measuring frequency shifts due to horizontal flows in the subsurface layers of the sun is the ring diagram analyis (Corbard et al. 2003). It is based on the analysis of frequency shifts in the solar oscillation power spectrum as a function of the orientation of the wave vector. This then allows drawing conclusions on the strength of meridional flow, too. Ring diagram analysis is currently limited to the analysis of the wave field in only a small region on the solar surface. Consequently, information on the solar interior can only be inferred down to a depth of about 16 Mm. Another helioseismology method that promises to estimate the meridional flow strength down to greater depths is the Fourier-Hankel analysis (Krieger et al. 2007). This technique is based on a decomposition of the wave field in poleward and equatorward propagating waves. A possible frequency shift between them is then due to the meridional flow. We have been motivated for carrying out a comparative study between the two techniques to measure the meridional flow. We investigate the degree of coherence between the two methods by analyzing the same data sets recorded by the SOHO-MDI and GONG instruments.

  13. The Phase Shift in the Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Amiri, Farhang

    2008-01-01

    The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation.…

  14. Superelasticity of NiTi Ring-Shaped Springs Induced by Aging for Cranioplasty Applications

    NASA Astrophysics Data System (ADS)

    Morawiec, Henryk Z.; Lekston, Zdzisław H.; Kobus, Kazimierz F.; Węgrzyn, Marek C.; Drugacz, Jan T.

    2009-08-01

    This paper concerns the application of titanium-nickel rings in modeling the cranium. After being fixed to the osseous margins, the ring’s expansion at the same time broadens and shortens the cranium vault. The rings formed from a straight superelastic wire, flattened to an ellipse, do not show the presence of a typical force plateau but rather a pseudoelastic loop during loading-unloading in the relationship between the force and the deflection. Based on the idea that superelasticity in more complex shape-springs may be induced by the precipitation hardening process, the further studies were carried out on alloys with higher nickel contents (51.06 at.% Ni). The rings that had been formed were welded and aged at an optimal temperature and time. The improved superelastic behavior during compression and unloading the rings was obtained by introducing small deformation by drawing the quenched wires before forming the rings and aging. Very positive clinical reshaping by long-term distraction with the superelastic ring-shaped springs was achieved in young children under one year and a less spectacular effect was observed in the group of older children.

  15. Location of EMIC Wave Events Relative to the Plasmapause: Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Tetrick, S.; Engebretson, M. J.; Posch, J. L.; Kletzing, C.; Smith, C. W.; Wygant, J. R.; Gkioulidou, M.; Reeves, G. D.; Fennell, J. F.

    2015-12-01

    Many early theoretical studies of electromagnetic ion cyclotron (EMIC) waves generated in Earth's magnetosphere predicted that the equatorial plasmapause (PP) would be a preferred location for their generation. However, several large statistical studies in the past two decades, most notably Fraser and Nguyen [2001], have provided little support for this location. In this study we present a survey of the most intense EMIC waves observed by the EMFISIS fluxgate magnetometer on the Van Allen Probes-A spacecraft (with apogee at 5.9 RE) from its launch through the end of 2014, and have compared their location with simultaneous electron density data obtained by the EFW electric field instrument and ring current ion flux data obtained by the HOPE and RBSPICE instruments. We show distributions of these waves as a function of distance inside or outside the PP as a function of local time sector, frequency band (H+, He+, or both), and timing relative to magnetic storms and substorms. Most EMIC waves in this data set occurred within 1 RE of the PP in all local time sectors, but very few were limited to ± 0.1 RE, and most of these occurred in the 06-12 MLT sector during non-storm conditions. The majority of storm main phase waves in the dusk sector occurred inside the PP. He+ band waves dominated at most local times inside the PP, and H+ band waves were never observed there. Although the presence of elevated fluxes of ring current protons was common to all events, the configuration of lower energy ion populations varied as a function of geomagnetic activity and storm phase.

  16. Wave-optics description of self-healing mechanism in Bessel beams.

    PubMed

    Aiello, Andrea; Agarwal, Girish S

    2014-12-15

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work, we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  17. O-Ring sealing arrangements for ultra-high vacuum systems

    DOEpatents

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  18. An Instability in Narrow Planetary Rings

    NASA Astrophysics Data System (ADS)

    Weiss, J. W.; Stewart, G. R.

    2003-08-01

    We will present our work investigating the behavior of narrow planetary rings with low dispersion velocities. Such narrow a ring will be initially unstable to self-gravitational collapse. After the collapse, the ring is collisionally very dense. At this stage, it is subject to a new instability. Waves appear on the inner and outer edges of the ring within half of an orbital period. The ring then breaks apart radially, taking approximately a quarter of an orbital period of do so. As clumps of ring particles expand radially away from the dense ring, Kepler shear causes these clumps to stretch out azimuthally, and eventually collapse into a new set of dense rings. Small-scale repetitions of the original instability in these new rings eventually leads to a stabilized broad ring with higher dispersion velocities than the initial ring. Preliminary results indicate that this instability may be operating on small scales in broad rings in the wake-like features seen by Salo and others. Some intriguing properties have been observed during this instability. The most significant is a coherence in the epicyclic phases of the particles. Both self-gravity and collisions in the ring operated to create and enforce this coherence. The coherence might also be responsible for the instability to radial expansion. We also observe that guiding centers of the particles do not migrate to the center of the ring during the collapse phase of the ring. In fact, guiding centers move radially away from the core of the ring during this phase, consistent with global conservation of angular momentum. We will show the results of our simulations to date, including movies of the evolution of various parameters. (Audiences members wanting popcorn are advised to bring their own.) This work is supported by a NASA Graduate Student Research Program grant and by the Cassini mission.

  19. The Saturn Ring Observer: In situ studies of planetary rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; Tiscareno, M. S.; Spilker, L. J.

    2010-12-01

    As part of the Planetary Science Decadal Survey recently undertaken by the NRC's Space Studies Board for the National Academy of Sciences, studies were commissioned for a number of potential missions to outer planet targets. One of these studies examined the technological feasibility of a mission to carry out in situ studies of Saturn's rings, from a spacecraft placed in a circular orbit above the ring plane: the Saturn Ring Observer. The technical findings and background are discussed in a companion poster by T. R. Spilker et al. Here we outline the science goals of such a mission. Most of the fundamental interactions in planetary rings occur on spatial scales that are unresolved by flyby or orbiter spacecraft. Typical particle sizes in the rings of Saturn are in the 1 cm - 10 m range, and average interparticle spacings are a few meters. Indirect evidence indicates that the vertical thickness of the rings is as little as 5 - 10 m, which implies a velocity dispersion of only a few mm/sec. Theories of ring structure and evolution depend on the unknown characteristics of interparticle collisions and on the size distribution of the ring particles. The SRO could provide direct measurements of both the coefficient of restitution -- by monitoring individual collisions -- and the particles’ velocity dispersion. High-resolution observations of individual ring particles should also permit estimates of their spin states. Numerical simulations of Saturn’s rings incorporating both collisions and self-gravity predict that the ring particles are not uniformly distributed, but are instead clustered into elongated structures referred to as “self-gravity wakes”, which are continually created and destroyed on an orbital timescale. Theory indicates that the average separation between wakes in the A ring is of order 30-100 m. Direct imaging of self-gravity wakes, including their formation and subsequent dissolution, would provide critical validation of these models. Other targets of observation by the SRO will include “propellers” (thought to be the signature of sub-km moonlets embedded in the rings), the “ropy” and “straw” structure seen in images of strong density waves and gap edges, and km-scale radial oscillations which may be signatures of “viscous overstabilities” in high-optical depth regions. Most of the science goals identified above could be accomplished by high-resolution nadir imaging of the rings from a platform that co-orbits with the ring particles, i.e., from a spacecraft in circular orbit a few km above the rings. The vertical displacement of the spacecraft is maintained by a continuous low-thrust ion engine, which can be tilted to provide a slow inward radial drift across the rings. Chemical thrusters permit the craft to `hop' over vertical obstacles in the rings (e.g., bending waves and inclined ringlets). In addition to an imaging system with a resolution of at least 10 cm (with 1 cm a desirable goal), other instrumentat ion might include a laser altimeter/range-finder to measure the effective thickness of the rings, as well as the vertical component of particle motions, aswell as in situ instruments to measure the density and composition of the neutral and ionized ring atmosphere, meteoritic and secondary dust fluxes, and local electric fields (especially in spoke regions).

  20. [Orientation hypercolumns of the visual cortex: ring model].

    PubMed

    Smirnova, E Iu; Chizhov, A V

    2011-01-01

    A hypercolumn of the visual cortex is a functional unit formed of the neighbouring columns whose neurons respond to a stimulus of particular orientation. The function of the hypercolumn is to amplify the orientation tuning of visually evoked responses. According to the conventional simple model of a hypercolumn, neuronal populations with different orientation preferences are distributed on a ring. Every population is described by the frequency (FR) model. To determine the limitations of the FR-ring model, it was compared with a more detailed ring model, which takes into account the distribution of neurons of each population according to their voltage values. In the case of the leaky integrate-and-fire neurons, every neural population is described by the Fokker-Planck (FP) equation. The mapping of parameters was obtained. The simulations revealed differences in the behaviour of the two models. Contrary to the FR model, the model based on the Fokker-Planck equation reacts faster to a change in stimulus orientation. The Fokker-Planck ring model gives a steady-state solution in the form of waves of activity travelling on the ring, whereas the FR ring model presents amplitude instability for the same parameter set. The FR ring model reproduces the characteristic effects of the ring model: the virtual rotation and the symmetry breaking.

  1. Early alterations in vascular contractility associated to changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue.

    PubMed

    Rebolledo, Alejandro; Rebolledo, Oscar R; Marra, Carlos A; García, María E; Roldán Palomo, Ana R; Rimorini, Laura; Gagliardino, Juan J

    2010-10-21

    To test the early effect of fructose-induced changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue (PVAT) upon vascular contractility. Adult male Wistar rats were fed a commercial diet without (CD) or with 10% fructose (FRD) in the drinking water for 3 weeks. We measured plasma metabolic parameters, lipid composition and oxidative stress markers in aortic PVAT. Vascular contractility was measured in aortic rings sequentially, stimulated with serotonin (5-HT) and high K+-induced depolarization using intact and thereafter PVAT-deprived rings. Comparable body weights were recorded in both groups. FRD rats had increased plasma triglyceride and fructosamine levels. Their PVAT had an increased saturated to mono- or poly-unsaturated fatty acid ratio, a significant decrease in total superoxide dismutase and glutathione peroxidase activities and in the total content of glutathione. Conversely, lipid peroxidation (TBARS), nitric oxide content, and gluthathione reductase activity were significantly higher, indicating an increase in oxidative stress. In aortic rings, removal of PVAT increased serotonin-induced contractions, but the effect was significantly lower in rings from FRD rats. This effect was no longer observed when the two contractions were performed in PVAT-deprived rings. PVAT did not affect the contractions triggered by high K+-induced depolarization either in CD or FRD rats. FRD induces multiple metabolic and endocrine systemic alterations which also alter PVAT and the vascular relaxant properties of this tissue. The changes in PVAT would affect its paracrine modulation of vascular function.

  2. The Phase Shift in the Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2008-09-01

    The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation. A method is given for measuring the phase shift with results for aluminum and brass rings.

  3. Azimuthal propagation and frequency characteristic of compressional Pc 5 waves observed at geostationary orbit

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Higbie, P. R.; Baker, D. N.

    1985-02-01

    Properties of compressional Pc 5 waves as deduced from multiple-satellite observations at geosynchronous orbit are presented. The occurrence characteristics of the waves are determined, and the relation between variations in particle fluxes and magnetic field is examined. The spatiotemporal structure of the waves is considered, including the propagation perpendicular to the ambient magnetic field and the relation of the frequency characteristics to harmonic waves. It is demonstrated that the waves have large azimuthal wave numbers from 40 to 120, westward propagation at a typical velocity of 10 km/s, frequency roughly 25 percent of the second harmonic of the poloidal wave, and phase lag of 180 deg between the parallel and radial components of the wave magnetic field and + or -90 deg between the parallel and azimuthal components. These features are discussed in the light of existing theories of instabilities in the ring current plasma.

  4. Endothelin-1-induced contraction of pulmonary arteries from endotoxemic rats is attenuated by the endothelin-A receptor antagonist, BQ123.

    PubMed

    Curzen, N P; Mitchell, J A; Jourdan, K B; Griffiths, M J; Evans, T W

    1996-12-01

    Sepsis is characterized by systemic vasodilation and hyporesponsiveness to constrictor agents, at a time when the pulmonary circulation exhibits varying degrees of vasoconstriction. Plasma endothelin-1 concentrations are increased, but the role of this potent vasoconstrictor peptide in modulating the vascular response to sepsis is unknown. Therefore, we assessed the effect of endothelin-A receptor antagonism in the response of pulmonary arteries from rats treated with lipopolysaccharide to endothelin-1, and determined the vasomotor role of the endothelin-B receptors that are known to be located on rat pulmonary artery smooth muscle and endothelium. Prospective, controlled study. Animal research laboratory. Male Wistar rats (275 to 300 g). Animals were injected with either lipopolysaccharide (20 mg/kg i.p.) or saline (1 mL i.p.) 4 hrs before being killed. The main pulmonary arteries were cut into 2-mm rings, and suspended in an organ bath. In the first set of experiments, half of the rings underwent a procedure that removed the endothelium, and the contractile response to cumulative doses of endothelin-1 (10(-11) to 10(-6) M) was measured. Half of the rings were pretreated with the endothelin-A receptor antagonist, BQ123 (10(-5) M or 10(-6) M), and the other half of the rings were treated with vehicle. In a separate group of experiments, the contractile response to cumulative concentrations of the selective endothelin-B agonist, sarafotoxin S6c (10(-11) to 10(-6) M), was measured in rings at baseline tension. Second, the possible dilator effect of endothelin-B receptor activation was tested by the administration of sarafotoxin S6c (10(-7) to 10(-6) M) to rings preconstricted by 10(-6) M of U46619, a thromboxane receptor agonist, either in the presence or absence of the nitric oxide synthase inhibitor, N omega-nitro-L-arginine-methylester (10(-4) M). Acetylcholine-induced (10(-4) M), endothelium-dependent vasodilation was also measured. BQ123 (10(-5) or 10(-6) M) caused consecutive rightward shifts in the endothelin-1 concentration-contraction curves for all ring types, including the intact rings from endotoxemic animals. Sarafotoxin S6c failed to induce any direct constriction in rings from sham-treated or lipopolysaccharide-treated rats. However, sarafotoxin S6c induced transient vasodilation at the initial dose in rings from sham-treated rats but not lipopolysaccharide-treated rats-an effect that was attenuated by N omega-nitro-L-arginine-methylester. Acetylcholine induced an N omega-nitro-L-arginine-methylester-sensitive vasodilation that was reduced in rings from endotoxin-treated rats. Endothelin-A receptor blockade is an effective means of attenuating endothelin-1-induced contraction of isolated pulmonary artery rings, even from rats rendered endotoxemic. Endothelin-B receptors on the pulmonary artery cause vasodilation via the release of nitric oxide, and have no constrictor component. The functional effects of endothelin-B receptors on tone are lost after lipopolysaccharide treatment. The endothelium is involved in both the constrictor and dilator effects of endothelin in rat pulmonary artery, confirming a pivotal role for endothelial cells in the vascular response to sepsis.

  5. On the Magnitude and Orientation of Stress during Shock Metamorphism: Understanding Peak Ring Formation by Combining Observations and Models.

    NASA Astrophysics Data System (ADS)

    Rae, A.; Poelchau, M.; Collins, G. S.; Timms, N.; Cavosie, A. J.; Lofi, J.; Salge, T.; Riller, U. P.; Ferrière, L.; Grieve, R. A. F.; Osinski, G.; Morgan, J. V.; Expedition 364 Science Party, I. I.

    2017-12-01

    Shock metamorphism occurs during the earliest moments after impact. The magnitude and orientation of shock leaves recordable signatures in rocks, which spatially vary across an impact structure. Consequently, observations of shock metamorphism can be used to understand deformation and its history within a shock wave, and to examine subsequent deformation during crater modification. IODP-ICDP Expedition 364 recovered nearly 600 m of shocked target rocks from the peak ring of the Chicxulub Crater. Samples from the expedition were used to measure the magnitude and orientation of shock in peak ring materials, and to determine the mechanism of peak-ring emplacement. Here, we present the results of petrographic analyses of the shocked granitic target rocks of the Chicxulub peak ring; using universal-stage optical microscopy, back-scattered electron images, and electron back-scatter diffraction. Deformation microstructures in quartz include planar deformation features (PDFs), feather features (FFs), which are unique to shock conditions, as well as planar fractures and crystal-plastic deformation bands. The assemblage of PDFs in quartz suggest that the peak-ring rocks experienced shock pressures of 15 GPa throughout the recovered drill core, and that the orientation of FFs are consistent with the present-day orientation of the maximum principal stress direction during shock is close to vertical. Numerical impact simulations of the impact event were run to determine the magnitude and orientation of principal stresses during shock and track those orientations throughout crater formation. Our results are remarkably consistent with the geological data, and accurately predict both the shock-pressure magnitudes, and the final near-vertical orientation of the direction of maximum principal stress in the shock wave. Furthermore, analysis of the state of stress throughout the impact event can be used to constrain the timing of fracture and fault orientations observed in the core. Our results quantitatively describe the deviatoric stress conditions of rocks in shock, which are consistent with observations of shock deformation. Our integrated analysis provides further support for the dynamic collapse model of peak-ring formation, and places dynamic constraints on the conditions of peak-ring formation.

  6. Daphnis Up Close

    NASA Image and Video Library

    2017-01-18

    The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small moon obtained yet. Daphnis (5 miles or 8 kilometers across) orbits within the 42-kilometer (26-mile) wide Keeler Gap. Cassini's viewing angle causes the gap to appear narrower than it actually is, due to foreshortening. The little moon's gravity raises waves in the edges of the gap in both the horizontal and vertical directions. Cassini was able to observe the vertical structures in 2009, around the time of Saturn's equinox (see PIA11654). Like a couple of Saturn's other small ring moons, Atlas and Pan, Daphnis appears to have a narrow ridge around its equator and a fairly smooth mantle of material on its surface -- likely an accumulation of fine particles from the rings. A few craters are obvious at this resolution. An additional ridge can be seen further north that runs parallel to the equatorial band. Fine details in the rings are also on display in this image. In particular, a grainy texture is seen in several wide lanes which hints at structures where particles are clumping together. In comparison to the otherwise sharp edges of the Keeler Gap, the wave peak in the gap edge at left has a softened appearance. This is possibly due to the movement of fine ring particles being spread out into the gap following Daphnis' last close approach to that edge on a previous orbit. A faint, narrow tendril of ring material follows just behind Daphnis (to its left). This may have resulted from a moment when Daphnis drew a packet of material out of the ring, and now that packet is spreading itself out. The image was taken in visible (green) light with the Cassini spacecraft narrow-angle camera. The view was acquired at a distance of approximately 17,000 miles (28,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 71 degrees. Image scale is 551 feet (168 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21056

  7. Effect of spatial density variation and O+ concentration on the growth and evolution of electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Fraser, B. J.

    2014-10-01

    We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore » L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.« less

  8. Effect of spatial density variation and O+ concentration on the growth and evolution of electromagnetic ion cyclotron waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, R. E.; Jordanova, V. K.; Fraser, B. J.

    We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore » L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.« less

  9. Continuous wave external-cavity quantum cascade laser-based high-resolution cavity ring-down spectrometer for ultrasensitive trace gas detection.

    PubMed

    De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Pal, Mithun; Pradhan, Manik

    2016-05-01

    A high-resolution cavity ring-down spectroscopic (CRDS) system based on a continuous wave (cw) mode-hop-free (MHF) external-cavity quantum cascade laser (EC-QCL) operating at λ∼5.2  μm has been developed for ultrasensitive detection of nitric oxide (NO). We report the performance of the high-resolution EC-QCL based cw-CRDS instrument by measuring the rotationally resolved Λ-doublet e and f components of the P(7.5) line in the fundamental band of NO at 1850.169  cm-1 and 1850.179  cm-1. A noise-equivalent absorption coefficient of 1.01×10-9  cm-1  Hz-1/2 was achieved based on an empty cavity ring-down time of τ0=5.6  μs and standard deviation of 0.11% with averaging of six ring-down time determinations. The CRDS sensor demonstrates the advantages of measuring parts per billion NO concentrations in N2, as well as in human breath samples with ultrahigh sensitivity and specificity. The CRDS system could also be generalized to measure simultaneously many other trace molecular species within the broad tuning range of cw EC-QCL, as well as for studying the rotationally resolved hyperfine structures.

  10. Steepened magnetosonic waves in the high beta plasma surrounding Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Smith, E. J.; Thorne, R. M.; Gosling, J. T.; Matsumoto, H.

    1986-01-01

    Studies of intense hydromagnetic waves at Giacobini-Zinner are extended to investigate the mode and direction of wave propagation. Simultaneous high-resolution measurements of electron density fluctuations demonstrate that long period waves propagate in the magnetosonic mode. Principal axis analyses of the long period waves and accompanying partial rotations show that the sum of the wave phase rotations is 360 deg, indicating that both are parts of the same wave oscillation. The time sequence of the steepened waveforms observed by ICE shows that the waves must propagate towards the Sun with Cph less than Vsw. Observations are consistent with wave generation by resonant ion ring or ion beam instability which predicts right-hand polarized waves propagating in the ion beam (solar) direction. The large amplitudes and small scale sizes of the cometary waves suggest that rapid pitch-angle scattering and energy transfer with energetic ions should occur. Since the waves are highly compressive, first-order Fermi acceleration is forecast.

  11. Proton velocity ring-driven instabilities and their dependence on the ring speed: Linear theory

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2017-08-01

    Linear dispersion theory is used to study the Alfvén-cyclotron, mirror and ion Bernstein instabilities driven by a tenuous (1%) warm proton ring velocity distribution with a ring speed, vr, varying between 2vA and 10vA, where vA is the Alfvén speed. Relatively cool background protons and electrons are assumed. The modeled ring velocity distributions are unstable to both the Alfvén-cyclotron and ion Bernstein instabilities whose maximum growth rates are roughly a linear function of the ring speed. The mirror mode, which has real frequency ωr=0, becomes the fastest growing mode for sufficiently large vr/vA. The mirror and Bernstein instabilities have maximum growth at propagation oblique to the background magnetic field and become more field-aligned with an increasing ring speed. Considering its largest growth rate, the mirror mode, in addition to the Alfvén-cyclotron mode, can cause pitch angle diffusion of the ring protons when the ring speed becomes sufficiently large. Moreover, because the parallel phase speed, v∥ph, becomes sufficiently small relative to vr, the low-frequency Bernstein waves can also aid the pitch angle scattering of the ring protons for large vr. Potential implications of including these two instabilities at oblique propagation on heliospheric pickup ion dynamics are discussed.

  12. Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Liu, Peiguo; Yang, Cheng; Bian, Lian

    2017-11-01

    A new design of terahertz (THz) metamaterial is proposed for modulating and sensing purposes. The metamaterial consists of two resonators based on periodical arrays of graphene rings with different radii. For each small ring, it is surrounded by four large rings, and vice versa. By varying the Fermi level through electrostatically gating, the transmission of the graphene metamaterial can be controlled dynamically and the maximum modulation depths can reach up to 86% and 73%. Especially, an electromagnetically induced transparency (EIT)-like phenomenon can be generated, which results from the weak hybridization between two nearest neighbor rings performed as bright modes induced by electric dipole. Consequently, frequency sensitivity of 830 GHz per refractive index unit and figure-of-merit of 17 can be realized at the transparency peak. Our work offers an additional opportunity to achieve an EIT-like effect and potential applications in designing active THz modulators and sensors.

  13. Precision Laser Development for Gravitational Wave Space Mission

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2011-01-01

    Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, such as the gravitational-wave mission LISA, and GRACE follow-on, by fully utilizing the mature wave-guided optics technologies. In space, where a simple and reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Non-planar Ring Oscillator) and bulk-crystal amplifier, which are widely used for sensitive laser applications on the ground.

  14. A laboratory measurement of drop impact on a water surface in the presence of wind

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Liu, Ren

    2014-11-01

    The impact of single water drops on a water surface was studied experimentally in a wind tunnel. Water drops were generated from a needle oriented vertically from the top of the wind tunnel test section. After leaving the needle, the drops move downward due to gravity and downstream due to the effect of the wind, eventually impinging obliquely on the surface of a pool of water on the bottom of the test section. The vertical velocities of drops were about 2.0 m/s and the wind speeds varied from 0 to 6.4 m/s. The drop impacts were recorded simultaneously from the side and above with two high-speed movie cameras with frame rates of 1,000 Hz. Our measurements show that both wind speed and initial drop size dramatically affect the drop impacts and subsequent generation of crowns, secondary drops, stalks and ring waves. In the presence of wind, an asymmetric crown forms after the drop hits the water surface and secondary drops are generated from the fragmentation of the leeward side of the crown rim. This is followed by a stalk formation and ring waves at the location of the water drop impact. It is found that the stalks tilt to leeward and the ring waves in the windward direction are stronger than that in those in the leeward. This work is supported by National Science Foundation, Division of Ocean Sciences.

  15. Streamlines behind curved shock waves in axisymmetric flow fields

    NASA Astrophysics Data System (ADS)

    Filippi, A. A.; Skews, B. W.

    2018-07-01

    Streamlines behind axisymmetric curved shock waves were used to predict the internal surfaces that produced them. Axisymmetric ring wedge models with varying internal radii of curvature and leading-edge angles were used to produce numerical results. Said numerical simulations were validated using experimental shadowgraph results for a series of ring wedge test pieces. The streamlines behind curved shock waves for lower leading-edge angles are examined at Mach 3.4, whereas the highest leading-edge angle cases are explored at Mach 2.8 and 3.4. Numerical and theoretical streamlines are compared for the highest leading-edge angle cases at Mach 3.6. It was found that wall-bounding theoretical streamlines did not match the internal curved surface. This was due to extreme streamline curvature curving the streamlines when the shock angle approached the Mach angle at lower leading-edge angles. Increased Mach number and internal radius of curvature produced more reasonable results. Very good agreement was found between the theoretical and numerical streamlines at lower curvatures before the influence of the trailing edge expansion fan.

  16. Evolution of lower hybrid turbulence in the ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguli, G.; Crabtree, C.; Mithaiwala, M.

    2015-11-15

    Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler andmore » magnetosonic waves and the consequent energy loss due to radiation from the source region. This can result in unique low-amplitude saturation with extended saturation time. It is shown that when the nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution.« less

  17. A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.

    Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less

  18. A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model

    DOE PAGES

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; ...

    2016-09-01

    Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less

  19. Structure of the detonation wave front in a mixture of nitromethane with acetone

    NASA Astrophysics Data System (ADS)

    Buravova, S. N.

    2012-09-01

    It is shown that the leading front of an inhomogeneous detonation wave is a shock wave in which wave structures of the type of triple shock configurations are moving. It was experimentally found that the reaction in these inhomogeneities occurs in oblique shock waves. The reaction sites at the wave front are ring-shaped. In a 75: 25 mixture of nitromethane with acetone, up to 70% of the front surface is occupied by the reaction at the sites in the wave front. Measurements of the mass velocity profile indicate that afterburning takes place in the unloading area behind the Jouguet plane. Calculations of the heat release in the reaction mixture with a decrease in the mass velocity indicate that the material that have not reacted in the inhomogeneities can be ignited in the induction zone. It is suggested that the adiabatic flashes are a mechanism that generates inhomogeneities in the detonation wave front.

  20. The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis.

    PubMed

    Li, Rui-Fang; Chen, Gang; Ren, Jian-Gang; Zhang, Wei; Wu, Zhong-Xing; Liu, Bing; Zhao, Yi; Zhao, Yi-Fang

    2014-12-01

    Previous studies have implicated autophagy in osteoclast differentiation. The aim of this study was to investigate the potential role of p62, a characterized adaptor protein for autophagy, in RANKL-induced osteoclastogenesis. Real-time quantitative PCR and western blot analyses were used to evaluate the expression levels of autophagy-related markers during RANKL-induced osteoclastogenesis in mouse macrophage-like RAW264.7 cells. Meanwhile, the potential relationship between p62/LC3 localization and F-actin ring formation was tested using double-labeling immunofluorescence. Then, the expression of p62 in RAW264.7 cells was knocked down using small-interfering RNA (siRNA), followed by detecting its influence on RANKL-induced autophagy activation, osteoclast differentiation, and F-actin ring formation. The data showed that several key autophagy-related markers including p62 were significantly altered during RANKL-induced osteoclast differentiation. In addition, the expression and localization of p62 showed negative correlation with LC3 accumulation and F-actin ring formation, as demonstrated by western blot and immunofluorescence analyses, respectively. Importantly, the knockdown of p62 obviously attenuated RANKL-induced expression of autophagy- and osteoclastogenesis-related genes, formation of TRAP-positive multinuclear cells, accumulation of LC3, as well as formation of F-actin ring. Our study indicates that p62 may play essential roles in RANKL-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases. © The Author(s) 2014.

  1. A Stellar Ripple

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This false-color composite image shows the Cartwheel galaxy as seen by the Galaxy Evolution Explorer's far ultraviolet detector (blue); the Hubble Space Telescope's wide field and planetary camera 2 in B-band visible light (green); the Spitzer Space Telescope's infrared array camera at 8 microns (red); and the Chandra X-ray Observatory's advanced CCD imaging spectrometer-S array instrument (purple).

    Approximately 100 million years ago, a smaller galaxy plunged through the heart of Cartwheel galaxy, creating ripples of brief star formation. In this image, the first ripple appears as an ultraviolet-bright blue outer ring. The blue outer ring is so powerful in the Galaxy Evolution Explorer observations that it indicates the Cartwheel is one of the most powerful UV-emitting galaxies in the nearby universe. The blue color reveals to astronomers that associations of stars 5 to 20 times as massive as our sun are forming in this region. The clumps of pink along the outer blue ring are regions where both X-rays and ultraviolet radiation are superimposed in the image. These X-ray point sources are very likely collections of binary star systems containing a blackhole (called massive X-ray binary systems). The X-ray sources seem to cluster around optical/ultraviolet-bright supermassive star clusters.

    The yellow-orange inner ring and nucleus at the center of the galaxy result from the combination of visible and infrared light, which is stronger towards the center. This region of the galaxy represents the second ripple, or ring wave, created in the collision, but has much less star formation activity than the first (outer) ring wave. The wisps of red spread throughout the interior of the galaxy are organic molecules that have been illuminated by nearby low-level star formation. Meanwhile, the tints of green are less massive, older visible-light stars.

    Although astronomers have not identified exactly which galaxy collided with the Cartwheel, two of three candidate galaxies can be seen in this image to the bottom left of the ring, one as a neon blob and the other as a green spiral.

    Previously, scientists believed the ring marked the outermost edge of the galaxy, but the latest GALEX observations detect a faint disk, not visible in this image, that extends to twice the diameter of the ring.

  2. Wave-Induced Momentum Flux over Wind-driven Surface Waves

    NASA Astrophysics Data System (ADS)

    Yousefi, Kianoosh; Veron, Fabrice; Buckley, Marc; Husain, Nyla; Hara, Tetsu

    2017-11-01

    In recent years, the exchange of momentum between the atmosphere and the ocean has been the subject of several investigations. Although the role of surface waves on the air-sea momentum flux is now well established, detailed quantitative measurements of wave-induced momentum fluxes are lacking. In the current study, using a combined Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) system, we obtained laboratory measurements of the airflow velocity above surface waves for wind speeds ranging from 0.86 to 16.63 m s-1. The mean, turbulent, and wave-coherent velocity fields are then extracted from instantaneous measurements. Wave-induced stress can, therefore, be estimated. In strongly forced cases in high wind speeds, the wave-induced stress near the surface is a significant fraction of the total stress. At lower wind speeds and larger wave ages, the wave-induced stress is positive very close to the surface, below the critical height and decreases to a negative value further above the critical height. This indicates a shift in the direction of the wave-coherent momentum flux across the critical layer. NSF OCE1458977, NSF OCE1634051.

  3. Global Magnetospheric Evolution Effected by Sudden Ring Current Injection

    NASA Astrophysics Data System (ADS)

    Park, Geunseok; No, Jincheol; Kim, Kap-Sung; Choe, Gwangson; Lee, Junggi

    2016-04-01

    The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a quasi-steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.

  4. Global Evolution of the Earth's Magnetosphere in Response to a Sudden Ring Current Injection

    NASA Astrophysics Data System (ADS)

    No, Jincheol; Choe, Gwangson; Park, Geunseok

    2014-05-01

    The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.

  5. Light and/or atomic beams to detect ultraweak gravitational effects

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Ortolan, Antonello; Porzio, Alberto; Ruggiero, Matteo Luca

    2014-06-01

    We shall review the opportunities lent by ring lasers and atomic beams interferometry in order to reveal gravitomagnetic effects on Earth. Both techniques are based on the asymmetric propagation of waves in the gravitational field of a rotating mass; actually the times of flight for co- or counter-rotating closed paths turn out to be different. After discussing properties and limitations of the two approaches we shall describe the proposed GINGER experiment which is being developed for the Gran Sasso National Laboratories in Italy. The experimental apparatus will consist of a three-dimensional array of square rings, 6m × 6m, that is planned to reach a sensitivity in the order of 1prad/√Hertz or better. This sensitivity would be one order of magnitude better than the best existing ring, which is the G-ring in Wettzell, Bavaria, and would allow for the terrestrial detection of the Lense-Thirring effect and possibly of deviations from General Relativity. The possibility of using either the ring laser approach or atomic interferometry in a space mission will also be considered. The technology problems are under experimental study using both the German G-ring and the smaller G-Pisa ring, located at the Gran Sasso.

  6. Ring-shaped dysphotopsia associated with posterior chamber phakic implantable collamer lenses with a central hole.

    PubMed

    Eom, Youngsub; Kim, Dae Wook; Ryu, Dongok; Kim, Jun-Heon; Yang, Seul Ki; Song, Jong Suk; Kim, Sug-Whan; Kim, Hyo Myung

    2017-05-01

    To evaluate the incidence of central hole-induced ring-shaped dysphotopsia after posterior chamber phakic implantable collamer lens (ICL) with central hole (hole ICL) implantation and to investigate the causes of central hole-induced dysphotopsia. The clinical study enrolled 29 eyes of 15 consecutive myopic patients implanted with hole ICL. The incidence of ring-shaped dysphotopsia after hole ICL implantation was evaluated. In the experimental simulation study, non-sequential ray tracing was used to construct myopic human eye models with hole ICL and ICL without a central hole (conventional ICL). Simulated retinal images measured in log-scale irradiance were compared between the two ICLs for an extended Lambertian light-emitting disc object 20 cm in diameter placed 2 m from the corneal vertex. To investigate the causes of hole-induced dysphotopsia, a series of retinal images were simulated using point sources at infinity with well-defined field angles (0 to -20°) and multiple ICL models. Of 29 eyes, 15 experienced ring-shaped dysphotopsia after hole ICL implantation. The simulation study using an extended Lambertian source showed that hole ICL-evoked ring-shaped dysphotopsia was formed at a retinal field angle of ±40°. Component-level analysis using a well-defined off-axis point source from infinity revealed that ring-shaped dysphotopsia was generated by stray light refraction from the inner wall of the hole and the posterior ICL surface. Hole ICL-evoked ring-shaped dysphotopsia was related to light refraction at the central hole structure. Surgeons are advised to explain to patients the possibility of ring-shaped dysphotopsia after hole ICL implantation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Deceptively Small

    NASA Image and Video Library

    2015-02-02

    Tiny Epimetheus is dwarfed by adjacent slivers of the A and F rings. But is it really? Looks can be deceiving! There is approximately 10 to 20 times more mass in that tiny dot than in the piece of the A ring visible in this image! In total, Saturn's rings have about as much mass as a few times the mass of the moon Mimas. (This mass estimate comes from measuring the waves raised in the rings by moons like Epimetheus.) The rings look physically larger than any moon because the individual ring particles are very small, giving them a large surface area for a given mass. Epimetheus (70 miles or 113 kilometers across), on the other hand, has a small surface area per mass compared to the rings, making it look deceptively small. This view looks toward the sunlit side of the rings from about 19 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Dec. 5, 2014. The view was obtained at a distance of approximately 1.2 million miles (2 million kilometers) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 40 degrees. Image scale is 7 miles (12 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18302

  8. Nutrient Pumping/Advection by Propagating Rossby Waves in the Kuroshio Extension

    DTIC Science & Technology

    2010-01-01

    sea-elevation changes or SLA variance levels are a maximum as eddies and meanders cross a mean route. This boundary in terms of Chl- a levels (lower...and elevated Chl- a levels ) is south of the KE jet. Kuroshio Extension meanders and rings carry different water types across a mean Kuroshio Extension...Fig. 5A). The ring or eddy currents may also redistribute the surface Chl- a levels , drawing out plumes of locally increased Chl-a from regions of

  9. The Design, Development, and Evaluation of a Differential Pressure Gauge Directional Wave Monitor.

    DTIC Science & Technology

    1982-10-01

    Figure III-4). The isolation diaphragms are made of 13 mil DuPont Fairprene elastomer mounted on an acrylic housing. Fairpreneo is a durable nylon...material, coated with neoprene, that is flexible perpendicular to the plane of the fabric. The elastomer is sealed to its acrylic housing 4 by a 90-10...copper-nickel alloy ring. The 90-10 alloy was picked for its anti-fouling properties. Bio-fouling across the diaphragm ring could puncture the elastomer

  10. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.

  11. Sideband analysis and seismic detection in a large ring laser

    NASA Astrophysics Data System (ADS)

    Stedman, G. E.; Li, Z.; Bilger, H. R.

    1995-08-01

    A ring laser unlocked by the Earth's Sagnac effect has attained a frequency resolution of 1 part in 3 \\times 1021 and a rotational resolution of 300 prad. We discuss both theoretically and experimentally the sideband structure of the Earth rotation-induced spectral line induced in the microhertz-hertz region by frequency modulation associated with extra mechanical motion, such as seismic events. The relative sideband height is an absolute measure of the rotational amplitude of that Fourier component. An initial analysis is given of the ring laser record from the Arthur's Pass-Coleridge seismic event of 18 June 1994.

  12. Early alterations in vascular contractility associated to changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue

    PubMed Central

    2010-01-01

    Aim To test the early effect of fructose-induced changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue (PVAT) upon vascular contractility. Methods Adult male Wistar rats were fed a commercial diet without (CD) or with 10% fructose (FRD) in the drinking water for 3 weeks. We measured plasma metabolic parameters, lipid composition and oxidative stress markers in aortic PVAT. Vascular contractility was measured in aortic rings sequentially, stimulated with serotonin (5-HT) and high K+-induced depolarization using intact and thereafter PVAT-deprived rings. Results Comparable body weights were recorded in both groups. FRD rats had increased plasma triglyceride and fructosamine levels. Their PVAT had an increased saturated to mono- or poly-unsaturated fatty acid ratio, a significant decrease in total superoxide dismutase and glutathione peroxidase activities and in the total content of glutathione. Conversely, lipid peroxidation (TBARS), nitric oxide content, and gluthathione reductase activity were significantly higher, indicating an increase in oxidative stress. In aortic rings, removal of PVAT increased serotonin-induced contractions, but the effect was significantly lower in rings from FRD rats. This effect was no longer observed when the two contractions were performed in PVAT-deprived rings. PVAT did not affect the contractions triggered by high K+-induced depolarization either in CD or FRD rats. Conclusions FRD induces multiple metabolic and endocrine systemic alterations which also alter PVAT and the vascular relaxant properties of this tissue. The changes in PVAT would affect its paracrine modulation of vascular function. PMID:20964827

  13. Theoretical monochromatic-wave-induced currents in intermediate water with viscosity and nonzero mass transport

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    Wave-induced mass-transport current theories with both zero and nonzero net mass (or volume) transport of the water column are reviewed. A relationship based on the Longuet-Higgens theory is derived for wave-induced, nonzero mass-transport currents in intermediate water depths for a viscous fluid. The relationship is in a form useful for experimental applications; therefore, some design criteria for experimental wave-tank tests are also presented. Sample parametric cases for typical wave-tank conditions and a typical ocean swell were assessed by using the relation in conjunction with an equation developed by Unluata and Mei for the maximum wave-induced volume transport. Calculations indicate that substantial changes in the wave-induced mass-transport current profiles may exist dependent upon the assumed net volume transport. A maximum volume transport, corresponding to an infinite channel or idealized ocean condition, produces the largest wave-induced mass-transport currents. These calculations suggest that wave-induced mass-transport currents may have considerable effects on pollution and suspended-sediments transport as well as buoy drift, the surface and midlayer water-column currents caused by waves increasing with increasing net volume transports. Some of these effects are discussed.

  14. Particle-in-cell simulations of the lower-hybrid instability driven by an ion-ring distribution

    NASA Astrophysics Data System (ADS)

    Swanekamp, Stephen; Richardson, Steve; Mithaiwala, Manish; Crabtree, Chris

    2013-10-01

    Fully electromagnetic particle-in-cell simulations of the excitation of the lower-hybrid mode in a plasma driven by an ion-ring distribution using the Lsp code are presented. At early times the simulations agree with linear theory. The resulting wave evolution and non-linear plasma and ring-ion heating are compared with theoretical models [Mithaiwala et al. 2010; Crabtree et al., this meeting] and previous simulation results [Winske and Daughton, 2012]. 2D simulations show that when the magnetic field is perpendicular to the wave vector, k, the electrostatic potential fluctuations work in conjunction with the applied magnetic field causing a circular electron E ×B drift around a positively charged center. Similar phenomena are observed in 2D simulations of magnetic-field penetration into a spatially inhomogeneous unmagnetized plasma [Richardson et al., this meeting] where circular paramagnetic vortices are formed. These vortices are altered by the addition of a small, in-plane, component of magnetic field which allows electrons to stream along field lines effectively shorting out one component of the electric field. In this case, the vortex structures are no longer circular but elongated along the direction of the in-plane magnetic field component.

  15. A recipe for echoes from exotic compact objects

    NASA Astrophysics Data System (ADS)

    Mark, Zachary; Zimmerman, Aaron; Du, Song Ming; Chen, Yanbei

    2017-10-01

    Gravitational wave astronomy provides an unprecedented opportunity to test the nature of black holes and search for exotic, compact alternatives. Recent studies have shown that exotic compact objects (ECOs) can ring down in a manner similar to black holes, but can also produce a sequence of distinct pulses resembling the initial ringdown. These "echoes" would provide definite evidence for the existence of ECOs. In this work we study the generation of these echoes in a generic, parametrized model for the ECO, using Green's functions. We show how to reprocess radiation in the near-horizon region of a Schwarzschild black hole into the asymptotic radiation from the corresponding source in an ECO spacetime. Our methods allow us to understand the connection between distinct echoes and ringing at the resonant frequencies of the compact object. We find that the quasinormal mode ringing in the black hole spacetime plays a central role in determining the shape of the first few echoes. We use this observation to develop a simple template for echo waveforms. This template preforms well over a variety of ECO parameters, and with improvements may prove useful in the analysis of gravitational waves.

  16. Finite-size effects in the dynamics of few bosons in a ring potential

    NASA Astrophysics Data System (ADS)

    Eriksson, G.; Bengtsson, J.; Karabulut, E. Ö.; Kavoulakis, G. M.; Reimann, S. M.

    2018-02-01

    We study the temporal evolution of a small number N of ultra-cold bosonic atoms confined in a ring potential. Assuming that initially the system is in a solitary-wave solution of the corresponding mean-field problem, we identify significant differences in the time evolution of the density distribution of the atoms when it instead is evaluated with the many-body Schrödinger equation. Three characteristic timescales are derived: the first is the period of rotation of the wave around the ring, the second is associated with a ‘decay’ of the density variation, and the third is associated with periodic ‘collapses’ and ‘revivals’ of the density variations, with a factor of \\sqrt{N} separating each of them. The last two timescales tend to infinity in the appropriate limit of large N, in agreement with the mean-field approximation. These findings are based on the assumption of the initial state being a mean-field state. We confirm this behavior by comparison to the exact solutions for a few-body system stirred by an external potential. We find that the exact solutions of the driven system exhibit similar dynamical features.

  17. Cation induced electrochromism in 2,4-dinitrophenylhydrazine (DNPH): Tuning optical properties of aromatic rings

    NASA Astrophysics Data System (ADS)

    Sanader, Željka; Brunet, Claire; Broyer, Michel; Antoine, Rodolphe; Dugourd, Philippe; Mitrić, Roland; Bonačić-Koutecký, Vlasta

    2013-05-01

    We have theoretically investigated the influence of protons and noble metal cations on optical properties of 2,4-dinitrophenylhydrazine (DNPH). We show that optical properties of aromatic rings can be tuned by cation-induced electrochromism in DNPH due to binding to specific NO2 groups. Our findings on cation-induced electrochromism in DNPH may open new routes in two different application areas, due to the fact that DNPH can easily bind to biological molecules and surface materials through carbonyl groups.

  18. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    PubMed

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  19. Magnetoelectric effect in concentric quantum rings induced by shallow donor

    NASA Astrophysics Data System (ADS)

    Escorcia, R.; García, L. F.; Mikhailov, I. D.

    2018-05-01

    We study the alteration of the magnetic and electric properties induced by the off-axis donor in a double InAs/GaAs concentric quantum ring. To this end we consider a model of an axially symmetrical ring-like nanostructure with double rim, in which the thickness of the InAs thin layer is varied smoothly in the radial direction. The energies and of contour plots of the density of charge for low-lying levels we find by using the adiabatic approximation and the double Fourier-Bessel series expansion method and the Kane model. Our results reveal a possibility of the formation of a giant dipole momentum induced by the in-plane electric field, which in addition can be altered by of the external magnetic field applied along the symmetry axis.

  20. The puzzling structure in Saturn's outer B ring

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; Hedman, Matt; Buckingham, Rikley

    2017-06-01

    As first noted in Voyager images, the outer edge of Saturn's B ring is strongly perturbed by the 2:1 inner Lindblad resonance with Mimas (Porco \\etal\\ 1984). Cassini imaging and occultation data have revealed a more complex situation, where the expected resonantly-forced m=2 perturbation with an amplitude of 33~km is accompanied by freemodes with m=1, 2, 3, 4 and 5 (Spitale & Porco 2010, Nicholson \\etal\\ 2014a). To date, however, the structure immediately interior to the ring edge has not been examined carefully. We have compared optical depth profiles of the outer 1000~km of the B ring, using a large set of stellar occultations carried out since 2005 by the Cassini VIMS instrument. A search for wavelike structure, using a code written to search for hidden density waves (Hedman \\& Nicholson 2016), reveals a significant signature at a radius of ~117,150 km with a radial wavelength of ~110 km. This appears to be a trailing spiral with m=1 and a pattern speed equal to the local apsidal precession rate, $\\dpi\\simeq5.12\\dd$. Further searches for organized large-scale structure have revealed none with m=2 (as might have been expected), but several additional regions with significant m=1 variations and pattern speeds close to the local value of $\\dpi$. At present, it is unclear if these represent propagating spirals, standing waves, or perhaps features more akin to the eccentric ringlets often seen within gaps in the C ring and Cassini Division (Nicholson \\etal\\ 2014b, French \\etal\\ 2016). Comparisons of sets of profiles from 2008/9, 2012-14 and 2016 seem to show that these structures are changing over time.

  1. Fano resonances of a ring-shaped "hexamer" cluster at near-infrared wavelength

    NASA Astrophysics Data System (ADS)

    Liu, Tong-Tong; Xia, Feng; Sun, Peng; Liu, Li-Li; Du, Wei; Li, Meng-Xue; Kong, Wei-Jin; Wan, Yong; Dong, Li-Feng; Yun, Mao-Jin

    2018-03-01

    Fano resonances have been studied intensely in the last decade, since it is an important way to decrease the resonance line width and enhance local electric field. However, achieving a Fano line-shape with both narrow line width and high spectral contrast ratio is still a challenge. In this paper, we theoretically predict the Fano resonance induced by the extinction of normal plane wave in a ring-shaped hexamer cluster at near-infrared wavelength. In order to obtain the narrow Fano line width and high spectral contrast ratio, the relationships between the Fano line-shape and the parameters of the nanostructure are analyzed in detail. The nanostructure is simulated by using commercial software based on finite element method. The simulation results show that when the structural parameters are optimized, the Fano line width can be narrowed down 0.028 eV with a contrast ratio of 86%, and the local electric field enhancement factor at the Fano resonance wavelength can reach to 36. Furthermore, the effective mode volume of the structure is 3.9 ×10-23m3 which is lower than the available literature. These results indicate many potential applications of the Fano resonance in multiwavelength surface-enhanced Raman scattering and biosensing.

  2. Approximate analysis of containment/deflection ring responses to engine rotor fragment impact.

    NASA Technical Reports Server (NTRS)

    Wu, R. W.-H.; Witmer, E. A.

    1973-01-01

    The transient responses of containment and/or deflection rings to impact from an engine rotor-blade fragment are analyzed. Energy and momentum considerations are employed in an approximate analysis to predict the collision-induced velocities which are imparted to the fragment and to the affected ring segment. This collision analysis is combined with the spatial finite-element representation of the ring and a temporal finite-difference solution procedure to predict the resulting large transient elastic-plastic deformations of containment/deflection rings. Some comparisons with experimental data are given.

  3. Ripples from Daphnis

    NASA Image and Video Library

    2009-12-22

    Tiny Daphnis appears as a bright dot in the Keeler Gap next to shadows cast by the moon and the edge waves it has created in the A ring in this image taken by NASA Cassini spacecraft before Saturn August 2009 equinox.

  4. Saturn Conference, Tucson, AZ, May 11-15, 1982, Proceedings

    NASA Astrophysics Data System (ADS)

    1983-05-01

    Topics on Saturn are discussed. The subjects addressed include: the microwave opacity at wavelengths of 3.6 and 13 cm and the particle size distributions in Saturn's rings from Voyager 1 radio occultations; W-shaped occultation signatures and an inference of entwined particle orbits in charged planetary ringlets; the evolution of spokes in Saturn's B ring; the ballistic transport process in collisional interactions of ring particles; and the formation of fine dust on Saturn's rings as suggested by the presence of spokes. Also considered are: Saturn's electrostatic discharges and lightning as their possible cause; thin-layer configurations for the zonal flow; the composition of the Saturnian stratosphere as determined with the IUE; optical properties of Saturn's atmosphere; internal gravity waves in Titan's atmosphere observed by Voyager radio occultation; Hyperion and the collisional disruption of a resonant satellite. For individual items see A83-35727 to A83-35739

  5. Oligomeric ferrocene rings

    NASA Astrophysics Data System (ADS)

    Inkpen, Michael S.; Scheerer, Stefan; Linseis, Michael; White, Andrew J. P.; Winter, Rainer F.; Albrecht, Tim; Long, Nicholas J.

    2016-09-01

    Cyclic oligomers comprising strongly interacting redox-active monomer units represent an unknown, yet highly desirable class of nanoscale materials. Here we describe the synthesis and properties of the first family of molecules belonging to this compound category—differently sized rings comprising only 1,1‧-disubstituted ferrocene units (cyclo[n], n = 5-7, 9). Due to the close proximity and connectivity of centres (covalent Cp-Cp linkages; Cp = cyclopentadienyl) solution voltammograms exhibit well-resolved, separated 1e- waves. Theoretical interrogations into correlations based on ring size and charge state are facilitated using values of the equilibrium potentials of these transitions, as well as their relative spacing. As the interaction free energies between the redox centres scale linearly with overall ring charge and in conjunction with fast intramolecular electron transfer (˜107 s-1), these molecules can be considered as uniformly charged nanorings (diameter ˜1-2 nm).

  6. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  7. Density engineering of an oscillating soliton/vortex ring in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Levy, Shahar; Shomroni, Itay; Lahoud, Elias; Steinhauer, Jeff

    2008-05-01

    We study solitons in a Bose-Einstein condensate by engineering a density minimum on the healing length scale, using a far off-resonant laser beam. This results in a pair of counterpropagating solitons, which is the low collisional energy version of the celebrated matter wave interference pattern [M. R. Andrews et al., Science 275, 637 (1997)]. The solitons subsequently evolve into a pair of periodic soliton/vortex rings. We image the vortex rings and solitons in-situ on the healing length scale. This stable periodic evolution is in sharp contrast to the behavior of previous experiments in which the solitons decay irreversibly into vortex rings via the snake instability. The periodic oscillation between two qualitatively different forms seems to be a rare phenomenon in nature. We explain this phenomenon in terms of conservation of mass and energy in a narrow condensate.

  8. A design multifunctional plasmonic optical device by micro ring system

    NASA Astrophysics Data System (ADS)

    Pornsuwancharoen, N.; Youplao, P.; Amiri, I. S.; Ali, J.; Yupapin, P.

    2018-03-01

    A multi-function electronic device based on the plasmonic circuit is designed and simulated by using the micro-ring system. From which a nonlinear micro-ring resonator is employed and the selected electronic devices such as rectifier, amplifier, regulator and filter are investigated. A system consists of a nonlinear micro-ring resonator, which is known as a modified add-drop filter and made of an InGaAsP/InP material. The stacked waveguide of an InGaAsP/InP - graphene -gold/silver is formed as a part of the device, the required output signals are formed by the specific control of input signals via the input and add ports. The material and device aspects are reviewed. The simulation results are obtained using the Opti-wave and MATLAB software programs, all device parameters are based on the fabrication technology capability.

  9. Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications.

    PubMed

    Bilenca, A; Yun, S H; Tearney, G J; Bouma, B E

    2006-03-15

    Recent results have demonstrated unprecedented wavelength-tuning speed and repetition rate performance of semiconductor ring lasers incorporating scanning filters. However, several unique operational characteristics of these lasers have not been adequately explained, and the lack of an accurate model has hindered optimization. We numerically investigated the characteristics of these sources, using a semiconductor optical amplifier (SOA) traveling-wave Langevin model, and found good agreement with experimental measurements. In particular, we explored the role of the SOA refractive-index nonlinearities in determining the intracavity frequency-shift-broadening and the emitted power dependence on scan speed and direction. Our model predicts both continuous-wave and pulse operation and shows a universal relationship between the output power of lasers that have different cavity lengths and the filter peak frequency shift per round trip, therefore revealing the advantage of short cavities for high-speed biomedical imaging.

  10. Heating performances of a IC in-blanket ring array

    NASA Astrophysics Data System (ADS)

    Bosia, G.; Ragona, R.

    2015-12-01

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  11. Heating performances of a IC in-blanket ring array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosia, G., E-mail: gbosia@to.infn.it; Ragona, R.

    2015-12-10

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) basedmore » on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.« less

  12. An external-cavity quantum cascade laser operating near 5.2 µm combined with cavity ring-down spectroscopy for multi-component chemical sensing

    NASA Astrophysics Data System (ADS)

    Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik

    2018-04-01

    We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.

  13. A multi-channel isolated power supply in non-equipotential circuit

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da

    2018-04-01

    A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.

  14. Precision Laser Development for Interferometric Space Missions NGO, SGO, and GRACE Follow-On

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2011-01-01

    Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, including the gravitational-wave missions NGO/SGO (formerly LISA) and the climate monitoring mission GRACE Follow-On, by fully utilizing the matured wave-guided optics technologies. In space, where simpler and more reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Nonplanar Ring Oscillator) and bulk-crystal amplifier.

  15. Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: Angular momentum and ring current

    NASA Astrophysics Data System (ADS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.

    2013-02-01

    The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012), 10.1021/ja3047848].

  16. Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: angular momentum and ring current.

    PubMed

    Mineo, H; Lin, S H; Fujimura, Y

    2013-02-21

    The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012)].

  17. Numerical Investigations of Wave-Induced Mixing in Upper Ocean Layer

    NASA Astrophysics Data System (ADS)

    Guan, Changlong

    2017-04-01

    The upper ocean layer is playing an important role in ocean-atmosphere interaction. The typical characteristics depicting the upper ocean layer are the sea surface temperature (SST) and the mixed layer depth (MLD). So far, the existing ocean models tend to over-estimate SST and to under-estimate MLD, due to the inadequate mixing in the mixing layer, which is owing to that several processes related mixing in physics are ignored in these ocean models. The mixing induced by surface gravity wave is expected to be able to enhance the mixing in the upper ocean layer, and therefore the over-estimation of SST and the under-estimate of MLD could be improved by including wave-induced mixing. The wave-induced mixing could be accomplished by the physical mechanisms, such as wave breaking (WB), wave-induced Reynolds stress (WR), and wave-turbulence interaction (WT). The General Ocean Turbulence Model (GOTM) is employed to investigate the effects of the three mechanisms concerning wave-induced mixing. The numerical investigation is carried out for three turbulence closure schemes, say, k-epsilon, k-omega and Mellor-Yamada (1982), with the observational data from OSC Papa station and wave data from ECMWF. The mixing enhancement by various waved-induced mixing mechanisms is investigated and verified.

  18. What Confines the Rings of Saturn?

    NASA Astrophysics Data System (ADS)

    Tajeddine, Radwan; Nicholson, Philip D.; Longaretti, Pierre-Yves; El Moutamid, Maryame; Burns, Joseph A.

    2017-10-01

    The viscous spreading of planetary rings is believed to be counteracted by satellite torques, through either an individual resonance or overlapping resonances. For the A ring of Saturn, it has been commonly believed that the satellite Janus alone can prevent the ring from spreading, via its 7:6 Lindblad resonance. We discuss this common misconception and show that, in reality, the A ring is confined by the contributions from the group of satellites Pan, Atlas, Prometheus, Pandora, Janus, Epimetheus, and Mimas, whose cumulative torques from various resonances gradually decrease the angular momentum flux transported outward through the ring via density and bending waves. We further argue that this decrease in angular momentum flux occurs through “flux reversal.” Furthermore, we use the magnitude of the satellites’ resonance torques to estimate the effective viscosity profile across the A ring, showing that it decreases with radius from ˜50 cm2 s-1 to less than ˜10 cm2 s-1. The gradual estimated decrease of the angular momentum flux and effective viscosity are roughly consistent with results obtained by balancing the shepherding torques from Pan and Daphnis with the viscous torque at the edges of the Encke and Keeler gaps, as well as the edge of the A ring. On the other hand, the Mimas 2:1 Lindblad resonance alone seems to be capable of confining the edge of the B ring, and contrary to the situation in the A ring, we show that the effective viscosity across the B ring is relatively constant at ˜24-30 cm2 s-1.

  19. Plasmon-Induced Transparency Based on Triple Arc-Ring Resonators.

    PubMed

    Dong, Guang-Xi; Xie, Qin; Zhang, Qi; Wang, Ben-Xin; Huang, Wei-Qing

    2018-06-06

    This paper presents a plasmon-induced transparency (PIT) using an easy-fabricating metamaterial composed of three pieces of metallic arc-rings on top of a dielectric substrate. The transmission of the transparent peak of 1.32 THz reaches approximately 93%. The utilization of the coupled Lorentzian oscillator model and the distribution of electromagnetic fields together explain the cause of the transparent peak. The simulation results further demonstrate that the bandwidth of the transmission peak can be narrowed by changing the sizes of the arc-rings. Moreover, an on/off effect based on the transparent peak is discussed by introducing photosensitive silicon into the air gaps of the suggested metamaterial structure.

  20. Particle rings and astrophysical accretion discs

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2016-03-01

    Norman Rostoker had a wide range of interests and significant impact on the plasma physics research at Cornell during the time he was a Cornell professor. His interests ranged from the theory of energetic electron and ion beams and strong particle rings to the related topics of astrophysical accretion discs. We outline some of the topics related to rings and discs including the Rossby wave instability which leads to formation of anticyclonic vortices in astrophysical discs. These vorticies are regions of high pressure and act to trap dust particles which in turn may facilitate planetesimals growth in proto-planetary disks and could be important for planet formation. Analytical methods and global 3D magneto-hydrodynamic simulations have led to rapid advances in our understanding of discs in recent years.

Top